
" i

/- <
--.

I ./I k b-~~~~~ .

The
Connection Machine
System

NI Systems Programming
-.t�.�.�.�..-�.-:z.s·r.-.r:S.:.t:-'�''''''''i�'''ii�ii�:i' ��.� ��

��f�-�-���t�. � ��,�i·2.�s �.-
��'�:�':'·'"tt·�s·:·�;�::�:�::�::�·r·i�· 55;5·:;:·:;�.:II.t;'.·;·:·:.:�:�:··--·---··i.···rr· -- · · ·- ·-�--- -·:-.-5---·-··...···�-ii·r··�·:-r·:.:·:· ��...

Version 7.1
October 1992

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, October 1992

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-5, CMOST and NI are trademarks of Thinking Machines Corporation.
Thinking Machines® is a trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.
Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

Contents

List of Figures
About This Manual

Customer Support

.... xi
.co xiii.... lll

Chapter 1 The Network Interface Chip

1.1 The CM-5 System: Nodes and Networks
1.1.1 The CM-5 Networks

1.1.2 Processing Nodes

1.1.3 Partitions and Partition Managers
1.1.4 Programming Models

1.2 The NI Chip ...

1.3 The NI Registers ...

1.3.1 NI Register Types

1.3.2 NI Register and Field Names
1.3.3 NI Register and Field Programming Constants

1.3.4 For the Curious: The NI Base Address - Physical and Virtual ..

1.4 Interrupts ...

1.5 NI Reset ..

Chapte,r2 A Generic Network Interface

2.1 Network Interface Registers

2.2 Network Messages ..

2.2.1 Performance Note - Using Doubleword Operations

2.3 Sending a Message ..

2.3.1 Message Discarding
2.3.2 Auxiliary Information

2.3.3 Calculating niinterf ace_send_first Addresses.
Send First Address Constants

2.4 Receiving a Message ..
2.4.1 Detecting Arrival of a Message

2.4.2 Simulating the Arrival of a Message

1

1

2

3

3

4

5

6

7

7

8

10

11

12

13

13

14

15

15

16

16

17

17

18

18

19

Version 7.1, October 1992

..........................

.............

ul

iv I Sstms roramin

Chapter 2 A Generic Network Interface cont'd

2.5 The Status Register ...
2.5.1 The "Send OK" Flag

2.5.2 The "Send Space" Field and "Send Empty" Flag
2.5.3 The "Receive OK" Flag and "Receive Length" Fields

2.6 Abstaining from an Interface - The Control Register
2.6.1 Effect of Abstain Flags :
2.6.2 Combine Interface Abstain Flags
2.6.3 Use the Abstain Flags Safely
2.6A Being a Good Neighbor

2.7 The Private Register ...
2.7.1 Message Receipt Interrupts - The Rec Interrupt Enable Flag ...
2.7.2 Clearing the Interface's Send FIFO - The Lock Flag
2.7.3 Grabbing the Receive FIFO Registers - The Rec Stop Flag
2.7.4 Blocking Unsent Broadcast Messages - The Send Stop Flag ...
2.7.5 Detecting a Full Receive FIFO - The Receive Full flag

2.8 Using a Generic Network Interface

2.9 From the Generic to the Specific

Chapter 3

3.1

3.2

3.3

3.4

3.5

The Data Network ...

The Data Network Register Interfaces

Data Network Messages ..

Data Network Addressing ..

Sending and Receiving Messages

The Status Register ...

3.5.1 Message Tags ...
User/Supervisor Tag Reservation
Tag Fields and Interrupts 35
Tag Fields and the Message-Counting Registers
Message Count Disabling
Negative Message Count Interrupts

3.5.2 IMPORTANT - Check the Tag before Receiving a Message
3.5.3 The Send and Receive State Fields

3.5.4 The Network-Done Flag

3.6 The Private Register ...

3.7 All Fall Down Mode ..

3.8 Data Network Usage Note: Receive before You Send

Version 7.1, October 1992

19

19

20
20

21

21

21

22
22

23

23

24

24

25

25

25

26

(

27

28

30

30

32

34

34

35

36

36

37

37

38

39

39

40

42

iv NI Systems Programming

Coet A

Chapter 4 The Control Network 43

4.1 The Broadcast Interface 4...................... 44
4.1.1 Broadcast Register Interfaces 44
4.1.2 Broadcast Messages 45
4.1.3 Sending Broadcast Messages 46
4.1.4 Receiving Broadcast Messages 47
4.1.5 The Broadcast Status Register 47

How to Interpret the Value of the "Length Left" Field 48
4.1.6 Abstaining from the Broadcast Interface 48
4.1.7 The Broadcast Private Register 48

The Send Enable Flag 49

4.2 The Combine Interface 49
4.2.1 The Combine Register Interface 50
4.2.2 Combine Messages 51
4.2.3 Sending Combine Messages 51
4.2.4 Receiving Combine Message 53
4.2.5 The Combine Status Register 53
4.2.6 Scanning (Parallel Prefix) and Reduction Operations 54

Scanning with Segments 54
Addition Scan Overflow 55

4.2.7 Network-Done Messages 55
How Network-Done Works 56
...And Why You Should Care 57

4.2.8 Abstaining from the Combine Interface 58
The Reduction Receive Abstain Flag 58

4.2.9 The Combine Private Register 59
Empty Receive FIFO Interrupt 59
Clearing the Combine Send FIFO 59

4.3 The Global Interface .. 61
4.3.1 The Three Global Register Interfaces 62
4.3.2 The Synchronous Global Interface 62

Sending and Receiving Messages 63
Abstaining from Synchronous Global Messages 63
Synchronous Global Receive Interrupt 63

4.3.3 The Asynchronous Global Interface 64
Sending and Receiving Messages 64
Asynchronous Global Receive Interrupt 65

4.3.4 The Supervisor Asynchronous Global Interface 65
Sending and Receiving Messages 65
Supervisor Asynchronous Global Receive Interrupt 65

Version 7.1, October 1992

Contents v

Nymrgramm

Chapter 5 NI Interrupts ...

5.1 Interrupt Classes ..

5.2 Interrupt Pathways ..

5.2.1 Red Interrupts ...

5.2.2 Orange Interrupts

5.2.3 Yellow Interrupts

5.2.4 Green Interrupts

5.3 The Interrupt Cause and Clear Registers

5.4 Interrupt Levels ..

5.5 Broadcast Interrupts ...

5.6 Recovering from Interrupts

Chapter 6

6.1

6.2

6.3

Other NI Interfaces and Features

The "Hodgepodge" Register

Node Address Registers

NI Chunk Table and Address Translation .

6.4 Combine Interface Flush ...

6.5

6.6

6.7

6.8

6.9

6.10

The NI Timer

The Bad Address Register

NI Partition Configuration

Disabling the Control Network ..

NI Serial Number

NI Reset

67

67

70

70
72

72

72

73

74

75

76

77

77

78

78

82

83

83

84

85

86

86

r 7 NI Programming Issues

7.1 The Partition Manager

7.1.1 Sending Messages between the PM and the Nodes
7.1.2 For the Curious: Using the Data Network

7.2 Performance Hints

7.2.1 NI Register Operation Times

............ 89

............ 89

............ 90

............ 90

............ 91

............ 91
Reading and Writing Registers with Doubleword Values
Use Message Discarding for Efficiency
Set the Abstain Flags Once and Forget Them

Version 7.1, October 1992

Chapte

7.2.2
7.2.3
7.2.4

91

92

92

NI Systems Programmingvi

;.·····Conwnt-::-.s' i.......-....~~~~~~-~~~~~~~~~~~ .s~~~~~~~~~~~~~~~~~~~~i~~~~~~~~~" · <"~~$-..- -'". .'.s~t~ . - : - ~::'-'-"..-''-~:i:$.·:i:." : : - ' : ::"":":x

NI Programming Issues cont'd

Potential Programming Traps and Snares
7.3.1 Pay Attention to Data Network Addresses
7.3.2 Check the Tag before Retrieving a Data Network Message
7.3.3 Make Sure Doubleword Data Is Doubleword Aligned
7.3.4 Order Is Important in Combine Messages
7.3.5 Restriction on Network-Done Operations for Rev A NI Chips ...
7.3.6 Simulating Receipt of Mvessages
7.3.7 Broadcast Enabling
7.3.8 Broadcast and Combine Interface Conflicts
7.3.9 Be Careful When Altering Abstain Flags

Appendixes

Appendix A

Appendix B

B.1

B.2

B.3

B.4

NI Memory Map ...

NI Registers, Fields, and Constants

NI Registers ..
B.1.1 Global and System Registers
B. 1.2 Network Interface Registers

NI Message Length Limit Constants

Send First Register Addresses

NT iPl.d

B.4.1 Combined Data Network (DR) Fields

The nidrstatus Register
The ni dr_private Register

B.4.2 Left Data Network Interface (LDR) Fields
The ni ldr status Register
The ni_ ldr_private Register

B.4.3 Right Data Network Interface (RDR) Fields

The ni_rdr_status Register
The ni rdrjrivate Register

B.4.4 Broadcast Interface (BC) Fields
The ni_ bcsatatus Register
The ni bc_private Register
The ni bc control Register

99

103

103

104

105

106

107

110

110

110

111

111

111

111

112

112

112

112

112

113

113

Version 7.1, October 1992

Chapter 7

7.3 93

93

93

94

94

94

95

96

96
96

Contents vii

[Ik

vii.i NI .,Es.~~gBS~awSM&N.ENWsRSB~ySgfiysm PrgraNmmigy

B.4 NI Fields, cont.

B.4.5 Supervisor Broadcast Interface (SBC) Fields

The ni_sbc_status Register
The ni sbc_private Register
The ni_sbc_control Register

B.4.6 Combine Interface (COM) Fields

The nicom status Register
The ni_com private Register
The ni_com_control Register

B.4.7 Global Interface Fields
The nisync_global Register
The ni async_global Register
The ni_async sup global Register

B.4.8 Interrupt Register Fields
The niinterrupt_cause Register
The ni_interruptcause green Register.
The ni_interrupt_ clear Register

The ni interrupt_clear green Register.
B.4.9 Other Register Fields and Constants

The niinterrupt level Register
The ni hodgepodge Register
The ni bad_address Register 118

Appendix C Predefined Low-Level NI Constants 119

Appendix D

D.1

NI Interrupts
Red Interrupts

D.1.1 Internal Fault

D.1.2 CN Checksum Error, DR Checksum Error
D.1.3 CN Hard Error

D.1.4 MC Error, CMU Error
D.1.5 BC Interrupt Red

Red Inte.......rrupt

Red Interrupt

Red Interrupt

Red Interrupt

Red Interrupt

Red Interrupt

D.2 . Orange Interrupts 130
D.2.1 Timer Interrupt

D.2.2 BC Interrupt Orange

.... Orange Interrupt 130

.... Orange Interrupt 131

113

113

113

114

114

114

114

115

115

115

115

115

116

116

116

117

117

118

118

118

127

128

128

128

129

129

130

lk

Version 7.1, October 1992

viii NI Systems Programming

Contents ix:. 4

x D NI Interrupts cont'd

D.3 Yellow Interrupts

D.3.1 BC Interrupt Yellow

D.3.2 COM Abstain Changed

D.3.3 DR Count Negative
D.3.4 BC or COM Collision
D.3.5 Bad Relative Address

D.4 Green Interrupts

D.4.1 BC Interrupt Green

D.4.2 DR Receive Tag
D.4.3 DR Receive All Fall Down

D.4.4 Interface (DR, BC, COM, etc.) Receive OK ..

D.4.5 Global Rec (Sync, Global, or Supervisor)

D.4.6 Comrn Receive Empty
D.4.7 Scan Overflow

D.5 Bus Errors

D.5.1 Bad Memory Access

Yellow Iterr...........upt

Yellow Interrupt

Yellow Interrupt

Yellow Interrupt
Yellow Interrupt
Yellow Interrupt

. Green Interrupt

. Green Interrupt

. Green Interrupt

· Green Interrupt

. Green Interrupt

· Green Interrupt
. Green Interrupt

..... Bus Error

Appendix E

E.1

E.2

E.3

NI Programming Examples 141

Reading and Writing Registers 141

Reading and Writing Subfields 142

Constructing Send-First Addresses 143

Data Network Send-First Macros 143
Broadcast Interface Send-First Macros 144

Combine Interface Send-First Macros 144

Appendix F CMNA Header Files 145

Indexes

Programming Tools Index 151

Concepts Index 159

Version 7.1, October 1992

Appendi

131

131

132

132

133

133

134

134

134

135

135

136

136

137

137

137

Contents ix

(

CM-5 processing nodes linked by Data Network and Control Network
The components of a typical processing node.
A partition of nodes and its partition manager.
NI provides access to features of the Data Network and Control Network.

The NI registers are mapped into user and supervisor memory areas
Sample virtual memory maps showing location of NI memory region
NI registers associated
The three interfaces of
NI registers associated

Relative addressing of
The three interfaces of
NI registers associated
NI registers associated

NI registers associated

with each network
the Data Network: DR, LDR, and RDR
with each of the Data Network interfaces

nodes in a partition

the Control Network: BC, COM, and Global
with each of the broadcast interfaces

with the combine interface

with the global interface.

The possible pathways for colored interrupts
Translation from relative addresses to physical addresses
The chunk table is used to map contiguous relative addresses
onto discontiguous physical addresses

The partition manager stands apart from the partition it manages
Relationship between CMNA and NI header files.

1

3

3

5

6
10

.. 14

.. 27
.. 29

.. 31

.. 43
45

50

61

.. 70

.. 79

.. 80

.. 89

.. 146

List of Figures
;;·A···-::::::::::::: · · ·t....·~t~ ·ii~z 5:~:~~-z.~. · :·-·· ·:5::::::::~~:

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.
Figure 17.

Figure 18.
Figure 19.

Version 7.1, October 1992 xi

I

About This Manual

Objectives of This Manual

This manual describes in detail the design, features, and proper use of the
Network Interface (NI) chip of the Connection Machine CM-5 system, at a level
sufficient for low-level CM-5 coders to make full use of the NI's features.

This manual describes the NI from a system programmer's point of view. It
discusses user and supervisor features of the NI, and provides enough detail to
allow a knowledgeable CM-5 programmer to write code that manipulates the NI.
The appendixes of this document include C code examples and references to
on-line sources of sample NI code.

Intended Audience

This manual is intended for use by knowledgeable CM-5 programmers. While
it contains some overview information, this document is a reference manual, not
a tutorial. This manual should be used in conjunction with other programming
guides and with assistance from Thinking Machines Corporation representatives.

For examples of NI programs written and compiled in C code, refer to the
existing Programming the NI manual.

Revision Information

This manual is new as of Version 7.1. It is based on the existing Programming
the NI manual, but includes additional supervisor information that was excluded
from Programming the NI.

Version 7.1, October 1992 xiii
.Xlll

xIiNP

Organization of This Manual

Chapter 1 The Network Interface Chip
An overview of the NI chip's purpose in the CM-5 hardware,
and a description of the important features of the chip.

Chapter 2 A Generic Network Interface
A description of common features found in most of the NI net-
work interfaces.

Chapter 3 The Data Network
The registers and features of the three Data Network interfaces.

Chapter 4 The Control Network
The registers and features of the three Control Network inter-
faces (broadcast, combine, and global).

Chapter 5 NI Interrupts
A description of the various interrupt classes of the NI, and of
the mechanisms used to detect and signal NI interrupts.

Chapter 6 Other NI Interfaces and Features
A description of NI registers and features not covered by the
preceding chapters.

Chapter 7 NI Programming Issues
A summary of important programming and performance consid-
erations that you should keep in mind while writing code that
manipulates the NI.

Appendix A NI Memory Map
A two-sided memory and register map, showing the arrange-
ment of the NI's registers and register subfields.

Appendix B NI Registers, Fields, and Constants
A summary of the registers and fields of the NI chip and of the
programming constants that can be used to locate them.

Version 7.1, October 1992

xiv NI Systenu Progranwdng

o Th Ma

Appendix C

Appendix D

Appendix E

Appendix F

Predefined Low-level Constants
A list of all low-level programming constants defined by the
files cmsys/ni_constants.h and cmsys/nidefines.h,

with the symbols grouped by register and field.

NI Interrupts
A description of each of the possible NI interrupts, including
what they indicate and how to recover from them.

NI Programming Examples
A set of simple C code examples of routines that read and write
NI registers and perform other useful functions.

CMNA Header Files
Describes the content and relationship between the various
header files that define the CM Network Accessor interface.

Related Documents

These documents are part of the Connection Machine documentation set:

* Connection Machine CM-5 Technical Summary, January 1992

* Programming the NI, March 1992

Version 7.1, October 1992

About This Manual xv

xviI ysemPogamin

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, syntax statements and pro-
gramming language elements, such as keywords,
operators, and function names, when they appear
embedded in text.

Argument names and placeholders in function and
command formats.

typewriter

% bold typewriter
regular typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

I

Version 7.1, October 1992

t

xvi NI Systems Programming

f

Customer Support
X X E~ X X 4§X.X

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us iden-
tify and correct the problem. A code example that failed to execute, a session transcript,
the record of a backtrace, or other such information can greatly reduce the time it takes
Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact that
person directly for support. Otherwise, please contact Thinking Machines' home office
customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

uucp
Electronic Mail:

Telephone:

customer-support@ think.com

ames! think! customer-support

(617) 234-4000

(617) 876-1111

xvii

Chapter 1

The Network Interface Chip
_··rts·.~i::~:~::~:~:::~: \ _ _ _,' _ _ _ _ _

The Network Interface chip, or NI, manages the internal communications net-
works of the CM-5. This chapter presents an overview of the NI's location and
function within the CM-5, as well as a description of the features of the NI that
are important to you as a programmer.

1.1 The CM-5 System: Nodes and Networks

The CM-5 contains a large number of processing nodes linked together by two
main internal networks, the Data Network and the Control Network.

Figure 1. CM-5 processing nodes linked by Data Network and Control Network.

The Data Network is used for high-volume exchange of data between nodes. The
Control Network is used to control and synchronize the operations of the nodes.

Version 7.1, October 1992

Networks ..
;~~~·- · :_. I !,_ _

,, ?°N~ed"§9,,X P -P X __ 1P _ P Processing . .
Nodes P

~: ~~~s~~::[_~ii:~~' I l::a'iii':]i`'; . L..::::::~:: ·-.·~S

1

2 NJSystms Pogramin

1.1.1 The CM-5 Networks

The two CM-5 networks are similar to each other in design. Both are scalable
high-speed data communications networks. However, the networks are quite dif-
ferent in structure and purpose.

The Data Network

The Data Network is a high-speed, high-bandwidth network designed to handle
the simultaneous node-to-node transmission of thousands of messages. The Data
Network is composed of two halves, the left interface and the right interface,
both of which are connected to all processing nodes. The left and right interfaces
can be used either independently or together as the combined Data Network.

Terminology Note: This combination of the left and right halves of the Data
Network is sometimes called the "middle" interface by NI programmers.

The Control Network

The Control Network is used for control tasks that require the joint cooperation
of all nodes. It provides three separate functions:

* The broadcast interface distributes a single numeric value to every node.
It consists of two subinterfaces: a user broadcast interface and a supervi-
sor broadcast interface.

* The combine interface receives a single value from each node, combines
the values arithmetically or logically, and then distributes the combined
result to all nodes.

* The global interface handles global synchronization of the nodes. It con-
sists of a number of distinct interfaces for synchronous and asynchronous
messaging by user and supervisor (OS) code.

For the Curious: The Diagnostic Network

There is also a third major CM-5 network, the Diagnostic Network, used by the
system manager to determine the operational condition of the CM-5 hardware
and to diagnose hardware problems. However, because the NI chip is not used
to access it, the Diagnostic Network is not discussed further in this manual.

Version 7.1, October 1992

NI Systems Programming2

Chapter 1. The Network Interface Chip 3a;wsstzN

1.1.2 Processing Nodes

Each processing node contains a RISC microprocessor, a memory subsystem,
and a Network Interface (NI) chip, linked together in a bus arrangement:

64-bit bus

t t t

Memory Subsystem
Data Network

*--- Control Network

I I

Figure 2. The components of a typical processing node.

For the Curious: In the current implementation, the microprocessor is a SPARC
chip; it executes both user and operating system (OS) code. The memory subsys-
tem consists of up to 32 Mbytes of DRAM memory, controlled either by a single
memory controller or by a set of four vector units.

1.1.3 Partitions and Partition Managers

The processing nodes are grouped by software into partitions, with each partition
monitored by a partition manager (PM). (See Figure 3.) Each partition can be as
small as 32 nodes, or as large as the entire machine. The partitioning is controlled
by the system administrator, who can create and alter partitions as needed.

Figure 3.. A partition of nodes and its partition manager.

Version 7.1, October 1992

Partition ManagerNodes

Chapter . The Networkk Intercace Chip 3

4 NI ~~~~~~~~s'S~ESyms Pgrammig;

1.1.4 Programming Models

User Programming Model

From a user's point of view, the CM-5 is the single partition of nodes associated
with the PM that compiles and executes the user's code. CM-5 user programs
compile into two separate sets of code, one for the PM and one for the nodes.

The PM typically controls program flow, and handles all external interactions
(communicating with the user by keyboard input and screen output, exchanging
files and data with other computing systems over external networks, etc.).

The nodes typically operate in an event-driven loop, waiting for instructions
from the PM about which section of code to execute next.

OS Programming Model

From an OS point of view, the CM-5 is a set of partitions, each of which has a
number of associated processes that can be swapped in.

The CM-5 OS manages the execution and swapping of processes within parti-
tions, as well as any exchange of data that takes place between partitions (for
example, when a user program needs to read or write data from an I/O device).

Under the CMOST operating system shipped with the CM-5, each PM runs a full
and complete UNIX-based operating system, while each of the nodes runs a
small kernel of OS code that is optimized for computation and communication.
It is this kernel of code that provides the event-driven dispatch loop described in
the user programming model above.

Version 7.1, October 1992

NI Systenu Programnung4

Chap.er 1. The Network IerfeCh

1.2 The NI Chip

The NI chip serves as an intermediary between the microprocessor and the two
CM-5 networks. Each network provides a specific set of network interfaces, and
the role of the Network Interface chip is to make those interfaces available to the
node microprocessor, and thereby to user code and OS code.

Left Interface
Data

Network Right Interface

~~~~~processori~ XBroadcast Interface

Control Combine Interface
Network Interface

Global Interface

Figure 4. NI provides access to features of the Data Network and Control Network.

When the microprocessor directs the NI to send a message via a particular net-
work interface, the NI handles the dispatching of the message, and collects any
replies from the networks. The NI uses send and receive FIFOs to hold outgoing
messages until they can be sent, and to hold incoming messages until the micro-
processor reads them.

The NI chip is register-based; its network functions are controlled entirely by
reading and writing NI registers. Access to these registers is provided by
memory-mapping - the NI registers are mapped into the microprocessor's
memory address space. From a programmer's point of view, therefore, the NI
appears as a region of memory with some unique properties.

The microprocessor can either examine the registers of the NI chip to see whether
a message has arrived, or it can instruct the NI to signal an interrupt when a mes-
sage arrives. Interrupts can also be "broadcast" from one NI chip to all other NIs
in a partition.

Control of the NI is therefore based on register operations, interrupts, and (in
extreme cases) NI Resets, which are described later in this chapter.

Version 7.1, October 1992

Chapter . The Netork Interface Chip 5



6 Ni Sysem Progra

1.3 The NI Registers

The NI registers occupy a virtual memory region 512 Kbytes long. However, the
NI registers are actually mapped into microprocessor memory twice, as two sep-
arate virtual memory areas: the user area and the supervisor area. (See Figure 5.)

Figure 5. The NI registers are mapped into user and supervisor memory areas.

The user area occupies 512K bytes of virtual memory, starting at the base address
of the NI memory region (see Section 1.3.4). The supervisor area occupies the
512K bytes immediately following the user area.

The user and supervisor areas contain the same registers at the same offsets, but
the hardware mapping is designed so that the NI registers for supervisor features
are only accessible from the supervisor area. Any attempt to access supervisor
registers from the user area signals a Bus Error. (A programmer sees this as a
segmentation violation.) Thus, when this manual speaks of "the supervisor" per-
forming an operation, or of an NI feature that is "restricted to the supervisor," this
simply means that only programs with access to the NI supervisor area can per-
form the described operation or use the described feature.

In general, it is the responsibility of the operating system to make sure that user
programs don't have access to the NI supervisor area. Typically, this is done by
using virtual address mapping to place the supervisor area in a memory region
to which user programs don't have access.

Note: Some locations in the NI memory region don't correspond to registers.
The effect of reading or writing these locations is not defined, but is never of
practical use to programmers. Typically, a Bus Error (see Section 1.4) is signaled.

Version 7.1, October 1992

Processor Memory

.::::-: Offset (in hex):L I - -.. -' O'O X
Supervisor Area

Ox080000
User Area
·-- · " r0 (base address)

'isiliiiiiiii!;':'-'.-:.-:.......:~ ii~iiii~iiii:iii~~~ii

6 NI Systenu Programrrung



C rT e eaC

1.3.1 NI Register Types

There are three basic types of NI registers:

FIFO Registers - These "registers" are actually the entry and exit points of
send and receive FIFOs associated with the CM-5 networks. Writing a value
to a FIFO register pushes that value into the send FIFO of the corresponding
network. Likewise, reading the value of a FIFO register pops a value from the
receive FIFO of the network.

Status Registers - These registers are composed of one-bit flags and multi-
bit fields, which indicate the state of the NI and its message FIFOs. For
example, most networks have two important status flags, send_ok and
rec_ok, which indicate the current status of messages being sent or received.

Control Registers - These are status registers containing flags that not only
report the state of the NI, but also allow you to control it. Altering the value
of a control register's flags has a corresponding effect on the state of the NI.
For example, each of the Control interfaces has one or more abstain flags that
control whether or not the NI participates in the transactions of the network.

Important: Some registers are less than 32 bits long, even though they occupy
a 32-bit memory location. When such a register is read, the value of the unused
bits is undefined. However, when writing to the register, the unused bits should
be written with either the same value that was last read from them, or with zeros.
The effect of failing to follow this restriction is not defined, but in some cases
serious failures can result. (In at least one case, failing to zero out the unused bits
causes your partition of nodes to crash. See Section 7.3.1.)

1.3.2 NI Register and Field Names

In this manual, the names of NI registers and register fields are given in the form:

niinterfacepurpose

The interface part of the name identifies the network interface, and is typically
one of the following abbreviations:

dr Data Network (left and right) bc broadcast interface
ldr left interface com combine interface
rdr right interface global global interface

Version 7.1, October 1992

Chapter . The Netork Interface Chip 7



8- NSyemPrgang

The purpose describes the purpose of the register or field. Some common exam-
ples are:

send Register used to send a network message.
recv Register used to receieve a message.
send_ok Flag indicating that a message was sent successfully.
recok Flag indicating that a message has been received.

For conciseness, this manual sometimes refers to a register or field by its purpose
alone. However, this is done only when the intended reference is unambiguous.

The appendixes of this manual include a memory map and a series of lists that
exactly specify each register's location and the position and length of any sub-
fields it may have.

1.3.3 NI Register and Field Programming Constants

There are a number of predefined programming constants that you can use to
refer to NI registers and fields in your code.

These constants are defined in such a way that they can be used for both user and
supervisor code; the names of the register and field constants are the same for
both the user and supervisor areas, and are typically based on the names of the
registers and fields themselves.

To get access to these predefined constants, include the header file cmna. h:

#include <cm/cmna. h>

Note: Assembly-language coders may wish to load a more specific file of
constants. See the discussion of the CMNA header files in Appendix F.

Finding the Constant You Need

Appendix B of this manual lists the names of the NI registers, fields, and flags,
and gives the corresponding constants to use in accessing them. Appendix C pro-
vides a complete list of the available low-level register and field constants. The
types of predefined constants are described below.

Version 7.1, October 1992

8 NI Systems Programndng



Chapr 1. T

Register Constants

The constants for registers specify the actual address of the register, and there is
one such constant for each NI register. To get the name of the constant that corre-
sponds to a register, uppercase the name of the register, and add the suffix " A".

For example, the constant for the register nidr_status is NIDR_STATUS_A.

Note for C Programmers: The register constants are unsigned pointer values.
To use them in C code, you must cast them to type (unsigned *):

unsigned *ni_dr_status = ( (unsigned *) NIDR_STATUS);

If you don't perform this casting step, the C compiler by default treats the
constants as integers, causing warnings about "illegal pointer operations."

Field Constants

The constants for NI fields provide the starting bit position and length of each
field. However, since a number of NI registers have some basic fields and flags
in common, the name of the appropriate constant isn't always directly derivable
from the name of the field or flag in question. In many cases, you can obtain the
constant name by uppercasing the field or flag name, and adding the suffix "P"
for the starting bit position, or "_L" for the field length.

For example, the ni dr_status register has a field named ni drrec_tag.
This field has two corresponding constants, NI_DR_REC_TAG_P and
NI_DR_REC_TAG_L, that give, respectively, the position and length of the field.

However, there is also a flag called ni_send_ok in the same register. Since most
of the networks have a send_ok flag, there is a single pair of constants, named
NI_SEND_OKP and NI_SEND_OK L, which apply to all the networks.

NI Base Address Constant

There is also a predefined constant that you can use to refer to the base address
of the NI memory region (either user or supervisor) that you are using:

NI_BASE - Base address of NI memory region (user or supervisor).

The value of this constant depends on the environment in which you compile
your code.

Version 7.1, October 1992

Chapter . The Netork Interface Chip 9



NI Systems Programming

1.3.4 For the Curious: The NI Base Address - Physical and Virtual

The physical base address of the entire NI region (user and supervisor areas) is
fixed at a value determined for each node by hardware (essentially by two input
pins on the NI chip that are permanently set either high or low for each circuit
board). The actual physical address chosen by this method is the same for each
node throughout the CM-5 hardware.

The virtual base address of the user and supervisor areas depends on the way the
operating system sets up the virtual memory map. The operating system is free
to map the two areas of the NI memory region to virtual memory location, so
long as the user and supervisor areas each remain contiguous and user programs
are prevented from accessing the supervisor area.

Node Virtual Memory Maps

(without vectorunits)
hex address

(with vector units installed)
hex address

. ·. . ......

. I ..... . .... -. .,;-id"... :. ..... :· ...... :: ·~~~:
:*'glbal.stac '

gto-bal he

supervisor area
- -- NI space --- -

user area

.: ': .lOcalhea.p:... .
' :..'user variables .:

·userpgm :: .p-:-.

; ;3,.;.. .. ; .. ;; .. ;. .... :.[,.

0xF840 0000

OxF800 0000

OxE000O 0000

0x4000

0x2010

0000

0000

0x2008 0000

Ox2000 0000

OxO00O0 2000

OxOOO0 0000

....-glObal stack.- ''..

: StaCi .Regions. .. .
I·.~s · : - .:. : · ; . : · . ... .. ,:

supervisor area

- - -NI space----

user area.' ocai.heap.. :
user variabes''

iuser progar:' ;'
. . -. ... .: ....- .. : ''....

OxF840~~~~~~~~~~~~~~~~:':::::.:::.::,-.-:---.:.-:''='-. ·0000.,:·' '::;·

· "": :..(..:1:_ .~.:~-.':':--~:.:':"::.3 :'~~.

0xF840 0000

OxF800 0000

OxE000 0000

OxC000 0000

0x4000 0000

0x2010 0000

0x2008 0000

0x2000 0000

OxO000 2000

0x0000 0000

Figure 6. Sample virtual memory maps showing location of NI memory region.

Version 7.1, October 1992

10
s�h�c�wsn�Pls�#�a�·i�



Captr1sh Net'r Itrae hp1

The CMOST operating system distributed with the CM-5 maps the two NI re-
gions into a contiguous 1024 Kbyte block, as described in the preceding section.
Figure 6 shows two possible CMosT virtual memory maps, one without the vec-
tor units, and one with the vector units installed.

1.4 Interrupts

In addition to using registers to control the NI, you can also instruct the NI to
signal an interrupt to the microprocessor under certain conditions, such as the
arrival of a network message via a specific interface. These kinds of interrupts
can be used to trigger calls to routines of your program (for example, handlers
that automate the receipt of network messages). The NI also signals interrupts for
fatal sofware/hardware errors and other important events.

The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts tend to be the most severe and Green interrupts
the least severe.

The five interrupt classes can be briefly summarized as follows:

* Red interrupts indicate a hardware failure, or message checksum error.

* Orange interrupts indicate events that the operating system must handle.

* Yellow interrupts are triggered by fatal errors in user or OS software.

* Green interrupts are triggered by important non-fatal events that user or
OS software may want to handle specially.

* Bus Errors indicate address errors in user or OS software that prevent a
bus transaction from being completed.

The five types of interrupts, along with the registers used for enabling and con-
trolling them, are described in more detail in Chapter 5.

In this manual, the names of interrupts are given as abbreviations based on the
names of the register fields used to detect and clear them. For example, the Green
interrupt triggered by the arrival of a broadcast message is bc rec ok.

Version 7.1, October 1992

Chapter . The Network Interface Chip 11



12 I Sstms roramin

1.5 NI Reset

Under certain conditions, the NI chip is completely reset Among other things,
this causes a number of its registers to be set to known states. The causes and
effects of an NI Reset are described in Section 6.10.

Version 7.1, October 1992

NI Systems Programming12



Chapter 2

A Generic Network Interface

Each network interface of the Data and Control Networks has a corresponding
register interface - a set of NI registers that are used to send and receive mes-
sages through the network. Many of these register interfaces have a number of
features in common. This chapter presents a "generic" network interface that de-
scribes these features. With one exception (the global interface), all network
interfaces conform to the model described here. Individual variations for each
network interface are described in following chapters.

Important: The interface presented in this chapter is an abstract description that
is built upon in later chapters. There is no actual "generic network interface" for
the NI chip - merely a set of similar but independent network interfaces.

2.1 Network Interface Registers

For each interface that follows the generic model, the following NI registers are
used to communicate with that interface:

ni interfacesend first
niinterfacesend
niinterface_recv
ni interfacestatus
ni_interface_control
niinterface. private

Used to send the first value of a message.
Used to send the rest of the message.
Used to receive a message.
Status register.
Control register.
Supervisor control register.

The purpose and use of each of these registers and subfields is described in the
sections below. Figure 7 contains a memory map showing the relative locations
of these registers in the user and supervisor memory areas.

Version 7.1, October 1992 13



14 NI Systems Programming

NI Memory Area
(user or supervisor)

hex offse

rdr send first Ox7000
ldr send first Ox6000
con send first 000
Abc -send first 0x4000

boe send first x3000

*z*z.Nwb.R . 0x2000
dr send first Ox00i

INTERFACE.....REGISTERS. ...... 
Ox40

Ox30

Ox20

Oxl 0

Ox08

Ox00
t Control Network only
* Indicates register with subfields

0 x 0 2 0 0

.:G. .(LO.BAL&..:

..:.:SYSTEM:..:-. .

.REGISTERS. :..

Ox0000

*

*

Figure 7. NI registers associated with each interface.

2.2 Network Messages

A network message is a sequence of word-length (32-bit) values. Its content, for-
mat, and length limit depend on the network. Each message is accompanied by
a small amount of auxiliary information (such as the length of the message, a tag
field, etc.). The format of this auxiliary data is also network-dependent.

Sending a message involves writing its sequence of values to the send FIFO regis-
ter of a network interface. As the message is written, the individual values are
collected in the send FIFO. When the entire message has been written to the FIFO,
the NI begins trying to send the message through the network. Similarly, receiv-
ing a message involves reading its values from the receive FIFO register of the
network interface.

Version 7.1, October 1992

ni
ni-
ni
ni
ni.

ni

.:

.·· . .

.· . ·
ni send
ni x reov

ni x control

nix_private

14i z mf4mmi

14 NI Systems Programming

I 



Chaer 2. A GenericNtwork Interface 15>%UMfRys>>z§NME;>.%~tM

When a message arrives from one of the networks, the NI accumulates the mes-
sage in the corresponding receive FIFO. When the entire message has been
received, the NI sets a status flag, indicating a message is available. Your pro-
gram can then read the individual words of the message from the receive FIFO.

The send and receive FIFOs have a length limit (typically 5 words in the current
implementation). Longer messages must be divided into packets at the sending
node and combined at the receiving node. If you attempt to send a message that
is longer than the total length of the FIFO (that is, a message that couldn't possi-
bly fit, even if the FIFO was empty) a Bus Error is signaled.

2.2.1 Performance Note - Using Doubleword Operations

You can use doubleword (64-bit) operations to read and write FIFO registers. A
doubleword read or write has exactly the same effect as the corresponding pair
of single-word (32-bit) reads or writes, but the doubleword operation is usually
more efficient. (See Section 7.2.2.) From here on, where this manual refers to a
"value" of a message, you should understand this as referring to either a single-
or doubleword value. Any network-specific restrictions that prevent the use of
doubleword operations are noted in the descriptions of the networks themselves.

2.3 Sending a Message

For each network interface, there is a single send FIFO, but two FIFO registers
are used to access it in the process of sending a message:

ni_interface send f irst Used for first value of a message.
ni_interfacesend Used for the rest of the message.

Important: There is a specific protocol to follow in sending a message:

• The first value of a message must be written to the send_first FIFO
register. This tells the NI that a message is being composed, and also speci-
fies the message's auxiliary information (see Section 2.3.2 below).

* The remaining values (if any) must be written to the send FIFO register.

If this protocol is not followed, a Bus Error is signaled, and the message currently
being composed is discarded.

Version 7.1, October 1992

Chapter 2. A Generic Network Interface 15



16,.: .xx-''.'''"' .":.:,,'-:: ; ::: : --.....'':' :x-'-:-.... :.:.:::, : .'.-(-:,.:. . :- .- ::-."""""""".,-...' N S :.ye : o...: g mn:.: ramming.::-..:;;;:-,,i ;-":::.:.

2.3.1 Message Discarding

A message being written to the send FIFO register of a network interface can be
discarded for any of a number of reasons:

· The send FIFO may be temporarily full.

* The supervisor may have disabled message sending for that interface.

* The message may not have been written according to protocol.

Whatever the reason, when a message is discarded, it is completely discarded.
Any previously written values for that message are removed from the send FIFO,
and a new message can be started by writing a value to the send_first register.
It is as though you never began writing the discarded message in the first place.
(Writing additional values to the send register after a message has been dis-
carded is legal, but has no effect.)

Performance Note: You can use message discarding to your advantage and
thereby make your code more efficient. Rather than check the send ok flag af-
ter writing each word of a message to the send FIFO, you can simply check the
flag once, after the entire message has been written. (For more information, see
Section 7.2.3.)

2.3.2 Auxiliary Information

The auxiliary information of a message typically includes the length of the mes-
sage in words, as well as network-specific data such as a message tag. This
auxiliary information is transmitted implicitly when you write the first value of
a message to the send first register.

The send first register for each network interface is actually mapped onto a
block of memory locations. Writing a value to any one of these locations has the
effect of writing that value to the send_first register, but the actual memory
location that you use implicitly supplies the auxiliary information of the mes-
sage. (The low-order bits of the address actually contain the auxiliary data itself.)

Another way of saying this is that the length of a message, among other things,
determines the send first address you must use to send it.

Version 7.1, October 1992

16 NI Systems Programming



ChapteNr 2. A GenericNeworkNX~S^>.s.e Inteifac 17~~s5E~s.SgNNX2|$@f

2.3.3 Calculating niinterface send_first Addresses

The send first address for a network message is a 32-bit value of the form:

31

Z§3~~~~~~~~~~~~f~~~~~~jes~~~~~~~~

12 14 12 11

'S Iinterface 4 awxiliary data
i ~r~-T3/· I -I3

-i-

0

'I o o 

where interface is the interface number (an integer from 0 to 7 representing the

interface being used), auxiliary data is the auxiliary information of the message,

and base address is the base address of the NI memory area (user or supervisor).

The interface numbering is as follows:

1 - Data Network (left and right)
6 - left Data Network interface
7 - right Data Network interface

3 - broadcast interface
4 - supervisor broadcast interface
5 - combine interface

(The global interface does not conform to the generic interface model, so it does

not play a part in this numbering scheme. The values 0, 2, and 4 are reserved.)

The auxiliary data depends on the message, and each interface has its own format

for this field. However, all the interfaces have at least one field in common: a

length field, representing the length of the message in words. This field occupies

the low-order 4 bits of the auxiliary data field (bits 3 - 6 inclusive).

For the Curious: The auxiliary data is left-shifted three bits to leave sufficient

space between send first addresses for doubleword read/write operations.

(See Section 2.2.1.)

Send First Address Constants

The following constants are used to construct send_first addresses:

NI BASE

SF FIFO OFFSET

AUXILIARY START P

The NI base address.
The interface field offset (12).
The auxiliary data field offset (3).

To construct a send first address, combine the following values, left-shifted

as shown:

The NI base address:
The interface number:
The auxiliary data field:

NI BASE

interface_number
auxiliary_data

<< SF FIFO OFFSET

<<AUXILIARY START P

Version 7.1, October 1992

i .i

17Chapter 2. A Generic Network Interface



18. .NI System Progra'''""~''~~::'~5"''" '""~ ::~5:" "':" ~ "' ",,,": ~ ~ "-'~:?:''""~:' ~ :~ ~~.5~ ""-, .-':..":~ 5.5:::~-$ .: ' :.. :"..x'' : . . '.:...5 x$ ~ ~. ~~-'-..:x:~: -'i:: ~ -~.-5.5:: ~5.55 5 ~ -' '''""'""" '''~'- ~5.:.5.':

The following interface number constants are defined:

DATA ROUTER FIFO
LEFT DR FIFO

RIGHT DR FIFO

USER BC FIFO

SUPERVISOR BC FIFO

COMBINE FIFO

Data Network interface (1).
Left Data Network interface (6).
Right Data Network interface (7).
User broadcast (BC) interface (3).
Supervisor broadcast (SBC) interface (4).
Combine (COM) interface (5).

The interface-specific constants defining the auxiliary data field format are
described together with the corresponding network interfaces in later chapters.

For C Programmers: Appendix E of this manual includes examples of simple
C macros that construct send first addresses for each network interface.

2.4 Receiving a Message

For each network interface, the following register is used to receive messages:

ni interfacerecv FIFO register from which values are read.

A message is received by reading its value(s) in order from the recv register, one
at a time.

2.4.1 Detecting Arrival of a Message

When a message arrives in the receive FIFO, the NI sets the rec_ok flag in the
status register (see Section 2.5). You can repeatedly test the rec_ok flag to
determine whether a message has arrived (for example, in a top-level loop).

Alternatively, you can set a flag in the "private" register (See Section 2.7.) that
causes the NI to signal an interrupt whenever the rec ok flag is set. You can use
this feature to "automate" message reception by having the interrupt trigger an
appropriate message-reading routine in your program.

Note: Access to the "private" register is restricted to the supervisor area. User
programs, which do not have supervisor access, must make a system call to set
the receive interrupt flag.

Version 7.1, October 1992

18 NIl Systems Programming



Cp2AniereF

2.4.2 Simulating the Arrival of a Message

The supervisor has the additional ability to write a value to the recv register; this
pushes a value into the tail end of the FIFO, as if it had arrived from the network.
The supervisor can use this method to simulate the arrival of a message from the
network (for example, when restoring the networks after a context switch), by
writing the values of the message to the recv register in the same order as they
are to be read out. (An appropriate value should also be written to the status
register to provide the corresponding auxiliary information.)

Note: An error is signaled if a value is written to the recv register when the
receive FIFO is full (that is, when the ni.rec_full flag in the private register
is set to 1 - see Section 2.7.5).

2.5 The Status Register

The niinterfacestatus register can be used to check on the progress of a
message that is being sent, to detect when a message has been received, and to
retrieve information about a received message. The status register includes the
following flags and fields, which are the same for each of the network interfaces:

niinterfacestatus Status register.
nisend _ok Flag, status of message being sent.
nisend _ space Field, space left in send FIFO.
ni_send _empty Flag, indicates empty send FIFO.
ni.rec_ok Flag, indicates arrival of a message.
nirec length Field, total length of received message.
ni.rec lengthleft Field, words left in receive FIFO.

Note: The rec status fields always reflect the "current" message in the receive
FIFO - the message that includes the next word waiting to be read from the
receive FIFO. If there is no pending message, the fields are undefined.

2.5.1 The "Send OK." Flag

If the send FIFO becomes full, all attempts to write a message (either to start or
to continue one) cause the message currently being composed to be discarded.
You can tell that a message has been discarded by examining the send ok flag.

Version 7.1, October 1992

Chapter 2. A Generic Network Interface 19



- N- Syste- Pro n

When the first value of a message is written to the send_first register, the
send_ ok flag is set to 1. As long as the message has not been discarded, this. flag
remains 1, indicating that the message is still being accepted. If the send_ok flag
is still 1 after you have written the final value of a message, you can assume that
that message has been accepted for delivery, and that you can start writing the
next one. If the message is discarded, the send_ok flag is set to 0, indicating that
the message has not been sent, and you should retry sending the entire message.

2.5.2 The "Send Space" Field and "Send Empty" Flag

The send _space field contains an estimate of the total space (in 32-bit words)
left in the FIFO. The actual space remaining may be less; ni_send_space is
usually correct, but may become invalid because of supervisor activity (such as
when processes are swapped in and out). User code should not assume that push-
ing a message shorter than this value is always successful. The send_empty flag
is 1 whenever the send FIFO is empty - that is, when there is no pending mes-
sage in the FIFO.

Programming Note: NI programmers typically write an entire message to the
send FIFO and then check the send_ok flag to see whether it was accepted, so
the send_space field and send_empty flag typically aren't used.

2.5.3 The "Receive OK" Flag and "Receive Length" Fields

Whenever a message is pending in the receive FIFO, the rec_ok flag is set to
1, and remains 1 while any part of the message remains to be read from the FIFO.
When no messages are waiting to be read, the flag is set to 0. (Attempting to read
from the FIFO when rec_ok is 0 signals a Bus Error.)

The ni_rec_length_left field contains the number of words of the current
message that are left in the receive FIFO. You can assume that it is safe to read
this many words from the receive FIFO. If you need the message's original
length, the nirec_length field always contains the total length (in words) of
the current message as it was when it was received.

Version 7.1, October 1992

NI Systenu Programmi'ng20



Chaptr 2.A G,=eeri Newor Inerface 21Sa;E~B.WsEzM~zNESN

2.6 Abstaining from an Interface - The Control Register

Each of the Control Network interfaces has a control register, containing either
one or two abstain flags. The names of the register and abstain flag(s) are:

niinterface_control Control register.
ni_rec_abstain Normal receive abstain flag.
ni_reduce'rec_abstain Combine reduction abstain flag.

Note: The global interface, always the exception, uses a different name for this
register. See Section 4.3 for more information.

2.6.1 Effect of Abstain Flags

The rec abstain flag, when set to 1, causes the NI to "abstain" from receiving
messages via the corresponding interface. That is, the NI does everything neces-
sary to ignore the interface's transactions:

* Arriving messages are simply ignored - they "disappear" with no indica-
tion of their arrival, and the rec_ok flag remains 0.

* Messages that require the participation of every node (global synch, etc.)
are allowed to complete without the abstaining node's participation.

* Messages that require a value (scan messages, for example) are effectively
given an appropriate identity value for the type of message being sent.

While the rec abstain flag is set for a given interface, it is an error to try to
send a message via that interface from the abstaining node. Attempts to write the
send_first or send registers under these circumstances signals a Bus Error.

2.6.2 Combine Interface Abstain Flags

The ni_reduce_rec_abstain flag is only defined for the combine interface,
and only applies to reduction operations.

In addition, reduction operations treat the value of the rec_abstain flag differ-
ently from all other interface operations.

For more information, see Section 4.2.8.

Version 7.1, October 1992

Chapter 2. A Generic Netork Interface 21



22.5':-""' .'',:. : .... :'..NI:.:-':::"':' Sytm Programming

2.6.3 Use the Abstain Flags Safely

The abstain flag for a given interface should only be changed when that interface
is not in use. Specifically, when a interface's abstain flag is changed:

* The send FIFO must be empty (that is, the send_empty flag must be 1).

* The receive FIFO must be empty (the rec ok flag must be 0).

· There must be no messages in transit via that interface. (There is no flag
to detect this; your program must simply be written so that this is the case.)

The effects of changing a interface's abstain flags while the interface is in use are
unpredictable - your code may produce erroneous results, or signal an error.

This restriction generally requires that you use one of the interfaces (for example,
the global interface) to synchronize the nodes and halt the operations of another
interface while you change that interface's abstain flags.

For this reason, most NI programmers set the abstain flags once, at the beginning
of a program or routine, and then leave them set that way until the program or
routine finishes executing, changing the flags within the routine only where ab-
solutely necessary.

2.6.4 Being a Good Neighbor

Important: Some programming systems (such as CMMD) use the abstain flags
for their own purposes. These systems are written with the assumption that the
abstain flags do not change unexpectedly, and if the flags do change these sys-
tems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before handing control back
to these systems. Failing to do so can cause either user or OS code to signal ob-
scure errors that are hard to trace.

Version 7.1, October 1992

22 NI Systems Programming



Captr2 AGnrc ewkItrace 2~g8§sMN~mK^X.Sm~~~kSghmMMRE 3

2.7 The Private Register

Each of the interfaces also has a "private" control register, containing a number
of control flags and status fields for supervisor operations. Most of these sub-
fields are interface-dependent; the few that are not are:

ni_interfaceprivate Private register.
nirecok_ie Flag, "Receive OK" interrupt enable.
ni_lock Interface lock flag.
nirecstop Interface stop flag (except Broadcast intf.).
ni_send_stop Interface stop flag (Broadcast intf. only).
ni recfull Flag, indicates receive FIFO is full.

The broadcast interface has one exception to the above description: the
nirecstop flag is not defined; in its place is a flag called nisend_stop,
which operates differently. (See Section 2.7.4.)

Usage Note: The private register is only accessible from the supervisor area;
users without supervisor access must make a system call to change the flags in
this register.

2.7.1 Message Receipt Interrupts - The Rec Interrupt Enable Flag

When the ni_rec_ok_ie flag is set to 1, a Green interrupt is signaled whenever
a new message becomes available at the front of the interface's receive FIFO (in

other words, whenever the recok status flag is set to 1 for a new message).

A message may become available either by arriving from the network into an
empty FIFO, or by being the next message in the FIFO when the last word of the
current message is read out. A different Green interrupt is signaled for each net-
work interface, and the interrupt for each interface can be independently enabled
and disabled by setting the rec_okc_ie flag for the interface.

The Green interrupts that can be signaled are:

dr rec ok ldr rec ok rdr rec ok
be rec ok sbc rec ok com rec ok

For more information about these interrupts, and about interrupts in general, see
Section 5.1.

Version 7.1, October 1992

Chapter 2. A Generic Network Interface 23



2.7.2 Clearing the Interface's Send FIFO-- The Lock Flag

The supervisor can use the nilock flag to temporarily "lock" the interface
that is, prevent use of the interface in a way that is transparent to a user program.

The lock flag is normally 0. When it is set to 1, the following effects occur:

* Any message currently being written to the send FIFO is discarded.

* The send ok flag is set to 0 and remains 0 - even if you attempt to write
a new message to the send FIFO.

* The value of the ni_interface_space field is set to 0 and remains 0.

In other words, setting the lock flag to 1 clears the send FIFO, and then makes
it seem as if the FIFO is permanently full.

2.7.3 Grabbing the Receive FIFO Registers - The Rec Stop Flag

The supervisor can temporarily grab control of a interface's receive FIFO and
status register by setting the interface's ni_rec_stop flag. Since this involves
the joint cooperation of the microprocessor and the NI, a special request/grant
protocol is used. Specifically:

* The microprocessor writes a 1 to the interface's recstop flag, indicat-
ing it wants direct control of the recv and status registers. (Note: The
recstop flag is not changed to 1 until the stop operation is completed.)

* If a message is currently arriving from the interface, the NI finishes receiv-
ing the message and stores it in the receive FIFO.

* The NI then stops receiving messages from the interface, and finally sets
the rec_stop flag to 1, indicating that the stop operation is completed.

Once the rec_stop flag is set, the supervisor may freely read and write the val-
ues of the recv and status registers (for example, to push additional messages
into the FIFO, or to clear the FIFO altogether). When the supervisor is finished
with the recv and status registers, writing a 0 to the interface's rec_stop
flag restores normal network operations.

Important: It is an error for the supervisor to attempt to write values to the recv
and status registers while the stop flag is 0. The effect of doing so is unde-
fined, but is not likely to be pleasant.

Version 7.1, October 1992

MI1 vetomem Prnarnmmyn o1A



Cae2AGeneNetivorlc Interface 25

2.7.4 Blocking Unsent Broadcast Messages - The Send Stop Flag

The broadcast interface does not have a rec stop flag. Instead, the same posi-
tion in the private register is used for a flag called nisend_stop, which has
a different purpose. When the send stop bit is set, it prevents any complete
messages waiting in the broadcast send FIFO from being sent over the network.
This mechanism is mainly used by the supervisor during process swaps, to hold
messages in the interface send FIFO until they can be safely removed and saved.

2.7.5 Detecting a Full Receive FIFO - The Receive Full flag

The ni_rec_full flag, when set, indicates that the interface's receive FIFO is
full. This is critical to network performance; if too many nodes have full receive
FIFOs, the network can become clogged with unreceived messages, and this can
prevent new messages from being delivered to their destinations - even if the
destination nodes actually have sufficient space in their receive FIFOs.

2.8 Using a Generic Network Interface

To sum up, the strategy to use in accessing a network interface's registers is:

* To send a message, write the first word to the send_first register, and
any remaining words to the send register.

* Check the send ok flag to see if the message was discarded, and if so,
retry sending the entire message.

* To receive a message, check the rec ok flag to see if a message is in the
FIFO, and if so, use the length and length_left fields to determine the
number of words to read from the recv register.

* Use the remaining fields of the status register to obtain other interface-
specific information about the state of the send and receive FIFOs.

* Use the abstain flag(s) in the control register to cause individual
nodes to ignore the transactions of the interface.

* Use the private fields and flags for supervisor features such as disabling
send FIFOs, checking for full receive FIFOs, and setting interrupts.

Version 7.1, October 1992

Chapter 2. A eneric Network Interface 25



26 .'....."".... NI Systems Programming·5fii·~···iZ·~1 .5555 :

2.9 From the Generic to the Specific

The interface described in this chapter is an idealized view of a network inter-
face, lacking a specific purpose, a detailed description of message protocol, or
network-related restrictions on usage of the interface registers.

The next two chapters present a description of the Data Network and Control
Network. These chapters present the purpose, protocol, and restrictions of each
interface provided by the CM-5 networks, building on the generic interface
description presented in this chapter.

Version 7.1, October 1992

26 NI Systems Programming



Chapter 3

The Data Network

The Data Network consists of two halves, the left interface (LDR) and right inter-
face (RDR). Each half of the network is connected to all nodes, and can be used
independently. The two halves of the network can also be accessed together as
the single Data Network (DR):

Figure 8. The three interfaces of the Data Network: DR, LDR, and RDR.

For each of these network interfaces there is a separate register interface. This
chapter describes these register interfaces, and shows how to use them to send
messages through the Data Network.

Terminology Note: The network acronyms (DR, LDR, RDR) are a historical
anachronism, and are retained in this manual only because the C constants used
to access the Data Network still refer to the three interfaces by the old abbrevi-
ations. In addition, the obsolete term "router" is occasionally still used in the
programming contants to refer to the Data Network hardware. "Network" is cur-
rently preferred, as a more generic and thereby more accurate descriptive term.

Version 7.1, October 1992

. . .

27

1�1����167��1�



28 555~SS^5&555.x5RB~e;,%v>~.~gB.BBwNI >5Stems Prgra.mmng

3.1 The Data Network Register Interfaces

The three Data Network interfaces are based on the generic model presented in
Chapter 2. There are three sets of interface registers: one for each half of the
network (LDR and RDR), and one for the combined (DR) network.

Each network interface can be used to send and receive messages, with the fol-
lowing conditions:

· Sending a message via the DR actually sends it by either LDR or RDR,
depending on the load of the two interfaces.

* In the current implementation, the DR interface cannot be used to receive
any messages.

* The DR interface is mutually exclusive with the two half-network inter-
faces. In other words:

* Writing a message to the DR send FIFO excludes using either the
LDR or RDR at the same time. Likewise, writing a message to either
the LDR or RDR send FIFOs excludes using the DR interface.

* While a message is being sent, any excluded interface(s) remain ex-
cluded until the message has been written and accepted for delivery
by the network. Also, the status register(s) of excluded interface(s)
are invalidated and should not be used.

* The two half-network interfaces are not mutually exclusive, and in fact
can be used simultaneously. In other words, network messages can be sent
and received concurrently via both the LDR and RDR.

For each interface, the following registers are used to communicate with the Data
Network:

ni _dinterfacesend first Used to send the first value of a message.
ni_dinterfacesend Used to send the rest of the message.
ni dinterface recv Used to receive a message.
nidinterfacestatus Status register.
nidinterfacerivate Supervisor control register.

The dinterface part of these names is a unique abbreviation for each interface:

dr - Data Network ldr - left interface rdr - right interface

Version 7.1, October 1992

NI Systems Programming28



Chapter 3. The Data Network 29

Figure 9 is a memory map indicating the relative locations of these registers in
the user and supervisor areas.

Figure 9. NI registers associated with each of the Data Network interfaces.

The following related registers are also used to control Data Network features:

ni user_tag_mask User/supervisor tag reservation register.
ni_rec_interruptmask Contains tag value interrupt flags.
ni_dr_ message_count Contains current message count.
ni_count_mask Contains tag-count enable flags.

The purpose and use of these registers is described in the sections below.

Version 7.1, October 1992

The Data Network Registers at a Glance:

hex offsets

dr ld rdr

.ni __, nd_ |,. 0xl000 0x6000 0x7000

Ox0240 OxOC40 OxOE40
ni -. snd 0x0230 OxOC30 OxOE30

ni SC 0 Ox0220 OxOC20 OxOE20

rn x controli X--Co-trol 0x0210 OxOCl0 OxOE10

ni x-private O 0x0208 OxOC08 OxOE08

nil zstatu O0x0200 OxOCOO OxOEOO

ni interface send first Addressing Patterns

user/supervisor bit addressinq mode

index
NI base address nde i

DR ------- jx ooooj0 o0 01x tag length 1 000

LDR ------ xoooo 1 ° x tag length 000

RDR ------ ' xoooo 1 1 1 x ag length 000
31 20'19;18 1514 1211 10 7' 6 3 2 0

I
I

i

I

I

i

I

I

I

I
I



30N Smsgrmmin

3.2 Data Network Messages

The Data Network is essentially asynchronous in operation - nodes can send
and receive messages freely, so long as enough nodes are receiving messages so
that the network does not become clogged (see Section 3.8).

The destination node of a Data Network message is determined by an address
word that is added to to the message as it is being written to the send FIFO. (Note:
The address word is removed in transit. It does not count as a message word with
reference to the length limits of the send and receive FIFOs.)

Data Network messages are atomic; individual messages are not sent through the
network until all the words of each message have been written into the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The component words of a single Data Network message are always received in
the same order as they were sent. However, if you use multiple Data Network
messages as "packets" to send long messages from one node to another, the order
in which the packets arrive is not guaranteed to be the same as the order in which
they were sent.

Your code should not depend on having separate Data Network messages sent to
the same node arrive in some predictable order. Instead, your code should in-
clude data in the packets (for example, an offset into the original message) that
allows the receiving node to arrange the packets into the correct order.

3.3 Data Network Addressing

The Data Network uses two kinds of addressing: physical and relative. Each
node of the CM-5 has a unique physical address based on its location in the CM-5
hardware. This represents an "absolute" address, giving the node's location with
respect to the entire machine.

Each node also has a unique relative address based on its location in its partition.
Relative addresses run from 0 (for the first node in the partition) up to one less
than the total number of nodes in the partition. (See Figure 10.)

Version 7.1, October 1992

30 NVI Systems Progranvmng



Chapte 3. Te Dat Net-ork 31

Note: The partition manager is always located at an address outside the partition,
and so does not occupy any of the relative addresses of the partition. (For more
information, see Section 7.1.)

Figure 10. Relative addressing of nodes in a partition.

Just as there are two kinds of addressing, there are also two "modes" of sending
a Data Network message: physical and relative. The mode a message is sent in
is determined by a mode flag in the auxiliary data of the message.

When a message is sent in physical mode, its address word is treated as a physi-
cal address, and the message can be sent anywhere within the Data Network.
(Only the supervisor is allowed to send messages in physical mode.)

When a message is sent in relative mode, the address word is treated as a relative
address, and is translated into a physical address based on the current partitioning
arrangement. This translation is performed automatically by the NI hardware,
using a chunk table, described in Section 6.3.

The translation also includes automatic error checking to make certain that the
supplied address is a legal relative address for the current partition. Messages
that contain illegal relative addresses are not sent through the network; instead,
the sending NI signals a Yellow interrupt (bad relative address).

For the Curious: The relative addresses in a partition are always contiguous-
that is, there are no legal relative addresses in a partition that do not correspond
to existing functional nodes. This is in contrast to physical addresses, which can
contain gaps corresponding to nonfunctional nodes or to network locations that
are not connected to actual CM-5 hardware. (See Section 6.3.)

Version 7.1, October 1992

" - -- --

Nodes . .

Addresses o 1 2 3 4 n-1 Partition Manager

Chapter 3. The Data Network 31



:::-: .' -3NI' :yt- m Pormin

3.4 Sending and Receiving Messages

The message format for all three Data Network interfaces is the same. The first
word of the message is a 20-bit destination address that must be zero-extended
to 32 bits. Failure to ensure that the address word is zero-extended to the full 32
bits can trigger a serious error, even causing your partition to crash.

The remaining words form the content of the message, which must be no longer
than the length limit of the send FIFO.

Programming Note: The length limit of the Data Network send FIFOs is given
by the constant MAX_ROUTER_MSG_ WORDS (currently 5 for all three interfaces).

The auxiliary information of the message consists of the length of the message
in words (excluding the address word), a 4-bit tag value, and an addressing mode
flag that determines how the address word is interpreted.

3.4.1 Sending Messages

The following FIFO registers are used to send messages:

nidinterface_s end_f irst
ni dinterfacesend

Used for first value of a message.
Used for the rest of the message.

The protocol for sending a message is as described in Chapter 2.

The 9-bit auxiliary information field of the message has the form
8 0

tag I length
-~ ~ ~ ~~~~~~~~~~~~~~~~ I 

where

is the addressing mode (O = relative, 1 = physical)

is the 4-bit tag value

· length is the length of the message in words, excluding address word

The following constants specify the starting bit positions of these fields:

NI DR SEND AUXILIARY ADDRESS MODE P

NI DR SEND AUXILIARY TAG P

NI DR SEND AUXILIARY LENGTH P

The md field offset (8).
The tag field offset (4).
The length field offset (0).

Version 7.1, October 1992

md

* tag

32 NIV Systems Programming



Car- 3 The Dat etor 3

To construct a send_first address, add the following values:

The md flag: md << NDR_SEND_AUXILIARY_ADDRESS_MODE P
The tag value: tag << NI_DR_SEND_AUXILIARY_TAG PP
The length value: length << NI_DR_SEND_AUXILIARY_LENGTHP

The md flag is 0 for a message with a relative destination address, and 1 for a
message with a physical destination address.

The following constants can be used to specify the md flag:

RELATIVE Relative node addressing (0).
PHYSICAL Physical node addressing (1).

Note: Sending messages with physical addresses is reserved for the supervisor.
If user code tries to send a message with a md flag of 1, a Bus Error is signaled.

The tag can be any value from 0 to 7 inclusive for user messages, or from 0 to
15 for supervisor messages. Message tags are described in more detail in Section
3.5.1 below.

The length field can have any value from 1 up to MAX_ROUTER_MSG WORDS.

3.4.2 Receiving Messages

For each interface, the following register is used to receive messages:

nidinterface recv FIFO register from which values are read.

Data Network messages are received as described in Chapter 2.

Supervisor Usage Note: Currently, a hardware defect in the NI chip does not
allow the Data Network recv registers to be written by the supervisor to simu-
late the arrival of messages, etc. The workaround is for a node to send a message
into the network using its own address as the destination. Assuming the network
is clear (as it is, for example, during context switches) this causes the message
to be delivered to the front of the node's receive queue.

Version 7.1, October 1992

Chapter 3. The Data Network 33



3s Ni Syses Programming

3.5 The Status Register

The status register for each of the networks contains the following subfields:

ni_dinterface_status
ni send ok
nisendspace
ni rec ok
ni_rec_length
ni_rec length left
ni_drrec tag
ni dr send state
ni dr rec state
ni router_done_complete

Status register.
Flag, status of message being sent.
Field, space left in send FIFO.
Flag, indicates receipt of message.
Field, total length of message.
Field, words left in the FIFO.
Field, tag value of the message.
Field, status of send FIFOs.
Field, status of receive FIFOs.
Flag, indicates empty send FIFOs.

The send_ok, send_space, rec_ok, rec_length, and rec_length left
subfields are as described in Chapter 2. The remaining fields are described in the
sections below.

Note: The subfields ni_dr_send_state and ni_dr_rec_state, and the flag
nirouterdonecomplete apply to all three interfaces. They are only acces-
sible from the DR interface (that is, their values are only defined for the
ni_dr_status register).

3.5.1 Message Tags

The tag values of Data Network messages are used to distinguish between differ-
ent types of Data Network messages. The status register field rectag always
contains the tag value that was sent with the current message.

Tag values are primarily used for:

· distinguishing between user and supervisor messages

· causing interrupts to be signaled when messages are received

· helping the NI determine when the Data Network is clear of user messages

Some tag values are reserved for supervisor use, to distinguish between supervi-
sor and user messages. The remaining tags can optionally be used in user
programs to distinguish different types of user messages.

Version 7.1, October 1992

(

(

NI Systetw Programming34



Chaptesg~r 3 . he DataNyetwor 35esyN~sseNy~s~rSS~s0r~BemsEssmsis>yNsesWs

User/Supervisor Tag Reservation

The NI has a register that controls the reservation of tag values:

ni_user tag mask User/supervisor tag reservation register.

Only the low-order 16 bits of this register are used, one for each of the possible
tag values (O to 15). If the nth bit of the user_tag_mask register is 1, then tag
value n is reserved for supervisor use.

Since the tag_mask register is only accessible by the supervisor, it effectively
acts as a set of permission switches, controlling which tags the supervisor allows
user messages to have. If a user program attempts to send a message with a
supervisor-reserved tag, a Bus Enrror is signaled.

Tag Fields and Interrupts

Tag values can be used to trigger interrupts; when a message with an interrupting
tag value becomes available for reading in the receive FIFO, the NI signals a
Green interrupt (dr rec tag) to the microprocessor. (A message becomes
available either by arriving at an empty receive FIFO, or by being the next mes-
sage in the FIFO when the current message is read out.) Tag value interrupts can
be used to cause the microprocessor to execute a specific section of code when-
ever a message with an interrupting tag becomes available for reading.

The following register is used to determine which tag values cause interrupts:

ni_recinterruptmask Register, contains tag value interrupt flags.

The interrupt mask register contains 16 flags, one for each tag value. If the
nth bit is 1, then a message with tag value n signals a Green interrupt on arrival.

For CMosT Users: You can use CMOST commands to instruct the NI to signal
an interrupt when it receives a message with a specific tag. This interrupt causes
the processing node to execute a specific routine of your program.

The CMOsignal system call is used to set up an interrupt:

CMOS_signal ( signal, user function, tag_mask)

The signal argument is the signal type, and must be the predefined constant
SIGSG. The user function argument is the name of a user-defined function that
should handle receiving and processing the message.

Version 7.1, October 1992

Chapter 3. The Data Network 35



The tag_mask argument is a 16-bit field, one bit for each possible value of the
tag. If bit n in this mask is set, then the receipt of a message with a tag of n causes
userfunction to be executed. (Remember that you are limited to using only the
first four bits of this mask, corresponding to the tags 0 through 7.)

So, for example, the function call

CMOS_signal( SIGMSG , my_msg_handler , OxFE);

arranges the NI interrupt system so that when a Data Network message with a tag
from 1 to 7 is received, the user-defined procedure my_msg handle is called.

Note: To use this function, you must #include the file cm/ec signal. h. For
more information on CMOSsignal, see the UNIX manual page for the function.

Tag Fields and the Message-Counting Registers

Tag fields also allow system software to automatically maintain a count of mes-
sages sent and received by the NI. This is a key part of the network-done feature
of the Control Network (see Section 4.2.7). It allows the NI to determine quickly
when the Data Network is clear of user messages. Two registers are used to con-
trol this message-counting feature:

nid _message_count Register, contains current message count.
ni_count_mask Register, contains tag-count enable flags.

Message Count Disabling

The ni_dr_message_count register contains a signed 32-bit integer value that
is incremented when a Data Network message is sent (by any of the three inter-
faces), and decremented when a message is received.

When the message_count register becomes zero for all non-abstaining nodes,
the NI assumes that there are no countable messages in transit in the Data Net-
work. It is possible to disable message counting for messages with specific tag
values. (This is useful, for example, if you only wish to keep a count of user
messages, and want supervisor messages to go uncounted.)

The nicount_mask register controls this enabling and disabling of message
counting. It contains 16 flags, one for each tag value. If the nth count_mask bit
is 1, then messages with a tag of n are counted by ni_dr message_count. If
the nth bit is zero, messages with that tag are not counted.

Version 7.1, October 1992

36 NI Svstenu Proranmngo



Chaper 3- . -D w
· ~~~~~~~

It's important to be sure that the sending and receiving nodes for a message both
agree on whether the message's tag should or should not be counted; if they do
not agree, the ni_dr_message_count register's value is useless, and can wrap
around, becoming negative - see the discussion of this situation below.

Note: The supervisor can write a value to ni d message count, for exam-
ple, to set the register back to zero, but this should only be done when the Data
Network is not in use. Otherwise, there is no way to guarantee that the value of
this register remains the same as the value that was written into it.

Negative Message Count Interrupts

If the sum of the message_count registers for all nodes becomes negative, it
means that either a message was lost in transit or was counted incorrectly. If the
global message_count sum is negative when a Data Network operation is
attempted, a Yellow interrupt (dr count negative) is signaled. (See Section
D.3.3 in Appendix D.)

Note: If the mesage_count register is incremented or decremented beyond its
32-bit signed value capacity, its value "wraps around," becoming negative. How-
ever, the register is large enough that this should not happen unless there is a
serious error (a hardware problem that causes messages to be lost, nodes that do
not agree on counting of tag messages, etc.).

3.5.2 IMPORTANT - Check the Tag before Receiving a Message

Tag values are not mandatory. You can, for instance, simply supply a tag value
of 0 for all Data Network messages. However, this does not mean that you can
simply ignore tag values altogether. The CM-5 operating system itself sends Data
Network messages with interrupt tags. Whether or not you use tags yourself, you
must always check the tag field of a Data Network message before retrieving it,
so that you do not accidentally read a message intended as an interrupt.

The Data Network only checks the tag field of a message after the message has
been delivered to the receive FIFO. If the message has a tag that is set to signal
an interrupt (either by the user or by the supervisor), the appropriate interrupt is
signaled, with the assumption that the interrupt handler takes care of removing
the message from the FIFO.

Version 7.1, October 1992

Chapter 3. The Data Network: 37



38 ~~ §x~~m s~s"NnE>rWKg''yrNI Systms Prorammigt

This means that if you're not careful, you can accidentally read a message with
an interrupt-triggering tag value before the NI has signaled the interrupt. The ef-
fect of doing so is unpredictable; an error may be signaled, or your partition may
crash. To avoid this problem, always check the tag of a Data Network message
before retrieving it, to make certain that it is neither a supervisor message or a
message with a tag value that you have assigned to trigger an interrupt.

3.5.3 The Send and Receive State Fields

The DR interface is mutually exclusive with the LDR and RDR interfaces. It is
an error to try to write a message to the DR send FIFO while there is a partially
completed message in either the LDR or RDR send FIFOs.

Likewise, having a partially completed message in the DR send FIFO makes it an
error to try to send a message via the LDR or RDR FIFOs. In either case, the status
registers and FIFOs of the excluded interface(s) are invalidated.

You can use the ni d.r send state field to determine which interfaces are in
use. The value of this field is an integer from 0 to 2, with the following meanings:

O No partial messages in any send FIFO.
1 Partial message in the DR send FIFO.

2 Partial message in either or both of the LDR or RDR send FIFOs.

There is also a corresponding nidr_rec_state field that you can use to deter-
mine which receive interfaces are in use. (However, because the DR interface
cannot be used to receive messages, this field is not as useful as
ni dr send state.)

The value of the nidr rec_state field is again an integer from 0 to 2:

O No partial messages in any receive FIFO.
1 Reserved. (The DR interface cannot receive messages.)
2 Partial message in either or both of the LDR or RDR receive FIFOs.

Note: The two half-network interfaces are not mutually exclusive. There is no
restriction on having partially completed messages simultaneously in the LDR
and RDR FIFOs. (This kind of simultaneous message sending is one reason that
the LDR and RDR interfaces exist.)

dl

Version 7.1, October 1992

NI Systems Programming38



Chapter3.Th*e aNetwrkSa:~@N<BAfRoe> 39s

3.5.4 The Network-Done Flag

The ni_router_done_complete flag is used by the Control Network as part
of its network-done message function. This feature is designed to make it easy
to synchronize the nodes after a Data Network operation.

As noted above, the message-counting register ni_drmessage_count also
plays a part in the network-done feature. For more information on network-done
messages, see Section 4.2.7.

3.6 The Private Register

The private register for each of the network interfaces contains the following
subfields:

nidinterface private P
ni rec ok ie

ni lock

ni_recstop
ni rec full

ni dr rec all fall down

ni all fall down ie

ni all fall down enable
_ _ _ 

rivate register.
Flag, "Receive OK" interrupt enable.
Interface lock flag.
Interface stop flag.
Flag, indicates receive FIFO is full.
Flag, set for All Fall Down message.
All Fall Down interrupt enable flag.
Flag, triggers All Fall Down mode.

The rec_ok_ie, lock, rec_stop, and rec_full subfields are as described
in Chapter 2. The remaining three fields are used to control the All Fall Down
mode feature of the Data Network, as described in Section 3.7 below.

Note: The subfield ni_rec _stop is only accessible from the DR interface (that
is, its value is only defined for the ni_dr private register).

Version 7.1, October 1992

Chapter 3. The Data Network 39



3.7 All Fall Down Mode

All Fall Down mode is a feature of the Data Network that is used primarily by
the supervisor for swapping processes out of partitions. When All Fall Down
mode is triggered within a partition of the Data Network, all messages currently
in transit within that partition are immediately routed downwards through the
network to the nearest possible node, regardless of their actual destination. This
process clears the Data Network of pending messages as swiftly as possible.

The three private register subfields, ni_dr_rec_allfall_down,
niall falldown ie, and niallf all downenable, are used to trig-
ger All Fall Down mode, as well as to detect when an arriving Data Network
message is the result of All Fall Down mode.

3.7.1 Triggering All Fall Down Mode

To trigger All Fall Down mode in a partition, each node in the partition should
set its ni allfall down enable flag to 1. This informs the Data Network
hardware that the NIs are ready to receive All Fall Down messages.

For the Curious: The Data Network is organized in layers, with each layer man-
aged by internal switching nodes. When All Fall Down mode is started by the
nodes, it is broadcast through all the layers of the Data Network, causing the
internal switching nodes to begin routing messages downward and out of the net-
work. The Data Network is designed in a fault-tolerant manner, so that even if
a given Data Network switching node is not yet in All Fall Down mode, an All
Fall Down message sent through it by a higher level node "falls through" and
continues moving toward the processing nodes.

3.7.2 Detecting All Fall Down Mode Messages

The flag ni dr rec_all_fall_down is set whenever the current message in
the receive FIFO is the result of an All Fall Down operation.

You can also have the NI trigger an interrupt when an All Fall Down message
becomes available in the receive FIFO (either by arriving at an empty FIFO, or
by being brought forward after a preceding message has been read out). If the
interrupt enable flag ni all_fall_down i e is set, the arrival of an All Fall
Down message triggers a Green interrupt (dr rec all fall down).

Version 7.1, October 1992

An Vl tmf Prnrnmmn



Cha pter 3...The..Data...Network.....41
..... †

3.7.3 Resending All Fall Down Mode Messages

Each message re-routed by All Fall Down mode carries with it enough informa-
tion so that the receiving node can resend the message to its intended destination.
When an All Fall Down message is read from the receive FIFO, the first word
read is not the first word of the message itself, but is an extra address word, con-
taining information about the intended destination of the message.

The All Fall Down address word has the following format:

31 28 27 24 23 20 n 0

'header tag length . . . offset

where

* header is a 4-bit header giving the length of the offset field

* tag is the original tag field of the message

* length is the message length in words, excluding the address word

* offset is an n-bit field used to construct the real address

The header field indicates the length of the offset field, but in a slightly convo-
luted manner. The length of the offset field, n, is 4 times the least integer not less
than one-half of the header value, h. In symbols:

n(An algorithmic way to get ths result is to take bits 29 -431 of the header field
(An algorithmic way to get ths result is to take bits 29 - 31 of the header field
as an integer, arithmetically add bit 28, and left-shift the result by two bits.)

Once you have the offset length, take the physical address of the current node and
replace the least significant n bits with the n-bit value from the offset field. This
gives the destination physical address. For example, if the header value is 1, then
the offset is 4 bits in length. If the offset value is OxC, and the physical address
of the current node is 0x00111, then the destination physical address is 0x001 1C.

The tag and length fields duplicate the values obtainable from the rec tag and
rec length fields in the status register. However, these fields are included
in the All Fall Down address word because programmers may find them useful.

Note: When an All Fall Down message is received, the value of the
rec length field is equal to the original length of the message - the number
of data words in the FIFO not connting the All Fall Down address word. How-
ever, the rec length left field contains the total number of words left in the
receive FIFO, and this count includes the All Fall Down address word.

Version 7.1, October 1992

Chtapter 3. The Data Netwrk 41



42 NI Systems Programming"ES

3.8 Data Network Usage Note: Receive before You Send

An important strategy to keep in mind when using the Data Network is "Receive
before you send." That is, in most cases you should structure your code so that:

* Each node attempts to read a message from the Data Network before send-
ing a new message into it.

* If a node is unable to send a message, the node attempts to read a message
to help decrease the network load.

While the Data Network has a large capacity for messages from nodes, the sheer
number of nodes connected to it can simply overwhelm it if the nodes repeatedly
send messages into the network without attempting to receive them. For this rea-
son, your code should be biased towards removing messages from the network
rather than adding them.

However, your code should also provide fair opportunities for both receiving and
sending, where "fair" means that the ratio between the two actions should be
bounded both below and above, and where "opportunity" means the opportunity
to attempt sending or receiving a message, whether or not the attempt is success-
ful. Thus, the sending and receiving portions of your code should be called with
fairly equal frequency.

When you are using the LDR and RDR concurrently, you should likewise main-
tain a balance in using both interfaces, so that neither interface becomes more
heavily loaded than the other.

In short, the rule of thumb is: "Receive before you send, but receive and send
fairly."

Note: Some applications use the LDR and RDR interfaces for completely differ-
ent purposes, and thus do not normally maintain a load balance between the two
halves of the Data Network (that is, one network interface may be used less often
than the other). Nevertheless, such application code should still try to maintain
a receive/send balance within each of the two network interfaces.

Version 7.1, October 1992

42 NI Systems Programming



Chapter 4

The Control Network

The Control Network consists of three interfaces, the broadcast interface (BC),
the combine interface (COM), and the global interface:

Figure 11. The three interfaces of the Control Network: BC, COM, and global.

The broadcast and combine interfaces are very similar, and there are some inter-
nal interactions between these two interfaces that you'll need to keep in mind.
The global interface, however, is different in both structure and purpose from
either of the other two interfaces.

This chapter describes the three Control Network interfaces, and presents the
registers that are used to manipulate them.

Version 7.1, October 1992

r I

I I

c~~c~~8c~h~~lb~~: .

43



A. .V,.ctor Prnrmm; no

4.1 The Broadcast Interface

The broadcast interface is used to broadcast a message from a single source node
to all nodes in the same partition (including the broadcasting node).

The broadcast interface provides two separate register interfaces, one for user
broadcasts (BC), and one for supervisor broadcasts (SBC). The two register in-
terfaces are completely independent, and can be used concurrently to broadcast
messages. Where the sections below refer to "broadcast messages" generically,
the description applies equally and independently to both the user and supervisor
interfaces.

Implementation Note: Because of the way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 7.3.8.)

4.1.1 Broadcast Register Interfaces

The two broadcast register interfaces are based on the generic model presented
in Chapter 2. The only difference between them is that the supervisor broadcast
registers can only be accessed from the supervisor area.

The following NI registers form the broadcast interface:

ni binterface send first Used to send the first value of a message.
ni binterface_send Used to send the rest of the message.
ni_binterfacerecv Used to receive a message.
nibinterfacestatus Status register.
ni_binterfacecontrol Control register.
nibinterfaceprivate Supervisor control register.

The binterface part of these names is a unique abbreviation for each interface:

bc - user broadcast interface abe - supervisor broadcast interface

'The purpose and use of each of these registers is described in the sections below.
Figure 12 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

Version 7.1, October 1992

AA



Chapter . Te onrNetork 4

The Broadcast Interface Registers at a Glance:

hex offsets

be sbe

ni x send first

ni x send
ni rec

ni z control
- -. .........

ni x_private

ni x status
_ _

0x3000 0x4000

0x0640 0x0840

0x0630 0x0830

0x0620 0x0820

0x0610 0x0810

0x0608 0x0808

0x0600 0x0800

ni interface sendfirst Addressing Patterns

user/supervisor bit

N base address indexindex

SBC 1i- 0000 1 0 0 0 0o 0 0 length 000

BC ------ x oooo o 0io0 o length 000

31 20 19 18 15 14 12 11 7 6 3 2 0

Figure 12. NI registers associated with each of the broadcast interfaces.

4.1.2 Broadcast Messages

The broadcast interface is essentially synchronous in operation - a single node
broadcasts a message that is received by all nodes in its partition (including the
broadcasting node itself).

Only one node in each partition can broadcast by a given interface at any time.
If two or more nodes in the same partition attempt to broadcast simultaneously,
via the same interface (user or supervisor), the effect is unpredictable. An error
may be signaled and/or transmitted data may be lost. (Remember, however, that
the user and supervisor broadcast interfaces operate independently, and can be
used concurrently by different nodes in the same partition.)

Version 7.1, October 1992

Chapter 4. The Control Netork 45



A! .Vuetome Pmrornmmin o

Broadcast messages are atomic with respect to sending; a broadcast message is
not transmitted until all its component words have been written to the send FIFO.
Broadcast messages are not atomic in transit, however. A multiword message
may be split in transit into two or more smaller messages. Additionally, as broad-
cast messages arrive at each node they are concatenated together in the receive
FIFO.

From the point of view of each receiving node, it always appears as if there is
exactly one broadcast "message" waiting to be read from the receive FIFO. (Once
a node begins receiving a message, however, the length of the message is fixed,
and a new "message" is formed behind it in the FIFO from any words that arrive
while the first message is being read out.)

Although the length of a broadcast message is not maintained, the order of the
words within a message is maintained, as well as the order of messages sent and
received via the same interface, user or supervisor. (There is no predictible rela-
tionship, however, between the deliveries of user and supervisor messages to the
same node. Effectively, the two interfaces act as independent "streams" of mes-
sages.)

Implementation Note: The broadcast interface is designed in such a way that
a message is not removed from the send FIFO before all non-abstaining nodes
have received it. This feature can be used to force synchronization of the nodes.

4.1.3 Sending Broadcast Messages

A broadcast message consists of a series of one or more words. The maximum
length allowed for a message is determined by the length limit of the send FIFOs.
The only auxiliary information associated with a broadcast message is its length.
However, the length is only meaningful for the node that sends a message, be-
cause of the way messages can be split and concatenated in transit.

Programming Note: The length limit of the broadcast send FIFOs is given by
the constants MAX BROADCAST_MSG_ WORDS and MAXSBC_MSG WORDS (cur-
rently 4 for both interfaces).

The following FIFO registers are used to send messages:

ni binterfacesend first Used to send the first value of a message.
ni binterfacesend Used to send the rest of the message.

(

Version 7.1, October 1992

AA



Chate 4.; The Control Neiwork 47voONs~yw~;§g>RSssUuB

The auxiliary data field of a broadcast message (BC or SBC) has the form

8 0

O O O O O length

where length is the length of the message in words. The length field can have any
value from 1 up to MAX BROADCAST MSG WORDS or MAX_SBCMSG WORDS.

(The high-order bits of the auxiliary data have no useful meaning, but must al-
ways be specified as 0.)

The following constant specifies the starting bit position of the length field:

NI BC SEND AUXILIARY LENGTH P The length field offset (0).

Implementation Note: Each broadcast interface's private register includes a
supervisor flag, nisend_enable, which controls whether broadcast sending
is permitted via that interface. In the current CM-5 OS implementation, these
flags are turned off by default, and must be enabled before broadcast sending is
attempted. (See Section 4.1.7 for a description of these flags.)

4.1.4 Receiving Broadcast Messages

Broadcast messages are received as described in Chapter 2. For each broadcast
interface, the following register is used to receive messages:

nibinterfacerecv FIFO register from which values are read.

4.1.5 The Broadcast Status Register

The status registers for each of the interfaces contain the following subfields:

nibinterface_status
ni send ok
ni_send space
ni_send_empty
ni rec ok
nirec_length_left

Status register.
Flag, status of message being sent.
Field, space left in send FIFO.
Flag, indicates empty send FIFO.
Flag, indicates receipt of message.
Field, words left in the FIFO.

The meanings of these subfields are as described in Chapter 2.

Version 7.1, October 1992

Chapter . The Control Network 47



NT .v.stem.V Pm ornmmin o

How to Interpret the Value of the "Length Left" Field

The NI combines broadcast messages as they are received, so there is never more
than one "message" waiting to be read from the receive FIFO. However, broad-
cast messages are never appended to a message that is in the process of being
retrieved, so you needn't worry that a message will grow unexpectedly.

Once you have retrieved the first value of a received message, it is safe to assume
that reading a number of words equal to the rec_length_left value retrieves
the rest of the message. (Remember, however, that this method is not guaranteed
to read all words of a multiword message that was divided in transit.)

4.1.6 Abstaining from the Broadcast Interface

Each broadcast interface has an abstain flag that you can use to cause the NI to
ignore incoming broadcast messages. The abstain flag's effects and use are as
described in Section 2.6.

nibinterface control Status register, contains rec abstain field.
ni_recabstain Flag, broadcast interface abstain flag.

4.1.7 The Broadcast Private Register

The private register for each broadcast interface contains the following subfields:

ni_binterfaceprivate Private register.
ni_rec_okie Flag, "Receive OK" interrupt enable.
ni_lock Interface lock flag.
ni_send_stop Interface stop flag.
nirec full Flag, indicates receive FIFO is full.
nisend_enable Flag, enables/disables send FIFO.

The rec_ok_ie, lock, send_stop, and rec_full subfields are as described
in Chapter 2. The remaining field is described below.

Version 7.1, October 1992

AR



:atr.TheConroleork 49E N

The Send Enable Flag

Each broadcast interface has an nisend_enable flag, which is used to enable
and disable the broadcast send FIFO. When this flag is set to 1, message sending
is permitted. When the flag is set to 0, an attempt to write a message to the send
FIFO signals a Bus Error. The send enable flag should only be changed when
there are no broadcast messages pending for the interface.

Usage Note: While this flag can be used as a kind of "send abstain" flag to
ensure that only one node broadcasts at any given time (that is, by disabling send-
ing for all nodes but the one making the broadcast), it is much simpler to
structure your code so that only one node is permitted to broadcast at any time.

Important: The CMOST operating system sets this flag to 0 by default. The flag
must be set to 1 to permit broadcasting of messages.

4.2 The Combine Interface

The combine interface is used for executing operations that combine in parallel
a single value from each processing node.

The supported operations are:

* parallel prefix (scanning), which performs a cumulative operation (addi-
tion, maximum, logical AND, etc.) over the values from each node in
either increasing or decreasing order of send addresses

a reduction, which combines the values from all the nodes and then returns
this single combined result to all participating nodes

* network-done, which simplifies the task of synchronizing the nodes after
a Data Network operation

Each operation is described in more detail below.

Implementation Note: Because of way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 7.3.8.)

Version 7.1, October 1992

Chapter 4. The Control Network 49



0 N e PE

4.2.1 The Combine Register Interface

The combine interface's register interface is based on the generic model pres-
ented in Chapter 2, and includes the following registers:

ni conm send first

ni com send
ni con recv

ni com status
ni com control

ni con private
ni scan start

Used to send the first value of a message.
Used to send the rest of the message.
Used to receive a message.
Status register.
Control register.
Supervisor control register.
Control register used to set scanning segments.

The purpose and use of each of these registers is described in the sections below.
Figure 13 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

The Combine Interface Registers at a Glance:

hex offset

ni con send first

ni con send
ni con roc

ni con control

ni_com_private

ni con status

ni_interface_send_first Addressing Pattern

user/supervisor bit

NI base address inface

COM I ------ I 0000 1 0 1 patern combiner length

31 20 19 18 15 14 12 11 10 9 7 6 3 2 0

Figure 13. NI registers associated with the combine interface.

Version 7.1, October 1992

0x5000

0x0A40

0x0A30

OxOA20

OxOA10

OxOA08

OxOA00

k

000oo I

50 NI Systenu Progranwd'ng

(



e 4h Nework 

4.2.2 Combine Messages

The combine interface is essentially synchronous - combine operations are not
completed until all non-abstaining nodes have sent the same type of combine
operation. If two nodes attempt to start different combining operations at the
same time, a Yellow interrupt (be or con collision) is signaled. Once this
interrupt has been signaled, combine messages are no longer guaranteed to be
valid - it is necessary to flush the Control Network to restore normal operation
(see the discussion of Control Network flushing in Section 6.4).

Combine messages are atomic in both sending and receiving; a combine message
is not transmitted until all its component words have been written to the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The order of combine messages is strictly preserved in transit. With the exception
of the network-done operation, which uses a different mechanism, the results of
combine operations are delivered into the receive FIFO in the same order the
operatons were started.

Combine operations can be pipelined. Although all nodes must start the same
combine operation in order for that operation to complete, nodes are not required
to read the results of each combine message before sending the next. The length
of the pipeline is limited only by the capacity of the message FIFOs.

Important: Pipelined messages cannot use doubleword read/write operations.

4.2.3 Sending Combine Messages

A combine message consists of a series of one or more words, with the exception
of network-done messages, which are always 1 word in length. The maximum
length allowed for a message is determined by the length limit of the send FIFO.

Programming Note: The length limit of the combine interface send FIFO is giv-
en by the constant MAX_COBINE_MSG woRDS (currently 5).

The following FIFO registers are used to send messages:

nicom_ sendfirst Used to send the first value of a message.
ni_comrn send Used to send the rest of the message.

Version 7.1, October 1992

Chapter 4. The Control Netork 51



5NSystemsProg

The auxiliary information has three components: the length of the message in
words, a three-bit combiner value, and a two-bit pattern value. (The legal com-
biner and pattern values are described below.)

The auxiliary data field of the message has the form

8 0

pattern combiner length

where

* . pattern is a two-bit value selecting the order in which values are combined

· combiner is a three-bit value selecting the combine operation performed

* length is the length of the message in words

The following constants specify the starting bit positions of these fields:

NI COM SEND AUXILIARY PATTERN P
NI COM SEND AUXILIARY COMBINER P

NI COM SEND AUXILIARY LENGTH P

The pattern field offset (7).
The combiner field offset (4).
The length field offset (0).

To construct a send_first address, add the following values:

The pattern value:
The combiner value:
The length value:

pattern
combiner
length

¢
< NI COM SEND AUXILIARY PATTERN P

<<NI COM SEND AUXILIARY COMBINER P

<<NI COM SEND AUXILIARY LENGTH P
m m m m m

For scan and reduction operations, the legal pattern and combiner values are:

pattern
1 - Backward scan (combine in decending order of node address).
2 - Forward scan (combine in increasing order of node address).
3 - Reduction operations.

combiner:
0 - Bitwise inclusive OR.
1 - Signed addition.
2 - Bitwise exclusive OR.
3 - Unsigned addition.
4 - Signed maximum.

A pattern value of 0, together with a combiner value of 5, specifies a network-
done operation, described later in this chapter.

The combiner values 6 and 7 are not currently used.

Version 7.1, October 1992

(

NI Systems Programming52

j



Chaper 4TeCro

The following constants can be used to specify the value of the pattern field:

SCAN FORWARD

SCAN BACKWARD

SCAN REDUCE

SCAN ROUTER DONE

Forward scan pattern (2).
Backward scan pattern (1).
Reduction scan pattern (3).
Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR SCAN

ADD SCAN

XOR SCAN

UADD SCAN

MAX SCAN

ASSERT ROUTER DONE

Inclusive OR (0).
Signed addition (1).
Exclusive OR (2).
Unsigned add (3).
Signed maximum (4).
Network-done operation (5).

The length field can have any value from 1 up to MAXCOMBINE_MSG_WORDS.

4.2.4 Receiving Combine Message

The message-receiving interface of the combine interface is as described in
Chapter 2, with the exception of the network-done operation, which is received
through the Data Network status field ni_router_done_complete.

The following register is used to receive combine messages:

ni com recv FIFO register from which values are read.

4.2.5 The Combine Status Register

The combine status register contains the following subfields:

ni com status

ni send ok

ni_send space
ni_send_empty
ni rec ok

ni_reclength
ni_rec_lengthleft
ni com scan overflow

Status register.
Flag, status of message being sent.
Field, space left in send FIFO.
Flag, indicates empty send FIFO.
Flag, indicates receipt of message.
Field, length of message in words.
Field, words left in the FIFO.
Flag, indicates add-scan overflow.

Version 7.1, October 1992

)

Chapter . The Contwl Nework 53



54.. . Systems Pr-og mn

The send_ok, send space, send empty, rec_ok, rec_length, and
rec_length_left subfields are as described in Chapter 2. The remaining flag,
com scanoverflow, is described in Section 4.2.6.

4.2.6 Scanning (Parallel Prefix) and Reduction Operations

In a scan or reduction operation, each node sends a single value that is combined
with the values sent by the other nodes in the partition.

When each participating node has sent a value, the values are combined accord-
ing to the combiner and pattern in the auxiliary data of the message, and the
result is delivered after a brief interval to the receive FIFOs of the nodes.

For scan operations, the node values are combined cumulatively - that is, the
result for each node is the combination of the values transmitted by all nodes
having lower (or higher) relative addresses. Forward scans combine values in
order of ascending node addresses. Backward scans combine values in order of
descending node addresses.

Reduction is a special case of scanning. When a reduction message is sent, the
values from all participating nodes are combined into a single value, and then
this single result is sent to all the nodes.

Important: If you are sending a message that is longer than one word, the order
in which the words of the message are written depends on the combine operation:

* Maximum operations require the most significant word to be written first.

* Both types of addition require the least significant word to be written first.

· Inclusive and exclusive OR have no word-ordering requirement.

Scanning with Segments

You can use segmented scanning to divide a partition into segments of nodes -
regions of nodes within which forward and backward scanning is done indepen-
dently of all other nodes in the partition. The scan values obtained within each
segment do not affect the values obtained in any other segment.

Note: Reduction operations do not use segmented scanning. Reduction scans
ignore the current segment settings.

Version 7.1, October 1992

NI Systems Programming54



Chpe ..The.ConrNewr 5..

The following control register is used to read and set the current segmentation:

niscan_start One-bit control register, indicates start of scan segments.

The one-bit flag in niscan_start is used to indicate the starting points of
segments. Segments begin in each node where ni_scan_start is 1, and extend
through the nodes in order of node address - upward for forward scans, down-
ward for backward scans. If no niscanart flags are set in a partition, then
the entire partition is treated as one segment.

Important: If you are sending a multiword message, the value of
niscan_start when the first value is written applies to the entire message.
Altering the flag after the first value is written has no effect on the message.

Addition Scan Overflow

Addition scans on large values can cause arithmetic overflow in some nodes. The
ni_com_scan_overflow flag in the status register indicates whether the
current scan result has suffered arithmetic overflow. This flag is 1 if the current
message in the receive FIFO sufferred arithmetic overflow; otherwise, it is 0.

Note: The com_scan_overflow flag's value is only defined when the current
message in the receive FIFO is the result of a scan or reduction operation with
a combiner of addition or unsigned addition.

You can also instruct the NI to signal an interrupt for scan overflow. The
private register contains a flag, ni_com_scan_overflow_ie, that when set
to 1 causes an a Green interrupt (scan overflow) to be signaled when a scan
result that overflowed is read from ni con recv.

4.2.7 Network-Done Messages

Network-done messages are used to synchronize the processing nodes after a
Data Network operation. A network-done message is sent by a node when it has
completed sending its Data Network messages and is waiting for the other nodes
to finish. (Of course, even after a node has sent a network-done message, it may
still receive Data Network messages.)

Version 7.1, October 1992

Chapter 4. The Control etwork 55



56 NSytmPog

Important: Although network-done messages are directly related to the opera-
tion of the Data Network, they are a feature of the combine interface of the
Control Network. All non-abstaining processors must start a network-done mes-
sage before the network-done operation can be completed.

A network-done message is always of length 1, and the actual word written is
ignored - all that matters is the sending of the message itself. Network-done
messages have a unique pair of combiner and pattern values: the combiner field
for the message must be 5, and the pattern field must be 0.

Network-done messages are an exception to the usual message-reception inter-
face of the combine interface. The result of a network-done message is not
delivered as a value in the receive FIFO.

Instead, the Data Network flag nirouter_ done_complete is used to indi-
cate when the network-done message has been sent by all nodes:

n_drstatus Data Network (DR) status register.
ni.router _done_complete Network-done completion flag.

When a node sends a network-done message, the ni_router_done_complete
flag of that node is set to 0. When all non-abstaining nodes have sent a network-
done message, and when the Data Network has no pending messages for any
node, the ni_router_donecomplete flag is set to 1 for all nodes.

Usage Note: An attempt to send a network-done message with a length other
than 1, or to send a network-done message while another such message is still
in progress (that is, while the ni_router_done_complete flag is zero) signals
a Bus Error.

How Network-Done Works...

Network-done messages continually use the combine interface hardware until
they are completed, so any combine operations started after a network-done
won't complete until after the network-done message is completed.

The network-done operation makes use of the ni_dr message_count register
of the Data Network to determine when the Data Network is clear. As described
in Section 3.5.1, each node increments this register when it sends a message, and
decrements the register when it receives a message. (Not counting, of course,
messages for which counting is disabled by a 0 flag in ni_count_mask.)

(

Version 7.1, October 1992

NI Systems Programming56



Cp9The ControN

When the ni dr message_count register is zero for all non-abstaining nodes,
there should be no messages in transit through the Data Network. (Again, this
may not be the case if there are messages for which message-counting is dis-
abled, but this does not prevent the use of the network-done operation.)

A network-done message basically does a repeated addition scan on the values
of the ni _d message_count register for all non-abstaining nodes. When the
global result of this scan is zero, then the NI assumes that the Data Network is
clear, and sets the ni_router_done_complete flag to 1.

...And Why You Should Care

Since network-done operations involve a combine interface scan of the value of
a Data Network register, you should be careful about setting and changing the
abstain flags of the combine interface when you intend to send a network-done
message. (See Section 4.2.8 for a discussion of the combine interface's abstain
flags.)

For example, if you change the combine abstain flags of one or more nodes while
a Data Network operation is in progress, you may inadvertently exclude one or
more nodes that have non-zero message count registers. If you then start a
network-done operation, these registers are ignored by the implied addition scan.
In most cases, this prevents the result of the scan from ever becoming zero, and
thus prevents the network-done message from completing.

To send a network-done message safely, make sure that the combine abstain flags
of all nodes that might send or receive a message via the Data Network are
cleared before starting the Data Network operation, and make sure those abstain
flags remain cleared until after the network-done message has been completed.

NOTE

Because of a hardware defect, Revision A NI chips don't al-
ways execute network-done operations correctly. For more
information, see Section 7.3.5.

Version 7.1, October 1992

;55·52;�

Chapter 4. The Contol Network 57



4.2.8 Abstaining from the Combine Interface

The combine interface has two abstain flags that you can use to cause the NI to
abstain from combine interface transactions. The use of these flags differs slight-
ly from the description in Chapter 2, as described below.

ni_com_control Status register, contains combine abstain flags.
ni_rec_abstain Flag, combine interface abstain flag.
ni reduce _recabstain Flag, special reduction abstain flag.

Setting the ni_rec_abstain flag to 1 causes the NI to discard any arriving
combine interface messages, and allows any messages sent by other nodes to
complete without the participation of the abstaining node. In effect, abstaining
nodes provide an appropriate identity value for any type of combine message.

Important: As with all abstain flags, the nirec_abstain flag and the
ni_reduce_rec_abstain flag should only be changed when there are no
messages pending in the combine interface. If a message is currently being writ-
ten to the send FIFO when either abstain flag is changed, a Yellow interrupt (con
abstain changed) is signaled.

Implementation Note: Because of way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 7.3.8.)

The Reduction Receive Abstain Flag

For scan operations, no result value is written to an abstaining node's receive
FIFO. For reduction operations, however, there is an additional abstain flag,
ni reduce recabstain, that controls whether or not the abstaining node
receives the result.

Setting this flag to 1 causes a node to ignore the results of reduction operations.
If ni rec abstain is 1 and nireduce rec abstain is 0, the node
receives the results of reduction operations without having to supply a value for
them. (For more detail, see the section on reduction operations below.)

For the Curious: The reason for this distinction is that there are important cases
where it is necessary for a node to receive the result of a reduction without having
to participate in it. For example, when you want to transfer a value from the
nodes of a partition to the partition manager, you can set the combine abstain
flags so that the nodes transmit a reduction message and only the PM receives it.

Version 7.1, October 1992

58 NI Systenu Ptogramnung



Chap vr-4.The-Cntro-Netwrk--

4.2.9 The Combine Private Register

The combine interface's private register contains the following subfields:

nicornprivate P

ni rec ok ie

ni lock

ni_rec_stop
ni rec full

ni com scan overflow ie

nicom_rec_empty_ie

ni comnsend_length

ni corn send combiner

nicom_send pattern
ni com send start

rivate register.
Flag, "Receive OK" interrupt enable.
Interface lock flag.
Interface stop flag.
Flag, indicates receive FIFO is full.
Flag, scan overflow interrupt enable.
Flag, empty rec. FIFO inter. enable.
Field, send message length.
Field, send message combine value.
Field, send message pattern value.
Flag, scan segmentation flag.

The rec_ok_ie, lock, rec_stop, and rec_full subfields are as described
in Chapter 2. The ni_com_scan _overflow e flag is described in Section
4.2.6. The remaining fields are described in the sections below.

Empty Receive FIFO Interrupt

When the ni_com_recempty_ie flag is set to 1, the NI signals a Green inter-
rupt (con rec empty) if the receive FIFO ever becomes empty (that is, when
the rec_ok flag becomes 0). This allows the supervisor to insert one or more
messages into the empty receive FIFO, so that from a user program's point of
view, the FIFO is never empty. (This is used by the OS in context switching.)

Clearing the Combine Send FIFO

The pipelining feature of the combine interface means that when the supervisor
needs to swap a process out, there may be several complete messages pending
in the combine send FIFO, each of which has its own auxiliary information (each
message may have different combine and pattern values, for instance).

The supervisor extracts messages from the send FIFO by reading them, one at a
time, from the ni_co=_send register. Reading a value from this register extracts
the word (or doubleword) that was most recently pushed into the FIFO.

Important: Once the supervisor begins reading words from the send FIFO, the
FIFO must be emptied before a new message can be written to it. (This avoids

Version 7.1, October 1992

Chapter 4. The Control Network 59



60 N SyemsPsrogrmmin

the potential for accidentally pushing a new message on top of a half-extracted
old message.) The effect of violating this restriction is undefined.

Usage Note: It is only legal to read a value from the ni.cnm send register
when the combine interface is not being used (that is, when the receive FIFO is
empty and no node in the partition is or will be in the process of writing a com-
bine message while the contents of the send FIFO are being read out.

The four private register fields send_length, sendcombiner,
sendpattern, and send_ start contain the auxiliary data and segmentation
information for the most recent message in the send FIFO (that is, the message
that includes the next word that the supervisor can read from the send FIFO).

Specifically:
ni_com_send_length Field, send message length.
nicom send combiner Field, send message combine value.
ni_com_send pattern Field, send message pattern value.
nicorn_send_start Flag, scan segmentation flag.

* send_length is the number of words in the entire message.

* send_combiner is the combine value for the message.

* sendpattern is the pattern value.

* send_start is the ni scan start register value for the message.

The supervisor can use these fields like the corresponding status register fields
to obtain the auxiliary data for messages extracted from the send FIFO. The
send_length field is undefined for a network-done message. (The message is
always one word in length.) The value of scan start is undefined for reduc-
tion and network-done messages, which ignore the segmentation flag.

&

Version 7.1, October 1992

60 MI Systems Programming



Chapte 4.TheConr Network 61

4.3 The Global Interface

The global interface provides a generic synchronization mechanism for the
CM-5's processing nodes. It is much like the network-done feature of the com-
bine interface, but without the additional condition that the Data Network must
be clear before the operation can complete.

The global interface combines a single bit from every participating node in a
logical OR operation, and then returns the result to each node. The actual values
sent by the nodes, however, can be completely arbitrary. The sending of the mes-
sage itself is sufficient to provide synchronization of the nodes.

A global interface message can be sent by one of three subinterfaces:

* the synchronous global interface, which requires that all nodes send a
message before any receive the result

* the asynchronous global interface, which permits nodes to send a message
and read the result at any time, with the network continually monitoring
the state of all participating nodes

* the supervisor asynchronous global interface, which is identical to the
asynchronous global interface save that its registers are accessible only
from the supervisor area

There is a separate register set for each of these three methods. Each of these
interfaces is described in more detail in the sections below.

The Global Interface Registers at a Glance:

hex offset

n .sync global _snd
nihodgepodg.

ni_asyn_sup global
yni_galsyn lobal

ni_sync global

0x00CO

OxOOB8

OxO0BO

OxO0A8

0x0098

0x0090

Figure 14. NI registers associated with the global interface.

Version 7.1, October 1992

Chapter 4. The Control Netork 61



62.S.;y:>, NIs Sysems :rogramm.ng

4.3.1 The Three Global Register Interfaces

Unlike the broadcast and combine interfaces, the global interface does not use
the generic interface model presented in Chapter 2. The following registers are
used for the three interfaces:

Synchronous global interface:
ni_sync_global_send
ni_sync_global_abstain
ni_sync_global
nihodgepodge

Aynchronous global interface:
ni_asyne_global
nihodgepodge

Supervisor aynchronous global ii
ni_async_sup_global

nihodgepodge

Used to send the first value of a message.
Used to abstain from synch global msgs.
Used to receive a message.
Contains interrupt enable flag.

Asynchronous send and receive flags
Contains interrupt enable flag.

nterface:

Supervisor asynch. send and receive flags
Contains interrupt enable flag.

The purpose and use of these registers is described in the sections below, and
Figure 14 contains a memory map showing their relative locations in NI
memory.

4.3.2 The Synchronous Global Interface

The synchronous global interface takes the global OR of a flag set by each node.
Each non-abstaining node must set its synchronous global flag (and thereby send
a synchronous global message) before the result of the operation is reported to
any node.

The following registers and flags form the synchronous global interface:

ni_sync_globalsend
ni_sync_global_abstain

Used to send the first value of a message.
Used to abstain from synch. global msgs.

nisync global Used to receive a message.
ni_sync_global_rec Synchronous global receive flag.
ni sync globalcomplete Synchronous global completion flag.

ni_hodgepodge
ni_sync_global_rec_ie

Contains interrupt enable flag.
Receive interrupt enable flag.

Version 7.1, October 1992

62 NIr Systenu rogramp~ng



Chate 4. The Control Network 63

Sending and Receiving Messages

To start a synchronous global interface message, write a value (either 0 or 1) to
the the ni_sync_global_s end register.

When you write a value to the globalsend register, the nisync_glob-
al_complete flag is set to 0, indicating that a message is in progress. (Note:
It is an error to write to the nisyncglobal send register when the
ni sync _global complete flag is 0.)

When all participating nodes have sent a message, the global interface takes the
logical OR of the ni_sync_global_send flag in each node, and then sets the
ni. sync globalrec flag of every participating node to the result. At the
same time, the ni_sync global_complete flag is set back to 1 to indicate
completion of the message.

Abstaining from Synchronous Global Messages

The synchronous global interface includes an abstain flag that can be used to
exclude a node from the interface's operations:

ni sync_globalabstain Status register, contains global abstain flag.

When the ni sync_globalabstain flag is set to 1, synchronous global mes-
sages complete without the node's participation (as if the node has sent the
message with its nisync global_send flag set to 0).

Note: As with all abstain flags, ni sync _global_abtain should only be
changed when there is no global message pending. A Bus Error is signaled if the
abstain flag is modified when the nisync_global_complete flag is 0.

Also, a Bus Error is signaled if the nisync_global send register is written
while the abstain flag is 1.

Synchronous Global Receive Interrupt

If the ni_sync_global_rec_ie flag in the hodgepodge register is set to 1,
then a Green interrupt (sync global rec) is signaled whenever the
ni_sync_global_rec flag changes from 0 to 1.

Version 7.1, October 1992

Chapter 4. The Control Network 63



Us? X1 Vi &Jy;)~U6A, IUr I (MFUFrc ng 

4.3.3 The Asynchronous Global Interface

The asynchronous global interface is not so much a node synchronization tool as
a means for determining whether all the nodes are still operating properly, or
whether some global action needs to be taken. As with the synchronous interface,
the asynchronous interface takes the global OR of a flag set by each node. How-
ever, this global OR is performed continually, so that a change of a flag by any
node is reported almost immediately to the other nodes.

For example, each node can set its flag to 1 before performing an operation, and
set the flag to 0 when the operation is completed. The global interface returns a
1 value until all nodes have set their flags to 0, guaranteeing that all nodes have
completed the operation.

The following registers and flags form the asynchronous global interface:

ni async global Control register, contains the following flags:
ni global_send Flag, used to "send" asynchronous messages.
niglobal_rec Flag, always set to logical OR of send flags.

ni hodgepodge Control register, includes the following flag:
niglobal_rec ie Flag, global receive interrupt enable.

Sending and Receiving Messages

Because the asynchronous global interface operates continually, there really is no
such thing as "sending" or "receiving" a message via this interface.

The niglobal rec flag in each node is continually updated to reflect the
"current" logical OR of the niglobal_ send flag in all nodes. When any node
writes a new value into its ni_global_send flag, the change is propagated to
the ni_globalrec flag of all other nodes after a brief interval.

Important: Because this is an asynchronous mechanism, the ni_global_rec
flag may not always reflect the present state of the niglobal.send flags in
all the nodes. There is always a delay between the instant any node changes its
ni globalsend flag and the instant that all nodes receive the result of the
change. You should not write code that depends on this delay having any exact
length, but you can assume that the delay is no longer than the time taken to
transmit a synchronous message.

(

Version 7.1, October 1992

,CA All' Duefonn PrCnw.m;"-



Chapter.TheControlNetwor

Asynchronous Global Receive Interrupt

If the ni global rec ie flag in the hodgepodge register is set to 1, then a
Green interrupt (global rec) is signaled whenever the ni_global_rec flag
changes from 0 to 1.

4.3.4 The Supervisor Asynchronous Global Interface

The supervisor asynchronous global interface is identical to the asynchronous
interface described above, except that its registers are only accessible from the
supervisor area. This interface is typically used by the operating system to syn-
chronize the nodes during OS operations such as context switching.

For example, if each node sets its flag to 0, then the global interface returns a 0
value until one of the nodes signals a 1 instead. If any node reaches a point in
its operations where OS intervention is required, the node can set its flag to 1,
signaling a 1 value to all the other nodes, and also indicating to the OS that some
global action must be taken.

The following register and flags form the supervisor asynchronous interface:

ni async_sup_global Control register, contains these flags:
nisupervisor_global_send Flag, used to "send" messages.
nisupervisor_ globalrec Flag, logical OR of send flags.

ni_hodgepodge Control register, includes the flag:
ni.supervisor _globalrecie Supervisor receive interrupt enable.

Sending and Receiving Messages

The nisupervisor_global_send and nisupervisor global rec
flags are used to send and receive messages the same way that the asynchronous
interface does (described above).

Supervisor Asynchronous Global Receive Interrupt

If the nisupervisor_global_rec_ie flag in the hodgepodge register is
set to 1, then a Green interrupt (supervisor global rec) is signaled when-
ever the nisupervisor_global_rec flag changes from 0 to 1.

Version 7.1, October 1992

Chapter 4. The ontrol Network 65



I



Chapter 5

NI Interrupts

The NI chip is, in many ways, the "interrupt gateway" of the CM-5. Most node
hardware and software exceptions, whether or not they originate in the NI chip,
are signaled to the node microprocessor via NI interrupts.

The NI is capable of signaling an interrupt in any of five classes and at any of
a number of levels of severity. Interrupts can be signaled by events beyond the
programmers's control (such as hardware failures), or by fatal errors in the way
a program uses the NI, or deliberately, under program control.

Interrupts are signaled by one of two different methods:

* as a local interrupt to the NI's associated microprocessor

* as a broadcast interrupt to the other NIs in the partition

This chapter describes the kinds of interrupts available on the NI, their causes,
the registers used to detenmine their type and severity when they are signaled,
and the mechanism used to signal a broadcast interrupt.

5.1 Interrupt Classes

The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts tend to be the most severe and green interrupts
the least severe. The five types are distinguished as follows:

Version 7.1, October 1992 67



68 Ni Systems Programming

* Red interrupts indicate a failure of the hardware, such as checksum vio-
lations and message format errors.

They occur at unpredictable times relative to the instruction stream and are
usually irrecoverable. Determining the precise cause of a Red interrupt
may require the use of the Diagnostic Network.

The possible Red interrupts are:

internal fault

dr checksum error
cn checksum error
an hard error

mo error

cmu error

be interrupt red

Failure detected in NI chip itself.
Data Network checksum failure.
Control Network checksum failure.
Control Network hardware failure.
Error detected in memory subsystem.
Cache/MMU error.
Red broadcast interrupt.

* Orange interrupts indicate that the attention of the operating system is
required, as in timer interrupts and broadcast interrupt messages.

They occur at unpredictable times relative to the instruction stream and do
not destroy any information that might be needed to determine the cause
of the interrupt.

The possible Orange interrupts are:

timer interrupt

bc interrupt orange

NI timer reached interrupt now.
Orange broadcast interrupt.

* Yellow interrupts indicate that the software has made an error. They are
usually irrecoverable, as they indicate that your program is doing some-
thing illegal and must be rewritten. Sufficient information is retained in
the NI to permit isolation of the cause of the interrupt, but it is not always
possible to recover all the information relating to the cause of the interrupt.

Yellow interrupts are associated with particular instructions, but usually
are not signaled at the exact point of the offending instruction, because of
the loose coupling between the NI and the microprocessor.

The possible Yellow interrupts are:

dr count negative
bc or com collision

com abstain changed
bad relative address

bc interrupt yellow

Negative DR message count.
Conflict in broadcast/combine ops.
Flag changed while interface in use.
Address outside partition, etc.
Yellow broadcast interrupt.

Version 7.1, October 1992

NI Systems Programming68



Chpe . IItrrps6

* Green interrupts indicate the occurrence of common events for which
the software has requested notification, such as the arrival of messages,
the signaling of broadcast interrupts, arithmetic overflow in a scan, etc.
There is one interrupt for each event, and each event's interrupt can be
enabled and disabled independently under the control of the supervisor.

Depending on the type of event, the interrupt may or may not occur syn-
chronously with a particular instruction. No information is lost by a Green
interrupt.

The possible Green interrupts are:

scan overflow

dr rec ok

ldr rec ok

rdr rec ok

bc rec ok

sbc rec ok

com rec ok

con rec empty
dr rec tag
dr rec all fall down

sync global rec

global rec

supervisor global rec

bc interrupt green

Overflow in combine interface scan.
DR message received.
LDR message received.
RDR message received.
Broadcast received.
Supervisor broadcast received.
Combine message received.
Empty combine receive FIFO.
Message with interrupt tag received.
All Fall Down message received.
Synchronous global msg received.
Asynchronous global msg received.
Supervisor asynch. msg received.
Green broadcast interrupt.

* Bus Errors indicate that a bus transaction cannot be completed, as in an
attempt to read an address that does not correspond to a register, or to write
a message that does not conform to sending protocol (send_first, then
send). Bus Errors are signaled asynchronously, and are irrecoverable.

There is basically one flavor of Bus Error:

bad memory access Meaningless or illegal reference.

Bus Errors are treated differently from the four colored interrupts. Bus
Errors are always handled as traps, primarily because they occur only on
read operations, and do not involve the NI chip.

Note: Bus Errors are distinct from segmentation violation errors. Seg-
mentation errors result from attempting to read an unmapped virtual
address, and are signaled synchronously with the offending instruction.
Bus Errors result from errors with physical addresses, once the address has
been transmitted to the Mbus itself.

Version 7.1, October 1992

Chapter 5. NI Interrupts 69



70 NI Systems Programming~:~

5.2 Interrupt Pathways

The four colored interrupts (Red, Orange, Yellow, and Green) result from a num-
ber of different causes. Figure 15 shows the pathways followed by the various
types of interrupts on their way to the microprocessor. These pathways are
described in detail in the sections below.

Figure 15. The possible pathways for colored interrupts.

5.2.1 Red Interrupts

The Red interrupts are of two varieties:

* On-chip faults - hardware errors detected by the NI itself

* Off-chip faults - problems on other devices that are signaled via the NI

Version 7.1, October 1992

64-bit Bus

t

--- -- ------ - --- -- - - --- - -

- -- ---- - -- -- --- ---

- ----- --------------------- -- ---

NI Systerm Progranuning70



Ch*>B~~S aE NI Interru;·gpt· 71

On-chip faults are universally fatal - that is, they always cause the OS to halt
(usually forcefully). It is then necessary to use diagnostic measures to determine
the cause of the problem.

Off-chip faults are caused by problems on other components, and it is necessary
for the OS to poll those devices to find out what happened.

Of the red interrupts, the following are off-chip faults:

mc error - error in MC (memory controller)
CM error - error in CMU (cache and memory unit)

The cause of these faults can only be detennined by examining the state of the
appropriate hardware:

* MC errors are caused by either a fault in the MC itself (usually fatal), or
(if the CM-5 has the vector unit option installed) by an error signaled from
one or more of the vector units. In either case, it is necessary to examine
the state of the appropriate hardware to determine the actual cause of the
interrupt.

* CMU errors are only caused by bad memory writes (typically memory
writes to illegal addresses) and are always fatal. CMU errors are asynchro-
nous, so that the error is not signaled until some time after the offending
write instruction.

All the remaining Red interrupts are on-chip faults. Three are caused by network
problems:

dr checksum error - Data Network fault.
cn checksum error - Control Network fault.
cn hard error - Control Network hardware fault.

One is caused by NI chip problems:

internal fault - NI chip fault.

And one can be signaled by software:

be interrupt red - Red broadcast interrupt.

Warning: A Red broadcast interrupt is functionally equivalent to deliberately
causing a fatal error, so use it with caution - if you use it at all!

Version 7.1, October 1992

Chapter 5. NI Interrupts 71



72 "":.:' -N.':1I Se P m.ye-Pogn-:

5.2.2 Orange Interrupts

There are only two Orange interrupts. One is caused by the NI timer:

timer interrupt - Timer alarm interrupt.

And the other can be signaled by software:

bc interrupt orange - Orange broadcast interrupt.

5.2.3 Yellow Interrupts

The Yellow interrupts are, with one exception (the Yellow broadcast interrupt),
caused by NI violations produced in user code:

com abstain changed
bc or corn collision
bad relative address
dr count negative

- Illegal abstain flag change.
- Multiple message collision.
- Illegal DR destination.
- Negative DR message count.

There is also a Yellow broadcast interrupt that can be signaled by software:

bc interrupt yellow - Yellow broadcast interrupt.

5.2.4 Green Interrupts

The Green interrupts are, for the most part, indications of non-error network
events for which the user may want to assign a specific code handler.

For example, there are nine Green interrupts, one for each major network inter-
face, that indicate when a message has arrived in the interface's recv register:

bc rec ok - BC interface message received.
sbc rec ok - SBC interface message received.
corn rec ok - COM interface message received.
dr rec ok - DR interface message received.
ldr rec ok - LDR interface message received.
rdr rec ok - RDR interface message received.
global rec - Asynchronous global message received.
sync global rec - Synchronous global message received.
supervisor global rec - Supervisor asynchronous global message.

Version 7.1, October 1992

72 NI Systerns Progranming



CpR SNes73
In addition, there is a Green interrupt for an important combine interface event:

scan overflow - Combine interface add-scan overflow.

There are a number of interrupts for OS-related events:

dr rec tag - DR message arrived with interrupting tag.
dr rec all fall down - DR All Fall Down mode message received.
com rec empty - Combine receive FIFO empty.

And as usual there is a broadcast interrupt that can be signaled by software:

bc interrupt green -- Green broadcast interrupt.

5.3 The Interrupt Cause and Clear Registers

Once an interrupt has been signaled, there are four NI registers that you can use
to determine which interrupt it is, and also to clear it once you have finished
handling it:

niinterrupt_cause Flags set by non-Green interrupts.
niinterrupt_clear Flags used to clear non-Green interrupts.
ni interrupt cause_green Flags set by Green interrupts.
niinterrupt_clear_green Flags used to clear Green interrupts.

When an event causing an interrupt occurs, a bit in the niinterrupt_cause
or ni_ interrupt_cause_green register is set. Which bit is set indicates what
the event was. If more than one interrupt occurs before any are cleared, several
bits in these registers may be set simultaneously.

The interrupt_cause and interrupt_cause_green registers may also be
written explicitly (by the supervisor, not user code) to cause interrupts to be sig-
naled without their normal triggering event occurring.

Interrupts can be cleared by writing a value to the niinterrupt clear or
ni_interrupt_clear_green registers. Any value written to these registers
should contain 's in locations corresponding to the interrupts that are to be
cleared. It is not possible to read the value of the ni_interrupt clear or
niinterrupt_clear green registers - use the corresponding cause reg-
ister to determine whether any interrupts have not yet been cleared.

Version 7.1, October 1992

Chapter 5. NI Interrupts 73



74 N System Programmn

Note: If a given interrupt has an interrupt enable flag (a flag with a name ending
in _ie) and the flag is set to 0, then the interrupt is not signaled and the corre-
sponding ni interrupt_cause or ni interrupt cause_green flag is
not set.

5.4 Interrupt Levels

Each of the four color classes of interrupt include a "level" or "priority" value
that can be used to provide the software with information about the relative im-
portance or priority of interrupts of various colors.

Any interrupt level can be assigned to each color of interrupt. It is, for example,
permissible to give Green interrupts a level of 15 while Red interrupts have a
level of 4. However, the relative interrupt levels are intended to indicate priority
or severity; for example, there are mechanisms for masking all interrupts (of any
color) below a given level.

The following register is used to set the priority value for each interrupt color:

ni_interruptlevel Control register, contains these fields:
ni interruptlevel_red Red interrupt priority level.
niinterrupt_level_orange Orange interrupt priority level.
ni_interrupt_level_yellow Yellow interrupt priority level.
ni nterrupt_ level_green Green interrupt priority level.

The four eight-bit fields, level red through level green, each indicate the
level at which the corresponding color of interrupt is signaled. For example, if
the level red field is set to 13, all red interrupts from that point onwards are
signaled to the microprocessor with a level of 13.

If more than one color of interrupt is signaled simultaneously, the interrupt level
signaled to the processor is the inclusive OR of the levels for each interrupt color.

If any of the interrupt_level fields is set to 0, then all interrupts of the corre-
sponding color are suppressed. (When the NI is reset, for example, all four
interrupt level fields are set to 0.)

Implementation Note: Currently, only the low-order bit of each interrupt level
field is used. The other bits are required to be 0.

I1

Version 7.1, October 1992

74 NI Systems Program??ung



ChptrS NJItrrups 7

5.5 Broadcast Interrupts

The broadcast interrupt mechanism allows an interrupt to be signaled from one
NI to all other NIs in the current partition. Each NI receiving the broadcast im-
mediately signals an interrupt to its associated microprocessor.

Important: Only one NI in each partition can use the broadcast interrupt facility.
If two or more NIs try to broadcast simultaneously in the same partition, a Yel-
low interrupt (be or com collision) is signaled to all nodes in the
partition, and the broadcast interrupt messages that are received are undefined.

The broadcast interrupt can be of any color, Red, Orange, Yellow, or Green. A
unique flag exists in the cause and clear registers for each color of broadcast
interrupt. Only Bus Errors cannot be broadcast - mainly because it is not useful
(and doesn't really make sense) to do so.

The following register and flags are used to send a broadcast interrupt:

ni interrupt_send Register used to send broadcast interrupt.
ni.hodgepodge Control register, includes the flags:

ni_interrupt_send_ok Flag, set when broadcast is sent.
niinterrupt_rec_enable Flag, enables receipt of interrupts.

To send a broadcast interrupt, write a value to the ni interrupt_send register
indicating the color of interrupt to be signaled. The permissible values for each
color of interrupt are:

Value Interrupt Description
8 bc interrupt red Red broadcast interrupt.
4 be interrupt orange Orange broadcast interrupt.
2 bc interrupt yellow Yellow broadcast interrupt.
1 bc interrupt green Green broadcast interrupt.

Note: More than one color of interrupt can be broadcast at a time (for example,
by combining the above values with a logical-OR operation). Multi-colored
broadcast interrupts are signaled by the hardware exactly as if each colored inter-
rupt was signaled separately. The software effects of such multi-colored
interrupts are determined entirely by the current interrupt handlers on the nodes.

Writing a value to niinterrupt_send sets the ni_interruptsendok
flag to 0 until the interrupt has been successfully broadcast, at which point the
flag is set back to 1. An attempt to write a value to niinterrupt_send while
niinterrupt_send ok is 0 signals a Bus Error.

Version 7.1, October 1992

Chapter 5. NI Interrupts 75



76 NSytemsProgrmmi

Any NI can disable broadcast interrupts by setting its niinterrupt_rec_en-
able flag to 0. Doing so causes all broadcast interrupts received by that NI chip
to be ignored. Setting the flag back to 1 re-enables broadcast interrupts.

Note: There is a special class of broadcast interrupt, the Reset interrupt, which
cannot be disabled. See Section 6.10 for more information about the cause and
effects of an NI Reset.

5.6 Recovering from Interrupts

The methods used to recover from an interrupt depend heavily on the type of
interrupt itself. Appendix D of this manual provides guidelines describing the
steps needed to recover from each of the possible interrupts.

Version 7.1, October 1992

NI Systenu Programrmng76



Chapter 6

Other NI Interfaces and Features

This chapter describes the remaining NI registers and features not covered in the
preceding chapters. Except as noted, all registers and features described in this
chapter are accessible only to the supervisor.

6.1 The "Hodgepodge" Register

The ni_hodgepodge register, as its name suggests, contains a collection of mis-
cellaneous flags that are used by various features of the NI.

ni_hodgepodge Reg
ni_sync_global_rec_ie

ni_global_reciee
ni_supervisor_global_rec_ie

ni interruptsend_ok I
ni_interrupt_rec_enable I

niflush_complete
ni timer ie 1

ni_configuration_complete
niacn_stopsend

ister with "hodgepodge" of flags:
Sync global receive interrupt enable.
Asynch global receive intrpt. enable.

Supervisor asynch. rec. intrpt. enable.
3roadcast interrupt send ok flag.
3roadcast interrupt receive enable.
Combine flush complete flag.
NI timer interrupt enable flag.
Configuration complete flag.
Control Network disable flag.

For more information on the meaning and use of these flags, refer to the sections
describing the NI features that use them. (Look up the individual flags by name
in the Index.)

Version 7.1, October 1992 77



78 N Sytem =rog

6.2 Node Address Registers

There are three NI registers that provide information about the physical address
of the current node within the CM-5, as well as the size and location of the cur-
rent partition:

ni_physical_self 20-bit physical address of current node.
ni partition_base 20-bit address of first node in partition.
ni_partition_size Number of nodes in current partition.

These registers are used by other NI chip features, such as the chunk table
address translation mechanism described in Section 6.3 below.

6.3 NI Chunk Table and Address Translation

The NI chunk table is a small array stored in the NI itself that determines the
locations of the "chunks" of processing nodes that make up a Data Network
partition on the CM-5. A chunk is a contiguous sequence of physical addresses
that correspond to real, working processing nodes. Addresses corresponding to
broken or missing hardware are isolated by not being included in any chunk.

Important: The chunk table specifies chunks of node addresses - the chunk
table has nothing to do with memory allocation on the nodes.

6.3.1 Node Address Translation

The chunk table is used to convert from relative node addresses used within a
partition to the physical addresses required by the Data Network.

For the Curious: A side effect of the use of the chunk table is that it implicitly
divides the Data Network up into "partitions" of nodes. That is, there is no hard-
ware restriction preventing a Data Network message from traveling between
partitions; it is the chunk tables that determine whether a relative address is legal
for a given partition of nodes.

The mapping from relative to physical addresses is performed in three steps:

First, the relative address is compared with the nipartition size register,
to determine whether it is legal for the current partition. (If the relative address

Version 7.1, October 1992

78 I Systems Programming



ChaprOhNIfc and Fetures

is greater than or equal to nipartition_size, the address is guaranteed not
to correspond to a node in the current partition, and an error is signaled.)

Next, the relative address is split into two parts (see Figure 16).

Relative AddressII

Chunk
P Table

,chunk address
( a bits)

ii

_chunk position
( p bits)

- select address

( 2 niLhunkr8z bits)

I Absolute Address

+ ddreniartition_base

Physical Address

Figure 16. Translation from relative addresses to physical addresses.

The two parts of the address are:

* the high-order bits of the address, known as the chunk address

• the low-order bits of the address, known as the select address

The chunk address is used as a pointer into the NI's chunk table. The referenced
chunk table entry, known as the chunk position, is recombined with the select
address to form an absolute address - essentially an offset from the address of
the first processor in the current partition.

Finally, the absolute processor address is added to the value of the register
ni partition base to get the required physical address.

Version 7.1, October 1992

I _ _ 4

I I'

I~~~~~_ 

Chapter 6. Other NI Interfaces and Features 79

I

l ~ ~ ~ ~ - _



80 NI Systems Programmin

6.3.2 Chunk Sizes and Address Allocation

The size of the chunk table is determined by the number of bits in a chunk ad-
dress (call this a), and the number of bits in a chunk position (call this p). The
chunk table consists of 2a entries, each p bits long. The values of a and p are
currently fixed by hardware at a = 6 and p = 8. Thus, the chunk table contains
64 entries, each 8 bits long.

However, while the size of the chunk table is fixed, the size of the chunks it refer-
ences (that is, the number of physical addresses per chunk) is under supervisor
control. The following register is used to set the chunk size:

ni chunksize Size of chunks referenced by the chunk table.

The ni_chunk_size register contains a three-bit value that determines the
number of bits in the select address part of a relative address, and thus sets the
number of addresses per chunk.

The number of bits in a select address is 2ni_chunk_ize. As a result, the number
of physical addresses in a chunk is 4ni ,siz=e, and this means that the num-
ber of possible relative addresses (in other words, the number of accessible
nodes) is 2a * 4ni_chuank_ize This also means that the total physical address
space accessible through the chunk table is 2P * 4nichunk_ s ize. Thus, the acces-
sible physical address space is always 2P- a times the size of the relative address
space. This extra "unused" space between chunks is used to isolate regions of
broken or missing hardware. (See Figure 17.)

Figure 17. The chunk table is used to map contiguous relative addresses
onto discontiguous physical addresses.

Version 7.1, October 1992

Relative Address Space nipartit i

.Chunk Iie
Physical Address Space Tableunk

BTIal e in I
i

NI Systems Programming80



Cha .Ote N Itrcs adFatrs8

In the simplest case, the chunk table is set up to map all relative addresses to a
contiguous region of 2a * 4=ichunk.s.z physical addresses. In this case, chunk
table entry n simply has the value n.

The table below lists the permissible values for the ni_chunk size register,
along with the corresponding number of relative addresses (nodes) per chunk,
and the maximum size of the physical address space in nodes and addresses.

ni chunk size Addresses/chunk
1 4

2
3

4
5

6

16
64
256
1K
4K

Nodes
256
1K
4K
16K
64K
256K

Note: The effects of writing nichunksize with a
are undefined, but almost certainly disastrous.

Phys. address space
1K

4K
16K
64K
256K
1M

value not listed in this table

6.3.3 Modifying the Chunk Table

The following registers are used to read and write chunk table entries:

ni chunk table data

ni chunk tableaddress
Location used to read/write table entries.
Chunk table location that is read/written.

Note: The chunk table is set up by the OS when the nodes are grouped into parti-
tions, and from then on the chunk table is normally not modified. Accordingly,
the registers listed above are accessible only from the supervisor area.

When the ni_chunk_table_data register is written, the value written is
stored in the chunk table entry indicated by ni_chunk_table_address. When
the table data register is read, the value read is the current contents of that
chunk table entry.

The ni_chunk_table_address register determines the entry of the chunk
table that is affected by reading or writing the ni_chunk_table_data regis-
ter. The size of the values that are read from and written to this register depends
on the size of chunk addresses (see the discussion in Section 6.3.2).

Version 7.1, October 1992

Chapter 6. Other NI Interfaces and Features 81



82 NI Systems Programming

Important: In order for the Control Network to operate correctly, the entries of
the chunk table must be in ascending order. In other words, each chunk table
entry must contain a larger address than the entry that precedes it.

Note: The effects of reading or writing the table_data register while the Data
Network is in use are undefined, and best avoided.

6.4 Combine Interface Flush

The combine interface flush operation is used to reset the hardware of the com-
bine interface, canceling any uncompleted combine operations. As with all other
Control Network operations, a combine flush must started in unison by all of the
nodes in a partition - nodes cannot "abstain" from a flush. Also, flushes only
affect the single partition in which they are started; they don't cross partition
boundaries.

Important: The broadcast and global interfaces are not affected by flushing, and
must be cleared separately.

The combine flush interface consists of the following registers and flags:

nicornflushsend Single-flag register used to start a flush.
nihodgepodge Control register, includes the flag:

niflush_complete Flag, set when flush is completed.

To start a flush operation, write any value (either 0 or 1) to the
ni_comflush send register. This sets ni_flush complete to 0, and then
starts the interface flush. When the flush is completed, the flushcomplete
flag is set back to 1. Attempting to write the nicom flush send register
while ni flush complete is 0 or ni_com_abstain is 1 signals a Bus Error.

Important: A flush operation should be executed only when there are no mes-
sages in transit through the combine interface, that is, when
ni_com_send_empty is 1, and ni_coreco_o k is O .

Usage Note: The combine flush operation is only useful when the send and
receive FIFOs of the combine interface are empty. The combine flush operation
does not clear out the FIFOs - it merely resets the communications hardware of
the interface itself. The flush operation is only intended to be used in context
switches, after the FIFOs have been cleared and saved.

Version 7.1, October 1992

NI Systems Programming82



CS-E>B~gmh

6.5 The NI Timer

The NI contains a simple timing mechanism that can be used to measure the time
between two events and to interrupt the microprocessor after a specific interval.

The following registers and flags form the timer interface:

ni time Timer register, regularly incremented.
niinterrupt now Register, timer value that triggers interrupt.
nihodgepodge Control register, includes the flag:

ni timerie Timer interrupt enable flag.

The 32-bit register nigtime contains an unsigned value that is incremented at
every microprocessor clock cycle. When the timer value exceeds the register's
capacity, it wraps around to 0.

The value of the ni_time register can be read at any time, and can be written
by the supervisor to set the NI's timer to a chosen value.

The NI timer can signal an interrupt at a specific timer value. When the value of
ni time equals the value stored in the niinterruptnow register, an Orange
interrupt (timer interrupt) is signaled.

This interrupt can be enabled and disabled by setting the ni_timer_ie flag in
the hodgepodge register. When this flag is 1, timer interrupts are enabled. When
this flag is 0, timer interrupts are disabled.

6.6 The Bad Address Register

When a Bus Error is signaled as the result of an illegal memory reference, the
ni_bad_address register contains the illegal address, the data size, and the
type (read or write) of the transaction. The data returned by a read from an illegal
memory address is undefined. Data written to an illegal memory address is lost.

ni_bad address Bad address register, contains the fields:
ni bad_addresslow Low 20 bits of illegal address.
ni bad_address_type Size and type of transaction.

Version 7.1, October 1992

Chapter 6. Other NI Interfaces and Features 83



84 NI SystaM ePrgrmmn

Usage Note: The nibad_address register is updated every time a memory
transaction is made, not just when an error occurs. Thus, its value is only valid
when a Bus Error (ni bad memory access) has actually been signaled. If
more than one illegal access is performed before the first one is handled, the val-
ue of the nibad_address register is the most recent bad memory address.

Currently, the format of the nibad addresstype field is:
31 29 28 27 26 24 23 20

pins loklcsh size type :"K '~~ 'I iI I

where

· type indicates the transaction type (0 = write, 1 = read)

· size gives the data size (2 = word, 3 = doubleword)

* csh, ok are the MBUS cacheable and lock bits

· pins is the setting of the NI's two physical base address pins

Values for the type and size fields other than those shown above are reserved. The
csh, lok, and pins fields are hardware-related and not useful to NI programmers.

6.7 NI Partition Configuration

The NI has a register that can be used to change the partitioning of the CM-5.
The following register and flag are used to control the partitioning feature:

ni_configuration Partition configuration control register.
ni hodgepodge Control register, includes the flag:

niconfiguration complete Flag, set when partitioning is done.

The ni_configuration is a five-bit register that controls the configuration, or
set of processor partitions, that is in use. The value in this register is actually the
"height" (number of layers) of the Control Network partition to which the node
belongs. Control Network operations use this value to determine the maximum
height of the network to which a message needs to be sent.

By writing a value to the configuration register, you can temporarily change
the size of the current partition. (Since the actual size of the partition is currently
determined by the state of the Control Network itself, you can only reduce the
size of the partition.)

Version 7.1, October 1992

84 NI Systenu Progranwung



S.~ -. F....,..*. *.*. *.*.*.' ON.*. .*;,.* .

Note: Only one NI per partition needs to write a value to the configuration
register - the configuration operation includes all nodes in the same partition.

The actual value written to the ni_ configuration register is an encoded ver-
sion of the new partition size:

configuration = log2( partition_size ) + 2

Extra for Experts: By writing a 0 to the configuration register, you can tem-
porarily isolate each node in the partition in its own "mini-partition," so that
network operations performed by each node apply only to that node. Obviously,
you should restore the original value of the configuration register when you
are finished using this "mini-partition" effect.

The flag ni_ configuration_complete is set to 0 while the repartitioning is
in progress, and then set back to 1 to indicate its completion At the same time,
the ni_configuration register of the NI that sent the message is updated to
the new partitioning value. The configuration registers and flags of the other NIs
are not affected. An attempt to write a value to the ni configuration register
while ni_configurationcomplete is 0 signals a Bus Error.

Important: A partition change should not be done when the Control Network
is in use - the effect of doing so is undefined, but certainly disastrous.

6.8 Disabling the Control Network

There is one last flag in the hodgepodge register that has not yet been described:

ni_hodgepodge Control register, includes the flag:
ni_cnstop send Flag, disables Control Network sending.

This flag is used to completely disable the Control Network, preventing any mes-
sages from being sent into it - including the periodic "idle" packets that are sent
when the network is not otherwise being used.

The stop_send flag is generally used only during an NI Reset (see Section
6.10) when it is necessary to totally disable the Control Network. When the

Version 7.1, October 1992

Chapter 6. Other NI Interfaces and Features 85



-i ytmsPoramn

stop_send flag is 1, the Control Network is disabled. When the stop_send
flag is set to 0, normal network operations resume.

For the Curious: The Control Network is designed in such a way that packets
are periodically sent into it even when the network is not in use. When no mes-
sage is being sent by the user or by the OS, these "idle" packets simply contain
no data, and have no effect on the nodes. However, idle packets can affect the
state of the Control Network itself in unwelcome ways, especially during a reset
operation, when it is important for the state of the network to remain unchanged.

For the Even More Curious: Because the Data Network operates in an essen-
tially asynchronous manner, with messages being sent from the nodes "on
demand," the Data Network does not transmit idle packets, and thus has nothing
analogous to the Control Network's stop_send flag.

6.9 N Serial Number

Finally, one NI register contains the hardware serial number of the NI chip:

ni_serial_number Version serial number of NI chip.

This serial number identifies the version of NI chip that is installed.

Usage Note: Most revisions of the NI chip do not have usefully distinguishable
serial numbers, so this register is not particularly valuable.

6.10 NI Reset

Under the following conditions, the NI chip is completely reset:

• The system administrator requests a repartitioning of the CM-5.

* The system administrator uses the diagnostic hardware of the CM-5 to
reset the processing nodes and networks.

Version 7.1, October 1992

I Systenu Prolgranzndng86



ChaOMpr s- A. Inte andFeaures

When the NI is reset, a number of its register fields and flags are set to known
states. The following events occur on an NI Reset:

* All abstain and lock flags are set to 1, thus isolating the NI from all net-
works. These flags are:

ni dr lock nildrlock ni rdr lock

nibclock nisbc lock ni_com lock
ni reduce rec abstain ni com abstain

ni bc rec abstain ni sbc rec abstain

ni_sync globalabstain

* niinterrupt_level is set to 0. This disables all colored interrupts.

* All sending and receiving FIFOs are cleared.

* nif lush_complete and nisync_global_complete are set to 1.

The values of all other NI registers are undefined, and must be set by software.

NI Reset is triggered by a special broadcast interrupt, the Reset interrupt, that can
be sent from another NI or from the partition manager. This interrupt is always
effective and cannot be disabled.

Version 7.1, October 1992

Chapter 6. Other NI Interfaces and Features 87





Chapter 7

NI Programming Issues
____~iN

This chapter presents a number of NI programming issues that you should keep
in mind, as well as important performance and programming hints and warnings.

7.1 The Partition Manager

As described in Section 1.1.3, each node in a partition has a unique address in
its partition. However, the PM is not part of this addressing scheme. The PM is
always located outside the address space of the partition that it manages.

Figure 18. The partition manager stands apart from the partition it manages.

This means that sending messages to and from the partition manager involves
some careful coordination between the PM and the nodes.

Version 7.1, October 1992

Partition ManagerNodes

89



0Stsgwamn

7.1.1 Sending Messages between the PM and the Nodes

To send a message from the PM to a node, use one of the broadcast interface
interfaces. A common strategy is for the PM to send a broadcast message with
two pieces of data: the address of the node that should "receive" the message, and
the actual message itself. Each node does two broadcast interface reads, one to
determine whether the address of the message matches the node's own address,
and one to receive the message itself (or to discard it, if the address doesn't
match).

To send a message from one or more nodes back to the PM, use the combine
interface. The PM should set its ni_rec_abstain flag to 1 and its ni _re-
duce rec_abstain flag to 0, so that it can receive a combine message without
having to send a value. The nodes send a combine interface reduction message
(for example, a UADD_SCAN reduction), and the PM, because of the settings of
its abstain flags, receives the result as a combine interface message.

7.1.2 For the Curious: Using the Data Network

You can use the Data Network to send messages between the PM and the nodes.
This is primarily useful in cases where you want to send a message to a specific
node without forcing the other nodes to do a network operation at the same time.
However, owing to the distinction between node and PM addressing, it's not as
clear-cut an operation as using the combine interface.

To send a message from the partition manager to a specific node via the Data
Network, you can simply use the node's relative address within the partition as
the destination address for the message. To send a message from a node to its
partition manager, the node must send a message outside of its partition. This can
only be accomplished via an OS function call.

For example, in the CMosT operating system, the following function is used to
send a message from a node to its PM:

int *source, length, tag

CMNA_interfacesend_packet_to_scalar (source, length, tag)

where the interface abbreviation is r, idr, or rdr, depending on the interface
involved. The partition manager can then receive this message as usual. The
sendpacket to_scalar system call is currently implemented as a trap
instruction, so it is much less efficient than using the combine interface.

Version 7.1, October 1992

NI Systemy Progranming90



7.2 Performance Hints

7.2.1 N Register Operation Times

Here are some rough estimates of the time taken by a number of basic operations:

register access (register variable): 1 cycle
cache memory (previously accessed variable): 2-3 cycles
NI register read (niinterfacestatus, etc.): 7-8 cycles
NI register write (ni_interface_status, etc.): 3-4 cycles
memory access (newly accessed variable): -25 cycles

The time taken to perform an NI register read or write operation is longer than
the time taken for cached memory accesses, but much shorter than the time for
full memory accesses. (NI register writes are faster than reads because an NI read
operation requires that the node microprocessor wait for the read operation to
move through the Mbus buffer before a value is actually read and returned.)

7.2.2 Reading and Writing Registers with Doubleword Values

While this document focuses for the most part on reading and writing network
messages in terms of single (32-bit) words, you can also use doubleword (64-bit)
operations in reading and writing network registers.

Writing a doubleword to a register has the same effect as writing two single-word
values, but involves only one register operation. Likewise, reading a doubleword
from a register. is the same as reading two single words.

The combine interface is an exception to this rule, because of its pipelining fea-
ture. You can't use doubleword writes when you are pipelining combine
operations. However, you can use doubleword reads with pipelined operations,
and doubleword writes are permitted for non-pipelined combine operations.

In addition, attempting a doubleword read or write for a message that consists of
only one word (as is the case for network-done tests) signals an error.

For C Programmers: To use doubleword read and write operations, the values
you send must be doubleword aligned in memory. To ensure that this is the case,
use the compiler switch -dalign when compiling any file that includes double-
word function calls or variable definitions. For example:

cc -c -g -DCM5 -dalign -I/usr/include ni_code. c

Version 7.1, October 1992

- -

Chapter 7. NI Proaramming Issues 91



9NiSsesPormn

7.2.3 Use Message Discarding for Efficiency

When a message you are writing to a network send FIFO is discarded, it is com-
pletely discarded - effectively, it is as if you never began writing the message.

Many NI programmers take advantage of this property by writing a complete
message to a network FIFO, and only then checking to see whether it was dis-
carded (and if so, writing it again). This might seem a sloppy practice, but it is
actually a safe and efficient strategy.

Because messages are typically only a few words long, and because the NI com-
pletely ignores a discarded message, it's perfectly reasonable to check the
send_ok flag just once, after you've written the entire message. Also, if your
code is properly written it should be rare for a message to be discarded, and thus
unlikely that checking the send_ok flag after writing each value of the message
provides any benefit. In fact, checking the send_ok flag after you write each
value of a message can slow your code down considerably.

7.2.4 Set the Abstain Flags Once and Forget Them

In most cases, abstain flags of a network interface can be changed only when the
network is not in use - that is, when there are no messages pending in either the
send or receive FIFOs, and no messages in transit in the network. While this cer-
tainly does not prevent you from toggling the state of the abstain flags within
your code, it does make this kind of flag-toggling more prone to programming
errors.

A more straightforward strategy to use is to set the values of the abstain flags
once, at the beginning of your program, leave them alone while the program
runs, and then restore their original values before your program exits.

Note: This last point is important. As noted in Section 2.6.4, some programming
systems (such as CMMD) use the abstain flags for their own purposes. These sys-
tems are written with the assumption that the abstain flags won't change
unexpectedly, so if the flags do change these systems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before your code exits. Failing
to do so can cause your code to signal obscure errors that are hard to trace.

Version 7.1, October 1992

92 NI Systems Programming



PgamigIs

7.3 Potential Programming Traps and Snares

Here are some potential sources of serious errors that you should keep in mind.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

7.3.1 Pay Attention to Data Network Addresses

When sending a Data Network message with a relative address, the address must
be valid within the current partition. If an address higher than CmNA parti-

tion size is supplied, the NI signals an error.

Also, there is currently a 20-bit limit on the length of a Data Network address,
and the remaining high-order bits in a 32-bit address value must be 0. If any of
these high-order bits are nonzero, the NI signals a serious error, and in some
cases the entire partition of nodes may crash. You should either write your code
so that the high-order bits of a network address can never be other than zero, or
failing that mask out the top 12 bits of an address before using it.

7.3.2 Check the Tag before Retrieving a Data Network Message

As described in Section 3.5.2, whether or not you use tag-driven interrupts to
receive messages, you must take care not to accidentally read a message intended
as an interrupt, because the operating system of the CM-5 itself sends Data Net-
work messages with interrupt tags.

The Data Network only checks the tag field of a message after the message has
been delivered to the receive FIFO. This means that if you're not careful, you can
accidentally read a message with an interrupt-triggering tag value before the NI
has signaled the interrupt. The effect of doing so is unpredictable. An error may
be signaled, or your partition may crash.

To avoid this problem, check the tag value of a Data Network message before
retrieving it to make certain that it is a non-interrupting message (that is, a mes-
sage with a tag value from 0 to 7 that you have not assigned as an interrupt tag.)

Version 7.1, October 1992

Chapter 7. NI Programming Issues 93



94 N Sysem rogra

7.3.3 Make Sure Doubleword Data Is Doubleword Aligned

C Programmers: This is also mentioned in the performance section above, but
it's as well to re-emphasize it. When you use doubleword read and write opera-
tions in your C code, you must compile your code with the -dalign compiler
switch, so that doubleword values are properly aligned in memory:

cc -c -g -DCM5 -dalign -I/usr/include ni_code.c

If the doubleword values in your code are not properly aligned, the nodes will
most likely signal "illegal address" errors, and your code won't run.

7.3.4 Order Is Important in Combine Messages

As noted in Section 4.2.6, for scan messages longer than one word, the order in
which the words of the message are written depends on the combine operation:

* Maximum operations require the most significant word to be written first.

* Both types of addition require the least significant word to be written first.

* Inclusive and exclusive OR have no word-ordering requirement.

7.3.5 Restriction on Network-Done Operations for Rev A NI Chips

As described in Section 4.2.7, the ni_dr_message_count register is used to

keep track of the number of Data Network messages sent and received, and also
to determine when a network-done operation has completed.

Revision A NI chips, however, do not correctly increment and decrement this
register. This defect has been corrected in later revisions, but to run code on a
machine that includes any Rev A chips, you must use a software workaround:
you must yourself use a program variable to keep track of the number of mes-
sages sent and received, and you must "force" the NI message-count register to
have this value during a network-done operation.

Note: This software workaround is necessary if and only if the CM-5 on which
you execute your code contains any Rev A NI chips in its processing nodes. On
CM-5 systems with no Rev A NI chips, this workaround is not needed (and is
inefficient, as well).

Version 7.1, October 1992

NI Systems Programming94



Chat;§Z6>*M> N>NSK>N X ; ; X ·ger- 7> NIo Programming Isses 9~~f-~~ s~~izz~~z~~ss~~S· i..-. 2:.'.

The recommended variable to use is CMNA_router_ msg_count (this variable
is predefined for you in the header files loaded by cmna .h). The workaround
strategy is as follows:

• Set CMNA router magcount to 0 at the beginning of the node program
(for example, at the same point that you set the values of the abstain flags).

* Every time the node program successfully sends a message via the Data
Network (that is, writes a message to the send FIFO and detects that the
send_ok flag is set), it should increment the msg_ count variable.

* Likewise, whenever the node program receives a message from the Data
Network (that is, detects that the rec ok flag is set and reads all the val-
ues of the message), it should decrement the msg count variable.

* Just before sending a network-done message, write the current value of the
msg_count variable into the msg_count register.

Note: Because the msg count register is restricted to the supervisor, user
code must make an OS call to set its value. In the CMOST operating sys-
tem, the following system call is used:

CMOS_set_drmsg_count_reg (CMNA_router_msg_count);

* While waiting for the network-done operation to complete, repeatedly
write the current value of the msg count variable into the register. This
must be done before checking the nirouter_donecomplete flag.
Otherwise, the flag may not be correct.

7.3.6 Simulating Receipt of Messages

As noted in Section 3.4.2, a hardware defect in the NI chip does not allow recv
registers to be written by the supervisor to simulate the arrival of messages. The
workaround is for a node to send a message into the network using its own
address as the destination. Assuming the network is clear (as it is, for example,
during context switches) this causes the message to be delivered to the front of
the node's receive queue.

Version 7.1, October 1992

Chapter 7. NI Programming Issues 95



96 NI Systems Programmingtzs sfs s

7.3.7 Broadcast Enabling

As noted in Section 4.1.7, each broadcast interface has a send_enable flag.
These flags are set to 0 by default in the CMOST operating system, and must be
set to 1 before broadcasts are used. The CMosT system call to set these flags is:

CMNA_participate_in(NI_BC_SEND_NNABLE);
CMNA_participate_in(NI_SBC_SEND_ENABLE);

7.3.8 Broadcast and Combine Interface Conflicts

Because of the way the broadcast and combine interfaces interact, you should be
careful in using the abstain flags of these interfaces. If your code causes a node
(processing node or PM) to abstain from the combine interface, and if:

* the abstaining node is sending a broadcast message

* simultaneously, the other nodes are sending a combine message,

then because of timing conflicts in the Control Network hardware, the two types
of messages can collide, possibly causing your partition to crash. This situation
most often occurs when you have instructed the PM to abstain from the combine
interface so that it can receive the results of a scan or reduction operation, yet at
the same time you want the PM to broadcast messages to the nodes telling them
what to do. The conflict arises when the PM needs to broadcast a message at the
same time that the nodes are sending a combine message. To avoid this problem,
your code must include safety checks that prevent a broadcast message from be-
ing sent at the same time that other nodes are sending a combine message. The
CMOST operating system includes a function you can call to send a broadcast
message that implicitly performs this safety checking:

int *msg, length;
CMNA_bc_sendmsg (msg, length);

7.3.9 Be Careful When Altering Abstain Flags

As mentioned in Section 2.6.4, some programming systems (such as CMMD) use
the abstain flags for their own purposes. When you alter the values of the abstain
flags, you must take care to save the original settings of these flags and to restore
them before handing control back to these systems. Failing to do so can cause
either user or OS code to signal obscure errors that are hard to trace.

Version 7.1, October 1992

96 NI Systems Programming



Appendixes
..~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~ **** * *

Version 7.1, October 1992 97





Appendix A

NI Memory Map
_R__f

On the following page is a two-sided memory and register map, showing the
overall arrangement of the NI's registers, as well as the layout of subfields within
those registers.,

Version 7.1, October 1992 99





04I a0 0 0 0 0 a 0 C 0 0 M 0 M 0 M 0 M 0 M 0 M 0 0 M 0 M 0
M 4W W 000 0U M M 4 4 0 (fl W M - r- kD o LO I C M ' M ' N "' - 0 0

00000 000 00000000000000000000000

0 0 00 o0 o o o o o O 00000000O CD CD0 0 0000 CD0 o 00 0

0 000000
0 000000

Q U I- N

0000000x xx 
x 0 0 0 0 

-4 ."

=0 0,(U3 0
0 ~-

I-x >4* 04 .~~~~~~5U.V Q I..aE M 4 ;a It-a0 Qa
= Os*- ( $4

,- 1 

5: wI

2 .q .

M ae

E m 21

a) M

co 

t I
3:

> L

I ) 

-a-5

0 -

z

0 0 0 0
0000 C
0000 C
0 IO "T M C

>4>4>4>4
0000 C

D C I0 'I
:) 0 0 0
) 0 IN 0

r-4 0 0
4>4 >4 >4
:) 0 0 0

0 0 0 0 0 0
0 0 0 0 0 00 0 00 0 00 0 0 0 0 0
0 0
C C

0 0

0 0 0 0 a,
0 0D 0 - 0

0 0 0 0 0

> > >4 0 >4 >4
0 0D 0 0 0)

o Io
0. 0
o 0

000
IN>0

th

CD.I-

(a
0L
M
C'ri0
4)
u)
I-

00
0C
rrr

a o U)n

0 0

0 0 rt
X a
x >4

',Ba CZ
C ci co co m 'n 0

CZ 0 aD : o
LU VI ~ -L ~U>0 C-

Ir Q 4~P" ·:.ZI·I M CDZ

u,

I,

E
4,
C)

cn0)co

(5

--
a F= O

0 a)

-a 2
'- ga
(D t

co 

Q a)
a S

it

Cl)41)
)

d)
4)M
0
co

4'

C

c- c0

0 i

C r
fl

SE
IM 0

C 0

a 0

I...
0

0

C)

I,

C:

cD

x
'-4

0
0

0
0
0

0

0

0

-a
ff
tcl

x
'-4

'-4

,--I

0

0
0

0

0

0

0

'i

r_
ID

X

0

'-4

'-4

0

0

0
0
>4

0

0

4a

00

0
0
0
0
00
0

0
0
0
0

11-111'
1-4

..... I

i

I
I

.....

0

0

C)

-C,
C:
I,

0

0
0
0
0

-- 4

'-4

0

0
0
0
0
CD

0
0

d-4

0-4

1-4

O1

-4

0
0
0

0
>4

0

0

-4

'-4
,--4

IN

-4

a,

co

IN

In

I

.0

(3~ (1

0, 44

C n= v

11

n n

........... ...... ...... ........ ...... I ...... ........ I

:i

�
i
r

�·
I

r

ii
�
c

�

-·'

------- I..... ...... ....... .....
,"

...... .....

E

pr
"I

u
2 ------

.........

.......

---------------

M M M 0 (.
a cl Mm

-j M U



0 - M I, In 0 r- 0 ) ° 
1r~

C0

I a a> 

0 I I I o 
4 4 i o 0 o 44

4 44 i U U U Uc I 44 44 4 4 I 
I 44 I I e e c

44 U 44 0 
o u U n 0 0 > <

.0 44 .0 44 °l Ul 44 

44 ~44 4 4 444 4440 0 0 0 0 0 0 h
Us Ue U1 U Ua U U U0 0 0 0 Ql 0 0

U U O 9 H _ P) O O O O O O 
_ _ _ _m

3 o X X In N a a

:: : n : m : 
e e e nle f

O U U O O O 

u
C4 0

I 0

4

0 ~ ~~~'-
44 U 41 4 U U0 4

UIU UU
44 4 4 4

I) I I V 0 I O U I IL O Cl O U ::: m4 n v ;

h ;1 n)4 k J 
t1 < e f < 

d d s C) -

_ C _ < r 

Oi-(' ~' ~In 0 U, a 0 W O N X t- ED r- X Oa ° - 1- - - 1

C i _· tr C} , C:

la o o m i ec > t T, L 0 la V Ch D4 _ _ v
a, > 0 4 44

I 4. h s I I U 4 I U
0 0 I 4 ' v O I 0 53 4
3 a ~ 44~44 a a U 04444

44 4 M I ~ e, 4 0 4. 4Ue ~ ~~~ Irz E ls O C C 44 E 44 U V U .- U 4 U 0 v E0 h4 44 4 CJ 4 44 I v V In 0 : 4 444 W 4 0 . 4 0 v 0 0 4 4 0 44 44
44 . . . U . U . 0 I U . . i. .10 I U c U U U U 0 U VI I I I I I I E I I I E I a
C o E o C C U U o U U U U U U

-I E I l 1 °l ° I vI °I I> nI °l I l 0 0 0 0 0 0 J 0 0 0 0 0 0 0 0
e t e e t1 ft fa t1 *t s t , * < f1

m X X Q t t Q X 

_ _ _ < < _ < m 

O O O O O O O O O O O O O

Qm ~ ~ _ _ _ s s _

CA O Q t @ Q Q @ Q O X 

al l i x l t cj o) ow aw X a r
2 :: 2 2 2 : D : 2 2 2 
e f 0 e fle er e e It < te ,

° ° ° ° ° ° ° ° ° °l°l°l l °
*ri I ZC C CC

4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 

4 1 ( ( 1 4 4 4 I 4 

> r . > ~ 4

4 3 I, I 4 4 I 

4 4 4 4 4 4 

4 1 1 ) ) 4 4 4 4 

4 4 4 4 I I 4 I I 4 4

t __ __ twr r N N

0 t' In (0 0. N - In° C'

5}~~~~~~~~~~4

a 0
e fi 
0 , 
Oe~l O h (I > 4 V4 v,
44 UI m 44 I4 44 0 >4.0.I C 4 O 4O 0 V4 V4 V I 4V

a JL 144 : dl0 4

0 Ua 0 0 U 1 C I 
5Q U O hJ Q 2J O O O C 4

I I I I I I I I i I
0 0 0 0 0 0 0 0 0 _i 
C C C C C C 

14
0

'1-0
'-43t
04

43
.

_.14iC
0.

(n

crCDl
El

0
U)

0i
0

C.

0
E0z
'C0.9
U.

N
U)
cn

o00 004
0

9

0

.41

_aa

m U.
·rC ;

Ea)'-'Cb-a)

tm M
CD

mJ r

00o
U
0co

0
00
cc0
a
:

4104
V00

U
0'

C0

.1.4

L:

ra

C)a:

..
U)

0.
tL

0
S

ii
0
z

U.

rh 

C o1v Cl 'vJ
0 ,.-4

J ~ CJoV4 V~ V Vv z Ll 

a) cJ o

. I I_. a a _C0C 0 00 0 0 0 0 0

40

0

0

21

1I-

a)
cc

r6
.)(n

0
..
QI

E0z

U

0 C0
CMJ-

a
O >

I V
la "
la v

"I "I

.0 .00 n

C C

o U

.0 I . I 0 44 V 1 1 44O' 0
U 4 a i , c

I - U 0 0 -

O l:L N W a C,
- '_ O C CU C v _ U H 0 ; OI I 0- I i I

______ < _

0 v

.0

O U

_ O~

V1 I

I1
U V

0 I

C C

4

CS
.1
U

0I 4,

c

00

44id,

Wf
Q4

14C

. .
a)C:a)4)

.cm

4)

0
a
i

440

V44

h4
0OtC.44-o,ICC.e,U

0I

c

0-.E
4.0Ir

tV
4-UC 3II-4

ac

. E

CVlaI
0
0

..e
W.

0

OJ

co

:--

CN-4

Uo

ID

r--4

o00
C)0W
05

U)

0
U.

m

z
L.

'-Ifs0
0

0
1

.4

c
00

................ .... ....... O 

0

Co0 .= Iiu.:. :_.. .. . . .. . : .t 

C O

N

;i
0
0.

"' D
E

h-Z
at1 ,0=Ot U
cm i

I I I
I I

I I I

I I IbijI t 1t I I

t I II I I.g g( t 1

I , II ( ,r 1 rt

I t t3 3 
( I I
( 1 

I

I I

0 ECo o

m 0 l a ,
_ C I

I I I

I I I

I

I '

I I 

I I I

I I I

I I 4
4%>

o
14

30

14?-".0
·r!

ii.N

0
CL

Q(;
.. X
A Z0)

*_ tvS
0

a
M-C00
C)LE
C)±

lI I I

I I II I I
I

I I I
I I I

r

I ". >1I I
I· t 1

1 

i 

I

,~ ,-
,_ m_e~

i 
I m, ,4.1cr oo

444 z -a)
l

O 

C U

0 .00 0I I

a a0 0

I i
0 0

> a
u u

03 a

c C

Itrle
1,, Irt

(bbbb

t(Itll

111(((
11(,1(

I,, ,,I
(,It(I
(Illr
Il(l(l
,,, te

III 111
I(t Ift

I ,1($�;· I itt
,((((t

tIttl

O- - - - - T- - - 1- 1- - V M 1 -

v- - -

0

U U
U 0
W 0

C 

a 0 -4
0 4 -4

I I V

I I
0 0 W

C C C

tlCC10 3 _

I L 0 :

5
0 04 44 0 

' -- I I -I 44 > I aL 0 0 44-4 0 -4 44 Vt V -50 1- 44C I I I44 44 4 I -4 - -0 44 I U -4 0 

O4 0 h 0 -4 -4 0

I I _1 I _ I 1
-4 -4 -4 C -4 -4 -4

044U C
C h~

I a) U Cl "
V V V

I I Iv v vC C C-
4 4) It

0 0 0
O U U-I I .

C C C

bi0
IL

0

E

z
:9

.2
U.

.c 1sE I

04304faV~l

ffi.. 0a .

im IL atti

) HC

'a 0

oO0 i

G 0~

0 4DCDIp m

. :
00

0 C

a) H Ziis Id
U)H:

U

at

V

0

IV
z

0)

oa
C14

4

OU00

VCW

O_a.1

4 44
44 IU

4 U-

444

0

a

f~440

430

43o
a

C~

C0

0
E

O 0

I C

C 0

(A

0

44
$41

q410
a)

0t
a)

W

. .C

0)W

id)n
:t

00
0a

0
co

0

0(hm
0
* QN0

0
;6

0.

S
0IL

E
z
'C
UI.

m

U,
Ln7

r-

0
-- 4

--4O

NN

N

CNorU,
Nmc

(N

LOCS

-4IV

_ : _ _ 
_ : s w ? _ _ _

_ _ I- _ __~~~~~~~~~~~~~~~~~~~

- __ _ _II _ N__ il_
i

I

W

v i -.0J..0
o_ ·-

II

II

IIi

II(

. . .

--



Appendix B

NI Registers, Fields, and Constants

This appendix presents a tabular summary of the registers and fields of the NI
chip, as well as the programming constants that can be used to locate them.

Note: To get access to these constants, your program must either include the
header file cmna . h (see Section 1.3.3), or include the appropriate header file
from the CMNA header file set (see Appendix F).

B1 N Registers

For each register the following information is provided:

* the name of the register

* the hex offset of the register from the user or supervisor base address

* the size of the register in bits

* the length (number of memory words to which the register is mapped)

* the read/write permissions of the register for both user and supervisor

Register Constants

Note: With the exception of the sendfirst registers (which are described in
Section B.3 below), the names of the constants used to access NI registers are
derived from the names of the registers themselves by uppercasing the register
name and adding the suffix " A".

Version 7.1, October 1992 103



104NJSytes Pogamin

Each register constant provides the absolute address of the register, in either the
user or supervisor memory area, depending on which header file (cna. h or
cmna_sup. h) has been included.

B.1.1 Global and System Registers

Register Name:
Permissions:

Address: Size: Len: Super: User:

ni_interruptcause
niinterruptcause_green

ni interrupt level
niphysicalself
ni-partition base
nipartition size
ni chunk table address

ni chunk table data

ni chunk size

ni dr _message_ count
ni count mask

ni rzec interrupt mask
ni user tagmask
ni time
ni configuration
ni linterrupt send
ni_serial number
ni_ sync global
ni _sync global abstain
ni com flush send
niasync_global

ni-asynosup global
ni hodgepodge
ni sync global send

ni_interruptclear

ni interruptclear gresn

ni interrupt now 
ni scan start

ni bad address

OxOOOO

0x0008
OxOO10

0x0018
0x0020
0x0028
0x0030
0x0038
0x0040
0x0048
0xOO50

0x0058
0x0060
0x0070
0x0078
0x0080
0x0088
0x0090
0x0098
OxOOA0

Ox00A8

OxOOBO

0xOOB8

OxOOCO

OxOOC8

OxOOD0

OxOOD8

OxOOE0

OxOOE8

15 1 R/W
14 1 R/W

32 1 R/W
20 1 R/W
20 1 R/W
20 1 R/W
6 1 R/W

8 1 R/W

3 1 R/W

32 1 R/W
16 1 R/W
16 1 R/W

16 1 R/W

32 1 R/W
5 1 R/W
5 1 R/W
32 1 R
2 1 R
1 1 R/W

I 1 W

2 1 R/W

2 1 R/W
6 1 R/W
1 1 R/W

15 1 W

14 1 W
32 1 R/W
1 1 R/W

32 1 R/W

None
None
None
None
None
None
None
None
None
None
None
None
None

R
None
None
None

R
R/W
None
R/W
None
None
R/W
None
None
None
R/W
None

Version 7.1, October 1992

104 MI Systenu Prograwming



·-..... : Ap.pedi . : :g..i.se Fed an Cont.at1:05

B.1.2 Network Interface Registers

Combined Data Network Interface (DR)

Permissions:
Register Name: Address: Size: Len: Super: User:

ni dr status 0x0200 24 1 R/W R
nid_prlvat. 0x0208 10 1 R/W None
n.dr racv 0x0220 32 16 R/W R
ni dr send 0x0230 32 16 W W
nidrsend_ first (block) OxlOOO 32 2 W W

Left Data Network Interface (LDR)

Permissions:
Register Name: Address: Size: Len: Super: User:

nildr_ status OxOcO0O 32 1 RIW R
nildr_rivate OxOc08 24 1 R/W None
ni ldr recv OxOc20 32 16 R/W R
ni ldr send OxOC30 32 16 W W
nildr sendf irst (block) 0x6000 32 2 W W

Right Data Network Interface (RDR)

Permissions:
Register Name: Address: Size: Len: Super: User:

ni rdr status OxOeOO 32 1 R/W R
nir dr privat. OxOeO8 24 1 R/W None
ni rdr recvar OxOe20 32 16 RI/W R
ni rdrsand OxOe30 32 16 W W

ni rdr send f ir=st (block) 0x7000 32 2 W W

Broadcast Interface (BC)

Permissions:
Register Name: Address: Size: Len: Super: User:

ni bo status
nibcprivate
ni bc control
ni bc recv
ni bc send
ni bc send first (block)

0x0600
0x0608
0x0610
0x0620
0x0630
0x3000

6 1 R

17 1 R/W

1 1 R/W

32 16 R/W
32 16 W
32 2 W

R
None
R/W

R
W
W

Version 7.1, October 1992

Appendix B. NI Registers, Fields, and Constants 105



106 NI Systems Programming

Supervisor Broadcast Interface (SBC)

Register Name:

ni sbc status
niabc_private
ni bc control
ni abc recv
ni abc send
ni sbc send first (block)

Permissions:
Address: Size: Len: Super: User:

0x0800
0x0808

0x0810

0x0820
0x0830
0x4000

6 1 R

17 1 R/W
1 1 R/W

32 16 R/W
32 16 W
32 2 W

Combine Interface (COM)

Register Name:

ni com status
nicom private
ni com control

ni cornm recv

ni com send

nicom send f i rst (block)

Permissions:
Address: Size: Len: Super: User:

OxOaOO

OxOaO8

OxOalO

OxOa20
OxOa30

0x5000

12
6 (18)

2

32

32
32

1 R/W

1 R/W

1 R/W

16 R/W
16 R/W

2 W

B.2 N Message Length Limit Constants

The following constants give the message length limits of the network interfaces:

MAXROUTER MSG WORDS

MAX COMBINE MSG WORDS
MAX BROADCAST MSG WORDS

MAX SBC MSG WORDS

DPR/LDR/RDR interface length limit
Combine (COM) interface length limit.
Broadcast (BC) interface length limit.
Supervisor broadcast (SBC) length limit.

These constants determine the maximum values that can be supplied in the length
component of the auxiliary data of a network message. (See the descriptions of
the auxiliary data formats for the various interfaces below.)

Version 7.1, October 1992

None
None
None
None
None
None

R
None
R/W

R
W
W

- - I -- - -----------

- I -- I^ ---·I�- · I I ---- - -- --

106 NI Systems Programming



Appendix . Ni~egisers, Fiels, and Costants 10

B.3 Send First Register Addresses

The send_first address for a network message is a 32-bit value of the form:

12 14 12 1

Is interface 

1 3 0

j auxiliarydata I 0 01
i i i

where interface is the interface number (an integer from 0 to 7 representing the
interface being used), auxiliary data is the auxiliary information of the message.
(The base address portion is the base address of the NI memory area, either user
or supervisor.)

The following constants are used to construct send_first addresses:

NI BASE
SF FIFO OFFSET
AUXILIARY START P

The NI base address.
The interface field offset (12).
The auxiliary data field offset (3).

To construct a send_first address, add the following values, left-shifted as
shown:

The NI base address:
The interface constant:
The auxiliary data:

NI BASE

interface number << SFFIFOOFFSET
auxiliary data << AUXILIARYSTART P

The following interface_number constants are defined:

DATA ROUTER FIFO

LEFT DR FIFO

RIGHT DR FIFO
USER BC FIFO

SUPERVISOR BC FIFO

COMBINE FIFO

DR network interface (1).
LDR network interface (6).
RDR network interface (7).
User broadcast (BC) interface (3).
Supervisor broadcast (SBC) interface (4).
Combine (COM) interface (5).

The constants specifying the auxiliary data format for each interface are listed
in the sections below.

Version 7.1, October 1992

31

[ !base addre6A/ , 
- x 

! { ! i i i

Appendix B. NI Registers, Fields, and Constants 107



108.:::Sys.ems:P..gramm:: g

Data Network (DR/LDR/RDR) Auxiliary Data Fields

The format of the auxiliary data of a Data Network message is:
8 4 0

I Hd tag I length

where

* md is the addressing mode ( = relative, 1 = physical).

* tag is the 4-bit tag value.

* length is the length of the message in words, excluding address word.

The following constants specify the starting bit positions of these fields:

NI DR SEND AUXILIARY ADDRESS MODE P The md field offset (8).
NIDRSENDAUXILIARYTAGP The tag field offset (4).
NIDRSEND AUXILIARY LENGTHP The length field offset (0).

To construct a send_first address, add the following values:

The md flag: md << NIDRSENDAUXILIARYADDRESSMODEP

The tag value: tag << NIDRSENDAUXILIARYTAGP

The length value: length << NI_DRSENDAUXILIARYLENGTH P

The following constants can be used to specify the md flag:

RELATIVE Relative node addressing (0).
PHYSICAL Physical node addressing (1).

The tag can be any value from 0 to 3 inclusive for user messages, or from 0 to
15 for supervisor messages. (The length value limit is given in Section B.2.)

Broadcast (BC/SBC) Auxiliary Data Fields

The format of the auxiliary data of a broadcast message is:

8 0

O 0 0 0 0 length

where length is the length of the message in words. (The high-order bits of the
auxiliary data have no useful meaning, but must always be 0.) The following
constant specifies the starting bit position of the length field:

NI BCSENDAUXILIARYLENGTHP The length field offset (0).

Version 7.1, October 1992

NI S~Systems Programming108



Appendix B. NiegistersFielsand.Constants-10

Combine Auxiliary Data Fields

The format of the auxiliary data of a combine interface message is:

8 4 0
I ~~Inor

pattern combiner length
I , , I I I Ii

where

* pattern is a two-bit value selecting the order in which values are combined

* combiner is a three-bit value selecting the combine operation performed

* length is the length of the message in words

The following constants specify the starting bit positions of these fields:

NI COM SEND AUXILIARY PATTERN P

NI COM SEND AUXILIARY COMBINER P

NI COM SEND AUXILIARY LENGTH P

The pattern field offset (7).
The combiner field offset (4).
The length field offset (0).

To construct a send first address, add the following values:

The pattern value:
The combiner value:
The length value:

pattern
combiner
length

<< NI COM SEND AUXILIARY PATTERN P

< NI COM SENDAUXILIARY COMBINERP

<< NI COM SEND AUXILIARY LENGTH P

The following constants can be used to specify the value of the pattern field:

SCAN FORWARD

SCANBACKWARD

SCAN REDUCE

SCAN ROUTER DONE

Forward scan pattern (2).
Backward scan pattern (1).
Reduction scan pattern (3).
Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR SCAN

ADD SCAN

XOR SCAN

UADD SCAN

MAX SCAN

ASSERT ROUTER DONE

Forward scan pattern (0).
Backward scan pattern (1).
Reduction scan pattern (2).
Network-done operation (3).
Reduction scan pattern (4).
Network-done operation (5).

Version 7.1, October 1992

Appenddix B. NI Registers, Fields, and onstants 109



110NSyste- -P-g-- ----

B.4 N Fields

The register subfields of the NI are presented below, grouped by register. For
each field, the following information is provided:

* the name of the field

* the name of the position constant used to access the field (see note below)

* the starting position and bit length of the field

* the read/write permissions of the field for both user and supervisor

Note: The programming constants used to access NI fields come in pairs.

One constant, with a suffix of "P", gives the starting bit position of the field.
In the tables below, this value appears in the Pos: (position) column.

The other constant, with a suffix of "L", gives the length of the field. In the
tables below, this value appears in the Len: (length) column.

Only the " " constant name is shown in the tables below. Unless otherwise
noted, you can assume that the "L" constant exists as well.

B.4.1 Combined Data Network (DR) Fields

The niid=_status Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni send space .........
ni rec ok .............
ni send ok ............
ni router done complete
nlrc length._lf£t.....
ni re. length .........
ni _drea tag .........
ni dr send state ......
n£ d rec state .......

NI SEND SPACE P ........ 0

NI REC OR P ............ 4
NI SEND OK P ........... 5
NI ROUTER DONECOMILETE P . 6

NI 1ZC LENGTH I ... 7
NI REC LENGTH P ........ 11

NI DR zC T P ........ 15
NI DR sEND STATEz P ..... 21

Ni DR REC STATE P ...... 23

4 R
1 R

1 R

1 R

4 R/W
4 R/W
4 R/W
2 R
2 R

Version 7.1, October 1992

R
R
R
R
R
R
R
R
R

110 NI Systenu Progranvmng



Appendix B. NiRegisters, Fields, and Constants 111

The ni drprivate Register

Permissions:
Pos: Len: Super: User:

ni rec ok ie ..........
ni lock ...............
nirec-stop ...........
ni rec full ...........
ni dr rec all fall down
n. all fall down _ ....
ni all fall down enablem m _ _-

NI RC OK I P .........

NI LOCK P ..............

NI RZCSTOP_2 ..........
NI REC FULL ..........

NI DR REC ALL FALL DOWN P .

NI ALL FALL DOWN z P ....

NI ALLFALL DOWN ENABLE 

0
1

2

3

5

6
7

1 R/W

I RIW
1 R1W

1 R

1 1W

1 R/W

1 R/W

B.4.2 Left Data Network Interface (LDR) Fields

The ni ldrstatus Register

Constant:
Permissions:

Pos: Ln: Super: User:

ni snd pace ......... NI SENSPACE ........
ni rec ok ............. NI REC OK P ............
ni send ok ............ NI SEND OK P ...........
nireclength_ left ..... NIRECLENGTHLEFTP ...
niraeclength ......... NIRECLENGTHP ........
ni drrec tag ......... NI DR REC TAGP ........

0 4 R
4 1 R
5 1 R

7 4 R/W
11 4 R/W
15 4 R/W

R
R
R
R
R
R

The ni ldr1private Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni rec ok ie .......... NI REC OK IP .........
ni lock ............... NI LOCK P ..............
ni rec full .......... NI REC ULL ..........
ni dr rec all fall down .. NI DR REC ALL FALL DOWN P .

0

1

3

5

R/W
R/W

1 R

1 R/W

Field Name: Constant:

None
None
None
None
None
None
None

Field Name:

None
None
None
None

Version 7.1, October 1992

- ---------- I-·---- --- - - I -·I I- I

-- -- ----- ---,~~~~~- - - - -

-- -- -I ----------

ppendix B. NI Registers, Fields, and Constants 111



11 I ytmsPoramn

B.4.3 Right Data Network Interface (RDR) Fields

The ni rdr status Register
Permissions:

Pos: Len: Super: User:

nsnds ae .....
n iec ok .........
ni send ok ........
nxii.=e.lengthleft.
ni zec length .....
nidrrec tag .....

.... NISEND SPACE P ........

.... NI RECOKP ............

.... NT SEND OK P ...........

.... NI REC LENGTH LEFT P ...

.... NI_RZC_LENGTHS. ........

.... NIDR REC TAG P ........

0 4 R
4 1 R
5 1 R
7 4 R/W
11 4 R/W
15 4 R/W

The nirdrprivate Register

Permissions:
Pos: Len: Super: User:

ni ec ok ie .......... N C I REC OK I P .........

ni lock ............... NI LOCK P ..............

ni rec full ......... . NI RECFULL P ..........

ni dr rec all fall down .. NI DR REC ALL FALL DOWN P.

B.4.4 Broadcast Interface (BC) Fields

The ni bcstatus Register

Field Name: Constant:

ni.send space ......... NISEND SPACE P........
ni rec ok ............. NI REC OK P ............

ni send ok ............ NI SEND O P ...........

i_sendempty ......... NI SEND_ EMPTY P ........

ni rec.lengtheft ..... NIRECLENGTHLTP ...

0

1

3

5

1 R/W

1 R/W

1 R

1 R/W

None
None
None
None

Permissions:
Pos: Len: Super: User:

0
4
5

6

7

4 R R
1 R R
1 R R
1 R R
4 R R

Version 7.1, October 1992

Field Name: Constant:

R
R
R
R
R
R

Field Name: Constant:

112 NI Systenu Progranwdng



AppenxB.N.ei.rF , and: Cosat.1
The ni bc private Register

Permissions:
Pos: Len: Super: User:

ni rec ok ie ......
ni lock ...........
nirec stop .......
ni rec full .......
ni send enable ....

.... NI REC OK IZ P .........

.... NI LOCK P ..............

.... NI REC STOPP ..........

.... NI REC FULL ..........

.... NI SEND ENABIZ_ P .......

0
1

2
3

4

1 RIW

1 R/W

1 R/W

1 R

1 R/1W

The ni bc control Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni rec-abstain ........ NI EC ABSTAIN P ....... 0

8.4.5 Supervisor Broadcast Interface (SBC) Fields

The ni sbc status Register

Field Name: Constant:

1 R/W R/W

Permissions:
Pos: Len: Super: User:

nisend space .....
ni rec ok .........
ni send ok ........
nisendempty .....
nirec-lengthleft .

.... NI SEND SPACE P ........

.... NI REC OK P ............
.... NI SEND OK P ...........

.... NISENDEMPTY P ........

.... NI REC LENGTH LEFT P ...

0 4 R
4 1 R
5 1 R

6 1 R
7 4 R

The ni sbcprivate Register

Constant:
Permissions:

Pos: Len: Super: User:

ni rec ok ie .......
ni lock ............

nirecstop ........
ni rec full ........

ni send enable .....

.. NI REC O IE P .........

... NI LOCK P ..............

... NIRECSTOPP ..........

... NI REC FLL P ..........

... NI SEND EABLE P .......

0 1 R/W
1 1 R/W

2 1 R/W

3 1 R

4 1 R/W

Version 7.1, October 1992

Field Name: Constant:

None
None
None
None
None

None
None
None
None
None

Field Name:

None
None
None
None
None

------- - - - - - -

I - ' -�------� -----~I------ - I - ---- - - ----

- - - - - - -

- - - - -�-- - - --�--- - - - - - -

Appendbc B. NI Registers, Fields, and Constants 113



114 NI Systemsrogrammn

The ni sbc control Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

nirec abstain ........ NI REC ABSTAIN P ....... 0 1 R/W None

B.4.6 Combine Interface (COM) Fields

The nicom_ status Register

Field Name: Constant:
Permissions:

Pos: Len: Super: User:

ni send space ........
ni rec ok ............
ni send ok ...........
ni send epyn .ndempty ..........
ni-roc length left ....
nirec length ........
ni com scan overflow..

, NI SEND SPACE P ........
. NI REC O P ............

. NI SEND OK ...........
NISND_ EMPTYP ........
NI REC LNGTH_ EIT P ...

. NI REzC LENGTHP ........

. NI COM SCAN OVERFLOW P .

0
4
5

6
7

11

20

4 R
1 R

1 R

1 R

4 R/W
4 R/W
1 R/W

The ni_com rivate Register

Permissions:
Pos: Len: Super: User:

ni rec ok ie ..........
ni lock ...............
nirecstop ...........
ni rec full ...........
ni com scan overflow e
nicom_recempty_e ....
nicom send length.....
ni come send ombiner...
nicom sendpattern ....
ni com asend start .....

NI REC O E P .........
NI LOCK .............
NI REC STOP P ..........

NI RC FULL P ..........

NI COM SCAN OVRFLOW I P .

NI COM REC MPTY IE P ..

NI CO SD LENGTH P ...

NICO SND CONINMER P

NI_ COM _SEND PATTERN P..

NI CO SND START P ....

0
1

2

3
4
5

8

12

15

17

1 R/W

1 R/W

1 R/W

I R

1 R/W

1 R/W

4 R
3 R
2 R
1 R

Version 7.1, October 1992

R
R
R
R
R
R
R

Field Name: Constant:

None
None
None
None
None
None
None
None
None
None

NIl Systems Programming114



Aeix _BB89. iRgisteB Fiels, aZnCoaSns: 11

The niccontrol Register

Permissions:
Pos: Len: Super: User:

ni rea abstain ........ NI REC ABSTAIN P .......

nieduaCreaabtaln.. NI_ EDUCEREC ABSTAIN P

0
1

1 R/W R/W
1 R/W R/W

B.4.7 Global Interface Fields

The ni sync_global Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

ni sync_ global rec ..... NISYNC GLOBAL_ EC._P ... 0 1 R R
ni syn4 global_couplet NI SYNC GLOBAL COMPLETzP . 1 1 R R

The niasyncglobal Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

ni global send ........ NI GLOBAL SEN P ....... 0 1 R/W R/W
ni global.rec ......... NI GLOBAL REC ....... 1 1 R R

The ni_asyncsup_global Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:

ni supervisor globalsend NI SUPERVISORGLOBAL SEND P 0

nisupervisorglobalrec . NI SUPERVISOR GLOBAL REC P 1

1 R/W None
1 R None

Field Name: Constant:

Version 7.1, October 1992

Appendix B. NI Registers, Fields, and Constants 115



116 NI Systems Programming

B.4.8 Interrupt Register Fields

Note: The position ("_P") constants for these flags are as described above. The
length for all flags (1) is given by the single constant NiINTERRUPTL.

The niinterruptcause Register

Permissions:
Flag Name: Pos: Len: Super: User:

ni cause internalfault.............
ni cause mc error ..................

ni-cause cmu error..................

nl cause bo interrupt red ...........
ni.cause cn checksum error..........
ni cause cn hard error..............
ni causedr cheksum error..........
nicause timerinterrupt............
nicause _bcinterruptorang ........
nicause _be_-nterruptyellovw........
ni cause bc or com collision........

nicause com abstain hanged........
nicausedrcount negative..........
ni cause bad relative address.......
ni causebadmemory access ..........

0 1 R/W
1 1 R/W

2 1 R/W
3 1 R/W

4 1 R/W
5 1 R/W
6 1 R/W
7 1 R/W
8 1 R/W

9 1 R/W
10 1 R/W
11 1 R/W

12 1 R/W
13 1 R/W

14 1 R/W

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

The niinterrupt_cause_green Register

Permissions:
Poe: Len: Super: User:Flag Name:

ni.cause bc interrupt green.........
nicause scan overflow..............

ni caus bc rec ok..................

nicause bc rec ok .................

ni caus com rec ok.................
ni cause com rc ampty..............
niicause sync globalrec............
ni cause glob&lrec.................
ni cause supervisor global rc......
ni cause dr rec ok..................

nicause ldr rc ok.................
ni cause rdr rec ok.................

ni.causedr rec tag.................
nicause dr ecall fall down .......

0 1 R/W
1 1 R/W

2 1 R/W
3 1 R/W
4 1 R/W
5 1 R/W

6 1 R/W
7 1 R/W
8 1 R/W

9 1 R/W
10 1 R/W
11 1 R/W

12 1 R/W
13 1 R/W

None
None
None
None
None
None
None
None
None
None
None
None
None
None 4

Version 7.1, October 1992

4

116 NI Systews Programming



Appendix. Rs

The niinterrupt_clear Register
Permissions:

Pos: Len: Super: User:Field Name:

n$ clear internal fault ............. 0
ni clear mc error .................. 1
ni clear cm error .................. 2

ni clear b interrupt red ........... 3

ni alear cn chocks error .......... 4

ni clear n hard error .............. 5

ni clear dr checksum error .......... 6

ni clear timr interrupt ............ 7

niclear beinterrupt_orange ........ 8

niclear_ bcintoerruptyellow ........ 9

ni clear be or com collision ........ C
niclear com abstainchanged ........ 1

nicleard_count_negative .......... 12

ni clear bad relative address ....... 1
ni clear bad _ry access .......... 14

The ni_interruptcleargreen Register

Field Name: Po9

1 W

1 W

1 W

1 W

1 W

1 W

1 W

1 W

1 W

1 W

1 W

1 W

1 W

3 1 W

1 W

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

Permissions:
s: Len: Super: User:

niclear_ beinterruptgreen .........
ni clear scan overflow..............

ni clar broe ok..................
niclear_ bcorecok.................
ni clear com rec ok.................

ni clear comreeempty..............
niclear_syncglobalrec............
niclear_globalrec.................
ni clear supervisor_globalree ......
ni clear dr rec ok..................

ni clear ldr rec ok.................

ni clear rdr rec ok.................

niclear drrec _tag.................

ni clear dr rec all fall down .......

0 1 W None
1 1 W None

2 1 W None
3 1 W None
4 1 W None
5 1 W None

6 1 W None
7 1 W None
8 1 W None

9 1 W None
10 1 W None

11 1 W None
12 1 W None

13 1 W None

Note: To locate the flags in the interruptclear registers, use the constants
defined for the interrupt cause registers - the flag positions are the same.

Version 7.1, October 1992

Appendix B. NI Registers, Fields, and Constants 117



~3~18 NI Systems Prgramin

B.4.9 Other Register Fields and Constants

Note: The programming constants for these flags are obtained by uppercasing
the name of the flag, then adding "_." for the position, or "L" for the length.

The ni_interrunpt._level Register
Permissions:

Field Name: Pos: Len: Super: User:
-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~,

niintez=upt_level_grsen............
niinterruptlevelyellow ...........
ni interuptlevel orang ...........

niinterrupt._lvel_red..............

0 1

8 1

16 1

24 1

R/W
R/W
R/W
R/W

None
None
None
None

The nihodgepodge Register

Permissions:
Pos: Len: Super: User:Field Name:

niglobal=_rc_ie ...................
ni suprvio global.rec .........
niluah complete ..................

nilnterupt_ssnd ok................
ni.conf igu=ationComplts ...........

nii nterrupt.._e-nable.............

ni synoglobal recie ...............

ni timer s ........................

nian stop snd ....................

0 1 R/W
1 1 R/W

2 1 R

3 1 R

4 1 R
5 1 R/W
6 1 R/W
7 1 R/W

8 1 R/W

None
None
None
None
None
None
None
None
None

The ni bad address Register
Permissions:

Pos: Len: Super: User:Field Name:

ni bad address low..................
n bad addreos stype .................

0 20 R/W
20 12 R/W

Note: The contents of the nibadaddress register are implementation-de-
pendent, so there are no predefined constants for this register.

4

Version 7.1, October 1992

None
None

---- - - - __

NI Systenu Progranuning118



Appendix C

Predefined Low-Level NI Constants

For ease of reference, here are the low-level programming constants defined in
the header files cmys/niconstants.h, and cmays/nidefines.h (see
Appendix F), grouped by register and field.

Note for C Programmers: These constants are defined as raw, unsigned integer
values. If you use them in C code, you must recast them as pointer values of type
(unsigned *). Otherwise, the C compiler will treat them as integers, possibly
causing "illegal pointer operation" errors.

=== Send First Register Constants ===
Field Offsets:

SFFIFOOFFSET (12)
AUXILIARYSTART P (3)

Length Constant:

Interface Number ci
DATA ROUTER FIFO
LEFT DR FIFO
RIGHT DR FIFO

USERBC FIFO
SUPERVISORBC FIFO
COMBINE FIFO

NI SEND FIRSTL (32)

nstants:

(1)

(6)

(7)

(3)

(4)

(5)

=== Auxiliary Data Field Constants ===
--- DR/LDR/RDR Interface ---
NIDRSENDAUXILIARYADDRESSMODEP (8)

RELATIVE (0)

PHYSICAL (1)

NI_DR_SEND_AUXILIARY_TAG_P (4) NI_DR_TAG_L (4)

NIDRSEND AUXILIARYLENGTHP (0) NI DR LENGTHL (4)

Version 7.1, October 1992 119



120 I Sstes Prgramin

=== Auxiliary Data Field Constants, cont. ===

--- BC/SBC Interface ---
NIBCSENDAUXILIARYLENGTHP (0) (no length constant)

--- COM Interface ---
NI COM SEND AUXILIARY PATTERN P (7)

NI COM SEND PATTERN L (2)

SCAN ROUTER DONE (0)
SCAN BACKWARD (1)

SCAN FORWARD (2)
SCAN REDUCE (3)

NI COM SEND AUXILIARY COMBINER P (4)

NI COM SEND COMBINER L (3)

OR SCAN (0)
ADD SCAN (1)

XOR SCAN (2)
UADDSCAN (3)

MAX SCAN (4)
ASSERT ROUTER DONE (5)
NI COM SEND AUXILIARY LENGTH P (0)

NI COM SENDLENGTH L (4)

=== Interface send/receive FIFO size limits ===

MAX ROUTER MSG WORDS (5)
MAX COMBINE MSG WORDS (5)

MAX BROADCAST MSG WORDS (4)

MAX SBC MSG WORDS

=== Send Registers
NI DR SEND A
NI LDR SEND A

NI RDR SEND A
NI BC SEND A
NI SBC SEND A
NI COM SEND A

NI SEND L (32)

(4)

(NIBASE
(NI_BASE
(NIBASE
(NIBASE
(NIBASE
(NI BASE

=== Receive Registers ==

NIDRRECVA (NIBASE
NILDRRECVA (NI_BASE
NIRDRRECV A (NIBASE
NIBCRECVA (NIBASE
NI SBC RECV A (NI BASE
NICOMRECV A (NIBASE
NI REC L (32)

I 0x0230)

I Ox0c30)

I OxOe30)
I 0x0630)

0x0830)

I OxOa30)

I 0x0220)
I Ox0c20)

I OxOe2O)

I 0x0620)

I 0x0820)

I OxOa2O)

Version 7.1, October 1992

120 NI Systenu Progranumng

I

I



AppedxCPeeidlCtas1

=== Status Register ===
NI DR STATUS A
NI LDR STATUS A
NI RDR STATUS A

NI XDR STATUS L (19)

NI BC STATUS A
NISBC STATUS A
NIBCSTATUS L (11)

NICOMSTATUSA
NICOMSTATUSL (21)

(NI_BASE I

(NIBASE 

(NIBASE I

NISTATUS L (25)

Field Constants:
NISEND_ SPACEP (0)
NI REC OK P (4)
NI SEND OK P (5)
NIROUTERDONECOMPLETEP(6)
NI SEND EMPTY P (6)
NI REC LENGTH LEFT P (7)

NIREC LENGTH P (11)

NI DR REC TAG P (15)

NICOMSCANOVERFLOWP (20)

NIDR SENDSTATEP (21)
NI DR REC STATE P (23)

=== Control Registers ===

NIBC CONTROLA (NI_
NISBCCONTROLA (NI_

NI BC CONTROL L (1)

NICOM_CONTROL_A (NI
NICOMCONTROLL (2)

NISENDSPACEL (4)

NI REC OK L (1)

NISEND OK L (1)
NIROUTERDONECOMPLETEL (1)

NISENDEMPTYL (1)
NI REC LENGTH LEFT L (4)

NIREC LENGTH L (4)
NI DR REC TAG L (4)

NICOMSCANOVERFLOWL (1)

NIDR SEND STATE L (2)
NIDRREC STATEL (2)

BASE I 0x0610)
BASE 0x0810)

BASE OxOalO)

NI CONTROL L (2)

Field Constants:
NI REC ABSTAIN P (0) NI REC ABSTAIN L (1)

NI REDUCE REC ABSTAIN P (1) NI REDUCE REC ABSTAIN L (1)

Version 7.1, October 1992

(NI_BASE
(NIBASE
(NI_BASE

I 0x0200)

OxOcOO)

I OxOeOO)

Ox0600)
0x0800)

OxOaOO)

Append&~ C. Preefined NI Constants 121



12 NI S~.ystem.sP.rogmmin.g.:4:4..::.'.'-:.:.:. 4.:-:4:..: 44-'.'-4t.::4

=== Private Registers
NIDR PRIVATE A
NIDR PRIVATE L (10)

NILDRPRIVATEA
NI RDR PRIVATE A
NIXDRPRIVATEL (6)

NIBC PRIVATE A
NISBC PRIVATE A
NIBC PRIVATE L (5)

NICOM PRIVATE A

NICOM PRIVATEL (18)

(NI_BASE I 0x0208)

(NIBASE I 0x0c08)
(NI_BASE I OxOeO8)

(NI_BASE I 0x0608)
(NIBASE I 0x0808)

(NI_BASE I OxOaO8)

NI PRIVATE L (18)

=== Private Registers, cont. ===
Field Constants:

NIRECOKIEP (0) NIREC
NILOCKP (1) NILOCI
NIRECSTOPP (2) NIREC
NI REC FULL P (3) NI REC
NI SEND ENABLE P (4) NI SENI

NIBCSENDENABLEP (4) NIBC_
NI COM SCAN OVERFLOW IE P(4) NI COM

NIDRRECALLFALLDOWNP(5) NIDR_
NI COM REC EMPTY IE P (5) NI COM
NI ALL FALL DOWN IE P (6) NI ALL
NI ALL FALL DOWN ENABLE P(7) NI ALL
NI COM SEND LENGTH P (8) NI COM
NI COM SEND COMBINER P (12) NI COM
NI COM SEND PATTERN P (15) NI COM
NI COM SEND START P (17) NI COM

=== Global and System Registers ===
NIINTERRUPT CAUSE A (R
NICAUSE INTERNAL FAULT P (0)
NICAUSEMCERRORP (1)

NICAUSE CMU ERROR P (2)
NICAUSEBCINTERRUPTREDP (3)

NI CAUSE CN CHECKSUM ERROR P (4)
NICAUSE CN HARD ERROR P (5)
NICAUSEDRCHECKSUMERROR P (6)

(cont.)

OKIEL (1)
KL (1)
STOP L (1)

FULLL (1)
DENABLEL (1)

SEND ENABLE L (1)

SCANOVERFLOWIEL
REC ALL FALL DOWN L
RECEMPTYIEL (1)

FALL DOWN IE L (1)

FALLDOWNENABLE L
SEND LENGTH L (4)
SENDCOMBINERL (3)

SENDPATTERNL (2)
SENDSTARTL (1)

NIBASE I 0x0000)

(1)

(1)

(1)

Version 7.1, October 1992

NI% Sylstem P rogramrng122



ApenixC.PedfiedNJCnsans 2

NI INTERRUPT CAUSE A
NI CAUSE TIMER INTERRUPT P (7)
NI CAUSE BC INTERRUPT ORANGEP (8)
NI CAUSE BC INTERRUPT YELLOWP (9)

NI CAUSE BC OR COM COLLISIONP (10)
NI CAUSE COM ABSTAIN CHANGED P (11)
NI CAUSE DR COUNT NEGATIVE P (12)
NI CAUSE BAD RELATIVE ADDRESS P (13)
NI CAUSE BAD MEMORY ACCESS P (14)

NI INTERRUPT TYPE L (15)
NI INTERRUPT L (1)

NIINTERRUPTCAUSEGREENA (NI BASE I 0x0008)
NI CAUSE BC INTERRUPT GREEN P (0)
NI CAUSE SCAN OVERFLOW P (1)
NI CAUSE BC REC OK P (2)
NI CAUSE SBC REC OK P (3)
NI CAUSE COM REC OK P (4)
NI CAUSE COM REC EMPTY P (5)
NI CAUSE SYNC GLOBAL REC P (6)
NI CAUSE GLOBAL REC P (7)
NI CAUSE SUPERVISOR GLOBAL RECP (8)

NI CAUSE DR REC OK P (9)
NI CAUSE LDR REC OK P (10)
NI CAUSE RDR REC OKP (11)
NI CAUSE DR REC TAGP (12)
NI CAUSE DR REC ALL FALL DOWN P (13)

NI INTERRUPT GREEN TYPEL (14)

NIINTERRUPTL (1)

NIINTERRUPT_LEVELA (NIBASE I 0xOO10)

NI INTERRUPT LEVEL L (32)

NI INTERRUPTLEVELCOLORL (8)

NI PHYSICAL SELF A
NI PARTITION BASE A
NI PARTITION SIZE A

NIPHYSICAL ADDRESSL (20)

NICHUNKTABLEADDRESSA
NICHUNK TABLE ADDRESS L (6)

NICHUNKTABLEDATAA
NICHUNKTABLEDATAL (8)

'(NI BASE

(NI_BASE

(NI_BASE

(NI_BASE

(NI_BASE 

I 0x0018)

I 0x0020)

I 0x0028)

0x0030)

0xOO38)

Version 7.1, October 1992

Appendix C. Predqflned NI Constants 123



124 NI Systems Programmin

NICHUNK SIZE A
NI CHUNK SIZE L (3)

NI DR MESSAGE COUNT A
NI DR MESSAGECOUNTL (32)

NI COUNT MASKA
NI REC INTERRUPT MASK A
NI USER TAG MASK A
NI TAG MASK L (16)

NI TIME A
NI TIME L (32)

NI CONFIGURATION A
NI CONFIGURATION L (5)

NI INTERRUPT SEND A
NI INTERRUPT SEND L (5)

NI SERIAL NUMBER A
NI SERIAL NUMBER L (32)

NI SYNC GLOBALA
NI SYNC GLOBAL REC P (0)
NI SYNC GLOBAL REC L (1)
NI SYNC_ GLOBAL_ COMPLETEP()
NI SYNC GLOBAL COMPLETEL (1)

NI SYNCGLOBAL L (2)

NI SYNC GLOBAL ABSTAIN A

NI SYNC GLOBAL ABSTAINL (1)

NI COM FLUSH SEND A
NIFLUSHSENDL (1)

(NI_BASE I 0x0040)

(NI_BASE 0x0048)

(NIBASE
(NI-BASE
(NIBASE

I OxOO50)

I 0x0058)

I 0x0060)

(NIBASE 0x0070)

(NIBASE 0x0078)

(NIBASE I 0xOO80)

(NIBASE I 0x0088)

(NIBASE 0x0090)

(NI_BASE 0x0098)

(NIBASE I 0xOOaO)

NI ASYNC GLOBAL A
NI GLOBAL SEND P (0)

NI GLOBAL REC P (1)
NIGLOBALL (2)

(NIBASE I

NI GLOBAL_ SEND L (1)
NI GLOBAL RECL (1)

NI ASYNC SUP GLOBAL A
NI SUPERVISOR GLOBAL SEND P (0)

NISUPERVISORGLOBALSENDL (1)

NISUPERVISORGLOBALRECP (1)

NI SUPERVISOR GLOBAL REC L (1)

NIGLOBAL L (2)

OxOOa8)

(NI_BASE I 0x0ObO)

(

Version 7.1, October 1992

124 NI Systemzs rogramming



Appendix C. Predefined NI Constants

NI HODGEPODGE A
NI GLOBAL REC IE P (0)
NI GLOBAL REC IE L (1)
NI_ SUPERVISOR GLOBALRECIEP (1)
NISUPERVISORGLOBALRECIEL (1)

NI FLUSH COMPLETE P (2)
NI FLUSH COMPLETE L (1)
NI INTERRUPT SEND OK P (3)
NI INTERRUPT SEND OK L (1)

NICONFIGURATIONCOMPLETEP (4)

NICONFIGURATIONCOMPLETEL (1)

NI INTERRUPT REC ENABLEP (5)
NI INTERRUPT RECENABLEL (1)

NI SYNCGLOBALREC IEP (6)
NI SYNCGLOBAL REC IEL (1)
NI TIMERIEP (7)
NITIMERIEL (1)

NI CN STOP SEND P (8)
NICN STOP SEND L (1)
NIHODGEPODGE L (9)

NISYNC GLOBAL SEND A
NISYNCGLOBALSENDL (1)

NI INTERRUPT CLEAR A
NI INTERRUPT CLEAR GREEN A
(use same constants as for CAUSE

NI INTERRUPT NOW A
NI INTERRUPT NOW L (32)

NI SCAN START A

NISCANSTARTL (1)

NIBADADDRESSA
NI BAD ADDRESSL (32)

(NIBASE I 0x0Ob8)

(NIBASE I 0x00C0)

(NIBASE
(NI_BASE

register)

I 0x00c8)

I 0xOOdO)

(NI_BASE I 0x0Od8)

(NI_BASE I 0xOOeO)

(NI_BASE I OxOOe8)

Version 7.1, October 1992

125
NNEWWWAMMIN111,99Pi~



t

f



Appendix D

NI Interrupts

The methods used to recover from an NI interrupt depend heavily on the type of
interrupt itself. This appendix describes each of the possible interrupts in detail,
and provides guidelines describing how you can and should recover from them.

For each interrupt, the following information is provided:

* the name and color of the interrupt

* the ni_interruptcause or ni_interruptcause_green flag
that is set when the interrupt is signaled

* the ni_interrupt_clear or ni_interruptcleargreen flag
that is used to clear the interrupt when it has been handled

* the triggering event that causes the interrupt to be signaled

* the effect of the interrupt on the NI and the networks

* the correct method for handling the interrupt

Note: It is possible for the supervisor to trigger an interrupt artificially, by setting
the appropriate niinterrupt cause or ni interruptcause green
flag. Since this can be done for any interrupt, it is not documented under the
triggering events given below for each interrupt.

Also, since the ni_interrupt_clear and ni_interruptclear green

flags must be used to clear every interrupt once the required handling operations
have been performed, this step is assumed, and is not listed under the handling
guidelines for each interrupt.

Version 7.1, October 1992 127



D.1 Red Interrupts

Red interrupts indicate a failure of the hardware, such as checksum violations
and message format errors. They occur at unpredictable times relative to the in-
struction stream and are usually irrecoverable. Determining the precise cause of
a Red interrupt may require the use of the Diagnostic Network.

The cause and clear flags listed for each interrupt are found in these registers:
ni interruptcause ni interrupt clear

D.1.1 Internal Fault ...................................... Red Interrupt

Flags: nicause/clearinternal_fault

Cause: A fault has been detected in the NI chip.

Effect: The effects are undefined and irrecoverable.

Handling: No software-serviceable parts inside. Please report this fault to your
applications engineer or systems manager for correction. 

D.1.2 CN Checksum Error, DR Checksum Error ....... Red Interrupt

Flags: ni_cause/clearcn_checksumerror
nicause/cleardrchecksumerror

Cause: A message with a bad checksum value was received from either the
Control Network or Data Network. This interrupt is signaled as
soon as the bad checksum value is received by the NI.

Effect: None. The received message(s) may still be read. However, they
will almost certainly contain an error either in data or address.

Handling: This interrupt indicates that a network chip (or the NI chip itself)
has failed. The failed chip must be tracked down with the Diagnos-
tic Network. Please report this fault to your applications engineer
or systems manager for correction.

Version 7.1, October 1992

hqf .Cv tpm Pr nrmmin1l0



D.1.3 CN Hard Error ...................................... Red Interrupt

Flags: ni cause/clear cnhard error

Cause: A hardware error occurred in the Control Network.

Effect: The effects are undefined and irrecoverable.

Handling: This interrupt indicates one of two things: either a hardware prob-
lem in the Control Network, which must be located by use of the
Diagnostic Network; or a serious software problem (specifically, a
double trap forcing a processor (U) reset). Please report this fault
to your applications engineer or systems manager for correction.

D.1.4 MC Error, CMU Error .............................. Red Interrupt

Flags: ni cause/clear _aerror
ni_cause/clear_ cmuerror

Cause: An interrupt is being signaled by either the memory controller, or
by the CMU (cache and memory management unit). These two
kinds of external interrupt are signaled to the microprocessor by
way of the NI chip.

Effect: None, aside from the interrupt itself.

Handling: These interrupts continue to be signaled until they are cleared on the
memory controller or CMU.

Note: Unlike most NI interrupts, these two interrupts are not
cleared by writing the corresponding ni _interrupt_clear flag.
Instead, a flag on the memory controller or CMU must be reset.

Nevertheless, it is legal to write a 1 to the ni_interrupt_clear
flags for these interrupts. While this has no effect, it is permitted so
that you can write uniform interrupt handler code.

Version 7.1, October 1992

Appndix D. N1 Interrupts 129



-3 N--Sys-ems-Progr-mm

D.1.5 BC Interrupt Red.............. Red Interrupt

Flags: nicause/clear_bcinterrupt_red

Cause: The NI received a Red broadcast interrupt, and the broadcast inter-
rupt enable flag ni interrupt_recenable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

D.2 Orange Interrupts

Orange interrupts indicate that the attention of the operating system is required,
as in timer interrupts and broadcast interrupt messages. They occur at unpredict-
able times relative to the instruction stream and do not destroy any information
that might be needed to determine the cause of the interrupt.

The cause and clear flags listed for each interrupt are found in these registers:
ni interrupt cause niinterrupt_clear

D.2.1 Timer Interrupt ................ Orange Interrupt

Flags: nicause/clear_timerinterrupt

Cause: The ni time register is equal to the ni interrupt-now register,
and the timer interrupt flag ni timer_ie flag is 1.

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should
your interrupt handler.

be handled by

Version 7.1, October 1992

NI Systems Programming130

I



AppendxD N Interrupts 131

D.2.2 BC Interrupt Orange ........................... Orange Interrupt

Flags: nicause/clear bc interrupt_orange

Cause: The NI received a Orange broadcast interrupt, and the broadcast in-
terrupt enable flag ni interruptrec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

D.3 Yellow Interrupts

Yellow interrupts indicate that the software has made an error. They are usually
irrecoverable, as they indicate that your program is doing something illegal and
will have to be rewritten. Sufficient information is retained in the NI to permit
isolation of the cause of the interrupt, but it is not always possible to recover all
the information relating to the cause of the interrupt.

Yellow interrupts are associated with particular instructions, but usually are not
signaled at the exact point of the offending instruction, because of the loose cou-
pling between the NI and the microprocessor.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt_cause ni_interrupt_clear

D.3.1 BC Interrupt Yellow ............................. Yellow Interrupt

Flags: ni_cause/clearbc-interrupt_yellow

Cause: The NI received a Yellow broadcast interrupt, and the broadcast in-
termrupt enable flag niinterrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

Version 7.1, October 1992

Appendix D. N1 Interrupts 131



B3Sstemsgamin

D.3.2 COM Abstain Changed ......................... Yellow Interrupt

Flags: nicause/clear_com abstainchanged

Cause: The nicornabstain or nireducerecabstain flags were
changed while the combiner send FIFO was not empty.

Effect: The attempted change does not occur. Whether execution is allowed
to continue depends on the interrupt handler.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to quietly recover from it, perhaps displaying a warning
message.

D.3.3 DR Count Negative ............................. Yellow Interrupt

Flags: ni cause/cleardrcountnegative

Cause: The combined value of all ni_dr_massage_count registers in
the Data Network has become negative, indicating a mismatch in
the sending and/or receiving of Data Network messages.

Effect: None, but this interrupt is signaled repeatedly until the situation is
corrected.

Handling: This may occur either when a failure in a Data Network or NI chip
causes the annihilation of a message, or when an OS error causes
a countable Data Network message to be sent out of its partition.
This interrupt may also occur if two or more nodes in a paritition
do not agree on which Data Network message tags are to be counted
(that is, their ni_count_mask registers are not equal).

To restore the Data Network to a proper state, make sure that the
partition is empty of Data Network messages, and then set all the
nidr_message_count registers in the partition to 0.

Note: It may be that by the time the interrupt is signaled, the values
of one or more of the nidr _message_count registers will have
changed. This may make it difficult to locate the error, since the
sum of the nidrmassage_count registers may be positive by
the time the interrupt is signaled.

Version 7.1, October 1992

NIl Systems Programmingg132



Appendix D. NI Interrupts 133

D.3.4 BC or COM Collision ........................... Yellow Interrupt

Flags: ni.cause/clear bc or comn collision

Cause: Three separate conditions cause this interrupt:

* Two NIs attempted to broadcast at the same time.

* Two different combine operations signaled at the same time.

* Two NIs simultaneously attempted a broadcast interrupt.

Effect: No combining or broadcast operations can proceed while the
nicause bc or comncollision flag is set. If the error was
colliding broadcast interrupts, the broadcast is not signaled.

Handling: If the error was colliding combine messages, the messages are still
in the combine send FIFO. The supervisor should take control of
this FIFO and read out the messages to determine where the colli-
sion occurred. If the error was colliding broadcast messages, the
ni_b. send epty (or ni abc send_ epty) flags will be set
to 0 in the contending processors. If the error was colliding broad-
cast interrupts, the ni _interruptsend_ok will be 0 in the
processors that sent the colliding broadcast interrupts.

Note: When the ni _clear bcor comn collision flag is writ-
ten, all messages in the broadcast and supervisor broadcast send
FIFOs disappear, and the ni interrupt send ok flag is set to 1.
None of the other FIFOs, either send or receive, are affected.

D.3.5 Bad Relative Address .......................... Yellow Interrupt

Flags: ni cause/clear bad relative address

Cause: An attempt was made to send a Data Network message with a rela-
tive address that is illegal for the current partition.

Effect: The message with the bad address is discarded and the appropriate
niinterface send ok flag is set to 0, indicating that the attempt
to send the message failed.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to quietly recover from it, perhaps displaying a warning
message.

Version 7.1, October 1992



34 NSystmsProrammin

D.4 Green Interrupts

Green interrupts indicate the occurrence of common events for which the soft-
ware has requested notification, such as the arrival of messages, the signaling of
broadcast interrupts, arithmetic overflow in a scan, etc. There is one interrupt for
each event, and each event's interrupt can be enabled and disabled independently
under the control of the supervisor.

Depending on the type of event, the interrupt may ormay not occur synchronous-
ly with a particular instruction. No information is lost by a Green interrupt.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt_cause_green ni_interrupt _clear_green

D.4.1 BC Interrupt Green ............................. Green Interrupt

Flags: nicause/clearbc_-interrupt_green

Cause: The NI received a Green broadcast interrupt, and the broadcast in-
terrupt enable flag niinterrupt rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

D.4.2 DR Receive Tag ................................. Green Interrupt

Flags: nicause/cleardrrec tag

Cause: A message arrived at the front of a Data Network receive FIFO that
has an interrupting tag (a tag corresponding to a set flag in the regis-
ter nirecinterrupt mask).

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

Version 7.1, October 1992

N1I Systenu Progranwing134



A N Inet 1

D.4.3 DR Receive All Fall Down ...................... Green Interrupt

Flags: ni cause/cleardrrecall falldown

Cause: An All Fall Down mode message arrived at the front of a Data Net-

work receive FIFO, while niall falldownie is 1.

Effect: The first word read from the FIFO is the All Fall Down mode ad-
dress word, which is used to determine the correct destination
address for the message. The reclength field contains the length
of the message not counting the address word, while the
rec.length._left field contains the total length of the message
counting the address word.

Handling: Your handler should receive and store the message in such a way
that it can later be resent to its correct destination.

D.4.4 Interface (DR, BC, COM, etc.) Receive OK .. Green Interrupt

Flags: nicause/clearbcrecok
nicause/clearabcrecok
ni-cause/clearcomnrec ok

nicause/clear_dr rec_ok
ni cause/clear ldr rec ok

nicause/clearrdrrecok

Cause: A new message became available from the receive FIFO of one of
the interfaces while the corresponding ni.interface recokie
flag was set to 1.

Effect: While enabled, each of these interrupts is signaled once for each
arriving message in the appropriate interface's receive FIFO.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler. (Typically, your handler reads the interrupt-
ing message from the FIFO, but you can decide to do otherwise.)

Version 7.1, October 1992

Appendix D. N1 Interrupts 135



136 NI SystemPrgrammin

D.4.5 Global Rec (Sync, Global, or Supervisor) .... Green Interrupt

Flags: nicause/clear sync_global_rec

ni_cause/clear_global_rec
nicause/clear_supervisor_global_rec

Cause: One of the following events happened:

A synchronous global operation completed with a result of 1, and
the nisyncglobal rec ie flag is 1.

The asynchronous global receive flag ni_globalrec changed
from 0 to 1, and the ni_global rec_ie flag is 1.

The supervisor asynchronous receive flag nisupervi-
sor global_rec changed from 0 to 1, and the
ni_supervisor_global_rec_ie flag is 1.

Effect: None, aside from the interrupts themselves.

Handling: These interrupts are software-controlled, and should be handled by
your interrupt handler.

D.4.6 Com Receive Empty ............................ Green Interrupt

Flags:

Cause:

Effect:

Handling:

ni_cause/clearcomnrec_empty

The combine receive FIFO became empty while the empty receive
FIFO interrupt flag ni comn recempty ie is 1.

None, aside from the interrupt itself.

This interrupt is software-controlled, and should be handled by
your interrupt handler.

Version 7.1, October 1992

~NI Systenu Programrrdng136



Apenix. IInrups 3

D.4.7 Scan Overflow .................................. Green Interrupt

Flags: nicause/clearscanoverflow

Cause: The first word of a scan or reduce message that suffered arithmetic
overflow was read from the combine receive FIFO, and the
ni.scan.overflow_ie interrupt enable flag is 1. This can only
happen if the message combiner is a signed or unsigned addition.

Effect: None. The arrived message may be read normally.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to quietly recover from it, perhaps displaying a warning
message.

D.5 Bus Errors

Bus Errors indicate that a bus transaction cannot be completed, as in an attempt
to read a virtual address that does not correspond to a register, or to write a mes-
sage that doesn't conform to protocol. Bus Errors are signaled asynchronously
and are usually irrecoverable. Bus Errors are distinct from segmentation viola-
tion errors, which result from attempting to read an unmapped virtual address,
and are signaled synchronously with the offending instruction.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt_cause ni interruptclear

D.5.1 Bad Memory Access ..................................Bus Error

Flags: nicause/clearbadmemory access

Cause: Bus Errors are signaled for number of reasons, including:

* Attempting to read a read-protected address.

* Attempting to write a write-protected address.

* Attempting to read or write a value that does not fit in a register.

* Attempting to read or write an address that is not a register.

Version 7.1, October 1992

Appendix D. NI Interrupts 137



1 =SNISyemsogrig

Some specific examples are:

Bus Errors caused by reads or writes:

* reading or writing a supervisor-only register from the user area

* reading the ni_interffacerec register of an empty receive FIFO

* attempting to read a doubleword from a FIFO that has only a word left, or
attempting to use a doubleword operation to write a single-word message

* writing the sendfirst register of a network interface while there is an
incomplete message pending in the send FIFO

* writing the send register of a network interface without having first writ-
ten a value to the corresponding send first register

Bus Errors caused by sending a message:

* attempting to send a message longer than the entire send FIFO

* attempting to send a message via a network interface for which the corre-
sponding abstain flag is set

* attempting to send a user message with a supervisor-reserved tag

* attempting to send or receive a message through an excluded Data Net-
work interface.

* attempting to send a combine message with an illegal combiner or pattern
value.

* attempting to send a network-done message with a length greater than 1,
or attempting to send any network-done message while the ninet-
work done flag is 0 or the nicomnabstain flag is 1

* attempting to send a synchronous global message or to change the
ni sync global abstain flag while the nisync global_com-

plete flag is 0

Version 7.1, October 1992

NI Systems Programming138



Ap D Ni inrp

Bus Errors caused by other operations:

· attempting to start a flush operation while the ni_flush complete flag
is 0

* attempting to start a configuration operation while the niconfigura-
tion completa flag is 0

* attempting to send a broadcast interrupt while the ni inter-
rupt_send ok flag is 0

* attempting to write a value to the ni_interfacerec register when the re-
ceive FIFO is full.

Effect: The address, size and type of the offending memory transaction is
be stored in the nibad addreess register.

Any data written by the offending transaction is lost. Any side-
effects that would have been triggered by the offending transaction
(such as the initiation of a synchronous global operation) do not oc-
cur. In particular, an attempted doubleword read from a receiving
FIFO containing only one word will not result in popping the word.

Handling: Examine the ni_bad_address register to determine what
memory transaction caused the error.

Version 7.1, October 1992

Appendix D. NI Interrupts 139





Appendix E

NI Programming Examples

For C programmers, here are some examples of macros that you can use to access
the registers and fields of the NI. In most cases, these macros take as arguments
the register and field constants defined previously in this manual.

E.1 Reading and Writing Registers

The simplest NI register operations involve reading and writing the value of a
register, typically with one of three types of values: unsigned, float, and double.
The macros below provide a simple register reading/writing interface.

#define niregister(type,reg) *((type *) (reg))
#define ni_readreg(reg) niregister(unsigned, reg)
#define ni_read regf(reg) ni_register(float, reg)
#define nireadreg_d(reg) ni_register(double, reg)

#define ni set_register(type,reg,value)
ni register(type, reg) = ((type) (value))

#define niwrite reg(reg)

nisetregister(unsigned, reg, value)
#define niwrite reg_f(reg)

ni_set_register(float, reg, value)
#define niwrite reg d(reg)

niset_register(double, reg, value)

In these examples the reg argument is the address constant of the appropriate
register, and the value argument is the word, float, or double to be written.

Version 7.1, October 1992 141



142Ni sPrgrammig

E.2 Reading and Writing Subfields

Often, you'll want to read or write the value of a register subfield. Here's a set
of macros that efficiently extract a field from a register. (Note that the field argu-
ment in these examples is the name of the field constant without the _P or _L
suffixes - these are added automatically by the macros themselves.)

/* mask for values that will fit into the given field */
#define ni_mask_fieid_values (fieldlength) \

(-(-0 << fieldlength))

/* mask that extracts a field from the register */
#define ni mask field (position, length) \

(nimask_field_values (length) << position)

/* right-shift register value, mask out the field */
#define ni_getfield(registerval, pos, len) \

((register_val >> pos) & nimask_field_values(len))

#define niread field(register, pos, len) \
niget_field(ni_read_reg(register), pos, len)

And here's a set of macros that efficiently modify the value of a register field:

/* mask that is ANDed with register to change field */
#define ninewvaluemask(pos, len, newvalue) \

-((new_value ni_mask_field_values(len)) << pos)

/* Logical AND register with mask that changes field */

#define ni_set_field(reg_val, pos, len, new_value) \
(reg_val & ninew_value_mask(pos, len, new_value))

#define niwritefield(reg, pos, len, new_value) \
niwrite_reg(register, \

ni_set_field(ni_read_reg(reg), pos, len, newvalue))

You may also want to simply set or clear an arbitrary set of register bits:

#define niset bitsin register(reg, bitmask) \
niwritereg(reg, ni_readreg(reg) I (bitmask))

#define niclear_bits_in_register(reg, bitmask)\
niwrite_reg(reg, ni_readreg(reg) & (bitmask))

Version 7.1, October 1992

142 NI Systems rogramming



Aenx E NSI PogamngExSampls14

E.3 Constructing Send-First Addresses

The only other major set of programming tools that you might need are macros
that construct a send first address for a given interface. For example:

#define nisendfirsta(interface,auxiliary_data) \
((unsigned *) ( NIBASE I \

interface << SF FIFO OFFSET I \
auxiliary_data << AUXILIARY_STARTP))

#define ni_sendfirst(interface,auxiliarydata,value) \
niwritereg(ni_send firsta(interface,auxiliary_data), \

value)

Data Network Send-First Macros

Here's a set of macros that constructs the sendfirst addresses for the three
Data Network interfaces:

#define nixdr_auxiliary_data(mode,tag,length) \
( mode << NI DRSEND AUXILIARY ADDRESS MODEP \
tag << NI DRSENDAUXILIARY TAG P I \
length << NI DR SEND AUXILIARY LENGTHP )

#define nidrsend_first(mode, tag, length, value) \
nisend first (DATA ROUTERFIFO, \

nixdrauxiliary data(mode,tag,length), \
value)

#define ni ldrsendfirst(mode, tag, length, value) \
nisend first(LEFTDRFIFO, \

nixdrauxiliary_data(mode,tag,length), \

value)

#define nirdrsendfirst(mode, tag, length, value) \
ni send first (RIGHT DR FIFO, \

ni_xdr_auxiliary_data(mode,tag,length), \

value)

Version 7.1, October 1992

Appendix E. NI Pogamming Examples 143



144NIystms rogammin

Broadcast Interface Send-First Macros

Here's a set of macros that constructs the send first addresses for the two
broadcast interfaces:

#define ni_xbc_auxiliary data(length) \
( length << NI BC SEND AUXILIARY LENGTH P )

#define ni_bcsend_first(length, value) \
ni send first(USERBCFIFO, \

ni_xbc_auxiliary data(length), \
value)

#define ni_sbc_send_first(length, value) \
ni_send_first(SUPERVISOR_BCFIFO, \

ni_xbc_auxiliary_data(length), \

value)

Combine Interface Send-First Macros

Finally, here's a set of macros that constructs the send_first addresses for the
combine interface:

#define ni_corn_auxiliary_data(pattern,combiner,length) \
( pattern << NI COM SEND AUXILIARY PATTERN P I \
combiner << NI COM SEND AUXILIARY COMBINER P I \
length << NI COMSENDAUXILIARYLENGTH P )

#define ni_bc_send_first(pattern,combiner,length,value)\
nisendfirst(COMBINE_FIFO, \

nicom auxiliary_data(pattern,combiner,\
length) \

value)

Version 7.1, October 1992

-

144 NI Systems Programming



r

Appendix F

CMNA Header Files

To access the NI constants described in this document, you must #includea the
header file cm/cmna.h:

#include <cm/cmna. h>

This file #includes many other header files that provide access to NI constants,
register macros, and accessor functions. These constants, macros, and functions
are collectively referred to as CMNA (CM Network Accessors), and can serve as
a basis for your own NI accessor code.

Note: The functions and macros in CMNA are designed to be very generic in
operation. As such, they are much less efficient than the special-purpose macros
and functions you'll probably write on your own. Nevertheless, you can use the
operations defined in CMNA as a jumping-off point for your own code, to help
you understand what needs to be done to get your code to run correctly.

F.1 What is CMNA?

There are two main parts to CMNA:

* The NI Interface - Constants and macros used to manipulate NI registers.

* CnC ("C-and-C") - C functions that perform NI operations such as
reading and writing messages of arbitrary length.

The CMNA header files define the NI interface explicitly, in terms of register
accessor macros and constants. The header files also provide C prototypes for the
CnC functions, which are part of the CMOST operating system code.

Version 7.1, October 1992 145



~Sj146 NI Syste Programming

F.2 CMNA Header Files

The following header files are part of CMNA:

/usr/include/
cm/cmna.h
cmys/na.h
csys / cn=a_sup. h
cmsys/ni interface.h

-Ays/ni_ macros.h
cmsys/niconstants.h
cmsys/nidefines. h

- Main CMNA header file.
- CMNA user header file.
- CMNA supervisor header file.
- Main NI interface header file.
- NI macro definitions.
- NI register/flag constant definitions.
- Low-level NI constant definitions.

The following diagram shows the relationship among the header files that make
up CMNA:

Figure 19. Relationship between CMNA and NI header files.

Version 7.1, October 1992

cm/cmna.h

NI supervisor area
NI user area /

/ | cmnasup.h 

I cmsys/cmna.h I-- - "

ni interface.h

ni_macros.hni-constants.h 

ni_defines.h

·
II .

- I

II II I~~~~

.

I ,i I

NIl Systems Programming146

! !

I i

I I



147

F.2.1 The Main CMNA Header File: cm/cmna.h

This single file Uincludes all the header files that are needed to define CMNA.
However, it contains virtually no definitions of its own. It simply #includas
either of the two header files cmays/,,na .h or cmys/cmna sup. h, accord-
ing to which NI register area (user or supervisor) the #includeing code needs.

Implementation Note: At present, cmsys/cmnasup. h is only #ncluded
for diagnostic code (that is, code that defines the symbol CmXAG).

F.2.2 The User Header File: cmsys/cmna.h

This file #includes the NI constant and macro files described below, and also
defines a number of useful C mask constants and C macros that are used in
CMNA. However, the constants and macros defined here are only sufficient for
the needs of CMNA, and are not by any means a complete set. (See the descrip-
tion of the niconstants. h, and nidefines files below.)

F.2.3 The Supervisor Header File: cmsys/cmnasup.h

This file modifies a few key constant definitions so that any absolute memory
address constants defined in the other header files will refer to the NI supervisor
area, rather than the NI user area. It then #includes cmys/na . h, so it has
much the same effect as that header file.

Note: The cmsys/cmnasup.h file is only of use to programmers with legal
access to the NI supervisor area. Including this file does not in itself grant access
to the NI's supervisor area; it simply redefines many CMNA constants to have
address values that are only legal for supervisor code.

Version 7.1, October 1992



14. NI Systems,, ,-~ Programming:&,.-&,~?-,:~:,~~x~> x.--,x--x:~. $:~,,.,:-..~.,,/...~$~,~:~~xx:.. ~~: ----.-.-~.- ~ -.. :'i:., ~....

F.2.4 The NI Interface Header File: niinterface.h

This file defines the NI accessor interface. It #includes the file
ni constants. h, and defines a number of basic NI register macros that are
used by CMNA. It then #includes nimacros. h to define the remainder of the
CMNA macros.

This file also defines a number of NI register constants that are suitable for use
in C code. (That is, constants that have been cast as (unsigned *) values. See
the description of niconstants. h and nidefines. h below.)

F.2.5 The NI Macros Header File: nimacros.h

This file defines a number of C macros that perform sterotypical NI operations
such as sending and receiving messages via a specific network interface.

F.2.6 The NI Constants Header Files: ni_constants.h, nidefines.h

These files define a number of register constants and masks that are used by
CMNA. In particular, ni.constants. c includes definitions of constants speci-
fying the absolute memory address for each of the NI's registers. The file
ni defines. h defines hundreds of constants that give the size and offset of the
register fields of the NI. These two sets of constants provide a complete interface
for NI operations written in assembly code. Appendix C provides a complete list
of these constants, grouped by register and category.

Note For C Programmers: The register address constants are unsigned pointer
values. To use them in C code, you must first cast them to type (unsigned *).

For example:

unsigned *ni_dr_status = ( (unsigned *) NI_DR_STATUS);

If you don't perform this casting step, the C compiler by default treats the
constants as signed integers, possibly causing your code to fail. Many of these
constants are recast in just this fashion in the header file ni interface. c, o
you may be able to just use those constants without having to do any recasting
yourself.

Version 7.1, October 1992

NI ystem Pograpunng148



Indexes
w 'm ___

Version 7.1, October 1992 149



I



Programming Tools Index

This index lists the register names and fields, programming constants, functions and macros referred to
within this document. Bold page numbers indicate a defining reference or important description.

A

ADD SCAN

combine combiner constant, 53
combine pattern constant, 109

ASSERT ROUTER DONE

combine combiner constant, 53
combine pattern constant, 109

AUXIXLIARY START P,
send-first field offset constant,
17, 107

B

bad memory access,

bus error, 69, 137
bad relative address,

Yellow interrupt, 31,68, 72, 133
bc interrupt green,

Green interrupt, 69, 73, 75, 134
be interrupt orange,

Orange interrupt, 68, 72, 75, 131
bc interrupt red,

Red interrupt, 68, 71, 75, 130
bc interrupt yellow,

Yellow interrupt, 68,72, 75, 131
bc or comn collision,

Yellow interrupt, 51, 68, 72, 75, 133
bc rec ok,

Green interrupt, 23, 69, 72, 135

C

CMNA participate_in (),system fn., 96
CHINA router magcount, variable, 95
CMOSsignal (), system call, 35
cai error, Red interrupt, 68, 71, 129
cn checksum error,

Red interrupt, 68, 71, 128
an hard error, Red interrupt, 68, 71, 129
con abstain changed,

Yellow interrupt, 58, 68, 72, 132
con rec empty,

Green interrupt, 59, 69, 73, 136
com rec ok,

Green interrupt, 23, 69, 72, 135
COmIN. FIFO,

interface number constant, 18, 107

D

DATA ROUTERFiFO,

interface number constant, 18, 107
dr checksum error,

Red interrupt, 68, 71, 128
dr count negative,

Yellow interrupt, 37, 68, 72, 132
dr rec all fall down,

Green interrupt, 40, 69, 73, 135
dr rec ok, Green interrupt, 23,69, 72, 135
dr rec tag, Green int'rpt., 35,69, 73, 134

Version 7.1, October 1992 151



152 NI Systems Programming

G-L
global rec,

Green interrupt, 65, 69, 72, 136
internal fault,

Red interrupt, 68, 71, 128
ldr rec ok,

Green interrupt, 23, 69, 72, 135
LEFT DR FIFO,

interface number constant, 18, 107

M

MAX BROADCAST MSG WORDS,

constant, 46, 47,106
MAX COMBINE MSG WORDS,

constant, 51, 106
Max ROUTER MSG WORDS,

constant, 32, 33,106
MAX SBC MSG WORDS,

constant, 46, 47, 106
MAX SCAN

combine combiner constant, 53
combine pattern constant, 109

mc error, Red interrupt, 68, 71, 129

N

ni all fall down enable,
flag, 39,40, 111

niall_ falldown ie, flag, 39, 40, 111
ni_async global,

register, 62, 64, 104, 115
ni async_sup_global,

register, 62, 65, 104, 115
nibadaddress, register, 83, 104, 118
ni badaddresslow, field, 83, 118
ni badaddress_ type, field, 83,118
NI BASE, constant, 9, 17, 107
ni b ..., register.

See ni binterface_..
ni bc control, register, 105, 113
nibcprivate, register, 105, 113
ni bc recv, register, 105
ni b_send, register, 105

NI BC SEND _AUXILIARY LENGTHP2,
field offset, 47, 108

ni bc sendfirst, register, 105
ni bstatus, register, 105, 112
nibinterface control, register, 44, 48
nibinterfaceprivate, register, 44, 48
nibinterface recv, register, 44, 47
nibintermface send, register, 44, 46
ni binterfacesend first,

register, 44, 46
nibinterface_status, register, 44, 47
nicausebad _memory access,

flag, 116

nicausebadrelativeaddress,
flag, 116

nicausebc_ interrupt green,
flag, 116

nicause bc interruptorange,
flag, 116

nicausebc_ interrupt red, flag,
116

nicausebcinterruptyellow,
flag, 116

ni cause bc or com collision,
flag, 116

nicausebcrecok, flag, 116

nicausecmu_error, flag, 116

nicausecn_ checksum_error,
flag, 116

ni causecnharderror,flag, 116
nicausecomnabstain changed,

flag, 116
nicausecomnrec empty, flag, 116
nicausecomnrecok, flag, 116
ni_cause_drchecksumerror,

flag, 116
nicausedrcount negative,

flag, 116
nicausedrrecallf alldown,

flag, 116

nicausedrrecok, flag, 116
ni cause_dr_rectag, flag, 116
nicause_globalrec,flag, 116
ni causeinternalfault, flag, 116

4

-Version 7.1, October 1992

4

N1 Systems Programming152



ProSgrmiTosndx1

ni cauaeldr rec ok, flag, 116
n causemc_error, flag, 116

ni causerdr_rec_ok,flag,116

hicausesbcrecok, flag, 116

nicausescanoverflow, flag, 116

nicausesupervisorglobal_rec,
flag, 116

ni cause sync globalrec, flag, 116
ni causetimer _interrupt, flag, 116
ni chunk_size, register, 80,104
nichunktableaddress,

register, 81, 104
nichunktabledata, register, 81, 104
ni clear_badmemory _access,

flag,u 117
niclear_badrelativeaddress,

flag, U7

ni clear bc nterruptgreen,
flag, 117

ni clearbc_interrupt_orange,
flag, 117

ni clearbcinterruptred,
flag, 117

ni clear bc interruptyellow,
flag, 7

niclearbcorc omcollision,
flag, U7

niclearbc_recok, flag, 117
niclear_cmuerror, flag, 117

ni clear cn checksum error,

flag,117
niclearcnharderror, flag, 117
ni clearcomabstainchanged,

flag, 117
ni_clear cornmrec empty, flag, 117
niclear com recok, flag, 117
ni _cleardr checksumerror,

flag, 117

ni _cleardr_countnegative,
flag, 117

nicleardrrecall _fall _down,
flag, 117

nicleardrrecok, flag, 117
ni cleardrrectag, flag, 117

ni clear_globalrec, flag, 117

niclearinternal_fault, flag, 117

niclear_ldrrecok, flag, 117

niclearmc_error, flag, 117

ni_clear_rdrrecok, flag, 117

niclear_abc_rec_ok, flag, 117

niclearscanoverf low, flag, 117

ni_clear_supervisor_global_rec,
flag, 117

ni_clear_sync_global.rec, flag, 7

ni_clear_timer_interrupt, flag, 117
nicn_ stop_send, flag, 77,85,118
ni_rec_abstain, flag

of a network, 21, 21
of broadcast interface, 48
of combine interface, 58

nicornmcontrol,
register, 50, 58, 106, 115

nicom _flushsend, register, 82,104
ni comr rivate,

register, 50, 59, 106, 114
nicomrec empty ie, flag, 59,114
ni com_recv, register, 50, 53, 106
ni com scan overflow,

flag, 53, 55, 114

ni_com_scan_overflow_ie,
flag, 55, 59

innicom private register, 114

ni comrsend, register, 50, 51, 59, 106

NI COM SEND AUXILIARY COMBINER P,

field offset, 52, 109
NI CON SEND AILIARY LENGT P

field offset, 52, 109

NI_COSEND _ AUXILIARY PATTERNP
field offset, 52, 109

nicom _send combiner,

field, 59, 60, 114
nicomsend first,

register, 50, 51, 106
nicom _sendlength, field, 59, 60, 114
nicomrsend attern,

field, 59, 60, 114
nicomsendstart, flag, 59, 60, 114
nicom status, register, 50, 53, 106, 114

Version 7.1, October 1992

Programming Tools Index 153



15 NiSystem Programmin

ni_configuration, register, 84, 104
ni configurationcomplete,

flag, 77, 84, 118
nicountmask, register, 29, 36, 56, 104
ni dinterface_private,

register, 28, 39
ni dinterface recv, register, 28,33
ni dinterface send, register, 28, 32
ni dinterfacesendfirst,

register, 28, 32
ni dinterface_status,

register, 28, 34, 56
ni dr .... See ni dnterface_...
ni dr messagecount,

register, 29, 36, 39, 56, 104
ni drprivate, register, 105,111
nidrrecall_fall_down,

flag, 39,40, 111

in ni ldr private register, 111
in ni rdr private register, 112

ni dr rec state, field, 34, 38,110
ni drrectag, field, 34

in ni dr status register, 110
in ni ldr status register, 111
in nirdrstatus register, 112

ni_ drrecv, register, 105
nidr send, register, 105
NI DR SEND AUXILIARYADDRESSMODZEP,

offset constant, 32,108
NI DR SND AUXLARY LENGQE P,

offset constant, 32, 108
NI DR SEND AUXILIARY TAGP.

offset constant, 32, 108
nidrsendfirst, register, 105
ni dr _send state, field, 34, 38,110
ni d status, register, 105, 110
niflushcomplete, flag, 77,82,118
ni_global rec, flag, 64,115
niglobalrecie, flag, 64, 65, 77,118
ni_globalsend, flag, 64,115
nihodgepodge, register, 77, 104, 118

and asynchronous global interface, 62
and supervisor asynch global interface, 62
and synchronous global interface, 62

asynch global rec interrupt
enable flag, 64, 65

broadcast interrupt flags, 75
configuration flag, 84
flush complete flag, 82
NI timer interrupt enable flag, 83
send stop flag, 85
supervisor rec interrupt enable flag, 65
synch global rec interrupt

enable flag, 62, 63
niinterfacecontrol, register, 21
niinterfaceprivate, register, 13, 23
ni interfacerecv, register, 13, 18
niinterface_send, register, 13, 15
niinterfacesend first,

register, 13, 15
ni_ interface_status, register, 13, 19
niinterrupt_cause,

register, 73, 104, 116
ni_interrupt_cause_green,

register, 73, 104, 116
niinterrupt_clear,

register, 73, 104, 117
niinterrupt_clear_green,

register, 73, 104, 117
ni_interrupt_level,

register, 74, 104, 118
ni_interrupt_level_green,

field, 74, 118

niinterrupt_level_orange,
field, 74, 118

niinterrupt levelred,
field, 74, 118

ni.interrupt_level yellow,
field, 74, 118

ni interrupt now, register, 83, 104

niinterrupt_rec_enable,
flag, 75, 77, 118

ni interrupt ._send, register, 75,104
ni interrupt _send ok,

flag, 75, 77, 118
ni ldr .... See ni_dinterface...
ni ldr rivate, register, 105, 111
ni ldrrecv, register, 105

Version 7.1, October 1992

NI Systemr Programding154



Prormgos ndx 155

nildr send, register, 105
ni ldrsend first, register, 105
ni ldr_status, register, 105, 111
ni_lock, flag

in ni _bbcprivate register, 113
in nicornm private register, 114
in ni drprivate register, 111
in nildrprivate register, 111
in ni rdrprivate register, 112
in ni sbcprivate register, 113
of a network, 23, 24
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39

ni _interface urpose,
register naming format, 7

niinterfacesend_first,
register, 107

nipartitionbase,
register, 78, 79, 104

nipartitionsize,
register, 78, 78, 104

ni physicalself, register, 78, 104

ni_ rdr_.... See ni_dinterface..
nirdr private, register, 105, 112
nirdr recv, register, 105
nirdrsend, register, 105
ni rdrsendfirst, register, 105
ni rdr status, register, 105, 112
ni_ rec abstain, flag

in nibc _control register, 113
inni com control register, 115
in nisbccontrol register, 114

nirec_full, flag
in nibcprivate register, 113
in ni com private register, 114
in nidr private register, 111
in nildr private register, 111
in nirdr private register, 112
in ni isbc_private register, 113
of a network, 23, 25
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39

nirecinterrupt mask,
register, 29, 35, 104

nireclength, field
in nicorn_ status register, 114
in nidrstatus register, 110
in ni ldr _status register, 111
in nirdr_status register, 112
of a network, 19, 20
of combine interface, 53
of Data Networks, 34

ni rec length left, field
inni bc status register, 112
in ni corn status register, 114
in ni drstatus register, 110
in ni ldr status register, 111
in ni rdr status register, 112
in ni sbcstatus register, 113
of a network, 19, 20
of broadcast interface, 47, 48
of combine interface, 53
of Data Networks, 34

nirec_ok, flag
in nibc _status register, 112
in ni comrn status register, 114
in nidr_status register, 110
in nildr status register, 111
in nirdr_status register, 112
in nisbcstatus register, 113
of a network, 19, 20
of broadcast interface, 47
of combine interface, 53
of Data Networks, 34

ni_ rec_ok_ie, flag
in ni bprivate register, 113

in ni comprivate register, 114
in ni drprivate register, 111
inni ldr private register, 111
in ni rdr private register, 112
in nisbc private register, 113

of a network, 23, 23
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39

Version 7.1, October 1992

Progranving Tools Index 155



w-156NISsesPoamn

ni_ rec stop, flag
in ni beprivate register, 113
in ni comprivate register, 114
in ni drprivate register, 111
in ni sbc_private register, 113
of a network, 23, 24
of combine interface, 59
of Data Networks, 39

nireduce rec abstain,
flag, 58, 115

of combine interface, 21
nirouterdonecomplete,

flag, 34, 39, 53, 56, 110
ni -sbc..., register. See ni.binterface_...
nisbc _control, register, 106, 114
niabcprivate, register, 106, 113
ni sbcrecv, register, 106
ni sbcsend, register, 106
nisbcsendfirst, register, 106
ni sbc status, register, 106, 113
ni_scanstart, register, 50, 55, 104
ni send empty, flag

in ni bcstatus register, 112
in nicom _status register, 114
in ni_ sbcstatus register, 113
of a network, 19
of broadcast interface, 47
of combine interface, 53

niisendenable, flag
in ni bcprivate register, 113

in ni sbc_private register, 113
of broadcast interface, 48, 49

nisendok,flag
for Data Networks, 34
in ni bc _status register, 112
in ni com status register, 114
in ni drstatus register, 110
in ni ldrstatus register, 111
innairdrstatus register, 112
in nisbcstatus register, 113
of a network, 19, 19
of broadcast interface, 47
of combine interface, 53

ni _sendspace,field
in n ibcstatus register, 112
in nicom status register, 114
in ni dr status register, 110
in ni ldcr _status register, 111
in ni rdrstatus register, 112
in nisbcstatus register, 113
of a network, 19, 20
of broadcast interface, 47
of combine interface, 53
of Data Networks, 34

ni send stop, flag,
of broadcast interface, 23, 25, 48

ni serialnu-mber, register, 86, 104
nisupervisorglobal rec,

flag, 65, 115
ni_supervisor_global_rec_ie,

flag, 65, 77,118
nisupervisor globalsend,

flag, 65, 115
ni sync global,

register, 62, 62, 104, 115
ni sync global abstain,

register, 62, 63, 104
nisync global complete,

flag, 62, 63, 115
nisync global rec,

flag, 62, 63, 115
nisync global recie,

flag, 62, 63, 77, 118
ni sync global send,

register, 62, 63, 104
nitime, register, 83, 104
nitimer ie, flag,77, 83, 118
niuser tagmask, register, 29, 35, 104

0
OR SCAN

combine combiner constant, 53
combine pattern constant, 109

Version 7.1, October 1992

NI Systems Programming156



Proramig Tsnx15

P
PHYSICAL, flag value constant, 33, 108

R

rdr ec ok,
Green interrupt, 23, 69, 72, 135

RELAT:IXVE, flag value constant, 33, 108
RIGHT DR FIFO,

interface number constant, 18, 107

S
abc rec ok,

Green interrupt, 23, 69, 72, 135
scan overflow,

Green interrupt, 55, 69, 73, 137
SCAN _BACARD,

combine pattern constant, 53, 109
SCAN FORWARD,

combine pattern constant, 53, 109
SCANRDUCE,

combine pattern constant, 53, 109
SCAN ROUTER DON,

combine pattern constant, 53, 109
SFFIFOOFFSET, send-first field

offset constant, 17, 107

supervisor global rec,
Green interrupt, 65, 69, 72, 136

SUPERVISOR BC FIPO,

interface number constant, 18, 107
sync global rec,

Green interrupt, 63, 69, 72, 136

T
t imer interrupt,

Orange interrupt, 68, 72, 83, 130

U

UADDSCAN
combine combiner constant, 53
combine pattern constant, 109

USER BCFIFO,
interface number constant, 18, 107

X

XOR SCAN

combine combiner constant, 53
combine pattern constant, 109

Version 7.1, October 1992

Progranwdng Tools Index 157



4

4



Concepts Index

This index lists the essential concepts referred to within this document. Bold page numbers indicate a
defining reference or important description.

A

absolute address,
in chunk table translations, 79

abstain flag, 21
effect of, 21
in control registers, 7
of broadcast interface, 48
of combine interface, 21, 58

for reduction operations, 21
of global interface, 63
using efficiently, 92
using safely, 22

abstaining
from a network interface, 21
from a synchronous global message, 63
from broadcast interface, 48
from combine interface, 58

addition (signed), combine operation, 52
addition (unsigned), combine operation, 52
addition scan overflow, 55
address (node) registers, 78
address translation, and NI chunk table, 78
addresses

calculating sendjfirst, 17
of registers, 103

programming constants, 8
addressing

of nodes, 30, 93
of registers, programming constants, 8
physical. See addressing
relative. See addressing

alignment of doubleword data, 94
"All Fall Down interrupt enable" flag, 39, 40
"All Fall Down message" flag, 39,40
All Fall Down Mode, 40

address word format, 41
detecting, 40
resending, 41
triggering, 40

"All Fall Down Mode enable" flag, 39, 40
"asynch global rec interrupt enable" flag,

of asynchronous global interface,
64,65,77

asynch global receive interrupt, 65
asynch supervisor global rec interrupt, 65
"asynch supervisor global receive" flag, of

supervisor asynch global interface, 65
"asynch supervisor global send" flag, of

supervisor asynch global interface, 65
"asynch supervisor global" register,

of supervisor asynch global interface,
62,65

"asynch supervisor rec interrupt enable",
of supervisor asynch global interface,
65,77

"asynch global receive" flag,
of asynchronous global interface, 64

"asynch global send" flag,
of asynchronous global interface, 64

"asynch global" register,
of asynchronous global interface,
62,64

Version 7.1, October 1992

-11M

159



16RN ys Prgrming 

asynchronous interface,
of global interface, 61, 62

auxiliary information, 16
for broadcast messages, 47
for combine messages, 52
for Data Network messages, 32
of a network message, 14

B

backward scan, combine pattern, 52
"bad address low" field, 83
"bad address type" field, 83
"bad address" register, 83
base address, of NI memory region, 10

programming constant, 9, 17
broadcast enabling, 49

CMost operation for, 96
broadcast interface, 2, 43, 44

abstaining from, 48
auxiliary information, 47
broadcast interrupt interface, 75
conflicts with combine interface, 96
enabling, 49

CMOST operation for, 96
message format, 46
message ordering, 46
messages, 45
receiving, 47
registers, 44
sending, 46
supervisor broadcast interface, 44
user broadcast interface, 44

"broadcast interrupt rec enable" flag, 75, 77
"broadcast interrupt send ok" flag, 75, 77
"broadcast interrupt send" register, 75
broadcast interrupts.

See interrupts, broadcast
broadcast messages,

user and supervisor, 44
Bus Errors, 69, 137

and bad address register, 83
on abstain flag change during global

message, 63

Bus Errors, con'L
on bad memory access, 69, 137
on broadcast interrupt error, 75
on broadcasting with sending disabled, 49
on combine flush error, 82
on configuration error, 85
on excessively long messages, 15
on improper message format, 15
on network-done message error, 56
on reading from empty rec FIFO, 20
on reading/writing undefined addresses, 6
on sending with abstain flag set, 21, 63
on user access of supervisor features, 6
on user sending message with supervisor

tag, 35
on user sending physical mode message, 33

C
casting register constants,

for C coding, 9
chunk address, 79
chunk position, 79
"chunk size" register, 80
chunk sizes, 80
chunk table, 31, 78

modifying, 81
size of chunks, 80

"chunk table address" register, 81
"chunk table data" register, 81
clearing combine send FIFO, 59
cm signal. h, header file, 36
CM-5, 1

networks, 2
operating system, 4
partition manager, 3
partitions, 3
processing nodes, 3
programs, 4

CMNA, 145
(CM Network Accessors), 145
header files, 146

cmna . h, header file, 8, 145

Version 7.1, October 1992

NI Systenu Progranvning160



Concpts Index 161

code
for nodes, 4
for PM, 4

"combine add-scan overflow" flag, 53, 55
combine flush, 82
"combine flush complete" flag, 77, 82
"combine flush" register, 82
combine interface, 2, 43, 49

abstaining from, 58
auxiliary information, 52
conflicts with broadcast interface, 96
flushing, 82
message format, 51
message ordering, 51
messages, 51
network-done messages, 55
parallel prefix. See scanning
pipelining, 51
receiving, 53
reduction messages, 54
registers, 50
scan overflow, 55
scanning, 54
sending, 51
status register, 53
word order in scans, 54, 94

combine messages, word order in, 94
combine patterns

addition (signed), 52
addition (unsigned), 52
backward scan, 52
exclusive OR, 52
forward scan, 52
inclusive OR, 52
maximum, 52
network-done, 52
reduction, 52

combiner field, combine interface,
legal values, 52

"combiner value" supervisor field,
of combine interface, 59, 60

communications networks.
See networks; CM-5 networks

configuration, partition, 84

"configuration complete" register, 77, 84
"configuration" register, 84
conflicts, between broadcast and combine

interfaces, 96
Connection Machine CM-5 Technical

Sumwnmary, xv

constants
NI base address, 9, 17
programming, 8
register, address, 9
register field, position and length, 9

Control Network, 1, 2, 43
See also broadcast interface;

combine interface;
global interface

disabling, 85
"Control Network disable" flag, 77, 85
control register, register type, 7
"control" register

of a network interface, 13, 21
of broadcast interface, 44, 48
of combine interface, 50, 58

"count mask" register, 29, 36, 56
"current" message, in receive FIFO, 19

D

Data Network (DR), 1, 2, 2, 27
addressing. See addressing
All Fall Down Mode, 40

address word format, 41
detecting, 40
resending, 41
triggering, 40

auxiliary information, 32
chunk table, 78
interactions between interfaces, 28
length field, 32
message format, 32
message length limit, 32
message mode bit, 32
message modes, physical and relative, 31
message ordering, 30

Version 7.1, October 1992

Concepts Index 161



162NISsts Prsgramming

Data Network (DR), con't
message tags, 34, 93
messages, 30

auxiliary information, 32
length field, 32

mode bit, 32
tag field, 32

receiving, 33
registers, 28
send FIFO, registers, 32
sending, 32
tag value of messages, 32

Data Network interfaces
Data Network (DR), 28
left interface (LDR), 2, 28
registers, 28

See also Data Network
right interface (RDR), 28

detecting arrival of messages, 18
Diagnostic Network, 2
disabling the Control Network, 85
discarded messages, 16

and sendok flag, 19
using efficiently, 92

doubleword data, alignment, 94
doubleword operations, for reading/writing

registers, 15
doubleword operators, 91
"DR network done" flag, 34, 39, 53
"DR receive state" field, 34, 38
"DR send state" field, 34, 34, 38

E

exclusive OR, combine operation, 52

F
fields, register

See also register fields
position and length constants, 9

flags and fields, status. See status registers,
flags and fields

I

"flush complete" flag, 77, 82
"flush" register, of combine interface, 82
flushing, the combine interface, 82
format of messages, 14, 15

for asynchronous global interface, 64
for broadcast interface, 46
for combine interface, 51
for Data Network, 32
for supervisor asynch global interface, 65
for synchronous global interface, 63

forward scan,
combine pattern, 52

G
generic network interface, 13

using effectively, 2S
"global abstain" register,

of synchronous global interface,
62,63

global interface, 2, 43, 61
asynchronous interface, 64
supervisor asynch interface, 65

"global receive" register,
of synchronous global interface,
62,62

"global send" register,
of synchronous global interface,
62, 63

Green broadcast interrupt, 75
Green interrupt, 69, 72, 134

Green broadcast interrupt, 69, 73, 75, 134
on add scan overflow, 55, 69, 73, 137
on All Fall Down message receipt,

40,69,73, 135
on empty combine receive FIFO,

59, 69, 73, 136
on interrupting DR message tag,

35, 69,73, 134
on message receipt,

23, 63, 65, 69, 72, 135, 136
"Green interrupt clear" register, 73
"Green interrupt level" field, 74

Version 7.1, October 1992

162 NI Systems Programming



Concps Index163'...

H

header files
cmsignal.h, 36
Pa. h, 8, 145

"hodgepodge" register, 77
and asynchronous global interface, 62
and supervisor asynch global interface, 62
and synchronous global interface, 62
broadcast interrupt flags, 75
configuration flag, 84
flush complete flag, 82
global rec interrupt enable flag, 64, 65
NI timer interrupt enable flag, 83
send stop flag, 85
supervisor rec interrupt enable flag, 65
sync global rec interrupt enable flag, 62, 63

inclusive OR,
combine operation, 52

interface, register
of asynchronous global interface, 64
of broadcast interface, 44
of combine interface, 50
of Data Networks, 28
of global interface, 62
of supervisor asynch global interface, 65
of synchronous global interface, 62

"interrupt cause" register, 73
"interrupt clear" register, 73
"interrupt level" register, 74
"interrupt now" register, 83
interrupts, 11, 67, 127

and tag fields, 35
broadcast, 75
Bus Errors, 69

and bad address register, 83

on abstain flag change during global
message, 63

on bad memory access, 69

on broadcast interrupt error, 75
on broadcasting with

sending disabled, 49

interrupts, con't.

on combine flush error, 82

on configuration error, 85

on excessively long messages, 15

on improper message format, 15

on network-done message error, 56
on reading from empty rec FIFO, 20

on reading/writing
undefined addresses, 6

on sending with
abstain flag set, 21, 63

on user access
of supervisor features, 6

on user sending message with
supervisor tag, 35

on user sending physical mode
message, 33

Bus errors, 137
on bad memory access, 137

cause and clear registers, 73
classes, 11, 67
detecting and clearing, 73
Green, 69, 72, 134

on add scan overflow, 55
on All Fall Down message receipt, 40

on broadcast interrupt, 75
on empty receive FIFO, 59

on interrupting DR message tag, 35

on message receipt, 23, 63, 65
interrupt levels, 74
Orange, 68, 72, 130

on broadcast interrupt, 75
on NI timer interrupt, 83

pathways, 70
recovery, 76
Red, 68,70, 128

off-chip faults, 71

on broadcast interrupt, 75

on-chip faults, 71
using to retrieve Data

Network messages, 35

Version 7.1, October 1992

Concepts Index 163



164N Sye

interrupts, con't.
Yellow, 68, 72, 131

on bad relative address, 31
on broadcast interrupt, 75
on broadcast/combine collision, 51

on broadcast/combine conflict, 75

on combine/abstain flag error, 58

on negative message count, 37
IOR, combine operation, 52

L
left Data Network interface (LDR), 2, 27
length limit

of network interface FIFOs, 15
on broadcast interface messages, 46
on Data Network messages, 32

length of message
remaining words, 20
total (as received), 20

"lock" flag
of a network interface, 23, 24
of broadcast interface, 48
of combine interface, 59
of Data Network interfaces, 39

M

mapping, relative to physical addresses, 80
maximum, combine operation, 52
memory map,

NI memory region and registers,
quickref sheet, 99

memory maps
network interface registers, 14
node virtual memory, 11
of broadcast interface registers, 45
of combine interface registers, 50
of Data Network registers, 29
of global interface registers, 61

memory subsystem, of nodes, 3
"message count" register, 29, 36, 39, 56
message counting, 36

in network-done operations, 56

message format
asynchronous global interface, 64
broadcast interface, 46
combine interface, 51
Data Network, 32
supervisor asynch global interface, 65
synchronous global interface, 63

message ordering,
broadcast interface, 46

message tags, 34
user/supervisor, 35

messages
between PM and nodes, 90

using the Data Network, 90
broadcast interface, 45
combine interface, 51

word order, 94
Data Network, 30
detecting arrival of, 18
discarded, 16

and send ok flag, 19
format 14

for asynchronous global interface, 64

for broadcast interface, 46

for combine interface, 51
for Data Network, 32
for supervisor asynch

global interface, 65
for synchronous

global interface, 63
global interface, 61
length field, for Data Network, 32
mode bit, for Data Network, 32
modes, (for Data Network), 31
network, 14
receipt order, for Data Network, 30
receiving, 18

microprocessor,
of processing node, 3

"middle" Data Network interface, 2

Version 7.1, October 1992

I

NI Systems Programming164



ConcptsInde 16

N

"network done" flag
See also "DR network done" flag
of Data Network,

(network-done operation), S6
Network Interface (NI), 1, 5

base address, 10
constant, 9, 17

chip, 1, 
interrupts, 11, 67, 127
memory region,

occupied by registers, 6
memory regions,

physical and virtual, 10
operation times, 91
performance hints, 91
register names, 7
register types, 7
registers, 6

Reset, 12, 86
Revision A chip,

software workaround for, 94
serial number, 86
supervisor area, 6
timer, 83
user area, 6

network interfaces,
interactions between, 96

network-done
combine interface operation, 49, 55
combine operation, 52
message format, 56

network-done messages,
(via combine interface), 55

networks, 2
common features, 13
conflicts between.

See broadcast network, conflicts;
combine network, conflicts

interface, registers, 13
interface numbering, 17
interfaces, generic, 13
messages, 14

NI. See Network Interface (NI)

NI Reset, 86
"NI timer enable" flag, 77, 83
node, program, 4
nodes. See processing nodes

0
off-chip faults, (Red interrupts), 71
on-chip faults, (Red interrupts), 71
operating system.

See CM-5 operating system
operation times, of NI, 91
OR, combine operation, 52

See also XOR, combine operation
Orange broadcast interrupt, 75
Orange interrupt, 68, 72, 130

NI timer interrupt, 68, 72, 83, 130
Orange broadcast interrupt, 68, 72, 75, 131

"Orange interrupt level" field, 74
order of words, in scan messages, 54
overflow, in addition scans, 55

P
parallel prefix, combine interface operation.

See scanning
partition. See partitions
"partition base address" register, 78, 79
partition configuration, 84
"partition configuration" register, 84
partition manager (PM), 3

address of, 31
code, 4
exchanging data with nodes, 89

"partition size" register, 78
partitioning, by system administrator, 3
partitions, 3

configuration, 84
defined by the NI chunk table, 78
relative addressing within,

(for Data Network), 31
size, 3

pattern field, combine interface,
legal values, 52

performance hints, 91

Version 7.1, October 1992

Concepts Inrdex 165



166 NI Systems ro

physical, addressing
See also addressing
translation from relative addressing, 78

physical base address,
of NI memory region, 10

"physical self address" register, 78
pipelining combine operations, 51
"private" register, 23

of a network interface, 13, 18, 23
of broadcast interface, 44, 48
of combine interface, 50, 59
of Data Network interface, 28, 39

processing nodes, 1, 3
address registers, 78
address translation, 78
addresses of, 30

registers, 78
addressing. See addressing
exchanging data with PM, 89
internal structure, 3

programming models, user and OS, 4
Programming the NI, xv
programs, NI, 4
protocol

See also messages, format
for sending messages, 15

Q
FIFO register

of a network interface. See receive FIFO
register, send FIFO registers

register type, 7

R

reading a message, 18
reading registers,

using doubleword operators, 91
"receive abstain" flag

for broadcast interface, 48
of a network, 21, 21
of combine interface, 58
of global interface, 63

"receive FIFO empty interrupt enable" flag,
of combine interface, 59

"receive FIFO full" flag
of a network, 23, 25
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39

"receive ok interrupt enable" flag
of a network, 23, 23
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39

"receive interrupt mask" register, 29, 35
"receive length left" field

of a network, 19, 20
of broadcast interface, 47, 48, 48
of combine interface, 53
of Data Networks, 34

"receive length" field
of a network, 19, 20
of combine interface, 53
of Data Networks, 34

"receive ok" flag
of a network, 18, 19, 20
of broadcast interface, 47
of combine interface, 53
of Data Networks, 34

receive FIFO
network register for, 18
of a network, 7, 14, 18

receive FIFO register, of a network, 18
"receive state" field, of Data Network, 34, 38
"receive stop" flag, of a network, 24
"receive" register

of a network, 13
of broadcast interface, 44, 47
of combine interface, 50, 53
of Data Networks, 28, 33

receiving
a broadcast interface message, 47
a combine interface message, 53
a Data Network message, 33
a network message, 14, 18

Version 7.1, October 1992

4

166 NI Systems Programnming



C.ncep:s index 167

receiving, con't.
a network-done message, 56
a reduction-scan message, 54
a scan message, 54
a synchronous global message, 63
an asynch supervisor global message, 65
an asynchronous global message, 64

Red broadcast interrupt, 75
Red interrupt, 68, 70,128

off-chip faults, 71
on cache/MMU error, 68, 71, 129
on Control Network

checksum failure, 68, 71, 128

on Control Network
hardware failure, 68, 71, 129

on Data Network
checksum failure, 68, 71, 128

on memory controller error, 68, 71, 129
on NI chip fault, 68, 71, 128
on-chip faults, 71
Red broadcast interrupt, 68, 71, 7, 130

"Red interrupt level" field, 74
reduction

combine interface operation, 49, 54

See also scanning
combine pattern, 52

"reduction abstain" flag,
of combine interface, 21, 58

reduction messages,
(via combine interface), 54

register constants, 8
casting, for C coding, 9

register fields
names, 7
programming constants, 8

register interface
of asynchronous global interface, 64
of broadcast interface, 44
of combine interface, 50
of Data Networks, 28
of global interface, 62
of supervisor asynch global interface, 65
of synchronous global interface, 62

register naming format,
niinterface purpose, 7

register types, 7
register

address constants, 9
doubleword operators, 91
names, 7
NI, 6
status, 19

relative, addressing
See also addressing
translation to physical addressing, 78

Reset, NI, 12, 86
Revision A NI Chip, software workaround, 94
right Data Network interface (RDR), 2, 27
RISC microprocessor, of processing node, 3
router, 27

See also Data Network
"router done" flag.

See "DR network done" flag
router-done, 52

See also network done

S
scan overflow, in addition scans, 55
"scan overflow interrupt enable" flag,

of combine interface, 55, 59
"scan start" register,

of combine interface, 50, 55
scanning

addition scan overflow, S5
combine interface operation, 49, 54

scanning with segments. See scanning
segmented scanning. See scanning
select address, for chunk table addressing, 79
"send combiner value" supervisor field,

of combine interface, 59, 60
"send empty" flag

of a network, 19, 20
of broadcast interface, 47
of combine interface, 53

Version 7.1, October 1992

Concepts Indexx 167



168 NSyesPgrmm

"send FIFO enable" flag,
of broadcast interface, 48, 49

"send length" supervisor field,
of combine interface, 59, 60

"send ok" flag
and discarded messages, 19
of a network, 19, 19
of broadcast interface, 47
of combine interface, 53
of Data Networks, 34

"send pattern" supervisor field,
of combine interface, 59, 60

send FIFO
network registers for, 15
of a network, 7, 14,15

"send space" field
of a network, 19, 20
of broadcast interface, 47
of combine interface, S3
of Data Networks, 34

"send start" supervisor field,
of combine interface, 59, 60

"send state" field, of Data Network, 34, 38
"send stop" flag, of broadcast interface, 23, 25
"send" register

of a network, 13, 15
of broadcast interface, 44, 46
of combine interface, 50, 51

using to clear the send FIFO, 59
of Data Networks, 28, 32

send-first addresses
calculating, 17
constants, 17

"send-first" register
of a network, 13, 15
of broadcast interface, 44, 46
of combine interface, 50, 51
of Data Networks, 28, 32

sending
a broadcast interface message, 46
a combine interface message, 51
a Data Network message, 32

message modes, 31
a network message, 14, 15

sending, con't.
a network-done message, 55
a reduction-scan message, 54
a scan message, 54
a synchronous global message, 63
an asynch supervisor global message, 65
an asynchronous global message, 64

sending messages, between PM and nodes, 90
using the Data Network, 90

serial number (of Ni), register, 86
simulating arrival of a message, 19, 95
status register

fields and flags, 19
of a network interface, 13, 19
of broadcast interface, 44, 47
of combine interface, 50, 53
of Data Networks, 28, 34, 56
register type, 7

"stop send" flag, 77, 85
"stop" flag

of a network, 23
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39

supervisor area, of NI memory region, 6
supervisor asynchronous global interface,

of global interface, 61, 62
"supervisor asynchronous global" register,

of supervisor asynch global interface,
62,65

supervisor broadcast interface, 44
See also broadcast network

supervisor message tags, 35
supervisor operations, 6

clearing combine send FIFO, 59
clearing interface send FIFO, 24
grabbing control of rec and

status registers, 24
reserving Data Network message tags, 35
simulating arrival of a message, 19, 95
triggering All Fall Down Mode in DR, 40

"synch global rec interrupt enable" flag,
of synchronous global interface,
62,63,77

Version 7.1, October 1992

168 NI Systems Progamming



Concpts Ip;£nrxS X 169.z

"synchronous global completion" flag,
of synchronous global interface,
62,63

synchronous global receive interrupt, 63
"synchronous global receive" flag,

of synchronous global interface,
62,63

synchronous interface, of global interface,
61,62

T
tag fields

and interrupts, 35
and message counting, 36
of Data Network messages, 34

tag value, of Data Network message, 32
timer, NI. See NI timer
timer (NI), register, 83
"timer enable" flag, 83
timing, of NI operations, 91
total length of message, 20

U

user area, of NI memory region, 6
user broadcast interface, 44

See also broadcast network
user message tags, 35
user programming model, 4
"user tag mask" register, 29, 35

V

value, of a message, (single or doubleword)
15

virtual base address, of NI memory regions,
10

W
writing a value to recv register,

to simulate arrival of message, 19
writing registers,

using doubleword operators, 91

X

XOR, combine operation, 52

y
Yellow broadcast interrupt, 75
Yellow interrupt, 68, 72, 131

on bad relative address, 31, 72
on broadcast/combine conflict, 51, 68, 72,

75,133
on combine abstain flag error, 58, 68, 72,

132

on illegal relative address, 68, 133
on negative DR message count, 37, 68, 72,

132

Yellow broadcast interrupt, 68, 72, 75, 131

"Yellow interrupt level" field, 74

Version 7.1, October 1992

Concepts Index 169
..... ~*""'---'--l9¢

-- v-


