
(MS5

NI Programmer's

Handbook

NI Version 2.2
(CM-5E)

Corporation

NI Programmer's
Handbook

NI Version 2.2 (CM-5E),
June 1994

:I_ I"I .1

L�B�"aQ)�OBL=·IOII1I$

First printing, June 1994

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
product described herein.

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, and CM-5e are trademarks of Thinking Machines Corporation.
CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMosT; CMAX, and Prism are trademarks of Thinking Machines Corporation.
C*® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMHFB, CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
CMview is a trademark of Thinking Machines Corporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Scalable Disk Array (SDA) is a trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.
Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of UNIX System Laboratories, Inc.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1994 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

Contents
A.'4.W~ 5 ~·'·····y·~~r

Figures .
About This Manual .
Customer Support .

Chapter 1 The CM-5 Network Interface

1.1 The CM-5 System: Nodes and Networks
1.1.1 The CM-5 Networks

The Data Network
The Control Network
For the Curious: The Diagnostic

1.1.2 Processing Nodes
1.1.3 Partitions and Partition Managers..
1.1.4 Programming Models

User Programming Model
OS Programming Model

............ xv

............ . xvii
............ xxi

......................

......................

......................

......................
Network
......................

.....................

......................

......................

......................
1.2 The NI Chip ..

1.3 The NI Registers ...
1.3.1 For the Curious: The NI Base Address
1.3.2 NI Register Types
1.3.3 NI Register and Field Names
1.3.4 NI Register and Field Programming Constants

Finding the Constant You Need
Register Constants
Field Constants
NI Base Address Constant

1.3.5 C Macros Useful for Writing NI Code
Finding the C Macro You Need

1.4 Interrupts ...

1.5 NI Reset ..

1.6 Using This Manual Effectively

1.7 WARNING: Experiment at Your Own Risk

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

3

4
4
4

5

5

5

6

7

7

7

8

8

10

11

12

13

13

13

14

14

14

15

15

16

16

17

iii111

NI Programmer's Handbook

Chapter 2 A Generic Network Interface

2.1 Network

2.2 Network
2.2.1

Interface Registers

Messages ...
Performance Note - Using Doubleword Operations

2.3 Sending a Message ... 21
2.3.1 Message Discarding 22
2.3.2 Auxiliary Information 22
2.3.3 Calculating niinterfacesend_first Addresses 23

Send First Address Constants 23
2.3.4 C Macros for Writing a Message 24

2.4 Receiving a Message ... 25
2.4.1 C Macros for Reading a Message 25
2.4.2 Detecting Arrival of a Message 26
2.4.3 Simulating the Arrival of a Message 26

2.5 The Status Register .. 27
2.5.1 The "Send OK" Flag 27
2.5.2 The "Send Space" Field and "Send Empty" Flag 28
2.5.3 The "Receive OK" Flag and "Receive Length" Fields 28
2.5.4 Reading the Status Register Fields 28

2.6 Abstaining from an Interface - The Control Register 29
2.6.1 Effect of Abstain Flags 30
2.6.2 Combine Interface Abstain Flags 30
2.6.3 Reading and Writing the Abstain Flag 30
2.6.4 Use the Abstain Flags Safely 31
2.6.5 Being a Good Neighbor 31

2.7 The Private Register ..
2.7.1 Message Receipt Interrupts - The Rec Interrupt Enable Flag
2.7.2 Clearing the Interface's Send FIFO - The Lock Flag
2.7.3 Grabbing the Receive FIFO Registers - The Rec Stop Flag.
2.7.4 Blocking Unsent Broadcast Messages - The Send Stop Flag
2.7.5 Detecting a Full Receive FIFO - The Receive Full Flag

2.8 Using a Generic Network Interface

2.9 From the Generic to the Specific

Chapter 3

3.1

3.2

The Data Network ..

The Data Network Register Interfaces

Data Network Messages ..
3.2.1 Short and Long Data Network Messages

32

32

33

33
34

34

34

35

37

38

40
40

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

19

19

20
21

iv

Contents

3.2.2 Long Data Network Message Interrupt 41
3.2.3 Data Network Message-Sending Conventions 41

3.3 Data Network Addressing 41
3.3.1 Physical and Relative Addressing Modes 42

3.4 Sending and Receiving Messages 43
3.4.1 Sending Short Messages 44

Auxiliary Information for Short Messages 44
3.4.2 Sending Long Messages 45

Send First Long Address Format 45
Auxiliary Information for Long Messages 46

3.4.3 Receiving Messages 46

3.5 The Status Registers .. 47
3.5.1 The Standard Status Registers 47
3.5.2 The "Status All" Alternate Status Register 48
3.5.3 The "Status Pop" Register 49
3.5.4 Message Tags ... 50

User/Supervisor Tag Reservation 50
Tag Fields and Interrupts 50
Using CMOST Commands
to Set Up NI Interrupt Handlers 53
Tag Fields and the Message-Counting Registers 53
Message Count Disabling 54
Negative Message Count Interrupts 54

3.5.5 The Send and Receive State Fields 55
3.5.6 The Network-Done Flag 56

3.6 The Private Register .. 56

3.7 All Fall Down Mode ... 57
3.7.1 Triggering All Fall Down Mode 57
3.7.2 Detecting All Fall Down Mode Messages 57
3.7.3 Resending All Fall Down Mode Messages 58

3.8 Interrupt Enable Flags .. 59

3.9 Data Network Usage Note: Receive before You Send 59

3.10 Examples ... 60
Sending and Receiving a Message 60
Sending and Receiving Long Messages 61
Interrupt-Driven Message Retrieval 63
Sending via LDR and RDR Simultaneously 64

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation v

NI Programmer's Handbook
- B S8Y>~~~~~~~~~~~~~~~~~~~~. ..

Chapter 4 The Control Network ... 65

4.1 The Broadcast Interface 66
4.1.1 Broadcast Register Interfaces 66
4.1.2 Broadcast Messages 67
4.1.3 Sending Broadcast Messages 68
4.1.4 Auxiliary Information 69

4.1.5 Receiving Broadcast Messages 69

4.1.6 The Broadcast Status Register 70
4.1.7 Abstaining from the Broadcast Interface 71
4.1.8 The Broadcast Private Register 71
4.1.9 Broadcast Interface Examples 72

Sending and Receiving a Message 72

4.2 The Combine Interface ... 73
4.2.1 The Combine Register Interface 74
4.2.2 Combine Messages 75

4.2.3 Sending Combine Messages 75
4.2.4 Auxiliary Information 76

4.2.5 Legal Combiner and Pattern Values 77
4.2.6 Receiving Combine Message 78

4.2.7 The Combine Status Register 78
4.2.8 Scanning (Parallel Prefix) and Reduction Operations 79

Scanning with Segments 80
Addition Scan Overflow 80

4.2.9 Network-Done Messages 81
How Network-Done Works 82
...And Why You Should Care 83

4.2.10 Abstaining from the Combine Interface 83
4.2.11 The Combine Private Register 85

Empty Receive FIFO Interrupt 85
Clearing the Combine Send FIFO 86

4.2.12 Combine Interface Examples 87
Sending and Receiving a Combine Message 87
Executing Scans and Reduction Scans 88
Executing a Network-Done Operation 89

4.3 The Global Interface ... 90
4.3.1 The Three Global Register Interfaces 91
4.3.2 The Synchronous Global Interface 91

Sending and Receiving Messages 92
Abstaining from Synchronous Global Messages 92
Synchronous Global Receive Interrupt 93
Supervisor Operations for the Synchronous Global Interface .. 93

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporationvi

4.3.3 The Asynchronous Global Interface
Sending and Receiving Messages
Asynchronous Global Receive Interrupt

4.3.4 The Supervisor Asynchronous Global Interface
Sending and Receiving Messages
Supervisor Asynchronous Global Receive Interrupt

4.3.5 Global Interface Examples
Using the Synchronous Global Interface
Using the Asynchronous Global Interface

er 5 NI Interrupts ..

5.1 Interrupt Classes ...
5.1.1 Disabling Bus Errors

5.2 Interrupt Pathways ..
5.2.1 Red Interrupts ..
5.2.2 Orange Interrupts
5.2.3 Yellow Interrupts
5.2.4 Green Interrupts

5.3 The Interrupt Cause and Clear Registers

5.4 Interrupt Levels ...

5.5 Broadcast Interrupts ..

5.6 Recovering from Interrupts

93

94
95

95

95

95

96

96

96

97

97

100

100

101
102
102
103

104

105

106

107

Other NI Interfaces and Features

The "Hodgepodge" Register

Node Address Registers

NI Chunk Table and Address Translation
6.3.1 Node Address Translation
6.3.2 Chunk Sizes and Address Allocation
6.3.3 Modifying the Chunk Table

Combine Interface Flush

The NI Timer

The Bad Address Register

NI Partition Configuration

Disabling the Control Network

NI Serial Number

NI Reset

...................... 109

...................... 109

...................... 110
...................... 110

...................... 110
...................... 112
. 114

... 114

...................... 115

...... 116
...................... 117

............. 118
..................... 118

.................. 119

vii

Contents

Chapte

Chapter 6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thminking Machines Corporation

''� �`""�' '""' '""" ' ' �""'''
� �i·� �,� . ,.....

NI Programmer's Handbook
· ~-.t,,...,~ ~~~ - _ , ,. ,_, _.. _ , ~~^<~,., .. ~~.,*...~ . ;' ~, _- '- '. ,_~~. ~ ~

Writing NI Programs

Transferring Data between Nodes and the PM
7.1.1 Sending Messages from the PM to No
7.1.2 Sending Messages from Nodes to the
7.1.3 Signaling the PM
7.1.4 For the Curious: Using the Data Nets

7.2 Setting the Abstain Flags

7.3 Broadcast Enabling

7.4 NI Program Structure
7.4.1 The cmna. h Header File
7.4.2 Partition Manager Code
7.4.3 Node Code

The Node's "Main" Routine
7.4.4 Interface Code

7.5 A Sample Program

7.6 Compiling and Executing an NI Program
7.6.1 A Simple Compiling Script
7.6.2 Compiling and Running the Program
7.6.3 On-Line Code Examples

r 8 NI Programming Issues

8.1 Performance Hints
8.1.1 NI Register Operation Times

..................... 121

..................... 121
ides 122
PM 123
..................... 124
york 124

..................... 125

..................... 126

..................... 127

..................... 127

..................... 127

..................... 128

..................... 128

..................... 129

..................... 129

..................... 134

..................... 135

..................... 136

..................... 136

8.1.2 Reading and Writing Registers with Doubleword Values
Example: LDR Send/Receive

8.1.3 Use Message Discarding for Efficiency
8.1.4 Set the Abstain Flags Once and Forget Them

tential Programming Traps and Snares
8.2.1 Address Calculation on the Partition Manager
8.2.2 Pay Attention to Data Network Addresses
8.2.3 "Middle" Data Network Interface Restrictions
8.2.4 Make Sure Doubleword Data Is Doubleword Aligned ..
8.2.5 Order Is Important in Combine Messages
8.2.6 Broadcast and Combine Interface Conflicts
8.2.7 Broadcast Enabling
8.2.8 Combine Interface Pipelining Restriction
8.2.9 Restriction on Scan Segment Start Flag
.2.10 Be Careful When Altering Abstain Flags
8.2.11 Simulating Receipt of Messages

.... 137

.... 137

.... 137

.... 138

.... 138

.... 140
.... 140

.... 141

.... 141
.... 141
.... 142
.... 142
.... 142
.... 142
.... 143
.... 143
.... 143
.... 144
.... 144

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 7

7.1

Chapte

8.2 Pot

E
8

..................................

...VMf

Contents

8.2 Potential Programming Traps and Snares (cont'd)
8.2.12 Message Too Long Interrupt Restriction 144
8.2.13 All Fall Down Restriction 144

8.2.14 Send/Receive and FIFO Locking Restrictions 144

Appendixes

Appendix A NI Registers, Fields, and Constants

A.1 NI Registers ..
A.1.1 Global and System Registers
A.1.2 Network Interface Registers

Combined Data Network Interface (DR)
Left Data Network Interface (LDR)
Right Data Network Interface (RDR)
Broadcast Interface (BC)
Supervisor Broadcast Interface (SBC)
Combine Interface (COM)

A.2 NI Message Length Limit Constants

A.3 Send First Register Addresses
Data Network (DR/LDR/RDR) Auxiliary Data Fields
Broadcast (BC/SBC) Auxiliary Data Fields
Combine Auxiliary Data Fields

A.4 Send First Long (Data Network) Register Addresses

A.5 NI Fields ...
A.5.1 Combined Data Network (DR) Fields

The ni_dr_status Register
The ni_dr_status_long Register
The ni_dr_status_{all/pop} Registers
The ni_dx_private Register

A.5.2 Left Data Network Interface (LDR) Fields
The ni_ldrstatus Register
The nildx_status_long Register
The ni_ldrstatus_{all/pop} Registers
The ni_ldr..private Register

A.5.3 Right Data Network Interface (RDR) Fields
The ni_rdx_status Register
The ni.rd_status_long Register
The ni_rdr_status_{all/pop} Registers
The ni_rdx..private Register

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

147

147
148

149

149

149
149

150

150

150

151

151

152
153

153

154

155

155

155

156

156

156

157

157
157
157

158
158

158
158

159
159

ix

NI Programmer's Handbook
_,~ , _-_ .. , '-.. s.. -

A.5.4 Broadcast Interface (BC) Fields
The nibc status Register
The nibc._private Register
The ni bccontrol Register

A.5.5 Supervisor Broadcast Interface (SBC) Fields
The ni_sbc_status Register
The nibc_private Register
The ni_sbc_control Register

A.5.6 Combine Interface (COM) Fields
The ni-com_status Register
The ni_comprivate Register
The nicom_control Register

A.5.7 Global Interface Fields
The ni_sync_global Register
The ni_async_global Register
The niasync..sup_global Register

A.5.8 Interrupt Register Fields
The ni_interruptcause Register
The ni_interrupt_cause_green Register
The niinterrupt_{clear,set} Registers
The ni_interrupt_{clear,set}_green Registers

159
159

160
160

160

160
160

161

161
161

161

162

162
162
162

162
162

163
163

164
164

A.5.9 Other Register Fields and Constants 165
The ni_interruptlevel Register 165
The ni_hodgepodge Register 165
The ni_bad_address Register 166

NI Interrupts

.............................Red Interrupt.

.............. Red Interrupt ...

.............. Red Interrupt ...

.............. Red Interrupt ...

.............. Red Interrupt ...

.............. Orange Interrupt

.............. Orange Interrupt

.............. Orange Interrupt

.............. Yellow Interrupt.

.............. Yellow Interrupt.

B.1 Red Interrupts

B.1.1 Internal Fault
B.1.2 CN Checksum Error,

DR Checksum Error ...
B.1.3 CN Hard Error
B.1.4 MC Error, CMU Error .
B.1.5 BC Interrupt Red

B.2 Orange Interrupts

B.2.1 Timer Interrupt
B.2.2 Router Done Complete .
B.2.3 BC Interrupt Orange ...

B.3 Yellow Interrupts

B.3.1 BC Interrupt Yellow ...
B.3.2 Bad Memory Access ...

· 167

· 168

168

168
169
169
170

.170

170
171
171

.171

172
172

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

AppendiixB

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
.....
.....

...

X

B.3.3 COM Abstain Changed Yellow Interrupt .
B.3.4 DR Count Negative Yellow Interrupt .
B.3.5 BC or COM Collision Yellow Interrupt .
B.3.6 Bad Relative Address Yellow Interrupt .
B.3.7 Message Too Long Yellow Interrupt.

B.4 Green Interrupts ...

B.4.1 BC Interrupt Green Green Interrupt
B.4.2 DR Receive Tag Green Interrupt
B.4.3 DR Receive All Fall Down Green Interrupt
B.4.4 Interface (DR, BC, COM, etc.) Receive OK

................................... Green Interrupt
B.4.5 Global Rec (Sync, Global, or Supervisor) Green Interrupt
B.4.6 Com Receive Empty Green Interrupt .
B.4.7 Scan Overflow
B.4.8 DP Error (Vector Unit Error) .
B.4.9 Send FIFO Empty (Data Network Only)
B.4.10 LDR/RDR Tag, LDR/RDR User Tag ..

B.5 Bus Errors .

B.5.1 Bad Memory Access .

. Green Interrupt .

. Green Interrupt .
Green Interrupt .

. Green Interrupt .
· Bu...s Er....ror.....

. Bus Error

Appendix C Programming Tools ..

C.1 Generic Variables and Macros

C.2 Data Network Constants and Macros
Send and Receive Register Macros
Status Register Macros
Message Length Limit

C.3 Broadcast Interface Constants and Macros
Send and Receive Register Macros
Status Register Macros
Abstain Register Macros
Message Length Limit

C.4 Combine Interface Constants and Macros
Send and Receive Register Macros
Message Length Limit
Segment Start Register Macros
Status Register Macros
Abstain Register Macros

C.5 Global Interface Constants and Macros
Synchronous Global Register Macros
Asynchronous Global Register Macros

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

172
173
173

174
174

· 175

175
176
176

176
177
177
178
178
179
179

· 180

180

183

183

184

184

185
186

186

186
186

187

187

188

188

189
189

189
190

190
190
191

xi

Contents
~~~s ss~~~~~~P~~~~s~~~s r~~~~~



NI Programmer's Handbook
*' ' _ m *. . . .

Appendix D Predefined Low-Level NI Constants ........................... 193

Appendix E CMOS_signal Man Page ..................................... 201

ix F NI Accessor Examples ...........................

El Reading and Writing Registers ......................

E2 Reading and Writing Subfields ......................

E3 Constructing Send-First Addresses ...................
Data Network Send-First Macros ................
Broadcast Interface Send-First Macros ...........
Combine Interface Send-First Macros ............

x G Sample NI Programs .............................

G.1 Data Network Test ................................

G.2 Data Network Doubleword Messages Test ............

G.3 Broadcast Interface Test ............................

G.4 Combine Interface Test ............................

G.5 Global Network Test ...............................

x H CMNA Header Files .............................

H.1 What Is CMNA? ..................................

H.2 CMNA Header Files ..............................
H.2.1 The Main CMNA Header File: cm/cmna. h
H.2.2 The User Header File: cmsys/cmna. h.

............ 203

............ 203

............ 204

............ 205

............ 205

............ 206

............ 206

............ 207

............ 207

............ 214

............ 217

............ 220

............ 224

............ 227

............ 227

............ 228

............ 229

............ 229
H.2.3 The Supervisor Header File: cmsys/cna_sup.h ....... 229
H.2.4 The NI Interface Header File: ni interface.h ........ 230
H.2.5 The NI Macros Header File: ni macros. h . 230
H.2.6 The NI Constants Header Files:

niconstants .h, nidefines h...

H.3 CMNA Functions .............................
H.3.1 CMNA Version ......................
H.3.2 Activity Functions ....................
H.3.3 DR Interface Functions ...............
H.3.4 LDR Interface Functions ..............
H.3.5 RDR Interface Functions ..............
H.3.6 BC Interface Functions ...............
H.3.7 SBC Interface Functions ..............

................ 230
................ 231
................ 231

................ 231
................ 232
................ 232

................ 233

................ 234
................ 235

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendi

Appendi

Appendi

xi



Contents
__~

H.3.8 COM Interface Functions ............................. 237
H.3.9 Global Interface Functions ............................ 237

Appendix I

I.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

I.10

I.11

NI Chip Version 2.2 Changes ................................. 239

Long Data Network Messages ................................... 239

New Data Network Status Interface .............................. 240

New Data Network Tag Interrupt Interface ....................... 240

Non-Compatible Change to Broadcast Interface ............. ...... 240

New Interrupts ............................................... 241

New Data Network Interrupt Enable Flags ........................ 241

New Bus Error Conditions ...................................... 241

Disabling Bus Errors ........................................ 242

Manually Triggering Interrupts .................................. 242

Global Interface Context-Switching .............................. 242

New Hodgepodge Register Fields ................................ 242

Index

Programming Tools Index ............................................... 245

Concepts Index .......................................................... 255

NI Memory Map

NI Memory Map .......................................... 269

NI Version 2.2 (CM-SE), June 1994
Copyright O 1994 Thinking Machines Corporation Xlll





Figures

Figure 1. The CM-5 system: Processing nodes linked by Data and Control Networks .. 4

Figure 2. The components of a typical processing node, .......................... 5

Figure 3. A partition of nodes and its partition manager ........................... 6

Figure 4. NI provides access to features of the Data Network and Control Network. .... 8

Figure 5. The NI registers are mapped into user and supervisor memory areas ........ 9

Figure 6. Sample virtual memory maps showing location of NI memory region ....... 10

Figure 7. NI registers associated with each interface .............................. 20

Figure 8. The three interfaces of the Data Network: DR, LDR, and RDR. ............ 37

Figure 9. NI registers associated with each of the Data Network interfaces ............ 39

Figure 10. Relative addressing of nodes in a partition .............................. 42

Figure 11. Data Network message format ....................................... 43

Figure 12. Tag value interrupt paths for Data Network messages .................... 52

Figure 13. The three interfaces of the Control Network: BC, COM, and global. ........ 65

Figure 14. NI registers associated with each of the broadcast interfaces. .............. 67

Figure 15. NI registers associated with the combine interface ........................ 74

Figure 16. NI registers associated with the global interface. ........................ 90

Figure 17. The possible pathways for colored interrupts ............................ 100

Figure 18. Translation from relative addresses to physical addresses. ................. 111

Figure 19. The chunk table is used to map contiguous relative addresses

onto discontiguous physical addresses. ................................ 113

Figure 20. The partition manager stands apart from the partition it manages ............ 121

Figure 21. Relationship between CMNA and NI header files ....................... 228

NI Version 2.2 (CM-5E), June 1994 xv
Copyright © 1994 Thinking Machines Corporation





About This Manual
~~~~sls ~ ~ ~ . .~.*Y*z~..

Objectives of This Manual

This manual describes in detail the design, features, and correct use of the
Network Interface (NI) chip of the Connection Machine CM-5 system. This
description is at a level sufficient for low-level CM-5 coders to make full use of
the NI's features. Both user- and supervisor-level information is included, as well
as numerous programming examples written in the C programming language.

Intended Audience

This manual is intended for use by knowledgeable CM-5 programmers. While
it contains some overview information, this document is a reference manual, not
a tutorial. This manual should be used in conjunction with other programming
guides and with assistance from Thinking Machines Corporation representatives.

Revision Information

This manual is a consolidation of two previously published manuals:
Programming the NI and NI Systems Programming.

This manual replaces both of the earlier books. This manual contains the same
information and examples, and reflects the most recent revision of the NI chip,
used in the CM-5E version of the Connection Machine system node hardware.

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

xvii

NI Systems Programming
·.. · ,.·... .~...: ~~-~..x. c . % .. .:.. .".

Organization of This Manual

Chapter 1 The Network Interface Chip
An overview of the NI chip's purpose in the CM-5 hardware,
and a description of the important features of the chip.

Chapter 2 A Generic Network Interface
A description of common features found in most of the NI net-
work interfaces.

Chapter 3 The Data Network
The registers and features of the three Data Network interfaces.

Chapter 4 The Control Network
The registers and features of the three Control Network inter-
faces (broadcast, combine, and global).

Chapter 5 NI Interrupts
A description of the various interrupt classes of the NI, and of
the mechanisms used to detect and signal NI interrupts.

Chapter 6 Other NI Interfaces and Features
A description of NI registers and features not covered by the
preceding chapters.

Chapter 7 NI Programming Issues
A summary of important programming and performance consid-
erations that you should keep in mind while writing code that
manipulates the NI.

Appendix A

Appendix B

Appendix C

NI Registers, Fields, and Constants
A summary of the registers and fields of the NI chip and of the
programming constants that can be used to locate them.

NI Interrupts
A description of each of the possible NI interrupts, including
what they indicate and how to recover from them.

Programming Tools
A list of NI macros and constants defined by the CMNA soft-
ware layer.

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

XVlll

About This Manual xix
".,'. ,' ''".''...'".2,:, *, /...,,3, ,..;,.':.,,..2..e . - " o , . . ^ " . " . ,..%.."

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Predefimed Low-Level NI Constants
A list of all low-level programming constants defined by the
files cmsys/ni_constants.h and cmsys/ni_defines.h,
with the symbols grouped by register and field.

CMOS_signal Man Page
The UNIX manual page for the CMOS_signal system call.

NI Accessor Examples
A set of simple C code examples of routines that read and write
NI registers and perform other useful functions.

Sample NI Programs
C code examples demonstrating the NI features described in the
chapters of this manual.

CMNA Header Files
Describes the content and relationship between the various
header files that define the CM Network Accessor interface.

NI Chip Version 2.2 Changes
A quick-reference list of the changes to the NI chip as of Version
2.2, with references into the main text of this manual.

NI Memory Map
A two-sided memory map of the NI registers and fields.

Related Documents

These documents are part of the Connection Machine documentation set:

* Connection Machine CM-5 Technical Summary, November 1993

* VU Programmer s Handbook, CMOST Version 7.2 August 1993

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 ThinkingMachines Corporation

-

NI Systems Programming

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, syntax statements and pro-
gramming language elements, such as keywords,
operators, and function names, when they appear
embedded in text.

Argument names and placeholders in function and
command formats.

typewriter

% bold typewriter
regular typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

xx

Customer Support

Thinking Machines Customer Support encourages customers to report er-
rors in Connection Machine operation and to suggest improvements in our
products.

When reporting an error, please provide as much information as possible to
help us identify and correct the problem. A code example that failed to exe-
cute, a session transcript, the record of a backtrace, or other such
information can greatly reduce the time it takes Thinking Machines to re-
spond to the report.

If your site has an applications engineer or a local site coordinator, please
contact that person directly for support. Otherwise, please contact Thinking
Machines' home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-support@think.com

ames! think! customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version 1.0, January 1993
Copyright © 1993 Thinking Machines Corporation xxi

i
i

Chapter 1

The CM-5 Network Interface

First, a word to the wise. You're reading this manual for one of two reasons:

* You absolutely, positively must write programs that manipulate the net-
work hardware of the CM-5 at the lowest possible level.

· You've heard about a CM-5 component called the "Network Interface,"
and think it would be interesting to write a program that manipulates it.

If it's the latter, we strongly suggest that you consider using a higher-level pro-
gramming method instead. Writing code at the level described in this manual
means taking direct control of the Network Interface chip, the part of the CM-5
hardware that manages the machine's internal communications networks. This
isn't something that you should be doing unless you have no alternative.

Also, be aware that code that directly accesses the Network Interface chip will
not be supported in future software and hardware releases - your code may re-
quire extensive modification to run. For essential code you should use the CMMD
software interface instead. CMMD gives you nearly the same level of access to
the CM-5 hardware, but provides it through a standard software interface that will
be easily portable to future releases. (For more information, see the CMMD
User's Guide.)

With this warning out of the way, we'll assume that you're reading this manual
for the first reason given above, and show you how to make use of the Network
Interface (NI) chip. This manual presents the software tools that you need to pro-
gram the NI and provides code examples throughout that show you how to do
simple network operations on the CM-5.

NI Version 22 (CM-SE), June 1994 1
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
-, ~ ~~~-j~ ,-¢/~,'' -~~~~~~~ ~~~,;..~ ~~..~J.. ~',. , ' . ~

1.1 The CM-5 System: Nodes and Networks

The Network Interface chip, or NI, manages the internal communications net-
works of the CM-5. Because the main focus of this manual is the Network
Interface, it makes sense to start with an overview of the NI's location and func-
tion within the CM-5 system.

/

Networks

Prqcessinna F

Nodes LZ .LZJW1 1 1 lt rl L L l ' l ' P I

Figure 1. The CM-S5 system: Processing nodes, plus Data and Control Networks.

The CM-5 contains a large number of processing nodes, which perform the arith-
metic computations involved in a CM-5 program. The processing nodes are
linked together by two internal communications networks, the Data Network and
the Control Network. (See Figure 1.) The two CM-5 networks are similar in de-
sign; both are scalable, high-speed data communications networks. However, the
two networks have distinct intents and purposes. The Data Network is used for
high-volume exchange of data between nodes. The Control Network is used to
control and synchronize the operations of the nodes.

1.1.1 The CM-5 Networks

The Data Network

The Data Network is a high-speed, high-bandwidth network designed to handle
the simultaneous node-to-node transmission of thousands of messages. The Data
Network is composed of two halves, the left interface and the right interface,
both of which are connected to all processing nodes. The left and right interfaces
can be used either independently or together as the combined Data Network.

Terminology Note: This combination of the left and right halves of the Data
Network is sometimes called the "middle" interface by NI programmers.

2 NI Version 22 (CM-5E), June 1994
Copyright C 1994 Thinking Machines Corporation

-I

Chapter 1. The CM-5 Network Interface
~~~~~~~~~~~..~~;~ ~~ 

The Control Network

The Control Network is used for control tasks that require the joint cooperation
of all nodes. It provides three separate functions:

* The broadcast interface distributes a single numeric value to every node.
It consists of two subinterfaces: a user broadcast interface and a supervi-
sor broadcast interface.

* The combine interface receives a single value from each node, combines
the values arithmetically or logically, and then distributes the combined
result to all nodes.

* The global interface handles global synchronization of the nodes. It con-
sists of a number of distinct interfaces for synchronous and asynchronous
messaging by user and supervisor (OS) code.

For the Curious: The Diagnostic Network

There is also a third major CM-5 network, the Diagnostic Network, used by the
system manager to configure the CM-5 hardware and to diagnose hardware prob-
lems. However, because the NI chip is not used to access it, the Diagnostic
Network is not discussed further in this manual.

1.1.2 Processing Nodes

Each processing node contains a RISC microprocessor, a memory subsystem,
and a Network Interface (NI) chip, linked together in a bus arrangement:

64-bit bus

I f 

Memory Subsystem
--- Data Network

r- -b Control Network

I I

Figure 2. The components of a typical processing node.

NI Version 22 (CM-SE), June 1994
Copyright O 1994 Thinking Machines Corporation

3

I I

I

--



NI Programmer Handbook
_c~,x'.'g*Sffz...,.,.., '~~~ ,,X, *

For the Curious: In the current implementation, the microprocessor is a SPARC
chip; it executes both user and operating system (OS) code. The memory subsys-
tem consists of DRAM memory controlled either by a single memory controller
or by a set of four vector units (if your CM-5 has the vector unit option installed).

1.1.3 Partitions and Partition Managers

The processing nodes are grouped by software into partitions, with each partition
monitored by a partition manager (PM). (See Figure 3.) Each partition can be as
small as 32 nodes, or as large as the entire machine. The partitioning is controlled
by the system administrator, who can create and alter partitions as needed.

Partition Manager Nodes

Figure 3. A partition of nodes and its partition manager.

The partition manager (PM) contains a RISC CPU and connecting hardware that
allows the PM to interact with other computers and with users on terminals.
Thus, the PM is the "gateway" by which a programmer gains access to the pro-
cessing nodes of the CM-5 and instructs the CM-5 to execute a program.

The PM is attached to the Data and Control Networks, and can communicate
with its partition of processing nodes by sending and receiving messages via its
own NI chip. Programs written for the CM-5 normally include two separate files
of code, one for the PM and one for the nodes.

4 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 1. The CM-5 Network Interface
. .- ,,, ''-..':, ;, : ;; .. ' .,o, . .?::", ;' c h ' ,,' .' ,' ,' v ' ;:, : , :, e ': : ' :: ' ' ,' ,..:~ ':q,: ' ; """'

1.1.4 Programming Models

User Programming Model

From a user's point of view, the CM-5 is the single partition of nodes associated
with the PM that compiles and executes the user's code. CM-5 programs often
compile into two separate sets of code, one for the PM and one for the nodes.

The PM and the nodes typically operate in a data parallel style: the nodes execute
identical programs simultaneously, and the PM controls which function the nodes
will execute next. (For more information on program structure, see Chapter 7.)

The PM typically controls program flow, and handles all external interactions
(communicating with the user by keyboard input and screen output, exchanging
files and data with other computing systems over external networks, etc.).

The nodes typically operate in an event-driven loop, waiting for instructions
from the PM about which section of code to execute next.

OS Programming Model

From an OS point of view, the CM-5 is a set of partitions, each of which has a
number of associated processes that can be swapped in.

The CM-5 OS manages the execution and swapping of processes within parti-
tions, as well as any exchange of data that takes place between partitions (for
example, when a user program needs to read or write data from an I/O device).

Under the CMosT operating system shipped with the CM-5, each PM runs a full
and complete UNIX-based operating system, while each of the nodes runs a
small kernel of OS code that is optimized for computation and communication.
It is this kernel of code that provides the event-driven dispatch loop described in
the user programming model above.

NI Version 22 (CM-SE), June 1994 5
Copyright © 1994 ThinkingMachines Corporation



NI Programmer a Handbook
id W

1.2 The NI Chip

The NI chip is located between the RISC microprocessor and the two CM-5 net-
works. Each network provides a specific set of network interfaces, and the role
of the Network Interface chip is to make those interfaces available to the node
microprocessor, and thereby to user and OS programs.

Left Interface
- Data _ __ _ _ _

I I 'I W L V W W I G l o b a l I n t e r f a c e

Figure 4. NI provides access to Data Network and Control Network.

When the microprocessor directs the NI to send a message via one of the net-
works, the NI handles the dispatching of the message, and collects any replies
from the networks. The NI uses send FIFOs (queues) to hold outgoing messages
until they can be sent, and receive FIFOs to hold incoming messages until the
microprocessor can read them.

1.3 The NI Registers

The NI chip is register-based. Its network functions are controlled entirely by
reading and writing NI registers. Access to these registers is provided by
memory-mapping - the NI registers are mapped into the microprocessor's
memory address space. Thus, from a programmer's point of view the NI appears
as a region of processor memory with some unique properties.

The microprocessor can either directly use the registers of the NI chip to send and
receive messages, or it can use indirect methods, such as having the NI signal an
interrupt whenever a message arrives. (Interrupts can also be "broadcast" from
one NI chip to all other NIs in a partition.) Control of the NI is therefore based
on register operations, interrupts, and (in extreme cases) NI Resets, which are
described later in this chapter.

6 NI Version 22 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

0// Network Right Interface

Broadcast Interface
Control Combine Interface



Chapter 1. The CM-5 Network Interface
~~d' ~...

The NI registers occupy a virtual memory region 512 Kbytes long. However, the
NI registers are mapped into microprocessor memory twice, as two separate
virtual memory areas: the user area and the supervisor area. (See Figure 5.)

Figure 5. The NI registers are mapped into user and supervisor memory areas.

The user area occupies 512 Kbytes of virtual memory, starting at the base address
of the NI memory region (see Section 1.3.1). The supervisor area occupies the
512 Kbytes immediately following the user area.

The user and supervisor areas contain the same registers at the same offsets, but
the hardware mapping is designed so that the NI registers for supervisor features
are accessible only from the supervisor area. Any attempt to access supervisor
registers from the user area signals a Bus Error. (A programmer sees this as a
segmentation violation.) Thus, when this manual speaks of "the supervisor" per-
forming an operation, or of an NI feature that is "restricted to the supervisor," this
simply means that only programs with access to the NI supervisor area can per-
form the described operation or use the described feature.

In general, it is the responsibility of the operating system to make sure that user
programs don't have access to the NI supervisor area. Typically, this is done by
using virtual address mapping to place the supervisor area in a memory region
that user programs cannot access.

Note: Some locations in the NI memory region don't correspond to registers.
The effect of reading or writing these locations is not defined, but is never of
practical use to programmers. Typically, a Bus Error (see Section 1.4) is signaled.

NI Version 22 (CM-SE), June 1994 7
Copyright © 1994 Thinking Machines Corporation

Processor Memory

, ~ ..-----.. ... ~ Offset (in hex):

OxOOO0
Supervisor Area

Ox080000-_ _User Area
__ o (base address)1

I K, -11,; -'5% �



NI Programmer Handbook
·stxts~fptz~swzyymOBeeyi<idvtszs~syyvaf>@~zofyvvyvtnyyBN~s~dysg~s§fea

1.3.1 For the Curious: The NI Base Address

The physical base address of the entire NI region (both user and supervisor areas)

is fixed at a value determined for each node by hardware. The actual physical
address chosen by this method is the same for each node throughout the CM-5

hardware. (Essentially, the physical address is set by two input pins on the NI

chip, which are permanently wired either high or low for each circuit board).

The NI region's virtual base address, on the other hand, depends on the way the

operating system sets up the virtual memory map. The operating system is free

to map the NI memory regions to any virtual memory location, so long as both

user and supervisor areas remain contiguous and user programs are prevented
from accessing the supervisor area.

Node Virtual Memory Maps

(without vector units)
hex address

(with vector units installed)
hex address

RESERVED''

OS Kernel

i local stack-
globalstacki 

s global heap 

supervisor area

- - - NI space- - -
user area

f .' local heap 

' ::user variables .,,
.user program ,

OxF880

OxF800

0000

0000

OxE000 0000

Ox4000

0x2010

0000

0000

0x2008 0000

0x2000 0000

OxO000 2000

OxOOO0000 0000

RESERVED I

OS Kernel

local stack;
global stack .

.--VU Heap and :

Stack'Regions

global:heap

supervisor area
- -- NI space 

user area

.local heap;

user variables

user program,
4tnnUp�0d

0xF880 0000

OxF800 0000

OxE000 0000

OxC000 0000

0x4000 0000

0x2010 0000

0x2008 0000

0x2000 0000

OxOOO0 2000

OxOOO0 0000

Figure 6. Sample virtual memory maps showing location of NI memory region.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

8

i

. _

.

1. 

I



Chapter 1. The CM-5 Network Interface

The CMosT operating system distributed with the CM-5 maps the two NI re-
gions into a contiguous 1024 Kbyte block, as described in the preceding section.
Figure 6 shows two possible CMosT virtual memory maps, one without the vec-
tor units, and one with the vector units installed.

1.3.2 N Register Types

There are three basic types of NI registers:

FIFO Registers - These "registers" are actually the entry and exit points of
send and receive FIFOs (First-In-First-Outs, or queues) associated with the
CM-5 networks. Writing a value to a FIFO register pushes that value into the
send FIFO of the corresponding network. Likewise, reading the value of a
FIFO register pops a value from the receive FIFO of the network.

Status Registers - These registers are composed of one-bit flags and multi-
bit fields, which indicate the state of the NI and its message FIFOs. For
example, most networks have two important status flags, send_ok and
rec_ok, which indicate the current status of messages being sent or received.

Control Registers - These are status registers containing flags that not only
report the state of the NI, but also allow you to control it. Altering the value
of a control register's flags has a corresponding effect on the state of the NI.
For example, each of the Control interfaces has one or more abstain flags that
control whether or not the NI participates in the transactions of the network

The chapters of this manual that describe each of the networks also describe the
NI registers that are associated with them, and describe the programming tools
you can use to access these registers.

Implementation Note: Some NI queue registers are mapped onto more than one
memory location, and thus appear as regions of memory. Nevertheless, these re-
gions of memory are still considered to be a single "register." The specific
memory location that you use in writing to these registers gives the NI additional
information about the kinds of network transactions it should perform. (More on
this in Section 2.3.2.)

Performance Note: In terms of cycles, reading and writing NI registers is mid-
way between reading the registers of the microprocessor and reading a value
directly from processor memory (that is, not from cache memory). See Section
8.1.1 for details on the time taken to read and write NI registers.

NI Version 22 (CM-SE), June 1994 9
Copyright © 1994 Thinking Machines Corporation



NI Programmer 's Handbook
~ x~~ · ~~,· ~ +%* ~r.'·,.:' :x',.- '.'4.. · ·- : ...

Important: Some registers are less than 32 bits long, even though they occupy
a 32-bit memory location. When such a register is read, the value of the unused
bits is undefined. However, when writing to the register, the unused bits should
be written with either the same value that was last read from them, or with zeros.
The effect of violating this restriction is not defined, but in some cases serious
failures can result. (In at least one case, failing to zero out the unused bits causes
your partition of nodes to crash. See Section 8.2.2.)

1.3.3 NI Register and Field Names

In this manual, the names of NI registers and register fields are given in the form

ni_interfacepurpose

The interface part of the name identifies the network interface, and is typically
one of the following abbreviations:

dr Data Network (left and right) bc broadcast interface
ldr left interface con combine interface
rdr right interface global global interface

The purpose describes the purpose of the register or field. Some common exam-
ples are

send Register used to send a network message.
recv Register used to receieve a message.
send_ok Flag indicating that a message was sent successfully.
rec_ok Flag indicating that a message has been received.

For conciseness, this manual sometimes refers to a register or field by its purpose
alone. However, this is done only when the intended reference is unambiguous.

The appendixes of this manual include a memory map and a series of lists that
exactly specify each register's location and the position and length of any sub-
fields it may have.

10 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 1. The CM-5 Network Interface
.___ .

1.3.4 NI Register and Field Programming Constants

There are a number of predefined programming constants that you can use to
refer to NI registers and fields in your code.

These constants are defined in such a way that they can be used for both user and
supervisor code; the names of the register and field constants are the same for
both the user and supervisor areas, and are typically based on the names of the
registers and fields themselves.

To get access to these predefined constants, include the header file cmna. h:

#include <cm/cmna.h>

Note: Assembly-language coders may wish to load a more specific file of
constants. See the discussion of the CMNA header files in Appendix H.

Finding the Constant You Need

Appendix A of this manual lists the names of the NI registers, fields, and flags,
and gives the corresponding constants to use in accessing them. Appendix D pro-
vides a complete list of the available low-level register and field constants. The
types of predefined constants are described below.

Register Constants

The constants for registers specify the actual address of the register, and there is
one such constant for each NI register. To get the name of the constant that corre-
sponds to a register, uppercase the name of the register, and add the suffix "_A".
For example, the constant for the register ni_dr_status is NI_DR_STATUS_A.

Note for C Programmers: The register constants are unsigned pointer values.
To use them in C code, you must cast them to type (unsigned *):

unsigned *nidrstatus = ((unsigned *) NIDRSTATUSA);

If you don't perform this casting step, the C compiler by default treats the
constants as integers, causing warnings about "illegal pointer operations."

NI Version 22 (CM-5E), June 1994 11
Copyright @ 1994 Thinking Machines Corporation



NI Programmer Handbook
~"s~s s.s: * .. *

Field Constants

The constants for NI fields provide the starting bit position and length of each
field. However, since a number of NI registers have some basic fields and flags
in common, the name of the appropriate constant isn't always directly derivable
from the name of the field or flag in question. In many cases, you can obtain the
constant name by uppercasing the field or flag name, and adding the suffix "P"
for the starting bit position, or "_L" for the field length.

For example, the ni_dr_status register has a field named ni_dr_rec_tag.
This field has two corresponding constants, NI_DR_REC_TAG_P and
NI_DR_RECTAGL, that give, respectively, the position and length of the field.

However, there is also a flag called ni_sendok in the same register. Since most
of the networks have a send_ok flag, there is a single pair of constants, named
NI_SEND_OKP and NISEND_OK_L, which apply to all the networks.

NI Base Address Constant

There is also a predefined constant that you can use to refer to the base address
of the NI memory region (either user or supervisor) that you are using:

NIBASE - Base address of NI memory region (user or supervisor).

1.3.5 C Macros Useful for Writing NI Code

You can write NI code using any programming method that allows you to read
and write memory addresses. However, the examples in this manual are written
in the C programming language because there are a large number of existing C
macros that you can use to streamline your code. These programming tools fall
into two categories:

* Accessor macros that read or write the value of a specified register, flag,
or field. (The SEND_OK and REC_OK macros are good examples.)

* Queue macros that take a number of arguments related to the sending of
a single data value, and handle the necessary protocol for sending it.

These tools are introduced individually in the chapters that follow, and there is
a complete list of them in Appendix C.

12 NI Version 2.2 (CM-SE), June 1994
Copyright 0 1994 Thinking Machines Corporation

.A



Chapter 1. The CM-5 Network Interface
, ___

Finding the C Macro You Need

The predefined C macros typically have names based on the registers and fields
they manipulate. For example, most network interfaces have an NI register
named ni interface_status that contains the ni_interface_send_ok and
ninetwork rec_ok status flags. There is a single pair of macros, SEND_O ()
and RECOK (), that is used to get the send_ok and rec_ok flag for any of the
interfaces that have a ni_interfacestatus register.

Note: To get access to these predefined macros, your program must #include
the header file cmna. h. (See Chapter 7 for more information.)

1.4 Interrupts

In addition to using registers to control the NI, you can also instruct the NI to
signal an interrupt to the microprocessor under certain conditions, such as the
arrival of a network message via a specific interface. These kinds of interrupts
can be used to trigger calls to routines of your program (for example, handlers
that automate the receipt of network messages). The NI also signals interrupts for
fatal sofware/hardware errors and other important events.

The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts and Bus Errors tend to be the most severe, and
Green interrupts the least severe.

The five interrupt classes can be briefly summarized as follows:

· Red interrupts indicate a hardware failure, or message checksum error.

* Orange interrupts indicate events that the operating system must handle.

* Yellow interrupts are triggered by fatal errors in user or OS software.

* Green interrupts are triggered by important non-fatal events that user or
OS software may want to handle specially.

* Bus Errors indicate address errors in user or OS software that prevent a
bus transaction from being completed.

The five types of interrupts, along with the registers used for enabling and con-
trolling them, are described in more detail in Chapter 5.

NI Version 22 (CM-5E), June 1994 13
Copyright © 1994 Thinking Machines Corporation

,¢

72,_



NI Programmer Handbook
_ _Ss~e

In this manual, the names of interrupts are given as abbreviations based on the
names of the register fields used to detect and clear them. For example, the Green
interrupt that is triggered by the arrival of a broadcast message is: bc rec ok.

1.5 N Reset

Under certain conditions, the NI chip is completely reset. Among other things,
this causes a number of its registers to be set to known states. The causes and
effects of an NI Reset are described in Section 6.10.

1.6 Using This Manual Effectively

The first few chapters of this manual are mostly explanatory, describing the net-
works of the CM-5 in detail and showing you how to use the NI programming
tools associated with them. While these network-specific chapters present some
brief code examples, none of these examples constitutes a complete NI program
in and of itself. There's a fair amount of information that you simply have to
digest before a complete NI program makes sense.

Beginning CM-5 programmers should read through the "generic" network de-
scription in Chapter 2, and then read both of the network-specific chapters (3 and
4), before turning to the complete sample program presented in Chapter 7.

Experienced CM-5 programmers should read through Chapter 2 and skim chap-
ters 3 and 4 to get a sense of how the networks operate, and then proceed to the
sample program in Chapter 7 to see how NI programs are structured.

Chapters 5 and 6 describe features of the NI that are primarily of interest to sys-
tems programmers (things such as interrupts and other OS-related operations).

Whatever your level of experience, read Chapter 8. It presents a number of im-
portant performance strategies and potential sources of programming errors that
you should know about.

14 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 1. The CM-5 Network Interface

1.7 WARNING: Experiment at Your Own Risk

In writing code that manipulates the NI chip, you are taking control of the lowest
level of the CM-5's hardware. That kind of power does not come without corre-
sponding responsibilities and hazards.

This manual sets strict protocols for reading and writing NI registers. When you
use NI features in the manner described here, you should encounter no problems
other than an occasional error message.

If you step outside the bounds, however, the results can be as nasty as they are
unpredictable. In some cases reading and writing NI registers incorrectly can
even cause your partition of processing nodes to crash, potentially disrupting
other timesharing users of the CM-5.

So remember, if you choose to experiment with the NI, you have been warned!

NI Version 22 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation

15



~i--q



Chapter 2

A Generic Network Interface

Each network interface of the Data and Control Networks has a corresponding
register interface - a set of NI registers that are used to send and receive mes-
sages through the network. These register interfaces typically have a number of
features in common. This chapter presents a "generic" network interface that de-
scribes these common features. With one exception (the global interface), all
network interfaces conform to the model described here - individual variations
for each network interface are discuessed in subsequent chapters.

Important: The interface presented in this chapter is an abstract description.
There is no actual "generic network interface" for the NI chip - merely a set of
similar but independent network interfaces.

2.1 Network Interface Registers

For each interface that follows the generic model, the following NI registers are
used to communicate with that interface:

ni_interface sendf irst
ni interface send
ni_interface r ecv
niinterfaces tatus
ni_interface control
ni_interfaceprivate

Used to send first value of a message.
Used to send the rest of the message.
Used to receive a message.
Status register.
Control register.
Supervisor control register.

The purpose and use of each of these registers and subfields is described in the
sections below. Figure 7 (on the next page) contains a memory map showing the
relative locations of these registers in the user and supervisor memory areas.

NI Version 2.2 (CM-5E), June 1994 17
Copyright © 1994 ThinkingMachines Corporation



NI Programmer Handbook

NI Virtual Memory Area
(user or supervisor)

hex offset

(physical)
nirdr_send_ firstlong-

(relative)

(physical)
nildrsend_first long

(relative)

(physical)
nidr send first_long

(relative)

nirdrsendfirst
nildr_send_first

nicom_ send first

ni_sbc_send_ first

ni_bc_send_first

nidxr send first

INTERFACE
REGISTERS 

....... ....... ....... . ....... ... . .................

GLOBALISYSTEM
................... R EG ISTE R S ............................................... . ................... ........ .......

Ox19000

0x18000

D

D

D

*

OxlOOOO

0x9000 t 
0x8000 *

0x7000 .

Ox6000

Ox5000

Ox4000

Ox3000

Ox2000 

OxlOOO0

Ox0200 ---

Interface Registers

hex
Sample Register Set: offset

ni xstatuslong Ox60

nix status all 10x50
ni_x_status_pop Ox40

nix_send Ox30

ni_x_recv Ox20

ni_x_control OxlO

ni_xprivate x0

ni_x_status
OxO 0

t Control Network only rk
D Data Network only
* registers with subfields

heA nffset

OxE00

OxCOO

OxA00

0x800

0x600

0x200

OxOO0000

Figure 7. NI registers associated with each interface.

2.2 Network Messages

A network message is a sequence of word-length (32-bit) values. Its content, for-
mat, and length limit depend on the network Each message is accompanied by
a small amount of auxiliary information (such as the length of the message, a tag
field, etc.). The format of this auxiliary data is also network-dependent.

Sending a message involves writing its sequence of values to the send FIFO regis-
ter of a network interface. As the message is written, the individual values are
collected in the send FIFO. When the entire message has been written to the FIFO,
the NI begins trying to send the message through the network Similarly, receiv-
ing a message involves reading its values from the receive FIFO register of the
network interface.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

I

D

D

D

18

''

4,



Chapter 2. A Generic Network Interface
a. ,:: .,: , '., : ' a;',..:,~ c, ,','; >'-*': 'ev:~'.~.~ .2 '~; ..: ,. . ., ' v.. : .'- ^ . v ' '..."' ; . .; ---..... ........ :1 ,..' v;

When a message arrives from one of the networks, the NI accumulates the mes-
sage in the corresponding receive FIFO. When the entire message has been
received, the NI sets a status flag, indicating a message is available. Your pro-
gram can then read the individual words of the message from the receive FIFO.

The send and receive FIFOs have a length limit (typically 5 words in the current
implementation). Longer messages must be divided into packets at the sending
node and combined at the receiving node. If you attempt to send a message that
is longer than the total length of the FIFO (that is, a message that couldn't possi-
bly fit, even if the FIFO was empty) a Bus Error is signaled.

2.2.1 Performance Note - Using Doubleword Operations

You can use doubleword (64-bit) operations to read and write FIFO registers. A
doubleword read or write has exactly the same effect as the corresponding pair
of single-word (32-bit) reads or writes, but the doubleword operation is usually
more efficient. (See Section 8.1.2.) From here on, where this manual refers to a
"value" of a message, you should understand this as referring to either a single-
or doubleword value. Any network-specific restrictions that prevent the use of
doubleword operations are noted in the descriptions of the networks themselves.

2.3 Sending a Message

For each network interface, there is a single send FIFO, but two FIFO registers
are used to access it in the process of sending a message:

ni_interfacesend_f irst Used for first value of a message.
ni interface send Used for the rest of the message.

Important: There is a specific protocol to follow in sending a message:

* The first value of a message must be written to the send_first FIFO
register. This tells the NI that a message is being composed, and also speci-
fies the message's auxiliary information (see Section 2.3.2 below).

The remaining values (if any) must be written to the send FIFO register.

If this protocol is not followed, a Bus Error is signaled, and the message currently
being composed is discarded.

NI Version 2.2 (CM-5E), June 1994 19
Copyright © 1994 ThinkingMachines Corporation



NI Programmer Handbook

2.3.1 Message Discarding

A message being written to the send FIFO register of a network interface can be
discarded for any of a number of reasons:

* The send FIFO may be temporarily full.

* The supervisor may have disabled message sending for that interface.

* The message may not have been written according to protocol.

Whatever the reason, when a message is discarded, it is completely discarded.
Any previously written values for that message are removed from the send FIFO,
and a new message can be started by writing a value to the send_first register.
It is as though you never began writing the discarded message in the first place.
(Writing additional values to the send register after a message has been dis-
carded is legal, but has no effect.)

Performance Note: You can use message discarding to your advantage and
thereby make your code more efficient. Rather than check the send_ok flag af-
ter writing each word of a message to the send FIFO, you can simply check the
flag once, after the entire message has been written. (For more information, see
Section 8.1.3.)

2.3.2 Auxiliary Information

The auxiliary information of a message typically includes the length of the mes-
sage in words, as well as network-specific data such as a message tag. This
auxiliary information is transmitted implicitly when you write the first value of
a message to the send_first register.

The send_f irst register for each network interface is actually mapped onto a
block of memory locations. Writing a value to any one of these locations has the
effect of writing that value to the send_f irst register, but the actual memory
location that you use implicitly supplies the auxiliary information of the mes-
sage. (The low-order bits of the address actually contain the auxiliary data itself.)

Another way of saying this is that the length of a message, among other things,
determines the send_first address you must use to send it.

20 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 2. A Generic Network Interface

2.3.3 Calculating ni_interface_send_first Addresses

The send_first address for a network message is a 32-bit value of the form

31 12 14 12 11
I I

base address interface
I -, , I . . , I

)4 auxiliary data

where interface is the interface number (an integer from 0 to 7 representing the
interface being used), auxiliary data is the auxiliary information of the message,
and base address is the base address of the NI memory area (user or supervisor).

The interface numbering is as follows:

1 - Data Network (left and right)
6 - left Data Network interface
7 - right Data Network interface

3 - broadcast interface
4 - supervisor broadcast interface
5 - combine interface

(The global interface does not conform to the generic interface model, so it does
not play a part in this numbering scheme. The values 0, 2, and 4 are reserved.)

The auxiliary data depends on the message, and each interface has its own format
for this field. However, all the interfaces have at least one field in common: a
length field, representing the length of the message in words. This field occupies
the low-order 4 bits of the auxiliary data field (bits 3 - 6 inclusive).

For the Curious: The auxiliary data is left-shifted three bits to leave sufficient
space between send_first addresses for doubleword read/write operations.
(See Section 2.2.1.)

Send First Address Constants

The following constants are used to construct send_first addresses:

NI BASE

SF FIFO OFFSET

AUXILIARY START P

To construct a send first

as shown:

The NI base address.
The interface field offset (12).
The auxiliary data field offset (3).

address, combine the following values, left-shifted

The NI base address:
The interface number:
The auxiliary data field:

NI BASE

interface_number
auxiliary_data

+

<< SF FIFO OFFSET
<< AUXILIARY START P

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

3 0

1 00I0
I./ , .. . , I

I 

21



'I

NI Programmer 's Handbook

The following interfacenumber constants are defined:

DATA ROUTER_FIFO Data Network interface (1).
LEFT_DR_FIFO Left Data Network interface (6).
RIGHT_DR_FIFO Right Data Network interface (7).
USER_BC_FIFO User broadcast (BC) interface (3).
SUPERVISOR_BC_FIFO Supervisor broadcast (SBC) interface (4).
COMBINE_FIFO Combine (COM) interface (5).

The interface-specific constants defining the auxiliary data field format are
described together with the corresponding network interfaces in later chapters.

For C Programmers: Appendix F of this manual includes examples of simple
C macros that construct send first addresses for each network interface.

2.3.4 C Macros for Writing a Message

If you are programming in C, there are macros that you can use to automatically
calculate the appropriate addresses for a message. For each interface, there are
two send first macros:

CHNA_interface_send_f irst (auxiliary-info, value)
CMNA_interface_send_first_double (auxiliary-info, value)

These are used to write the first value of a message to the send_first register.
The only difference between them is that the send_first macro writes an
unsigned value, while send_first_double writes a double. However, for
these macros it's not the type of data being sent that's important, only the length.

The send_first macro is intended to be used for sending word-length data,
and the send_first_double macro is intended for sending doubleword data.
In each case, you should coerce the values you send to the appropriate data type.
For example, to send a data value of type float, you must first cast it as an
unsigned value. To send a negative integer value, you must also first coerce it
to an unsigned value.

Performance Note: There are two kinds of send_first macros so that you can
use doubleword register operations to make your code more efficient. (See Sec-
tion 8.1.2 for more information.) For the most part, however, this manual focuses
on singleword operations for clarity.

22 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation i



Chapter 2. A Generic Network Interface_ _ _ _

For the second and succeeding values of a message there is a different group of
macros. For each network interface there are three macros that write values to
the send register, one for each of the three data types you can send:

CMNA_interface_send_word (value)
CMNA interface_send_f loat (value)
CaWA_interface_senddouble (value)

The send_word macro writes an unsigned word-length value, and the other
two macros write values of the indicated data types. Here there are three macros
to allow you to send values of differing data types without having to coerce them.
You're not restricted to using only one data type, of course; you can use any com-
bination of send_type macro calls when sending a message.

Important: Remember that the send_type macros do not work unless they are
preceded by a send first or send_first_double call for the same network
You'll get an error if you attempt to use them to send the first value of a message.
If you have only one value to send, use the appropriate send_f irst macro.

2.4 Receiving a Message

For each network interface, the following register is used to receive messages:

niinterface_recv FIFO register from which values are read.

A message is received by reading its value(s) in order from the recv register, one
at a time.

2.4.1 C Macros for Reading a Message

Just as there are C macros for writing network messages, there are macros for
reading them: three network-specific macros, one for each network interface:

int value = CMNA_interface receive_word ();

int value = CMNA interface receive float );

int value = CMNAinterface receive_double ();

As with the send_type macros, you are not restricted to reading values of a par-
ticular type. You can use any combination of the rec_type in reading a message.

NI Version 2.2 (CM-SE), June 1994 23
Copyright © 1994 Thinking Machines Corporation



NI Programmer s Handbook
- ' " " " '', , S', ~ s. ,' ~.-

2.4.2 Detecting Arrival of a Message

When a message arrives in the receive FIFO, the NI sets the rec_ok flag in the
status register (see Section 2.5). You can repeatedly test the rec..ok flag to
determine whether a message has arrived (for example, in a top-level loop).

Alternatively, you can set a flag in the "private" register (See Section 2.7.) that
causes the NI to signal an interrupt whenever the rec_ok flag is set. You can use
this feature to "automate" message reception by having the interrupt trigger an
appropriate message-reading routine in your program.

Note: Access to the "private" register is restricted to the supervisor area. User
programs, which do not have supervisor access, must make a system call to set
the receive interrupt flag.

2.4.3 Simulating the Arrival of a Message

The supervisor has the additional ability to write a value to the recv register; this
pushes a value into the tail end of the FIFO, as if it had arrived from the network.
The supervisor can use this method to simulate the arrival of a message from the
network (for example, when restoring the networks after a context switch), by
writing the values of the message to the recv register in the same order as they
are to be read out. (An appropriate value should also be written to the status
register to provide the corresponding auxiliary information.)

Note: An error is signaled if a value is written to the recv register when the
receive FIFO is full (that is, when the nirecfull flag in the private register
is set to 1 - see Section 2.7.5).

Implementation Restriction: Currently, writing to the recv register does not
work The workaround for this restriction is for the node involved to send a mes-
sage to itself - this message will wind up at the end of the receive FIFO, as if
it had been written directly to the recv register.

24 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 2. A Generic Network Interface

2.5 The Status Register

The niinterface_status register can be used to check on the progress of a
message that is being sent, to detect when a message has been received, and to
retrieve information about a received message. The status register includes the
following flags and fields, which are the same for each of the network interfaces:

ni_interfacestatus Status register.
nisend_ ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni_send_empty Flag, indicates empty send FIFO.
nirec_ok Flag, indicates arrival of a message.
ni_rec_length Field, total length of received message.
ni_rec_length_left Field, words left in receive FIFO.

Note: The rec status fields always reflect the "current" message in the receive
FIFO - the message that includes the next word waiting to be read from the
receive FIFO. If there is no pending message, the fields are undefined.

2.5.1 The "Send OK" Flag

If the send FIFO becomes full, all attempts to write a message (either to start or
to continue one) cause the message currently being composed to be discarded.
You can tell that a message has been discarded by examining the send_ok flag.

When the first value of a message is written to the sendfirst register, the
send_ok flag is set to 1. As long as the message has not been discarded, this flag
remains 1, indicating that the message is still being accepted. If the send_ok flag
is still 1 after you have written the final value of a message, you can assume that
that message has been accepted for delivery, and that you can start writing the
next one. If the message is discarded, the send_ok flag is set to 0, indicating that
the message has not been sent, and you should try resending the entire message.

NI Version 2.2 (CM-S5E), June 1994 25
Copyright © 1994 Thinking Machines Corporation



NI Programmer 's Handbook

2.5.2 The "Send Space" Field and "Send Empty" Flag

The send_space field contains an estimate of the total space (in 32-bit words)
left in the FIFO. The actual space remaining may be less; nisendspace is
usually correct, but may become invalid because of supervisor activity (such as
when processes are swapped in and out). User code should not assume that push-
ing a message shorter than this value is always successful. The send_empty flag
is 1 whenever the send FIFO is empty - that is, when there is no pending mes-
sage in the FIFO.

Programming Note: NI programmers typically write an entire message to the
send FIFO and then check the send_ok flag to see whether it was accepted, so
the send_space field and sendempty flag typically aren't used.

2.5.3 The "Receive OK" Flag and "Receive Length" Fields

Whenever a message is pending in the receive FIFO, the rec_ok flag is set to
1, and remains 1 while any part of the message remains to be read from the FIFO.
When no messages are waiting to be read, the flag is set to 0. (Attempting to read
from the FIFO when rec_ok is 0 signals a Bus Error.)

The ni_rec_length_left field contains the number of words of the current
message that are left in the receive FIFO. You can assume that it is safe to read
this many words from the receive FIFO. If you need the message's original
length, the ni_rec_length field always contains the total length (in words) of
the current message as it was when it was received.

2.5.4 Reading the Status Register Fields

The general method for reading the value of an niinterfacestatus field or
flag is to read the value of the entire status register, and then extract the required
fields from that value. (This cuts down the overhead of repeatedly reading the
value of the register.)

For each network, there is a C macro that returns the status register's value:

int value = c.NA _ interfacestatus ( )

26 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation ,

I,



Chapter 2. A Generic Network Interface

Because the position and size of status fields and flags are the same for most of
the network interfaces, there is a single set of macros that extract the status fields
from the value returned by CMNAinterfaces tatus:

SENDOK (status) Gets send_ok flag from status value.
SEND_SPACE (status) Gets send space field.
SEND_EMPTY (status) Gets send_empty flag.
RECEIVE_OK (status) Gets rec_ok flag.
RECEIVELENGTH (status) Gets rec length field.
RECEIVE_LENGTH_LEFT (status) Gets rec_length_left field.

Note: A change in the broadcast interfaces requires the use of a different macro
to access the rec_length_left field. See Section 4.1.6 for more information.

For example, to get the three send fields from the broadcast interface status reg-
ister, you could use the following C code:

int
int
int
int

value = CMNA bcstatus();
sendok = SENDOK(value);
space_left = SENDSPACE(value);
send_queue_empty = SEND_EMPTY(value);

And to get the rec fields from the right data interface status register, you could
use the following code:

int
int
int
int

value = CMNARDR_ status();

recok = RECEIVEOK(value);
message_length = RECEIVE_LENGTH(value);
words_to_go = RECEIVELENGTHLEFT(value);

2.6 Abstaining from an Interface - The Control Register

Each of the Control Network interfaces has a control register, containing either
one or two abstain flags. The names of the register and abstain flag(s) are:

ni interface control
ni rec abstain
ni reduce recabstain

Control register.
Normal receive abstain flag.
Combine reduction abstain flag.

Note: The global interface, always the exception, uses a different name for this
register. See Section 4.3 for more information.

NI yersion 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

27



NI Programmer Handbook

2.6.1 Effect of Abstain Flags

The rec_abstain flag, when set to 1, causes the NI to "abstain" from receiving
messages via the corresponding interface. That is, the NI does everything neces-
sary to ignore the interface's transactions:

* Arriving messages are simply ignored - they "disappear" with no indica-
tion of their arrival, and the rec_ok flag remains 0.

* Messages that require the participation of every node (global synch, etc.)
are allowed to complete without the abstaining node's participation.

* Messages that require a value (scan messages, for example) are effectively
given an appropriate identity value for the type of message being sent.

While the rec_abstain flag is set for a given interface, it is an error to try to
send a message via that interface from the abstaining node. Attempts to write the
sendfirst or send registers under these circumstances signals a Bus Error.

2.6.2 Combine Interface Abstain Flags

The ni_reduce_rec_abstain flag is only defined for the combine interface,
and only applies to reduction operations.

In addition, reduction operations treat the value of the rec abstain flag differ-
ently from all other interface operations.

For more information, see Section 4.2.10.

2.6.3 Reading and Writing the Abstain Flag

To read and write the the abstain flag of a network, you can use these C macros:

value = CMNA_read_abstain_flag (register);

CMNA_write_abstain_flag (register, value);

The register argument is a register address constant, which is defined separately
for each network.

28 NI Verion 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation 'i



Chapter 2. A Generic Network Interface

2.6.4 Use the Abstain Flags Safely

The abstain flag for a given interface should only be changed when that interface
is not in use. Specifically, when a interface's abstain flag is changed,

· The send FIFO must be empty (that is, the sendempty flag must be 1).

• The receive FIFO must be empty (the rec_ok flag must be 0).

* There must be no messages in transit via that interface. (There is no flag
to detect this; your program must simply be written so that this is the case.)

The effects of changing a interface's abstain flags while the interface is in use are
unpredictable - your code may produce erroneous results, or signal an error.

This restriction generally requires that you use one of the interfaces (for example,
the global interface) to synchronize the nodes and halt the operations of another
interface while you change that interface's abstain flags. For this reason, most NI
programmers set the abstain flags once, at the beginning of a program or routine,
and then leave them set that way until the program or routine finishes executing,
changing the flags within the routine only where absolutely necessary.

2.6.5 Being a Good Neighbor

Important: Some programming systems (such as CMMD) use the abstain flags
for their own purposes. These systems are written with the assumption that the
abstain flags do not change unexpectedly, and if the flags do change these sys-
tems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before handing control back
to these systems. Failing to do so can cause either user or OS code to signal ob-
scure errors that are hard to trace.

NI Version 22 (CM-SE), June 1994 29
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
...... . . . _'~,-~--.

2.7 The Private Register

Each of the interfaces also has a "private" control register, containing a number
of control flags and status fields for supervisor operations. Most of these sub-
fields are interface-dependent; the few that are not are:

ni_interfaceprivate
ni_recok_ie
ni_lock
ni_rec_stop
ni send stop

ni rec full

Private register.
Flag, "Receive OK" interrupt enable.
Interface lock flag.
Interface stop flag (except Broadcast intf.).
Interface stop flag (Broadcast intf. only).
Flag, indicates receive FIFO is full.

The broadcast interface has one exception: the ni_rec_s top flag is not definmed;
in its place is a flag called ni_sendstop, which operates differently. (See Sec-
tion 2.7.4.)

Usage Note: The private register is accessible only from the supervisor area;
users without supervisor access must make a system call to change the flags in
this register.

2.7.1 Message Receipt Interrupts - The Rec Interrupt Enable Flag

When the ni_rec_ok_ie flag is set to 1, a Green interrupt is signaled whenever
a new message becomes available at the front of the interface's receive FIFO (in
other words, whenever the rec_ok status flag is set to 1 for a new message).

A message may become available either by arriving from the network into an
empty FIFO, or by being the next message in the FIFO when the last word of the
current message is read out. A different Green interrupt is signaled for each net-
work interface, and the interrupt for each interface can be independently enabled
and disabled by setting the recok_ie flag for the interface.

The Green interrupts that can be signaled are:

dr re ok

bc rec ok

1dr rec ok
sbc rec ok

rdr rec ok

com rec ok

For more information about these interrupts, and about interrupts in general, see
Section 5.1.

NI Version 22 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

30
7,



Chapter 2. A Generic Network Interface

2.7.2 Clearing the Interface's Send FIFO - The Lock Flag

The supervisor can use the ni_lock flag to temporarily "lock" the interface -
that is, prevent use of the interface in a way that is transparent to a user program.

The lock flag is normally 0. When it is set to 1, the following effects occur:

* Any message currently being written to the send FIFO is discarded.

* The send_ok flag is set to 0 and remains 0 -- even if you attempt to write
a new message to the send FIFO.

* The value of the niinterface_ space field is set to 0 and remains 0.

In other words, setting the lock flag to 1 clears the send FIFO, and then makes
it seem as if the FIFO is permanently full.

2.7.3 Grabbing the Receive FIFO Registers - The Rec Stop Flag

The supervisor can temporarily grab control of a interface's receive FIFO and
status register by setting the interface's ni_rec_stop flag. Since this involves
the joint cooperation of the microprocessor and the NI, a special request/grant
protocol is used. Specifically,

• The microprocessor writes a 1 to the interface's rec_stop flag, indicat-
ing it wants direct control of the recv and status registers. (Note: The
rec_stop flag is not changed to 1 until the stop operation is completed.)

* If a message is currently arriving from the interface, the NI finishes receiv-
ing the message and stores it in the receive FIFO.

* The NI then stops receiving messages from the interface, and finally sets
the rec_stop flag to 1, indicating that the stop operation is completed.

Once the rec_stop flag is set, the supervisor may freely read and write the val-
ues of the recv and status registers (for example, to push additional messages
into the FIFO, or to clear the FIFO altogether). When the supervisor is finished
with the recv and status registers, writing a 0 to the interface's rec_stop
flag restores normal network operations.

Important: It is an error for the supervisor to attempt to write values to the recv
and status registers while the stop flag is 0. The effect of doing so is unde-
fined, but is not likely to be pleasant.

NI Version 2.2 (CM-5E), June 1994 31
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook

2.7.4 Blocking Unsent Broadcast Messages - The Send Stop Flag

The broadcast interface does not have a rec_stop flag. Instead, the same posi-
tion in the private register is used for a flag called ni_send_stop, which has
a different purpose. When the sendstop bit is set, it prevents any complete
messages waiting in the broadcast send FIFO from being sent over the network.
This mechanism is mainly used by the supervisor during process swaps, to hold
messages in the interface send FIFO until they can be safely removed and saved.

2.7.5 Detecting a Full Receive FIFO - The Receive Full Flag

The ni_rec_full flag, when set, indicates that the interface's receive FIFO is
full. This is critical to network performance; if too many nodes have full receive
FIOs, the network can become clogged with unreceived messages, and this can
prevent new messages from being delivered to their destinations - even if the
destination nodes actually have sufficient space in their receive FIFOs.

2.8 Using a Generic Network Interface

To sum up, the strategy to use in accessing a network interface's registers is:

* To send a message, write the first word to the send_first register, and
any remaining words to the send register.

* Check the send_ok flag to see if the message was discarded, and if so,
retry sending the entire message.

* To receive a message, check the rec_ok flag to see if a message is in the
FIFO, and if so, use the length and length_left fields to determine the
number of words to read from the recv register.

* Use the remaining fields of the status register to obtain other interface-
specific information about the state of the send and receive FIFOs.

* Use the abstain flag(s) in the control register to cause individual
nodes to ignore the transactions of the interface.

* Use the private fields and flags for supervisor features such as disabling
send FIFOs, checking for full receive FIFOs, and setting interrupts.

32 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 2. A Generic Network Interface
·. __

2.9 From the Generic to the Specific

The interface described in this chapter is an idealized view of a network inter-
face, lacking a specific purpose, a detailed description of message protocol, or
network-related restrictions on usage of the interface registers.

The next two chapters present a description of the Data Network and Control
Network. These chapters present the purpose, protocol, and restrictions of each
interface provided by the CM-5 networks, building on the generic interface
description presented in this chapter.

NI Version 22 (CM-SE), June 1994 33
Copyright © 1994 Thinking Machines Corporation



-w



Chapter 3

The Data Network

The Data Network consists of two halves, the left interface (LDR) and right inter-
face (RDR). Each half of the network is connected to all nodes, and can be used
independently. The two halves of the network can also be accessed together as
the single Data Network (DR):

Figure 8. The three interfaces of the Data Network: DR, LDR, and RDR.

For each of these network interfaces there is a separate register interface. This
chapter describes these register interfaces, and shows how to use them to send
messages through the Data Network.

Terminology Note: The network acronyms (DR, LDR, RDR) are a historical
anachronism, and are retained in this manual only because the C constants used
to access the Data Network still refer to the three interfaces by the old abbrevi-
ations. In addition, the obsolete term "router" is occasionally still used in the
programming contants to refer to the Data Network hardware. "Network" is cur-
rently preferred, as a more generic and thereby more accurate descriptive term.

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

35

1'ik&1[t SP

t 

!



NI Programmer 's Handbook

3.1 The Data Network Register Interfaces

The three Data Network interfaces are based on the generic model presented in
Chapter 2. There are three sets of interface registers: one for each half of the
network (LDR and RDR), and one for the combined network (DR). Each network
interface is used to send and receive messages, with the following conditions:

* Sending a message via the DR actually sends it by either LDR or RDR,
depending on the load of the two interfaces.

* The DR interface cannot be used to receive any messages, and is mutually
exclusive with the two half-network interfaces. In other words:

* Writing a message to the DR send FIFO excludes using either the
LDR or RDR at the same time. Likewise, writing a message to either
the LDR or RDR send FIFOs excludes using the DR interface.

• While a message is being sent, any excluded interface(s) remain ex-
cluded until the message has been written and accepted for delivery
by the network. Also, the status register(s) of excluded interface(s)
are invalidated and should not be used.

* The two half-network interfaces are not mutually exclusive, and in fact
can be used simultaneously. In other words, network messages can be sent
and received concurrently via both the LDR and RDR.

For each Data Network interface, the following registers are used:

ni dinterfacesend f irst
nidinterfacesendf irs t_1ong
nidinterfacesend
nidinterface_recv
nidinterface_status
nidinterface_s tatus_l ong
ni_dinterface_status_al 
ni_dinterface_s tatusop
ni.dinterfaceprivate

Used to send the first value of a message.
Used for first value of long message.
Used to send the rest of the message.
Used to receive a message.
Status register.
Status register for long messages.
Alternate status register.
Status reg, also receives messages.
Supervisor control register.

The dinterface part of these names is a unique abbreviation for each interface:

dr - Data Network 1dr - left interface rdr - right interface

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

36



Chapter 3. The Data Network

Figure 9 is a memory map indicating the relative locations of these registers in
the user and supervisor areas.

The Data Network Registers at a Glance:

hex offsets

nix_send_firstlong

nix_send first

ni_x status_long

ni x statusall

ni_x_status_pop

ni xsend

ni x rec

nixprivate

nix_status

dr ldr rdx

0x8000 OxlOOO000OOx18000

OxIO00 0x6000 0x7000

0x0270

0x0260

0x0250

0x0230
______

OxOC70

OxOC60

OxOC50

OxOC40

OxOC30

OxOC20

OxOE70

OxOE60

OxOE50

OxOE40

OxOE30

OxOE20

0x0208 OxOC08 OxOE08

0x0200 OxOC00 OxOE00

ni interface_send _first Addressing Patterns

user/supervisor bit

I inserrace
index I

addressing mode

NI base address T

DR ------ x 0000 0 0 1 x tag length 000

LDR _ X o0000 1 1 jxI| tag length 000

RDR … Xo0000 1 1 XIX tag length 000

31 20 19118 15 14 1211 10 7;6 312 0'

nlinterface_sendfirst_long Addressing Patterns

user/supervisor bit addressing mode
interface

index
NI base address index

DR X- 00x 0 1 00 X length tag 000

LDR ------ x 00 1 00 X length tag 000

RDR x 00 1 1 00 x length tag 000
-31 2019 16 15 12 11 7I6 3 02 0

31 20 19 16 15 12 11 7 6 3; 2 0

Figure 9. NI registers associated with each of the Data Network interfaces.

Version 2.2 (CM-SE), June 1994
pyright 1994 Thinking Machines Corporation

NI
CoJ

37

-- -

-

0 � -I'WI-I"



NI Programmer Handbook
5ASss...

The following related registers are also used to control Data Network features:

ni_longestdr_message
ni_hodgepodge

ni_msg too_long_ie

ni_usertagmask
ni_rec_interrupt mask
niuserrec_interruptmask
ni_dr_messagecount
ni_count_mask

Length limit on Data Network messages.
Register with "hodgepodge" of flags:

Message too long interrupt enable.
User/supervisor tag reservation register.
Contains tag value interrupt flags.
Contains tag value interrupt flags.
Contains current message count.
Contains tag-count enable flags.

The purpose and use of these registers are described in the sections below.

3.2 Data Network Messages

The Data Network is essentially asynchronous in operation - nodes can send
and receive messages freely, so long as enough nodes are receiving messages so
that the network does not become clogged (see Section 3.9). The destination
node of a Data Network message is determined by an address word that is added
to to the message as it is being written to the send FIFO. (Note: The address word
is removed in transit. It does not count as a message word with reference to the
length limits of the send and receive FIFOs.)

3.2.1 Short and Long Data Network Messages

Each of the three Data Network interfaces can send messages of two types: short
and long. A short message is sent as described in Chapter 2, and has a length
limit of 5 words. A long message is sent via an alternate register interface, and
has a length limit of 18 words. The long message interface is intended for mes-
sages that consist primarily of large quantities of data.

Implementation Note: The long message feature of the Data Network is an
addition as of Version 2.2 of the NI chip. The short message type is actually the
same Data Network message format used in previous NI versions, and is retained
in Version 2.2 for software compatibility reasons.

38 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 3. The Data Network

3.2.2 Long Data Network Message Interrupt

The NI register ni_longest dr message overrides the default length limits
for long messages - trying to send a message longer than the value in
ni_longest_dr_message signals a Yellow interrupt (message too long).
This is intended to provide compatibility in CMs that contain NI chips of differ-
ent versions. The flag ni_msg_too_long_ie in the ni_hodgepodge register
controls this interrupt feature. If ni_msg_too_long_ie is 1, the mes-
sage too long interrupt is signaled. If ni_msg_too_long_ie is 0, no
interrupt is signaled. In either case, however, a Bus Error is signaled.

3.2.3 Data Network Message-Sending Conventions

Data Network messages are atomic; individual messages are not sent through the
network until all the words of each message have been written into the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO. The component words of a single Data
Network message are always received in the same order as they were sent. How-
ever, if you use multiple Data Network messages as "packets" to send long
messages from one node to another, the order in which the packets arrive is not
guaranteed to be the same as the order in which they were sent.

Your code should not depend on having separate Data Network messages sent to
the same node arrive in some predictable order. Instead, your code should in-
clude data in the packets (for example, an offset into the original message) that
allows the receiving node to arrange the packets into the correct order.

3.3 Data Network Addressing

The Data Network uses two kinds of addressing: physical and relative. Each
node of the CM-5 has a unique physical address based on its location in the CM-5
hardware. This represents an "absolute" address, giving the node's location with
respect to the entire machine.

Each node also has a unique relative address based on its location in its partition.
Relative addresses run from 0 (for the first node in the partition) up to one less
than the total number of nodes in the partition. (See Figure 10.)

NI Version 2.2 (CM-5E), June 1994 39
Copyright © 1994 Thinking Machines Corporation



NI Programmer s Handbook
.'...~E . .*f*.

Figure 10. Relative addressing of nodes in a partition.

You can get the address of the node executing your code, as well as the total
number of nodes in the current partition, by examining these C variables:

CMNA self address Address of current node.
CMNA partition_size Number of nodes in current partition.

The values of these variables are automatically defined for each of the nodes.
The value of CMNA partition_size is also defined for the partition manager.

Note: The partition manager is always located at an address outside the partition,
and so does not occupy any of the relative addresses of the partition. (For more
information, see Section 7.1.)

3.3.1 Physical and Relative Addressing Modes

Just as there are two kinds of addressing, there are also two "modes" of sending
a Data Network message: physical and relative. The mode a message is sent in
is determined by a mode flag in the auxiliary data of the message.

When a message is sent in physical mode, its address word is treated as a physi-
cal address, and the message can be sent anywhere within the Data Network.
(Only the supervisor is allowed to send messages in physical mode.)

When a message is sent in relative mode, the address word is treated as a relative
address, and is translated into a physical address based on the current partitioning
arrangement. This translation is performed automatically by the NI hardware,
using a chunk table, described in Section 6.3. The translation also includes auto-
matic error checking to make certain that the supplied address is a legal relative
address for the current partition. Messages that contain illegal relative addresses

40 NI Version 2.2 (CM-SE), June 1994
Copyrght © 1994 ThinkingMachines Corporation

A

Nodes P p [ .-1p Pti

Addresses o 1 2 3 4 n-l Partition Manager



Chapter 3. The Data Network .~ ~ ~ 

are not sent through the network; instead, the sending NI signals a Yellow inter-
rupt (bad relative address).

For the Curious: The relative addresses in a partition are always contiguous -
that is, there are no legal relative addresses in a partition that do not correspond
to existing functional nodes. This is in contrast to physical addresses, which can
contain gaps corresponding to nonfunctional nodes or to network locations that
are not connected to actual CM-5 hardware. (See Section 6.3.)

3.4 Sending and Receiving Messages

The Data Network message format is the same for all three interfaces (and for
short and long messages alike). The first word of the message is a 20-bit destina-
tion address. The remaining words form the content of the message, which must
be no longer than the length limit allowed by the message type in use.

Address | ta Dat-2> :';¥:<:i Datan|
Word 1 2 3 ... n+l

Figure 11. Data Network message format

For short messages, the data length limit is currently 5 words, and is given by the
constant MAX_ROUTgaR_MSG_WORDS. For long messages the limit is 18 words.
(The ni_longest_dr_message register value, if less, overrides these limits.)

The auxiliary information of the message consists of the length of the message
in words (excluding the address word), a 4-bit tag value, and an addressing mode
flag that determines how the address word is interpreted.

Important: The address word of the message must be zero-extended to 32 bits.
Failure to ensure that the address word is zero-extended to the full 32 bits can
trigger a serious error, even causing your partition to crash.

NI Version 22 (CM-SE), June 1994 41
Copyright © 1994 Thinking Machines Corporation

.:



NI Programmer 's Handbook

3.4.1 Sending Short Messages

The protocol for sending a short message is as described in Chapter 2. The fol-
lowing FIFO registers are used to send messages:

nidinterface_send_f irst
nidinterface_send

Used for first value of a message.
Used for the rest of the message.

and for each dinterface there are corresponding sendfirst and send macros:

CA_dinterfacesend_f irst (tag, length, value)
cMNAdinterfacesend_first_double (tag, length, value)
CMNA dinterface sendword (value)
CNA_dinterface send_f loat (value)
CMNA_dinterface_send_double (value)

For the send_first macros, the length argument is the length of the message
in words (excluding the address word), the tag argument is the message's tag
value, and value is the first value of the message. For the send macros, value is
the second and succeeding values of the message.

Note: Currently you are limited to using tag values from 0 to 7. All other tags
are reserved for supervisor use.

Auxiliary Information for Short Messages

The 9-bit auxiliary information field of a short message has the form
8 0

Imd tag T length

where

md

tag

is the addressing mode (O = relative, 1 = physical)

is the 4-bit tag value

length is the length of the message in words, excluding address word

The following constants specify the starting bit positions of these fields:

NI_DR SEND AUXILIARY ADDRESS MODE P
NI_DR_SEND_AUXILIARY TAG P
NI DR SEND AUXILIARY LENGTH P

The md field offset (8).
The tag field offset (4).
The length field offset (0).

42 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 3. The Data Network
-. To construct a sendfirst a ddress, add the following , v alues: .

To construct a send f irst address, add the following values:

The md flag:
The tag value:
The length value:

md
tag
length

<< NI DR SEND AUXILIARY ADDRESS MODE P
<< NI DR SEND AUXILIARY TAG P
<< NIDRSENDAUXILIARY LENGTH P

The md flag is 0 for a message with a relative destination address, and 1 for a
message with a physical destination address. The following constants can be
used to specify the md flag value:

RELATIVE
PHYSICAL

Relative node addressing (0).
Physical node addressing (1).

Note: Sending messages with physical addresses is reserved for the supervisor.
If user code tries to send a message with a md flag of 1, a Bus Error is signaled.

The tag can be any value from 0 to 7 inclusive for user messages, or from 0 to
15 for supervisor messages. Message tags are described in more detail in Section
3.5.4 below. The length field can have any value from 1 up to MAX_ROUT -

ER MSG WORDS.

3.4.2 Sending Long Messages

The protocol for sending a long message is the same that for short messages,
except that the first word of the message must be written to a special register:

ni_dinterface send_f irst_long Used for first value of long message.

and for each dinterface there are corresponding send_first_long macros:

cMNA_dinterfacesend_first_long (tag, length, value)
CMNA_dinterfacesendf irst_double_long (tag, length, value)

Send First Long Address Format

The send_first_long address for a Data Network message
of the form

is a 32-bit value

31 19 17 15 13 12 3 0

[I$)baseaddr 0 O intf O 0 auxiliary data O O 

NI Version 2.2 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation

43



NI Programmer i Handbook

where intf is the interface number (an integer from 0 to 3 representing the Data
Network interface being used), and auxiliary data is the auxiliary information.
The following intfvalues are defined:

- Not used
1 - DR network interface

2 - LDR network interface
3 - RDR network interface

Auxiliary Information for Long Messages

The format of the auxiliary information is
9 4 0

md length tag

where

md is the addressing mode (O = relative, 1 = physical).

length is the length of the message in words, excluding address word.

tag is the 4-bit tag value.

Aside from size and position, these three fields are the same as those defined
above for the auxiliary information of a short message.

3.4.3 Receiving Messages

For each interface, the following register is used to receive messages:

nidinterface recv FIFO register from which values are read.

Both long and short messages are received as described in Chapter 2, by reading
successive words of the message from the recv register. (Messages can also be
received via the ni_dinterface statuspop register. See Section 3.5.3.)

To receive a message from the LDR or RDR, use the network-specific reading
operations described in Section 2.4.1:

value = CMNA_ dinterface_receive_word ();
value = CMNA_ dinterface receive_f loat ();
value = CNA dinterface receive_double ();

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

44

-1iL



Chapter 3. The Data Network

Important: There are no message-receiving macros for the DR. You must use
the LDR and RDR to receive messages sent via the DR - the DR interface cannot
be used to receive messages.

Supervisor Usage Note: Currently, a hardware defect in the NI chip does not
allow the Data Network recv registers to be written by the supervisor to simu-
late the arrival of messages, etc. The workaround is for a node to send a message
into the network using its own address as the destination. Assuming the network
is clear (as it is, for example, during context switches) this causes the message
to be delivered to the front of the node's receive queue.

3.5 The Status Registers

3.5.1 The Standard Status Registers

Each of the Data Network interfaces has two main status registers, one each for
short and long messages, which contain the subfields shown below:

nidinterfaces tatus_l ong
ni_dinterfaces tatus

nisend ok
ni_send_space
ni rec ok
nirec_length
ni_rec_length_left
ni_dr_ rec_tag
nidrsend state
ni_dr_rec_state
ni_router_done_complete

Status register for long messages.
Status register for regular messages.

Flag, status of message being sent.
Field, space left in send FIFO.
Flag, indicates receipt of message.
Field, total length of message.
Field, words left in the FIFO.
Field, tag value of the message.
Field, status of send FIFOs.
Field, status of receive FIFOs.
Flag, indicates empty send FFOs.

The only difference between the status and status_long registers is that in
the status_long register the send_space, rec_length, and
rec_length_left fields are five bits long instead of four to accommodate the
extra length of long messages.

Each of these fields has the same value in both the status and status_long
registers, except where the value exceeds 15. In this case, the status_long
field contains the correct value, while the status field is always 15. If the super-
visor writes a value to any of the four-bit status fields, the corresponding

NI Version 22 (CM-SE), June 1994 45
Copyright © 1994 Thinking Machines Corporation



"I

NI Programmer 's Handbook
3~8~12.

five-bit status_long field is automatically updated to the same value, with a
0 for the most significant bit. The reverse is also true, with the status field
being set to 15 as described above if the status_long value exceeds 15.

The macros used to get the ni_interface_status value for each interface are:

int value = CMNA drsend status();
int value = CMINA ldr status();
int value = CMNA rdrstatus();

The send_ok, send_ space, rec_ok, rec_length, and rec_lengthleft
subfields are as described in Chapter 2. The dr_rec_tag field is described in
Section 3.5.4 below, the dr_{ send, rec }_state fields in Section 3.5.5, and the
ni_router_done_complete flag is described in Section 3.5.6.

Implementation Note: The subfields ni_dr_send_state and
ni_drrec_state, and the flag ni_router_done_complete apply to all
three interfaces. They are accessible only from the DR interface (that is, their
values are defined only for the nidr_status register).

3.5.2 The "Status All" Alternate Status Register

Each Data Network interface also has an alternate status register, which gathers
information about all three Data Network interfaces into a single word value:

ni dinterfacestatus_all Alt
nifirstintfrecok
ni_secondintf.recok
ni dinterface send_ok
nifirstintf_ ec_tag
ni_secondintfrec_tag
ni_firstintfrec_length_llong
ni_secondintf_rec_length_long
ni_dinterfacesend_space
nifirstintf rec_all_f all_down
ni_secondintf recall_fall_down

ni_routerdone complete

ernate status register.
Flag, indicates receipt of message.
Flag, receipt of other interface message.
Flag, send OK flag of interface.
Field, tag value of LDR message.
Field, tag value of RDR message.
Field, total length of LDR message.
Field, total length of RDR message.
Field, space left in DR send FIFO.
Flag, indicates All Fall Down message.
Flag, indicates All Fall Down message.
Flag, indicates empty send FIFOs.

Note: Currently, there are no predefined C access routines for the statusall
register; you must use the predefined register address constants.

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

46

i



Chapter 3. The Data Network
· _ __ , 

In the field names listed above, the firstinif and secondintf portions of the names
are different for each network interface:

Interface dinterface firstinf secondintf
DR dr ldr rdx
LDR ldr ldr rdr
RDR rdr rdr ldr

In general, firstintf is the same as dinterface, while secondintf is the opposite
interface in the pair of LDR and RDR. This is so that when a program is using
the two half networks, the status values for the "current" and "opposite" halves
of the network can be obtained from the same positions in the status_all reg-
ister, regardless of the interface (LDR or RDR) that is in use.

The flag and field values in the status_all register are copied from the
appropriate Data Network status registers, with the exception of the
rec_all_fall_down flags that are taken from the ni_dinterfaceprivate
register (see Section 3.6). At all times, the value of the status_all register
mirrors the current values available from the individual status registers.

3.5.3 The "Status Pop" Register

The status_all register also has a convenient doubleword alias:

ni_dinterface_status_pop Status register, also receives messages.

The statuspop register is identical to the status_all register, except that
the statuspop register can only be read with a doubleword operation.

When this is done, the first word of the result is the current value of the sta-
tus_all register. The second word of the result is a value popped from the
appropriate dinterface receive FIFO, if a value is available.

Thus, a single doubleword read of the status.pop register can be used to check
whether a value is available for reading from the network interface, and also to
get the value if there is one.

Note: The statuspop feature is defined only for the LDR and RDR interfaces,
since it is not possible to read a value from the DR interface.

Also, there is currently no NIdinterface TATUs POP A register constant; use
the offset value (x40) shown on the NI memory map.

NI Version 22 (CM-SE), June 1994 47
Copyright © 1994 Thinking Machines Corporation



NI Programmer ~ Handbook
~. ~ ~h~ ~...~ .~.L~ ~ lm.,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k

3.5.4 Message Tags

The tag values of Data Network messages are used to distinguish between differ-
ent types of Data Network messages. The status register field dr_rec_tag
always contains the tag value that was sent with the current message.

Tag values are not mandatory. You can, for instance, simply supply a tag value
of 0 for all Data Network messages.

Tag values are primarily used for

* distinguishing between user and supervisor messages

* causing interrupts to be signaled when messages are received

* helping the NI determine when the Data Network is clear of user messages

To get the rec_tag field, use the macro

RECEIVE TAG(status)

User/Supervisor Tag Reservation

Some tag values are reserved for supervisor use, to distinguish between supervi-
sor and user messages. The remaining tags can optionally be used in user
programs to distinguish different types of user messages.

The NI has a register that controls the reservation of tag values:

ni_user_tag_mask User/supervisor tag reservation register.

Only the low-order 16 bits of this register are used, one for each of the possible
tag values (O to 15). If the nth bit of the user_tag_mask register is 1, then tag
value n is reserved for supervisor use.

Since the tag_mask register is only accessible by the supervisor, it effectively
acts as a set of permission switches, controlling which tags the supervisor allows
user messages to have. If a user program attempts to send a message with a
supervisor-reserved tag, a Bus Error is signaled.

Tag Fields and Interrupts

Tag values can be used to trigger interrupts; when a message with an interrupting
tag value becomes available for reading in the receive FIFO, the NI signals an

48 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 3. The Data Network
... _ ~.~ ~ .2. ~.,~ x ,%; ,

interrupt to the microprocessor. (A message becomes available either by arriving
at an empty receive FIFO, or by being the next message in the FIFO when the
current message is read out.) Tag value interrupts can be used to cause the micro-
processor to execute a specific section of code whenever a message with an
interrupting tag becomes available for reading.

The following registers and register flags are used to determine which tag values
cause interrupts, and how they are signaled:

ni_rec_interrupt_mask Register, Supervisor tag interrupt flags.
ni_user_rec_interrupt mask Register, User tag interrupt flags.
ni_hodgepodge Register containing "hodgepodge" of flags:
ni_ldr_rec_tag_ie LDR supervisor tag interrupt enable.
nirdrrec_tag_ie RDR supervisor tag interrupt enable.
ni_ldr_userrec_tag_ie LDR user tag interrupt enable.
ni_rdr_user_rec_tag_ie RDR user tag interrupt enable.

The interruptmask registers each contain 16 flags, one for each tag value.
If the nth bit of either register is 1, it indicates that an arriving message with a
tag value of n should signal an interrupt. However, the "supervisor" tag value
register ni_rec_interrupt_mask has overriding contol over which tag val-
ues signal interrupts. The ni_user_rec_interrupt_mask register is
dependent on the value of ni_rec_interrupt_mask; only if the nth bit of the
nirecinterrupt_mask is set to 0, will a 1 in the corresponding bit of
ni_user_rec_interrupt_mask cause an interrupt to be signaled.

The interrupt enable flags in the nihodgepodge register enable and disable the
interface-specific supervisor and user interrupts (see Figure 12).

When a message with a tag value of n arrives at the LDR interface of the Data
Network, the nth flag bit of ni_rec_interruptmask is checked. If the flag
is 1, then a Green interrupt (dr rec tag) is signaled. If the flag is 0, the nth
flag bit of the ni_user_rec_interrupt mask register is checked. If this flag
is 1, then a Green interrupt (dr user rec tag) is signaled. If the flag is 0,
then no LDR interrupt is signaled. A similar method is used to determine whether
to signal the rdr rec tag and rdr user rec tag interrupts when a
message arrives via the RDR interface.

In all cases, if the nth bit of nirec_interruptmask is 1, the arrival of a
Data Network message with tag value n by either interface (LDR or RDR)
always signals a Green interrupt (dr rec tag).

NI Version 2.2 (CM-SE), June 1994 49
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
- _ _*

Data Network message
I I

I r tag
LD ff

tag #
IRDR fifo

flag = 1

dr rec tag
ldr rec tag

interrupts

ni_rec_interrupt_mask_ _ _ _~~~~~~~~e

tag #

flag = 0
Tnag

, tag#
ni_user_rec_interrupt mask

flag = 1

ldr userrec_tag
intefupt 

flag = 0

L

flag = 1

=1

dr rec tag
rdr rec tag

interrupts

No Interrupt

Figure 12. Tag value interrupt paths for Data Network messages

The ni_user_rec_interrupt_mask register is both readable and writable by
user programs, but the interrupt enable flags ni_ldr_user_rec_ie and
ni_rdr_user_rec_ie are writable only by supervisor programs. The intent of
this is to allow the supervisor to use the user interrupt enable flags as "permis-
sion" bits - by setting either of the two user_rec_ie flags, the supervisor
grants to user programs the ability to turn interrupts on and off for all tags not
already reserved for supervisor interrupts. This avoids the need for a supervisor
call whenever a user program wants to enable or disable user interrupts.

The ni_rec_interrupt_mask is also used to inhibit user access to supervisor
messages. If the nth bit of the nirec_interruptmask register is 1, then if
a Data Network message with a tag value of n arrives (say via the LDR interface)
the message is effectively invisible and inaccessible to user programs. Specifi-
cally, the rec_ok flag will be 0 when read by the user, and an attempt by the user
to read from the receive FIFO will fail, as though the FIFO were empty. When
the supervisor attempts to read the message, however, the rec_ok flag will have
the correct value, and reading from the receive FIFO will receive the message as
usual.

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

50

-

-

rdr user .rec tag
interript

I

,

I l ,



Chapter 3. The Data Network
_k~·5~83~~ .

Using CMosT Commands to Set Up NI Interrupt Handlers

You can use CMOST commands to instruct the NI to signal an interrupt when it
receives a message with a specific tag. This interrupt causes the processing node
to execute a specific routine of your program. The cM1os_signal system call is
used to set up an interrupt:

CMOS_signal ( signal, userfiunction, tag_mask )

The signal argument is the signal type, and must be the predefined constant
SIGMSG. The userfunction argument is the name of a user-defined function that
should handle receiving and processing the message. The tag_mask argument is
a 16-bit field, one bit for each possible value of the tag. If bit n in this mask is
set, then the receipt of a message with a tag of n causes userjunction to be ex-
ecuted. (Remember that you are limited to using only the first four bits of this
mask, corresponding to the tags 0 through 7.)

So, for example, the function call

CMOS_signal( SIGMSG , my_msg_handle , OxFE);

arranges the NI interrupt system so that when a Data Network message with a tag
from 1 to 7 is received, the user-defined procedure my_msg._handler is called.

Note: To use the CMOS_signal function, you must #include the file cm/
cmsignal .h. For more information on CMos_ signal, see the UNIX manual
page for the function. (This is included as Appendix E to this document.)

Tag Fields and the Message-Counting Registers

Tag fields also allow system software to automatically maintain a count of mes-
sages sent and received by the NI. This is a key part of the network-done feature
of the Control Network (see Section 4.2.9). It allows the NI to determine quickly
when the Data Network is clear of user messages. Two registers are used to con-
trol this message-counting feature:

ni dr_message count Register, contains current message count.
ni_count_mask Register, contains tag-count enable flags.

NI Version 22 (CM-5E), June 1994 51
Copyright © 1994 Thinking Machines Corporation

A_



NI Programmer ~ Handbook
,",~~~~.. ...

Message Count Disabling

The ni _d_message_count register contains a signed 32-bit integer value that
is incremented when a Data Network message is sent (by any of the three inter-
faces), and decremented when a message is received.

When the message_count register becomes zero for all non-abstaining nodes,
the NI assumes that there are no countable messages in transit in the Data Net-
work. It is possible to disable message counting for messages with specific tag
values. (This is useful, for example, if you only wish to keep a count of user
messages, and want supervisor messages to go uncounted.)

The ni_count_mask register controls this enabling and disabling of message
counting. It contains 16 flags, one for each tag value. If the nth count_mask bit
is 1, then messages with a tag of n are counted by ni_dr_message_count. If
the nth bit is zero, messages with that tag are not counted.

It's important to be sure that the sending and receiving nodes for a message agree
on whether the message's tag should or should not be counted; if they do not
agree, the ni_dr_message_count register's value is useless, and can wrap
around, becoming negative - see the discussion of this situation below.

Note: The supervisor can write a value to ni_dr_message count, for exam-
ple, to set the register back to zero, but this should only be done when the Data
Network is not in use. Otherwise, there is no way to guarantee that the value of
this register remains the same as the value that was written into it.

Negative Message Count Interrupts

If the sum of the message_count registers for all nodes becomes negative, it
means that either a message was lost in transit or was counted incorrectly. If the
global message_count sum is negative when a Data Network operation is
attempted, a Yellow interrupt (dr count negative) is signaled. (See Section
B.3.4 in Appendix B.)

Note: If the message_count register is incremented or decremented beyond its
32-bit signed value capacity, its value "wraps around," becoming negative. How-
ever, the register is large enough that this should not happen unless there is a
serious error (a hardware problem that causes messages to be lost, nodes that do
not agree on counting of tag messages, etc.).

52 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation



Chapter 3. The Data Network

3.5.5 The Send and Receive State Fields

The DR interface is mutually exclusive with the LDR and RDR interfaces. It is
an error to try to write a message to the DR send FIFO while there is a partially
completed message in either the LDR or RDR send FIFOs. Likewise, having a
partially completed message in the DR send FIFO makes it an error to try to send
a message via the LDR or RDR FIFOs. In either case, the status registers and
FIFOs of the excluded interface(s) are invalidated.

You can use the ni_dr_send_state field to determine which interfaces are in
use. The value of this field is an integer from 0 to 2, with the following meanings:

O No partial messages in any send FIFO.
1 Partial message in the DR send FIFO.
2 Partial message in either or both of the LDR or RDR send FIFOs.

There is also a corresponding nidr_rec_state field that you can use to deter-
mine which receive interfaces are in use. (However, because the DR interface
cannot be used to receive messages, this field is not as useful as
ni_dr send_state.) The value of the ni_dr_rec_state field is again an
integer from 0 to 2:

O No partial messages in any receive FIFO.
1 Reserved. (The DR interface cannot receive messages.)
2 Partial message in either or both of the LDR or RDR receive FIFOs.

You can obtain the values of these fields by using the following macros:

DR SEND STATE (status)
DR RECEIVE STATE (status)

For example,

int value = CMNALDRstatus();
int send state = DR SEND STATE(value);
int recstate = DRRECEIVESTATE(value);

Implementation Note: The ni_dr_send_state and ni_dr_rec_state
fields exist only for the DR interface (that is, are accessible only from the
ni_dr_status register).

Note: The two half-network interfaces are not mutually exclusive. There is no
restriction on having partially completed messages simultaneously in the LDR
and RDR FIFOs. (This kind of simultaneous message sending is one reason that
the LDR and RDR interfaces exist.)

NI Version 22 (CM-SE), June 1994 53
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
.. ~s _ _

3.5.6 The Network-Done Flag

The ni_router_done_complete flag is used by the Control Network as part
of its network-done message function. This feature is designed to make it easy
to synchronize the nodes after a Data Network operation.

You can use the following macro to access this flag:

DR ROUTER DONE (status)

For example,

int value = CMNA LDRstatus();
int network done = DR ROUTER DONE(value);

As noted above, the message-counting register ni_dr_message_count also
plays a part in the network-done feature. For more information on network-done
messages, see Section 4.2.9.

3.6 The Private Register

The private register for each of the network interfaces contains the following
subfields:

nidinterfaceprivate F
nirec okie
nilock
ni_rec_stop
nirecfull
nidr recall fall down
niall falldown ie
ni_all_fall_down_enable
nisfif o_goes_empty_ie
ni_rdone complete_ie

'rivate register.
Flag, "Receive OK" interrupt enable.
Interface lock flag.
Interface stop flag.
Flag, indicates receive FIFO is full.
Flag, set for All Fall Down message.
All Fall Down interrupt enable flag.
Flag, triggers All Fall Down mode.
Send FIFO empty interrupt enable.
Network-done interrupt enable.

The rec_ok_ie, lock, rec_stop, and rec_full subfields are as described
in Chapter 2. The remaining three fields are used to control the All Fall Down
mode feature of the Data Network, as described in Section 3.7 below.

Note: The subfield ni_recstop is accessible only from the DR interface (that
is, its value is defined only for the ni_dr_private register).

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

54

-



Chapter 3. The Data Network
a_ _~s

3.7 All Fall Down Mode

All Fall Down mode is a feature of the Data Network that is used primarily by
the supervisor for swapping processes out of partitions. When All Fall Down
mode is triggered within a partition of the Data Network, all messages currently
in transit within that partition are immediately routed downwards through the
network to the nearest possible node, regardless of their actual destination. This
process clears the Data Network of pending messages as swiftly as possible.

The three private register subfields, ni_dr_rec_a l_f all_down,
ni_all_fall_down_ie, and ni_allfall_down_enable, are used to trig-
ger All Fall Down mode, as well as to detect when an arriving Data Network
message is the result of All Fall Down mode.

3.7.1 Triggering All Fall Down Mode

To trigger All Fall Down mode in a partition, each node in the partition should
set its niall_falldown_enable flag to 1. This informs the Data Network
hardware that the NIs are ready to receive All Fall Down messages.

For the Curious: The Data Network is organized in layers, with each layer man-
aged by internal switching nodes. When All Fall Down mode is started by the
nodes, it is broadcast through all the layers of the Data Network, causing the
internal switching nodes to begin routing messages downward and out of the net-
work. The Data Network is designed in a fault-tolerant manner, so that even if
a given Data Network switching node is not yet in All Fall Down mode, an All
Fall Down message sent through it by a higher level node "falls through" and
continues moving toward the processing nodes.

3.7.2 Detecting All Fall Down Mode Messages

The flag ni dr_rec_all_fall_down is set whenever the current message in
the receive FIFO is the result of an All Fall Down operation.

You can also have the NI trigger an interrupt when an All Fall Down message
becomes available in the receive FIFO (either by arriving at an empty FIFO, or
by being brought forward after a preceding message has been read out). If the
interrupt enable flag ni_all_fall_down_ie is set, the arrival of an All Fall
Down message triggers a Green interrupt (dr rec all fall down).

NI Version 22 (CM-SE), June 1994 55
Copyright 0 1994 Thinking Machines Corporation



NI Programmer ~ Handbook

3.7.3 Resending All Fall Down Mode Messages

Each message re-routed by All Fall Down mode carries with it enough informa-
tion so that the receiving node can resend the message to its intended destination.
When an All Fall Down message is read from the receive FIFO, the first word
read is not the first word of the message itself, but is an extra address word, con-
taining information about the intended destination of the message.

The All Fall Down address word has the following format:

31 28 27 24 23 20 n 0

header tag length [offset 
where

header is a 4-bit header giving the length of the offset field

tag is the original tag field of the message

length is the message length in words, excluding the address word

offset is an n-bit field used to construct the real address

The header field indicates the length of the offset field, but in a slightly convo-
luted manner. The length of the offset field, n, is 4 times the least integer not less
than one-half of the header value, h. In equation form:

n = 4F]

(An algorithmic way to get ths result is to take bits 29 - 31 of the header field
as an integer, arithmetically add bit 28, and left-shift the result by two bits.)

Once you have the offset length, take the physical address of the current node and
replace the least significant n bits with the n-bit value from the offset field. This
gives the destination physical address. For example, if the header value is 1, then
the offset is 4 bits in length. If the offset value is OxC, and the physical address
of the current node is OxO01 1, then the destination physical address is Ox0011C.

The tag and length fields duplicate the values obtainable from the rec_tag and
reclength fields in the status register. However, these fields are included
in the All Fall Down address word because programmers may find them useful.

Note: When an All Fall Down message is received, the value of the
rec_length field is equal to the original length of the message - the number
of data words in the FIFO not counting the All Fall Down address word. How-
ever, the rec_length_lef t field contains the total number of words left in the
receive FIFO, and this count includes the All Fall Down address word.

56 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 3. The Data Network

3.8 Interrupt Enable Flags

There are two interrupt enable flags in the ni dinterfaceprivate register.

The ni_sf ifo_goes_empty_ie flag controls whether a Green interrupt (send
FIFO empty) is signaled when any Data Network send FIFO goes empty. The
ni_rdonecomplete_ie flag controls whether an Orange interrupt (router
done complete) is signaled when a network-done operation completes.

3.9 Data Network Usage Note: Receive before You Send

An important strategy to keep in mind when using the Data Network is "Receive
before you send." That is, in most cases you should structure your code so that:

· Each node attempts to read a message from the Data Network before send-
ing a new message into it.

* If a node is unable to send a message, the node attempts to read a message
to help decrease the network load.

The Data Network has a large capacity for messages from nodes, but the sheer
number of nodes connected to it can overwhelm it if the nodes send messages
into the network without attempting to receive them. Your code should be biased
toward removing messages from the network rather than adding them. Your code
should also provide fair opportunities for both receiving and sending, where
"fair" means the ratio between the two should be bounded both below and above,
and where "opportunity" means the opportunity to attempt sending or receiving
a message, whether or not the attempt is successful. Thus, the sending and re-
ceiving portions of your code should be called with fairly equal frequency.

When you are using the LDR and RDR concurrently, you should likewise main-
tain a balance in using both interfaces, so that neither interface becomes more
heavily loaded than the other. In short, the rule of thumb is: "Receive before you
send, but receive and send fairly."

Note: Some applications use the LDR and RDR interfaces for completely differ-
ent purposes, and thus do not normally maintain a load balance between the two
halves of the Data Network (that is, one network interface may be used less often
than the other). Nevertheless, such application code should still try to maintain
a receive/send balance within each of the two network interfaces.

NI Version 22 (CM-SE), June 1994 57
Copyright © 1994 Thinking Machines Corporation



NI Programmer a Handbook
"..,,'::*-':: ', ,-:'' ' 1, ,.,; -x,*.: ',.. .,;;...., .",".. .-." : ,,; '", , , ,' : -, '. . .:. :: : ':. .

3.10 Examples

The examples shown below are code fragments intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Also, since the interfaces for the DR, LDR, and RDR are virtually identical, the
examples below are written for the LDR only. Appropriate functions for the other
network interfaces can be obtained by appropriate substitution of names.

Sending and Receiving a Message

Here is a pair of functions that send and receive messages via the LDR interface.
The message is assumed to be composed of length words of data, and is sent with
the specified tag value to the node with the given dest_address.

int LDR send (dest address, message, length, tag)
unsigned destaddress, tag;
int *message;

int length;
int i;

CMNA ldr send first(tag, length, dest address);
while (length--) CMNAldrsendword(*(message++));

return (SEND_OK(CMNA_ldr_status()));

/* Highest tag NOT currently assigned as interrupt */
int tag_limit=0;

int LDR receive (message, length)

int *message;
int length;

int i, tag = 999;

/* Skip messages currently assigned as interrupts

*/
while (tag>tag limit) {

if (RECEIVEOK(CMNA _ldrstatus()))
tag = RECEIVE_TAG (CMNA_ldr_status ());

}
while (length--)

*(message++) = CMNAldrreceive word();
return (tag);

58 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

An



Chapter 3. The Data Network

For example, the following code fragment causes each node to send a message
to the node with the next-higher node address. (The node with the highest ad-
dress sends a message to node 0.)

int nextnode = (CMNA selfaddress + 1)
% CMNA_partition_size;

int i, message [MAX_ROUTER_MSG_WORDS];
for (i=0, i<MAX ROUTER MSG WORDS, i++) message[i]=i;
LDR send(next node, message, MAX ROUTER MSG WORDS, 0);
LDRreceive( message, MAXROUTER_MSGWORDS );

Sending and Receiving Long Messages

Of course, the functions above are limited by the size restriction on Data Net-
work messages. If you have a lot of data to send, you'll probably want to use a
function that can send a message of any word length, breaking it up into chunks
as appropriate. Here's such a function, which handles both sending and receiving
the message in a single function call:

/* Send/Receive function with no length restriction

*/
LDR_sendreceivemsg(destaddress, message, length,

tag, dest)
unsigned destaddress, tag;
int *message, *dest;
int length;

{

int packet_size=MAX_ROUTER_MSG_WORDS-1;
int send size, receive size;
int offset, source offset=0, dest offset;
int words_tosend=length, wordsreceived=0;
int count, rec_tag, status;

while ((wordsreceived<length)I I (wordstosend))

/* First try to receive a packet */

status=CMNA ldr status();
if (wordsreceived<length &&

RECEIVEOK(status) &&
RECEIVE_TAG(status) <= tag_limit) {

dest offset = CMNA ldr receive word();

NI Version 2.2 (CM-5E), June 1994 59
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
_,_ _·_, ,<-._. ..

receive size=

RECEIVELENGTHLEFT(CMNAldrstatus());
for (count=O; count<receive size; count++)

dest[dest_offset++] =CMNA_ldr receiveword();
words received += receive size;

}

/* Now try sending a packet */
if (words to send) {

send_size = ((words_to_send < packet_size) ?

words_tosend : packetsize);
do {

CMNA ldr_send first(tag, send_size+i,
dest address);

/* Send offset of msg data being sent */
CMNA ldrsendword(source offset);
offset=sourceoffset;
for (count=O; count<send size; count++)
CMNA ldrsendword(message[offset++]);
} while (!SEND OK(CMNA _ldr status());

source offset=offset;
wordstosend -= send size;

} /* if */
} /* while */

Here's an example of how to call this function:

#define LONGFACTOR 5

int mirror_node = (CMNA_partition_size-1) -

CMNA self address;

int i, length = MAX ROUTER_MSGWORDS*LONGFACTOR;
int send[MAXROUTERMSG_WORDS*LONGFACTOR];
int receive[MAXROUTERMSG WORDS*LONGFACTOR];

for (i=O, i<length, i++) long_message[i]=i;

LDR_ send receive msg(mirrornode, send,
length, 0, receive);

60 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 3. The Data Network

Interrupt-Driven Message Retrieval

Using interrupt-driven message retrieval simply requires that you define a han-
dler to be called when an interrupting message arrives. The handler should take
no arguments, and its returned value is ignored.

/* Message handler for interrupt-driven LDR test */

#include <cm/cm_signal.h>
int interrupt_done = 0;

int interrupt_expect_length;
int interrupt_receive [MAX_ROUTER_MSG_WORDS];

void LDR receivehandler ()
{

int temp=tag_limit;
tag_limit=3;
LDR_ receive(interrupt_receive,

interrupt_expect_length);
tag_limit=temp;
interrupt_done=l;

You use ciMos-signal to inform the NI that it should signal an interrupt from
some or all of the possible tag values. (Remember that you must #include the
header file cmsys/cm_signal to have access to CMOSsignal.) For example:

int i, next_node, message_length=MAX_ROUT-
ER_MSG WORDS;
int message [MAX_ROUTER_MSG_WORDS];
for (i=0, i<message_length, i++) message[i]=i;
next node = (CMNA self address+l)

%CMNA_partitionsize;
/* signal interrupts for non-zero tag values */

CMOS_signal( SIGMSG , LDR_receive_handler , 14 );

/* Send message with an interrupt tag (3) */
interrupt_done = 0;

interrupt_expect_length = message_length;
LDR_send(next_node, message, message_length, 3);

/* Wait for handler to signal interrupt finished */
while (interrupt_done==0) {};
printf("Received message: ");

for (i=0, i<message_length, i++)
printf("%d ", message[i]);

NI Version 22 (CM-SE), June 1994 61
Copyright © 1994 Thinking Machines Corporation



NI Programmer 's Handbook

Sending via LDR and RDR Simultaneously

One advantage to having the two sub-interfaces in the Data Network is that you
can send messages simultaneously through the LDR and RDR. For example,
here's a pair of functions that send a single message via both interfaces, compar-
ing the received results to make sure that the message was received properly:

/* Send/Receive functions using LDR/RDR in tandem */
void LDR RDR send (dest address, message, length,
tag)

unsigned destaddress, tag;
int *message, length;

{

int i;

CMNAldrsendfirst(tag, length, destaddress);
CMNArdr_sendfirst(tag, length, dest_address);
for (i=0; i<length; i++) 

CMNAldr_sendword(message[i]);
CMNArdr_sendword(message[i]);

int LDRRDRreceive (message, length)

int *message, length;

int i, ldr_value, rdr_value, length_received ok=O;
while (!RECEIVE_OK(CMNA ldr_status())

!RECEIVE OK(CMNA rdr status())) {}
for (i--O; i<length; i++) {

ldrvalue=CMNAldr receiveword();
rdrvalue=CMNArdrreceive word();
if (ldr value==rdr value) {
message[i]=ldr_value;
length received ok++;

}

return(length_received_ok);

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

62

-r

.i

..

^s 



Chapter 4

The Control Network

The Control Network consists of three interfaces, the broadcast interface (BC),
the combine interface (COM), and the global interface.

Figure 13. The three interfaces of the Control Network: BC, COM, and global

The broadcast and combine interfaces are very similar, and there are some inter-
nal interactions between these two interfaces that you'll need to keep in mind.
The global interface, however, is different in both structure and purpose from
either of the other two interfaces.

This chapter describes the three Control Network interfaces, and presents the
registers that are used to manipulate them.

NI Version 2.2 (CM-SE), June 1994 63
Copyright © 1994 Thinking Machines Corporation

~~~~~~~~~~~~~~~~~~~~~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I. . .

. . .

NI Programmer ' Handbook
.-: : . ,e: N.. · .. .: :.~ .: :

4.1 The Broadcast Interface

The broadcast interface is used to broadcast a message from a single source node
to all nodes in the same partition (including the broadcasting node).

The broadcast interface provides two separate register interfaces, one for user
broadcasts (BC), and one for supervisor broadcasts (SBC). The two register in-
terfaces are completely independent, and can be used concurrently to broadcast
messages. Where the sections below refer to "broadcast messages" generically,
the description applies equally and independently to both the user and supervisor
interfaces.

Implementation Note: Because of the way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 8.2.6.)

4.1.1 Broadcast Register Interfaces

The two broadcast register interfaces are based on the generic model presented
in Chapter 2. The only difference between them is that the supervisor broadcast
registers can be accessed only from the supervisor area.

The following NI registers form the broadcast interface:

nibinterfacesend_f irst
ni_binteface_send
nibinterface_ recv
ni_binterface_s tatus
ni_binterface_control
nibinterface_pr ivate

Used to send the first value of a message.
Used to send the rest of the message.
Used to receive a message.
Status register.
Control register.
Supervisor control register.

The binterface part of these names is a unique abbreviation for each interface:

bc - user broadcast interface sbc - supervisor broadcast interface

The purpose and use of each of these registers is described in the sections below.
Figure 14 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

64

Chapter 4. The Control Network
'.... .'... -.,.j, , ,'... , ... ,. ., ,,........

The Broadcast Interface Registers at a Glance:
hex offsets

be sbc

ni x send first

ni x send

ni x rec

ni x control

ni_x_private

ni_x_status

Ox3000 Ox4000

0x0640 0x0840

0x0630 0x0830

0x0620 0x0820

Ox0610 Ox0810

ox0608 Ox0808

Ox0600 Ox0800

ni_interface_send_first Addressing Patterns

user/supervlsor bit
Inte face

index
NI base address index

SBC i 1 00001 1 0 00 0 0 0 length

BC |----- - xi o ooo o 11i o1 1i O | o o oi length | 000ooo
i I 1 i -I
31 20 19 18 15 14 12 11 7 6 3 2 0

Figure 14. NI registers associated with each of the broadcast interfaces.

4.1.2 Broadcast Messages

A broadcast message is essentially synchronous - a single node broadcasts a
message that is received by all nodes in its partition (including the broadcasting
node itself).

Only one node in each partition can broadcast via a given interface at any time.
If two or more nodes in the same partition attempt to broadcast simultaneously,
via the same interface (user or supervisor), the effect is unpredictable. An error
may be signaled and/or transmitted data may be lost. (Remember, however, that
the user and supervisor broadcast interfaces operate independently, and can be
used concurrently by different nodes in the same partition.)

NI Version 2.2 (CM-5E), June 1994 65
Copyright © 1994 Thinking Machines Corporation

_ I� � _ _

NI Programmer s Handbook

Broadcast messages are atomic with respect to sending; a broadcast message is
not transmitted until all its component words have been written to the send FIFO.
Broadcast messages are not atomic in transit, however. A multiword message
may be split in transit into two or more smaller messages. In addition, as broad-
cast messages arrive at each node they are concatenated together in the receive
FIFO.

From the point of view of each receiving node, it always appears as if there is
exactly one broadcast "message" waiting to be read from the receive FIFO. Once
a node begins receiving a message (that is, when it examines the status register
to determine the length of message that is available), the length of the message
is fixed, and a new "message" is formed behind it in the FIFO from any words
that arrive while the first message is being read out.

Although the length of a broadcast message is not maintained, the order of the
words within a message is maintained, as well as the order of messages sent and
received via the same interface, user or supervisor. (There is no predictible rela-
tionship, however, between the deliveries of user and supervisor messages to the
same node. Effectively, the two interfaces act as independent "streams" of mes-
sages.)

Usage Note: The broadcast interface is designed in such a way that a message
is not removed from the send FIFO before all non-abstaining nodes have received
it. This feature can be used to force synchronization of the nodes.

Implementation Note: Each broadcast interface's private register includes a
supervisor flag, ni_sendenable, which controls whether broadcast sending
is enabled via that interface. (See Section 4.1.8 for a description of these flags.)

4.1.3 Sending Broadcast Messages

A broadcast message consists of a series of one or more words. The maximum
length allowed for a message is determined by the length limit of the send FIFOs.
The only auxiliary information associated with a broadcast message is its length.
However, the length is only meaningful for the node that sends a message, be-
cause of the way messages can be split and concatenated in transit.

Programming Note: The length limit of the broadcast send FIFOs is given by
the constants MAX_BROADCAST_MSG_WORDS and MAX_SBc_MSGWORDS (cur-
rently 4 for both interfaces).

66 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation :

Chapter 4. The Control Network
- w _ _3~d

The following FIFO registers are used to send messages:

ni_binterface send first
ni_binterfacesend

Used to send the first value of a message.
Used to send the rest of the message.

and there are corresponding send_first and send macros:

CMNA bcsend first (length, value)
CMNA_bc_send_f irst_double (length, value)

CMNA bc send word(value)
CMNA_bc_send_float (value)

CMNA bc send double (value)

For the send first macros, the length argument is the length of the message
in words, and value is the first value of the message. For the send macros, value
is the second and succeeding values of the message.

4.1.4 Auxiliary Information

The auxiliary data field of a broadcast message (BC or SBC) has the form

8 0

O O O O length·' J' I t

where length is the length of the message in words. The length field can have any
value from 1 up to MAX_BROADCAST_MSG_WORDS or MAX_SBC_MSGWORDS.

(The high-order bits of the auxiliary data have no useful meaning, but must al-
ways be specified as 0.)

The following constant specifies the starting bit position of the length field:

NI BC SEND AUXILIARY LENGTH P
_~ _

The length field offset (0).

4.1.5 Receiving Broadcast Messages

Broadcast messages are received as described in Chapter 2. For each broadcast
interface, the following register is used to receive messages:

ni_binterfacerecv FIFO register from which values are read.

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

67

NI Programmer 's Handbook

ad.~~~~~~....

To receive a message from the broadcast interface, use the network-specific read-
ing operations described in Chapter 2:

value = CMNAbc receiveword();
value = CMNA bc receive float();
value = CMNA bc receive double();

4.1.6 The Broadcast Status Register

The status registers for each of the interfaces contain the following subfields:

nibinterfacestatus Status register.
ni_send_ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni send_empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates receipt of message.
ni rec_lengthleft Field, words left in the FIFO.

The meanings of these sub-fields are as described in Chapter 2. You can obtain
the values of these sub-fields by using the generic field extractors described in
Chapter 2 (Section 2.5.4).

The macro used to get the value of the broadcast status register is

int value = CMNA_bc_status()

Note: As described in Section 1.4 in the Appendixes, the bit length of the
length_left field has changed; to access this field, you should use the macro
BC_RECEIVE_LENGTH (status-value) for both the BC and SBC interfaces.

How to Interpret the Value of the "Length Left" Field

The NI combines broadcast messages as they are received, so there is never more
than one "message" waiting to be read from the receive FIFO. However, broad-
cast messages are never appended to a message that is in the process of being
retrieved, so you needn't worry that a message will grow unexpectedly.

Once you have retrieved the first value of a received message, it is safe to assume
that reading a number of words equal to the rec_length_left value retrieves
the rest of the message. (Remember, however, that this method is not guaranteed
to read all words of a multiword message that was divided in transit.)

68 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

4.1.7 Abstaining from the Broadcast Interface

Each broadcast interface has an abstain flag that you can use to cause the NI to
ignore incoming broadcast messages. The abstain flag's effects and use are as
described in Section 2.6.

ni_binterface control

ni rec abstain
Status register, contains rec_abstain field.

Flag, broadcast interface abstain flag.

The address constant for the abstain register is bc_control _reg. You can use
the macros described in Section 2.6.3 to read and write the abstain flag:

value = CMNA_read_abstain_flag(bc_control_reg);

CMNAwrite_abstain_flag (bc_control_reg, value);

4.1.8 The Broadcast Private Register

The private register for each broadcast interface contains the following subfields:

ni_binterface_pr ivate
ni rec ok ie
nilock
ni_sendstop
ni recfull
ni sendenable

Private register.
Flag, "Receive OK" interrupt enable.
Interface lock flag.
Interface stop flag.
Flag, indicates receive FIFO is full.
Flag, enables/disables send FIFO.

The rec_okie, lock, send stop, and rec_full subfields are as described
in Chapter 2. The remaining field is described below.

The Send Enable Flag

Each broadcast interface has an ni_send_enable flag, which is used to enable
and disable the broadcast send FIFO. When this flag is set to 1, message sending
is permitted. When the flag is set to 0, an attempt to write a message to the send
FIFO signals a Bus Error. The send_enable flag should be changed only when
there are no broadcast messages pending for the interface.

Usage Note: While this flag can be used as a kind of "send abstain" flag to
ensure that only one node broadcasts at any given time (that is, by disabling send-
ing for all nodes but the one making the broadcast), it is much simpler to
structure your code so that only one node is permitted to broadcast at any time.

NI Version 22 (CM-5E), June 1994 69
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook

Implementation Note: The CMOST operating system sets the send_enable
flag for the broadcast interface (but not the supervisor interface) to 0 by default.
This flag must be set to 1 to permit broadcasting of messages. To turn on this
flag, you can use the following C macro call; this call must be made prior to any
broadcast interface operations:

CMNA participate_in (NI BC_SEND_ENABLE);

4.1.9 Broadcast Interface Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Sending and Receiving a Message

These functions send and receive messages via the broadcast interface. The mes-
sage is assumed to be composed of length words of data starting at the memory
location specified by message.

int BC_send(message, length)
int *message, length;

{

int i;

CMNA_bc_send_first(length--, *message++);
for (i=o; i<length; i++)

CMNA_bc_send_word(*message++);
return(SEND OK(CMNA bc status());

} I

int BC_receive(message, length)
int *message, length;

int i;

for(i=0; i<length; i++) {

while(!RECEIVE OK(CMNA bc status()))
message[i] = CMNAbc receiveword();

return (length);
}

70 NI Version 2.2 (CM-SE), June 1994
Copyright Q 1994 Thinking Machines Corporation

}

Chapter 4. The Control Network

For example:

int i, message[MAX_BROADCAST_MSG_ WORDS];

for (i=O, i<MAX BROADCASTMSGWORDS, i++)
message[i]=i;

BCsend(message, MAX BROADCASTMSGWORDS);
BCreceive(message, MAX BROADCAST MSG WORDS);

4.2 The Combine Interface

The combine interface is used for executing operations that combine in parallel
a single value from each processing node.

These are the supported operations:

* parallel prefix (scanning), which performs a cumulative operation (addi-
tion, maximum, logical AND, etc.) over the values from each node in
either increasing or decreasing order of send addresses

* reduction, which combines the values from all the nodes and then returns
this single combined result to all participating nodes

* network-done, which simplifies the task of synchronizing the nodes after
a Data Network operation

Each operation is described in more detail below.

Implementation Note: Because of way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 8.2.6.)

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinldng Machines Corporation

71

NI Programmer 's Handbook

4.2.1 The Combine Register Interface

The combine interface's register interface is based on the generic model pres-
ented in Chapter 2, and includes the following registers:

ni com send first

ni com send

nicom recv
ni com status

ni com control
ni_com_pr ivate
ni scan start

Used to send the first value of a message.
Used to send the rest of the message.
Used to receive a message.
Status register.
Control register.
Supervisor control register.
Control register used to set scanning segments.

0x5000

OxOA40

OxOA30

OxOA20

OxOA10

OxOA08

OxOA00

The purpose and use of each of these registers is described in the sections below.
Figure 15 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

The Combine Interface Registers at a Glance:

hex offset

ni com send first
,.....

ni_com_send
ni com rec

nicom control

ni_com_private

nicom_status

ni_interface_send first Addressing Pattern

user/supervisor bit
inter face

NI base address index

COM ------ x 0000 1 I 0 1 patterni combiner length

31 20 19 18 15 14 12 11 10 9 7 6 3 2 0

Figure 15. NI registers associated with the combine interface.

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

72

� _� __

00 1

- - -- ----

1

. , , , , , , . "" . , . - I . I .

Chapter 4. The Control Network
2~' _ _....x..

4.2.2 Combine Messages

The combine interface is essentially synchronous - combine operations are not
completed until all non-abstaining nodes have sent the same type of combine
operation. If two nodes attempt to start different combining operations at the
same time, a Yellow interrupt (bc or con collision) is signaled. Once this
interrupt has been signaled, combine messages are no longer guaranteed to be
valid - it is necessary to flush the Control Network to restore normal operation
(see the discussion of Control Network flushing in Section 6.4).

Combine messages are atomic in both sending and receiving; a combine message
is not transmitted until all its component words have been written to the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The order of combine messages is strictly preserved in transit. With the exception
of the network-done operation, which uses a different mechanism, the results of
combine operations are delivered into the receive FIFO in the same order the
operations were started.

Combine operations can be pipelined. Although all nodes must start the same
combine operation in order for that operation to complete, nodes are not required
to read the results of each combine message before sending the next. The length
of the pipeline is limited only by the capacity of the message FIFOs.

Important: Pipelined messages cannot use doubleword read/write operations -
see Section 8.1.2.

4.2.3 Sending Combine Messages

A combine message consists of a series of one or more words, with the exception
of network-done messages, which are always 1 word in length. The maximum
length allowed for a message is determined by the length limit of the send FIFO.

Programming Note: The length limit of the combine interface send FIFO is giv-
en by the constant MAX_COMBINE_MSG_WORDS (currently 5).

The following FIFO registers are used to send messages:

ni_com_send_first Used to send the first value of a message.
ni_com_send Used to send the rest of the message.

NI Version 2.2 (CM-5E), June 1994 73
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
. '~ ." ' .. ' ";"-'L ' ~- .;' 7..:'-: '.~ .

.. . , · . , AN . ·

and there are corresponding send_first and send macros

CMNAcorn_send_first (combiner, pattern, length,
CMNA_coms endf irst_double (combiner, pattern,

value)
length, value)

CMNA com send word (value)
CMNA conm send float (value)
CMNA comn send double (value)

For the sendfirst macros, the length argument is the length of the message
in words, and value is the first value of the message. The combiner and pattern
arguments are described in the sections below, covering each of the possible
combine operations.

For the send macros, value is the second and succeeding values of the message.

4.2.4 Auxiliary Information

The auxiliary information has three components: the length of the message in
words, a three-bit combiner value, and a two-bit pattern value. (The legal com-
biner and pattern values are described below.)

The auxiliary data field of the message has the form

8 0

pattern I combiner length
I I

where

pattern is a two-bit value selecting the order in which values are combined

combiner is a three-bit value selecting the combine operation performed

length is the length of the message in words

The following constants specify the starting bit positions of these fields:

NI COM SEND AUXILIARY PATTERN P
NI COM SEND AUXILIARY COMBINER P
NI COM SEND AUXILIARY LENGTH P

The pattern field offset (7).
The combiner field offset (4).
The length field offset (0).

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

74

Chapter 4. The Control Network

To construct a send_first address, add the following values:

The pattern value:
The combiner value:
The length value:

pattern
combiner
length

<< NICOM_SEND AUXILIARY_ PATTERN_P
<< NI COM SEND AUXILIARY COMBINER P
<< NI_COM_SEND_AUXILIARY_LENGTH_P

4.2.5 Legal Combiner and Pattern Values

For scans and reductions, these are the legal pattern and combiner values:

pattern:
1 - Backward scan (combine in decending order of node address).
2 - Forward scan (combine in increasing order of node address).
3 - Reduction operations.

combiner:
0 - Bitwise inclusive OR.
1 - Signed addition.
2 - Bitwise exclusive OR.
3 - Unsigned addition.
4 - Signed maximum.

A pattern value of 0, together with a combiner value of 5, specifies a network-
done operation, described later in this chapter. The combiner values 6 and 7 are
not currently used.

The following constants can be used to specify the value of the pattern field:

SCAN FORWARD
SCAN_BACMWARD
SCAN REDUCE
SCAN ROUTER DONE

Forward scan pattern (2).
Backward scan pattern (1).
Reduction scan pattern (3).
Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR SCAN

ADD_SCAN

XOR_SCAN

UADDSCAN
MAX SCAN

ASSERT ROUTER DONE

Inclusive OR (0).
Signed addition (1).
Exclusive OR (2).
Unsigned add (3).
Signed maximum (4).
Network-done operation (5).

The length field can have any value from 1 up to MAX COMBINEMSG WORDS.

NI Version 22 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation

75

Z "P I:7,ITI-"F-

NI Programmer Handbook
†__.S

4.2.6 Receiving Combine Message

The message-receiving interface of the combine interface is as described in
Chapter 2, with the exception of the network-done operation, which is received
through the Data Network status field ni_router_done_complete (see Sec-
tion 4.2.9).

The following register is used to receive combine messages:

nicomrn recv FIFO register from which values are read.

To receive a message from the combine network, use the network-specific read-
ing operations described in Chapter 2:

value = CMNA com receive_word();
value = CMNA com_receive_float();
value = CMNA_com_receive_double ();

4.2.7 The Combine Status Register

The combine status register contains the following subfields:

ni_com_status
ni send ok
ni_send_space
ni_send_empty
nirecok
ni_rec_length
ni_rec_length_left
ni_com_scan_overflow

Status register.
Flag, status of message being sent.
Field, space left in send FIFO.
Flag, indicates empty send FIFO.
Flag, indicates receipt of message.
Field, length of message in words.
Field, words left in the FIFO.
Flag, indicates add-scan overflow.

The send_ok, send_space, send_empty, rec_ok, rec_length, and
rec_length_left subfields are as described in Chapter 2, and you can obtain
the values of these sub-fields by using the generic field extractors described in
that chapter. The remaining flag, com_scan_overflow, is described in Section
4.2.8.

Use this C macro to get the value of the combine status register:

int value = CMNAcom_status()

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

76

Chapter 4. The Control Network

4.2.8 Scanning (Parallel Prefix) and Reduction Operations

In a scan or reduction operation, each node sends a single value that is combined
with the values sent by the other nodes in the partition. A scan or reduction mes-
sage is from 1 to 5 words in length, representing a value to be combined.

When each participating node has sent a value, the values are combined accord-
ing to the combiner and pattern in the auxiliary data of the message, and the
result is delivered after a brief interval to the receive FIFOs of the nodes.

For scan operations, the node values are combined cumulatively - that is, the
result for each node is the combination of the values transmitted by all nodes
having lower (or higher) relative addresses. Forward scans combine values in
order of ascending node addresses. Backward scans combine values in order of
descending node addresses.

Reduction is a special case of scanning. When a reduction message is sent, the
values from all participating nodes are combined into a single value, and then
this single result is sent to all the nodes.

The legal combiner and pattern values for scans and reductions can be specified
as symbolic constants. The combiner argument must be one of the constants

· ADDSCAN Signed addition.

* UADD_SCAN Unsigned addition.

* OR SCAN Bitwise inclusive OR.

* XOR SCAN Bitwise exclusive OR.

* MAX_SCAN Signed maximum.

and the pattern argument must be one of the constants

* SCAN_FORWARD Values are combined in ascending address order.

* SCAN_BACKWARD Values are combined in descending address order.

* SCAN_REDUCE Reduction operation.

Important: If you are sending a message that is longer than one word, the order
in which the words of the message are written depends on the combine operation:

* Maximum operations require the most significant word to be written first.

* Both types of addition require the least significant word to be written first.

· Inclusive and exclusive OR have no word-ordering requirement.

NI Version 22 (CM-5E), June 1994 77
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
.~c' *:'s."~~

Scanning with Segments

You can use segmented scanning to divide a partition into segments of nodes -
regions of nodes within which forward and backward scanning is done indepen-
dently of all other nodes in the partition. The scan values obtained within each
segment do not affect the values obtained in any other segment.

Note: Reduction operations do not use segmented scanning. Reduction scans
ignore the current segment settings.

The following control register is used to read and set the current segmentation:

ni_scan_start One-bit control register, indicates start of scan segments.

The one-bit flag in ni_scan_start is used to indicate the starting points of
segments. Segments begin in each node where ni_scan start is 1, and extend
through the nodes in order of node address - upward for forward scans, down-
ward for backward scans. If no ni_scan_start flags are set in a partition, then
the entire partition is treated as one segment.

Note: It is an error to change the value of the scan start flag while the com-
bine send FIFO is not empty. (For example, you can't toggle the scan_start
flag in the middle of a series of pipelined combine operations.)

You can read and modify the value of ni_scan_start by using these macros:

int value CMNA segmentstart ();
CMNAset_segment_start (value)

Important: If you are sending a multiword message, the value of
ni_scan_ start when the first value is written applies to the entire message.
Altering the flag after the first value is written has no effect on the message.

Addition Scan Overflow

Addition scans on large values can cause arithmetic overflow in some nodes. The
ni_comrscan_overflow flag in the status register indicates whether the
current scan result has suffered arithmetic overflow.

ni_comrn_status Status register.
ni_comrn_scan_overflow Flag, set if add scan had overflow.

78 NI Vernon 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

., . 'Sj~

Chapter 4. The Control Network

This flag is 1 if the current message in the receive FIFO suffered arithmetic over-
flow; otherwise, it is 0. You can obtain the current value of this flag by using the
field extraction macro:

value = COMBINE OVERFLOW (status);

Note: The com_scan_overflow flag's value is defined only when the current
message in the receive FIFO is the result of a scan or reduction operation with
a combiner of addition or unsigned addition.

You can also instruct the NI to signal an interrupt for scan overflow. The
private register contains a flag, ni_com_s can_overf low_ie, that when set
to 1 causes an a Green interrupt (scan overflow) to be signaled when a scan
result that overflowed is read from nicom recv.

4.2.9 Network-Done Messages

Network-done messages are used to synchronize the processing nodes after a
Data Network operation. A network-done message is sent by a node when it has
completed sending its Data Network messages and is waiting for the other nodes
to finish. (Of course, even after a node has sent a network-done message, it may
still receive Data Network messages.)

Important: Although network-done messages are directly related to the opera-
tion of the Data Network, they are a feature of the combine interface of the
Control Network. All non-abstaining processors must start a network-done mes-
sage before the network-done operation can be completed.

A network-done message is always of length 1, and the actual word written is
ignored - all that matters is the sending of the message itself. Network-done
messages have a unique pair of combiner and pattern values: the combiner field
for the message must be 5, and the pattern field must be 0.

There is a unique pair of combiner and pattern constants that are used to signal
a network-done operation:

combiner: ASSERT ROUTER DONE pattern: SCANROUTER_DONE

Network-done messages are an exception to the usual message-reception inter-
face of the combine interface. The result of a network-done message is not
delivered as a value in the receive FIFO.

NI Version 2.2 (CM-SE), June 1994 79
Copyright © 1994 Thinking Machines Corporation

NI Programmer 's Handbook

Instead, the Data Network flag nirouter_done_complete is used to indi-
cate when the network-done message has been sent by all nodes:

ni_dr_status Data Network (DR) status register.
ni_router_done_complete Network-done completion flag.

When a node sends a network-done message, the ni_router_done_complete
flag of that node is set to 0. When all non-abstaining nodes have sent a network-
done message, and when the Data Network has no pending messages for any
node, the ni_router_done_complete flag is set to 1 for all nodes.

You can use the following C macro to access this flag:

DR_ROUTER_DONE (status)

Usage Note: An attempt to send a network-done message with a length other
than 1, or to send a network-done message while another such message is still
in progress (that is, while the ni_router_done_complete flag is zero) signals
a Bus Error.

How Network-Done Works...

Network-done messages continually use the combine interface hardware until
they are completed, so any combine operations started after a network-done
won't complete until after the network-done message is completed.

The network-done operation makes use of the ni_dr_message_count register
of the Data Network to determine when the Data Network is clear. As described
in Section 3.5.4, each node increments this register when it sends a message, and
decrements the register when it receives a message. (Not counting, of course,
messages for which counting is disabled by a 0 flag in ni_count_mask.)

When the ni_dr_message_count register is zero for all non-abstaining nodes,
there should be no messages in transit through the Data Network. (Again, this
may not be the case if there are messages for which message-counting is dis-
abled, but this does not prevent the use of the network-done operation.)

A network-done message basically does a repeated addition scan on the values
of the ni_dr_message_count register for all non-abstaining nodes. When the
global result of this scan is zero, then the NI assumes that the Data Network is
clear, and sets the ni_router_done_complete flag to 1.

80 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

...And Why You Should Care

Since network-done operations involve a combine interface scan of the value of
a Data Network register, you should be careful about setting and changing the
abstain flags of the combine interface when you intend to send a network-done
message. (See Section 4.2.10 for a discussion of the combine interface's abstain
flags.)

For example, if you change the combine abstain flags of one or more nodes while
a Data Network operation is in progress, you may inadvertently exclude one or
more nodes that have non-zero message_count registers. If you then start a
network-done operation, these registers are ignored by the implied addition scan.
In most cases, this prevents the result of the scan from ever becoming zero, and
thus prevents the network-done message from completing.

To send a network-done message safely, make sure that the combine abstain flags
of all nodes that might send or receive a message via the Data Network are
cleared before starting the Data Network operation, and make sure those abstain
flags remain cleared until after the network-done message has been completed.

4.2.10 Abstaining from the Combine Interface

The combine interface has two abstain flags that you can use to cause the NI to
abstain from combine interface transactions.

ni_com_control Status register, contains combine abstain flags.
ni_rec_abstain Flag, combine interface abstain flag.
ni_reduce_rec_abstain Flag, special reduction abstain flag.

Setting the ni_rec_abstain flag to 1 causes the NI to discard any arriving
combine interface messages, and allows any messages sent by other nodes to
complete without the participation of the abstaining node.

In the case of combine operations that expect a value from each node, abstaining
nodes effectively supply an appropriate identity value for the operation.
However, no result value is written to an abstaining node's receive queue (with
the exception of reduction operations - see below).

NI Version 2.2 (CM-SE), June 1994 81
Copyright © 1994 Thinking Machines Corporation

NI Programmer 's Handbook

You can use the abstain flag macros described in Section 2.6.3 to read and write
the abstain flag, using the register address constant com_control_reg:

value = CMNA read_abstain_flag(comrncontrol_reg);

CMNA_write_abstain_flag(comrn_control_reg, value);

Important: As with all abstain flags, the ni_rec_abstain flag and the
nireduce_rec abstain flag should be changed only when there are no
messages pending in the combine interface. If a message is currently being writ-
ten to the send FIFO when either abstain flag is changed, a Yellow interrupt (com
abstain changed) is signaled.

Implementation Note: Because of way the broadcast and combine interfaces
interact, a node that is abstaining from a combine operation should not execute
a broadcast operation until the combine operation is completed. (For more in-
formation, see Section 8.2.6.)

The Reduction Receive Abstain Flag

For scan operations, no result value is written to an abstaining node's receive
FIFO. For reduction operations, however, there is an additional abstain flag,
ni_reduce_rec_abstain, that controls whether or not the abstaining node
receives the result.

Setting this flag to 1 causes a node to ignore the results of reduction operations.
If ni_rec_abstain is 1 and ni_reduce_rec_abstain is 0, the node
receives the results of reduction operations without having to supply a value for
them. (For more detail, see the section on reduction operations below.)

You can use the following macros to read and write the receive abstain flag:

value = CMNA_ r ead_rec abstain_flag (com_control_reg);
CMNA_writerecabstain_flag (com_control_reg, value);

For the Curious: The reason for this distinction is that there are important cases
where it is necessary for a node to receive the result of a reduction without having
to participate in it. For example, when you want to transfer a value from the
nodes of a partition to the partition manager, you can set the combine abstain
flags so that the nodes transmit a reduction message and only the PM receives it.

82 NI Version 2.2 (CM-SE), June 1994
Copyright C 1994 Thinking Machines Corporation

Chapter 4. The Control Network
.. ·...--- · _

4.2.11 The Combine Private Register

The combine interface's private register contains the following subfields:

ni_com_private P
ni recokie
ni lock
ni_rec_stop
ni recfull
nicom_ scan overflow ie

nicom_rec_emptyie
ni_corn_sendlength
ni_com_send_combiner
ni_comrnsendpattern
ni con send start

rivate register.
Flag, "Receive OK" interrupt enable.
Interface lock flag.
Interface stop flag.
Flag, indicates receive FIFO is full.
Flag, scan overflow interrupt enable.
Flag, empty rec. FIFO inter. enable.
Field, send-message length.
Field, send message combine value.
Field, send message pattern value.
Flag, scan segmentation flag.

The rec_ok_ie, lock, rec stop, and rec_full subfields are as described
in Chapter 2. The ni_com_scan_overflow_ie flag is described in Section
4.2.8. The remaining fields are described in the sections below.

Empty Receive FIFO Interrupt

When the ni_com_rec_empty_ie flag is set to 1, the NI signals a Green inter-
rupt (com rec empty) if the receive FIFO ever becomes empty (that is, when
the rec_ok flag becomes 0). This allows the supervisor to insert one or more
messages into the empty receive FIFO, so that from a user program's point of
view, the FIFO is never empty. (This is used by the OS in context switching.)

Clearing the Combine Send FIFO

The pipelining feature of the combine interface means that when the supervisor
needs to swap a process out, there may be several complete messages pending
in the combine send FIFO, each of which has its own auxiliary information (each
message may have different combine and pattern values, for instance).

The supervisor extracts messages from the send FIFO by reading them, one at a
time, from the ni_com_send register. Reading a value from this register extracts
the word (or doubleword) that was most recently pushed into the FIFO.

Important: Once the supervisor begins reading words from the send FIFO, the
FIFO must be emptied before a new message can be written to it. (This avoids

NI Version 2.2 (CM-SE), June 1994 83
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook

the potential for accidentally pushing a new message on top of a half-extracted
old message.) The effect of violating this restriction is undefined.

Usage Note: It is only legal to read a value from the ni_com_send register
when the combine interface is not being used (that is, when the receive FIFO is
empty and no node in the partition is or will be in the process of writing a com-
bine message while the contents of the send FIFO are being read out.

The four private register fields send_length, send_combiner,
sendpattern, and send_start contain the auxiliary data and segmentation
information for the most recent message in the send FIFO (that is, the message
that includes the next word that the supervisor can read from the send FIFO).

Specifically:
ni comrn_send length
ni_com_send_combiner
ni_com_sendpattern
nicom send start

Field, send message length.
Field, send message combine value.
Field, send message pattern value.
Flag, scan segmentation flag.

* send_length is the number of words in the entire message.

* send_combiner is the combine value for the message.

* send_pattern is the pattern value.

* send_start is the ni_scan_start register value for the message.

The supervisor can use these fields like the corresponding status register fields
to obtain the auxiliary data for messages extracted from the send FIFO. The
send_length field is undefined for a network-done message. Crhe message is
always one word in length.) The value of scanstart is undefined for reduc-
tion and network-done messages, which ignore the segmentation flag.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

84

Chapter 4. The Control Network

4.2.12 Combine Interface Examples

The examples shown here are fragments of code that are intended to be run on
the processing nodes. See Chapter 7 for a discussion of large-scale program
structure.

Sending and Receiving a Combine Message

This function sends a message via the combine interface. The message is as-
sumed to be composed of length words of data starting at the location specified
by message, and is sent with the given combiner and pattern.

int COM send(combiner, pattern, message, length)
int *message, combiner, pattern, length;

{ int i, start, step;
/* For max scans, send high-order word(s) first */
if (combiner==MAX_SCAN) {start=length-1; step=-1;}

else { start=O; step=1; }
CMNAcom sendfirst(combiner, pattern,

length, message[start]);
for (i=l; i<length; i++)

CMNAcom sendword(message[(start+=step)]);
return(SEND_OK(CMNAcom_status())); }

This function receives a message, stores it in memory beginning at the location
specified by message, and returns the length of the message received. (Note that
a combiner must also be specified, so that maximum scans are retrieved in the
right order.)

int COM receive(combiner, message)
int *message;

{ int i, length, start, step;

while(!RECEIVE OK(CMNA com status())) {

length=RECEIVE_LENGTH(CMNA_com_status());
/*For max scans,receive high-order word(s) first*/
if (combiner==MAXSCAN) {start=length-1; step=-1;}
else { start=0; step=1; }
for(i=O; i<length; i++) {

message[start] = CMNA_comreceive word();

start+=step;
return (length);

NI Version 22 (CM-SE), June 1994 85
Copyright © 1994 Thinking Machines Corporation

NI Programmer 's Handbook

Executing Scans and Reduction Scans

This function sends and receives a scan using the given message of length words,
with the specified combiner and pattern, storing the result in memory starting at
result.

int COM scan(combiner, pattern, message,
length, result)

int *message, *result, combiner, pattern, length;

{

int status=O, rec_length;
while (!status)

status=COM send(combiner,pattern,message,length);
rec_length = COM_receive(combiner,result);
return(rec_length);

Here's an example of a simple scan using integer values:

int send [MAX COMBINE MSG WORDS],
receive [MAX_COMBINEMSGWORDS];

for (i=l; i<MAX_COMBINE_MSG_WORDS; i++)
send [i =i;

COM scan(ADD SCAN, SCAN FORWARD, send,
MAX COMBINE MSG WORDS, receive);

As a practical example, you can use a reduction scan on integer values to get the
number of non-abstaining processors in the current partition:

int send = 1, receive = 0;

COM_scan(ADD_SCAN, SCANREDUCE, &send, 1, &receive);

printf("Actual number of processors: %d\n",

CMNA_partition_size);

printf("Scanned number of processors: %d\n",

receive);

86 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

Executing a Network-Done Operation

Here's a simple network-done synchronizing function:

void network_done_synch()
{

CMNA comrn send first(ASSERT ROUTER DONE,
SCANROUTER_DONE,1,0);

while (!DRROUTER DONE(CMNAdrstatus())) {};

For example:

int message = 1;

int network_done_msg = 0;

int next_processor = (CMNA_self_address+l)
% CMNA_partition_size;

/* Send a message */
LDR_send (next_processor, &message, 1, 0);

/* Synchronize the nodes */
network_done_synch()

/* Retrieve the message */
LDRreceive (&message, 1);

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

87

NI Programmer i Handbook
% ~ ~ ~ ~ . ~ . -'..~~ ~'<~~~~"~~ ~~: - °. ~ . '~~'~~,'

4.3 The Global Interface

The global interface provides a generic synchronization mechanism for the
CM-5's processing nodes. It is much like the network-done feature of the com-
bine interface, but without the additional condition that the Data Network must
be clear before the operation can complete.

The global interface combines a single bit from every participating node in a
logical OR operation, and then returns the result to each node. The actual values
sent by the nodes, however, can be completely arbitrary. The sending of the mes-
sage itself is sufficient to provide synchronization of the nodes.

A global interface message can be sent by one of three subinterfaces:

* the synchronous global interface, which requires that all nodes send a
message before any receive the result

* the asynchronous global interface, which permits nodes to send a message
and read the result at any time, with the network continually monitoring
the state of all participating nodes

* the supervisor asynchronous global interface, which is identical to the
asynchronous global interface save that its registers are accessible only
from the supervisor area

There is a separate register set for each of these three methods. Each of these
interfaces is described in more detail in the sections below.

The Global Interface Registers at a Glance:

hex offset

ni_sync_global_send

ni_hodgepodge

niasyncsup_global

ni_async_global

ni_syncglobal_abstain

ni_sync_global

OxOOCO

Ox00B8

Ox00BO

OxOOA8

0x0098

0x0090

Figure 16. NI registers associated with the global interface.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

88
{
riI1

j

i

Chapter 4. The Control Network
.. i *'.*'... *...

4.3.1 The Three Global Register Interfaces

Unlike the broadcast and combine interfaces, the global interface does not use
the generic interface model presented in Chapter 2. The following registers are
used for the three interfaces:

Synchronous global interface:
ni_sync_global_send
ni_sync_global_abstain
ni_sync_global
ni_hodgepodge

Aynchronous global interface:
ni_async_global
ni_hodgepodge

Used to send the first value of a message.
Used to abstain from synch global msgs.
Used to receive a message.
Contains interrupt enable flag.

Asynchronous send and receive flags.
Contains interrupt enable flag.

Supervisor aynchronous global interface:
ni_async_sup_global Supervisor asynch. send and receive flags.
ni_hodgepodge Contains interrupt enable flag.

The purpose and use of these registers is described in the sections below, and
Figure 16 contains a memory map showing their relative locations in NI
memory.

4.3.2 The Synchronous Global Interface

The synchronous global interface takes the global OR of a flag set by each node.
Each non-abstaining node must set its synchronous global flag (and thereby send
a synchronous global message) before the result of the operation is reported to
any node.

The following registers and flags form the synchronous global interface:

ni_sync_global_send U
ni_sync_global_abstain U

ni_sync_global U
ni_sync_global_rec
ni_sync_global_complete

ni_hodgepodge C
ni_sync_global_rec_ie

sed to send the first value of a message.
rsed to abstain from synch. global msgs.

[sed to receive a message.
Synchronous global receive flag.
Synchronous global completion flag.

:ontains interrupt enable flag.
Receive interrupt enable flag.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

89

i··

NI Programmer 's Handbook
__ ~~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~ .j. .. -z

Sending and Receiving Messages

To start a synchronous global interface message, write a value (either 0 or 1) to
the the ni_sync_global_send register. To do this, use the macro

CMNA_or_global_sync _bit (value)

When you write a value to the global_send register, the ni_sync_glob-
al_complete flag is set to 0, indicating that a message is in progress. (Note:
It is an error to write to the ni_sync_global_send register when the
ni_sync_global_complete flag is 0.)

When all participating nodes have sent a message, the global interface takes the
logical OR of the ni_sync_global_send flag in each node, and then sets the
ni_sync_global_rec flag of every participating node to the result. At the
same time, the ni_sync_global_complete flag is set back to 1 to indicate
completion of the message. To detect when the message has completed and to
retrieve the resulting global value, use the macros

value = CMNA global_sync_complete ();
value = CMNA_global sync_rec();

Abstaining from Synchronous Global Messages

The synchronous global interface includes an abstain flag that can be used to
exclude a node from the interface's operations:

ni_sync_global_abstain Status register, contains global abstain flag.

When the ni_sync_global_abstain flag is set to 1, synchronous global mes-
sages complete without the node's participation (as if the node has sent the
message with its ni_sync_global_send flag set to 0). You can use the abstain
flag operations described in Chapter 2 to read and write the value of the
ni_sync_global_abstain register. (The address constant for this register is
sync_global_abstain reg.) For example:

value=CMNA_read_abstain_flag(sync_global_abstain_reg);
CMNA_write_abstain_f lag (sync_global_abstain_reg, value);

Note: As with all abstain flags, ni_sync_global_abstain should be changed
only when there is no global message pending. A Bus Error is signaled if the
abstain flag is modified when the ni_sync_global_complete flag is 0. Also,
a Bus Error is signaled if the ni_sync_global_send register is written while
the abstain flag is 1.

90 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network
_ _ s~ P

Synchronous Global Receive Interrupt

If the ni_sync_global_rec_ie flag in the hodgepodge register is set to 1,
then a Green interrupt (sync global rec) is signaled whenever the
ni_sync_global_rec flag changes from 0 to 1.

Supervisor Operations for the Synchronous Global Interface

The supervisor can write a new value into the ni_sync_globalrec flag when
the flag ni_sync_global_complete is set to 1. If ni_sync_global_rec is
written when ni_sync_global_complete is 0, a Bus Error

(bad memory access) is signaled.

Implementation Note: Even when ni_sync_global_rec_ie is 1, the super-
visor's writing a 1 to ni_sync_global_rec does not signal the corresponding
Green interrupt (sync global rec).

The supervisor can take control of the synchronous global interface (for exam-
ple, during a context-switch) as follows. Each node in the partition to be
context-switched should save the values of the sync_globalcomplete,
sync_global_rec and sync_global_send flags. All nodes for which
ni_sync_global_complete is 1 should write a 1 to the
ni_sync_global_send flag, thus completing any pending operation.

To restore the state of the synchronous global interface, all nodes restore the
value of the sync_global_send flag by writing the saved value back into it.
When the resulting global operation completes (ni_sync_global_complete
becomes 1), all nodes restore the saved value of the ni_sync_global_rec
flag. All nodes with a saved value of 0 for ni_sync_global_complete write
the ni_sync_global_send flag again to restart the interrupted global opera-
tion. Control can then be handed back to user code.

4.3.3 The Asynchronous Global Interface

The asynchronous global interface is not so much a node synchronization tool as
a means for determining whether all the nodes are still operating properly, or
whether some global action needs to be taken. As with the synchronous interface,
the asynchronous interface takes the global OR of a flag set by each node. How-
ever, this global OR is performed repeatedly, so that a change of a flag by any
node is reported almost immediately to the other nodes.

NI Version 22 (CM-SE), June 1994 91
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
~ .' _ ~ " w~' ... _~ _"'~ _" ~~ ~'~.~~.~ '_ _ _" _~ '~ ''" '~~~~~ - -'~. . ;..% .

For example, each node can set its flag to 1 before performing an operation, and
set the flag to 0 when the operation is completed. The global interface returns a
1 value until all nodes have set their flags to 0, guaranteeing that all nodes have
completed the operation.

The following registers and flags form the asynchronous global interface:

niasync_global Control register, contains the following flags:
ni_global_send Flag, used to "send" asynchronous messages.
ni_global_rec Flag, always set to logical OR of send flags.

ni_hodgepodge Control register, includes the following flag:
ni_global_rec_ie Flag, global receive interrupt enable.

Sending and Receiving Messages

Because the asynchronous global interface operates continuously, there really is
no such thing as "sending" or "receiving" a message via this interface.

The ni_global_rec flag in each node is continually updated to reflect the
"current" logical OR of the ni_global_send flag in all nodes. When any node
writes a new value into its ni_global_send flag, the change is propagated to
the ni_global_rec flag of all other nodes after a brief interval.

Important: Because this is an asynchronous mechanism, the ni_global_rec
flag may not always reflect the present state of the ni_global_send flags in
all the nodes. There is always a delay between the instant any node changes its
ni_global_send flag and the instant that all nodes receive the result of the
change. You should not write code that depends on this delay having any exact
length, but you can assume that the delay is no longer than the time taken to
transmit a synchronous message.

To set the value of the ni_global_send flag, use the macro

CMNA_or_global_async_bit (value);

and to retrieve the value of the ni_global-rec flag, use the macro

value = CMNA_global_async_read();

92 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 TinkingMachines Corporation

Chapter 4. The Control Network
"~ M _, l '--b:-.....

Asynchronous Global Receive Interrupt

If the ni_global_recie flag in the hodgepodge register is set to 1, then a
Green interrupt (global rec) is signaled whenever the ni_global_rec flag
changes from 0 to 1.

4.3.4 The Supervisor Asynchronous Global Interface

The supervisor asynchronous global interface is identical to the asynchronous
interface described above, except that its registers are accessible only from the
supervisor area. This interface is typically used by the operating system to syn-
chronize the nodes during OS operations such as context switching.

For example, if each node sets its flag to 0, then the global interface returns a 0
value until one of the nodes signals a 1 instead. If any node reaches a point in
its operations where OS intervention is required, the node can set its flag to 1,
signaling a 1 value to all the other nodes, and also indicating to the OS that some
global action must be taken.

The following register and flags form the supervisor asynchronous interface:

ni_async_sup_global Control register, contains these flags:
ni_supervisor_global_send Flag, used to "send" messages.
ni_supervisor_global_rec Flag, logical OR of send flags.

nihodgepodge Control register, includes the flag:
ni_supervisor_global_rec_ie Supervisor receive interrupt enable.

Sending and Receiving Messages

The ni_supervisor_global_send and ni_supervisor_global_rec
flags are used to send and receive messages the same way that the asynchronous
interface does (described above).

Supervisor Asynchronous Global Receive Interrupt

If the ni_supervisor_global_rec_ie flag in the hodgepodge register is
set to 1, then a Green interrupt (supervisor global rec) is signaled when-
ever the ni_supervisor_global_rec flag changes from 0 to 1.

NI Version 2.2 (CM-SE), June 1994 93
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
ME ,,. ,. ' . :

4.3.5 Global Interface Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Using the Synchronous Global Interface

Here's a function that executes a simple barrier synchronization using the global
interface.

int global_syncvalue (value)
unsigned int value;

{

CMNA_or_global_sync_bit (value);
while (!CMNA_global_sync_complete() {};
return(CMNA_global_sync_read ());

All non-abstaining nodes must execute this function for the global message to be
completed. If you don't need to send or receive a value, you can rewrite this as

int global_sync()

{

CMNA_or _global_sync_bit(1);
while (!CMNA_global_sync_complete()) {};
(void) CMNA_global_sync_read();

}

Using the Asynchronous Global Interface

The following function sends a value using the asynchronous global interface,
and then immediately reads and returns the current value from the receive regis-
ter:

int CMNA_global_async(value)
unsigned int value;

CMNA_or_global_async_bit(value);
return (CMNA_global_async_read());

94 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

,Is

Chapter 5

NI Interrupts

The NI chip is, in many ways, the "interrupt gateway" of the CM-5. Most node
hardware and software exceptions, whether or not they originate in the NI chip,
are signaled to the node microprocessor via NI interrupts.

The NI is capable of signaling an interrupt in any of five classes and at any of
a number of levels of severity. Interrupts can be signaled by events beyond the
programmers's control (such as hardware failures), or by fatal errors in the way
a program uses the NI, or deliberately, under program control.

Interrupts are signaled by one of two different methods:

· as a local interrupt to the NI's associated microprocessor

· as a broadcast interrupt to the other NIs in the partition

This chapter describes the kidnds of interrupts available on the NI, their causes,
the registers used to determine their type and severity when they are signaled,
and the mechanism used to signal a broadcast interrupt.

5.1 Interrupt Classes

The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts tend to be the most severe and Green interrupts
the least severe. The five types are distinguished as follows:

* Red interrupts indicate a failure of the hardware, such as checksum vio-
lations and message format errors.

NI Version 22 (CM-SE), June 1994 95
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook

They occur at unpredictable times relative to the instruction stream and are
usually irrecoverable. Determining the precise cause of a Red interrupt
may require the use of the Diagnostic Network

The possible Red interrupts are:

internal fault
dr checksum error

cn checksum error
cn hard error

mc error
cmu error
bc interrupt red

Failure detected in NI chip itself.
Data Network checksum failure.
Control Network checksum failure.
Control Network hardware failure.
Error detected in memory subsystem.
Cache/MMU error.
Red broadcast interrupt.

* Orange interrupts indicate that the attention of the operating system is
required, as in timer interrupts and broadcast interrupt messages.

They occur at unpredictable times relative to the instruction stream and do
not destroy any information that might be needed to determine the cause
of the interrupt.

The possible Orange interrupts are:

timer interrupt

rdone complete
NI timer reached interrupt_now.
Router done complete interrupt.

bc interrupt orange Orange broadcast interrupt.

* Yellow interrupts indicate that the software has made an error. They are
usually irrecoverable, as they indicate that your program is doing some-
thing illegal and must be rewritten. Sufficient information is retained in
the NI to permit isolation of the cause of the interrupt, but it is not always
possible to recover all the information relating to the cause of the interrupt.

Yellow interrupts are associated with particular instructions, but usually
are not signaled at the exact point of the offending instruction, because of
the loose coupling between the NI and the microprocessor.

The possible Yellow interrupts are:

dr count negative
be or com collision
com abstain changed
bad relative address
bad memory access
message too long
be interrupt yellow

Negative DR message count.
Conflict in broadcast/combine ops.
Flag changed while interface in use.
Address outside partition, etc.
Bus Error signaled as interrupt.
Data Network message too long.
Yellow broadcast interrupt.

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 ThinkingMachines Corporation

96

Chapter 5. NI Interrupts
.~~

* Green interrupts indicate the occurrence of common events for which
the software has requested notification, such as the arrival of messages,
the signaling of broadcast interrupts, arithmetic overflow in a scan, etc.
There is one interrupt for each event, and each event's interrupt can be
enabled and disabled independently under the control of the supervisor.

Depending on the type of event, the interrupt may or may not occur syn-
chronously with a particular instruction. No information is lost by a Green
interrupt.

The possible Green interrupts are:

scan overflow
dr/ldr/rdr rec ok
bc/sbc rec ok
sbc rec ok

com rec ok
com rec empty
dr/ldr/rdr rec tag

ldr/rdr user rec tag
dr rec all fall down
sync global rec

global rec

supervisor global rec
dperr
sfifo empty
bc interrupt green

Overflow in combine interface scan.
DR/LDR/RDR message received.
Broadcast received.
Supervisor broadcast received.
Combine message received.
Empty combine receive FIFO.
Message with interrupt tag received.
LDR/RDR interrupt tag received.
All Fall Down message received.
Synchronous global msg received.
Asynchronous global msg received.
Supervisor asynch. msg received.
Vector unit error.
Data Network send FIFO empty.
Green broadcast interrupt.

* Bus Errors indicate that a bus transaction cannot be completed, as in an
attempt to read an address that does not correspond to a register, or to write
a message that does not conform to sending protocol (send_first, then
send). Bus Errors are signaled asynchronously, and are irrecoverable.

There is basically one flavor of Bus Error:

bad memory access Meaningless or illegal reference.

Bus Errors are treated differently from the four colored interrupts. Bus
Errors are always handled as traps, primarily because they occur only on
read operations, and do not involve the NI chip.

Note: Bus Errors are distinct from segmentation violation errors. Seg-
mentation errors result from attempting to read an unmapped virtual
address, and are signaled synchronously with the offending instruction.
Bus Errors result from errors with physical addresses, once the address has
been transmitted to the Mbus itself.

NI Version 22 (CM-SE), June 1994 97
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook

5.1.1 Disabling Bus Errors

Some Mbus devices do not respond well to the NI signaling a bus error. In order
to allow the NI to be used in systems that include such devices, the NI can
optionally "signal" a bus error as a Yellow interrupt (bad_memory_access).
This feature is controlled by a flag in the ni_hodgepodge register,
ni_disable_buserror. This flag is turned off by default, and by an NI reset,
to provide backward compatibility.

5.2 Interrupt Pathways

The four colored interrupts (Red, Orange, Yellow, and Green) result from a num-
ber of different causes. Figure 17 shows the pathways followed by the various
types of interrupts on their way to the microprocessor. These pathways are
described in detail in the sections below.

Figure 17. The possible pathways for colored interrupts.

98 NI Version 2.2 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation

64-bit Bus

Memory
Subsystem

_ __I_ ____ � __ �__

�L �� __ _1�1 _ _II�_ __

- --- -· ------

Chapter 5. NI Interrupts
___ __

5.2.1 Red Interrupts

The Red interrupts are of two varieties:

* On-chip faults - Hardware errors detected by the NI itself.

* Off-chip faults - Problems on other devices that are signaled via the NI.

On-chip faults are universally fatal - that is, they always cause the OS to halt
(usually forcefully). It is then necessary to use diagnostic measures to determine
the cause of the problem.

Off-chip faults are caused by problems on other components, and it is necessary
for the OS to poll those devices to find out what happened.

Of the red interrupts, the following are off-chip faults:

mc error - Error in MC (memory controller).
cmu error - Error in CMU (cache and memory unit).

The cause of these faults can only be determined by examining the state of the
appropriate hardware:

* MC errors are caused by either a fault in the MC itself (usually fatal), or
(if the CM-5 has the vector unit option installed) by an error signaled from
one or more of the vector units. In either case, it is necessary to examine
the state of the appropriate hardware to determine the actual cause of the
interrupt.

* CMU errors are only caused by bad memory writes (typically memory
writes to illegal addresses) and are always fatal. CMU errors are asynchro-
nous, so that the error is not signaled until some time after the offending
write instruction.

All the remaining Red interrupts are on-chip faults. Three are caused by network
problems:

dr checksum error - Data Network fault.
cn checksum error - Control Network fault.
cn hard error - Control Network hardware fault.

One is caused by NI chip problems:

internal fault - NI chip fault.

NI Version 22 (CM-SE), June 1994 99
Copyright © 1994 Thinking Machines Corporation

-

NI Programmer 's Handbook____
And one can be signaled by software:

bc interrupt red - Red broadcast interrupt.

Warning: A Red broadcast interrupt is functionally equivalent to deliberately
causing a fatal error, so use it with caution - if you use it at all!

5.2.2 Orange Interrupts

There are three Orange interrupts. One is caused by the NI timer:

timer interrupt - Timer alarm interrupt.

One is caused by the completion of a Data Network network-done operation:

rdone complete - Network-done-complete interrupt.

And the remaining interrupt can be signaled by software:

be interrupt orange - Orange broadcast interrupt.

5.2.3 Yellow Interrupts

The Yellow interrupts are, with one exception (the Yellow broadcast interrupt),
caused by NI violations produced in user code:

com abstain changed - Illegal abstain flag change.
be or com collision - Multiple message collision.
bad relative address - Illegal DR destination.
dr count negative - Negative DR message count.
bad memory access - Bus Error signaled as interrupt.
message too long - Data Network message too long.

There is also a Yellow broadcast interrupt that can be signaled by software:

be interrupt yellow - Yellow broadcast interrupt.

100 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 10. NI Interrupts and Interrupt Handlers

5.2.4 Green Interrupts

The Green interrupts are, for the most part, indications of non-error network
events for which the user may want to assign a specific code handler.

For example, there are nine Green interrupts, one for each major network inter-
face, that indicate when a message has arrived in the interface's recv register:

be rec ok - BC interface message received.
sbc rec ok - SBC interface message received.
com rec ok - COM interface message received.
dr rec ok - DR interface message received.
ldr rec ok - LDR supervisor message received.
rdr rec ok - RDR supervisor message received.
global rec - Asynchronous global message received.
sync global rec - Synchronous global message received.
supervisor global rec - Supervisor asynchronous global message.

In addition, there is a Green interrupt for an important combine interface event:

scan overflow - Combine interface add-scan overflow.

There are a number of interrupts for OS-related events:

dr rec tag
ldr rec tag
rdr rec tag
ldr user rec tag
rdr user rec tag
dr rec all fall down
com rec empty
dperr
sfifo empty

- DR message arrived with interrupting tag.
- LDR message arrived with interrupting tag.
- RDR message arrived with interrupting tag.
- LDR message with user interrupt tag received.
- RDR message with user interrupt tag received.
- DR All Fall Down mode message received.
- Combine receive FIFO empty.
- Vector unit error.
- Data Network send FIFO empty.

And as usual there is a broadcast interrupt that can be signaled by software:

be interrupt green - Green broadcast interrupt.

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

101

NI Programmer $ Handbook

5.3 The Interrupt Cause and Clear Registers

There are six I registers that you can use to determine which interrupt(s) have
been signaled, to clear the interrupts once you have finished handling them, and
to force interrupts to be signaled when necessary:

ni_interruptcause Flags set by non-Green interrupts.
ni_interrupt_cause_green Flags set by Green interrupts.

ni_interrupt_clear Flags used to clear non-Green interrupts.
niinterrupt_ clear_green Flags used to clear Green interrupts.
niinterruptset Flags used to set non-Green interrupts.
ni_interrupt_set_green Flags used to set Green interrupts.

When an event causing an interrupt occurs, a bit in the ni_interruptcause
or ni_interruptcause_green register is set. Which bit is set indicates what
the event was. If more than one interrupt occurs before any are cleared, several
bits in these registers may be set simultaneously.

Interrupts can be cleared by writing a value to the niinterrupt_clear or
ni_interrupt_clear_green registers. Any value written to these registers
should contain ones in locations corresponding to the interrupts that are to be
cleared. It is not possible to read the value of the ni_interruptclear or
ni_interrupt_clear_green registers - use the corresponding cause reg-
ister to determine whether any interrupts have not yet been cleared.

Note: If a given interrupt has an interrupt enable flag (a flag with a name ending
in _ie) and the flag is set to 0, then the interrupt is not signaled and the corre-
sponding ni_interrupt_cause or ni_interrupt_cause_green flag is

not set.

Interrupts can be triggered artificially by writing to either of the
ni_interruptset or ni_interrupt_set_green registers. The value
written to the register should contain one bits in locations corresponding to the

interrupts that are to be signaled. In the case of an interrupt with an enable bit,
the interrupt can be signaled even if the interrupt is currently disabled. It is not
possible to read the ni_interrupt_clear, ni_interrupt_clear_green,

ni_interrupt_set or ni_interrupt_set_green registers.

The interrupt _cause and interrupt_cause_green registers may also be
written explicitly (by the supervisor, not user code) to cause interrupts to be sig-

naled without their usual triggering event occurring.

102 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 ThinkingMachines Corporation

Chapter 5. NI Interrupts

5.4 Interrupt Levels

Each of the four color classes of interrupt includes a "level" or "priority" value
that can be used to provide the software with information about the relative im-
portance or priority of interrupts of various colors.

Any interrupt level can be assigned to each color of interrupt. It is, for example,
permissible to give Green interrupts a level of 15 while Red interrupts have a
level of 4. However, the relative interrupt levels are intended to indicate priority
or severity; for example, there are mechanisms for masking all interrupts (of any
color) below a given level.

The following register is used to set the priority value for each interrupt color:

ni_interrupt_level Control register, contains these fields:
ni_interrupt_level_red Red interrupt priority level.
ni_interrupt_level_orange Orange interrupt priority level.
ni_interrupt_level_yellow Yellow interrupt priority level.
ni_interrupt_level_green Green interrupt priority level.

The four eight-bit fields, level red through level green, each indicate the
level at which the corresponding color of interrupt is signaled. For example, if
the level red field is set to 13, all red interrupts from that point onwards are
signaled to the microprocessor with a level of 13.

If more than one color of interrupt is signaled simultaneously, the interrupt level
signaled to the processor is the inclusive OR of the levels for each interrupt color.

If any of the interrupt_level fields is set to 0, then all interrupts of the corre-
sponding color are suppressed. (When the NI is reset, for example, all four
interrupt level fields are set to 0.)

Implementation Note: Currently, only the low-order bit of each interrupt level
field is used. The other bits are required to be 0.

NI Version 22 (CM-5E), June 1994 103
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

5.5 Broadcast Interrupts

The broadcast interrupt mechanism allows an interrupt to be signaled from one
NI to all other NIs in the current partition. Each NI receiving the broadcast im-
mediately signals an interrupt to its associated microprocessor.

Important: Only one NI in each partition can use the broadcast interrupt facility.
If two or more NIs try to broadcast simultaneously in the same partition, a Yel-
low interrupt (bc or com collision) is signaled to all nodes in the
partition, and the broadcast interrupt messages that are received are undefined

The broadcast interrupt can be of any color, Red, Orange, Yellow, or Green. A
unique flag exists in the cause, clear, and set registers for each color of
broadcast interrupt. Only Bus Errors cannot be broadcast - mainly because it
is not useful (and doesn't really make sense) to do so.

The following register and flags are used to send a broadcast interrupt:

ni_interrupt send Register used to send broadcast interrupt.
ni_hodgepodge Control register, includes the flags:

ni_interrupt_send_ok Flag, set when broadcast is sent.
ni_interrupt_rec_enable Flag, enables receipt of interrupts.

To send a broadcast interrupt, write a value to the ni_interrupt_send register
indicating the color of interrupt to be signaled. The permissible values for each
color of interrupt are as follows:

Value Interrupt Description
8 bc interrupt red Red broadcast interrupt.
4 bc interrupt orange Orange broadcast interrupt.
2 be interrupt yellow Yellow broadcast interrupt.
1 be interrupt green Green broadcast interrupt.

Note: More than one color of interrupt can be broadcast at a time (for example,
by combining the above values with a logical-OR operation). Multi-colored
broadcast interrupts are signaled by the hardware exactly as if each colored inter-
rupt was signaled separately. The software effects of such multi-colored
interrupts are determined entirely by the current interrupt handlers on the nodes.

Writing a value to ni_interrupt_send sets the ni_interrupt_send_ok

flag to 0 until the interrupt has been successfully broadcast, at which point the
flag is set back to 1. An attempt to write a value to ni_interrupt_send while
niinterrupt_send_ok is O signals a Bus Error.

104 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 5. NI Interrupts
m now_~

Any NI can disable broadcast interrupts by setting its ni_interruptrec_en-
able flag to 0. Doing so causes all broadcast interrupts received by that NI chip
to be ignored. Setting the flag back to 1 re-enables broadcast interrupts.

Note: There is a special class of broadcast interrupt, the Reset interrupt, which
cannot be disabled. See Section 6.10 for more information about the cause and
effects of an NI Reset.

5.6 Recovering from Interrupts

The methods used to recover from an interrupt depend heavily on the type of
interrupt itself. Appendix B of this manual provides guidelines describing the
steps needed to recover from each of the possible interrupts.

105NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

A -k

Chapter 6

Other NI Interfaces and Features

This chapter describes the remaining NI registers and features (those not covered
in the preceding chapters). Except as noted, all registers and features described
in this chapter are accessible only to the supervisor.

6.1 The "Hodgepodge" Register

The ni_hodgepodge register, as its name suggests, contains a collection of mis-
cellaneous flags that are used by various features of the NI.

ni_hodgepodge R

ni_sync_global_rec_ie
ni_global_rec_ie
ni_supervisor_global_rec_ie

ni_interrupt send_ok
ni_interrupt_rec_enable
ni_flush_complete
nitimerie
ni_configuration_complete
ni_cn_stop_send
nidisable buserror
ni_ldr_rec_tag_ie
ni_rdr_rec_tag_ie
ni_ldr_user_rec_tag_ie
ni_rdr_user_rec_tag_ie
ni_msg_too_long_ie

egister with "hodgepodge" of flags:
Sync global receive interrupt enable.
Asynch global receive intrpt. enable.
Supervisor asynch. rec. intrpt. enable.
Broadcast interrupt send ok flag.
Broadcast interrupt receive enable.
Combine flush complete flag.
NI timer interrupt enable flag.
Configuration complete flag.
Control Network disable flag.
Bus Error disable flag.
LDR supervisor tag interrupt enable.
RDR supervisor tag interrupt enable.
LDR user tag interrupt enable.
RDR user tag interrupt enable.
Message too long interrupt enable.

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

107

NI Programmer Handbook
~ ~__',A>X~sez~R

For more information on the meaning and use of these flags, refer to the sections
describing the NI features that use them. (Look up the individual flags by name
in the Index.)

6.2 Node Address Registers

There are three NI registers that provide information about the physical address
of the current node within the CM-5, as well as the size and location of the cur-
rent partition:

ni_physical_self
ni_partition_base
ni_partition_size

20-bit physical address of current node.
20-bit address of first node in partition.
Number of nodes in current partition.

These registers are used by other NI chip features, such as the chunk table
address translation mechanism described in Section 6.3 below.

6.3 NI Chunk Table and Address Translation

The NI chunk table is a small array stored in the NI itself that determines the
locations of the "chunks" of processing nodes that make up a Data Network
partition on the CM-5. A chunk is a contiguous sequence of physical addresses
that correspond to real, working processing nodes. Addresses corresponding to
broken or missing hardware are isolated by not being included in any chunk.

Important: The chunk table specifies chunks of node addresses - the chunk
table has nothing to do with memory allocation on the nodes.

6.3.1 Node Address Translation

The chunk table is used to convert from relative node addresses used within a
partition to the physical addresses required by the Data Network.

For the Curious: A side effect of the use of the chunk table is that it implicitly
divides the Data Network up into "partitions" of nodes. That is, there is no hard-

108 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 6. Other NI Interfaces and Features

ware restriction preventing a Data Network message from traveling between
partitions; it is the chunk tables that determine whether a relative address is legal
for a given partition of nodes.

The mapping from relative to physical addresses is performed in three steps:

First, the relative address is compared with the ni partition_size register,
to determine whether it is legal for the current partition. (If the relative address
is greater than or equal to ni_partition_size, the address is guaranteed not
to correspond to a node in the current partition, and an error is signaled.)

Next, the relative address is split into two parts (see Figure 18).

Relative Address

a beChunk
a _ Table

.chunk address
(a bits)

vea- 1"I -

FZ:

.chunk position
(p bits)

- select address
(2 ni_chunk size bits)

Absolute Address

K _

ni_partitionbase

Physical Address

Figure 18. Translation from relative addresses to physical addresses.

The two parts of the address are:

the high-order bits of the address, known as the chunk address

the low-order bits of the address, known as the select address

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

109

_ ____ ��___

t - - t

.!, . _ l

I

- -- -- -- I --

I

NI Programmer Handbook

The chunk address is used as a pointer into the NI's chunk table. The referenced
chunk table entry, known as the chunk position, is recombined with the select
address to form an absolute address - essentially an offset from the address of
the first processor in the current partition.

Finally, the absolute processor address is added to the value of the register
ni_partition_base to get the required physical address.

6.3.2 Chunk Sizes and Address Allocation

The size of the chunk table is determined by the number of bits in a chunk ad-
dress (call this a), and the number of bits in a chunk position (call this p). The
chunk table consists of 2a entries, each p bits long. The values of a and p are
currently fixed by hardware at a = 6 and p = 8. Thus, the chunk table contains
64 entries, each 8 bits long.

However, while the size of the chunk table is fixed, the size of the chunks it refer-
ences (that is, the number of physical addresses per chunk) is under supervisor
control. The following register is used to set the chunk size:

ni_chunksize Size of chunks referenced by the chunk table.

The ni_chunk_size register contains a three-bit value that determines the
number of bits in the select address part of a relative address, and thus sets the
number of addresses per chunk.

The number of bits in a select address is 2nichuksize. As a result, the number
of physical addresses in a chunk is 4nichunk_size, and this means that the num-
ber of possible relative addresses (in other words, the number of accessible
nodes) is 2a * 4ni-chunk-_sze. This also means that the total physical address
space accessible through the chunk table is 2P * 4ni_chunk_size . Thus, the acces-
sible physical address space is always 2P-a times the size of the relative address
space. This extra "unused" space between chunks is used to isolate regions of
broken or missing hardware. (See Figure 19.)

110 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

Chapter 6. Other NI Interfaces and Features
·~~~~~~~~~~~~~~~~~*.. . .

Physic

nipartition size
i -Relative Address SpaceIs 'fi: 1-l . 1-'.I'-'l"-I : f'. I " '" .'-:I :.l'' ::1

Chunk I
al Address Space C Table

.,J -j ,1, ., I I I , . . ~ _.

JLM19 Nil Li W NJL N

Figure 19. The chunk table is used to map contiguous relative addresses
onto discontiguous physical addresses.

In the simplest case, the chunk table is set up to map all relative addresses to a
contiguous region of 2a * 4ni_chuksize physical addresses. In this case, chunk
table entry n simply has the value n.

The table below lists the permissible values for the ni_chunk_size register,
along with the corresponding number of relative addresses (nodes) per chunk,
and the maximum size of the physical address space in nodes and addresses.

nichunk size Addresses/chunk Nodes
1 4 256
2 16 1K
3 64 4K
4 256 16K
5 1K 64K
6 4K 256K

Phys. address space
1K
4K
16K
64K
256K
1M

Note: The effects of writing ni_chunk_size with a value not listed in this table
are undefined, but almost certainly disastrous.

NI Version 2.2 (CM-SE), June 1994 111
Copyright © 1994 Thinking Machines Corporation

·--.. r.~~~~..z- .r .. r r .. I -- ... · ·- r ..- · I~~~~~~~~~~~
I

mm .. INWI

NI Programmer Handbook
,,,-,

6.3.3 Modifying the Chunk Table

The following registers are used to read and write chunk table entries:

nichunktabledata Location used to read/write table entries.
nichunk_table_address Chunk table location that is read/written.

Note: The chunk table is set up by the OS when the nodes are grouped into parti-
tions, and from then on the chunk table is normally not modified. Accordingly,
the registers listed above are accessible only from the supervisor area.

When the nichunk table_data register is written, the value written is
stored in the chunk table entry indicated by nichunk_table_address. When
the table_data register is read, the value read is the current contents of that
chunk table entry.

The ni_chunk_table_address register determines the entry of the chunk
table that is affected by reading or writing the ni_chunktable_data regis-
ter. The size of the values that are read from and written to this register depends
on the size of chunk addresses (see the discussion in Section 6.3.2).

Important: In order for the Control Network to operate correctly, the entries of
the chunk table must be in ascending order. In other words, each chunk table
entry must contain a larger address than the entry that precedes it.

Note: The effects of reading or writing the table_data register while the Data
Network is in use are undefined, and best avoided.

6.4 Combine Interface Flush

The combine interface flush operation is used to reset the hardware of the com-
bine interface, canceling any uncompleted combine operations. As with all other
Control Network operations, a combine flush must be started in unison by all of
the nodes in a partition - nodes cannot "abstain" from a flush. Also, flushes
only affect the single partition in which they are started; they don't cross partition
boundaries.

Important: The broadcast and global interfaces are not affected by flushing, and
must be cleared separately.

112 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 6. Other NI Interfaces and Features

The combine flush interface consists of the following registers and flags:

ni_comrn_flush_send Single-flag register used to start a flush.
ni_hodgepodge Control register, includes the flag:

ni_flush complete Flag, set when flush is completed.

To start a flush operation, write a value (either 0 or 1, the actual value is unimpor-
tant) to the ni_comf lush send register. This sets ni flush complete to
0, and then starts the interface flush. When the flush is completed, the
flush_complete flag is set back to 1. Attempting to write the
nicomrn flushsend register while niflush_complete is 0 or
ni_comrnabstain is 1 signals a Bus Error.

Important: A flush operation should be executed only when there are no mes-
sages in transit through the combine interface, that is, when
ni_com_send empty is 1, and ni_com_rec_ok is 0.

Usage Note: The combine flush operation is useful only when the send and
receive FIFOs of the combine interface are empty. The combine flush operation
does not clear out the FIFOs - it merely resets the communications hardware of
the interface itself. The flush operation is only intended to be used in context
switches, after the FIFOs have been cleared and saved.

6.5 The NI Timer

The NI contains a simple timing mechanism that can be used to measure the time
between two events and to interrupt the microprocessor after a specific interval.

The following registers and flags form the timer interface:

ni_time Timer register, regularly incremented.
ni_interruptnow Register, timer value that triggers interrupt.
ni_hodgepodge Control register, includes the flag:

ni_timer_ie Timer interrupt enable flag.

The 32-bit register ni_time contains an unsigned value that is incremented at
every microprocessor clock cycle. When the timer value exceeds the register's
capacity, it wraps around to 0.

The value of the ni_time register can be read at any time, and can be written
by the supervisor to set the NI's timer to a chosen value.

NI Version 2.2 (CM-SE), June 1994 113
Copyright © 1994 Thinking Machines Corporation

NI Programmer S Handbook_~h~`~~~. s _. ~.`~ .`:~`` _.. _5. _ .~ ._~~ _,~ .,_. m,5,x, _. . .. >t.
The NI timer can signal an interrupt at a specific timer value. When the value of
nitime equals the value stored in the ni_interrupt_now register, an Orange
interrupt (timer interrupt) is signaled.

This interrupt can be enabled and disabled by setting the nitimerie flag in
the hodgepodge register. When this flag is 1, timer interrupts are enabled. When
this flag is 0, timer interrupts are disabled.

6.6 The Bad Address Register

When a Bus Error is signaled as the result of an illegal memory reference, the
nibad_address register contains the illegal address, the data size, and the
type (read or write) of the transaction. The data returned by a read from an illegal
memory address is undefined. Data written to an illegal memory address is lost.

ni bad address
ni bad_address_low
ni_bad_address_type

Bad address register, contains the fields:
Low 20 bits of illegal address.
Size and type of transaction.

Usage Note: The ni_bad_address register is updated every time a memory
transaction is made, not just when an error occurs. Thus, its value is valid only
when a Bus Error (ni bad memory access) has actually been signaled. If
more than one illegal access is performed before the first one is handled, the val-
ue of the ni_badaddress register is the most recent bad memory address.

Currently, the format of the ni_bad_addresstype field is
31 29 28 27 26 24 23 20

pins Iloklcshl Isize i type I
where

type indicates the transaction type (0 = write, 1 = read)

size gives the data size (2 = word, 3 = doubleword)

csh, lok are the MBUS cacheable and lock bits

pins is the setting of the NI's two physical base address pins

Values for the type and size fields other than those shown above are reserved. The
csh, lok, and pins fields are hardware-related and not useful to NI programmers.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

114

Chapter 6. Other NI Interfaces and Features
~~~s~~~ss~~~a 

6.7 NI Partition Configuration

The NI has a register that can be used to change the partitioning of the CM-5.
The following register and flag are used to control the partitioning feature:

ni_configuration Partition configuration control register.
ni_hodgepodge Control register, includes the flag:

ni_configuration_complete Flag, set when partitioning is done.

The ni_conf iguration is a five-bit register that controls the configuration, or
set of processor partitions, that is in use. The value in this register is actually the
"height" (number of layers) of the Control Network partition to which the node
belongs. Control Network operations use this value to determine the maximum
height of the network to which a message needs to be sent.

By writing a value to the configuration register, you can temporarily change
the size of the current partition. (Since the actual size of the partition is currently
determined by the state of the Control Network itself, you can only reduce the
size of the partition.)

Note: Only one NI per partition needs to write a value to the configuration
register - the configuration operation includes all nodes in the same partition.

The actual value written to the ni_configuration register is an encoded ver-
sion of the new partition size:

configuration = log2( partitionsize ) + 2

Extra for Experts: By writing a 0 to the configuration register, you can tem-
porarily isolate each node in the partition in its own "mini-partition," so that
network operations performed by each node apply only to that node. Obviously,
you should restore the original value of the configuration register when you
are finished using this "mini-partition" effect.

The flag ni_configuration_complete is set to 0 while the repartitioning is
in progress, and then set back to 1 to indicate its completion. At the same time,
the nl_configuration register of the NI that sent the message is updated to
the new partitioning value. The configuration registers and flags of the other NIs
are not affected. An attempt to write a value to the ni_configuration register
while ni_configuration_complete is 0 signals a Bus Error.

Important: A partition change should not be done when the Control Network
is in use - the effect of doing so is undefined, but certainly disastrous.

NI Version 2.2 (CM-SE), June 1994 115
Copyright 1994 Thinking Machines Corporation



NI Programmer a Handbook

6.8 Disabling the Control Network

There is one last flag in the hodgepodge register that has not yet been described:

ni_hodgepodge Control register, includes the flag:
ni_cn_stop_send Flag, disables Control Network sending.

This flag is used to completely disable the Control Network, preventing any mes-
sages from being sent into it - including the periodic "idle" packets that are sent
when the network is not otherwise being used.

The stop_send flag is generally used only during an NI Reset (see Section
6.10) when it is necessary to totally disable the Control Network. When the
stop_send flag is 1, the Control Network is disabled. When the stop_send
flag is set to 0, normal network operations resume.

For the Curious: The Control Network is designed in such a way that packets
are periodically sent into it even when the network is not in use. When no mes-
sage is being sent by the user or by the OS, these "idle" packets simply contain
no data, and have no effect on the nodes. However, idle packets can affect the
state of the Control Network itself in unwelcome ways, especially during a Reset
operation, when it is important for the state of the network to remain unchanged.

For the Even More Curious: Because the Data Network operates in an essen-
tially asynchronous manner, with messages being sent from the nodes "on
demand," the Data Network does not transmit idle packets, and thus has nothing
analogous to the Control Network's stop_send flag.

6.9 NI Serial Number

Finally, one NI register contains the hardware serial number of the NI chip:

ni_serial_number Version serial number of NI chip.

This serial number identifies the version of NI chip that is installed.

Usage Note: Most revisions of the NI chip do not have usefully distinguishable
serial numbers, so this register is not particularly valuable.

116 NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation



Chapter 6. Other NI Interfaces and Features
w

6.10 NI Reset

Under the following conditions, the NI chip is completely reset:

· The system administrator requests a repartitioning of the CM-5.

* The system administrator uses the diagnostic hardware of the CM-5 to
reset the processing nodes and networks.

When the NI is reset, a number of its register fields and flags are set to known
states. The following events occur on an NI Reset:

* ni_disable_bus_error is negated.

* ni_longest_dr_message is set to a value of 5.

* All abstain and lock flags are set to 1, thus isolating the NI from all net-
works. These flags are:

ni_dr_lock ni_ldr_lock ni_rdr_lock
ni bc_ lock nisbclock nicomrn lock
ni_reduce_rec_abstain ni_com_abstain
ni_bc_rec_abstain ni_sbc_rec_abstain
ni_sync_global_abstain

* ni_interrupt_level is set to 0. This disables all colored interrupts.

* All sending and receiving FIFOs are cleared.

* ni_flush_complete and ni_sync_global_complete are set to 1.

The values of all other NI registers are undefined, and must be set by software.

NI Reset is triggered by a special broadcast interrupt, the Reset interrupt, that can
be sent from another NI or from the partition manager. This interrupt is always
effective and cannot be disabled.

NI Version 22 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

117



· 31�--L�-�I--�s �--·------ - ---· II�-�--------



Chapter 7

Writing NI Programs

In this chapter we'll start applying some of the tools presented in the preceding
chapters. First, we'll cover important small-scale issues, such as exchanging data
between the nodes in a partition and the partition manager. Next, we'll look at
a short program that makes use of every network interface of the NIM.

7.1 Transferring Data between Nodes and the PM

As described in Section 3.3, each node in a partition has a unique address based
on its location in the partition. However, the PM is not part of this addressing
scheme. The PM is always located outside of the address space of the partition
that it manages:

Figure 20. The partition manager stands apart from the partition it manages.

This means that sending messages to and from the partition manager involves
some careful coordination between the PM and the nodes.

NI Version 2.2 (CM-5E), June 1994 119
Copyright © 1994 Thinking Machines Corporation

Nodes 2 P P P n Pe

Addresses o 1 2 3 4 n Partition Manager



NI Programmer 's Handbook

7.1.1 Sending Messages from the PM to Nodes

To send a message from the PM to a node, the PM does two broadcast operations:
one to send the address of the node that should "receive" the message, and one
to transmit the message itself.

For example:

void PM send to NODE(node address, value)
int nodeaddress, value;

CMNAbc sendfirst(1, nodeaddress);
CMNAbcsend first(1, value);

}

Each of the nodes should perform two broadcast reads, one to determine whether
the address of the message matches the node's own address, and one to either
receive and store the message or to ignore it, based on the supplied node address:

int NODE_get_from_PM(dest)
int *dest;

{

int address, value;
while (!RECEIVE OK(CMNA bc status())) {}
address=CMNAbcreceive word ();
while (!RECEIVEOK(CMNAbcstatus())) {};
value=CMNA bc receive word();
if (address --== CMNA_self_address) *dest=value;

} 

Notice that the node waits until the rec_ok flag is set each time it tries to receive
a value from the broadcast interface. This is important - while these routines
are written so that the PM's two broadcast values should arrive in the node's re-
ceive queue nearly simultaneously, it's still necessary to check the rec_ok flag
before each broadcast read, because the two values are still separate messages.

Also, notice that in this example only one node "accepts" the value sent from the
PM, but there's no reason why you can't have more than one node "accept" the
value - you can use any test you like to decide whether the nodes keep or dis-
card the values they receive.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

120



Chapter 7. Writing NI Programs

7.1.2 Sending Messages from Nodes to the PM

Sending a message from a node to the PM is almost as straightforward, but in-
volves two interfaces this time: broadcast and combine.

First, the PM sets its ni_com_abstain flag to 1 and its ni_reduce_rec_ab-
stain flag to 0, so that it can receive a combine message without having to send
a value. (Note: We'll handle this step separately in Section 7.2, below.)

Next, the PM broadcasts a message containing the address of a processing node,
as in the PM_send_to_NODE example above. The nodes respond by signaling
a combine message (a UADDSCAN reduction), in which only the node with the
address specified by the PM transmits a value. (The other nodes supply an identi-
ty value of 0 for the reduction.) The PM then receives this message to get the
requested value.

Here's the function that handles the PM side of this transaction:

int PM_get_from_NODE (node_address)
int nodeaddress;

CMNA bc send first(1, nodeaddress);
while (!RECEIVEOK(CMNA_com _status())) {};
return(CMNA_ com_receive_word());

And here's the corresponding node function:

void NODE send to PM(value)
int value;

{

int address;
while (!RECEIVE OK(CMNA bc status())) {};
address = CMNA bc receive word();
if (address != CMNA_ self_address) value = 0;

CMNA_com_send_first(UADD_SCAN,SCAN_REDUCE,1,value);
while (!RECEIVE_OK(CMNA_com _status())) {};
(void) CMNA com receive word();

Notice that immediately after the nodes send a combine message, they perform
a combine read to discard the resulting value. You might think it would be a good
idea to temporarily toggle the combine abstain flags for the nodes, so that they
will simply ignore the result. However, this is not such a good strategy. (Why
not? See Section 7.2.)

NI Version 2.2 (CM-SE), June 1994 121
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
·......

7.1.3 Signaling the PM

Because the above PM/node communication functions use both the broadcast and
combine interfaces, we'll want a function that forces the PM to wait until the
nodes have finished their computations before the PM broadcasts a request for
the results. A single function will suffice for both the PM and the nodes:

void PMNODEsynch()

CMNA_or_global_sync_bit(1);
while (!CMNA_global_sync_complete()) {};
(void) CMNA_global_sync_read();

}

This function uses the global interface to create a simple barrier synchronization.

7.1.4 For the Curious: Using the Data Network

You can also use the Data Network to send messages between the partition man-
ager and the nodes. However, owing to the distinction between addressing on the
nodes and on the partition manager, it's not as clear-cut an operation as using the
broadcast and combine methods described above.

To send a message from the partition manager to a specific node via the Data
Network, you can use the methods presented in Chapter 3, using the node's ad-
dress as the destination for the message.

To send a message from a node to the partition manager, however, you must
make a system function call:

int *source, length, tag

CMNA_interface_sendpacket_to_scalar (source, length, tag)

where the interface abbreviation is dr, ldr, or rdr, depending on the network
interface you wish to use, and the other arguments are as noted in Chapter 3. The
partition manager can then receive this message as usual. There is a catch, how-
ever - this system call is currently implemented as a trap instruction, which in
practical terms means it is much less efficient than the combine network method
shown in Section 7.1.2.

Sending messages to and from the PM via the Data Network is primarily useful
when you want to send a message to a specific node without requiring all the
other nodes to stop and do a network operation at the same time.

122 NI Version 22 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation



Chapter 7 Writing NI Programsa m _ ___ __

7.2 Setting the Abstain Flags

Both the PM and the nodes will need to modify their abstain flags in order to use
the above functions. Since they will also need to restore the previous values of
these flags afterwards, it makes sense to use a single pair of functions to handle
saving and restoring the flags, rather than individually toggling flags within a
program.

Also, while changing abstain flags in the middle of a program does work, it's
error-prone because it requires that you ensure the corresponding network(s) are
empty before changing the abstain flag settings. It's much more straightforward
to simply set the abstain flags appropriately at the beginning of your program,
and then leave them alone as much as possible.

With these factors in mind, here is a pair of functions that handle saving and
restoring the abstain flags, giving them whatever intermediate settings you se-
lect.

First, a routine that saves the current values of the abstain flags and then sets
them to new values:

int bcabstain_flag,
com_abstain_flag,
com recabstain_flag,
sync_global_abstain_flag;

void save_and_set_abstain_flags
(new_bc, new_com, new_comrec, newsync_global)

int new_bc, new_com, new_com_rec, new_syncglobal;

bcabstain flag =
CMNA_read_abstain_flag(bc_control_reg);

com_abstain_flag =

CMNA_read_abstain_flag(com_control_reg);
comrn_rec_abstain_flag =

CMNAread_recabstain_flag(com_control_reg);
sync_global_abstain_flag =

CMNA_read_abstain_flag(sync_global_abstain_reg);
CMNA_write_abstain_flag(bc_control_reg, new_bc);
CMNA_write_abstain_flag(com_control_reg, new_com);
CMNA_write_rec_abstain_flag(com_cont r ol_reg,

new com rec);
CMNA_write_abstain_flag(sync_global_abstain_reg,

new com);

NI Version 2.2 (CM-5E), June 1994 123
Copyright 1994 Thinking Machines Corporation

---



NI Programmer 's Handbook
~~~~~~~~~.. .. , ,,-.~~~,~ x~~,~ ~.

Next, a function that restores the old values:

void restore_abstain_flags()
{

CMNA writeabstain_flag(bc_control_reg,
bcabstain flag);

CMNA_ write_abstain_flag(com_control_reg,
com_abstain_flag);

CMNAwrite_rec_abstain_flag(com_control_reg,
comrnrec abstain flag);

CMNA_ write_abstain_flag(sync_global_abstain_reg,
sync_global_abstain_flag);

One caveat about these functions: they assume that none of the Control interfaces
are in use when you call them. This should be the case if you call them at the
beginning and end of your program, as they are intended to be used. If you need
to use functions like these within the body of a program, you should precede and
follow them with code (function calls, etc.) that synchronizes the nodes, thus en-
suring that none of the affected interfaces are in use.

For example, you can use the global interface to synchronize the nodes while you
change the abstain flags for the other interfaces, and then use the network-done
operation of the combine interface to synchronize while you change the abstain
flags for the global interface. (You can probably now see why it's easier just to
set these flags once and then ignore them!)

7.3 Broadcast Enabling

Along with setting the abstain flags, there's one other important operation that
needs to be included in any NI program. As noted in Section 4.1.8, you need to
call the macro

CMNA_participate_in(NI_BC_SENDENABLE);

to enable broadcast sending - even if you clear the broadcast abstain flag. The
best point in your program to do this is the same place you set the abstain flags.

124 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

a I

Chapter 7. Writing NI Programs
· __"' "

7.4 NI Program Structure

Now, with these tools we can turn to the task of designing an NI program.

An NI program consists of three files:

* code to be run on the partition manager

* code to be run on the nodes (one program executed by all nodes)

· an interface file defining the node routines that are callable from the PM

The sections below describe each of these parts in detail, and show you how to
bring them together into a working program.

7.4.1 The cmna.h Header File

Important: Both the partition manager code file and the node code file must
#include the header file cmna. h, as follows:

#include <cm/cmna.h>

This header file contains #include directives that load the other files needed to
define the NI programming tools described in this manual. Note: If you plan to
call cMossignal () (see Section 3.5.4), you must also #include the header
file <cmsys/cm_signal.h>.)

7.4.2 Partition Manager Code

Code that runs on the PM may contain anything ordinarily included in a program
running on a Sun computer. This includes printf calls, system calls, I/O calls,
and calls to other specialized libraries. The simplest PM program might look
something like this:

#include <cm/cmna.h>
void main() {

/* start node program running */
node_program (); }

This program does nothing more than call the corresponding node program de-
fimed below. Typically, however, the PM code will include operations that send
data to the nodes and retrieve the results of the node computations.

NI Version 2.2 (CM-SE), June 1994 125
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

7.4.3 Node Code

Code written for execution on the nodes consists of one or more subroutines that
perform local computations and make NI calls to send messages through the net-
works. Node programs can also include simple I/O calls to display intermediate
results.

In particular, the output of printf calls from all nodes is collected and saved
in a file (typically named "CMTSDprintf .pn .pid") that you can examine dur-
ing and/or after execution of your program. However, the handling of printf
calls from the nodes slows down program execution considerably, so this method
of output is best used only for debugging your program.

Note: As of this release, many UNIX system calls are not supported on the
nodes. If node programs invoke these unsupported calls, segmentation violations
may be signaled. You should use node subroutines primarily for computations
and NI operations, and use the PM code for system calls and external I/O.

The Node's "Main" Routine

The first subroutine in the node file must be the one initially called by the PM.
This routine serves much the same function as the "main" routine in standard C
programming - it is the trigger that starts everything else running.

While you can give a node subroutine any name that you wish, if it is to be called
from the PM, then you must add the prefix CMPE_ to the subroutine name when
defining it and when calling it from another node subroutine. This prefix is used
by the compiler to determine which subroutines will be called from the PM. You
do not have to use the CMPE prefix anywhere outside of the node subroutine file.

The simplest node program, corresponding to the PM program given above, is

#include <cm/cmna.h>
void CMPE_node_program() {
/* Node program, does nothing, just an entry point

*/

As you can see, this is less than the bare bones of a subroutine - it does nothing
at all. We'll see an example of a complete node program below.

126 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

Chapter 7. Writing NI Programs

7.4.4 Interface Code

The "interface code" file is nothing more than a file of function prototypes, as
might appear in a header file. It is used in the compilation process to produce
special declaration code that allows the nodes to respond correctly to subroutine
calls from the PM.

The interface code file for the skeletal program given above has just one line:

void node_program();

Important: Before you compile it, the interface code file must be preprocessed
by the utility program sp-pe-stubs.This utility program translates your inter-
face prototypes into complete subroutine calls that can be compiled with the PM
and node code files to produce an executable NI program.

This is the reason that node functions callable from the PM require the CMPE_
prefix - the sp-pe-stubs utility adds this prefix to the name of each host-
callable function, so that there's no possibility of collision with names of node
functions that you have not defined as host entry-points.

7.5 A Sample Program

As an example, here's a simple NI program that uses each of the CM-5 network
interfaces. First, the partition manager source file:

Filename: NItest.c

/* Sample NI program - PM program */
#include <cm/cmna.h>
#include "utils.h"

void main () {
int input, result, high_node;

printf("\nSimple NI test program, by W.R.Swanson,\n");
printf("Thinking Machines Corporation--1/31/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in(NI_BC_SEND_ENABLE);

NI Version 2.2 (CM-SE), June 1994 127
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
_ - ._. _ .

/*Abstain from broadcast reception, combine sending */
saveandsetabstain flags(1,1,0,0);

/* Start node programs running */
nodemain();

/* Get value from the user, send it to the nodes. */
printf("This CM-5 partition has %d nodes.\n",

CMNA_partitionsize);

printf("Please type an integer to send: ");
scanf("%d", &input);

PM send to NODE(O, input);

printf("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling
PM_NODE_ synch();

/* Get value from high-address node */
/* (size - 2, because scan result starts
high_node = CMNA_partition_size-2;

result = PM_get_from_NODE(high_node);
printf("Got value %d (should be %d) from

result, input, high_node);
result = PM_get_fromNODE(0O);
printf("Got value %d (should be %d) from

result, (input* (high_node+l)));

numbers */

with 0) */

node %d.\n",

node 0.\n",

restoreabstain_flags();
}

Next, the corresponding code for the processing nodes:

Filename: NItest.node.c

/* Sample NI program - node program */
#include <cm/cmna.h>
#include "utils.h"

void CMPEnodemain () {
int value=0, scan_value, flippedvalue;
int mirrornode addr;
CMNA participate_in(NI_BC_SEND_ENABLE);
save andsetabstain flags(0,0,0,0);

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

128

Chapter 7. Writing NI Programs

/* Node 0 gets the value sent by the PM... */
NODE_get_from_PM(&value);

/* and broadcasts it to all nodes */
if (CMNA selfaddress==0) CMNAbc sendfirst(l,value);
while (!RECEIVE OK(CMNA bc status())) {};
value = CMNA bc receive word();

/* Do an addition scan to put a different value

in each node */
CMNA comrsendfirst(UADD SCAN,SCANFORWARD,l,value);
while (!RECEIVE OK(CMNA com status())) {};
scan value = CMNA com receive word();

/* Use LDR to "flip" order of values in nodes */
mirror node addr =

(CMNA_partition_size-1) - CMNA_selfaddress;
CMNA ldr send first(0, 1, mirror node addr);
CMNA ldr send word(scan value);
while (!RECEIVE OK(CMNA ldrstatus())) {};
flipped_value = CMNA ldr_receive_word ();

/* Signal to PM that answer is ready */
PM_NODE_synch();

/* Send value from high-order node back to PM */
NODE_send_to_PM(flipped_value);
/* Send value from node 0 back to PM */
NODE_send_to_PM(flippedvalue);

restore abstain flags();

And the interface code file:

Filename: NItest.proto

/* Sample NI program - interface code */
node main();

NI Version 2.2 (CM-SE), June 1994 129
Copyright © 1994 ThinkingMachines Corporation

NI Programmer ~ Handbook

Finally, both the PM and node programs include a utilities file, which includes
such tools as the abstain-flag functions and the PM/node communications
functions:

Filename: utils.h

/* Utility code */
int bcabstain flag, comrnabstainflag,

com_rec_abstain_flag, sync_global_abstainflag;

void save_and_set_abstain_flags(new_bc, new_com,
newcomrnrec,

new_sync_global)
int new_bc, new_com, new_com_rec, newsync_global;

{

bc_abstain_flag =

CMNAread_abstain_flag(bc_control_reg);
com_abstain_flag =

CMNA_read_abstain_flag(comrn_control_reg);
comrec abstainflag =
CMNA_r ead_rec_abstain_flag(com_control_reg);

sync_global_abstain_flag =

CMNA_r ead_abstain_flag(sync_global_abstain_reg);

CMNAwriteabstainflag(bccontrol_reg, newbc);
CMNA_writeabstain flag(comrn control_ reg, new com);
CMNA_write_rec_abstain_flag(com_control_reg,

newcomrnrec);
CMNA_write_abstain_flag(sync_global_abstain_reg,

newsync_ global);

void restore abstain flags()
{

CMNA_write_abstain_flag(bc_control_reg,
bc_abstain flag);

CMNA_write_abstain_flag(com_control_reg,
com_abstain_flag);

CMNA_write_rec_abstain_flag (com_control_reg,
com_rec_abstain flag);

CMNA_write_abstain_flag(sync_global_abstain_reg,
sync_global_abstain_flag);

130 NI Version 2.2 (CM-SE), June 1994
Copynright © 1994 ThinkingMachines Corporation

void PMsend toNODE(nodeaddress, value)
int nodeaddress, value;

{

CMNA bcsend first(l,
CMNAbc send first(l,

nodeaddress);
value);

int NODE_get_fromPM(dest)
int *dest;

int address, value;
while (!RECEIVEOK(CMNAbcstatus()))
address=CMNA bc receive word();
while (!RECEIVEOK(CMNAbc status()))
value=CMNA bc receive word();
if (address --== CMNAselfaddress) *de

}

{};

st=value;

int PM_get_from_NODE (node_address)
int nodeaddress;

{

CMNA bc send first(l, node address);
while (!RECEIVEOK(CMNAcom status())) {};
return(CMNA com receive word()); }

void NODE send to PM(value)
int value;

int address;
while (!RECEIVE OK(CMNA bc status())) {};
address = CMNA bc receive word();
if (address != CMNAself address) value = 0;
CMNA_com_send_first(UADD_SCAN,SCAN_REDUCE,

1,value);
while (!RECEIVEOK(CMNAcom status())) {};
(void) CMNA comrn receive word();

}

void PMNODE_synch()
{

CMNA_or_global_sync_bit(1);
while(!CMNA_global_sync_complete())
(void) CMNA_global_sync_read();

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

{};

131

Chapter 7. Writing NI Programs
-_ _ __ _

}

NI Programmer ' Handbook

7.6 Compiling and Executing an Ni Program

Note: This section presents a brief overview of the process of compiling and
executing an NI program. It's very much like the procedure used in compiling
and executing a CMMD program - so much so that you should also read the
CMMD User Guide for more information. (In particular, the CMMD Users
Guide includes examples of using a generic makefile to compile your code. This
may be more appropriate to your needs and inclinations than the script example
shown below.)

To compile an NI program you must:

* preprocess the interface file by calling sp-pe-stubs

* compile the resulting file, as well as the PM and node routine files

* link the three object files together with the CM linking program cmld

To illustrate this, here are the steps you would take in compiling the sample pro-
gram shown above:

First, preprocess the interface code file:

/usr/bin/sp-pe-stubs < NI test.proto > NI test.intf.c

Next, compile the three code files:

cc NI_ test.c -c -g -DCM5 -DMAIN=main

-I/usr/include
cc NI test.node.c -c -g -DCM5 -dalign -Dpeobj

-I/usr/include
cc NI test.intf.c -c -g -DCM5 -DMAIN=main

-I/usr/include

Finally, link everything together. For this purpose, you must use the CM-specific
linking program cmld:

/usr/bin/cmld -o NI test
NItest.o NItest.intf.o

-L/usr/lib -lcmna_sp -lcmrts -lm
-pe NItest.node.o

-L/usr/lib -lcmna_pe -lcmrts_pe -lm

The result is a single executable file, NI_test, which you can run by logging
on to one of the partition managers of a CM-5 and executing the file.

132 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 7. Writing NI Programs
__ ___~~~~~~~~~~

7.6.1 A Simple Compiling Script

Here's a short UNIX script that automates this process. It takes as its single argu-
ment the name of an NI program, constructs the names of the three component
files from the program name, compiles the files, and links them together as
shown above.

Note: This script assumes that the program files are all present in the current
directory.

#! /usr/bin/csh -e -f
nicc2 -- Compiles an NI program
echo "Script: $0, Compiling $1 for the NI..."

set PMFILE = "$1.c"
set PMOFILE = "$1.o"

set NODEFILE = "$1.node.c"

set NODEOFILE = "$1.node.o"

set INTFFILE = "$1.proto"

set INTFCFILE = "$1.intf.c"

set INTFOFILE = "$1.intf.o"
set OUTFILE = "$1"
set NODEOUTFILE = "$1.pn"

set EXECUTABLE = "a.out"

set NODEEXECUTABLE = "a.out.pn"

echo 'Preprocessing interface code file: ' $INTFFILE
/usr/bin/sp-pe-stubs < $INTFFILE > $INTFCFILE

echo 'Compiling PM code file: ' $PMFILE

cc -c -g -DCM5 -DMAIN=main -I/usr/include $PMFILE -o

$PMOFILE
echo 'Compiling node code file: ' $NODEFILE
cc -c -g -Dpe_obj -DPE_CODE -I/usr/include $NODEFILE

-o $NODEOFILE
echo 'Compiling interface code file: ' $INTFCFILE
cc -c -g -DCM5 -DMAIN=main -I/usr/include $INTFCFILE

-o $INTFOFILE

echo 'Linking it all together...'

/usr/bin/cmld -lg $PMOFILE $INTFOFILE -o $OUTFILE \
-L/usr/lib -lcmna sp -lm \
-pe -lg $NODEOFILE -L/usr/lib -lcmna_pe -lm

echo 'Done. Executable written to: ' $OUTFILE

NI Version 2.2 (CM-5E), June 1994 133
Copyright © 1994 Thinking Machines Corporation

NI Programmer 's Handbook

7.6.2 Compiling and Running the Program

Note: The following examples assume that you are currently logged in to one of
the partition managers of a CM-5.

The output of the compiling script for the NI_test program looks like this:

% nicc2 NI test
Script: nicc2, Compiling NItest for the NI...
Preprocessing interface code file: NI_test.proto
Compiling PM code file: NI_test.c
Compiling node code file: NItest.node.c
Compiling interface code file: NItest.intf.c
Linking it all together...
Done. Executable written to: NItest

The script produces a single executable file NI_test, which can be executed as
follows:

50: NItest

Simple NI test program, by W.R.Swanson,
Thinking Machines Corporation -- 1/31/92.

This CM-5 partition has 32 nodes.
Please type an integer to send to the nodes: 42
Sent value 42 to node 0...
Received value 42 (should be 42) from node 30.
Received value 1302 (should be 1302) from node 0.

7.6.3 On-Line Code Examples

As of Version 7.1.3 of the CM system software, there are on-line copies of the
sample program and script in this chapter, along with copies of the programming
examples in Appendix C.

Depending on where your system administrator has chosen to store the CM soft-
ware, these files may be located under the pathname

/usr /examples/ni-examples

or they may also be located somewhere else entirely. Check with your system
administrator for help in locating these files.

134 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 8

NI Programming Issues
X_ __X~~~~~~~~~~~~~~~~~~~~~ WNM .IE I

This chapter presents a number of NI programming issues that you should keep
in mind, as well as important performance and programming hints and warnings.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

8.1 Performance Hints

8.1.1 NI Register Operation Times

Here are some rough estimates of the time taken by a number of basic operations:

register access
cache memory
NI register read
NI register write
memory access

(register variable):
(previously accessed variable):
(ni_interfacestatus, etc.):
(ni. interface-status, etc.):
(newly accessed variable):

The time taken to perform an NI register read or write operation is longer than
the time taken for cached memory accesses, but much shorter than the time for
full memory accesses. (NI register writes are faster than reads because an NI read
operation requires that the node microprocessor wait for the read operation to
move through the Mbus buffer before a value is actually read and returned.)

For the Curious: This is why the NI status register tools are designed so that you
can read an NI status register once and then extract fields from the retrieved val-
ue. Once you have retrieved the value of the NI register and stored it in cached
memory, the access time for extracting multiple fields decreases substantially.

NI Version 2.2 (CM-SE), June 1994 135
Copyright © 1994 Thinking Machines Corporation

1 cycle

2-3 cycles
7-8 cycles
3-4 cycles
-25 cycles

--- `

NI Programmer Handbook
. ' ,'* , ... ; ~.'~~6 . ~,. .5 x56 :***.**,¢ *·* ··

8.1.2 Reading and Writing Registers with Doubleword Values

While this document focuses for the most part on reading and writing network
messages in terms of single (32-bit) words, you can also use doubleword (64-bit)
operations in reading and writing network registers.

Writing a doubleword to a register has the same effect as writing two singleword
values, but involves only one register operation. Likewise, reading a doubleword
from a register is the same as reading two singlewords.

The combine interface is an exception to this rule, because of its pipelining fea-
ture. You can't use doubleword writes when you are pipelining combine
operations. However, you can use doubleword reads with pipelined operations,
and doubleword writes are permitted for non-pipelined combine operations.

In addition, attempting a doubleword read or write for a message that consists of
only one word (as is the case for network-done tests) signals an error.

For C Programmers: To use doubleword read and write operations, the values
you send must be doubleword-aligned in memory. To ensure that this is the case,
use the compiler switch -dalign when compiling any file that includes double-
word function calls or variable definitions. For example,

cc -c -g -DCM5 -dalign -I/usr/include ni code.c

Example: LDR Send/Receive

Here's the LDR_send_receive_msg function from the Data Network chapter,
rewritten to use doubleword writes:

int tag_limit = 3;

LDR_send_receive_msg(dest_address,message,length,tag,dest)
unsigned destaddress, tag;
int *message, *dest, length;

int send_size, send size2, receive_size,receivesize2;
int offset, source_offset=O, dest offset;
int words_to send=length, words_received=O;
int packet_size, count, rec_tag, status;
double *dbl;
if (((int)message & 3) 11 ((int)dest & 3))
CMPN_panic("Message or dest not doubleword aligned");

packet_size = (MAX_ROUTERMSG_WORDS-1) & -1;

136 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

-

Chapter 8. NI Programming Issues
~ ~ . ~ yv~ ~r g;~5.~ . , .~

while ((words_received < length) I (words_to_send)) {

/* First try to receive a packet */
status=CMNA _ldrstatus();
if (words_received<length && RECEIVE_OK(status) &&

RECEIVE_TAG(status)<=tag_limit) {

dest offset = CMNA ldr receive word();
receive size =

RECEIVE LENGTH LEFT(CMNAldr status());
for (count=O; count<(receive size>>l); count++) {

dbl = (double *) (&dest[destoffset++]);
dest offset++;
*dbl = CMNA ldr receive double();
dbl++;

if (receive size & 1) /* If word left over */

dest[dest_offset++] = CMNA_ldr_receive_word();
wordsreceived += receive size;

} /* if */

/* Now try sending a packet */
if (words_to_send) {

send_size = ((words_to_send < packet_size) ?

words_to_send : packet_size);
send size2 = send size >> 1;
do {

CMNAldr_sendfirst(tag,sendsize+1,
dest address);

CMNA _ldrsend word(sourceoffset);
offset=source offset;
/* Send as many doubles as possible */
for (count=0O; count<send size2; count++) {

dbl = (double *) (&message [offset++]);
offset++;
CMNA ldrsenddouble(*dbl++); }

if (send_size & 1) /* If a word is left over */
CMNA ldr_send_word(message[offset++]);

} while (!SEND_OK(CMNA_ldr_status()));
source offset=offset;
words tosend -= sendsize;
} /* if */

} /* while */

NI Version 22 (CM-SE), June 1994 137
Copyright © 1994 Thinking Machines Corporation

NI Programmer's Handbook
__ _ _ &~~~~~~~~~~~~~x~

8.1.3 Use Message Discarding for Efficiency

When a message you are writing to a network send FIFO is discarded, it is com-
pletely discarded - effectively, it is as if you never began writing the message.

Many NI programmers take advantage of this property by writing a complete
message to a network FIFO, and only then checking to see whether it was dis-
carded (and if so, writing it again). This might seem a sloppy practice, but it is
actually a safe and efficient strategy.

Because messages are typically only a few words long, and because the NI com-
pletely ignores a discarded message, it's perfectly reasonable to check the
sendok flag just once, after you've written the entire message. Also, if your
code is properly written it should be rare for a message to be discarded, and thus
unlikely that checking the send_ok flag after writing each value of the message
provides any benefit. In fact, checking the sendok flag after you write each
value of a message can slow your code down considerably.

8.1.4 Set the Abstain Flags Once and Forget Them

In most cases, abstain flags of a network interface can be changed only when the
network is not in use - that is, when there are no messages pending in either the
send or receive FIFOs, and no messages in transit in the network. While this cer-
tainly does not prevent you from toggling the state of the abstain flags within
your code, it does make this kind of flag-toggling more prone to programming
errors.

A more straightforward strategy to use is to set the values of the abstain flags
once, at the beginning of your program, leave them alone while the program
runs, and then restore their original values before your program exits.

Note: This last point is important. As noted in Section 2.6.5, some programming
systems (such as CMMD) use the abstain flags for their own purposes. These sys-
tems are written with the assumption that the abstain flags won't change
unexpectedly, so if the flags do change these systems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before your code exits. Failing
to do so can cause your code to signal obscure errors that are hard to trace.

138 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 8. NI Programming Issues
__

8.2 Potential Programming Traps and Snares

Here are some potential sources of serious errors that you should keep in mind.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

8.2.1 Address Calculation on the Partition Manager

On any of the processing nodes, the NIBASE address (the base address of the
NI register region) is constant, and furthermore is set to a value that is zero in
all the low-order bits used for the send-first auxiliary data fields. Thus, it is pos-
sible on the nodes to logically IOR the auxiliary data with the base address to get
the final result.

On the partition manager, however, the base address of the NI register region can
be any arbitrary address assigned by the operating system. Hence, on the parti-
tion manager you must use arithmetic addition when combining auxiliary data
with the base address of a send-first register.

As a point of style, it is simplest to just use addition in all cases, as this will work
on either the PM or the nodes. (This is the usage shown in this document.)

8.2.2 Pay Attention to Data Network Addresses

When sending a Data Network message with a relative address, the address must
be valid within the current partition. If an address higher than cWNA parti-
tion_size is supplied, the NI signals an error.

Also, there is currently a 20-bit limit on the length of a Data Network address,
and the remaining high-order bits in a 32-bit address value must be 0. If any of
these high-order bits are nonzero, the NI signals a serious error, and in some
cases the entire partition of nodes may crash. You should either write your code
so that the high-order bits of a network address can never be other than zero, or
failing that mask out the top 12 bits of an address before using it.

Implementation Note: Currently, there is an additional restriction on the most
significant (19th) bit of the address - it too must be 0, or an error will result.

NI Version 22 (CM-SE), June 1994 139
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
~~i~p~s. s ~

8.2.3 "Middle" Data Network Interface Restrictions

Because of design limitations, it is not possible to receive messages via the
"middle" Data Network interface. This is a permanent restriction - the corre-
sponding recv registers in fact do not exist in the 2.2 version of the NI.

8.2.4 Make Sure Doubleword Data Is Doubleword-Aligned

C Programmers: This is also mentioned in the performance section above, but
it doesn't hurt to re-emphasize it. When you use doubleword read and write op-
erations in your C code, you must compile your code with the -dalign compiler
switch, so that doubleword values are properly aligned in memory:

cc -c -g -DCMS -dalign -I/usr/include ni code.c

If the doubleword values in your code are not properly aligned, the nodes will
most likely signal "illegal address" errors, and your code won't run.

8.2.5 Order Is Important in Combine Messages

As noted in Section 4.2.8, for scan messages longer than one word, the order in
which the words of the message are written depends on the combine operation:

* Maximum operations require the most significant word to be written first.

· Both types of addition require the least significant word to be written first.

· Inclusive and exclusive OR have no word-ordering requirement.

8.2.6 Broadcast and Combine Interface Conflicts

Because of the way the broadcast and combine interfaces interact, you should be
careful in using the abstain flags of these interfaces. If your code causes a node
(processing node or PM) to abstain from the combine interface, and if

· the abstaining node is sending a broadcast message

· simultaneously, the other nodes are sending a combine message

140 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 8. NI Programming Issues
~~~g~~~~6T~~~~~ 3 *.

then because of timing conflicts in the Control Network hardware, the two types
of messages can collide, possibly causing your partition to crash. This situation
most often occurs when you have instructed the PM to abstain from the combine
interface so that it can receive the results of a scan or reduction operation, yet at
the same time you want the PM to broadcast messages to the nodes telling them
what to do. The conflict arises when the PM needs to broadcast a message at the
same time that the nodes are sending a combine message. To avoid this problem,
your code must include safety checks that prevent broadcast messages from
backing up in the network at the same time that other nodes are sending a com-
bine message. The CMOST operating system includes a function you can call to
send a broadcast message that implicitly performs this safety checking:

int *msg, length;
CMNAbc_send_msg(msg, length);

8.2.7 Broadcast Enabling

As noted in Section 4.1.8, each broadcast interface has a send_enable flag.
These flags are set to 0 by default in the CMosT operating system, and must be
set to 1 before broadcasts are used. The CMosT system call to set these flags is:

CMNA_participate_in(NI_BC_SEND_ENABLE);
CMNA_participate_in(NI_SBCSEND_ENABLE);

8.2.8 Combine Interface Pipelining Restriction

As noted in Section 8.1.2, pipelined combine operations cannot be started using
doubleword operations. However, you can use doubleword reads with pipelined
operations, and doubleword writes are permitted for non-pipelined combine op-
erations.

8.2.9 Restriction on Scan Segment Start Flag

As noted in Section 4.2.8, it is an error to change the state of the
ni_scanstart register while the combine send FIFO is not empty.

NI Version 22 (CM-SE), June 1994 141
Copyright © 1994 Thinking Machines Corporation



NI Programmer 's Handbook
______X~~-

8.2.10 Be Careful When Altering Abstain Flags

As mentioned in Section 2.6.5, some programming systems use the abstain flags
for their own purposes. When you alter the abstain flags, you must save the origi-
nal settings and restore them before handing control back to these systems.
Failing to do so can cause user or OS code to signal errors that are hard to trace.

8.2.11 Simulating Receipt of Messages

As noted in Section 3.4.3, a hardware defect in the NI chip does not allow recv
registers to be written by the supervisor. The workaround is for a node to send
a message into the network using its own address as the destination. Assuming
the network is clear (as it is, for example, during context switches) this causes
the message to be delivered to the front of the node's receive queue.

8.2.12 Message Too Long Interrupt Restriction

Currently, the message too long interrupt, described in Section B.3.7, does
not work properly. The bus error still occurs, however. There is at present no
workaround for this restriction.

8.2.13 All Fall Down Restriction

All Fall Down messages sometimes don't set the all_falldown bit in the
pr ivate register The workaround for this restriction is to check that
reclen_lef t is greater than rec_len.

8.2.14 Send/Receive and FIFO Locking Restrictions

It is an error to send a message while in the middle of receiving one - a bug in
the NI causes the receive status information to get written to the send status regis-
ter. Also, it is an error to lock the send/receive FIFOs while in the middle of
receiving a message - doing so can cause the remainder of the message to be
lost. In general, it is best to lock and unlock the FIFOs only when both the send
and receive FIFOs are clear.

142 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Appendixes

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

_ _

143





Appendix A

NI Registers, Fields, and Constants

This appendix lists the registers and fields of the NI chip, as well as the constants
used to locate them. To use these constants, either include the header file cmna . h
(see Section 1.3.4), or the appropriate CMNA header file (see Appendix H).

Note: The notation "2.2" indicates new registers/fields in Version 2.2 of the NI.

A.1 NI Registers

For each register the following information is provided:

· the name of the register

· the hex offset of the register from the user or supervisor base address

* the size of the register in bits, and its memory length in words

· the read/write permissions of the register for both user and supervisor

Register Constants

Note: With the exception of the send_first and send_firstlong registers
(which are described in Section A.3 and A.4 below), the names of the constants
used to access NI registers are derived from the names of the registers themselves
by uppercasing the register name and adding the suffix "A". Each register
constant provides the absolute address of the register, in either the user or super-
visor memory area, depending on which header file (cmna. h or cmna_sup. h)
has been included.

NI Version 2.2 (CM-SE), June 1994 145
Copyright O 1994 Thinking Machines Corporation



NI Programmer s Handbook
_0::".:

A.1.1 Global and System Registers

Register Name:
Permissions:

Address: Size: Len: Super: User:

ni_interruptcause OO0000
niinterrupt cause green 0x0008

niinterrupt_level OxO010

ni_physicalself Ox0018
ni_partition_base 0x0020

ni_partition_size 0x0028

ni chunk table address 0x0030

nichunk tabledata 0x0038
nichunk_size 0x0040

ni_dr_messagecount 0x0048

ni count mask 0x0050

ni_rec_interrupt_mask 0x0058

ni_user_tag_mask 0x0060

nitime 0x0070
niconfiguration 0x0078
ni_interrupt_send Ox080
ni serial number 0x0088

ni_sync_global 0x0090
ni_sync_global_abstain 0x0098

ni com flush send OxOOAO
ni_async_global OxOOA8
ni_async_sup_global OxOOBO

nihodgepodge OxOOB8
ni_sync_global_send 0x00CO

niinterrupt clear 0x00C8

niinterrupt_clear_green OxOODO

ni_interruptnow 0x00D8

ni scan start OxOOEO
ni_bad_address OxOOE8

ni_longest_dr_message Ox0160

ni_user_rec_interruptmaskOxO168

ni_interrupt_.set 0x0190

niinterrupt_setgreen 0x0198

15 1 R/W

14 1 R/W

32 1 R/W
20 1 R/W
20 1 R/W
20 1 R/W

6 1 R/W
8 1 R/W
3 1 R/W
32 1 R/W
16 1 R/W

16 1 R/W

16 1 R/W

32 1 R/W
5 1 R/W
5 1 R/W
32 1 R
2 1 R
1 1 R/W

1 1 W

2 1 R/W
2 1 R/W
6 1 R/W
1 1 R/W

15 1 W
14 1 W

32 1 R/W
1 1 R/W

32 1 R/W
5 1 R/W
16 1 R/W
20 1 W
19 1 W

NI Version 22 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation

None
None
None
None
None
None
None
None
None
None
None
None
None

R
None
None
None

R
RJW
None
R/W
None
None
R/W
None
None
None
R/W
None

R 2.2
R/W 2.2
None 2.2
None 2.2

146



Appendix A. NI Registers, Fields, and Constants~~~~~~~~i s~~~~~~~~~~~~~~~~~~~ sr ~ ~ ~ ~ ~~~~~~~~,~.~ ~~~ - ~, .

A.1.2 Network Interface Registers

Combined Data Network Interface (DR)

Register Name:

ni_dr_status

ni_dr_ rivate

nidr send
ni_dr_status_all

ni_dr_status_long

ni_dr_send_first (block)

ni_dr_send_first_long

Permissions:
Address: Size: Len: Super: User:

0x0200
0x0208

0x0230

0x0250

0x0260

0x1000

0x8000

24 1 R/W

10 1 R/W

32 16 W

32 1 R
32 1 R

32 2 W
32 2 W

R
None

W
R
R
W
W

2.2
2.2

2.2

Left Data Network Interface (LDR)

Register Name:

nildr status

nildr _private
ni_ldr_recv

ni_ldr_send

ni_ldr_status_pop

ni ldr status all

ni_ldr_statuslong

ni_ldr_send_first (block)

ni_ldr_send_first_long

Permissions:
Address: Size: Len: Super: User:

OxOcOO

OxOcO8

OxOc2O

OxOc3O

OxOc4O

OxOc5O

OxOc6O

0x6000
Ox10000

32 1 R/W
24 1 R/W

32 16 R/W
32 16 W
32 2 R
32 1 R
32 1 R
32 2 W
32 2 W

R
None
R
W
R
R
R
W
W

2.2
2.2
2.2

2.2

Right Data Network Interface (RDR)

Register Name:

ni_rdr_status OxOeOO
ni_rdr_zrivate OxOeO8
ni_rdr_recv OxOe20
ni_rdr_send OxOe30
ni_rdr_statuspop OxOe40
ni_rdr_status_all OxOe5O
ni_rdr_status_long OxOe60
nirdr sendfirst (block)0x7000

ni_rdr_send_first_long 0x18000

Permissions:
Address: Size: Len: Super: User:

32 1 R/W
24 1 R/W
32 16 R/W

32 16 W

32 2 R

32 1 R
32 1 R

32 2 W

32 2 W

R
None
R

W
R
R
R
W
W

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

2.2
2.2
2.2

2.2

147



NI Programmer 's Handbook
__~ R

Broadcast Interface (BC)

Register Name:

ni bcstatus

nibc_private
ni_bc control

ni bcrecv
ni bc send

ni_bc_send_first (block)

Permissions:
Address: Size: Len: Super: User:

0x0600
Ox0608
0x0610
0x0620
0x0630
0x3000

6 1 R
17 1 R/W

1 1 R/W

32 16 R/W
32 16 W
32 2 W

Supervisor Broadcast Interface (SBC)

Register Name: Address: Size:
Permissions:

Len: Super: User:

ni_sbc status

ni_sbc_private

ni_ bccontrol

ni sbcrecv

ni sbc_send

nisbc_send first (block)

0x0800
0x0808
0x0810
0x0820
0x0830
0x4000

6 1 R
17 1 R/W

1 1 R/W

32 16 R/W
32 16 W
32 2 W

Combine Interface (COM)

Register Name:

ni com status

ni_com private

nicomcontrol
nicom recv
nicom_send
ni_com_send first (block)

Permissions:
Address: Size: Len: Super: User:

OxOaOO

OxOaO8

OxOal0
OxOa20

OxOa30
0x5000

12

6 (18)
2
32
32
32

1 R/W

1 RIW

1 R/W

16 R/W
16 R/W
2 W

NI Version 22 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

R
None
R/W

R
W
W

None
None
None
None
None
None

R
None
R/W

R
W
W

. -

148



Appendix A. NI Registers, Fields, and Constants
i_~_ _ -- .. .

A.2 NI Message Length Limit Constants

The following constants give the message length limits of the network interfaces:

MAX ROUTER MSG WORDS
MAX COMBINE MSG WORDS
MAX_BROADCAST_MSG_WORDS
MAX SBC MSG WORDS

DR/LDR/RDR interface length limit.
Combine (COM) interface length limit.
Broadcast (BC) interface length limit.
Supervisor broadcast (SBC) length limit.

These constants determine the maximum values that can be supplied in the length

component of the auxiliary data of a network message. (See the descriptions of
the auxiliary data formats for the various interfaces below.)

A.3 Send First Register Addresses

The send_first address for a network message is a 32-bit value of the form

31 15 14 12 11

I-(i base address interface auxiliary data
i , I

where interface is the interface number (an integer from 0 to 7 representing the
interface being used), and auxiliary data is the auxiliary information of the mes-
sage. (The base address portion is the base address of the NI memory area, either
user or supervisor.)

The following constants are used to construct sendfirst addresses:

NI BASE
SFFIFO_OFFSET
AUXILIARY_START_P

To construct a send first
shown:

The NI base address.
The interface field offset (12).
The auxiliary data field offset (3).

address, add the following values, left-shifted as

The NI base address:
The interface constant:
The auxiliary data:

NIBASE
interface_number
auxiliary_data

<< SFFIFO _OFFSET
<< AUXILIARY START P

NI Version 2.2 (CM-SE), June 1994 149
Copyright © 1994 Thinking Machines Corporation

3 0

l 0 o oI
. . . . . .



NI Programmer 's Handbook
ffi 9~ ___ w ___g~

The following interface_number constants are defined:

DATA ROUTER FIFO
LEFT DR FIFO
RIGHT DR FIFO
USER BC FIFO
SUPERVISOR BC_FIFO
COMBINE FIFO

DR network interface (1).
LDR network interface (6).
RDR network interface (7).
User broadcast (BC) interface (3).
Supervisor broadcast (SBC) interface (4).
Combine (COM) interface (5).

The constants specifying the auxiliary data format for each interface are listed
in the sections below.

Data Network (DR/LDR/RDR) Auxiliary Data Fields

The format of the auxiliary data of a Data Network message is
8 4 0

mdl tag length

where

md is the addressing mode (0 = relative, 1 = physical).

tag . is the 4-bit tag value.

length is the length of the message in words, excluding address word.

The following constants specify the starting bit positions of these fields:

NI_DR_SEND _AUXILIARY_ADDRESS_MODE_P
NI DR SEND AUXILIARY TAG P
NI DR SEND AUXILIARY LENGTH P

The md field offset (8).
The tag field offset (4).
The length field offset (0).

To construct a send_first address, add the following values:

The md flag:
The tag value:
The length value:

md
tag
length

<< NI_DR_SEND _AUXILIARY_ADDRESS_MODE_P
<< NI_DR_SEND _AUXILIARY_TAG_P
<< NI_DR_SEND _AUXILIARY_LENGTH_P

The following constants can be used to specify the md flag:

Relative node addressing (0).
Physical node addressing (1).

The tag can be any value from 0 to 3 inclusive for user messages, or from 0 to
15 for supervisor messages. (The length value limit is given in Section A.2.)

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

RELATIVE
PHYSICAL

150



Appendix A. NI Registers, Fields, and Constants____~s
Broadcast (BC/SBC) Auxiliary Data Fields

The format of the auxiliary data of a broadcast message is:

8 0

O O0 0 O length

where length is the length of the message in words. (The high-order bits of the
auxiliary data have no useful meaning, but must always be 0.) The following
constant specifies the starting bit position of the length field:

NI_BC_SEND_AUXILIARY_LENGTH_P The length field offset (0).

Combine Auxiliary Data Fields

The format of the auxiliary data of a combine interface message is:

8 4 0

pattern I combiner length

where

pattern is a two-bit value selecting the order in which values are combined

combiner is a three-bit value selecting the combine operation performed

length is the length of the message in words

The following constants specify the starting bit positions of these fields:

NI_COM_SEND AUXILIARY_PATTERN_P The pattern field offset (7).
NI_COM_SEND AUXILIARY_COMBINERP The combiner field offset (4).
NI_CONMSEND AUXILIARY_LENGTH_P The length field offset (0).

To construct a sendf irst address, add the following values:

The pattern value: pattern << NI COM_SEND_AUXILIARY_PATTERN_P
The combiner value: combiner << NICOM SENDAUXILIARY COMBINERP
The length value: length << NI_COM_SEND_AUXILIARY_LENGTH_P

The following constants can be used to specify the value of the pattern field:

SCAN_FORWARD Forward scan pattern (2).
SCAN_BACKWARD Backward scan pattern (1).

NI Version 2.2 (CM-SE), June 1994 151
Copyright © 1994 Thinking Machines Corporation



NI Programmer 's Handbook
~,.. ..%t~ ~

SCAN_REDUCE
SCAN_ROUTER_DONE

Reduction scan pattern (3).
Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR_SCAN
ADD SCAN

XOR SCAN

UADD_SCAN
MAX SCAN

ASSERT_ROUTER_DONE

Inclusive OR (0).
Signed addition (1).
Exclusive OR (2).
Unsigned add (3).
Signed maximum (4).
Network-done operation (5).

A.4 Send First Long (Data Network) Register Addresses

The send first long address for a Data Network message is a 32-bit value
of the form

31 19 17

base addr O O I
I/ I 

15

inf
I

13 12 3 0

auxiliary ta O

where inif is the interface number (an integer from 0 to 3 representing the Data
Network interface being used), and auxiliary data is the auxiliary information.
(The base address portion is the base address of the NI memory area, user or
supervisor.)

The following intf values are defined:

- Not used
1 - DR network interface

2 - LDR network interface
3 - RDR network interface

The format of the auxiliary information is:
9 4 0

Imd length tag

where

md is the addressing mode (O = relative, 1 = physical).

length is the length of the message in words, excluding address word.

tag is the 4-bit tag value.

NI Version 22 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

152

_

!



Appendix A. NI Registers, Fields, and Constants. : _ ... -.

A.5 NI Fields

The register subfields of the NI are presented below, grouped by register. For
each field, the following information is provided:

* the name of the field

* the name of the position constant used to access the field (see note below)

* the starting position and bit length of the field

* the read/write permissions of the field for both user and supervisor

Note: The programming constants used to access NI fields come in pairs.

One constant, with a suffix of "_P", gives the starting bit position of the field.
In the tables below, this value appears in the Pos: (position) column.

The other constant, with a suffix of "_L", gives the length of the field. In the
tables below, this value appears in the Len: (length) column.

Only the "." constant name is shown in the tables below. Unless otherwise
noted, you can assume that the "L" constant exists as well.

A.5.1 Combined Data Network (DR) Fields

The ni_drstatus Register

Field Name: Constant:

nisendspace
nirec_ok ....

ni send ok ...

nirouter done

nireclength 
ni.reclength

ni drrec_tag
nidrsendstat

......... NISENDSPACEP .

......... NI RECOK P............

......... NISENDOKP ...........
_complete NI_ROUTER DONE_COMPLETE_P .

Left..... NI_REC_LENGTH_LEFT_P ...
......... NI REC LENGTHP ........

......... NIDR RECTAGP ........
te ...... NTEDR SENDSTATEP.....

ni dx rec state ....... NI_DR_REC_STATEP ......

0 4 R
4 1 R
5 1 R

6 1 R
7 4 R/W
11 4 R/W
15 4 R/W
21 2 R
23 2 R

153NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Permissions:
Pos: Len: Super: User:

R
R
R
R
R
R
R
R
R



NI Programmer 's Handbook/,~, ¥.'~ '
..... :.-..' o -.

The ni_dr_status_long Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni_send_space .........
nirec_ok .............

ni send ok ............

ni_router_done_complete

ni_rec_length_left.....

ni_rec_length .........

ni_dr_rec_tag .........

nidrsend state ......
ni dr rec state .......

NI_SEND SPACELONG_P ... 0
NI REC OK LONG P ....... 5

NI_SEND OK LONG P...... 6
NIROTDONR_ONECOITZLLONGP ... 7
NI_ REC LENGTH LEFT_LONG P 8

NI_REC_LENGTH_LONG_P ... 13

NI_DR_ REC_TAGLONG_P ... 18
NI DR _SEND STATELONG P 24
NIDR_ ECSTATELONG P .26

5 R
1 R

1 R

1 R

5 R/W
5 R/W
4 R/W
2 R
2 R

The ni_dr_status_{all/pop} Registers

Field Name: Constant:

ni ldr rec ok .................................

nirdr_recok .................................
ni dr_send ok .................................
nildr_rec_tag ................................

ni_rdr_rec_tag ................................

nildr_rec_length_long.........................

ni_rdr_rec_length_long.........................

ni_dr_send_space ..............................
ni_ldr_rec_all_falldown .......................

ni rdr recall fall down.......................

ni_router_done_complete........................

Permissions:
Pos: Len: Super: User:

0
1

2
3

7
11

16
21
26
27
31

1 R R 2.2
1 R R 2.2
1 R R 2.2
4 R R 2.2
4 R R 2.2
5 R R 2.2
5 R R 2.2
5 R R 2.2
1 R R 2.2
1 R R 2.2
1 R R 2.2

The ni_drprivate Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni_rec_ok_ie ..........
ni_lock ...............
ni_rec_stop ...........

nirec full ...........

nidr rec all falldown
niall fall_down_ie....
ni_all_fall_down_enable
ni_fifo_goes_emptyie.
ni_rdone complete ie...

NI REC OK IE P.........
NI LOCK_ P..............
NI_REC_STOPP ..........
NIREC_ ULLP ..........
NI DR_ REC_ALL_FALL DOWNP.

NI ALLFALL DOWN_IEP ....
NI ALL FALL DOWN_ENABLE P

NI SFFOGOES_EMPTY_IE P

NI RDONECOMPLETE_IE P ...

0 1 R/W
1 1 R/W

2 1 R/W
3 1 R
5 1 R/W
6 1 R/W
7 1 R/W
8 1 R/W
9 1 R/W

154 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

R 2.2
R 2.2
R 2.2
R 2.2
R 2.2
R 2.2
R 2.2
R 2.2
R 2.2

None
None
None
None
None
None
None
None 2.2
None 2.2



Appendix A. NI Registers, Fields, and Constants
...... .

A.5.2 Left Data Network Interface (LDR) Fields

The ni_ldrstatus Register

Field Name: Constant:

ni_sendspace ......... NI_SENDSPACE_P ......

nizec ok ............. NI RECOK P............

nisend ok ............ NISEDODOKP ...........
ni_rec_length_left ..... NI_REC_LENGTHLEFT_P 

ni_sec_length ......... NI_REC_LENGTH_P ........

ni_drz_ec_tag ......... NI_DR_REC_TAG_P ..

Permissions:
Pos: Len: Super: User:

0 4 R
4 1 R
5 1 R
7 4 R/W
11 4 R/W
15 4 R/W

R
R
R
R
R
R

The ni_ldr_status_long Register

Field Name: Constant:

ni_send_space.........NISE PACELONP ...
ni rec ok ............. NIRECOK LONGP .......
ni send_ok ............ NI_SENDOK LONG_P ......

ni_rec_length_left ..... _aNIm_LFT_ LOMP ...
ni_rec_length.........NIRECLENGTHLONG ...

ni_dr_rec_ttag.........NIDRRECTAGLONG ...

Permissions:
Pos: Len: Super: User:

0 5 R
5 1 R
6 1 R
8 5 R/W

13 5 R/W
18 4 R/W

R 2.2
R 2.2
R 2.2
R 2.2
R 2.2
R 2.2

The ni_ldr_status_{all/popi Registers

Field Name: Constant:

nildrrec ok .................................
ni rdrrecok .................................

ni.ldrsend_ok ................................
ni_ldrrec_tag ................................

ni_rdrrec_tag ................................

ni_ldr_rec_length_long.........................

ni_rdr_rec_length_long.........................

ni_ldrsendspace .............................

ni_ldr_rec_all_ fall_down.......................

ni_rdr_rec_all_fall_down.......................

ni_router_done_complete........................

Permissions:
Pos: Len: Super: User:

0
1

2
3
7

11

16
21
26
27
31

1 R R 2.2
1 R R 2.2
1 R R 2.2
4 R R 2.2
4 R R 2.2
5 R R 2.2
5 R R 2.2
5 R R 2.2
1 R R 2.2
1 R R 2.2
1 R R 2.2

155NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

.
.



NI Programmer 's Handbook
~ ~ ~~~ ~~~ ''~~~~' ~,.:,

The ni_ldr_private Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni_recokie ........

nilock .............

nirec_full .........

nidz _ ec al _fall down

.. NI REC OX IEP .........

.. NILOCK _P..............
.. NIREC FULLP ..........
.. NI DR_REC_ALLFALLDOWN P.

0 1 R/W
1 1 RJW

3 1 R

5 1 R/W

A.5.3 Right Data Network Interface (RDR) Fields

The ni_rdr_status Register

Constant:
Permissions:

Pos: Len: Super: User:

ni_send_space ....
ni rec ok ........
nisend_ok .......
ni_rec_length_left

ni_rec_length ....
ni_dr_rec_tag ....

..... NISEND_SPACE P........ O

..... NI RECOXKP ............ 4

..... NI SEND_ OKP ........... 5

..... NIRECLENGTHLEFTP ... 7

..... NI RECLENGTH P........11

..... NI DRRECTAG_P ........ 15

4 R
1 R

1 R
4 R/W
4 R/W
4 R/W

The ni_rdr_status_long Register

Constant:
Permissions:

Pos: Len: Super: User:

ni_send space ....
ni_recok ........
ni send ok .......
ni_reclength_left

ni_rec_length ....
nidrrec_tag ....

..... NI_SENDSPACE LONG P

..... NIRECOKLONG_P 

..... NISENDOK LONGP ...

..... N IRCLIGTLET LO_ P

..... NIREC_LENGTH_LONGP

..... NI_DR REC_TAG_LONG_P

... 0 5 R

... 5 1 R

... 6 1 R

... 8 5 R/W

... 13 5 R/W

... 18 4 R/W

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

None
None
None
None

Field Name:

R
R
R
R
R
R

Field Name:

R 2.2
R 2.2
R 2.2
R 2.2
R 2.2
R 2.2

156

. .



Appendix A. NI Registers, Fields, and Constants
.. The nirdrstatus... .... .... /pp ..... , ..... .., Registers . ....., ", . ;. ..... . . .;

The nirdrstatus_{all/pop} Registers

Permissions:
Pos: Len: Super: User:

ni_rdrrecok .................................
ni ldr rec ok .................................

nirdr_send ok ................................
nirdr_rec tag ................................
nildrrec tag ................................
nirdr_reclength long .........................
ni_ldrrec_length_long.........................
ni rdr send space .............................

nirdrrecallfalldown .......................
ni_ldr_rec_all_ fall down .......................
ni_routerdone complete.................

0 1 R R 2.2
1 1 R R 2.2
2 1 R R 2.2
3 4 R R 2.2
7 4 R R 2.2
11 5 R R 2.2
16 5 R R 2.2
21 5 R R 2.2
26 1 R R 2.2
27 1 R R 2.2
31 1 R R 2.2

The ni_rdr_private Register

Field Name: Constant:

nirecok ie .......... NIRECOKIEP .
nilock ............... NILOCKP ..............
ni recfull ........... NIREC FLLP ..........
ni drrec_all falldown .. NI DR RECALLFALL DOWN P.

A.5.4 Broadcast Interface (BC) Fields

The ni_bc_status Register

Field Name: Constant:

Permissions:
Pos: Len: Super: User:

0
1

3

5

1 R/W

1 R/W

1 R

1 R/W

None
None
None
None

Permissions:
Pos: Len: Super: User:

ni_send_space ........
ni recok .............
ni send ok ............

ni_send empty .........
ni_rec_lengthleft.....

NI_SEND_SPACEP ........
NI RECOKP ............
NISENDOKP ...........
NISEND EMPTY P ........
NI_REC_LENGTH_LEFT_P ...
(NI..BC_REC_LENGTHLEFT_LONo_L)

0 4 R R
4 1 R R
5 1 R R
6 1 R R
7 7 R R 2.2

157NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

Field Name: Constant:
__ __ _�_� __

_ __ _ _�______

_ I � _�_ ___



NI Programmer 's Handbook
______... _~~~~~ ._~~, ~

The ni_bc_private Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

nirec ok_ie ..
ni lock .......

nirec_stop ...

ni rec full ...

nisend enable

........ NI RECOK IE P .........

........ NLOCK _P..............
........ .NI REC_ STOPP ....

........ r EC _F LL_ P .. ........

... . . . . . N r x S E N D _ E N A B L E P .

0 1 R/W
1 1 R/W

2 1 R/W
3 1 R

4 1 R/W

The ni_bc_control Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

nirec abstain ........ NIR_EC_ABSTAINP ......... 0 R/W R/W

Supervisor Broadcast Interface (SBC) Fields

The nisbc_status Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

nisend_space ......... NI_SENDSPACEP ........ 0 4 R None
ni.recok ............. NIRECO 3P ............ 4 1 R None
ni.sendok ............ NISEND_OKP .............. 5 1 R None
ni_send_empty ......... NISEND_EMPTY P ........ 6 1 R None
nireclengthleft ..... NI_;RC_ECLaGT.LEFTP ..... 7 4 R None

The ni_sbc_private Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

ni_rec_ok_ie .......... NI REC OK IEEP .........
nilock ............... NILOCK_P ..............
ni sendstop .......... NI SEND STOP .........
nirec full ........... NI RECFULLP ..........
nisend enable ........ NI..SENDENABLE_P.......

0 1 R/W
1 1 R/W

2 1 R/W
3 1 R

4 1 R/W

N Version Z2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

None
None
None
None
None

A.5.5

None
None
None
None
None

158



Appendix A. NI Registers, Fields, and Constants
s~~bn~ * 6F~'s __

The ni_sbc_control Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni recabstain ........ NI REC ABSTAIN P ....... 0 1 R/W None

A.5.6 Combine Interface (COM) Fields

The ni_com_status Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni_sendspace .........
ni rec ok .............

ni send ok ............

nisend empty .........

nireclength left .....

nireclength .........

nicom scan_overflow...

NI SEND_SPACEP ........ O

NI REC OKP ............ 4

NI SEND OKP ........... 5

NIxSEND_EMPTYP ........ 6
NI REC LENGTH LEFT P ... 7
NI REC_LENGTHP ........ 11
NICOM_SCAN_OVERFLOW_P .20

4 R
1 R
1 R

1 R

4 R/W
4 R/W
1 R/W

The ni_com_private Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

nirecok ie ..........
ni lock ...............

ni_rec_stop ...........
ni rec full ...........

ni com scan overflow ie

ni_com_rec_empty_ie ....

nicom send length.....

ni_com_send_combiner...

ni_com_send_pattern....

ni_com_send start .....

NI REC O IE P .........

NI_LOCK_P ..............

NIREC_STOP_P ..........
NIREC_FULL_P ..........

NI_COM_CAN_OVEFLOW_XZ_P.

NI CO_ REC_EMPTY IEP ..
NI COM SEND LENGTH P ...

NICOM_SEND_COMBINER_ P

NICOMSENDPATTERN P
NI_COM SEND_STARTTP ....

O 1 R/W

1 1 R/W

2 1 R/W
3 1 R

4 1 R/W
5 1 R/W
8 4 R
12 3 R

15 2 R
17 1 R

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

R
R
R
R
R
R
R

None
None
None
None
None
None
None
None
None
None

159



NI Programmer Handbook

The ni_comrn_control Register

Field Name: Constant:

nirec abstain . ....... NIREC_ABSTAINP .......

ni_reduce_recabstain.. NI_REDUCE_REC_ABSTAIN_P

A.5.7 Global Interface Fields

The nisync_global Register

Permissions:
Pos: Len: Super: User:

0 1 R/W
1 R/W

R/W
R/W

Permissions:
Field Name: Constant: Pos: Len: Super: User:

ni_sync_global_rec ..... NISYNC_GLOBAL_R REC_P ... 0 1 R R
nisync_globalcomplete NISYC_GLOBACOMPLETEP . 1 1 R R

The ni_async_global Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

ni_globalsend ........ NI_GLOBALSENDP ....... 0 1 R/W RW
ni_global_rec ......... NIGLOBAL_RECP ........ 1 1 R R

The niasync_sup_global Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

ni_supervisorglobalsend NI_SUPERVISOR_GLOBALS_END_P 0

ni_upervisor_global_rec . NI_SUPERVISOR_GLOBAL_RECP 1

1 R/W None
1 R None

A.5.8 Interrupt Register Fields

Note: The position ("") constants for thesesflags are as described above. The
length for all flags (1) is given by the single constant NI_INTERRUPTL. To lo-
cate the flags in the interrupt_clear/set registers, use the constants
defined for the interruptcause registers - the flag positions are the same.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

160



Appendix A. NI Registers, Fields, and Constants
~-.',·.

The ni_interrupt_cause Register

Permissions:
Pos: Len: Super: User:

ni_cause_internal_fault.............
ni cause mc error ..................
nicause_cmuerror ..................
ni_cause_bcinterrupt_red...........
ni_cause_cn_checksum error..........
ni cause cnhard error..............
ni_cause_dr_checksum_error..........
nicause_timer_interrupt............
ni_cause_bc_interrupt_orange ........

ni_causebc_interrupt_yellow........
nicause bcorcom_collision........
ni_cause_com abstain_changed........
ni_cause_dr_count_negative..........
ni_cause_bad relative_address.......
ni_cause_bad memory access ..........
ni_cause_message_too_long...........
ni_cause_rdone complete.............

0 1 R/W
1 1 R/W

2 1 R/W
3 1 R/W
4 1 R/W
5 1 R/W
6 1 R/W
7 1 R/W
8 1 R/W
9 1 R/W
10 1 R/W
11 1 R/W
12 1 R/W
13 1 R/W
14 1 R/W
15 1 R/W
16 1 R/W

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None 2.2
None 2.2

The ni_interrupt_cause_green Register

Permissions:
Pos: Len: Super: User:Flag Name:

ni_cause_bcinterrupt_green.........
nicausescan overflow..............
nicausebcrecok..................
ni_cause_sbcrecok.................
ni_cause_comrecok.................
ni_cause_com_rec_empty..............
ni_cause_sync_global_rec ............

ni_cause_global_rec.................
ni_cause_supervisor_globalrec.
nicausedr recok..................
nicauseldrrecok.................
ni_cause_rdrrecok.................
ni_cause_dr_rec_tag.................
ni_cause_dr_rec_all_fall_down.......
ni_cause_ldrrectag................
ni_cause_rdr_rec_tag................
ni_cause_ldr_user_rec_tag ...........
ni_cause_rdr_user_rec_tag...........
ni_cause_sfifo_empty................
ni_cause_dperr .....................

0 1 R/W
1 1 R/W

2 1 R/W
3 1 R/W
4 1 R/W
5 1 R/W
6 1 R/W
7 1 R/W
8 1 R/W
9 1 R/W
10 1 R/W
11 1 R/W
12 1 R/W
13 1 R/W
14 1 R/W
15 1 R/W
16 1 R/W
17 1 R/W
18 1 R/W
19 1 R/W

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Flag Name:

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

2.2
2.2
2.2
2.2
2.2
2.2

161



NI Programmer 's Handbook

The ni_interrupt_{clear,set} Registers

Permissions:
Pos: Len: Super: User:Field Name:

ni_ clear,set)_internalfault .......
ni_{clear,set}_mc_error ............
ni_{clear,set}_cmu_error............
nilclear,set)_bc_interrupt red .....
ni_{clear,set)}_cn_checksum error ....

ni_{clear,set)}_cn_hard_error ........

ni_{clear,set)_dr_checksum_error ....

ni_{clear,set)_timer_interrupt ......

ni_{clear, set)_bc_interrupt_orange ..
ni_{clear,set}_bc_interrupt_yellow ..
ni{clear,set}_bc_or_com_collision..
niclear, set)_comabstain_changed..
niclear, set)}_drcountnegative ....

ni_{clear,set)_bad_relative_address .
ni{ clear, set}_bad_memory_access ....

ni{clear, set)}_message_too_long .....

ni_{clear,set)_rdone_complete .......

0 1 W None
1 1 W None
2 1 W None
3 1 W None
4 1 W None
5 1 W None
6 1 W None
7 1 W None
8 1 W None
9 1 W None
10 1 W None
11 1 W None
12 1 W None
13 1 W None
14 1 W None
15 1 W None 2.2
16 1 W None 2.2

The ni_interrupt_{clear,setj_green Registers

Permissions:
Pos: Len: Super: User:Field Name:

ni_{clear,set)_bc_interrupt_green...
ni_{clear,set)_scan_overflow........
ni {clear, set)_bc_recok............
ni_clear, et)_sbc_rec_ok ...........
ni_{clear,set}_com_recok...........
ni_{clear,set)_com_rec_empty........
ni_{clear,set)}_sync_globalrec ......

ni_{clear, set)}global_rec...........
ni_ clear,set)}_supervisor_global_rec
ni_ clear,set)_dr_rec_ok............
ni_{clear,set)_ldrrecok...........
ni_{clear, set}_rdrrecok .........
ni_{clear,set)}_dr_rec_tag...........
ni_{clear,set)_dr_rec_all_fall_down.
ni_{clear,set}_ldr_rectag..........
ni_{clear,set)}_rdr_rectag..........
ni_{clear,set)}_ldr_user_rec_tag.....
ni_{clear,set)_rdr_user_rec_tag.....
ni_{clear,set)_sfifo_empty..........
ni_{clear,set)}_dperr................

0 1 W
1 1 W

2 1 W
3 1 W
4 1 W
5 1 W
6 1 W
7 1 W
8 1 W
9 1 W
10 1 W
11 1 W
12 1 W
13 1 W
14 1 W
15 1 W
16 1 W
17 1 W
18 1 W
19 1 W

NI Version 2.2 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

162

2.2
2.2
2.2
2.2
2.2
2.2

- -

-
. . . .



Appendix A. NI Registers, Fields, and Constants

A.5.9 Other Register Fields and Constants

Note: The programming constants for these flags are obtained by uppercasing
the name of the flag, then adding "." for the position, or "_L" for the length.

The ni_interruptlevel Register

Permissions:
Field Name: Pos: Len: Super: User:

ni_interrupt_level_green ............
niinterrupt_level_yellow ...........
ni_interrupt_level_orange...........

niinterrupt_level_red..............

0 1

8 1

16 1

24 1

R/W
RPW

R/W
R/W

None
None
None
None

The ni_hodgepodge Register

Permissions:
Pos: Len: Super: User:Field Name:

ni_globalrecie ...................
ni_supervisor_global_rec_ie ........
ni_flush_complete ..................

ni_interrupt_send_ok................

ni_configuration_complete ...........

ni_interrupt_rec_enable .............

ni_sync_global_rec_ie ...............

nitimerie ........................

ni_cn_stop_send ....................

nidisablebuserror ................

ni_ldr_rec_tag_ie ..................

ni_rdr_rec_tag_ie ..................

ni_ldr_user_rec_tag_ie ..............

ni_rdr_user_rec_tag_ie ..............

ni_msg_too_long_ie ..................

0 1 R/W

1 1 R/W

2 1 R
3 1 R

4 1 R
5 1 R/W
6 1 R/W

7 1 R/W
8 1 R/W
9 1 R/W
10 1 R/W

11 1 R/W

12 1 R/W

13 1 R/W

14 1 R/W

NI Version 22 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

2.2
2.2
2.2
2.2
2.2
2.2

163

- -- --



NI Programmer ' Handbook

The ni_bad_address Register

Permissions:
Pos: Len: Super: User:Field Name:

nibad addresslow..................
ni_bad_address type.................

0
20

20 R/W
12 R/W

Note: The contents of the ni_ bad_address register are implementation-
dependent, so there are no predefimed constants for this register.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

164

None
None



Appendix B

NI Interrupts

The methods used to recover from an NI interrupt depend heavily on the type of
interrupt itself. This appendix describes each of the possible interrupts in detail,
and provides guidelines for recovering from them.

For each interrupt, the following information is provided:

* the name and color of the interrupt

* the ni_interruptcause or ni_interrupt_cause_green flag that
is set when the interrupt is signaled

* the ni_interruptclear or ni_interrupt_clear_green flag that
is used to clear the interrupt when it has been handled

* the ni_interrupt_set or ni_interrupt_set_green flag that is
used to artificially trigger the interrupt

* the triggering event that causes the interrupt to be signaled

* the effect of the interrupt on the NI and the networks

* the correct method for handling the interrupt

Note: It is possible for the supervisor to trigger an interrupt artificially, by setting
the appropriate flag in one of the registers ni_interrupt_cause/set or
ni_interrupt_cause/set_green. Since this can be done for any interrupt,
it is not documented under the triggering events for each interrupt.

Also, since the ni_interrupt_clear and ni_interrupt_clear_green
flags must be used to clear every interrupt once the required handling operations
have been performed, this step is assumed, and is not listed under the handling
guidelines for each interrupt.

NI Version 2.2 (CM-SE), June 1994 165
Copyright © 1994 ThinkingMachines Corporation



NI Programmer g Handbook
. _ .. ...

B.1 Red Interrupts

Red interrupts indicate a failure of the hardware, such as checksum violations
and message format errors. They occur at unpredictable times relative to the in-
struction stream and are usually irrecoverable. Determining the precise cause of
a Red interrupt may require the use of the Diagnostic Network.

The cause, clear, and set flags listed for each interrupt are found in the registers:
ni_interrupt_cause
ni interrupt clear
ni_interrupt_set

B.1.1 Internal Fault ....................................... Red Interrupt

Flags: ni_cause/clear/set_internal_ffault

Cause: A fault has been detected in the NI chip.

Effect: The effects are undefined and irrecoverable.

Handling: No software-serviceable parts inside. Please report this fault to your
applications engineer or systems manager for correction.

B.1.2 CN Checksum Error, DR Checksum Error ....... Red Interrupt

Flags: ni_cause/clear/set_cn_checksum_error
ni_cause/clear/set_dr_checksum_error

Cause: A message with a bad checksum value was received from either the
Control Network or Data Network. This interrupt is signaled as
soon as the bad checksum value is received by the NI.

Effect: None. The received message(s) may still be read. However, they
will almost certainly contain an error in either data or address.

Handling: This interrupt indicates that a network chip (or the NI chip itself)
has failed. The failed chip must be tracked down with the Diagnos-
tic Network. Please report this fault to your applications engineer
or system manager for correction.

166 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Appendix B. NI Interrupts
_~e~Ek~P~r~l P~s~~

B.1.3 CN Hard Error ............... .............. Red Interrupt

Flags: nicause/clear/set_cn_hard_error

Cause: A hardware error occurred in the Control Network

Effect: The effects are undefined and irrecoverable.

Handling: This interrupt indicates one of two things: either a hardware prob-
lem in the Control Network, which must be located by use of the
Diagnostic Network; or a serious software problem (specifically, a
double trap forcing a processor (IU) reset). Please report this fault
to your applications engineer or system manager for correction.

B.1.4 MC Error, CMU Error ........................... Red Interrupt

Flags: ni_cause/clear/set_mc_error
ni_cause/clear/set_cmu_error

Cause: An interrupt is being signaled by either the memory controller, or
by the CMU (cache and memory management unit). These two
kinds of external interrupt are signaled to the microprocessor by
way of the NI chip.

Effect: None, aside from the interrupt itself.

Handling: These interrupts continue to be signaled until they are cleared on the
memory controller or CMU.

Note: Unlike most NI interrupts, these two interrupts are not
cleared by writing the corresponding niinterrupt_clear flag.
Instead, a flag on the memory controller or CMU must be reset.

Nevertheless, it is legal to write a 1 to the ni_interrupt_clear
flags for these interrupts. While this has no effect, it is permitted so
that you can write uniform interrupt handler code.

NI Version 22 (CM-SE), June 1994
Copyright ) 1994 Thinking Machines Corporation

167



NI Programmer Handbook

B.1.5 BC Interrupt Red .................. ................ Red Interrupt

Flags: ni_cause/clear/set_bc_interrupt_red

Cause: The NI received a Red broadcast interrupt, and the broadcast inter-
rupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

B.2 Orange Interrupts

Orange interrupts indicate that the attention of the operating system is required,
as in timer interrupts and broadcast interrupt messages. They occur at unpredict-
able times relative to the instruction stream and do not destroy any information
that might be needed to determine the cause of the interrupt.

The cause, clear, and set flags listed for each interrupt are found in the registers:
ni_interruptcause
ni_interrupt_clear
ni_interrupt_set

B.2.1 Timer Interrupt ................................. Orange Interrupt

Flags: ni_cause/clear/set_timer_interrupt

Cause: The ni_time register is equal to the ni_interrupt now register,
and the timer interrupt flag ni_timerie flag is 1.

None, aside from the interrupt itself.

This interrupt is software-controlled, and should be handled by
your interrupt handler.

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

Effect:

Handling:

168

- = -



Appendix B. NI Interrupts

B.2.2 Network Done Complete ...................... Orange Interrupt

Flags: ni_cause/clear/set_rdone_complete

Cause: The ni_rdone_complete_ie flag is true, and a network-done
operation has just completed (that is, the flag ni router_
done_complete flag has been set).

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler. It is intended to allow system code to do
operations such as setting the ni .drmessage_count register to
zero at the end of a network-done operation.

B.2.3 BC Interrupt Orange ..................... Orange Interrupt

Flags: ni_cause/clear/set_bc_interrupt_orange

Cause: The NI received a Orange broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

B.3 Yellow Interrupts

Yellow interrupts indicate a software error. They are usually irrecoverable, as
they indicate that your program is doing something illegal. Sufficient informa-
tion is retained in the NI to permit isolation of the cause of the interrupt, but it
is not always possible to recover all information relating to the cause. Yellow
interrupts are associated with particular instructions, but are not signaled at the
exact point of the error, because of the loose NImicroprocessor coupling. The
cause, clear, and set flags listed for each interrupt are found in the registers:

ni_interrupt_cause
ni_interrupt_clear
ni_interrupt_set

NI Version 2.2 (CM-SE), June 1994 169
Copyright © 1994 Thinking Machines Corporation



NI Programmer 's Handbook

B.3.1 BC Interrupt Yellow ............................. Yellow Interrupt

Flags: nicause/clear/setbcinterrupt_yellow

Cause: The NI received a Yellow broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interruptrec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

B.3.2 Bad Memory Access ....................... Yellow Interrupt

Flags: ni_cause/clear/set_bad_memory_access

Cause: The NI would have signaled a Bus Error, but the flag
ni disable buserror was set to 1.

Effect: Same as described for Bus Errors in Section B.5.

Handling: Examine the ni_bad_address register to determine what
memory transaction caused the error.

B.3.3 COM Abstain Changed ......................... Yellow Interrupt

Flags: nicause/clear/set_com_abstainchanged

Cause: The ni_com_abstain or ni_reduce_rec_abstain flags were
changed while the combiner send FIFO was not empty.

Effect: The attempted change does not occur. Whether execution is allowed
to continue depends on the interrupt handler.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to recover from it quietly, perhaps displaying a warning
message.

170 NI Version 2.2 (CM-5E), June 1994
Copyright 1994 Thinking Machines Corporation



Appendix B. NI Interrupts_ __ _ _ _ __ _

B.3.4 DR Count Negative ......... ............ Yellow Interrupt

Flags: ni_cause/clear/set_drcount_negative

Cause: The combined value of all ni-_drmessage_count registers in
the Data Network has become negative, indicating a mismatch in
the sending and/or receiving of Data Network messages.

Effect: None, but this interrupt is signaled repeatedly until the situation is
corrected.

Handling: This may occur either when a failure in a Data Network or NI chip
causes the annihilation of a message, or when an OS error causes
a countable Data Network message to be sent out of its partition.
This interrupt may also occur if two or more nodes in a paritition
do not agree on which Data Network message tags are to be counted
(that is, their ni_count_mask registers are not equal).

To restore the Data Network to a proper state, make sure that the
partition is empty of Data Network messages, and then set all the
ni_dr_message_count registers in the partition to 0.

Note: It may be that by the time the interrupt is signaled, the values
of one or more of the ni_dr_message_count registers will have
changed. This may make it difficult to locate the error, since the
sum of the ni_dr_message_count registers may be positive by
the time the interrupt is signaled.

B.3.5 BC or COM Collision ..................... Yellow Interrupt

Flags: ni_causae/clear/set_bc_or_comcollision

Cause: Three separate conditions cause this interrupt:

* Two NIs attempted to broadcast at the same time.

* Two different combine operations signaled at the same time.

* Two NIs simultaneously attempted a broadcast interrupt.

Effect: No combining or broadcast operations can proceed while the
ni_cause_bc_or_com collision flag is set. If the error was
colliding broadcast interrupts, the broadcast is not signaled.

NI Version 22 (CM-SE), June 1994 171
Copyright © 1994 Thinking Machines Corporation

--



NI Programmer Handbook
.. . _ .

Handling: If the error was colliding combine messages, the messages are still
in the combine send FIFO. The supervisor should take control of
this FIFO and read out the messages to determine where the colli-
sion occurred. If the error was colliding broadcast messages, the
ni_bc_send_empty (or ni_sbc_send_empty) flags will be set
to 0 in the contending processors. If the error was colliding broad-
cast interrupts, the ni_interrupt_send_ok will be 0 in the
processors that sent the colliding broadcast interrupts.

The proper way to handle this interrupt is to set all the combine stop
flags, then set the FIFO lock flags, then read out any remaining data
values from the combine send FIFO.

Note: When the ni_clearbc_or_com_collision flag is writ-
ten, all messages in the broadcast and supervisor broadcast send
FIFOs disappear, and the ni_interrupt_send_ok flag is set to 1.
None of the other FIFOs, either send or receive, are affected.

B.3.6 Bad Relative Address .......................... Yellow Interrupt

Flags: ni_cause/clear/set_bad_relative_address

Cause: An attempt was made to send a Data Network message with a rela-
tive address that is illegal for the current partition.

Effect:

Handling:

The message with the bad address is discarded and the appropriate
ni_interfacesend_ok flag is set to 0, indicating that the attempt
to send the message failed.

Your interrupt handler should decide whether to signal this as an
error, or to recover from it quietly, perhaps displaying a warning
message.

B.3.7 Message Too Long ............................. Yellow Interrupt

Flags: ni_cause/clear/set_message_too_long

Cause: An attempt was made to send a Data Network message with a
length greater than is allowed for the interface in use. For each of
the three send_first_long interfaces, this is the value of the

172 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Appendix B. NI Interrupts

nilongest_dr_message register. For the send_f irst register
interfaces this is either the ni longest_d message value or
five words, whichever is less.

Effect: The message with the bad address is discarded and the appropriate
niinterface_sendok flag is set to 0, indicating that the attempt
to send the message failed. A bus error is also signaled.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to recover from it quietly, perhaps displaying a warning
message.

B.4 Green Interrupts

Green interrupts indicate the occurrence of common events for which the soft-
ware has requested notification, such as the arrival of messages, the signaling of
broadcast interrupts, arithmetic overflow in a scan, etc. There is one interrupt for
each event, and each event's interrupt can be enabled and disabled independently
under the control of the supervisor.

Depending on the type of event, the interrupt may or may not occur synchronous-
ly with a particular instruction. No information is lost by a Green interrupt.

The cause, clear, and set flags listed for each interrupt are found in the registers:
ni_interrupt_cause
ni_interrupt_clear
ni_interrupt set

B.4.1 BC Interrupt Green ............................. Green Interrupt

Flags: ni_cause/clear/set_bc_interrupt_green

Cause: The NI received a Green broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

NI Version 2.2 (CM-SE), June 1994 173
Copyright © 1994 Thinking Machines Corporation

- - -



NI Programmer Handbook
___. ... '

B.4.2 DR Receive Tag ................................. Green Interrupt

Flags: ni_cause/clear/setdrrec_tag

Cause: A message arrived at the front of a Data Network receive FIFO that
has an interrupting tag (a tag corresponding.to a set flag in the regis-
ter ni_rec_interrupt_mask).

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

B.4.3 DR Receive All Fall Down ...................... Green Interrupt

Flags: ni_cause/clear/set_dr_rec_all_f all_down

Cause: An All Fall Down mode message arrived at the front of a Data Net-
work receive FIFO, while ni_all_fall_down_ie is 1.

Effect: The first word read from the FIFO is the All Fall Down mode ad-
dress word, which is used to determine the correct destination
address for the message. The rec_length field contains the origi-
nal length of the message (that is, not counting the address word),
while the rec_length_left field contains the total length of the
message counting the address word.

Handling: Your handler should receive and store the message in such a way
that it can later be resent to its correct destination.

B.4.4 Interface (DR, BC, COM, etc.) Receive OK ... Green Interrupt

Flags: ni_cause/clear/set_bc_rec_ok
nicause/clear/set_sbcrec_ok
ni_cause/clear/set_com_rec_ok
ni_cause/clear/set_dr_rec_ok
ni_cause/clear/set_ldr_rec_ok
ni_cause/clear/set_rdr_rec_ok

174 NI Version 2.2 (CM-SE), June 1994
Copyright X 1994 Thinking Machines Corporation

__�_�



Cause:

Effect:

Handling:

A new message became available from the receive FIFO of one of
the interfaces while the corresponding niinterfacerec_okie
flag was set to 1.

While enabled, each of these interrupts is signaled once for each
arriving message in the appropriate interface's receive FiFO.

This interrupt is software-controlled, and should be handled by
your interrupt handler. (Typically, your handler reads the interrupt-
ing message from the FIFO, but you can decide to do otherwise.)

B.4.5 Global Rec (Sync, Global, or Supervisor) .... Green Interrupt

nicause/clear/set_sync_global_rec
ni_cause/clear/set_global_rec
nicause/clear/set_supervisor_global_rec

Cause: One of the following events happened:

A synchronous global operation completed with a result of 1, and
the ni_sync_global_rec_ie flag is 1.

The asynchronous global receive flag ni_global_rec changed
from 0 to 1, and the ni_global_rec_ie flag is 1.

The supervisor asynchronous receive flag ni_supervi-
sor_global_rec changed from 0 to 1, and the
ni_supervisor_global_rec_ie flag is 1.

Effect:

Handling:

None, aside from the interrupts themselves.

These interrupts are software-controlled, and should be handled by
your interrupt handler.

B.4.6 Com Receive Empty ............................ Green Interrupt

Flags: nicause/clear/set_com_rec_empty

Cause: The combine receive FIFO became empty while the empty receive
FIFO interrupt flag ni_com_recenty_ie is 1.

NI Version 22 (CM-SE), June 1994 175
Copyright @ 1994 Thinking Machines Corporation

Appendix B. NI Interrupts
_ n~~i

Flags:

i�·"�



NI Programmer Handbook
i ___ _ 

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

B.4.7 Scan Overflow .................................. Green Interrupt

Flags: ni_cause/clear/setscanoverflow

Cause: The first word of a scan or reduce message that suffered arithmetic
overflow was read from the combine receive FIFO, and the
ni_scan_overflow_ie interrupt enable flag is 1. This can only
happen if the message combiner is a signed or unsigned addition.

Effect: None. The arrived message may be read normally.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to recover from it quietly, perhaps displaying a warning
message.

B.4.8 DP Error (Vector Unit Error) ................... Green Interrupt

Flags: ni_cause/clear /set_dperr

Cause: An interrupt has been signaled by the node's memory controller
(the vector units in CMs so equipped). These interrupts are sent to
the PE by way of the NI.

Effect: This interrupt will continue to be signaled until it is cleared both on
the memory controller and in the NI.

Handling: This interrupt is introduced in Version 2.2 so that the vector units,
integrated into the memory controller chips, can signal green inter-
rupts. Both the NI ni_interrupt_clear_green flag and the

corresponding flag on the memory controller (or VU) must be

written to clear this interrupt.

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

__

176



Appendix B. NI Interrupts

B.4.9 Send FIFO Empty (Data Network Only) ...... Green Interrupt

Flags: ni_cause/clear/set_sf ifo_empty

Cause: The ni_sfifo_empty_ie flag is set, and a send FIFO in one of
the Data Network interfaces (DR, LDR, RDR) has become empty.

Effect: None. The arrived message may be read normally.

Handling: This interrupt is intended as an aid in sending Data Network mes-
sages; in particular, the supervisor can wait until this condition
occurs before sending messages, rather than attempting several
failed sends when the Data Network is congested.

B.4.10 LDR/RDR Tag, LDR/RDR User Tag ............ Green Interrupt

Flags: ni_cause/clear/set_ldr_tag

ni_cause/clear/set_rdr_tag
ni_cause/clear/set_ldr_user_tag
ni_cause/clear/setrdr_user_tag

Cause: A message arrives at the front of the left (or right) Data Network
receive FIFO, having a tag that corresponds to a 1 bit in the register
ni_rec_interrupt_mask (for ldr/rdrtag interrupts) or in
ni_user_rec_interrupt_mask (for the ldr/rdr_user_tag
interrupts).

For the user_tag interrupts, not only must the appropriate tag
maskbe set in the ni_user_rec_interrupt_mask, but the same
bit must be cleared in the ni_rec_interrupt_mask register.

Effect: None. The arrived message may be read normally.

Handling: These interrupts are intended as an aid in receiving Data Network
messages. Your interrupt handler should determine the appropriate
action to take to receive the tagged message that signaled the inter-
rupt.

NI Version 22 (CM-SE), June 1994 177
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
· ~s~t~~__ _

B.5 Bus Errors

Bus Errors indicate that a bus transaction cannot be completed, as in an attempt
to read a virtual address that does not correspond to a register, or to write a mes-
sage that doesn't conform to protocol. Bus Errors are signaled asynchronously
and are usually irrecoverable. Bus Errors are distinct from segmentation viola-
tion errors, which result from attempting to read an unmapped virtual address,
and are signaled synchronously with the offending instruction.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt_cause ni_interrupt_clear

B.5.1 Bad Memory Access .................................. Bus Error

Flags: ni_cause/clear/set_bad_memory_access

Cause: Bus Errors are signaled for number of reasons, including:

* attempting to read a read-protected address

* attempting to write a write-protected address

* attempting to read or write a value that does not fit in a register

* attempting to read or write an address that is not a register

Note: If the flag ni_disable_bus_error is set, Bus Errors are signaled as
a Yellow Interrupt (see Section B.3.2 above).

Some specific examples of Bus Error causes are:

Bus Errors caused by reads or writes:

· reading or writing a supervisor-only register from the user area

* reading the ni_interfacerec register of an empty receive FIFO

• attempting to read a doubleword from a FIFO that has only a word left, or
attempting to use a doubleword operation to write a singleword message

* writing the sendfirst register of a network interface while there is an
incomplete message pending in the send FIFO

* writing the send register of a network interface without having first writ-
ten a value to the corresponding send_first register

178 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Appendix B. NI Interrupts
·_

* writing a message to any of the Data Network's send_first registers
with a length value that is greater than either five words or the value of the
register ni_longest_dr_message, whichever is less.

* writing a message to any of the Data Network's send_first_long reg-
isters with a length value that is greater than the value of the register
ni_longest_dr_message.

Bus Errors caused by sending a message:

· attempting to send a message longer than the entire send FIFO

* attempting to send a message via a network interface for which the corre-
sponding abstain flag is set

* attempting to send a user message with a supervisor-reserved tag

* attempting to send or receive a message through an excluded Data Net-
work interface

* attempting to send a combine message with an illegal combiner or pattern
value

* attempting to send a network-done message with a length greater than 1,
or attempting to send any network-done message while the ni_net-
work_done flag is 0 or the ni_com_abstain flag is 1

* attempting to send a synchronous global message or to change the
ni_sync_global_abstain flag while the ni_sync_global_com-
plete flag is 0

Bus Errors caused by other operations:

· attempting to start a flush operation while the niflush_complete flag
isO

* attempting to start a configuration operation while the ni_configura-
tion_complete flag is 0

* attempting to send a broadcast interrupt while the ni_inter-
rupt_send_ok flag is 0

· attempting to write a value to the niinterface_rec register when the re-
ceive FIFO is full.

NI Version 22 (CM-SE), June 1994 179
Copyright © 1994 Thinking Machines Corporation



NI Programmer 's Handbook
_ _ _ smf~ b~~~di~~*" .. *.

Effect: The address, size, and type of the offending memory transaction is
stored in the ni_bad_address register.

Any data written by the offending transaction is lost. Any side
effects that would have been triggered by the offending transaction
(such as the initiation of a synchronous global operation) do not oc-
cur. In particular, an attempted doubleword read from a receiving
FIFO containing only one word will not result in popping the word.

Handling: Examine the ni_bad_address register to determine what
memory transaction caused the error.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

180



Appendix C

Programming Tools
· ._

This appendix describes the important C macros and constants defined by the
CMNA software layer (that is, those relating to the NI chip itself).

C1 Generic Variables and Macros

To determine the address of a node, and its place within its partition, use these
variables:

int CMNA self address

int CMNA_partition_size -
Relative address of current node.
Number of nodes in partition.

These are the macros used to examine fields of the niinterface_status regis-
ter (but not the status_all register) for any interface that has such a register:

Field Name: Macros Used to Read Value of Field:

ni send ok
ni_sendspace
ni_sendempty
nirec ok
ni_rec_length
ni_rec_length_left

SEND_OK (status_value)
SEND_SPACE (status_value)

SEND EMPTY (statusvalue)
RECEIVEOK (status_value)
RECEIVELENGTH (status_value)
RECEIVE LENGTH LEFT (status_value)

For interfaces that have an abstain flag, there is a pair of macros that can be used
to read and write the value of the flag:

value = CMNA_read_abstain_flag (register_address);
CMNA_writeabstain_f lag( register_address, value);

181NI Version 22 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation



NI Programmer Handbook.... ~~~~~~ _ ~~ · ~- 

For both macros, register_address is a symbolic constant giving the address of
the abstain flag register (this is defined separately for each interface that has such
a register).

For the write macro, value is the new value (0 or 1) to be written to the flag.

C.2 Data Network Constants and Macros

Send and Receive Register Macros

The send_first registers for the Data Network interfaces are accessed via the
macros below:

Register Name: Macros Used to Write First Value of Message:

ni dr send first

ni ldr sendfirst

ni rdrsend first

CMNA_dr_send_first {_long} (tag, length, value)
CMNA_drsend_first_double{_long (tag,length,value)
CMNA_ldr_send_first{_long} (tag, length, value)

CMNA_ldr_send_first_double{_long} (tag, length, value)

CMNA_rdr_send_first {_long} (tag, length, value)
CMNA_rdr_send_first_double{_long} (tag, length, value)

The length argument in each case is the total length in words of the message to
be sent (excluding the address word), and the tag argument is the message's tag
value.

The send and rec registers of the Data Network interfaces can be written to and
read from by the generic register macros in Section C.1, and by the following
special-purpose macros:

Register Name: Macros Used to Access Register:

ni dr send

nildr send

ni ldr recv

CMNAdrsendword (word_value)
CMNA_dr_send_float (floatvalue)
CMNAdr_send_double (double_value)
CMNA_ldr_send word (word_value)
CMNA ldr_sendf loat (float_value)
CMNA_ drsend double (double_value)
wordvalue = CMNA_ ldrreceive word();
float_value = CMNA _ldrreceive float();
doublevalue = CMNA ldrreceive double();

NI Version 2.2 (CM-SE), June 1994
Copyright C) 1994 ThinkingMachines Corporation

182



Appendix C. Programming Tools
.. ~S~Z%48~b~_S

Register Name: Macros Used to Access Register:

ni rdrsend

ni rdrrec

CMNA_rdr send_word (word_value)
CMNA_ r dr_send_f loat (float_value)
CMNA rdrsend double (double_value)
wordvalue = CMNA rdrreceiveword();
float value = CMNA rdr receive float();

doublevalue = CMNA rdr receive double();

Status Register Macros

The values of the Data Network status registers can be obtained by using these
macros:

int dr status = CMNA dr send status();
int ldr status = CMNAldrstatus();
int rdrstatus = CMNArdrstatus();

You can extract the fields of the status registers by applying these macros:

Register/Field Name: Macros Used to Access Fields:

ni dr status

nisendok
ni_send_space
nisend state
nirecstate
ni router done complete

nildr status
nisend ok
ni_send_space
nirec ok
nildrrectag
ni rec length

ni_rec_lengthleft
ni rdr status

nisendok
ni_send_space
ni rec ok

ni rdr rec tag

ni_rec_length
ni_rec_length_left

NI Version 22 (CM-5E), June 1994
Copyright © 1994 Thining Machines Corporation

SEND_OK(dr_status)
SENDSPACE(drstatus)
DR_SEND_STATE(dr_status)
DR_RECEIVE_STATE(dr_status)
DRROUTER DONE(dr status)

SEND OK(ldr status)
SEND_SPACE(ldr_status)
RECEIVE_OK(ldr status)

RECEIVETAG(ldrstatus)
RECEIVELENGTH(ldrstatus)
RECEIVE_LENGTH_LEFT(ldr_status)

SEND OK(rdr status)

SEND SPACE(rdr status)

RECEIVEOK(rdrstatus)
RECEIVETAG(rdr status)
RECEIVE LENGTH(rdr status)
RECEIVELENGTH_LEFT(rdr status)

183



NI Programmer Handbook
~~~~ s ~ ~ ~ ~ ~ ~. ***~***Y**..*

Message Length Limit

The maximum length of a Data Network message (not counting the address word
attached in sending it) is given by the constant

MAXROUTERMSGWORDS

C.3 Broadcast Interface Constants and Macros

Send and Receive Register Macros

The send_f irst register for the broadcast interface is accessed via the macros
listed here:

Register Name:

nibc send first

Macros Used to Write First Value of Message:

CMNA_bc_send_first (length, value)
CMNA_bc_send_first double (length, value)

The send and rec registers of the broadcast interface can be written to and read
from by the following special-purpose macros:

Register Name:

nibcsend

ni bc recv

Macros Used to Access Register:

CMNA bc send word(word_value)
CMNA_bc_send_f loat (float_value)

CMNAbcsenddouble (double_value)

word value = CMNA bc receive word();
float value = CMNA bcreceive float();
doublevalue = CMNA bcreceive double ();

Status Register Macros

The value of the broadcast interface status register can be obtained by using this
macro:

int bc status = CMNA bc status ();

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

184

Appendix C. Programming Tools
-. : You '. ' : .can extract' the fields of ., ..the, status register by applying the follo.. ing macros:

You can extract the fields of the status register by applying the following macros:

Register/Field Name:

nibc status
nisend ok
ni_send_space
ni_sendempty
nirec ok
ni rec_length_left

Macros Used to Access Fields:

SENDOK(bcstatus)
SENDSPACE(bcstatus)
SENDEMPTY(bcstatus)
RECEIVEOK(bc status)
BC RECEIVE LENGTH(bc status)

Abstain Register Macros

The broadcast abstain register contains a single flag bit, which can be read and
written using the generic abstain bit operations described in Section C.1.

Register/Field Name:

nibc control
ni rec abstain

Macros Used to Access Fields:

value=CMNAreadabstainflag
(bc_control reg);

CMNA_write_abstain_flag
(bc_control_reg,value);

Message Length Limit

The maximum length of a broadcast message is given by the constant

MAX BROADCASTMSGWORDS

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

185

_ _ _

_ _1_1 _ __ II _ _ _I _ _I I� I _ _

NI Programmer s Handbook
I__d~ i·

C.4 Combine Interface Constants and Macros

Send and Receive Register Macros

The send_first register for the combine interface is accessed via the macros
below:

Register Name: Macros Used to Write First Value of Message:

ni com send first CMNAcom send first
(combiner, pattern, length, value)

CMNA com send first double
(combiner, pattern, length, value)

For scan operations, the combiner argument can be any one of the constants

MAXSCAN
UADD SCAN

ORSCAN
XORSCAN

and the pattern argument can be any one of the constants

SCAN BACKWARD SCAN FORWARD SCAN REDUCE

For network-done operations there is a unique combiner and pattern pair:

combiner:
pattern:

ASSERT ROUTER DONE
SCAN ROUTERDONE

The send and rec registers of the combine interface can be written to and read
from by the generic register macros in Section C.1, and by the following special-
purpose macros:

Register Name: Macros Used to Access Register:

nicom send

ni com recv

CMNA _com_send_word (wordvalue)
CMNA_com_send_f loat (float_value)
CMNA_com_send-double (double_value)
wordvalue = CMNAcom receiveword();
float_value = CMNA com receive float();
doublevalue

- CMNA comrnreceivedouble();

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

ADDSCAN

186

Appendix C. Programming Tools

Message Length Limit

The maximum length of a combine message (with the exception of network-done
messages, which are always 1 word) is given by the constant

MAXCOMBINEMSGWORDS

Segment Start Register Macros

The ni_scan_start register is accessed by the following special purpose mac-
ros:

Register Name:

ni scanstart

Macros Used to Access Register:

CMNA_set_segment_start(value)

value = CMNA_segment_start () ;

Status Register Macros

The value of the combine interface status register can be obtained by using the
macro

int com status = CMNA com status();

You can extract the fields of the status register by applying the following macros:

Register/Field Name:

nicom status
nisend ok
ni_send_space
ni_send_empty
nirec ok
nirec_length
ni_rec_ lengthleft
ni com scan overflow

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Macros Used to Access Fields:

SENDOK(com status)
SEND SPACE(comrnstatus)

SEND EMPTY(comrnstatus)

RECEIVEOK(comstatus)
RECEIVELENGTH(com status)
RECEIVE LENGTH LEFT(com status)
COMBINEOVERFLOW(com status)

187

_ ______ ____ __

_ _� 1_1_ __ __ __

NI Programmer 's Handbook
..... L .. .

Abstain Register Macros

The combine abstain register contains two single-bit flags, which can be read and
written by the macros listed below:

Register/Field Name: Macros Used to Access Fields:

nicom control
ni rec abstain value=CMNA_read abstain_flag

(com_control_reg);

CMNA_wr ite_abstain_f lag

(com_control_reg,value);

nireducerecabstain
value=CMNA_read_rec_abstain_flag (cocmontrol_reg);

CMNA_write_rec_abstainflag (com_control_reg,value);

C.5 Global Interface Constants and Macros

Synchronous Global Register Macros

The synchronous global registers are read and written by the following macros:

Register Name: Macros Used to Access Register:

ni_sync_global_send

ni_sync_global
ni_sync_global_complete

ni_sync_global_rec

CMNA_or_global_sync bit (value)

value =

CMNA_global_sync_complete()
value =

CMNA_global_sync_rec()

ni_sync_global_abstain

value= CMNA_read_abstain_flag

(sync_global_abstain_reg);

CMNA_wr ite_abstain_f lag

(sync_global_abstainreg,value);

NI Version 22 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

188

Appendix C. Programming Tools
· · a_

Asynchronous Global Register Macros

The two flags of the asynchronous global register are read and written by these
macros:

Register/Flag Name: Macros Used to Access Register:

ni_async_global
ni_global_send CMNAor_global_async_bit (value)
ni_global_rec value = CMNA_global_async_read()

NI Version 22 (CM-SE), June 1994 189
Copyrnght © 1994 Thinking Machines Corporation

-- ' -I

Appendix D

Predefined Low-Level NI Constants

For ease of reference, here are the low-level programming constants defined in
the header files cmsys/ni_constants .h, and cmsys/ni defines.h (see
Appendix H), grouped by register and field.

Note for C Programmers: These constants are defined as raw, unsigned integer
values. If you use them in C code, you must recast them as pointer values of type
(unsigned *). Otherwise, the C compiler will treat them as integers, possibly

causing "illegal pointer operation" errors.

Send First Register Constants ===
Field Offsets:
SFFIFOOFFSET (12)
AUXILIARYSTARTP (3)

Length Constant:

Interface Number cc
DATA ROUTER FIFO
LEFT DR FIFO
RIGHT DR FIFO
USER BC FIFO
SUPERVISORBC FIFO
COMBINEFIFO

NISEND FIRST L (32)

Onstants:

(1)

(6)

(7)

(3)

(4)

(5)

===- Auxiliary Data Field Constants ===
--- DR/LDR/RDR Interface ---
NIDRSEND AUXILIARY ADDRESS MODE P (8)
RELATIVE (0)

PHYSICAL (1)

NIDRSEND AUXILIARY TAGP (4)
NIDRSENDAUXILIARYLENGTH P (0)

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

NI DR TAG L (4)
NIDR LENGTH L (4)

191

--

NI Programmer 's Handbook
· - <:"~:' ':oo~~:~:,:.:...::.-~:~ · . ' ' ~:::... .::':.':. ,.::: : , . -'$-' '-o·-:: .

=== Auxiliary Data Field Constants, cont.
--- BC/SBC Interface ---
NI_BC_SEND_AUXILIARY LENGTH_P (0) (no length constant)

--- COM Interface ---

NI COM SEND AUXILIARY PATTERN P (7)
NICOM SEND PATTERN L (2)
SCANROUTER DONE (0)
SCANBACKWARD (1)
SCAN FORWARD (2)
SCANREDUCE (3)

NI COM SEND AUXILIARY COMBINER P (4)
NICOM SENDCOMBINERL (3)
ORSCAN (0)

ADDSCAN (1)
XOR SCAN (2)
UADD SCAN (3)
MAXSCAN (4)
ASSERTROUTER DONE (5)
NI COM SEND AUXILIARY LENGTH P (0)
NI COM SEND LENGTH L (4)

==- Interface send/receive FIFO size limits
MAX ROUTER MSG WORDS (5)
MAXCOMBINEMSG WORDS (5)
MAX BROADCAST MSG WORDS (4)
MAX SBC MSG WORDS

=== Send Registers
NIDRSEND A
NILDRSEND A
NI RDR SEND A
NI BC SEND A
NI SBC SEND A
NI COM SEND A

NISEND L (32)

(4)

(NI BASE
(NI-BASE
(NI BASE
(NI-BASE
(NI BASE
(NI BASE

=== Receive Registers ===

NIDRRECV A (NI BASE
NILDRRECV A (NI BASE
NIRDR RECVA (NIBASE
NI BC RECV A (NI BASE
NI SBCRECVA (NI BASE
NICOMRECV A (NI BASE
NI REC L (32)

0x0230)
0x0c30)
OxOe30)
0x0630)
0x0830)
0x0a30)

0x0220)
0x0c20)
0x0e20)
0x0620)
0x0820)
0x0a20)

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

192

Appendix D. Predefined Low-Level NI Constants
.. ~~. ~~..

=== Status Register
NIDR STATUS A
NI DR STATUS ALL A
NIDR STATUS LONG A
NILDR STATUS A
NILDR STATUS ALL A
NILDR STATUS LONG A
NIRDR STATUS A
NIRDR STATUS ALL A
NIRDR STATUS LONG A
NI XDR STATUS L (19)

NIBC STATUS A
NI SBC STATUS A
NIBC STATUS L (11)

NICOM STATUS A
NI COM STATUS L (21)
NISTATUS L (25)

Field Constants:
NI SEND SPACE P (0)
NI REC OK P (4)
NI SEND OK P (5)

(NI BASE I 0x0200)
(NI BASE + 0x0250) /* 2.2 */
(NI BASE + 0x0260) /* 2.2 */
(NI BASE I 0x0c00)
(NI_BASE + 0x0c50) /* 2.2 */
(NIBASE + 0x0c60) /* 2.2 */
(NIBASE IOxOeO0)
(NI_BASE + 0x0e50) /* 2.2 */
(NI BASE + 0x0e60) /* 2.2 */
NISTATUSLONGL (28) /* 2.2 */

(NIBASE I 0x0600)
(NI_BASE I 0x0800)

(NIBASE OxOaO0)

NISEND SPACE L (4)
NIREC OK L (1)
NISENDOK L (1)

NI ROUTER DONE COMPLETE P(6) NI ROUTER DONE COMPLETE L (1)
NI SEND EMPTY P (6) NISEND EMPTY L (1)
NI REC LENGTH LEFT P (7) NI RECLENGTHLEFTL (4)

NIBC REC LENGTH LEFT LONG L (7) /* 2.2 */
NI RECLENGTH P (11) NIRECLENGTHL (4)
NI DR REC TAG P (15) NIDRRECTAGL (4)
NICOM SCANOVERFLOWP (20) NICOMSCAN OVERFLOW L (1)
NIDRSEND STATEP (21) NIDRSENDSTATEL (2)
NI DRREC STATEP (23) NIDRRECSTATEL (2)
/* 2.2 */
NI SENDSPACE LONGP (0) NISENDSPACELONGL (5)
NI REC OK LONG P (5) NI REC OK LONG L (1)
NISENDOK LONGP (6) NISENDOK LONGL (1)
NI ROUTER DONE COMPLETE LONG P (7)
NI ROUTER DONE COMPLETE LONG L (1)
NIREC LENGTHLEFTLONGP (8) NIRECLENGTHLEFTLONGL (5)
NI RECLENGTHLONGP (13) NIRECLENGTHLONGL (5)
NI DR REC TAG LONG P (18) NI DR REC TAG LONG L (4)
NI DRSEND STATELONGP (24) NIDRSENDSTATELONGL (2)
NIDRRECSTATELONGP (26) NIDRRECSTATELONGL (2)

NI Version 2.2 (CM-SE), June 1994 193
Copyrght © 1994 Thinking Machines Corporation

NI Programmer [i Handbook
~~~~~~~8·si~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s~~~~~~~~~~~~~

===- Control Registers ===
NI_BC_CONTROLA (NIBASE I 0x0610)
NI SBCCONTROL A (NI BASE I 0x0810)
NIBCCONTROLL (1)
NICOM CONTROL A (NIBASE I 0x0al0)
NI COMCONTROLL (2)
NICONTROLL (2)

Field Constants:
NIRECABSTAIN P (0) NIRECABSTAIN L (1)
NIREDUCERECABSTAIN P (1) NIREDUCEREC ABSTAIN L (1)

=== Private Registers
NI DR PRIVATE A
NI DR PRIVATE L (10)

(NIBASE I 0x0208)

NI LDR PRIVATE A
NIRDR PRIVATE A
NI XDR PRIVATE L (6)

NI BC PRIVATE A
NI SBC PRIVATE A

NI BC PRIVATE L (5)

NI COM PRIVATE A
NICOM PRIVATE L (18)

(NIBASE
(NIBASE

(NIBASE
(NI_BASE

0x0c08)
1 OxOeO8)I0x0e08)

I 0x0608)

I 0x0808)

(NIBASE I OxOaO8)

NIPRIVATEL (18)

Field Constants:

NI REC OK IE P (0)
NI LOCK P (1)
NI REC STOP P (2)
NI REC FULL P (3)
NI SEND ENABLE P (4)
NI BC SEND ENABLE P (4)
NI COM SCAN OVERFLOW IE P(4)
NI DR REC ALL FALL DOWN P(5)
NI COM REC EMPTY IE P (5)
NI ALL FALL DOWN IE P (6)
NI ALL FALL DOWN ENABLE P(7)
NI COM SEND LENGTH P (8)
NI COM SEND COMBINER P (12)
NI COM SEND PATTERN P (15)
NI COM SENDSTART P (17)

NI REC OK IEL (1)
NILOCK L (1)
NIREC STOP L (1)
NIRECFULLL (1)
NISEND ENABLE L (1)
NI BC SEND ENABLE L (1)
NICOM SCAN OVERFLOW IE L
NI DR REC ALL FALL DOWN L
NICOMREC EMPTY IE L (1)
NI ALLFALL DOWN IE L (1)
NI ALL FALL DOWN ENABLE L
NI COM SEND LENGTH L (4)
NI COM SEND COMBINER L (3)
NI COM SEND PATTERN L (2)
NI COM SEND START L (1)

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

(1)
(1)

(1)

- -

194



Appendix D. Predefined Low-Level NI Constants
: 0x008

=== Global and System Registers ===
NI_INTERRUPTCAUSEA (NI_BASE I 0x0000)
NI_INTERRUPT_SET_A A (NI_BASE + 0x0190) /* 2.2 */
NICAUSE INTERNAL FAULT P (0)
NI CAUSE MC ERROR P (1)
NI CAUSE CMU ERROR P (2)
NICAUSE BC INTERRUPT RED P (3)
NI CAUSE CN CHECKSUM ERROR P (4)
NI CAUSE CN HARD ERROR P (5)
NI CAUSE DR CHECKSUM ERROR P (6)
NI CAUSE TIMER INTERRUPT P (7)
NI CAUSE BC INTERRUPT ORANGE P (8)
NI CAUSE BC INTERRUPT YELLOW P (9)
NI CAUSE BC OR COM COLLISION P (10)
NI CAUSE COM ABSTAIN CHANGED P (11)
NI CAUSE DR COUNT NEGATIVE P (12)
NI CAUSE BAD RELATIVE ADDRESS P (13)
NI CAUSE BAD MEMORY ACCESS P (14)
NI CAUSE MESSAGE TOO LONG P (15) /* 2.2 */
NI CAUSERDONE_COMPLETEP (16) /* 2.2 */
NIINTERRUPT L (1)

NI INTERRUPT CAUSE GREEN A (NI BASE
NI INTERRUPT SET GREEN A (NI BASE
NICAUSE BC INTERRUPT GREEN P (0)
NI CAUSE SCAN OVERFLOW P (1)
NI CAUSE BC REC OK P (2)
NI CAUSE SBC REC OK P (3)
NI CAUSE COM REC OK P (4)
NI CAUSE COM REC EMPTY P (5)
NI CAUSE SYNC GLOBAL REC P (6)
NI CAUSE GLOBAL REC P (7)
NI CAUSE SUPERVISOR GLOBAL REC P (8)
NI CAUSE DR REC OK P (9)
NI CAUSE LDR REC OK P (10)
NI CAUSE RDR REC OK P (11)
NI CAUSE DR REC TAG P (12)
NI CAUSE DR REC ALL FALL DOWN P (13)
NI CAUSELDR REC TAG P (14) /* 2.2 */
NI CAUSERDR REC TAG P (15) /* 2.2 */
NICAUSE_LDR_USER_RECTAG_P (16) /* 2.2 */
NICAUSE_RDRUSER_REC_TAGPP (17) /* 2.2 */
NI CAUSE SFIFO EMPTY (18) /* 2.2 */
NI CAUSEDPERR (19) /* 2.2 */
NI INTERRUPT L (1)

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinang Machines Corporation

I 0x0008)

+ 0x0198) /* 2.2 */

195



NI Programmer Handbook
? ;~ v,:°".' "i.',-,¢::.::L'h:," ,.'¥..Y:,'';L . . . ; "i : . ' ,.'.I:":' .. ·:, ' ,% '.".""'?''....'....,'

NIINTERRUPT LEVEL A
NIINTERRUPT LEVEL L (32)
NI INTERRUPT LEVEL COLOR L (8)

(NI_BASE I 0x0010)

NILONGEST DR MESSAGE A (NI BASE + 0x0160) /* 2.2 */
NI USER REC INTERRUPT MASK A (NIBASE + 0x0168) /* 2.2 */

NIPHYSICAL SELF A
NIPARTITION BASE A
NIPARTITION SIZE A
NIPHYSICAL ADDRESS L (20)

NICHUNKTABLEADDRESS A
NI CHUNK TABLE ADDRESS L (6)

NICHUNKTABLEDATA A
NICHUNK TABLE DATA L (8)

NICHUNKSIZE A
NI CHUNK SIZE L (3)

NIDRMESSAGECOUNTA
NIDR MESSAGE COUNT L (32)

NICOUNTMASKA
NI REC INTERRUPT MASK A
NIUSER TAG MASK A
NITAGMASKL (16)

NITIME A
NITIMEL (32)

NICONFIGURATION A
NICONFIGURATIONL (5)

NIINTERRUPTSEND A
NIINTERRUPTSENDL (5)

NI SERIAL NUMBER A
NISERIALNUMBERL (32)

NISYNCGLOBAL A
NISYNCGLOBALRECP (0)

NISYNCGLOBALRECL (1)
NISYNCGLOBAL COMPLETEP(1)

(NIBASE
(NI BASE
(NIBASE

I OxOO18)

I 0x0020)

I 0x0028)

(NIBASE I 0x0030)

(NIBASE I 0x0038)

(NIBASE I 0x0040)

(NIBASE I 0x0048)

(NIBASE
(NIBASE
(NIBASE

I Ox0050)
I 0x0058)

I 0x0060)

(NIBASE I 0x0070)

(NIBASE I 0x0078)

(NIBASE I 0x0080)

(NI_BASE I 0x0088)

(NIBASE I 0x0090)

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

196



Appendix D. Predefined NI Constants
'a _ $~~'

NISYNC GLOBAL COMPLETE L (1)
NISYNC GLOBAL L (2)

NISYNCGLOBALABSTAIN A
NI SYNC GLOBAL ABSTAIN L (1)

NICOM FLUSH SEND A
NI FLUSH SEND L (1)

NIASYNC GLOBAL A
NIGLOBAL SEND P (0)
NIGLOBALRECP (1)
NIGLOBAL L (2)

(NI_BASE I

(NI_BASE I

(NI_BASE I

NIGLOBALSENDL (1)
NIGLOBALREC L (1)

0x0098)

0x0OaO)

OxOOa8)

NI_ASYNC_SUP_GLOBAL_A (NI_BASE I 0x0ObO)
NISUPERVISORGLOBALSENDP (0)
NISUPERVISORGLOBALSENDL (1)
NISUPERVISOR GLOBALRECP (1)
NISUPERVISORGLOBALRECL (1)

NI GLOBAL L (2)

NI_HODGEPODGEA (NI_BASE I 0x00b8)
NIGLOBAL REC IE P (0)

NIGLOBAL REC IE L (1)
NI SUPERVISOR GLOBAL REC IE P (1)

NI SUPERVISOR GLOBAL REC IE L (1)
NIFLUSH COMPLETE P (2)

NIFLUSH COMPLETE L (1)
NIINTERRUPTSENDOK P (3)
NIINTERRUPT SEND OK L (1)
NICONFIGURATION COMPLETE P (4)
NI CONFIGURATION COMPLETE L (1)
NIINTERRUPT REC ENABLE P (5)
NIINTERRUPT REC ENABLE L (1)
NISYNC GLOBAL REC IE P (6)

NISYNC GLOBAL REC IE L (1)
NITIMER IE P (7)
NI TIMER IE L (1)
NI CN STOP SEND P (8)
NICN STOP SEND L (1)
NIDISABLE BUS ERROR P (9) /* 2.2 */
NIDISABLE BUS ERROR L (1) /* 2.2 */
NILDR REC TAG IE P (10) /* 2.2 */
N I L D R R E C T A G IE L (1) / * 2 .2 */
NIRDR REC TAG IE P (11) /* 2.2 */
NIRDR REC TAG IE L (1) /* 2.2 */

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

197



NI Programmer Handbook

NI LDR USER REC TAG IEP (12) /* 2.2 */
NI LDR USER REC TAG IEL (1) /* 2.2 */
NI RDR USERREC TAG IEP (13) /* 2.2 */
NI RDR USERREC TAG IEL (1) /* 2.2 */
NIMSGTOOLONG IEP (14) /* 2.2 */
NI MSG TOO LONG IE L (1) /* 2.2 */
NI HODGEPODGE L (15)

NI SYNC GLOBAL SEND A
NI SYNC GLOBAL SEND L (1)

NI INTERRUPT CLEAR A
NI INTERRUPT CLEAR GREEN A
(use same constants as for CAUSE

NI INTERRUPT NOW A
NI INTERRUPT NOW L (32)

NI SCAN START A
NI SCAN START L (1)

NI BAD ADDRESS A
NI BAD ADDRESS L (32)

(NI BASE I 0x00CO)

(NIBASE
(NI BASE

register)

I 0x00c8)

I oxoOdO)

(NI BASE I 0x0Od8)

(NIBASE I 0x0OeO)

(NIBASE OxOe8)

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

198



Appendix E

CMOS_signal Man Page

CMOs_signal - asynchronous event handlers on the nodes

Syntax:

#include <cmsys/cmsignal.h>
(*CMOS_signal(sig, func, mask)) ()
int sig;
void (*func) ();
int mask;

Description:

CMOS_signal allows code on the nodes to specify software handlers for certain asynchro-
nous events. It is the responsibility of the user to ensure that the signal handler does not
change the state of the node in any way that will disrupt execution of the interrupted code.

A node program can specify that the arrival of Data Network messages with a certain set
of tags will generate an interrupt. The program specifies the message handler and the set
of tags with a call to CMos_signal () with sig = SIGMSG, *func set to the address of
the user-written handler function, and mask set to a bit mask specifying which tags will
interrupt. (Bit 0 corresponds to tag 0, bit 1 corresponds to tag 1, and so forth.) Currently,
tags 0 to 3 are reserved for user messages. Bits 4 and up are reserved for system messages,
and may not be used or referenced by user code.

The context of the node except for the floating point context and the global registers g5,
%g6, and %g7 is saved before the user message handler is called. Thus, use of floating-point
instructions in the user message handler will cause unpredictable errors in the interrupted
code. Also, the network state of the CM is not altered before entering the user message
handler. Thus, the message(s) that produced the interrupt will still be in the receiving FIFO
when the user message handler is invoked. It is the responsibility of the user message
handler to empty these messages.

NI Version 22 (CM-5E), June 1994 199
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
... W.,. 

Return Values:

CMOS_signal () returns the previous action on success. On failure, it returns -1 and sets
errno to indicate the error.

Errors:

CMOSsignal () will fail and no action will take place if one of the following occurs:

EINVAL sig was not a valid signal number.

Notes:

The handler routine can be declared:

void handler()

The routine is not passed any parameters relating to the received message. The user mes-
sage handler must read the NI registers to determine such details as the tag of the message
and whether the message has arrived via the left or right Data Network interface, etc.

Message interrupts are disabled while user code is in a user message handler. Thus, user
message handlers need not be reentrant. However, the message handler should not enable
interrupts (via a call to CMO_signal (0.) If it does, the results are unpredictable. Also,
note that if the user code anticipates a series of interrupting messages, the arrival of the first
message can be used to invoke the message handler and the remaining messages can be
received via polling within the handler, thus saving the overhead of an interrupt for all but
the first message. Message interrupts are disabled by a call to CMos_ signal () with func
set to CM_SI_IGN. The mask argument is ignored. (Note that all user tag interrupts.are
disabled by this call.)

200 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Appendix F

NI Accessor Examples
· .A. . ~ . .

Here are some examples of macros that C programmers can use to access the
registers and fields of the NI. In most cases, these macros take as arguments the
register and field constants defined previously in this manual.

F.1 Reading and Writing Registers

The simplest NI register operations involve reading and writing the value of a
register, typically with one of three types of values: unsigned, float, and double.
The macros below provide a simple register reading/writing interface.

niregister(type,reg)
ni readreg(reg)
ni_read_reg_f(reg)
ni read reg_d(reg)

*((type *) (reg))

ni_register(unsigned, reg)
ni_register(float, reg)

ni_register (double, reg)

#define ni_set_register(type,reg,value)
ni_register(type, reg) = ((type) (value))

#define ni_write_reg(reg)
ni_set_register(unsigned, reg, value)

#define ni_write_reg_f(reg)
ni set_register(float, reg, value)

#define ni_write_reg_d(reg)
ni_set_register(double, reg, value)

In these examples the reg argument is the address constant of the appropriate
register, and the value argument is the word, float, or double to be written.

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

201

#define
#define
#define
#define



NI Programmer Handbook
2~-_3mse

F.2 Reading and Writing Subfields

Often, you'll want to read or write the value of a register subfield. Here's a set
of macros that efficiently extract a field from a register. (Note that thefield argu-
ment in these examples is the name of the field constant without the _P or _L
suffixes - these are added automatically by the macros themselves.)

/* mask for values that will fit into the given field */
#define ni_mask_fieldvalues (fieldlength) \

(-(-O << field_length))

/* mask that extracts a field from the register */
#define ni_mask_field (position, length) \

(ni_mask_field_values (length) << position)

/* right-shift register value, mask out the field */
#define ni_get_field (register_val, pos, len) \

((register_val >> pos) & ni_mask field_values(len))

#define niread_field(register, pos, len) \
ni_get_field(ni_read_reg(register), pos, len)

And here's a set of macros that efficiently modify the value of a register field:

/* mask that is ANDed with register to change field */
#define ni_new_value_mask(pos, len, newvalue) \

-((new_value ^ ni_mask_field_values(len)) << pos)

/* Logical AND register with mask that changes field */
#define ni set field(reg val, pos, len, new value) \

(reg_val & ni_new_value_mask(pos, len, new_value))

#define ni_write_field(reg, pos, len, new_value) \
ni_write_reg(register, \

ni_set_field(ni_read_reg(reg), pos, len, new value))

You may also want to simply set or clear an arbitrary set of register bits:

#define ni_set bits_in_register(reg, bitmask) \
ni_write_reg(reg, ni_read_reg(reg) I (bitmask))

#define ni_clear bits_in_register (reg, bitmask)\
ni_write_reg(reg, ni_read_reg(reg) & -(bitmask))

202 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Appendix F. NI Accessor Examples
_____ _ _

F.3 Constructing Send-First Addresses

The only other major set of programming tools that you might need are macros
that construct a send_first address for a given interface. For example:

#define ni send firsta(interface,auxiliary_data) \
((unsigned *) ( NIBASE + \

(interface << SFFIFOOFFSET I \

auxiliary_data << AUXILIARY_START_P)))

#define ni_send_first(interface,auxiliary_data,value) \
ni_write_reg(ni_send_firsta(interface,auxiliary_data), \

value)

Data Network Send-First Macros

Here's a set of macros that constructs the send_first addresses for the three
Data Network interfaces:

#define ni_xdr_auxiliary_data(mode,tag,length) \
( mode << NIDR SEND AUXILIARY ADDRESS MODEP 
tag << NI_DR_SEND_AUXILIARY_TAG P \

length << NIDR_SEND_AUXILIARY_LENGTH_P )

#define ni dr_send_first(mode, tag, length, value) \
ni send first (DATA ROUTERFIFO, \

ni_xdr_auxiliary_data(mode,tag,length), \

value)

#define nildr_send first(mode, tag, length, value) \
ni send first (LEFT_DR_FIFO, \

ni_xdr_auxiliary_data(mode,tag,length), \

value)

#define nirdrsend_first(mode, tag, length, value) \
ni send first(RIGHTDR FIFO, \

nixdr_auxiliarydata(mode,tag,length), \
value)

NI Version 22 (CM-5E), June 1994
Copyright @ 1994 Thinking Machines Corporation

203



NI Programmer Handbook
_m__w____s~

Broadcast Interface Send-First Macros

Here's a set of macros that constructs the send_first addresses for the two
broadcast interfaces:

#define ni xbc auxiliary data(length) \
( length << NIBC_SEND_AUXILIARY_LENGTH_P )

#define ni bc send first(length, value) \
ni send first(USER BC FIFO, \

ni_xbc_auxiliary_data(length), \
value)

#define nisbc send first(length, value)
ni_sendfirst(SUPERVISOR_BCFIFO, \

ni_xbc_auxiliarydata(length), \
value)

Combine Interface Send-First Macros

Finally, here's a set of macros that constructs the sendf irst addresses for the
combine interface:

#define nicom auxiliary_data(pattern,combiner,length) \
( pattern << NI COM_SENDAUXILIARY_PATTERN_P I
combiner << NI COM SEND AUXILIARY COMBINER P \
length << NI COM SENDAUXILIARYLENGTHP )

#define ni bc send first (pattern,combiner,length,value)\
ni sendfirst(COMBINEFIFO, \

ni com auxiliary data (pattern, combiner,\
length) \

value)

204 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

-

_--



Appendix G

Sample NI Programs

This appendix contains a series of NI programs that test all the programming examples
shown in the chapters of this manual. For each program, only the PM and node code files
are given. The interface file for each program is identical to that given for the sample pro-
gram in Chapter 7, and these test programs #include the same utils .h file as is used
in Chapter 7.

As of Version 7.1.3 of the CM system software, CMosT, there are on-line copies of the
sample programs presented here. Depending on where your system administrator has
stored the CM software, these files may be located under the pathname /usr/cm/src/
ni-examples. Check with your system administrator for help in locating these files.

Important: You should view the examples presented here as merely a cookbook of pos-
sible ideas, not a hard-and-fast rulebook on network protocol. These examples are written
for clarity, not efficiency, and your own individual application should be your guide as to
how to rearrange the code fragments presented here, and how best to trim them for speed.

G.1 Data Network Test

This program presents examples of a number of different kinds of Data Network
operations, including

* sending/receiving messages limited by the length of the network queues

* sending and receiving unlimited-length messages

* using interrupt-driven message retrieval

· sending and receiving by the LDR and RDR simultaneously

NI Version 2.2 (CM-SE), June 1994 205
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
_~B~S3~a3B~ _ ·

Filename: LDR test. c

/* LDR test program - PM program */
#include cm/cmna.h>
#include "utils.h"

#define LONGFACTOR 5

void main () {
int input, result, high_node;
printf("\nLDR test program, by William R. Swanson,\n");
printf("Thinking Machines Corporation -- 2/3/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in(NIBC_SEND_ENABLE);
/* Abstain from broadcast reception and combine sending */
save_and_set_abstain_flags(1,1,0,0);
/* Start node programs running */
node main();

/* Get a value from the user and send it to the nodes. */
printf ("This CM-5 partition has %d nodes.\n",

CMNA_partition_size);
printf("Please type an integer to send to the nodes: ");
scanf("%d", &input);
PM_send_to_NODE(O, input);
printf("Sent value %d to node 0...\n",input);
/* Wait for the nodes to finish juggling numbers */
PMNODEsynch ();

/* Get value from high node */
high node = CMNA partition size - 1;
result = PM_get_from_NODE(high_node);
printf("Short send:\n");
printf("Received value %d (should be %d) from node %d.\n",

result, input+MAX_BROADCAST_MSG_WORDS-l,high_node);
result = PM_get_fromNODE (high_node);
printf("Long send:\n");
printf("Received value %d (should be %d) from node %d.\n",

result, input+(MAXBROADCAST MSGWORDS*
LONG_FACTOR)-1, high_node);

result = PM_get_from_NODE(high_node);
printf("Interrupt-driven send:\n");
printf("Received value %d (should be %d) from node %d.\n",

result, input+MAXBROADCAST_MSG_WORDS-, high_node);
result = PM_get_from_NODE(0);

206 NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation



Appendix G. Sample NI Programs

printf("Dual-network send:\n");
printf("Received value %d (should be %d) from node %d.\n",

result, MAX BROADCAST MSG WORDS, 0);
restore_abstain_flags();

Filename: LDRtest.node.c

/* LDR test program - node program */
#define NIROUTERDONEP NIROUTER DONE COMPLETE P
#include <cm/cmna.h>
#include <cmsys/cm_signal.h>
#include "utils.h"
#define LONGFACTOR 5

/* Send/Receive functions limited by length restriction */
int LDRsend (destaddress, message, length, tag)

unsigned destaddress, tag;
int *message;
int length;

int i;

CMNAldrsendfirst(tag, length, dest_address);
while (length--) CMNA_ldr_sendword(*message++);
return (SENDOK(CMNAl drstatus())); }

int tag_limit=0;

int LDRreceive (message, length)
int *message;
int length;

int i, tag = 999;
/* Skip messages currently assigned as interrupts */
while (tag>tag_limit) {

if (RECEIVE OK(CMNA ldr status()))
tag = RECEIVE_TAG (CMNA_ldr_status());

}

while (length--)
*message++ = CMNA_ldrreceiveword();

return (tag);

NI Version 2.2 (CM-SE), June 1994 207
Copyright © 1994 Thinking Machines Corporation



NI Programmer Handbook
... .',...

/* Send/Receive function with no length restriction */
LDR_send_receivemsg(dest_address, message, length, tag, dest)

unsigned dest address, tag;
int *message, *dest;
int length;

int packet size=MAX ROUTERMSG WORDS- 1;
int send size, receive size;
int offset, source offset=0, destoffset;
int words_to send=length, wordsreceived=O;
int count, rec_tag, status;

while ((words_received < length) I 1 (words_to_send)) {

/* First try to receive a packet */
status=CMNA ldr status();
if (words_received<length &&

RECEIVEOK(status) &&
RECEIVE TAG (status) <= tag limit) {

dest offset 2 CMNA ldrreceive word();
receive size = RECEIVELENGTHLEFT(CMNA ldristatus());
for (count=O; count<receive size; count++)

dest[dest offset++] - CMNA ldr receive word();
words received += receive size;

/* Now try sending a packet */
if (words to send) {
sendsize = ((wordsto send < packet_size) ?

words_tosend : packet_size);
do {

CMNA_ldr_send_first(tag, sendsize + 1, destaddress);
/* Send offset to indicate part of message being sent

*/
CMNAldrsendword(sourceoffset);
offset-source offset;
for (count=O; count<send size; count++)

CMNA ldr send word(message[offset++]);
} while (!SEND OK(CMNA ldr status());
sourceoffset=offset;
words to send - send size;

}

208 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation



Appendix G. Sample NI Programs
~~~~~2a~~~~~~~~~~~~s~~~~~~~~s~~~~~ 

/* Message-receiving handler for interrupt-driven LDR test */
int interruptdone=0;
int interrupt_expect_length;
int interrupt_receive [MAXBROADCAST_MSG_WORDS];

void LDRreceivehandler ()
{

int temp=tag_limit;
tag_limit=3;

LDR_receive(interrupt_receive, interrupt_expect_length);
tag_limit=temp;
interrupt_done=l;

/* Send/Receive functions using LDR and RDR in tandem */
void LDR_ RDRsend (destaddress, message, length, tag)

unsigned dest_address, tag;
int *message, length;

int i;

CMNA_ldr_sendfirst(tag, length, destaddress);
CMNA_rdr_send_first(tag, length, destaddress);
for (i=-O; i<length; i++) {

CMNA_ldr_send_word(message[i]);
CMNA_rdr_send word(message[i]);

int LDR_RDR_receive (message, length)
int *message, length;

int i, ldr_value, rdrvalue, length_received_ok=O;
while (!RECEIVE_OK(CMNAldrstatus())

!RECEIVE OK(CMNA rdr status())) {}
for (i=O; i<length; i++) {

ldr value=CMNA _ldr receive word();
rdr value-CMNA_rdr_ receive word();
if (ldr_value==rdrvalue) {
message [i] =ldr_value;
length_received_ok++;

}

return(length received_ok);

NI Version 22 (CM-SE), June 1994 209
Copyright © 1994 Thinking Machines Corporation

NI Programmer 's Handbook
__ __ _z

/* Combine "network-done" Function */
void networkdonesynch()
{

CMNA com sendfirst(ASSERTROUTERDONE,SCAN ROUTERDONE,1,0);
while (!DR ROUTERDONE(CMNAdr_status())) {};

}

/* Tool to ensure there's nothing in the receive queues */
/* Not used here, but you may find it handy */
void LDRempty_network() {

int status, length, i;
while (status=CMNAldr_status(), RECEIVEOK(status))

if (RECEIVE_TAG(status) <= tag_limit) {
length = RECEIVE_LENGTH (status);
for (i=0O; i<length; i++)

(void) CMNA ldr receive word();

}

void CMPE node main () {
int value=O, i, length=MAX_BROADCAST_MSG_WORDS;
int long_length=length*LONG_FACTOR;
int next node, mirror node;
int received ok;
int send[MAX BROADCAST MSG WORDS*LONGFACTOR],

receive [MAX BROADCAST MSG WORDS],
long_receive [MAX _BROADCAST MSG_WORDS*LONG_FACTOR],
dual receive[MAXBROADCAST MSG WORDS];

/* signal interrupts for non-zero tag values */
CMOS signal(SIGMSG , LDR receive handler , 14);
CMNA_participate_in(NIBC_SEND_ENABLE);
saveand_set_abstainflags (0,0,0,0);

/* All nodes get the value sent by the PM... */
All_NODES_get_from_PM(&value);

for(i=0; i<long_length; i++) {

send[i =value+i;
long_receive[i]=-999;

}

for(i=0; i<length; i++) {
receive[i] =-999;

interrupt_receive [i] =-999;
dualreceive[i]=-999;

}

210 NI Version Z2 (CM-SE), June 1994
Copyright © 1994 Thinkig Machines Corporaion

Appendix G. Sample NI Programs
3~....6~e

/* Calculate some useful addresses */
next_node = (CMNA_self_address + 1) % CMNA_partition_size;
mirror_node = (CMNA_partition_size-1) - CMNA_self_address;

/* Do an ordinary, length-limited send */
LDRsend(next node, send, length, 0);

network_done_synch();
LDR receive(receive, length);
network_done_synch();

/* Do an unlimited-length send */
LDR_send_receivemsg(mirror node, send,

long_length, 0, long_receive);
network_done_synch();

/* Do an interrupt-driven send with a tag of 3*/
interruptexpect_length=length;
LDR_send(next_node, send, length,3);
while (!interruptdone) {}
network_done_synch();

/* Send via both LDR and RDR, and check results */
LDR_RDR_send (mirror_node, send, length, 0);

networkdone_synch ();
received_ok=LDR_RDRreceive (dual_receive, length);

/* Signal to PM that answer is ready */
PM_NODE_synch();

/* Send check values back to PM */
NODE_sendto_PM(receive[length-1]);
NODE_send_to_PM(long_receive[long_length-1]);
NODE_sendto_PM(interrupt_receivev[ength-l);

NODEsendtoPM(receivedok);

restore_abstain_flags();

NI Version 2.2 (CM-SE), June 1994 211
Copyright © 1994 Thinking Machines Corporation

-�--�

NI Programmer Handbook
_Anl ' ~ IMIS

G.2 Data Network Doubleword Messages Test

This program demonstrates the use of doubleword read and write operations for
Data Network transmissions:

Filename: dbl test. c

/* Double-word ops test program - PM program */
#include <cm/cmna.h>
#include "utils.h"

#define LONG FACTOR 5

void main () {
int input, result, high_node;
printf("\nDouble-word test program, by W. R. Swanson,\n");
printf("Thinking Machines Corporation -- 2/3/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in(NI_BC_SEND_ENABLE);
/* Abstain from broadcast reception and combine sending */
save_and_set_abstain_flags(1,1,0,0);
/* Start node programs running */
node main();

/* Get a value from the user and send it to the nodes. */
printf("This CM-5 partition has %d nodes.\n",

CMNA_partition_size);
printf("Please type an integer to send to the nodes: ");
scanf ("%d", &input);
PM send to NODE(O, input);
printf("Sent value %d to node 0...\n",input);
/* Wait for the nodes to finish juggling numbers */
PM_NODEsynch();

/* Get value from high node */
high_node = CMNA_partition_size - 1;
result = PM_get_from_NODE(high_node);
printf("Long send using double-word ops:\n");
printf("Received value %d (should be %d) from node %d.\n",

result, input+ (MAXBROADCASTMSGWORDS*
LONG_FACTOR)-1, high_node);

restore abstain flags();

212 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs s~~~~~g~~~~s~. w~ ~~ * ~. ~~.
Filename: dbltest.node.c

/* Double-word ops test program - PM program */
#include <cm/cmna.h>
#include <cmsys/cm signal.h>
#include "utils.h"
#define LONG FACTOR 5
int tag_limit = 3;

/* Send/Receive function using double-words */
LDR_send_receive_msg_double(dest_address, message,

length, tag, dest)

unsigned dest address, tag;
int *message, *dest;
int length;

int packet_size;
double *dbl;
int send size, send size2, receive size, receive size2;
int offset, source offset=O, dest offset;
int words_tosend=length, words_received=0;
int count, rec_tag, status;

if ((int)message & 3)
CMPN_panic ("Error: Message array not double-word aligned!");

if ((int)dest & 3)
CMPN panic("Error: Dest array not double-word aligned!");

packet_size = (MAXROUTER_MSG_WORDS-1) & -1;

while ((words_received < length) 1 1 (words to send)) {

/* First try to receive a packet */
status=CMNA ldr status();
if (words received<length &&

RECEIVE OK(status) &&
RECEIVE TAG(status) <= tag_limit) {

destoffset = CMNAldrreceive word();
receivesize = RECEIVE LENGTH LEFT(CMNAldr status());
printf("received offset %d, size %d.\n",

destoffset, receive size);

for (count=O; count<(receive size>>1); count++) {
dbl = (double *) (&dest[dest_offset++]);
dest offset++;

NI Version 22 (CM-SE), June 1994 213
Copyright © 1994 Thinking Machines Corporation

--

NI Programmer v Handbook_ _ _ _ _ _ _ _ __~i

*dbl = CMNA ldrreceive double();

dbl++;

}

if (receive size & 1) /* If word left over */

dest[dest offset++] = CMNAldr_receive word();
words received += receive size;

/* Now try sending a packet */
if (words_tosend) {

send size = ((words to send < packet_size) ?

words_tosend : packet_size);
send size2 = send size >> 1;
do {

CMNA_ ldr_send_first(tag, send_size + 1, dest_address);
CMNA ldr send word(sourceoffset);
offset-source offset;
/* Send as many doubles as possible */
for (count=O; count<send size2; count++){

dbl = (double *) (&message[offset++]);

offset++;
CMNA ldr send double(*dbl++);

if (send size & 1) /* If a word is left over */

CMNA ldrsend word(message[offset++]);
} while (!SEND OK(CMNA ldr status()));
printf("sent offset %d, size %d.\n",

source offset, send size);
source offset=offset;
words to send -= send size;

}

}

/* Combine "network-done" Function */
void network_donesynch()
{

CMNA com_ send_first (ASSERTROUTERDONE,SCAN_ROUTERDONE,l,O;
while (!DR ROUTER DONE(CMNA dr status())) {};

}

void CMPE node main () {
int value=O, i;
int length=MAXBROADCASTMSG WORDS*LONGFACTOR;
int mirrornode;

214 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs
....

/* These variables MUST be double-word aligned! */
double temp_dalign_send;
int send [MAXBROADCAST MSG_WORDS*LONG_FACTOR];
double temp_dalign_rec;
int receive [MAX_BROADCAST_MSG WORDS*LONG_FACTOR];

CMNA_participatein (NI_BC_SEND_ENABLE);
saveand_set_abstain_flags(O,O,O,O);

/* All nodes get the value sent by the PM... */
All_NODES_get_from_PM(&value);

for(i=O; i<length; i++)

send[i =value+i;
receive[i] =-999;

mirror node = (CMNA_partition_size-1) - CMNA_self_address;

/* Do an unlimited-length send using double-word ops */
LDR_send_receive_msg_double(mirror_node, send,

length, 0, receive);

network_donesynch();

/* Signal to PM that answer is ready */

PM NODE synch();

/* Send check value back to PM */
NODE send to PM(receive[length-1]);

restoreabstainflags();

G.3 Broadcast Interface Test

This program presents a simple test of broadcasting:

Filename: BC_ test.c

/* Broadcast examples program - PM program */
#include <cm/cmna.h>
#include "utils.h"

NI Version 22 (CM-SE), June 1994 215
Copyright @ 1994 Thinking Machines Corporation

NI Programmer s Handbook
_r _ _

void main () {
int input, result, high_node;

printf("\nBroadcast test program, by W. R. Swanson,\n");
printf("Thinking Machines Corporation -- 2/1/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in (NI_BC_SENDENABLE);
/* Abstain from broadcast reception and combine sending */
saveandset_abstain_flags(1,1,0,0);
/* Start node programs running */
node main();

/* Get a value from the user and send it to the nodes. */

printf("This CM-5 partition has %d nodes.\n",

CMNApar t i tion_size);

printf("Please type an integer to send to the nodes: ");

scanf("%d", &input);

PM send to NODE(O, input);
printf ("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */
PMNODEsynch();

/* Get value from high node */
high_node = CMNA_partition_size - 1;
result = PM_get_from_NODE (high_node);

printf("Received value %d (should be %d) from node %d.\n",
result, input+MAXBROADCAST_MSG WORDS-l,high_node);

restore_abstain_flags ();

Filename: BC test.node.c

/* Broadcast examples program - node program */
#include <cm/cmna.h>
#include "utils.h"

int BC_send(message, length)
int *message, length;

{

int i;

CMNA_bc_sendfirst(length--, *message++);
for (i=O; i<length; i++) CMNA_bc_send_word(*message++);
return(SENDOK(CMNA_bcstatus()));

216 NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 7Thinking Machines Corporation

Appendix G. Sample NI Programs

int BCreceive(message, length)

int *message, length;

int i;

for(i=O; i<length; i++) {

while(!RECEIVEOK(CMNAbc status())) {}
message[i] = CMNA_bc_receive_word ();

}

return(length);

void CMPE node main () {
int value=O, i, length=MAX_BROADCAST_MSG_WORDS;
int send[MAX_BROADCAST_MSG_WORDS],

receive [MAX _BROADCAST_MSG_WORDS];
int status, rec length;

CMNA_participate_in (NI_BC_SEND_ENABLE);
saveand set abstain flags(0,0,0,0);

/* Node 0 gets the value sent by the PM... */

NODE_get_from PM(&value);

for(i=0; i<length; i++)

send[i]=value+i;
receive[i]=-999;

}

if (CMNA self address==0) {

status=0;
while(!status) status = BCsend(send, length);

}

rec_length = BC_receive(receive);

/* Signal to PM that answer is ready */

PM_NODE_synch();

/* Send value from high-order node back to PM */
NODE send to PM(receive[length-1);

restore abstain flags();

NI Version 2.2 (CM-SE), June 1994 217
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

G.4 Combine Interface Test

This program presents examples of a number of different kinds of combine oper-
ations, including

* scanning messages, with and without segments

· reduction messages

* network-done messages

Filename: COM test.c

/* Combine examples program - PM program */
#include <cm/cmna.h>
#include "utils.h"

void main () {
int input, result, segment_size, high_node, i, expected;
printf("\nCombine test program, by W. R. Swanson,\n");
printf("Thinking Machines Corporation -- 2/1/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in (NI BCSENDENABLE);

/* Abstain from broadcast reception and combine sending */
/* Abstain from combine reception, too, for a while... */
save_and_setabstainflags(1,1,1,0);

/* Start node programs running */
nodemain();

/* Get a value from the user and send it to the nodes. */
printf("This CM-5 partition has %d nodes.\n",

CMNA partitionsize);
printf("Please type a positive integer: ");
scanf("%d", &input);

high_node = CMNApartition_size-1;
PM_sendto_NODE(high_node, input);
printf("Sent value %d to node %d...\n", input, highnode);

/* Wait for the nodes to finish juggling numbers */
PM NODEsynch();
/* Turn combine reception back on */
CMNA writerec abstain_flag(com_control_reg, 0);

218 N Version 22 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

___^

Appendix G. Sample NI Programs

/* Get check values */
result = PM_get_from_NODE(O);
printf("Received value %d (should be %d) from node %d.\n",

result, (input+MAX_BROADCAST_MSG_WORDS-1), 0);
result = PM_get_from_NODE(high_node);
printf("Received value %d (should be %d) from node %d.\n",

result, (input*high_node), high_node);
segment_size = PM_get_from_NODE(0);
result = PM_get_from NODE(0);
printf("Received value %d (should be %d) from node %d.\n",

result, (input+MAX_BROADCAST_MSG_WORDS-1)
* (segment_size-1), 0);

result = PM_get_from_NODE(0);
printf("Network done for node 0 got %d (should be %d).\n",

result, high_node);
result = PM_get_from_NODE(O);
printf("Scanning counted %d nodes (should be %d).\n",

result, CMNA_partition_size);

/* Make sure all results are in */
PM_NODE_synch();

restore_abstain_flags();

Filename: COMtest.node.c

/* Combine examples program - node program */
#define NI ROUTERDONEP NIROUTERDONECOMPLETE P
#include <cm/cmna.h>
#include "utils.h"

int COM_send(combiner, pattern, message, length)
int *message, combiner, pattern, length;

int i, start, step;
/* For max scans, send high-order word(s) first */
if (combiner==MAX_SCAN) { start=length-1; step=-1; }
else { start=0; step=1; }
CMNA_com_send_first(combiner, pattern, length,

message start]);
for (i=l; i<length; i++)

CMNA_com_sendword(message[(start+=step)]);
return(SENDOK(CMNAcomstatus()));

NI Version 22 (CM-5E), June 1994 219
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
. ~ ~ . ,. ~ , ..

int COMreceive(combiner, message)
int *message;

int i, length, start, step;

while(!RECEIVE OK(CMNA comrnstatus())) {}
length=RECEIVE LENGTH (CMNAcomstatus ());
/* For max scans, send high-order word(s) first */
if (combiner==MAX_SCAN) { start=length-1; step=-1; }
else { start=O0; step=1; }

for(i=O; i<length; i++) {

message[start] = CMNAcomrn receive word();

start+=step;

}

return (length);

int COM_scan(combiner, pattern, message, length, result)
int *message, *result, combiner, pattern, length;

int status=0, rec_length;
while (!status) status =
COM_send(combiner, pattern, message, length);

reclength = COM_receive(combiner, result);
return(rec_length);

void CMPE node main () {
int value=O, i, length=MAX_BROADCASTMSG_WORDS;
int send[MAX_BROADCASTMSG WORDS],

result[MAX BROADCAST MSG WORDS],
seg_result [MAX_BROADCAST_MSG_WORDS];

int rec_length, segment_size, high_node;
int one, nodecount;
int message, network_done_msg, next_processor;

CMNA_participate in(NI BC_SEND_ENABLE);
save_and_set_abstain_flags(0,0,0,0);
/* Make sure segmenting is turned off to begin with */
CMNA_set_segment_start(O);
high_node = CMNA_partitionsize - 1;

/* High node gets the value sent by the PM... */
NODE_get_from_PM(&value);

220 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs
......./ . . ._

/* Fill send array based on supplied value */
for(i=O; i<length; i++) {

sendi] =((CMNA_self_address==high_node) ? value+i : 0);
result [i] =-999;
seg_result [i] =-999;

/* Do a max scan to distribute send values to all nodes */
rec_length = COM_scan(MAXSCAN, SCAN_BACKWARD, send,

length, send);

/* Scan overwrites high node -- put back original value */
if (CMNA_self_address==high_node)
for(i=0; ilength; i++) send[i] = value+i;

/* Do an add scan to make different values */
rec_length = COM_scan(ADD_SCAN, SCAN_FORWARD, send,

length, result);

/* Do a backwards segmented reduction */
segment_size=(CMNA_partition_size<5 ?

CMNA_partition_size : 5);

CMNA_set_segment_start(((CMNA_self_address % segment_size
== segment_size-1));

rec_length = COM_scan(MAX_SCAN, SCAN_BACKWARD, result,
length, seg_result);

CMNA_set_segment_start(0);

/* Try network-done feature */
message=CMNA_self_address;
network_donemsg=0;
next_processor = (CMNA_self_address+l)

% CMNA_partition_size;
CMNA_ldr_send_first (0,1,next_processor);
CMNA_ldr_send_word (message);

COM_send(ASSERT_ROUTER_DONE, SCAN_ROUTER_DONE,
&network_done_msg, 1);

while (!DR ROUTER DONE(CMNAdrstatus())) {};
while (!RECEIVEOK(CMNA_ldr_status())) {};

message=CMNA ldr receive word();

NI Version 2.2 (CM-SE), June 1994 221
Copyright © 1994 Thinking Machines Corporation

NI Programmer 's Handbook
w ______ _ _

/* Use reduction to do a processor "roll-call" */
one=1;
node count=-999;
rec_length = COMscan(ADD_SCAN, SCAN_REDUCE,

&one, 1, &nodecount);

/* Signal to PM that answers are ready */
PMNODE_synch();

/* Send check values back to PM */
NODE_send to PM(send[length-1]);
NODE send to PM(result[0]);
NODE_send_to_PM(segment_size);
NODE_send_to_PM(seg_result [length-1]);
NODE_send_to_PM(message);
NODEsendtoPM(nodecount);

/* Make sure all results have been received */
PMNODE_synch ();

restore_abstain_flags();

G.5 Global Network Test

This program presents a quick example of asynchronous and synchronous global
interface operations:

Filename: GLOBAL test.c

/* Global network test program - node program */
#include <cm/cmna.h>
#include "utils.h"

void main () {
int value;
printf("\nGlobal test program, by William R. Swanson,\n");
printf ("Thinking Machines Corporation -- 2/6/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in (NI_BC_SEND_ENABLE);

222 NI Version 22 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation

Appendix G. Sample NI Programs

/* Abstain from broadcast reception and combine sending */
save_and_set_abstain_flags (1,1,0,0);

printf("This CM-5 partition has %d nodes.\n",
CMNA_partition_size);

/* Start node programs running */
printf("Starting node programs...\n");
node main();

/* Test asynchronous global network */
CMNA_or_global_async_bit(0);

PM_NODEsynch();

value = CMNA_global_async_read();
printf("Received async bit %d (should be 0).\n", value);

restore_abstain_flags();

Filename: GLOBALtest.node.c

/* Global network test program - node program */
#include <cm/cmna.h>
#include "utils.h"

void CMPEnode main () {
int value;

CMNA_participate_in(NIBC_SEND_ENABLE);
save_and_set_abstain_flags(0,0,0,0);

CMNA_or_global_async_bit(0);

/* Signal to PM that answer is ready */
PM NODE synch();

value = CMNA_global_async_read();

if (value)
printf("Error: node got non-zero global value.");

restoreabstainflags);

NI Version 2.2 (CM-SE), June 1994 223
Copyright © 1994 Thinking Machines Corporation

Appendix H

CMNA Header Files

To access the NI constants described in this document, you must #include the
header file cm/cmna. h:

#include <cm/cmna. h>

This file #includes many other header files that provide access to NI constants,
register macros, and accessor functions. These constants, macros, and functions
are collectively referred to as CMNA (CM Network Accessors), and can serve as
a basis for your own NI accessor code.

Note: The functions and macros in CMNA are designed to be very generic in
operation. As such, they are much less efficient than the special-purpose macros
and functions you'll probably write on your own. Nevertheless, you can use the
operations defined in CMNA as a jumping-off point for your own code, to help
you understand what needs to be done to get your code to run correctly.

H.1 What Is CMNA?

There are two main parts to CMNA:

* The NI Interface - Constants and macros used to manipulate NI registers.

* CnC ("C-and-C") - C functions that perform NI operations such as
reading and writing messages of arbitrary length.

The CMNA header files define the NI interface explicitly, in terms of register
accessor macros and constants. The header files also provide C prototypes for the
CnC functions, which are part of the CMosT operating system code.

NI Version 22 (CM-SE), June 1994 225
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
~·%~z~~isa~w~_~

H.2 CMNA Header Files

The following header files are part of CMNA:

/usr/include/
cm/cmna.h
cmsys/cmna.h
cmsys/cmna_sup.h
cmsys/ni_interface.h
cmsys/ni_macros.h
cmsys/ni_cons trants. h
cmsys/ni_defines.h

- Main CMNA header file.
- CMNA user header file.
- CMNA supervisor header file.
- Main NI interface header file.
- NI macro definitions.
- NI register/flag constant definitions.
-- Low-level NI constant definitions.

NI user

The following diagram shows the relationship among the header files that make
up CMNA:

cm/cmna.h

I II NI supervisor area

cmna sup.h

I cmsys/cmna.h I

[ninterface.h

I ni_constants.h I nmacros. h i

ni defines.h

Figure 21. Relationship between CMNA and NI header files.

NI Version 2.2 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation

226

,~~~~~~~~~~~~~~~~~~l _

II

!

! I

I I

Appendix H. CMNA Header Files
---_ -

H.2.1 The Main CMNA Header File: cm/cmna.h

This single file #includes all the header files that are needed to define CMNA.
However, it contains virtually no definitions of its own. It simply #includes
either of the two header files cmsys/cmna . h or cmasys/cmnasup . h, accord-
ing to which NI register area (user or supervisor) the #includeing code needs.

Implementation Note: At present, cmsys/cmna_sup. h is only #included
for diagnostic code (that is, code that defines the symbol CMDIAG).

H.2.2 The User Header File: cmsys/cmna.h

This file #includes the NI constant and macro files described below, and also
defines a number of useful C mask constants and C macros that are used in
CMNA. However, the constants and macros defined here are only sufficient for
the needs of CMNA, and are not by any means a complete set. (See the descrip-
tion of the ni_constants. h, and ni_defines files below.)

H.2.3 The Supervisor Header File: cmsys/cmnasup.h

This file modifies a few key constant definitions so that any absolute memory
address constants defined in the other header files will refer to the NI supervisor
area, rather than the NI user area. It then #includes cmsys/cmna. h, so it has
much the same effect as that header file.

Note: The cmsys/cmna_sup. h file is only of use to programmers with legal
access to the NI supervisor area. Including this file does not in itself grant access
to the NI's supervisor area; it simply redefines many CMNA constants to have
address values that are only legal for supervisor code.

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

227

NI Programmer Handbook
:"^ ;. > ' ': . . :... ':::. .' '".;*:&:,., '- , :: ". ;: '.,: ':':: .:' '. ": .'. ::: ' ' ''. -', :. ,, wv- .* *- .":

H.2.4 The NI Interface Header File: ni_interface.h

This file defines the NI accessor interface. It #includes the file
ni_constants. h, and defines a number of basic NI register macros that are
used by CMNA. It then #includes ni_macros. h to define the remainder of the
CMNA macros.

This file also defines a number of NI register constants that are suitable for use
in C code. (That is, constants that have been cast as (unsigned *) values. See
the description of ni_constants .h and ni_defines. h below.)

H.2.5 The NI Macros Header File: ni_macros.h

This file defines a number of C macros that perform sterotypical NI operations
such as sending and receiving messages via a specific network interface.

H.2.6 The NI Constants Header Files:
ni_constants.h, ni_defines.h

These files define a number of register constants and masks that are used by
CMNA. In particular, ni_constants. c includes definitions of constants speci-
fying the absolute memory address for each of the NI's registers. The file
nidefines. h defines hundreds of constants that give the size and offset of the
register fields of the NI. These two sets of constants provide a complete interface
for NI operations written in assembly code. Appendix D provides a complete list
of these constants, grouped by register and category.

Note For C Programmers: The register address constants are unsigned pointer
values. To use them in C code, you must first cast them to type (unsigned *).
For example:

unsigned *nidrstatus = ((unsigned *) NIDRSTATUS);

If you don't perform this casting step, the C compiler by default treats the
constants as signed integers, possibly causing your code to fail. Many of these
constants are recast in just this fashion in the header file ni_interface. c, so
you may be able to just use those constants without having to do any recasting
yourself.

228 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix H. CMNA Header Files
_ _ _ _ _ a_ _ mB.~

H.3 CMNA Functions

Below are listed the basic functions provided by the CMNA library aside from
those that directly access the NI chip (which are described elsewhere in this
manual).

Important: The functions defined here are designed for usability, not perfor-
mance. In actual production applications, you will want to write your own
routines to obtain the highest communications performance possible. Use the
routines described below as examples of how you might write an NI accessor
function, not as hard and fast examples of how such a function should be written.

H.3.1 CMNA Version

CMNA_version()
Returns: char *

H.3.2 Activity Functions

CMNA abstainfrom (activity)
CMNAparticipate_in (activity)
CMNA_sup_abstain_from(activity)
CMNA_sup_participate_in (activity)
int activity;

Return: int

/* valid activity to participate in or abstain from
participating in: */

#define NI_REDUCE_RECEIVE (1)
#define NIBCRECEIVE (2)
#define NI COMBINE (4)
#define NI_SYNC_GLOBAL (8)
#define NISBC_RECEIVE (16)
#define NIBCSENDENABLE (32)

NI Version 2.2 (CM-SE), June 1994 229
Copyright ¢ 1994 Thinking Machines Corporation

NI Programmer 's Handbook
_______ _ _ _.i'-.'e _

H.3.3 DR Interface Functions

CMNA_dr_msg_to_eceive()
Returns: int

CMNAdrsendfifo_amount(dest_proc,source_base,
word_length,tag)

unsigned int dest_proc;
void *source base;
int word_length;
unsigned int tag;
Returns: int

CMNA_dr_sendfifo_amountphysical(dest_proc,source_base,
word_length, tag)

void *source base;
int word_length;
unsigned dest_proc;
unsigned tag;
Returns: int

CMNA_dr_sendmsg(dest_proc,source_base,wordlength, tag)
unsigned int destproc;
void *source base;

int word_length;
unsigned int tag;

CUNAdr_sendmsgphysical(dest_proc,source_base,
word_length, tag)

void *source base;

int word_length;
unsigned dest_proc;
unsigned tag;

CMNA_dr_status()
Returns: unsigned

H.3.4 LDR Interface Functions

CMNA_ldrreceive(base)
void *base;
Returns: int

230 NI Version 22 (CM-SE), June 1994
Copyight © 1994 ThinldngMachines Corporation

Appendix H. CMNA Header Files
- -'- -' -n~E~ __

CMNA_ldr_receive_msg(base, word_length)
void *base;

int word_length;

CMNAldr_send_fifo_amount(dest_proc,source_base,
word_length, tag)

unsigned int dest_proc;
void *source base;
int word_length;
unsigned int tag;
Returns: int

CMNA_ldr_send_fifo_amountphysical(destproc,source_base,
wordlength, tag)

void *source base;
int word_length;
unsigned dest_proc;
unsigned tag;
Returns: int

CMNAldr_send_msg(dest_proc,source_base,word_length, tag)
unsigned int dest proc;
void *source base;
int word length;
unsigned int tag;

CMNA_ldr_send_msg_physical(dest_proc,source_base,
word_length, tag)

void *source base;
int word_length;
unsigned dest_proc;
unsigned tag;

H.3.5 RDR Interface Functions

CMNA_rdr_receive(base)
void *base;
Returns: int

CMNA rdr_receive_msg(base,word_length)
void *base;
int word_length;

NI Version 22 (CM-5E), June 1994 231
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook
29~%isp~·3is~.~~·~:~;~:. _ _ _ _ _ _ _ _ 9uV5P;S~M;)T

CMNA_rdrsend_fifo_amount(dest_proc,source_base,
word_length, tag)

unsigned int destproc;
void *sourcebase;
int word_length;
unsigned int tag;
Returns: int

CMNA_rdr_send_fifo_amount_physical(dest_proc,source_base,
word_length, tag)

void *source base;
int word_length;
unsigned dest_proc;
unsigned tag;
Returns: int

CMNArdr_send_msg(dest_proc,source_base,word_length, tag)
unsigned int dest_proc;
void *sourcebase;
int word_length;
unsigned int tag;

CMNA_rdr_send_msg_physical (dest_proc,source_base,
word_length,tag)

void *source base;

int word_length;
unsigned dest_proc;
unsigned tag;

H.3.6 BC Interface Functions

CMNA_bc_read_double()
Returns: double

CMNA_bc_read_float()
Returns: float

CMNA bcread into()
Returns: int

CMNA_bc_read_uint()
Returns: unsigned

232 NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix H. CMNA Header Files.._ ___ 7 .~~ ".~. ~†

CMNA_bcreceive(msg, length)
void *msg;
unsigned int length;

CMNA bcreceiveparticipation()
Returns: int

CMNA_bc_send_and_receive_msg(msg,result,length)
void *msg;
void *result;
int length;

CMNA_bc_send_fifo_amount(msg, length)
void *msg;
int length;

CMNA_bc_send_msg(msg, length)
void *msg;
int length;

CMNA_bc_wait_for_receive_ok ()
Returns: int

CMNA_bc_write_double(data)
double data;

CMNA_bc_write_float(data)
float data;

CMNA_bc_write_int(data)
int data;

CMNA_bc_write_uint (data)
unsigned int data;

H.3.7 SBC Interface Functions

CMNA_sbc_double (data)
double data;

CMNA_sbc_float(data)
double data;

NI Version 2.2 (CM-SE), June 1994 233
Copyright © 1994 Thinking Machines Corporation

NI Programmer Handbook

CMNA sbc int(data)
int data;

CMNA_sbc_receive (msg, length)
void *msg;
unsigned length;

CMNA_sbc_send(msg, length)
void *msg;

int length;

CMNA_sbc_send_msg(msg, length)
void *msg;
int length;
Returns: int

CMNA sbc uint(data)
unsigned int data;

CMNAsbc wait for receive ok()
Returns: int

CMNA_sup_dr_sendacket_to_s calar
(source_base,word_length, tag)

void *source base;
int word_length;
unsigned tag;
Returns: int

CMNA sup ldr_send_packet to_scalar
(sourcebase,word length, tag)

void *source_base;
int word_length;
unsigned tag;
Returns: int

CMNA_ sup_rdr_ end_packet_to_s calar
(source_base,wordlength, tag)

void *source_base;
int word_length;
unsigned tag;
Returns: int

234 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix H. CMNA Header Files
_~9sse

H.3.8 COM Interface Functions

CMNA_com(combiner,pattern, data, length, result)
int combiner;
int pattern;
void *data;
int length;

void *result;

CMNA_comparticipation ()
Returns: int

CMNA_com_receive(result)
unsigned int *result;

CMNA_com_send(combiner, pattern, data,word_length)
int combiner;
int pattern;
void *data;
int word_length;

CMNA_reducerec_participa tion ()
Returns: int

H.3.9 Global Interface Functions

CMNA_global_async(value)
unsigned int value;
Returns: int

CMNAglobal_sync (value)
unsigned int value;
Returns: int

CMNA_global_sync_read()
Returns: int

CMNAglobal_sync_read when_ready ()
Returns: int

CMNA_global_sync_participation()
Returns: int

NI Veion 22 (CM-SE), June 1994 235
Copyright 0 1994 Thinking Machines Corporation

Appendix I

NI Chip Version 2.2 Changes

This appendix presents a summary of the additions and changes made to the NI
chip as of the most recent chip version (2.2), and indicates where they are
described in the main body of this manual.

1.1 Long Data Network Messages

The Data Network now has the capability to send long messages. These mes-
sages, sent by a special register interface, have a length in data bytes that is much
longer than the limit imposed on Data Network messages in Version 1.0. (Cur-
rently, the long message length limit is 18 words of data.)

Several new Data Network registers are introduced to support this feature:

ni_dr/ldr/rdr_send_first_long
ni_dr/ldr/rdr_status_long
ni_longest_dr_message

The long message register interface is described in detail in Chapter 3. Section
3.4.2 in particular describes how to send long messages.

NI Version 2.2 (CM-SE), June 1994 237
Copyright 1994 Thinking Machines Corporation

NI Programmer s Handbook
· ·

1.2 New Data Network Status Interface

Registers have been added to allow more convenient access to the status informa-
tion of the Data Network's message FIFOs, and to allow "popping" of messages
from the Data Network receive FIFOs at the same time:

ni_dr/ldr/rdr_status_all
ni_ldr/rdr_status_pop

These registers are described in Section 3.5.

1.3 New Data Network Tag Interrupt Interface

The mechanism for detecting and signaling interrupts based on the tag values of
Data Network messages has been changed to allow more precise control over the
selection of user and supervisor tag values. The new mechanism is described in
detail in Section 3.5.4.

1.4 Non-Compatible Change to Broadcast Interface

The ni_rec_length_left field in the ni_bc_status and ni_sbc_status
registers has been expanded from 4 bits to 7 bits in length to handle the change
in the maximum broadcast message length. This means that software written for
earlier versions of the NI chip may not execute properly; if only the first four bits
of this field are extracted, the software cannot determine whether the value thus
obtained is correct.

The basic fix for this problem is to have your code extract 7 bits rather than 4
for this field. If your code uses the predefined NI constants, you should substitute
the new length constant NI_BC_REC_LENGTH_LEFT_LONG L for all references to
the rec_engthleft field.

238 NI Version 2.2 (CM-5E), June 1994
Copyright O 1994 Thinking Machines Corporation

Appendix I. NI Chip Version 2.2 Changes

1.5 New Interrupts

A number of new interrupts have been added as of Version 2.1:

rdone complete
message too long
dperr
sfifo empty
ldr rec tag
rdr rec tag
ldr user rec tag
rdr user rec tag

(Orange)
(Yellow)
(Green)
(Green)
(Green)
(Green)
(Green)
(Green)

- Completion of network-done operation
- Data Network message length error
- Error signaled by CM-5 vector units
- Data Network send fifo empty
- LDR supervisor message tag interrupt
- RDR supervisor message tag interrupt
- LDR supervisor message tag interrupt
- RDR supervisor message tag interrupt

These interrupts are described in Chapter 5, and in Appendix B.

1.6 New Data Network Interrupt Enable Flags

The following flags have been added to the Data Network private registers to
allow enabling and disabling of the corresponding interrupts:

nisfifo_goes_empty_ie
ni_rdone_complete_ie

These flags are described in Section 3.8.

1.7 New Bus Error Conditions

The following bus error conditions now exist, in connection with the long mes-
sage feature of the Data Network:

* writing a message to any of the Data Network's send_first registers
with a length value that is greater than either five words or the value of the
register ni_longest_dx_message, whichever is less

* writing a message to any of the Data Network's send_first_long reg-
isters with a length value that is greater than the value of the register
nilongest_drmessage

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

239

NI Programmer s Handbook

1.8 Disabling Bus Errors

The flag ni_disable_bus_error in the hodgepodge register, when set,
causes the NI to signal bus errors as a yellow interrupt, bad_memoryaccess.
(See Section 5.1.1.)

1.9 Manually Triggering Interrupts

Interrupts can be triggered artificially by writing to the new registers
ni_interrupt_set and ni_interrupt_set_green (See Section 5.3).

1.10 Global Interface Context-Switching

A supervisor method for context-switching and then restoring the state of the
synchronous global interface is described in Section 4.3.2.

1.11 New Hodgepodge Register Fields

The following fields have been added to the "hodgepodge" register to support
various new NI features:

nidisable buserror
ni_ldr_rec_tag_ie
ni_rdr_rec_tag_ie
nildr userrec_tagie
ni_rdr_user_rec_tag_ie
ni_msg_too_long_ie

(See
(See

Section
Section

9

5.1.1.)
3.5.4.)

(See Section 3.2.2.)

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 ThinkingMachines Corporation

240

Index

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

_ C_ _

241

Programming Tools Index

This index lists the register names and fields, programming constants, functions, and macros referred
to within this document. Bold page numbers indicate a defining reference or important description.

A

ADD SCAN

combine combiner constant, 75, 152
combiner constant, 77, 186

ASSERTROUTER DONE

combine combiner constant, 75, 152
combiner constant, 79, 186

AUXILIARYSTARTP send-first field offset
constant, 21, 149

B

bad memory access

bus error, 97, 178
Yellow interrupt, 96, 98, 100, 170

bad relative address, Yellow interrupt,
41, 96, 100, 172

bc interrupt green, Green interrupt,
97, 101, 104, 173

bc interrupt orange, Orange interrupt,
96, 100, 104, 169

bc interrupt red, Red interrupt, 96,
100, 104, 168

bc interrupt yellow, Yellow interrupt,
96, 100, 104, 170

bc or com collision, Yellow interrupt,
73, 96, 100, 104, 171

bc rec ok, Green interrupt, 30, 174
bccontrolreg, constant, 69, 185

C

cNa bc_ receivetype (), macro, 68, 184
CMNA bcsendfirst (), macro, 67, 184
CMNAbcsend-first-double (), macro,

67, 184
cMNA bc-sendtype (), macro, 67, 184
CMA_bc_status (), macro, 68, 184
CMNAcom receive_type (), macro, 76,

186
CMNA comsendfirst (), macro, 74, 186
CMNA_com_send_firstdouble (), macro,

74, 186
CMNA com send type (), macro, 74, 186
CMNA com_status (), macro, 76, 187
CMNA dinterface_receive_type (), macro,

44, 182
CMNA dinterface_send first(), macro,

42, 182
CMNAdinterface_s end_firstdouble,

macro, 42, 182
CMNAdinterface_sendfirst double_lon

g, macro, 43
CMNA dinterface_sendf irst_long ()0,

macro, 43
cloA dinterface_sendtype, macro, 42, 182
cm dinterface_status (), macro, 46, 183
CMA_dr_sendstatus (), macro, 46, 183

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation 243

NI Programmer's Handbook

CMN _globalasync_read 0(), macro, 92,
189

CMNA_globalsync_complete (), macro,
90, 188

CIA_global_syncrec 0(), macro, 90, 188
CMNA interfacerece ive_type, macro, 23
CMNA interfacesend_first(), macro, 22
CMNAinterface_s end_f irst_double,

macro, 22
CMNA_interface_send packet_to

_scalar (), system function, 122
cMA _ interface_send type), macro, 23
cMisA interface status (), macro, 26
CMNA_ldr status (), macro, 46, 183
CNAorglobal_async_bit (), macro,

92, 189
CMA_or_global_sync bit (), macro, 90,

188
CMNA participate_in ()

system call, 141
system function, 70, 124

CMNApartition_size, variable, 40, 181
CMN A_rdr_ status (), macro, 46, 183
CMNAread_abstain_flag(), macro, 28,

181
cMNA_segmentstart (), macro, 78, 187
CMNAself_address, variable, 40, 181
CMNA setsegmentstart (), macro, 78,

187
CMNA writeabstain flag (), macro, 28,

181
CMOssignal (), system call, 51, 199
cmu error, Red interrupt, 96, 99, 167
cn checksum error, Red interrupt, 96,

99, 166
cn hard error, Red interrupt, 96, 99, 167
corn abstain changed, Yellow interrupt,

82, 96, 100, 170
com rec empty, Green interrupt, 83, 97,

101, 175
con rec ok, Green interrupt, 30, 97, 101,

174
com_control_reg, constant, 82, 188

COMBINEFIFO, interface number constant,
22, 150

COMBINE_OVERFLOW(), macro, 79, 187

D

DATA_ROUTER_FIFO, interface number
constant, 22, 150

dp error, Green interrupt, 176
dperr, Green interrupt, 97, 101
dr checksum error, Red interrupt, 96,

99, 166
dr count negative, Yellow interrupt, 52,

96, 100, 171
dr rec all fall down, Green interrupt,

55, 97, 101, 174
dr rec ok, Green interrupt, 30, 97, 101,

174
dr rec tag, Green interrupt, 49, 97, 101,

174
DR_RECEIVE_STATE (), macro, 53, 183
DR_ROUTER_DONE(), macro, 54, 80, 183
DR_SENDSTATE (), macro, 53, 183

G

global rec, Green interrupt, 93, 97, 101,
175

internal fault, Red interrupt, 96, 99,
166

L

ldr rec ok, Green interrupt, 30, 97, 101,
174

ldr

ldr

ldr

ldr

rec tag, Green interrupt, 97
tag, Green interrupt, 177
user rec ok, Green interrupt, 101
user rec tag, Green interrupt, 97

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation244

Programming Tools Index~~~ x.. ~ . ~ ~..

ldr user tag, Green interrupt, 177
LEFT_DR_FIFO, interface number constant,

22, 150

M

MAX _BROADCAST MSG WORDS, constant, 66,
67, 149, 185

MAX_COMBINE_ MSG WORDS, constant, 73,
149, 187

MAX_ROUTER_MSG WORDS, constant, 41, 43,
149, 184

MAX_SBC_MSGWORDS, constant, 66, 67, 149
MAX SCAN

combine combiner constant, 75, 152
combiner constant, 77, 186

mc error, Red interrupt, 96, 99, 167
message too long, Yellow interrupt, 96,

100, 172

N

niall_fall_down enable, flag, 54, 55,
154

ni_all_fall_down ie, flag, 54, 55, 154
ni_async_global, register, 89, 92, 146,

160, 189
ni_async_sup_global, register, 89, 93,

146, 160
ni_bad_address, register, 114, 146, 164
ni_bad_address_low, field, 114, 164
ni_bad_addres8_type, field, 114, 164
NI_BASE, constant, 12, 21, 149
ni_bc..., register. See ni_binterface_..
nibccontrol, register, 148, 158, 185
nibc_private, register, 148, 158
nibcrecv, register, 148, 184
ni_bc_send, register, 148, 184
NI_BC_ SENDAUXILIARYLENGTH field

offset, 67, 151
ni_bc_send_first, register, 148, 184
ni_bc_status, register, 148, 157, 185
ni_binterface_control, register, 64, 69
ni_binterface_private, register, 64, 69
ni_binterfacerecv, register, 64, 67

ni_binterface_send, register, 64, 67
nibinterfacesend_first, register, 64, 67
nibinterface status, register, 64, 68
ni_cause_bad_memory_access, flag, 161
ni_cause_bad_relative_address, flag,

161
ni-cause_bc_-nterrupt_green, flag,

161

ni-cause bc-interrupt_orange, flag,

161

nicause_bc_interrupt_red, flag, 161
nicause_bcinterrupt_yellow, flag,

161
nicause_bc_orcomcollision, flag,

161
nicause_bc_rec_ok, flag, 161
nicause_cmu_error, flag, 161
nicausecnchecksum_error, flag, 161
nicausecnharderror, flag, 161
nicausecomabstainchanged, flag,

161
nicausecomrec_empty, flag, 161
nicausecomrec_ok, flag, 161
ni-causedperr, flag, 161
ni_cause_dr_checksumerror, flag, 161
ni-causedr-count_negative, flag, 161
nicause_dr_rec_allf all_down, flag,

161
ni_causedrrec_ok, flag, 161
ni_cause_dr_rec_tag, flag, 161
ni_cause_global_rec, flag, 161
nicause_internal_fault, flag, 161
nicause_ldr_rec_ok, flag, 161
ni-cause-ldr-rec tag, flag, 161
nicause_ldr_user_rec_tag, flag, 161
nicausemcerror, flag, 161
ni_causemessage_too long, flag, 161
ni_causerdonecomplete, flag, 161
ni_cause_rdr_rec_ok, flag, 161
ni-cause-rdr-rectag, flag, 161
ni_cause_rdr_user_rec_tag, flag, 161
ni_cause_sbc_rec_olc, flag, 161
ni_cause-scan overflow, flag, 161
ni_causesf ifoempty, flag, 161

NI Version 2.2 (CM-SE), June 1994
Copyright 0 1994 ThinkingMachines Corporation 245

NI Programmer's Handbook
__ ___ ___

nicause_supervisor_globalrec, flag,
161

ni_causesyncglobalrec, flag, 161
nicausetimerinterrupt, flag, 161
ni chunksize, register, 110, 146
nichunk_table_address, register, 112,

146
nichunk table-data, register, 112, 146
ni clear_ bad_memory_access, flag, 162
ni clearbad_relative_address, flag,

162
ni_clear_bc_interrupt_green, flag,

162
niclear bc_interrupt_orange, flag,

162
ni-clearbc_interrupt_red, flag, 162
niclearbc_interruptyellow, flag,

162
niclear bcor_comcol lision, flag,

162
niclearbc_rec_ok, flag, 162
niclearcmu_error, flag, 162
niclear_cn checksum error, flag, 162
niclearcn_hard_error, flag, 162
niclear comabstain_changed, flag,

162
niclearcomrecempty, flag, 162
niclearcomrecok, flag, 162
niclear dperr, flag, 162
ni_clear drchecksum error, flag, 162
niclear dr_countnegative, flag, 162
ni cleard r rec_all_f all_down, flag,

162
ni.cleardr rec_ok, flag, 162
nicleardrrectag, flag, 162
ni_clear_globalrec, flag, 162
niclear internal_fault, flag, 162
niclearldr_rec_ok, flag, 162
niclearldr_rec_tag, flag, 162
ni clearldr_user_rectag, flag, 162
niclear_mc_error, flag, 162
niclear message_too long, flag, 162
ni clear_rdone complete, flag, 162
niclearrdrrec_ok, flag, 162
ni clear rdr_rec_tag, flag, 162

ni_clearrdruserrectag, flag, 162
ni_clearsbc ec_ok, flag, 162
ni_clear_scanoverf low, flag, 162
ni_clear_sfifo_empty, flag, 162
ni_clear_supervisor_global_rec, flag,

162
ni_clear_sync_global_rec, flag, 162
niclear timer_interrupt, flag, 162
ni_cn_stop_send, flag, 107, 116, 163
ni_rec_abstain, flag

of a network, 27, 28
of broadcast interface, 69
of combine interface, 81

ni_comcontrol, register, 72, 81, 148, 160,
188

ni_comf lush send, register, 113, 146
ni_comprivate, register, 72, 83, 148, 159
ni_comrec_emptyie, flag, 83

in nicomprivate register, 159
ni_comrecv, register, 72, 76, 148, 186
nicom scanoverf low, flag, 76, 78

in ni_comstatus register, 159
of combine interface, 187

nicomscan overflow_ie, flag, 79, 83
in nicom _private register, 159

ni comsend, register, 72, 73, 83, 148, 186
NI_COM_SEND_AUXILIARY_COMBINER_P,

field offset, 74, 151
NI_COM SEND AUXILIAR_ LENGTHR_ field

offset, 74, 151
NI_COM_SEND_AUXILIARY_PATTERN_P,

field offset, 74, 151
ni_comsend_combiner, field, 83, 84

in ni comprivate register, 159
nicomrn_send_first, register, 72, 73, 148,

186
nicom_send_length, field, 83, 84

in ni_com_private register, 159
ni_com_send pattern, field, 83, 84

in nicom private register, 159
ni_com_send_start, flag, 83, 84

in ni_com _private register, 159
ni_comstatus, register, 72, 76, 78, 148,

159, 187
ni_conf iguration, register, 115, 146

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation246

Programming Tools Index
>Zt -; -fi ;;<. ;w1 I r>? ;w,9 s '. I* '. -7* IA ;' I 1 S vs> '~1;1.·:,-.Y1-Z;. .:. ·1i- s NY , H"z -= · ;rI - , y f .'ZE- i~~ I,.,.' DI --1 I ~~~ ' -1 :I '.. '.. , -. C,; , , "X ;g :~' '.

niconf iguration_complete, flag, 107,
115, 163

ni_count_mask, register, 38, 51, 80, 146
ni_dinterface_private, register, 36, 54
nidinterface_rec_tag, field, 183
nidinterfacerecv, register, 36, 44, 182
nidinterface_send, register, 36, 42, 182
ni_dinterface_send_first, register, 36, 42,

182
ni_dinterface_send_first long, register,

36,43
nidinterface-status, register, 36, 45, 80
ni_dinterfacestatus (), register, 183
ni_dinterface_status_all, register, 36, 46
ni_dinterfacestatus_long, register, 36
ni_dinterface _statuspop, register, 36, 47
ni_disable_bus _error, flag, 98, 107, 163
ni dr.... See ni_dinterface_
ni_d_ message_count, register, 38, 51,

54, 80, 146
ni _dprivate, register, 147, 154
ni_d_rec_all_fall_down, flag, 54, 55

in ni d private register, 154
in nildr_private register, 156
in ni_rdr_private register, 157

ni_d .rec_state, field, 45, 53, 153, 154
ni_dr_rec_tag, field, 45

in ni d_status register, 153
in ni_ldr_status register, 155
in ni_ldi_status_long register, 155
in ni-rd_status register, 156
in ni_rdr_status_long register, 156
in nid _status_long register, 154

ni drsend, register, 147
NI_DR_SEND_AUXILIARY_ADDRESS_MODE_

P. offset constant, 42, 150
NI_DR_SEND_AUXILIARY_LENGTH_ offset

constant, 42, 150
NI_DR_SEND_AUXILIARY TAG -offset

constant, 42, 150
ni d_send_f irst, register, 147
ni_dr_send_ first _long, register, 147
ni_dr_send ok, flag, in

ni_dr_status_all/pop register,
46, 154

ni_dr_send_space, field, in
nidr_s tatus_all 1/pop register,
46, 154

nid _send_state, field, 45, 53, 153, 154
ni di_status, register, 147, 153
ni_d _status_all, register, 147
ni_dr_status_all/pop, register, 154
ni_dr_status_long, register, 147, 154
ni_flush_complete, flag, 107, 113, 163
ni_global_rec, flag, 92, 160, 189
ni_global_rec_ie, flag, 92, 93, 107, 163
ni_global_send, flag, 92, 160, 189
ni_hodgepodge, register, 38, 49, 98, 107,

146, 163
and asynchronous global interface, 89
and supervisor asynch global interface,

89
and synchronous global interface, 89
asynch global rec interrupt enable flag,

92, 93
broadcast interrupt flags, 104
configuration flag, 115
flush complete flag, 113
NI timer interrupt enable flag, 113
send stop flag, 116
supervisor rec interrupt enable flag, 93
synch global rec interrupt enable flag, 89,

91
ni_interface_control, register, 17, 25, 27
niinterface_private, register, 17, 30
niinterfacepurpose, register naming

format, 10
niinterface_recv, register, 17, 23
ni interfacesend, register, 17, 19
niinterfacesend_first, register, 17, 19,

149
niinteface_send_f irst_long, register,

43, 152
ni_interface_status, register, 17
ni_interrupt_cause, register, 102, 146,

161
niinterrupt_cause_green, register,

102, 146, 161
ni_interrupt_clear, register, 102, 146,

162

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation 247

NI Programmer's Handbook
'.ss~9s~ ~s~

niiinterrupt_clear_green, register,
102, 146, 162

niiinterrupt_level, register, 103, 146,
163

ni interrupt_level_green field, 103,
163

ni_interrupt_level_orange, field, 103,
163

niiinterrupt_level_red, field, 103, 163
niinterrupt_level_yellow, field, 103,

163
ni_interrupt_now, register, 113, 146
ni-interrupt_rec_enable, flag, 104,

107, 163
niinterrupt_send, register, 104, 146
niiinterrupt_send_ok, flag, 104, 107,

163
niinterrupt_set, register, 146, 162
niinterrupt_set_green, register, 146,

162
ni ldr See ni dinterface ..
nildxr_private, register, 147, 156
ni_ldr_rec_all_fall_down, flag

in ni_dr_status_all/pop register, 46,
154

in ni_ldr_status_all/pop register,
155

in ni_rdr_status_all/pop register,
157

nildr_rec_length, field
in ni_dr_status_all/pop register, 154
in nildrstatus_all/pop register,

155
in ni_rdr_statusall/pop register,

157
nildr_rec_length_long, field, in

niidr_status_all/pop register,
46

nildr_rec_o, flag
in ni_dr_status_all/pop register, 46,

154
in ni_ldr_statusall/pop register,

155

in ni_rdr_status_all/pop register,
157

248

ni_ldrrec_tag, field
in ni_dr_status_all/pop register, 46,

154
in ni_ldrstatusall/pop register,

155
in ni_rdr_statusall/pop register,

157
ni_ldr_rec_tag _ie, flag, 49, 107, 163
ni_ldr ecv, register, 147
ni_ldr send, register, 147
nildr_send_first, register, 147
nildxrsend_firstlong, register, 147
ni_ldr_send_ok, flag, in

nildrstatus_all/pop register,
155

ni_ldrsend_space, field, in
ni_ldrstatus_all/pop register,
155

nildr status, register, 147, 155
ni_ldr statusall, register, 147
nildr_status_all/pop, register, 155
nildrxstatus_long, register, 147, 155
ni_ldrstatus.pop, register, 147
ni-ldr-user-rec-tag ie, flag, 49, 107,

163

nilock, flag
in ni bc.private register, 158
in nicom_private register, 159
in niidrprivate register, 154
in nildrprivate register, 156
in ni_rdrprivate register, 157
in ni_sbc rivate register, 158
of a network, 30, 31
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54

ni_longest_dr message, register, 38, 39,
146

ni_message_too_long_ie, flag, 38, 107
ni_msg_too_long_ie, flag, 163
ni.partition _base, register, 108, 110,

146
xniartitionsize, register, 108, 109,

146
ni.physical_self, register, 108, 146

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Programming Tools Index

ni_rdonecomplete_ie, flag, 54, 57, 154
nirdrx.... See ni_dinterface..
ni rdrprivate, register, 147, 157
ni_rdrrec_all_f all-down, flag

in ni_drstatusall/pop register, 46,
154

in ni_ldr_status_all/pop register,
155

in nirdr status_all/pop register,
157

ni_rdr_reclength, field
in ni_dr_status_all/pop register, 154
in ni_ldr_status_all/pop register,

155
in ni_rdr_status_all/pop register,

157

ni_rdrrec_length long, field, in
ni_dr_status_all/pop register,
46

ni rdr recok, flag
in ni_dr_status_all/pop register, 46,

154
in ni_ldr_status_all/pop register,

155
in ni_rdr_status_all/pop register,

157

nirdr retag, field
in ni_dr_statusall/pop register, 46,

154
in nild_status_all/pop register,

155
in nirdxstatus_all/pop register,

157

nirdxrrectagie, flag, 49, 107, 163
nirdrrecv, register, 147
ni_rdrsend, register, 147
nirdr sendfirst, register, 147
nirdr sendfirstlong, register, 147
nirdr-send ok, flag, in

ni_rdr_status_all/pop register,
157

ni_rdrsend_space, field, in
ni_rdr_statusall/pop register,
157

ni_rdr_status, register, 147, 156

ni_rdrstatusall, register, 147
ni_rdr_status all/pop, register, 157
ni_rdrstatus long, register, 147, 156
ni_rdrstatus_pop, register, 147
ni_rdr_user_rectag ie, flag, 49, 107,

163
nirec_abstain, flag

in ni_bc_control register, 158
in ni_com _control register, 160
in ni_sbc_control register, 159
of broadcast interface, 185
of combine interface, 188

ni_rec_full, flag
in ni_bc_private register, 158
in nicom private register, 159
in ni_drxprivate register, 154
in ni_ldrprivate register, 156
in ni_rdr_private register, 157
in nisbcprivate register, 158
of a network, 30, 32
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54

nirec_interrupt_m ask, register, 38, 49,
146

ni_rec_length, field
in ni_comrnstatus register, 159
in ni_dr_status register, 153
in ni_dr_status_long register, 154
in ni_ldr_status register, 155
in ni_ldr_statuslong register, 155
in ni_rdr_status register, 156
in ni_rdr_status_long register, 156
of a network, 25, 26
of a network interface, 181
of combine interface, 76, 187
of Data Networks, 45, 183

ni_rec_lengthleft
field

in ni_bc_status register, 157, 238
in nicom_status register, 159
in ni_dr_status register, 153
in ni_dr_status_long register, 154
in nildxstatus register, 155
in ni_ldr_status_long register, 155

NI Version 2.2 (CM-5E), June 1994
Copyright O 1994 Thinking Machines Corporation 249

NI Programmer's Handbook
s~~~~~s~~~~i~~~~s~~~~~ s ~ ~ ~ · , ~

in ni_rdr_status register, 156
in nirdr_status_long register, 156
in ni_sbc_status register, 158
in ni_sbc_status register, 238
of a network, 25, 26
of broadcast interface, 68, 68, 185
of combine interface, 76, 187
of Data Networks, 45, 183

flag, of a network interface, 181
ni_recok, flag

in ni_bc_status register, 157
in ni_com_status register, 159
in ni_dr_status register, 153
in nidrstatus_long register, 154
in nildrxstatus register, 155
in ni_ldr statuslong register, 155
in nirdxstatus register, 156
in ni_rdr status-long register, 156
in ni_sbc_status register, 158
of a network, 25, 26
of a network interface, 181
of broadcast interface, 68, 185
of combine interface, 76, 187
of Data Networks, 45, 183

nirecok.ie, flag
in ni_bcprivate register, 158
in nidrprivate register, 154
in nildr private register, 156
in ni,_dr_private register, 157
in ni_sbcrivate register, 158
in nicom _private register, 159
of a network, 30, 30
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54

ni_recstate, field, of Data Networks,
183

nirec stop, flag
in ni_bcprivate register, 158
in nicom private register, 159
in ni drprivate register, 154
in nisbcprivate register, 158
of a network, 30, 31
of combine interface, 83
of Data Networks, 54

ni rec_tag, field, of Data Networks, 183
ni_reduce_rec_abstain, flag, 81, 160,

188
of combine interface, 27, 28

nirouter_donecomplete, flag, 45, 46,
54, 76, 80, 153, 154

in ni_ldr_status_all/pop register,
155

in nirdrstatus_all/pop register,
157

of Data Networks, 183
nisbce..., register. See ni binterface ...
nisbccontrol, register, 148, 159
ni_sbc_private, register, 148, 158
nisbcrecv, register, 148
nisbc_send, register, 148
ni_sbc_send_first, register, 148
ni_sbc_status, register, 148, 158
niscan start, register, 72, 78, 146, 187
ni send empty, flag

in ni_bc_status register, 157
in ni_com_status register, 159
in ni_sbc_status register, 158
of a network, 25
of a network interface, 181
of broadcast interface, 68, 185
of combine interface, 76, 187

ni_send_enable, flag
in ni_bcprivate register, 158
in ni_sbc_private register, 158
of broadcast interface, 69, 69

ni send ok, flag
for Data Networks, 45
in nibc_status register, 157
in nicom status register, 159
in nidrstatus register, 153
in ni_dr_status_long register, 154
in ni_ldr_status register, 155
in ni_ldr_status long register, 155
in ni_rdr_status register, 156
in ni_rdr_status_long register, 156
in ni_sbc_status register, 158
of a network, 25, 25
of a network interface, 181
of broadcast interface, 68, 185

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation250

Programming Tools Index

of combine interface, 76, 187
of Data Networks, 183

ni_send space, field
in nibcstatus register, 157
in ni_com_status register, 159
in nidrx status register, 153
in ni_ddr_tatus_long register, 154
in ni_ldr_status register, 155
in ni_ldr_status_long register, 155
in ni_rdr_status register, 156
in ni_rdr_status_long register, 156
in ni_sbc_status register, 158
of a network, 25, 26
of a network interface, 181
of broadcast interface, 68, 185
of combine interface, 76, 187
of Data Networks, 45, 183

ni_send_state, field, of Data Networks,
183

ni_send_stop, flag, of broadcast interface,
30, 32, 69

ni_ser ialnumber, register, 116, 146
ni_set_bad_memory_access, flag, 162
ni_set_bad_relative_address, flag,

162
ni_set_bc_interrupt_green, flag, 162
ni_set_bc_interruptorange, flag, 162
ni_set_bc_interrupt_red, flag, 162
ni_set_bc_interrupt_yellow, flag, 162

ni_setbc_orcom_collision, flag, 162

ni_set_bc_recok, flag, 162
ni_set_cmu_error, flag, 162
ni_set_cn_checksumerror, flag, 162
ni_set_cn_hard error, flag, 162
ni_set_com_abstain_changed, flag, 162
ni_set_com_rec_em pty, flag, 162
ni-setcom_rec_ok, flag, 162
ni_setdperr, flag, 162
ni_set_di_checksum_error, flag, 162
ni_set_dr_count_negative, flag, 162
ni_set_dr_rec_all_fall_down, flag,

162

ni_set_dr_rec_ok, flag, 162
ni_set_dr_rec_tag, flag, 162
ni_set_global_rec flag, 162

ni_set_internal_f ault, flag, 162
ni_set_ldr_rec_ok, flag, 162
ni_set_ldr rec_tag, flag, 162
ni_set_ldr_user_rec_tag, flag, 162
ni_set_mc_error, flag, 162
ni_set_message_too_long, flag, 162
ni_set_rdone_complete, flag, 162
ni_set_rdr rec_ok, flag, 162
ni_setrdr rectag, flag, 162
ni_set_rdr_user_rec_tag, flag, 162
ni_set sbc_rec ok, flag, 162
ni_set_scan overflow, flag, 162
ni_set_sfifo_empty, flag, 162
ni_setsupervisor_global_rec, flag,

162

ni_set sync global_rec, flag, 162
ni_set_timeriteinrrupt, flag, 162
ni_sfifo_goes_empty_ie, flag, 54, 57,

154
ni_supervisor globalrec, flag, 93, 160

ni_supervisorglobal_rec_ie, flag, 93,
107, 163

ni_supervisor_global_send, flag, 93,
160

ni_sync_global, register, 89, 89, 146, 160,
188

ni_sync_global_abstain, register, 89,
90, 146, 188

ni_sync_global_complete, flag, 89, 90,
160, 188

nilsync_global rec, flag, 89, 90, 160,
188

ni_sync_global_rec_ie, flag, 89, 91,
107, 163

ni_ync_global_send, register, 89, 90,
146, 188

ni_time, register, 113, 146
ni_timerie, flag, 107, 113, 163
ni_user rec interruptmask; register,

38, 49, 146
ni_user_tag_mask, register, 38, 48, 146

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation 251

NI Programmer's Handbook
_ __- ____

O
ORSCAN

combine combiner constant, 75, 152
combiner constant, 77, 186

P
PHysICAL, flag value constant, 43, 150

R

rdone complete, Orange interrupt, 96,
100

rdr rec ok, Green interrupt, 30, 97, 101,
174

rdr rec tag, Green interrupt, 97
rdr tag, Green interrupt, 177
rdr user rec ok, Green interrupt, 101
rdr user rec tag, Green interrupt, 97
rdr user tag, Green interrupt, 177
RECEIVELENGT (), macro, 27, 181
RECEIVE_LENGTH_LEFT (), macro, 27, 181
RECEIVE_OK (), macro, 27, 181
RECEIVE_TAG(), macro, 48, 183
RELATIVE, flag value constant, 43, 150
RIGHTDRFIFO, interface number

constant, 22, 150
router done complete, Orange

interrupt, 57, 169

S
sbc rec ok, Green interrupt, 30, 97, 101,

174
scan overflow, Green interrupt, 79, 97,

101, 176
sCANBACKWARD

combine pattern constant, 75, 151
pattern constant, 77, 186

SCANFORWARD

combine pattern constant, 75, 151
pattern constant, 77, 186

SCANREDUCE

combine pattern constant, 75, 152

pattern constant, 77, 186
SCAN ROUTER_DONE

combine pattern constant, 75, 152
pattern constant, 79, 186

send fifo empty, Green interrupt, 57,
177

SEND_EPTY (), macro, 27, 181
EmNDo_ (), macro, 27, 181

SEND_SPACE (), macro, 27, 181
SFFIFO-OFFSET send-first field offset

constant, 21, 149
sfifo empty, Green interrupt, 97, 101
sp-pe-stubs, preprocessor, 127
supervisor global rec, Green

interrupt, 93, 97, 101, 175
sUPERVISORBCFIFO, interface number

constant, 22, 150
sync global rec, Green interrupt, 91, 97,

101, 175
sync_global_abstainreg, constant, 90,

188

T

timer interrupt, Orange interrupt, 96,
100, 114, 168

U

UADD-SCAN

combine combiner constant, 75, 152
combiner constant, 77, 186

USER BCFIFO, interface number constant,
22, 150

V

vU error, Green interrupt, 176

X

XOR SCAN

combine combiner constant, 75, 152
combiner constant, 77, 186

NI Version 2.2 (CM-SE), June 1994
Copynright © 1994 Thinking Machines Corporation252

Concepts Index
I_~~' ''

This index lists the essential concepts referred to within this document. Bold page numbers indicate a
defining reference or important description.

A

absolute address, in chunk table
translations, 110

abstain flag, 27
effect of, 28
function to set values of, 123
in control registers, 9
of broadcast interface, 69
of combine interface, 28, 81

for reduction operations, 28
of global interface, 90
using efficiently, 138
using safely, 29

abstaining
from a network interface, 27
from a synchronous global message, 90
from broadcast interface, 69
from combine interface, 81

addition (signed), combine operation, 75
addition (unsigned), combine operation, 75
addition scan overflow, 78
address (node) registers, 108
address translation, and NI chunk table,

108
addresses

calculating sendfirst, 21
calculating sendfirstlong, 43
of registers, 145

programming constants, 11

addressing
of nodes, 39, 119, 139
of partition manager, 119
of registers, programming constants, 11
physical. See physical addressing
relative. See relative addressing

alignment of doubleword data, 140
"All Fall Down interrupt enable" flag, 54,

55
"All Fall Down message" flag, 54, 55
All Fall Down Mode, 55

address word format, 56
detecting, 55
resending, 56
triggering, 55

'All Fall Down mode enable" flag, 54, 55
alternate status register, of Data Networks,

36, 46
asynch global receive interrupt, 93
"asynch global receive interrupt enable"

flag, of asynchronous global
interface, 92, 93, 107

asynch supervisor global receive interrupt,
93

"asynch supervisor global receive" flag, of
supervisor asynch global interface,
93

NI Version 2.2 (CM-SE), June 1994
Copyright § 1994 Thinking Machines Corporation 253

NI Programmer's Handbook
_e~B~h~eSI~~

"asynch supervisor global send" flag, of
supervisor asynch global interface,
93

"asynch supervisor global" register, of
supervisor asynch global interface,
89, 93

"asynch supervisor receive interrupt
enable", of supervisor asynch global
interface, 93, 107

"asynch global receive" flag, of
asynchronous global interface, 92

"asynch global send" flag, of asynchronous
global interface, 92

"asynch global" register, of asynchronous
global interface, 89, 92

asynchronous interface, of global interface,
88, 89

auxiliary information, 20
for broadcast messages, 67
for combine messages, 74
for Data Network messages, 41, 42
of a network message, 18

B

backward scan, combine pattern, 75
"bad address low" field, 114
"bad address type" field, 114
"bad address" register, 114
base address, of NI memory region, 8

programming constant, 12, 21
broadcast enabling, 69

CMOST operation for, 141
broadcast interface, 3, 63, 64

abstaining from, 69
auxiliary information, 67
broadcast interrupt interface, 104
conflicts with combine interface, 140
enabling, 69

CMOST operation for, 141
message format, 66
message ordering, 66
messages, 65
receiving, 67
registers, 64

sending, 66
supervisor broadcast interface, 64
user broadcast interface, 64

"broadcast interrupt receive enable" flag,
104, 107

"broadcast interrupt send ok" flag, 104, 107
"broadcast interrupt send" register, 104
broadcast interrupts. See interrupts,

broadcast
broadcast messages, user and supervisor, 64
"Bus Error disable" flag, 107
Bus Errors, 97, 178

and bad address register, 114
on abstain flag change during global

message, 90
on bad memory access, 97, 178
on broadcast interrupt error, 104
on broadcasting with sending disabled,

69
on combine flush error, 113
on configuration error, 115
on excessively long messages, 19
on improper message format, 19
on network-done message error, 80
on reading from empty rec FIFO, 26
on reading/writing undefined addresses,

7
on sending with abstain flag set, 28, 90
on user access to supervisor features, 7
on user sending message with supervisor

tag, 48
on user sending physical mode message,

43

C

casting register constants, for C coding, 11
chunk address, 109
chunk position, 110
"chunk size" register, 110
chunk sizes, 110
chunk table, 40, 108

modifying, 112
size of chunks, 110

"chunk table address" register, 112

NI Version 2.2 (CM-SE), June 1994
Copyright) 1994 Thinking Machines Corporation254

Concepts Index
..................... NUMMINN

"chunk table data" register, 112
clearing combine send FIFO, 83
cm_signal. h, header file, 51
CM-5, 2

networks, 2
operating system, 5
partition manager, 4
partitions, 4
processing nodes, 3
programs, 5

CMMD, software interface, 1
CMNA

(CM Network Accessors), 225
header files, 226

cma. h, header file, 11, 13, 125, 225
code

for nodes, 5
for PM, 5

"combine add-scan overflow" flag, 76, 78
combine flush, 112
"combine flush complete" flag, 107, 113
"combine flush" register, 113
combine interface, 3, 63, 71

abstaining from, 81
auxiliary information, 74
conflicts with broadcast interface, 140
flushing, 112
message format, 73
message ordering, 73
messages, 73
network-done messages, 79
parallel prefix. See scanning
pipelining, 73
receiving, 76
reduction messages, 77
registers, 72
scan overflow, 78
scanning, 77
sending, 73
status register, 76
word order in scans, 77, 140

combine messages, word order in, 140
combine patterns

addition (signed), 75
addition (unsigned), 75

backward scan, 75
exclusive OR, 75
forward scan, 75
inclusive OR, 75
maximum, 75
network-done, 75
reduction, 75

combiner field, combine interface, legal
values, 75

"combiner value" supervisor field, of
combine interface, 83, 84

combiner values, for combine messages, 77
communications networks. See CM-5

networks; networks
compiling NI programs. See programs
configuration, partition, 115
"configuration complete" register, 107, 115
"configuration" register, 115
conflicts, between broadcast and combine

interfaces, 140
Connection Machine CM-5 Technical

Summary, xix
constants

NI base address, 12, 21
programming, 11
register, address, 11
register field, position and length, 12

Control Network, 2, 3, 63
See also broadcast interface; combine

interface; global interface
disabling, 116

"Control Network disable" flag, 107, 116
control register, register type, 9
"control" register

of a network interface, 17, 27
of broadcast interface, 64, 69
of combine interface, 72, 81

"count mask" register, 38, 51, 80
"current" message, in receive FIFO, 25

D

Data Network (DR), 2, 2, 35
addressing. See addressing

NI Version 22 (CM-5E), June 1994
Copynright @ 1994 Thinking Machines Corporation 255

NI Programmer's Handbook
--- ---- --------

All Fall Down mode, 55
address word format, 56
detecting, 55
resending, 56
triggering, 55

auxiliary information, 41, 42
chunk table, 108
interactions between interfaces, 36
length field, 42
message format, 41
message mode bit, 42
message modes, physical and relative, 40
message ordering, 39
message tags, 48
messages, 38

auxiliary information, 42
length field, 42
mode bit, 42
tag field, 42

receiving, 44
registers, 36
send FIFO, registers, 42
sending, 42, 43
tag value of messages, 42

Data Network interfaces
Data Network (DR), 36
left interface (LDR), 2,36
registers, 36

See also Data Network
right interface (RDR), 36

detecting arrival of messages, 24
Diagnostic Network, 3
disabling the Control Network, 116
discarded messages, 20

and sendok flag, 25
using efficiently, 138

doubleword data, alignment, 140
doubleword operations, for reading/writing

registers, 19
doubleword operators, 22, 136
"DR length limit" register, 38, 39
"DR network done" flag, 45, 46, 54, 76
"DR receive state" field, 45, 53
"DR send state" field, 45, 45, 46, 53

E

examples, on-line, 134
exclusive OR, combine operation, 75
executing NI programs. See programs

F

fields, register
See also register fields
position and length constants, 12

fields and flags, status. See status register,
fields and flags

"flush complete" flag, 107, 113
"flush" register, of combine interface, 113
flushing, the combine interface, 112
format of messages, 18, 19

for asynchronous global interface, 92
for broadcast interface, 66
for combine interface, 73
for Data Network, 41
for supervisor asynch global interface, 93
for synchronous global interface, 90

forward scan, combine pattern, 75

G

generic network interface, 17
using effectively, 32

getting value of status register, 26
See also status registers

"global abstain" register, of synchronous
global interface, 89, 90

global interface, 3, 63, 88
asynchronous interface, 91
supervisor asynch interface, 93

"global receive" register, of synchronous
global interface, 89, 89

"global send" register, of synchronous
global interface, 89, 90

Green broadcast interrupt, 104
Green interrupt, 97, 101, 173

Green broadcast interrupt, 97, 101, 104,
173

on add scan overflow, 79, 97, 101, 176

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation256

Concepts Indexs w. ws _

on All Fall Down message receipt, 55, 97,
101, 174

on DP (vector unit) error, 176
on empty combine receive FIFO, 83, 97,

101, 175
on empty Data Network send FIFO, 57,

97, 101, 177
on interrupting DR message tag, 49, 97,

101, 174
on LDR/RDR tag, 177
on LDR/RDR user tag, 177
on message receipt, 30, 91, 93, 97, 101,

174, 175
on vector unit error, 97, 101, 176

"Green interrupt clear" register, 102
"Green interrupt level" field, 103

H

header files
cm_signal. h, 51
cmna. h, 11, 225

"hodgepodge" register, 38, 49, 107
and asynchronous global interface, 89
and supervisor asynch global interface,

89
and synchronous global interface, 89
broadcast interrupt flags, 104
configuration flag, 115
flush complete flag, 113
global receive interrupt enable flag, 92,

93
NI timer interrupt enable flag, 113
send stop flag, 116
supervisor receive interrupt enable flag,

93
sync global receive interrupt enable flag,

89, 91

inclusive OR, combine operation, 75
interface, register

of asynchronous global interface, 91
of broadcast interface, 64

of combine interface, 72
of Data Networks, 36
of global interface, 89
of supervisor asynch global interface, 93
of synchronous global interface, 89

interface code file. See programs
"interrupt cause" register, 102
"interrupt clear" register, 102
"interrupt level" register, 103
"interrupt now" register, 113
interrupts, 13, 95, 165

and tag fields, 48
broadcast, 104
Bus Errors, 178

on bad memory access, 178
Bus Errors, 97

and bad address register, 114
on abstain flag change during global

message, 90
on bad memory access, 97
on broadcast interrupt error, 104
on broadcasting with sending disabled,

69
on combine flush error, 113
on configuration error, 115
on excessively long messages, 19
on improper message format, 19
on network-done message error, 80
on reading from empty receive FIFO,

26
on reading/writing undefined

addresses, 7
on sending with abstain flag set, 28, 90
on user access of supervisor features,

7
on user sending message with

supervisor tag, 48
on user sending physical mode

message, 43
cause and clear registers, 102
classes, 13, 95
detecting and clearing, 102
Green, 97, 101, 173

on add scan overflow, 79

NI Version 22 (CM-SE), June 1994
Copyright @ 1994 Thinking Machines Corporation 257

NI Programmer's Handbook
_____e~csn~ss~aa~e~- .

on All Fall Down message receipt, 55
on broadcast interrupt, 104
on empty receive FIFO, 83
on interrupting DR message tag, 49
on message receipt, 30, 91, 93

interrupt levels, 103
Orange, 96, 100, 168

on broadcast interrupt, 104
on NI timer interrupt, 114

pathways, 98
recovery, 98, 105
Red, 95, 99, 166

off-chip faults, 99
on broadcast interrupt, 104
on-chip faults, 99

using to retrieve Data Network
messages, 48

Yellow, 96,100, 169
on bad relative address, 41
on broadcast interrupt, 104
on broadcast/combine collision, 73
on broadcast/combine conflict, 104
on Bus Error signaled as interrupt, 98
on combine/abstain flag error, 82
on negative message count, 52

IOR, combine operation, 75

L

"LDR supervisor tag interrupt enable" flag,
49, 107

"LDR user tag interrupt enable" flag, 49,
107

left Data Network interface (LDR), 2, 35
length limit

of network interface FIFOs, 19
on broadcast interface messages, 66

length of message
remaining words, 26
total (as received), 26

"lock" flag
of a network interface, 30, 31
of broadcast interface, 69
of combine interface, 83
of Data Network interfaces, 54

M

mapping, relative to physical addresses, 111
maximum, combine operation, 75
memory maps

network interface registers, 18
node virtual memory, 9
of broadcast interface registers, 65
of combine interface registers, 72
of Data Network registers, 37
of global interface registers, 88

memory subsystem, of nodes, 3
"message count" register, 38, 51, 54, 80
message counting, 51

in network-done operations, 80
message format

asynchronous global interface, 92
broadcast interface, 66
combine interface, 73
Data Network, 41
supervisor asynch global interface, 93
synchronous global interface, 90

message ordering, broadcast interface, 66
message tags, 48

user/supervisor, 48
"Message too long interrupt enable" flag,

38, 107
messages

broadcast interface, 65
combine interface, 73

word order, 140
Data Network, 38
detecting arrival of, 24
discarded, 20

and send ok flag, 25
format, 18

for asynchronous global interface, 92
for broadcast interface, 66
for combine interface, 73
for Data Network, 41
for supervisor asynch global interface,

93
for synchronous global interface, 90

from nodes to PM, 121
from PM to nodes, 120

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Madines Corporation258

Concepts Index
g-- ---- ----- ----

global interface, 88
length field, for Data Network, 42
mode bit, for Data Network, 42
modes, (for Data Network), 40
network, 18
receipt order, for Data Network, 39
receiving, 23

microprocessor, of processing node, 3
"middle" Data Network interface, 2
"middle" Data Network interface

restrictions, 140

N

"network done" flag
See also "DR network done" flag
of Data Network, (network-done

operation), 80
Network Interface (NI), 2, 6

base address, 8
constant, 12, 21

chip, 2, 6
interrupts, 13, 95, 165
memory region, occupied by registers, 7
memory regions, physical and virtual, 8
operation times, 135.
performance hints, 135
register names, 10
register types, 9
registers, 6
Reset, 14, 117
serial number, 116
supervisor area, 7
timer, 113
user area, 7

network interfaces, interactions between,
140

network-done interrupt enable flag, 54
network-done

combine interface operation, 71, 79
combine operation, 75
message format, 79

network-done messages, (via combine
interface), 79

networks, 2
common features, 17
conflicts between. See broadcast

network, conflicts; combine
network, conflicts

interface, registers, 17
interface numbering, 21
interfaces, generic, 17
messages, 18

NI. See Network Interface (NI)
NI programs. See programs
NI Reset, 117
"NI timer enable" flag, 107,113
node, program, 5
node program. See programs
nodes. See processing nodes

O
off-chip faults, (Red interrupts), 99
on-line code examples, 134
on-chip faults, (Red interrupts), 99
operating system. See CM05 operating

system
operation times, of NI, 135
OR, combine operation, 75

See also XOR, combine operation
Orange broadcast interrupt, 104
Orange interrupt, 96, 100, 168

network-done complete, 57, 169
NI timer interrupt, 96, 100, 114, 168
Orange broadcast interrupt, 96, 100, 104,

169
router-done complete. See Orange

interrupt, networkdone complete
"Orange interrupt level" field, 103
order of words, in scan messages, 77
overflow, in addition scans, 78

P
parallel prefix, combine interface

operation. See scanning

NI Version 22 (CM-SE), June 1994
Copyright 1994 Thinking Machines Corporation 259

NI Programmer's Handbook
~~~~~~ s s~~~~~~~~~~~~~~~~ s~~~~~~~~~~ e~~~~~~~~~~~ a~~~~~~~~~~

partition
See also partitions
size of, variable, 40

"partition base address" register, 108, 110
partition configuration, 115
"partition configuration" register, 115
partition manager (PM), 4

address of, 40, 119
code, 5
exchanging data with nodes, 119
program. See programs

"partition size" register, 109
partitioning, by system administrator, 4
partitions, 4

configuration, 115
defined by the NI chunk table, 108
relative addressing within, (for Data

Network), 40
size, 4

pattern field, combine interface, legal
values, 75

pattern values, for combine messages, 77
performance hints, 135
physical addressing

See also addressing
translation from relative addressing, 109

physical base address, of NI memory
region, 8

"physical self address" register, 108
pipelining combine operations, 73
PM program. See programs
"private" register, 30

of a network interface, 17, 24, 30
of broadcast interface, 64, 69
of combine interface, 72, 83
of Data Network interface, 36, 54

processing node program. See programs
processing nodes, 2, 3

address registers, 108
address translation, 108
addresses of, 39

registers, 108
addressing. See addressing
exchanging data with PM, 119
internal structure, 3

programming models, user and OS, 5
programs

compiling and executing, 132
interface code file, 127
NI, 5, 12
node code file, 126
PM and node, 4
PM code file, 125
structure of, 125

protocol
See also messages, format
for sending messages, 19

Q
FIFO register

of a network interface. See receive FIFO
register; send FIFO registers

register type, 9

R

"RDR supervisor tag interrupt enable"
register, 49, 107

"RDR user tag interrupt enable" flag, 49,
107

reading a message, 23
reading registers, using doubleword

operators, 136
reading status registers, 26
"receive abstain" flag

for broadcast interface, 69
of a network, 27, 28
of combine interface, 81
of global interface, 90

"receive FIFO empty interrupt enable"
flag, of combine interface, 83

"receive FIFO full" flag
of a network, 30, 32
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54

"receive ok interrupt enable" flag
of a network, 30, 30
of broadcast interface, 69

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 ThinkingMachines Corporation260



Concepts Index
~. '; .:.X..4.::,: x Z ' ; ? .~ ' " s'"- .... ,

of combine interface, 83
of Data Networks, 54

"receive interrupt mask" register, 38, 49
"receive length left" field

of a network, 25, 26
of broadcast interface, 68, 68
of combine interface, 76
of Data Networks, 45

"receive length" field
of a network, 25, 26
of combine interface, 76
of Data Networks, 45, 46

"receive ok" flag
of a network, 24, 25, 26
of broadcast interface, 68
of combine interface, 76
of Data Networks, 45, 46

receive FIFO
network register for, 23
of a network, 9, 18, 23

receive FIFO register, of a network, 23
"receive state" field, of Data Network, 45,

53
"receive stop" flag, of a network, 31
"receive" register

of a network, 17, 23
of broadcast interface, 64, 67
of combine interface, 72, 76
of Data Networks, 36, 44

receiving
a broadcast interface message, 67
a combine interface message, 76
a Data Network message, 44
a global interface message, 92
a network message, 18, 23
a network-done message, 80
a reduction-scan message, 77
a scan message, 77
a synchronous global message, 90
an asynch supervisor global message, 93
an asynchronous global message, 92

Red broadcast interrupt, 104
Red interrupt, 95, 99, 166

off-chip faults, 99
on cache/MMU error, 96, 99, 167

on Control Network checksum failure,
96, 99, 166

on Control Network hardware failure,
96, 99, 167

on Data Network checksum failure, 96,
99, 166

on memory controller error, 96, 99, 167
on NI chip fault, 96, 99, 166
on-chip faults, 99
Red broadcast interrupt, 96, 100, 104,

168
"Red interrupt level" field, 103
reduction

combine interface operation, 71, 77
See also scanning

combine pattern, 75
"reduction abstain" flag, of combine

interface, 28, 81
reduction messages, (via combine

interface), 77
register constants, 11

casting, for C coding, 11
register fields

names, 10
programming constants, 11

register interface
of asynchronous global interface, 91
of broadcast interface, 64
of combine interface, 72
of Data Networks, 36
of global interface, 89
of supervisor asynch global interface, 93
of synchronous global interface, 89

register naming format,
ni interfaceurpose, 10

register types, 9
register

address constants, 11
doubleword operators, 136
names, 10
NI, 6
status, 25

relative addressing
See also addressing
translation to physical addressing, 109

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

~~_

261



NI Programmer's Handbook
11011101ININ

Reset, NI, 14, 117
right Data Network interface (RDR), 2, 35
RISC microprocessor, of processing node,

3
router, 35

See also Data Network
router done complete

Orange broadcast interrupt, 96
Orange interrupt, 100

"router done" flag. See "DR network done"
flag

router-done. See network done
running NI programs. See programs

S
scan overflow, in addition scans, 78
"scan overflow interrupt enable" flag, of

combine interface, 79, 83
"scan start" register, of combine interface,

72,78
scanning

addition scan overflow, 78
combine interface operation, 71, 77

scanning with segments, 78
segmented scanning, 78
select address, for chunk table addressing,

109
"self address", of a processing node, 40
"send combiner value" supervisor field, of

combine interface, 83, 84
"send empty" flag

of a network, 25, 26
of broadcast interface, 68
of combine interface, 76

send FIFO empty interrupt enable flag, 54
"send FIFO enable" flag, of broadcast

interface, 69, 69
"send length" supervisor field, of combine

interface, 83, 84
"send ok" flag

and discarded messages, 25
of a network, 25, 25
of broadcast interface, 68
of combine interface, 76

of Data Networks, 45, 46
"send pattern" supervisor field, of combine

interface, 83, 84
send FIFO

network registers for, 19
of a network, 9, 18, 19

"send space" field
of a network, 25, 26
of broadcast interface, 68
of combine interface, 76
of Data Networks, 45, 46

"send start" supervisor field, of combine
interface, 83, 84

"send state" field, of Data Network, 45, 53
"send stop" flag, of broadcast interface, 30,

32
"send" register

of a network, 17, 19
of broadcast interface, 64, 67, 67
of combine interface, 72, 73

using to clear the send FIFO, 83
of Data Networks, 36, 42

send first addresses
calculating, 21
constants, 21

send f irstong addresses, calculating,
43

"send-first long" register, of Data
Networks, 36, 43

"send-first" register
of a network, 17, 19
of broadcast interface, 64, 67, 67
of combine interface, 72, 73
of Data Networks, 36, 42

sending
a broadcast interface message, 66
a combine interface message, 73
a Data Network message, 42, 43

message modes, 40
a global interface message, 92
a network message, 18, 19
a network-done message, 79
a reduction-scan message, 77
a scan message, 77

NI Version 2.2 (CM-SE), June 1994
Coyright © 1994 Thinking Machines Corpoation262



Concepts Index
~ip *~se si

a synchronous global message, 90
an asynch supervisor global message, 93
an asynchronous global message, 92

sending messages from nodes to PM, 121
sending messages from PM to nodes, 120
serial number (of NI), register, 116
simulating arrival of a message, 24, 142
status pop register, of Data Networks, 36,

47
status register for long messages, of Data

Networks, 36, 45
status register, alternate, of Data Networks,

36,46
status register

fields and flags, 25
of a network interface, 17, 25
of broadcast interface, 64, 68
of combine interface, 72, 76
of Data Networks, 36, 45, 80
register type, 9

status registers
accessor macro, 26
reading, 26

"stop send" flag, 107, 116
"stop" flag

of a network, 30
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54

supervisor area, of NI memory region, 7
supervisor asynchronous global interface,

of global interface, 88, 89
"supervisor asynchronous global" register,

of supervisor asynch global
interface, 89, 93

supervisor broadcast interface, 64
See also broadcast interface

supervisor message tags, 48
supervisor operations, 7

clearing combine send FIFO, 83
clearing interface send FIFO, 31
grabbing control of receive and status

registers, 31
reserving Data Network message tags, 48
simulating arrival of a message, 24, 142

triggering All Fall Down mode in DR, 55
"synch global receive interrupt enable"

flag, of synchronous global
interface, 89, 91, 107

"synchronous global completion" flag, of
synchronous global interface, 89, 90

synchronous global receive interrupt, 91
"synchronous global receive" flag, of

synchronous global interface, 89, 90
synchronous interface, of global interface,

88, 89

T

tag fields
and interrupts, 48
and message counting, 51
of Data Network messages, 48

tag value, of Data Network message, 42
timer, NI. See Network Interface timer
timer (NI), register, 113
"timer enable" flag, 113
timing, of NI operations, 135
total length of message, 26

U

user area, of NI memory region, 7
user broadcast interface, 64

See also broadcast network
user message tags, 48
user programming model, 5
"user receive interrupt mask" register, 38,

49
"user tag mask" register, 38, 48

V

value, of a message, (single- or
doubleword), 19

virtual base address, of NI memory regions,
8

VUProgrammer's Handbook, xix

NI ersion 22 (CM-5E), June 1994
Copyright @ 1994 Tining Machines Corporation 263



NI Programmer's Handbook
_9~i~ssk~s9·p~sp~pa~~

W

writing a message, 22
writing a value to recieve register, to

simulate arrival of message, 24
writing registers, using doubleword

operators, 136

X

XOR, combine operation, 75

y
Yellow broadcast interrupt, 104
Yellow interrupt, 96, 100, 169

Bad memory (Bus Error) interrupt, 170

bad memory (Bus Error) interrupt, 96,
100

Data Network message too long, 39, 96,
100, 172

on bad relative address, 41, 100
on broadcast/combine conflict, 73, 96,

100, 104, 171
on combine abstain flag error, 82, 96,

100, 170
on illegal relative address, 96, 172
on negative DR message count, 52, 96,

100, 171
Yellow broadcast interrupt, 96, 100, 104,

170
"Yellow interrupt level" field, 103

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation264



NI Memory Map

NI Version 22 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation 265





~"''~* " I-- -'- OlO < -5O 1~ CD O r Z CD C=1 r: ~S)· OZC 

a~~~~~~~~t' CD 
Im�

C) C) C) 0 ~~~~~C) ) C 0 C) )X5; X I Xs Xn .X m X X X X3

o o o C H ) o o o o:~ N ~ N~~~~~~~C :: :X X :o C) CD ) CD C) C) C) 

C) ) C) C) C-) 0 C) C) ) 
CDi: g tr fD b OCo o C) C) C) C) )D C CD CSu 0 3 la; wCD~~~~~~~~~~~~~~~~~~C g L(

o C) C) C) o o CD
C~ O O CD 0 00 coO C) C) C) C) C) C)0 0 C) O 0 CD 0 0 C00 C) 0 C) C C) C

> A~V 

m It i / I lG I t i I ............. 0 [:: [ Phm PhII-h M m m H
:aoD m 1h' I Im to

0 0

C)
X
oo
C)
C)

Z)

0
X

C)oL'.,.CDO

C) C) C)XXX
N) 

C) C) C
C) C) C)
C) C) C)o o 
O o 

00'Hr

0l 0 C)XXX
1. LI) 0)
C) CD C)
C) C) O
C) C C)OOO

XX XXX
-J 0)co H H

c0 o 0 C)
C) C) C) C) C)

C) C
N w Q

" " Nl) i

* **

o oCD C)x X
C) C)
C) C)
C) C)

N N
i il

Na FC)

* * 

O C CD O O O O O C O O O O C) O C O O O O O O O O C O C O O O O OC)X XXXXXX 3 CX XX X XXXXXX X X X XX X XX X XXX X X X X
CC)w. C 0 0 C- ) 0 0 0 C) Q 0 C C 0 o C 0C0 C C) C C) C) C C) C) C C) H H H H

C) 0~- -,w w A. , L Ln m - -- w w ~o D> > M W 0 0 t:~ Nlm m m I. t.
O 0 w w 0 0 m w 0 0 w m 0 0 w C m 0 0 w m 0 CD c C) C

-ZZ 0
0 CD

In<*.5.
=O
050
0 w

CD o CD0
0)

C-.
Ca - )0
In
toE

C C

0 Z 0F Q~
0CD 

rtt
co

5.
CDw
C.
CDC)

Co

CD

0n
0)

G)

57w
A)

PO

ColWme,,

(A

F-CD
m
U?

v 0oX 
H .CD
C)"

00
l"
35

1P Z

Rty

CD

Q.
0.
(DN)

'0

C
CDm

'0

10
I.
t:7

-- m

C

CD CO

c Cm 11

00 <
-

0

0I

CD H'a,R -x D

CD

CDK

CD

w
00tsB

C)D01
0.
CD

N;
C)_

'.

O

Ll--01

LI

H

.0-

CO

ko

a,

)

C)

ZCD

1 "o
0

01~

0jC H
z)CDIP

0
Q,

CD

0 ..CD

. r 

1i . I.

I-.
S-

PD

C,mZ.

0CD

a.
I

0c-

CDCLa0*
CL

CL

la

to

Xii

xC)

0C)

C)

0C)

0

0

0I

C)

CD
(D

::r

0

0

C)oo

i

i

C)

C)

C)

C)

R*0I
PC

CD

0

0ooo
g

H
CD
(DZ

C)

o0
.,

t1I
i
I

C)

C

C)

01t
, ,

3c

c1

H
CD

(C,
rt

OC)

O

OC)

I
a'
P-

CD

C,0:L
a)00

1v)

I-k

Co

IP*

00.
-5

0

CD

0-5
U)

X

O

0

C)

C)
x

rr
$1)

C)

C

H

N)

-3

0\

to

-a
0 Z

SL Z
m 3H"t

Z E
ID

1135

a,

aa

rl)
Il

-. 09 

to -

00iC 

s i9
CD Co-
c. C

00'S -
W0.0r

Ce
IV

I

- r
CO) '
W 0 Z

I

-a

I 

I

Z

m om 
O 0 W P
. . .
11 11. 
. .r' 1



U)0

.8.)
U)
U

U)

U

0
U
.8.

C MN.C�� CON

N N N N N N

N UN N CDO OCS " M W W r Wa)_ _ __ __ ,' -

0.
a)

04

0"
Ia

.0I

0 

C

..

0

z
30

U.

141000w.003>8 O0 V I 0
E E Cd 0

oo o o> C C I 0 I I I

01¢ I 10E r 

I I I~ I °l UI

0000000r4 H H H r

01 1
14 .14.1401-

> U O O L, U
01O W W4O00W I 1 140 W
1 0i 0) 0 I I 

01 °l 11414O
0. 114. *4 .I.,0 LU0' U L, 
U U0 14U U

vvI I

I IuI I i I

°l 1 1 

I I I I

Ul u i I u
0000 .

0.v
E
0I
0

14

10'w qm

UZ U

U00.

00z

N N
Ci N

Oq->Netuwwf aWO°_VN04m LOW

"0 0 0 0

-c o o 0 0 004 14 0 V 4 o ,t 0.14014141140.14 04 'O > C4V
14 I4 O 4 140:1 1 1H 

0 14 0 0 11144 !1010 SOV 

14 004S 00 V VO1 V I 0

v 14 4 0 1 14 40 I 1EI I I 

-4140 t14.14° 1 4 141401'; ,l°l4140S
01 0 0' 014 000 cq0c D l ;v

014141{.{ 40 4 1141 I- E H .000H

00 1.1 0.0 0~ 0: 14 1:: 0 10 14 10 I 10 I I 10 
000 -014 14 0 000140

~14 0.00 c Id, 41 4..00011 11 1 11 1
0 0 0 0 0 0 0 0 0

00000000 000001

0 1 1 11Z.01 1 01 01. 01 01 01 01 0

N
C\1

I 0)

m
1 -�4

'4

a)
I

0

I CQU

0
.1

I

A

, r-

U>____U~yt_'4

N
N

0CDC~~~~~t C C 0

(0

14 14

0 I 01Id
o 3. 10 1110 11

00 0 0 1 vv 0 j I v

I1 I I1 V I I i 1 I l 4
00000000000W u 

a,

10

>1

0
E

0)I 
'U

I 

-,i
0I

0W
00
10

0-
00.

10
00

I0
0

W00 '
01 o00<00A
00I 

H
0
0

tI
U

ml
-H

0
0
._cn
aa

m

a)

0
0
0

.4)

04.1

0

0)0._U)
tm

C,..N

..

QU. .

E

z
.0
U.

.N

0

0

E

z
._
U.

Thinking Machines Corporation
Confidential and Proprietary

1$()1994

0

U
0

'0.4..
0

N
4

- O
4 0

o
a,

.- 4_d "j0 )0I

w- 0a3 <sr:~~~~~'

0

>1.....
x
......

>1

, C)

, 

x

, IX

N

0..
L

z
.0
LI.

U E

`2 

C)

O-

-000

W a,

.I.
.00~0 0

r.C

0

) .

1 

0m7

L
4.0
0)
0

z
'a
U-

O,-

'0S 

a ¢)
R R4

.0.0
0 0

11

o o

> w o

04.Cf a

C =00I

00z

N CNi N N C
C' C Cy Cm Cm CyJ

ONt-U|^"lDOO CNCONO 0-c MJ0le

0

I

0
a,

0,.

U .a0
I-
->

1
"I '

0 .

0

0 I

0

o CaJ (l- C CD N r0 co)

0 0

I I

.4 .14.14 mm C)0 C.

I I I I I I

14 1 C I 1 1 

' 5 r C X.4 1 4 W '0 

_ .4.014 . .4 .I I I I I C 

9 32

0 0

14

I I 10. V

I T O oE

I o'00 00<0000r014140

14 N. V.

I I I I
U00

E0 C
0 0 0

.1 E .1 .,

O. 0 C I10 . C U 014014.0I00.140. 04

I I I I 
00 0

20
L)

C.)

C)

0:-
0

r6

JJ.n

w 0

C)U
4 1
8.4
4)

.4 r..

0 Cz
U _

00 U

0 I)
08)

.1 .{a I I

0 01

40 0 14 1 1l'I ' '11 E

r0o 0000zI O1 0 0 0 0 0 14 0 '0 1 21 01E I Ie I I I I 0000 0000 tr 

��>N»> �N>>

�>N.> NV�>

1 1 1

>;N> �>1�

a 0.

oI 0 I011'II

00 0

I I I I
.0 0 , I

0 .0) 
.14.-.41 .o oO I I 114

.0 I'. I I Iv

Co cu v 

= 'oo I 01I I I I I I 
000OU0U00006 

01

i

.0

I
o l

i ..

0

.4

0 ,i
a_H I

E

I.. M co

O Z
0, -w .0.1n -
CD -11 

0 4 IL
L. h

G01

g to M

01 1 O'. 0:) 4= 14 of

9 0

cn I

200
C)

U,)

0
tr

.N
cn

_1 * e
O o

._.. ..0(L)0

._4Iz

n 0.. LLz
4i

0)
0

04

0 O

0

'0
0 0

0>.
'O

.D.14o
0

0 3 r.
0 X

C.N

0af0

14.1I
a)mg

.0
.74

i.4
w

0
0

0L:

.N

a 0i
a0

0
10

cI .

10

00 
0

0 C

o 0
0 >

' Ia
I0 I

4.0.0l 0t

r r

¢
v

0
0

0
Ih 

0

0

a0
L.)

co

m

0

N
N 0

O N
IC')
a

4VO

.a
0
N

CL

a;Ez
0

LL

0

It

I

0

0

0
U10

0
0

0

U

o0

ou

oe

o I
a, a,,.0I

I010

:ZC
0

I'
I

I I .

I :

I I 

_ '- -_ -9 -_-- _ _ _ C _- -

N N

OY7- CcC le lWLO DNCD w r 
". CMv-I- r

a000 1
.14014

I I I
I I 0 1 0

. . .

0 0 

0

.,I 0 
E C)

00oI Im 9
0 0

1 C
14'O

I I00
.,{ _

l
-

. -----

- - - - - - - - - - - - - - . -
l - - - - - -

I - : - - S ---
-

. . .: . . oN.' - - -

'
. U ¢

15'
I=

I o

.

O

I

Ie


