The
Connection Machine
System

NI Systems Programming

Version 7.1
October 1992

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, October 1992

Heok ke 3 3k 3 3 3 2k e 3k 2k . t 1 1 17 * e Sk 34 ok 36 3K 3i¢ 3 26 b e 3k 3k k3§ 3k ol 3¢ ok ¢ ke sk

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

3ok 2 ke ol L e 2 3 3 3¢ 3k ol e 3 ok sk 3 3ok 3 dfe e Sl e 3k ke 2 ¢ 2 fe e 2k e 3k e 3k 3k 3 ke 2 e e e 2 ol ok Sk ek

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-5, CMOST and NI are trademarks of Thinking Machines Corporation.
Thinking Machines® is a trademark of Thinking Machines Corporation.

SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 021421264
(617) 234-1000

Contents

LSt Of FigUIeS .. it ittt it ittt ittt et i et eiennseeaeeteannaaaaeaannson xi
About This Manualttt it ittt tteereaaeenaanennaeennns xiii
CUSLOMET SUPPOIL . . .t vvtit ittt et tteretnsnseesosoesotonronsnassosannansnnns xvii
Chapter 1 The Network Interface Chip 1
1.1 The CM-5 System: Nodes and Networksccovvienenennennns. 1

1.1.1 The CM-SNEIWOIKS cuvvriiiiiitenreestrnnaneneenn 2

1.1.2 Processing NOdescoiiiriiiiiiniiiieinneecnnns 3

1.1.3 Partitions and Partition Managers..............covvvvvnnnn. 3

1.14 Programming Modelsooiiiieneiniiiennnennnnnns 4

12 TRe NI QD .ottt it ii ittt itietenerenenansnensanenans 5

13 The NI ReISIEISuiiiiieiteinnnrrereerreerenrnocneennnaaneas 6

13.1 NIRegiSter TYpescvvvitriiiiiiieeiereennnnennnnnns 7

132 NIRegisterand Field Namesccoveveinennennn. 7

1.3.3 NI Register and Field Programming Constants 8

1.3.4 For the Curious: The NI Base Address — Physical and Virtual .. 10

2 S 11 (o o1 3 e 11

1S NI RESEL ...ttt it iteereresacnsneseenoassneasnnnans 12
Chapter 2 A Generic Network Interface 13
2.1 Network Interface Registerscovviiiinrrennneenneeennennnn. 13

2.2 NetworKk MesSages .. ovivtine it iiiieeeiieeeeneeeennnnennneannns 14

2.2.1 Performance Note — Using Doubleword Operations 15

23 Sending aMeSSage ... v vttt i e it e 15

2.3.1 MessageDiscardingcviiiiiiiriiinnnninanannns 16

2.3.2 Auxiliary Information il 16

233 Calculating ni_interface_send first Addresses 17

Send First Address Constantsovveveeneneenann 17

24 ReceIVINZ A MESSAZE ... vvviiiner it ir e rrtranaaeeereinneeeenas 18

2.4.1 Detecting Arrival of aMessageccvvviivnnnnn. 18

2.4.2 Simulating the Arrival of aMessageooivvveennnn. 19

Version 7.1, October 1992 iii

iv NI Systems Programming

Chapter 2 A Generic Network Interface cont’d

2.5 The Status RegiSIer ... iitiiiriiiiiieinieereneioneennennnnannas 19
251 The“Send OK" Flag......ovvvvrrnnerennnnecennnnaennnn. 19
2.5.2 The “Send Space” Field and “Send Empty” Flag 20
2.5.3 The “Receive OK” Flag and “Receive Length” Fields 20
2.6 Abstaining from an Interface — The Control Register 21
26.1 Effectof AbstainFlagsccoovviiiennnennennaie.. 21
2.6.2 Combine Interface Abstain Flagscovvievenennn, 21
2.63 Usethe AbstainFlags Safelyc.oviiviivinens, 22
2.64 BeingaGood Neighborcciiiiiiiiiiinnennnnnnn 22
27 The Private Registert ittt ittt iiiiiieeenensnencnaanenns 23
2.7.1 Message Receipt Interrupts — The Rec Interrupt Enable Flag ... 23
2.7.2 Clearing the Interface’s Send FIFO — The Lock Flag 24

2.7.3 Grabbing the Receive FIFO Registers -—— The Rec Stop Flag 24
2.74 Blocking Unsent Broadcast Messages — The Send Stop Flag ... 25

2.7.5 Detecting a Full Receive FIFO — The Receive Full flag 25

2.8 Using a Generic Network Interfacecoiviiiivnnennnnn, 25
2.9 From the Generictothe Specificccvivviririiiiiniinnnnen, 26
Chapter 3 TheDataNetworkoiiiiiiiiiiinnnn., 27
3.1 The Data Network Register Interfacesccoivviveneriennnn. 28
3.2 DataNetwork Messagesovviinniiiiiiiiie e iiinneerennnnns 30
3.3 Data Network Addressingcoiveiiiiriiniiiiiinnvennnnnn 30
3.4 Sending and Receiving Messagesc..evviveeveenrnnrennnnns 32
35 TheStamsRegisterooiiiiiiiiiiiiiiiiiii it 34
351 Message Tagscovvviivinnnenennnnnnns e 34
User/Supervisor Tag Reservationcccuu... 35

TagFieldsand Interruptscovvvveninnnnnn. 35

Tag Fields and the Message-Counting Registers 36

Message Count Disablingcovvennn.... 36

Negative Message Count Interrupts 37

3.5.2 IMPORTANT — Check the Tag before Receiving a Message 37

3.5.3 The Send and Receive State Fields 38

3.54 TheNewtwork-DoneFlagcoooiiiiiiiins. 3%

3.6 The Private RegiSIerottt i ittt ettt eneeens 39
37 AlFallDown Modecciiiiiriiiiiiiii ittt 40
3.8 Data Network Usage Note: Receive before YouSend 42

Version 7.1, October 1992

Contents v
S T e o S e e D e

Chapter 4 The Control Networkcooiviiiiiin... 43
4.1 TheBroadcastInterfaceccvviviiiiiininnnneinnenennnnn, 44
4.1.1 Broadcast Register Interfacesccovivviinnn.. 4

4.1.2 Broadcast MeSSageScvrtiiiererreerieeenaeennns 45

4.1.3 Sending Broadcast MesSagescocveeeeteenienennnn 46

4.14 Receiving Broadcast Messagescvveveeneennnnnann 47

4.1.5 The Broadcast Status Registercvviivieiinennnnnn 47

How to Interpret the Value of the “Length Left” Field 48

4.1.6 Abstaining from the Broadcast Interfaceccoovvnn. 48

4.1.7 The Broadcast Private Registercciviiinnnnnnnn. 48
TheSendEnable Flagccovviiniinnnniennnnnn. 49

4.2 TheCombineInterfacec..oiiiiiiiiiiiinnernnennnnnnnnns 49
4.2.1 The Combine Register Interfacecveevvvunnneenn. 50

422 Combine MesSagescoovvieerenernneneeeeennnnnneas 51

4.2.3 Sending Combine Messagescovvvieeennneennennn. 51

4.2.4 Receiving Combine Messageccvvveeeeenennennnnnn 53

4.2.5 The Combine Status Registerccovveievirinnennnenn 53

4.2.6 Scanning (Parallel Prefix) and Reduction Operations 54
Scanning with Segmentscccoviivennnnnn.. 54

Addition Scan Overflowcciviiiiniiiinninnnnn 55

4.2.7 Network-Done Messagescovvvvevnennnnreneeennns 55

How Network-Done Works...cooviiiiineninnnnnnnn. 56

..And Why You ShouldCarecceiivnn.. 57

4.2.8 Abstaining from the Combine Interface 58

The Reduction Receive Abstain Flag 58

4.2.9 The Combine Private Registerccoivviirnnnn... 59

Empty Receive FIFO Interruptovvivininnnn.n, 59

Clearing the Combine Send FIFO 59

43 TheGlobalInterfaceiiiiiiiiiiiiiiiiiiiiinnnnnns 61
4.3.1 The Three Global Register Interfaces 62

4.3.2 The Synchronous Global Interfacecocvvvvunn.. 62
Sending and Receiving Messagescovvvvevrnnnn... 63

Abstaining from Synchronous Global Messages 63

Synchronous Global Receive Interrupt 63

4.3.3 The Asynchronous Global Interface 64
Sending and Receiving Messages.............ccuvuevnnn. 64

Asynchronous Global Receive Interrupt 65

4.3.4 The Supervisor Asynchronous Global Interface 65
Sending and Receiving Messagescovvevvnnnn. 65

Supervisor Asynchronous Global Receive Interrupt 65

Version 7.1, October 1992

Chapter §

5.1
52

5.3
54
55
5.6

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Chapter 7
7.1

72

NI Systems Programming

....... \W

NIINterruptscooviiiiiiiiiii ittt ieieanaass 67
Interrupt Classesottt it ittt it e e 67
Interrupt Pathways .. .vvirititiiiiiierire et aertnennesnsannanss 70
52.1 RedINtermupts ...ovvvieriinriiiiieennninnereoaseanns 70
522 OrangeINterruptscouiuiviierieneranoneesecannannns 72
523 YellowIntermupts . .. oo ittt ittt iiiie it inesaaean 72
524 GreenINtEITUPLS . ..ovvvvvennnerrnneeennneroneannnneanns 72
The Interrupt Cause and Clear Registersoovvveiiiniinnnnnnnns 73
Interrupt Levelscooutiiiiiiiiiiiiiinniiiienrreentnscananns 74
Broadcast INtermuptscoitietiiiir it iaeti et e 75
Recovering from INTEITUPLScvvvviinnnrnvererrasnnssnnonannns 76
Other NI Interfaces and Features 77
The “Hodgepodge” Registerooiviiiiiiiiiiininiiiinnennenns 77
Node Address RegiStersiiiiiiiiiniinerneennreneennennnnns 78
NI Chunk Table and Address Translationcooiiivennann. 78
Combine Interface Flushcciiiiiiiiiiiiineiinnennnns. 82
Y 1T) 011 83
The Bad Address Registerovvuiirnniinirinereeanrenannansn 83
NI Partition Configuration e, 84
Disabling the Control Networkc.ciiiiiiiinrnneenennnnns 85
NISerial NUmberooiiiiiiiiiii ittt iiiaie i iiannnnnes 86
NI RSB o ivtteitinerserersunnnenaseeeenerenneneneeeennns el 86
NI Programming Issuescoovenenns. 89
The Partiion Managerovvtterainnnneeeennennnneeennnnnses 89
7.1.1 Sending Messages between the PM and the Nodes 90
7.1.2 For the Curious: Using the DataNetwork 90
Performance HINIScuuieennniennvenereneenrneeernernnanens 91
7.2.1 NIRegisterOperation Timescoovveiennnnn... 91
7.2.2 Reading and Writing Registers with Doubleword Values 91
7.2.3 Use Message Discarding for Efficiency 92
7.2.4 Set the Abstain Flags Once and Forget Them 92

Version 7.1, October 1992

Contents

Chapter 7 NI Programming Issues cont’d

7.3 Potential Programming Traps and Snaresc..vvvvvvnvenennenn 93

7.3.1 Pay Attention to Data Network Addresses 93

7.3.2 Check the Tag before Retrieving a Data Network Message 93

7.3.3 Make Sure Doubleword Data Is Doubleword Aligned 94

7.3.4 Order Is Important in Combine Messages 94

7.3.5 Restriction on Network-Done Operations for Rev A NI Chips ... 94

7.3.6 Simulating Receipt of Messagesoovvvvneierieeennnn 95

7.3.7 BroadcastEnablingttt 96

7.3.8 Broadcast and Combine Interface Conflicts 96

7.3.9 Be Careful When Altering Abstain Flags 96
Appendixes

Appendix A NIMemoryMap i, 99

Appendix B NI Registers, Fields, and Constants 103

B.l NIREZISIEIS ...ttt e e i e e e 103

B.1.1 Global and System Registerscovivinennunnnnn 104

B.1.2 Network Interface Registersc.cvvviveiiernnennnn. 105

B.2 NI Message Length LimitConstantscciiiiinennnnn.. 106

B.3 Send First Register Addresses e e e e e e 107

Bid NIFields ... i i it et et e e 110

B.4.1 Combined Data Network (DR) Fields 110

Theni_dr statusRegister........................ 110

Theni_dr private Register 111

B.4.2 Left Data Network Interface (LDR) Fields 111

The ni_ldr status Register 111

The ni_ldr_privata Register 111

B.4.3 Right Data Network Interface RDR) Fields 112

The ni_rdr status Register 112

The ni_rdr privateRegister 112

B.4.4 Broadcast Interface (BC) Fields 112

Theni_bec status Register........................ 112

The ni_bc_private Register 113

The ni_be_control Register 113

Version 7.1, October 1992

NI Systems Programming
S e]

B.4 NI Fields, cont.

B.4.5 Supervisor Broadcast Interface (SBC) Fields 113

The ni_sbc_status Register 113

The ni_sbec_private Register L 113

Theni_sbe _control Register 114

B.4.6 Combine Interface (COM) Fieldscoovvvnnn.. 114
Theni_com status Register 114

The ni_com private Register 114

The ni_com _control Register 115

B.4.7 Global Interface Fieldsoooiiiiiia, 115

The ni_sync_global Register 115

The ni_async_global Register 115

The ni_async_sup_global Register 115

B.4.8 InterruptRegister Fieldscoooiiiinnn, 116

The ni_interrupt_cause Register 116

The ni_interrupt_cause_green Register 116

The ni_interrupt_clear Register 117

The ni_interrupt_clear_green Register 117

B.4.9 Other Register Fieldsand Constants 118

The ni_interrupt_level Register 118

The ni_hodgepodge Register 118

The ni_bad_address Register 118

Appendix C Predefined Low-Level NI Constants 119
Appendix D NIInterrupts.............ccooiiiiiniiiiiiiiiiiiii i, 127
D.l RedINterruptsouiuviinneiiittiiiein i iiiiennannenns 128
D11 InternalFaultccciiieniennnnnnn. Red Interrupt 128

D.1.2 CN Checksum Error, DR Checksum Error Red Interrupt 128

D.13 CNHardEmorcooviiinnninnn. Red Interrupt 129

D.14 MCEmor,CMUEmor Red Interrupt 129

D.1.5 BCImermuptRed...........cooovviiinnnnn.. Red Interrupt 130

D.2. Omange INEITUPLScoottittuniinieeeeriiine e ernnneenennnnn 130
D.2.1 TimerInterruptcoovunnn.. Orange Interrupt 130

D22 BCInterruptOrangecouuu.. Orange Interrupt 131

Version 7.1, October 1992

Contents

SRR

Appendix D NI Interrupts cont’d

D.3 Yellow INLeITUPLIS . .o vt vt ittt it ittt e it et i ea s 131

D.3.1 BCInterrupt Yellow Yellow Interrupt 131

D32 COM AbstainChanged Yellow Interrupt 132

D33 DRCountNegativeovvvvviinnnn Yellow Interrupt 132

D.34 BCorCOMCollision..........ccvvvvnnn. Yellow Interrupt 133

D.3.5 BadRelative Address Yellow Interrupt 133

D4 Green IMermupls . ..ottt it ii it iie ittt i e 134

D4.1 BCInterrupt Greencvvvevnnen.. Green Interrupt 134

D42 DRReceiveTagcovvvvvvnnnnnnvnnnn, Green Interrupt 134

D.4.3 DR Receive All Fall Down Green Interrupt 135

D.4.4 Interface (DR, BC, COM, etc.) Receive OK ... Green Interrupt 135

D.4.5 Global Rec (Sync, Global, or Supervisor) Green Interrupt 136

D.4.6 ComReceive Empty o0t Green Interrupt 136

D.4.7 ScanOverflow ccviviiinnn.. Green Interrupt 137

D.5 BUSEITOrS ...t e e 137

D.5.1 BadMemory ACCESS .. .vvvvvvnrreenerneenenons Bus Error 137

Appendix E NI Programming Examples 141

E.1 Reading and Writing RegiSters ittt 141

E.2 Readingand Writing Subfields i i i, 142

E.3 Constructing Send-First Addressesccivreiiineennnnn... 143

Data Network Send-First Macroso, 143

Broadcast Interface Send-First Macros 144

Combine Interface Send-First Macrosc.cvvvevnininnn.. 144

Appendix F CMNA Header Files 145
Indexes

Programming ToolsIndexl 151

Concepts Index 159

Version 7.1, October 1992

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4,
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10,
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.
Figure 19.

CM-5 processing nodes linked by Data Network and Control Network. 1
The components of a typical processingnode.covvuieunennn. 3
A partition of nodes and its partition Manager.c..vuvuuann.. 3
NI provides access to features of the Data Network and Control Network. 5
The NI registers are mapped into user and supervisor memory areas. 6
Sample virtual memory maps showing location of NI memory region. 10
NI registers associated with eachnetwork. 0. 14
The three interfaces of the Data Network: DR, LDR,and RDR. 27
NI registers associated with each of the Data Network interfaces. 29
Relative addressing of nodes in a partition.coiviivinnennan... 31
The three interfaces of the Control Network: BC, COM, and Global. 43
NI registers associated with each of the broadcast interfaces. 45
NI registers associated with the combine interface. 50
NI registers associated with the global interface. 61
The possible pathways for colored interrupts. 70
Translation from relative addresses to physical addresses. 79
The chunk table is used to map contiguous relative addresses

onto discontiguous physical addresses.coviiiniiii i, 80
The partition manager stands apart from the partition it manages. 89
Relationship between CMINA and NI header files. 146

Version 7.1, October 1992 Xi

LT

Abo

Objectives of This Manual

This manual describes in detail the design, features, and proper use of the
Network Interface (NI) chip of the Connection Machine CM-5 system, at a level
sufficient for low-level CM-5 coders to make full use of the NI's features.

This manual describes the NI from a system programmer’s point of view. It
discusses user and supervisor features of the NI, and provides enough detail to
allow a knowledgeable CM-5 programmer to write code that manipulates the NI.
The appendixes of this document include C code examples and references to
on-line sources of sampie NI code.

Intended Audience

This manual is intended for use by knowledgeable CM-5 programmers. While
it contains some overview information, this document is a reference manual, not
a tutorial. This manual should be used in conjunction with other programming
guides and with assistance from Thinking Machines Corporation representatives.

For examples of NI programs written and compiled in C code, refer to the
existing Programming the NI manual.

Revision Information

This manual is new as of Version 7.1. It is based on the existing Programming
the NI manual, but includes additional supervisor information that was excluded
from Programming the NI.

Version 7.1, October 1992 Xiii

NI Systems Programmin,
A S SRSV A 02 VSN 3%

Organization of This Manual

Chapter 1 The Network Interface Chip
An overview of the NI chip’s purpose in the CM-5 hardware,
and a description of the important features of the chip.

Chapter 2 A Generic Network Interface
A description of common features found in most of the NI net-
work interfaces.

Chapter 3 The Data Network
The registers and features of the three Data Network interfaces.

Chapter 4 The Control Network
The registers and features of the three Control Network inter-
faces (broadcast, combine, and global).

Chapter § NI Interrupts
A description of the various interrupt classes of the NI, and of
the mechanisms used to detect and signal NI interrupts.

Chapter 6 Other NI Interfaces and Features
A description of NI registers and features not covered by the
preceding chapters.

Chapter 7 NI Programming Issues
A summary of important programming and performance consid-
erations that you should keep in mind while writing code that
manipulates the NI.

Appendix A NI Memory Map
A two-sided memory and register map, showing the arrange-
ment of the NI’s registers and register subfields.

Appendix B NI Registers, Fields, and Constants

A summary of the registers and fields of the NI chip and of the
programming constants that can be used to locate them.

Version 7.1, October 1992

Appendix C

Appendix D

Appendix E

Appendix F

About This Manual
S R R B R e R R e R R AR R P

Predefined Low-level Constants

A list of all low-level programming constants defined by the
files cmsys/ni_constants.h and cmsys/ni_defines.h,
with the symbols grouped by register and field.

NI Interrupts
A description of each of the possible NI interrupts, including
what they indicate and how to recover from them.

NI Programming Examples
A set of simple C code examples of routines that read and write
NI registers and perform other useful functions.

CMNA Header Files
Describes the content and relationship between the various
header files that define the CM Network Accessor interface.

Related Documents

These documents are part of the Connection Machine documentation set:

® Connection Machine CM-5 Technical Summary, January 1992

® Programming the NI, March 1992

Version 7.1, October 1992

xvi . NI Systems Programming

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, syntax statements and pro-
gramming language elements, such as keywords,
operators, and function names, when they appear
embedded in text.

italics Argument names and placeholders in function and
command formats.

typewriter Code examples and code fragments.
% bold typewriter In interactive examples, user input is shown in
regular typewriter bold typewriter and system output is shown in

regular typewriter font.

Version 7.1, October 1992

e

—

B

Customer Supportm n

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us iden-
tify and correct the problem. A code example that failed to execute, a session transcript,
the record of a backtrace, or other such information can gready reduce the time it takes
Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact that
person directly for support. Otherwise, please contact Thinking Machines’ home office

customer support staff:

U.S. Mail:

Internet
Electronic Mail:

uucp
Electronic Mail:

Telephone:

Thinking Machines Corporation
Customer Support

245 First Street

Cambridge, Massachusetts 02142-1264

customer—support@ think.com

ames! think!customer—support

(617) 234-4000
(617) 876-1111

xvii

Chapter 1
The Network Interface Chip

The Network Interface chip, or NI, manages the internal communications net-
works of the CM-5. This chapter presents an overview of the NI’s location and
function within the CM-3, as well as a description of the features of the NI that
are important to you as a programimer.

1.1 The CM-5 System: Nodes and Networks

The CM-5 contains a large number of processing nodes linked together by two
main internal networks, the Data Network and the Control Network.

Networks

Processing
Nodes

Figure 1. CM-5 processing nodes linked by Data Network and Control Network.

The Data Network is used for high-volume exchange of data between nodes. The
Control Network is used to control and synchronize the operations of the nodes.

Version 7.1, October 1992 1

NI Systems Programming
e X R T S

1.1.1 The CM-5 Networks

The two CM-5 networks are similar to each other in design. Both are scalable
high-speed data communications networks. However, the networks are quite dif-
ferent in structure and purpose.

The Data Network

The Data Network is a high-speed, high-bandwidth network designed to handle
the simultaneous node-to-node transmission of thousands of messages. The Data
Network is composed of two halves, the left interface and the right interface,
both of which are connected to all processing nodes. The left and right interfaces
can be used either independently or together as the combined Data Network.

Terminology Note: This combination of the left and right halves of the Data
Network is sometimes called the “middle” interface by NI programmers.

The Control Network

The Control Network is used for control tasks that require the joint cooperation
of all nodes. It provides three separate functions:

® The broadcast interface distributes a single numeric value to every node.
It consists of two subinterfaces: a user broadcast interface and a supervi-
sor broadcast interface.

= The combine interface receives a single value from each node, combines
the values arithmetically or logically, and then distributes the combined
result to all nodes.

= The global interface handles global synchronization of the nodes. It con-
sists of a number of distinct interfaces for synchronous and asynchronous
messaging by user and supervisor (OS) code.

For the Curious: The Diagnostic Network

There is also a third major CM-5 network, the Diagnostic Network, used by the
system manager 1o determine the operational condition of the CM-5 hardware
and to diagnose hardware problems. However, because the NI chip is not used
to access it, the Diagnostic Network is not discussed further in this manual.

Version 7.1, October 1992

Chapter 1. The Network Interface Chip 3
R N R s 3

2

1.1.2 Processing Nodes

Each processing node contains a RISC microprocessor, a memory subsystem,
and a Network Interface (NI) chip, linked together in a bus arrangement:

64-bit bus

| «— Data Network

:| «—= Control Network

Figure 2. The components of a typical processing node.

For the Curious: In the current implementation, the microprocessor is a SPARC
chip; it executes both user and operating system (OS) code. The memory subsys-
tem consists of up to 32 Mbytes of DRAM memory, controlled either by a single
memory controller or by a set of four vector units.

1.1.3 Partitions and Partition Managers

The processing nodes are grouped by software into partitions, with each partition
monitored by a partition manager (PM). (See Figure 3.) Each partition can be as
small as 32 nodes, or as large as the entire machine. The partitioning is controlled
by the system administrator, who can create and alter partitions as needed.

Plie||lP|lR|lP| - |P PM
Nodes Partition Manager

Figure 3. A partition of nodes and its partition manager.

Version 7.1, October 1992

NI Systems Programming

1.1.4 Programming Models

User Programming Model

From a user’s point of view, the CM-5 is the single partition of nodes associated
with the PM that compiles and executes the user’s code. CM-5 user programs
compile into two separate sets of code, one for the PM and one for the nodes.

The PM typically controls program flow, and handles all external interactions
(communicating with the user by keyboard input and screen output, exchanging
files and data with other computing systems over external networks, etc.).

The nodes typically operate in an event-driven loop, waiting for instructions
from the PM about which section of code to execute next.

OS Programming Model

From an OS point of view, the CM-5 is a set of partitions, each of which has a
number of associated processes that can be swapped in.

The CM-5 OS manages the execution and swapping of processes within parti-
tions, as well as any exchange of data that takes place between partitions (for
example, when a user program needs to read or write data from an I/O device).

Under the CMOST operating system shipped with the CM-5, each PM runs a full
and complete UNIX-based operating system, while each of the nodes runs a
small kernel of OS code that is optimized for computation and communication.
It is this kernel of code that provides the event-driven dispatch loop described in
the user programming model above.

Version 7.1, October 1992

Chapter 1.

R 2

1.2 The NI Chip

The NI chip serves as an intermediary between the microprocessor and the two
CM-5 networks. Each network provides a specific set of network interfaces, and
the role of the Network Interface chip is to make those interfaces available to the
node microprocessor, and thereby to user code and OS code.

Left Interface

Data <
/ Network Right Interface

i mlcra-.

Ei pracessaor . \ Broadcast Interface
. Control Combine Interface
Network
Global Interface

Figure 4. NI provides access to features of the Data Network and Control Network.

When the microprocessor directs the NI to send a message via a particular net-
work interface, the NI handles the dispatching of the message, and collects any
replies from the networks. The NI uses send and receive FIFOs to hold outgoing
messages until they can be sent, and to hold incoming messages until the micro-
processor reads them.

The NI chip is register-based; its network functions are controlled entirely by
reading and writing NI registers. Access to these registers is provided by
memory-mapping — the NI registers are mapped into the microprocessor’s
memory address space. From a programmer’s point of view, therefore, the NI
appears as a region of memory with some unique properties.

The microprocessor can either examine the registers of the NI chip to see whether
a message has arrived, or it can instruct the NI to signal an interrupt when a mes-
sage arrives. Interrupts can also be “broadcast” from one NI chip to all other NIs
in a partition.

Conwrol of the NI is therefore based on register operations, interrupts, and (in
extreme cases) NI Resets, which are described later in this chapter.

Version 7.1, October 1992

1.3 The NI Registers

The NI registers occupy a virtual memory region 512 Kbytes long. However, the
NI registers are actually mapped into microprocessor memory twice, as two sep-
arate virtual memory areas: the user area and the supervisor area. (See Figure 5.)

Processor Memory
Offset (in hex):
0x100000

Supervisor Area

0x080000
User Area

0 (base address)

Figure 5. The NI registers are mapped into user and supervisor memory areas.

The user area occupies 512K bytes of virtual memory, starting at the base address
of the NI memory region (see Section 1.3.4). The supervisor area occupies the
512K bytes immediately following the user area.

The user and supervisor areas contain the same registers at the same offsets, but
the hardware mapping is designed so that the NI registers for supervisor features
are only accessible from the supervisor area. Any attempt to access supervisor
registers from the user area signals a Bus Error. (A programmer sees this as a
segmentation violation.) Thus, when this manual speaks of “the supervisor” per-
forming an operation, or of an NI feature that is “restricted to the supervisor,” this
simply means that only programs with access to the NI supervisor area can per-
form the described operation or use the described feature.

In general, it is the responsibility of the operating system to make sure that user
programs don’t have access to the NI supervisor area. Typically, this is done by
using virtual address mapping to place the supervisor area in a memory region
to which user programs don’t have access.

Note: Some locations in the NI memory region don’t correspond to registers.
The effect of reading or writing these locations is not defined, but is never of
practical use to programmers. Typically, a Bus Error (see Section 1.4) is signaled.

Version 7.1, October 1992

1.3.1

1.3.2

NI Register Types

There are three basic types of NI registers:

FIFO Registers — These “registers”™ are actually the entry and exit points of
send and receive FIFOs associated with the CM-5 networks. Writing a value
to a FIFO register pushes that value into the send FIFO of the corresponding
network. Likewise, reading the value of a FIFO register pops a value from the
receive FIFO of the network.

Status Registers — These registers are composed of one-bit flags and multi-
bit fields, which indicate the state of the NI and its message FIFOs. For
example, most networks have two important status flags, send ok and
rec_ok, which indicate the current status of messages being sent or received.

Control Registers — These are status registers containing flags that not only
report the state of the NI, but also allow you to control it. Altering the value
of a control register’s flags has a corresponding effect on the state of the NI.
For example, each of the Control interfaces has one or more abstain flags that
control whether or not the NI participates in the transactions of the network.

Important: Some registers are less than 32 bits long, even though they occupy
a 32-bit memory location. When such a register is read, the value of the unused
bits is undefined. However, when writing to the register, the unused bits should
be written with either the same value that was last read from them, or with zeros.
The effect of failing to follow this restriction is not defined, but in some cases
serious failures can result. (In at least one case, failing to zero out the unused bits
causes your partition of nodes to crash. See Section 7.3.1.)

NI Register and Field Names
In this manual, the names of NI registers and register fields are given in the form:

ni_interface_purpose

The interface part of the name identifies the network interface, and is typically
one of the following abbreviations:

dr Data Network (left and right) bec broadcast interface
1ldr left interface com combine interface
rdr right interface global global interface

Version 7.1, October 1992

133

NI Systems Programming
o o R Oy e R R

R

The purpose describes the purpose of the register or field. Some common exam-
ples are:

send Register used to send a network message.

recv Register used to receieve a message.

send_ok Flag indicating that a message was sent successfully.
rec_ok Flag indicating that a message has been received.

For conciseness, this manual sometimes refers to a register or field by its purpose
alone. However, this is done only when the intended reference is unambiguous.

The appendixes of this manual include a memory map and a series of lists that
exactly specify each register’s location and the position and length of any sub-
fields it may have.

NI Register and Field Programming Constants

There are a number of predefined programming constants that you can use to
refer to NI registers and fields in your code.

These constants are defined in such a way that they can be used for both user and
supervisor code; the names of the register and field constants are the same for
both the user and supervisor areas, and are typically based on the names of the
registers and fields themselves.

To get access to these predefined constants, include the header file cmna . h:
#include <cm/cmna.h>

Note: Assembly-language coders may wish to load a more specific file of
constants. See the discussion of the CMNA header files in Appendix F.

Finding the Constant You Need

Appendix B of this manual lists the names of the NI registers, fields, and flags,
and gives the corresponding constants 10 use in accessing them. Appendix C pro-
vides a complete list of the available low-level register and field constants. The
types of predefined constants are described below.

Version 7.1, October 1992

Register Constants

The constants for registers specify the actual address of the register, and there is
one such constant for each NI register. To get the name of the constant that corre-
sponds to a register, uppercase the name of the register, and add the suffix “_a".
For example, the constant for the register ni_dxr_status isNI_DR_STATUS_A.

Note for C Programmers: The register constants are unsigned pointer values.
To use them in C code, you must cast them to type (unsigned *):

unsigned *ni_dr_status = ((unsigned *) NI_DR_STATUS):

If you don’t perform this casting step, the C compiler by default treats the
constants as integers, causing wamnings about “illegal pointer operations.”

Field Constants

The constants for NI fields provide the starting bit position and length of each
field. However, since a number of NI registers have some basic fields and flags
in common, the name of the appropriate constant isn’t always directly derivable
from the name of the field or flag in question. In many cases, you can obtain the
constant name by uppercasing the field or flag name, and adding the suffix “_p”
for the starting bit position, or “_L" for the field length.

For example, the ni_dx_status register has a field named ni_dr_rec_tag.
This field has two corresponding constants, NI_DR_REC_TAG_P and
NI_DR_REC_TAG_L, that give, respectively, the position and length of the field.

However, there is also a flag called ni_send_ok in the same register. Since most
of the networks have a send_ok flag, there is a single pair of constants, named
NI_SEND_ OK_P and NI_SEND_OK_L, which apply to all the networks.

NI Base Address Constant

There is also a predefined constant that you can use to refer to the base address
of the NI memory region (either user or supervisor) that you are using:

NI_BASE -— Base address of NI memory region (user or supervisor).

The value of this constant depends on the environment in which you compile
your code.

Version 7.1, October 1992

1.3.4 For the Curious: The NI Base Address — Physical and Virtual

The physical base address of the entire NI region (user and supervisor areas) is
fixed at a value determined for each node by hardware (essentially by two input
pins on the NI chip that are permanently set either high or low for each circuit
board). The actual physical address chosen by this method is the same for each
node throughout the CM-5 hardware.

The virtual base address of the user and supervisor areas depends on the way the
operating system sets up the virtual memory map. The operating system is free
to map the two areas of the NI memory region to virtual memory location, so
long as the user and supervisor areas each remain contiguous and user programs
are prevented from accessing the supervisor area.

Node Virtual Memory Maps

{without vector units) (with vector units installed)
hex address hex address

i 0xF840 0000 0xF840 0000

0xF800 0000 0xF800 0000

{ OXE000 0000 0xE000 0000

0xC000 0000

0x4000 0000 0x4000 0000

A : ox2010 oooo |- Giobalheap: ¥: 0x2010 0000
supervisor area supervisor area
- - - NI space - - - - 0X2008 0000 |...\ space - - - -| 0x2008 0000

userare; | ox2000 0000 | .usgrar-ea‘
<" local'heap:. . f S ;

" :uservariables. ..

0x2000 0000

0x0000 2000 0x0000 2000

2 0x0000 0000

Figure 6. Sample virtual memory maps showing location of NI memory region.

Version 7.1, October 1992

Chapter 1. The Network Interface Chip 11

1.4

The CMOST operating system distributed with the CM-5 maps the two NI re-
gions into a contiguous 1024 Kbyte block, as described in the preceding section.
Figure 6 shows two possible CMOST virtual memory maps, one without the vec-
tor units, and one with the vector units installed.

Interrupts

In addition to using registers to control the NI, you can also instruct the NI to
signal an interrupt to the microprocessor under certain conditions, such as the
arrival of a network message via a specific interface. These kinds of interrupts
can be used to trigger calls to routines of your program (for example, handlers
that automate the receipt of network messages). The NI also signals interrupts for
fatal sofware/hardware errors and other important events.

The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts tend to be the most severe and Green interrupts
the least severe.

The five interrupt classes can be briefly summarized as follows:
* Red interrupts indicate a hardware failure, or message checksum error.
® Orange interrupts indicate events that the operating system must handle.
= Yellow interrupts are triggered by fatal errors in user or OS software.

= Green interrupts are triggered by important non-fatal events that user or
OS software may want to handle specially.

= Bus Errors indicate address errors in user or OS software that prevent a
bus transaction from being completed.

The five types of interrupts, along with the registers used for enabling and con-
trolling them, are described in more detail in Chapter 5.

In this manual, the names of interrupts are given as abbreviations based on the
names of the register fields used to detect and clear them. For example, the Green
interrupt triggered by the arrival of a broadcast message is bec rec ok.

Version 7.1, October 1992

1.5 NI Reset

Under certain conditions, the NI chip is completely reset. Among other things,
this causes a number of its registers to be set to known states. The causes and
effects of an NI Reset are described in Section 6.10.

Version 7.1, October 1992

Chapter 2

A Generlc Network Interface

2.1

Each network interface of the Data and Control Networks has a corresponding
register interface — a set of NI registers that are used to send and receive mes-
sages through the network. Many of these register interfaces have a number of
features in common. This chapter presents a “‘generic” network interface that de-
scribes these features. With one exception (the global interface), all network
interfaces conform to the model described here. Individual variations for each
network interface are described in following chapters.

Important: The interface presented in this chapter is an abstract description that
is built upon in later chapters. There is no actual “generic network interface” for
the NI chip — merely a set of similar but independent network interfaces.

Network Interface Registers

For each interface that follows the generic model, the following NI registers are
used to communicate with that interface:

ni_interface_send first Used to send the first value of a message.

ni_interface_send Used to send the rest of the message.
ni_interface_recv Used to receive a message.
ni_interface_status Status register.
ni_interface_control Control register.
ni_interface_private Supervisor control register.

The purpose and use of each of these registers and subfields is described in the
sections below. Figure 7 contains a memory map showing the relative locations
of these registers in the user and supervisor memory areas.

Version 7.1, October 1992 13

14

NI Systems Programmmg

NI Memory Area interface Registers
(user or supervisor) hex offset
hex oftset rdr 0xE00
ni_rdr_send first| , ..., ldr 0%CO0
ni_ldr_send first| , ..., com 0xA00

ni_eom_sand=£irst 0x5000
ni_sbc_send first
ni_bec send ti:st

0x800
0x600
0x400

024000
| 0x3000
0x2000

0x1000

Sample hex
Register Set. offset

0x40
0x30
T e = 0%20
'GLOBAL& - N gy
SYSTEM.. . ,,
.REGISTERS S SSESS

T *| ni x status
=] 0x0000 e

REGISTERS L

0x10
0x08

0x00
T Control Network only
* {ndicates register with subfields

Figure 7. NI registers associated with each interface.

2.2 Network Messages

A network message is a sequence of word-length (32-bit) values. Its content, for-
mat, and length limit depend on the network. Each message is accompanied by
a small amount of awxiliary information (such as the length of the message, a tag
field, etc.). The format of this auxiliary data is also network-dependent.

Sending a message involves writing its sequence of values to the send FIFO regis-
ter of a network interface. As the message is written, the individual values are
collected in the send FIFO. When the entire message has been written to the FIFO,
the NI begins trying to send the message through the network. Similarly, receiv-
ing a message involves reading its values from the receive FIFO register of the
network interface.

Version 7.1, October 1992

Chapter 2. A Generic Network Interface 15

2.21

2.3

When a message arrives from one of the networks, the NI accumulates the mes-
sage in the corresponding receive FIFO. When the entire message has been
received, the NI sets a status flag, indicating a message is available. Your pro-
gram can then read the individual words of the message from the receive FIFO.

The send and receive FIFOs have a length limit (typically 5 words in the current
implementation). Longer messages must be divided into packets at the sending
node and combined at the receiving node. If you attempt to send a message that
is longer than the total length of the FIFO (that is, a message that couldn’t possi-
bly fit, even if the FIFO was empty) a Bus Error is signaled.

Performance Note — Using Doubleword Operations

You can use doubleword (64-bit) operations to read and write FIFO registers. A
doubleword read or write has exactly the same effect as the corresponding pair
of single-word (32-bit) reads or writes, but the doubleword operation is usually
more efficient. (See Section 7.2.2.) From here on, where this manual refers to a
*“value” of a message, you should understand this as referring to either a single-
or doubleword value. Any network-specific restrictions that prevent the use of
doubleword operations are noted in the descriptions of the networks themselves.

Sending a Message

For each network interface, there is a single send FIFO, but two FIFO registers
are used to access it in the process of sending a message:

ni_interface_send first Used for first value of a message.
ni_interface_send Used for the rest of the message.

Important: There is a specific protocol to follow in sending a message:

» The first value of a message must be written to the send_first FIFO
register. This tells the NI that a message is being composed, and also speci-
fies the message’s auxiliary information (see Section 2.3.2 below).

® The remaining values (if any) must be written to the send FIFO register.

If this protocol is not followed, a Bus Error is signaled, and the message currently
being composed is discarded.

Version 7.1, October 1992

16

2.3.1

2.3.2

NI Systems Programming

Message Discarding

A message being written to the send FIFO register of a network interface can be
discarded for any of a number of reasons:

& The send FIFO may be temporarily full.
®= The supervisor may have disabled message sending for that interface.

® The message may not have been written according to protocol.

Whatever the reason, when a message is discarded, it is complerely discarded.
Any previously writien values for that message are removed from the send FIFO,
and a new message can be started by writing a value to the send_£irst register.
It is as though you never began writing the discarded message in the first place.
(Writing additional values to the send register after a message has been dis-
carded is legal, but has no effect.)

Performance Note: You can use message discarding to your advantage and
thereby make your code more efficient. Rather than check the send_ok flag af-
ter writing each word of a message to the send FIFO, you can simply check the
flag once, after the entire message has been written. (For more information, see
Section 7.2.3.) '

Auxiliary Information

The auxiliary information of a message typically includes the length of the mes-
sage in words, as well as network-specific data such as a message tag. This
auxiliary information is transmitted implicitly when you write the first value of
a message to the send first register.

The send_first register for each network interface is actually mapped onto a
block of memory locations. Writing a value to any one of these locations has the
effect of writing that value to the send_f£irst register, but the actual memory
location that you use implicitly supplies the auxiliary information of the mes-
sage. (The low-order bits of the address actually contain the auxiliary data itself.)

Another way of saying this is that the length of a message, among other things,
determines the send first address you must use to send it.

Version 7.1, October 1992

Chapter 2. A Generic Network Interface 17

2.3.3 Calculating ni_interface_send_{first Addresses

The send_£irst address for a network message is a 32-bit value of the form:

31 12 14 12 11 3 0
SS base address | interface Sﬁgxiliqry daia 0 00

where interface is the interface number (an integer from 0 to 7 representing the
interface being used), auxiliary data is the auxiliary information of the message,
and base address is the base address of the NI memory area (user or supervisor).

The interface numbering is as follows:

1 — Data Network (left and right) 3 — broadcast interface
6 — left Data Network interface 4 — supervisor broadcast interface
7 — right Data Network interface 5 — combine interface

(The global interface does not conform to the generic interface model, so it does
not play a part in this numbering scheme. The values 0, 2, and 4 are reserved.)

The auxiliary data depends on the message, and each interface has its own format
for this field. However, all the interfaces have at least one field in common: a
length field, representing the length of the message in words. This field occupies
the low-order 4 bits of the auxiliary data field (bits 3 — 6 inclusive).

For the Curious: The auxiliary data is lefi-shifted three bits to leave sufficient
space between send_first addresses for doubleword read/write operations.
(See Section 2.2.1.)

Send First Address Constants

The following constants are used to construct send_£irst addresses:

NI_BASE The NI base address.
SF_FIFO_OFFSET The interface field offset (12).
AUXILIARY_ START P The auxiliary data field offset (3).

To construct a send_£irst address, combine the following values, lefi-shifted
as shown:

The NI base address: NI_BASE
The interface number: interface_number << SF_FIFQ_OFFSET
The auxiliary data field: auxiliary_data << AUXILIARY START P

Version 7.1, October 1992

2.4

2.4.1

The following interface_number constants are defined:

DATA_ ROUTER_FIFO Data Network interface (1).

LEFT _DR_FIFO Left Data Network interface (6).

RIGHT DR _FIFO Right Data Network interface (7).
USER_BC_FIFO User broadcast (BC) interface (3).
SUPERVISOR_BC_FIFO Supervisor broadcast (SBC) interface (4).
COMBINE_FIFO Combine (COM) interface (5).

The interface-specific constants defining the auxiliary data field format are
described together with the corresponding network interfaces in later chapters.

For C Programmers: Appendix E of this manual includes examples of simple
C macros that construct send_£irst addresses for each network interface.

Receiving a Message

For each network interface, the following register is used to receive messages:
ni_interface_recv FIFO register from which values are read.

A message is received by reading its value(s) in order from the recv register, one
at a time.

Detecting Arrival of a Message

When a message arrives in the receive FIFO, the NI sets the rec_ok flag in the
status register (see Section 2.5). You can repeatedly test the rec_ok flag to
determine whether a message has arrived (for example, in a top-level loop).

Alternatively, you can set a flag in the “private” register (See Section 2.7.) that
causes the NI to signal an interrupt whenever the rec_ok flag is set. You can use
this feature to “automate” message reception by having the interrupt trigger an
appropriate message-reading routine in your program.

Note: Access to the “private” register is restricted to the supervisor area. User
programs, which do not have supervisor access, must make a system call to set
the receive interrupt flag.

Version 7.1, October 1992

Chapter 2. A Generic Network Interface

2.4.2

2.5

2.5.1

A

Simulating the Arrival of a Message

The supervisor has the additional ability to write a value to the recv register; this
pushes a value into the tail end of the FIFO, as if it had arrived from the network.
The supervisor can use this method to simulate the arrival of a message from the
network (for example, when restoring the networks after a context switch), by
writing the values of the message to the recv register in the same order as they
are to be read out. (An appropriate value should also be written to the status
register to provide the corresponding auxiliary information.)

Note: An error is signaled if a value is written to the recv register when the
receive FIFO is full (that is, when the ni_rec_£ull flag in the private register
is set to 1 — see Section 2.7.5).

The Status Register

The ni_interface_status register can be used to check on the progress of a
message that is being sent, to detect when a message has been received, and to
retrieve information about a received message. The status register includes the
following flags and fields, which are the same for each of the network interfaces:

ni_interface_status Status register.
ni_send ok Flag, status of message being sent.
ni_send space Field, space left in send FIFO.
ni_send empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates arrival of a message.
ni_rec_length Field, total length of received message.
ni_rec_length_left Field, words left in receive FIFO.

Note: The rec status fields always reflect the “current” message in the receive
FIFO — the message that includes the next word waiting to be read from the
receive FIFO. If there is no pending message, the fields are undefined.

The “Send OK” Flag

If the send FIFO becomes full, all attempts to write a message (either to start or
to continue one) cause the message currently being composed to be discarded.
You can tell that a message has been discarded by examining the send_ok flag.

Version 7.1, October 1992

2.5.2

2.5.3

When the first value of a message is written to the send first register, the
send_ok flag is set t0 1. As long as the message has not been discarded, this flag
remains 1, indicating that the message is still being accepted. If the send_ok flag
is still 1 after you have written the final value of a message, you can assume that
that message has been accepted for delivery, and that you can start writing the
next one. If the message is discarded, the send_ok flag is set to 0, indicating that
the message has not been sent, and you should retry sending the entire message.

The “Send Space” Field and “Send Empty” Flag

The send_space ficld contains an estimate of the total space (in 32-bit words)
left in the FIFO. The actual space remaining may be less; ni_send space is
usually correct, but may become invalid because of supervisor activity (such as
when processes are swapped in and out). User code should not assume that push-
ing a message shorter than this value is always successful. The send_empty flag
is 1 whenever the send FIFO is empty — that is, when there is no pending mes-
sage in the FIFO.

Programming Note: NI programmers typically write an entire message to the
send FIFO and then check the send_ok flag to see whether it was accepted, so
the send_space field and send_empty flag typically aren’t used.

The “Receive OK” Flag and “Receive Length” Fields

Whenever a message is pending in the receive FIFO, the rec_ok flag is set to
1, and remains 1 while any part of the message remains to be read from the FIFO.
When no messages are waiting to be read, the flag is set to 0. (Attempting to read
from the FIFO when rec_ok is O signals a Bus Error.)

The ni_rec_length_left field contains the number of words of the current
message that are left in the receive FIFO. You can assume that it is safe to read
this many words from the receive FIFO. If you need the message’s original
length, the ni_rec_length field always contains the total length (in words) of
the current message as it was when it was received.

Version 7.1, October 1992

Chapter 2. A Generic Ne

2.6

2.6.1

2.6.2

SRS

twork Interface 21
L e S e e S e

Abstaining from an Interface — The Control Register

Each of the Control Network interfaces has a control register, containing either
one or two abstain flags. The names of the register and abstain flag(s) are:

ni_interface_contzrol Control register.
ni_rec_abstain Normal receive abstain flag.
ni_reduce_rec_abstain Combine reduction abstain flag.

Note: The global interface, always the exception, uses a different name for this
register. See Section 4.3 for more information.

Effect of Abstain Flags

The rec_abstain flag, when set to 1, causes the NI to “abstain” from receiving
messages via the corresponding interface. That is, the NI does everything neces-
sary to ignore the interface’s transactions:

® Arriving messages are simply ignored — they “disappear” with no indica-
tion of their arrival, and the rec_ok flag remains 0.

» Messages that require the participation of every node (global synch, etc.)
are allowed to complete without the abstaining node’s participation.

= Messages that require a value (scan messages, for example) are effectively
given an appropriate identity value for the type of message being sent.

While the rec_abstain flag is set for a given interface, it is an error to try to
send a message via that interface from the abstaining node. Attempts to write the
send_first or send registers under these circumstances signals a Bus Error.

Combine Interface Abstain Flags

The ni_reduce_rec_abstain flag is only defined for the combine interface,
and only applies to reduction operations.

In addition, reduction operations treat the value of the rec_abstain flag differ-
ently from all other interface operations.

For more information, see Section 4.2.8.

Version 7.1, October 1992

2.6.3

2.6.4

NI Systems Programming

RN

Use the Abstain Flags Safely

The abstain flag for a given interface should only be changed when that interface
is not in use. Specifically, when a interface’s abstain flag is changed:

= The send FIFO must be empty (that is, the send_empty flag must be 1).
®= The receive FIFO must be empty (the rec_ok flag must be 0).

®= There must be no messages in transit via that interface. (There is no flag
to detect this; your program must simply be written so that this is the case.)

The effects of changing a interface’s abstain flags while the interface is in use are
unpredictable — your code may produce erroneous results, or signal an error.

This restriction generally requires that you use one of the interfaces (for example,
the global interface) to synchronize the nodes and halt the operations of another
interface while you change that interface’s abstain flags.

For this reason, most NI programmers set the abstain flags once, at the beginning
of a program or routine, and then leave them set that way until the program or
routine finishes executing, changing the flags within the routine only where ab-
solutely necessary.

Being a Good Neighbor

Important: Some programming systems (such as CMMD) use the abstain flags
for their own purposes. These systems are written with the assumption that the
abstain flags do not change unexpectedly, and if the flags do change these sys-
tems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before handing control back
to these systems. Failing to do so can cause either user or OS code to signal ob-
scure errors that are hard to trace.

Version 7.1, October 1992

Chapter 2 A Generzc Network Inten’ace

e e T e e

2.7 The Private Register

2.7.1

Each of the interfaces also has a “private” control register, containing a number
of control flags and status fields for supervisor operations. Most of these sub-
fields are interface-dependent; the few that are not are:

ni_interface_private Private register.

ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.

ni_raec_stop Interface stop flag (except Broadcast intf.).
ani_send stop Interface stop flag (Broadcast intf. only).
ni_rec_ full Flag, indicates receive FIFO is full.

The broadcast interface has one exception to the above description: the
ni_rec_stop flag is not defined; in its place is a flag called ni_send_stop,
which operates differently. (See Section 2.7.4.)

Usage Note: The private register is only accessible from the supervisor area;
users without supervisor access must make a system call to change the flags in
this register.

Message Receipt Interrupts — The Rec Interrupt Enable Flag

When the ni_rec_ok_ie flag is set to 1, a Green interrupt is signaled whenever
a new message becomes available at the front of the interface’s receive FIFO (in
other words, whenever the rec_ok status flag is set to 1 for a new message).

A message may become available either by arriving from the network into an
empty FIFO, or by being the next message in the FIFO when the last word of the
current message is read out. A different Green interrupt is signaled for each net-
work interface, and the interrupt for each interface can be independently enabled
and disabled by setting the rec_ok_ie flag for the interface.

The Green interrupts that can be signaled are:

dr rec ok ldr rec ok rdr rec ok
bec rec ok sbec rec ok com rec ok

For more information about these interrupts, and about interrupts in general, see
Section 5.1.

Version 7.1, October 1992

2.7.2

2.7.3

R

NI Systems Programming
N R e O R S RO S SR R

Clearing the Interface’s Send FIFO — The Lock Flag

The supervisor can use the ni_lock flag to temporarily “lock” the interface —
that is, prevent use of the interface in a way that is transparent to a user program.

The lock flag is normally 0. When it is set to 1, the following effects occur:
® Any message currently being written to the send FIFO is discarded.

® The send_ok flag is set to O and remains 0 — even if you attempt to write
a new message to the send FIFO.

® The value of the ni_interface_space field is set to 0 and remains 0.

In other words, setting the lock flag to 1 clears the send FIFO, and then makes
it seem as if the FIFO is permanently full.

Grabbing the Receive FIFO Registers — The Rec Stop Flag

The supervisor can temporarily grab control of a interface’s receive FIFO and
status register by setting the interface’s ni_rec_stop flag. Since this involves
the joint cooperation of the microprocessor and the NI, a special request/grant
protocol is used. Specifically:

® The microprocessor writes a 1 to the interface’s rec_stop flag, indicat-
ing it wants direct control of the recv and status registers. (Note: The
rec_stop flag is not changed to 1 until the stop operation is completed.)

» If amessage is currently arriving from the interface, the NI finishes receiv-
ing the message and stores it in the receive FIFO.

» The NI then stops receiving messages from the interface, and finally sets
the rec_stop flag to 1, indicating that the stop operation is completed.

Once the rec_stop flag is set, the supervisor may freely read and write the val-
ues of the recv and status registers (for example, to push additional messages
into the FIFO, or to clear the FIFO altogether). When the supervisor is finished
with the recv and status registers, writing a 0 to the interface’s rec_stop
flag restores normal network operations.

Important: It is an error for the supervisor to attempt to write values to the recv
and status registers while the stop flag is 0. The effect of doing so is unde-
fined, but is not likely to be pleasant.

Version 7.1, October 1992

Chapter 2. A Generic

R0 2 XL

Network Interface 25

NI KRR

2.7.4 Blocking Unsent Broadcast Messages — The Send Stop Flag

The broadcast interface does not have a rec_stop flag. Instead, the same posi-
tion in the private registeris used for a flag called ni_send stop, which has
a different purpose. When the send_stop bit is set, it prevents any complete
messages waiting in the broadcast send FIFO from being sent over the network.
This mechanism is mainly used by the supervisor during process swaps, to hold
messages in the interface send FIFO until they can be safely removed and saved.

2.7.5 Detecting a Full Receive FIFO — The Receive Full flag

The ni_rec f£ull flag, when set, indicates that the interface’s receive FIFO is
full. This is critical to network performance; if too many nodes have full receive
FIFOs, the network can become clogged with unreceived messages, and this can
prevent new messages from being delivered to their destinations — even if the
destination nodes actually have sufficient space in their receive FIFOs.

2.8 Using a Generic Network Interface

To sum up, the strategy to use in accessing a network interface’s registers is:

®* To send a message, write the first word to the send_£izrst register, and
any remaining words to the send register.

® Check the send_ok flag to see if the message was discarded, and if so,
retry sending the entire message.

® To receive a message, check the rec_ok flag to see if a message is in the
FIFO, and if 50, use the length and length_left fields to determine the
number of words to read from the recw register.

= Use the remaining fields of the status register to obtain other interface-
specific information about the state of the send and receive FIFOs.

® Use the abstain flag(s) in the control register to cause individual
nodes to ignore the transactions of the interface.

= Use the private fields and flags for supervisor features such as disabling
send FIFOs, checking for full receive FIFOs, and setting interrupts.

Version 7.1, October 1992

2.9 From the Generic to the Specific

The interface described in this chapter is an idealized view of a network inter-
face, lacking a specific purpose, a detailed description of message protocol, or
network-related restrictions on usage of the interface registers.

The next two chapters present a description of the Data Network and Control
Network. These chapters present the purpose, protocol, and restrictions of each
interface provided by the CM-5 networks, building on the generic interface
description presented in this chapter.

Version 7.1, October 1992

Chapter 3
The Data Network

The Data Network consists of two halves, the left interface (LDR) and right inter-
face (RDR). Each half of the network is connected to all nodes, and can be used
independently. The two halves of the network can also be accessed together as
the single Data Network (DR):

Figure 8. The three interfaces of the Data Network: DR, LDR, and RDR.

For each of these network interfaces there is a separate register interface. This
chapter describes these register interfaces, and shows how to use them to send
messages through the Data Network.

Terminology Note: The network acronyms (DR, LDR, RDR) are a historical
anachronism, and are retained in this manual only because the C constants used
to access the Data Network still refer to the three interfaces by the old abbrevi-
ations. In addition, the obsolete term *‘router” is occasionally still used in the
programming contants to refer to the Data Network hardware. ‘“Network” is cur-
rently preferred, as a more generic and thereby more accurate descriptive term.

Version 7.1, October 1992 27

NI Systems Programming
e e e

3.1 The Data Network Register Interfaces

The three Data Network interfaces are based on the generic model presented in
Chapter 2. There are three sets of interface registers: one for each half of the
network (LDR and RDR), and one for the combined (DR) network.

Each network interface can be used to send and receive messages, with the fol-
lowing conditions:

= Sending a message via the DR actually sends it by either LDR or RDR,
depending on the load of the two interfaces.

= In the current implementation, the DR interface cannot be used to receive
any messages.

= The DR interface is mutually exclusive with the two half-network inter-
faces. In other words:

» Writing a message to the DR send FIFO excludes using either the
LDR or RDR at the same time. Likewise, writing a message to either
the LDR or RDR send FIFOs excludes using the DR interface.

= While a message is being sent, any excluded interface(s) remain ex-
cluded until the message has been written and accepted for delivery
by the network. Also, the status register(s) of excluded interface(s)
are invalidated and should not be used.

= The two half-network interfaces are not mutually exclusive, and in fact
can be used simultaneously. In other words, network messages can be sent
and received concurrently via both the LDR and RDR.

For each interface, the following registers are used to communicate with the Data
Network:

ni_dinterface_send first Used to send the first value of a message.

ni_dinterface_send Used to send the rest of the message.
ni_dinterface_recv Used to receive a message.
ni_dinterface_status Status register.
ni_dinterface_private Supervisor control register.

The dinterface part of these names is a unique abbreviation for each interface:

dr — Data Network 1dr - left interface = rdr — right interface

Version 7.1, October 1992

29

Chapter 3 T he Data Nerwork

Figure 9 is a memory map indicating the relative locations of these registers in
the user and supervisor areas.

The Data Network Registers at a Glance:

hex offsets
dr 1dr zdr
0x1000 0x6000 0x7000
0x0240 0x0C40 OxOE40
0x0230 0x0C30 0xOE30
e | 0%0220 0x0C20 0x0E20
0x0210 0x0CL0 OXOEL0
ai x—P‘i"t° 0x0208 0x0C08 OxOE08
R R RS R E R P IR R IR FRRARRRI SRR,
ai x status 0x0200 0x0CO0 Ox0E00

ni_interface_send_first Addressing Patterns

user/supervisor bit addressing mode
intarface
index

NI base address e————

DR | -——--- xj{o000jolof1ix]| ag length 000
LDR| --—--- x{oooo{1l1{ofx| ctag length | 000
RDR| ------ xjo000f1f1|1]x]| tag length 000

31 2019 18 15 14 12°11 10 78 32 0

Figure 9. NI registers associated with each of the Data Network interfaces.

The following related registers are also used to control Data Network features:

ni_user_ tag mask
ni_rec_ interrupt_mask
ni_dr message_count
ni_count_mask

User/supervisor tag reservation register.
Contains tag value interrupt flags.
Contains current message count.
Contains tag-count enable flags.

The purpose and use of these registers is described in the sections below.

Version 7.1, October 1992

3.2

3.3

Data Network Messages

The Data Network is essentially asynchronous in operation — nodes can send
and receive messages freely, so long as enough nodes are receiving messages so
that the network does not become clogged (see Section 3.8).

The destination node of a Data Network message is determined by an address
word that is added 1o to the message as it is being written to the send FIFO. (Note:
The address word is removed in transit. It does not count as a message word with
reference to the length limits of the send and receive FIFOs.)

Data Network messages are atomic; individual messages are not sent through the
network until all the words of each message have been written into the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The component words of a single Data Network message are always received in
the same order as they were sent. However, if you use multiple Data Network
messages as “packets” to send long messages from one node to another, the order
in which the packets arrive is not guaranteed to be the same as the order in which
they were sent.

Your code should not depend on having separate Data Network messages sent to
the same node arrive in some predictable order. Instead, your code should in-
clude data in the packets (for example, an offset into the original message) that
allows the receiving node to arrange the packets into the correct order.

Data Network Addressing

The Data Network uses two kinds of addressing: physical and relative. Each
node of the CM-5 has a unique physical address based on its location in the CM-5
hardware. This represents an “absolute” address, giving the node’s location with
respect to the entire machine.

Each node also has a unique relative address based on its location in its partition.
Relative addresses run from O (for the first node in the partition) up to one less
than the total number of nodes in the partition. (See Figure 10.)

Version 7.1, October 1992

Note: The partition manager is always located at an address outside the partition,
and so does not occupy any of the relative addresses of the partition. (For more
information, see Section 7.1.)

Nodes

Addresses 0 1 2 3 4 n-1 Partition Manager

Figure 10. Relative addressing of nodes in a partition.

Just as there are two kinds of addressing, there are also two “modes” of sending
a Data Network message: physical and relative. The mode a message is sent in
is determined by a mode flag in the auxiliary data of the message.

When a message is sent in physical mode, its address word is treated as a physi-
cal address, and the message can be sent anywhere within the Data Network.
(Only the supervisor is allowed to send messages in physical mode.)

When a message is sent in relative mode, the address word is treated as a relative
address, and is translated into a physical address based on the current partitioning
arrangement. This translation is performed automatically by the NI hardware,
using a chunk table, described in Section 6.3.

The translation also includes automatic error checking to make certain that the
supplied address is a legal relative address for the current partition. Messages
that contain illegal relative addresses are not sent through the network; instead,
the sending NI signals a Yellow interrupt (bad relative address).

For the Curious: The relative addresses in a partition are always contiguous —
that is, there are no legal relative addresses in a partition that do not correspond
to existing functional nodes. This is in contrast to physical addresses, which can
contain gaps corresponding to nonfunctional nodes or to network locations that
are not connected to actual CM-5 hardware. (See Section 6.3.)

Version 7.1, October 1992

3.4.1

Sending and Receiving Messages

The message format for all three Data Network interfaces is the same. The first
word of the message is a 20-bit destination address that must be zero-extended
to 32 bits, Failure to ensure that the address word is zero-extended to the full 32
bits can trigger a serious error, even causing your partition to crash.

The remaining words form the content of the message, which must be no longer
than the length limit of the send FIFO.

Programming Note: The length limit of the Data Network send FIFOs is given
by the constant MAX ROUTER_MSG_WORDS (currently 5 for all three interfaces).

The auxiliary information of the message consists of the length of the message
in words (excluding the address word), a 4-bit tag value, and an addressing mode
flag that determines how the address word is interpreted.

Sending Messages
The following FIFO registers are used to send messages:

ni_dinterface_send first Used for first value of a message.
ni_dinterface_send Used for the rest of the message.

The protocol for sending a message is as described in Chapter 2.

The 9-bit auxiliary information field of the message has the form
8 0
md . tag length

where
® md is the addressing mode (0 = relative, 1 = physical)
® tag is the 4-bit tag value
= Jength is the length of the message in words, excluding address word

The following constants specify the starting bit positions of these fields:

NI_DR_SEND_AUXILIARY ADDRESS_MODE P The md field offset (8).
NI_DR_SEND_AUXILIARY TAG P The rag field offset (4).
NI_DR_SEND AUXILIARY LENGTH P The length field offset (0).

Version 7.1, October 1992

Chapter 3. The Data Network

SRR > SRR

To construct a send_first address, add the following values:

The md flag: md << NI_DR_SEND_AUXILIARY ADDRESS_MODE_P
The tag value: tag << NI_DR_SEND_AUXILIARY TAG P
The length value: length << NI_DR_SEND_AUXILIARY_ LENGTH_ P

The md flag is O for a message with a relative destination address, and 1 for a
message with a physical destination address.

The following constants can be used to specify the md flag:

RELATIVE Relative node addressing (0).
PHYSICAL Physical node addressing (1).

Note: Sending messages with physical addresses is reserved for the supervisor.
If user code tries to send a message with a md flag of 1, a Bus Error is signaled.

The tag can be any value from O to 7 inclusive for user messages, or from 0 to
15 for supervisor messages. Message tags are described in more detail in Section
3.5.1 below.

The length field can have any value from 1 up to MAX_ROUTER_MSG_WORDS.

3.4.2 Receiving Messages

For each interface, the following register is used to receive messages:
ni_dinterface_recv FIFO register from which values are read.
Data Network messages are received as described in Chapter 2.

Supervisor Usage Note: Currently, a hardware defect in the NI chip does not
allow the Data Network recv registers to be written by the supervisor to simu-
late the arrival of messages, etc. The workaround is for a node to send a message
into the network using its own address as the destination. Assuming the network
is clear (as it is, for example, during context switches) this causes the message
to be delivered to the front of the node’s receive queue.

Version 7.1, October 1992

3.5 The Status Register

3.5.1

The status register for each of the networks contains the following subfields:

ni_dinterface_status Status register.
ni_send ok Flag, status of message being sent.
ni_send space Field, space left in send FIFO.
ni_rec_ok Flag, indicates receipt of message.
ni_rec_length Field, total length of message.
ni_rec_length left Field, words left in the FIFO.
ni_dr_ rec_tag Field, tag value of the message.
ni_dr_ send state Field, status of send FIFOs.
ni_dr rec_state Field, status of receive FIFOs.

ni_router_done_complete Flag, indicates empty send FIFOs.

The send_ok, send_space, rec_ok, rec_length, and rec_length_left
subfields are as described in Chapter 2. The remaining fields are described in the
sections below.

Note: The subfields ni_dr send state andni_dr_rec_state, and the flag
ni_router_done_complete apply to all three interfaces. They are only acces-
sible from the DR interface (that is, their values are only defined for the
ni_dr_status register).

Message Tags

The tag vaiues of Data Network messages are used to distinguish between differ-
ent types of Data Network messages. The status register field rec_tag always
contains the tag value that was sent with the current message.

Tag values are primarily used for:
= distinguishing between user and supervisor messages
= causing interrupts to be signaled when messages are received

®* helping the NI determine when the Data Network is clear of user messages

Some tag values are reserved for supervisor use, to distinguish between supervi-
sor and user messages. The remaining tags can optionally be used in user
programs to distinguish different types of user messages.

Version 7.1, October 1992

C hapter 3. The Data Network 35
o

User/Supervisor Tag Reservation
The NI has a register that controls the reservation of tag values:
ni_user_tag mask User/supervisor tag reservation register.

Only the low-order 16 bits of this register are used, one for each of the possible
tag values (0 to 15). If the nth bit of the user_tag_mask register is 1, then tag
value 7 is reserved for supervisor use.

Since the tag_mask register is only accessible by the supervisor, it effectively
acts as a set of permission switches, controlling which tags the supervisor allows

. user messages to have. If a user program attempts to send a message with a
supervisor-reserved tag, a Bus Error is signaled.

Tag Fleids and Interrupts

Tag values can be used to trigger interrupts; when a message with an interrupting
tag value becomes available for reading in the receive FIFO, the NI signals a
Green interrupt (dr rec tag) to the microprocessor. (A message becomes
available either by arriving at an empty receive FIFO, or by being the next mes-
sage in the FIFO when the current message is read out.) Tag value interrupts can
be used to cause the microprocessor to execute a specific section of code when-
ever a message with an interrupting tag becomes available for reading.

The following register is used to determine which tag values cause interrupts:
ni_rec_interrupt_mask Register, contains tag value interrupt flags.

The interrupt_mask register contains 16 flags, one for each tag value. If the
nth bit is 1, then a message with tag value » signals a Green interrupt on arrival.

For CMOST Users: You can use CMOST commands to instruct the NI to signal
an interrupt when it receives a message with a specific tag. This interrupt causes
the processing node to execute a specific routine of your program.

The CMOS_signal system call is used to set up an interrupt:
CMOS_signal(signal, user_function, tag_mask)

The signal argument is the signal type, and must be the predefined constant
SIGMSG. The user_function argument is the name of a user-defined function that
should handle receiving and processing the message.

Version 7.1, October 1992

36 NI Systems Programming
e e 35 SR

o

The tag_mask argument is a 16-bit field, one bit for each possible value of the
tag. If bit » in this mask is set, then the receipt of a message with a tag of n causes
user_function 1o be executed. (Remember that you are limited to using only the
first four bits of this mask, corresponding to the tags O through 7.)

So, for example, the function call
CMOS_signal(SIGMSG , my msg_handler , OxFE);

arranges the NI interrupt system so that when a Data Network message with a tag
from 1 to 7 is received, the user-defined procedure my_msg_handler is called.

Note: To use this function, you must #include the file cm/em_signal.h. For
more information on CMOS_signal, see the UNIX manual page for the function.

Tag Fields and the Message-Counting Registers

Tag fields also allow system software to automatically maintain a count of mes-
sages sent and received by the NI. This is a key part of the network-done feature
of the Control Network (see Section 4.2.7). It allows the NI to determine quickly
when the Data Network is clear of user messages. Two registers are used to con-
trol this message-counting feature:

ni_dr message_count Register, contains current message count.
ni_count_mask Register, contains tag-count enable flags.

Message Count Disabling

The ni_dr message count register contains a signed 32-bit integer value that
is incremented when a Data Network message is sent (by any of the three inter-
faces), and decremented when a message is received.

When the message_count register becomes zero for all non-abstaining nodes,
the NI assumes that there are no countable messages in transit in the Data Net-
work. It is possible to disable message counting for messages with specific tag
values. (This is useful, for example, if you only wish to keep a count of user
messages, and want supervisor messages to go uncounted.)

The ni_count_mask register controls this enabling and disabling of message
counting. It contains 16 flags, one for each tag value. If the nth count_mask bit
is 1, then messages with a tag of n are counted by ni_dr_message_count. If
the nth bit is zero, messages with that tag are not counted.

Version 7.1, October 1992

L .

Chapter 3.

AR

3.5.2

It’s important to be sure that the sending and receiving nodes for a message both
agree on whether the message’s tag should or should not be counted; if they do
not agree, the ni_dr_message_count register’s value is useless, and can wrap
around, becoming negative — see the discussion of this situation below.

Note: The supervisor can write a value (0 ni_dr_message_count, for exam-
ple, to set the register back to zero, but this should only be done when the Data
Network is not in use. Otherwise, there is no way to guarantee that the value of
this register remains the same as the value that was written into it.

Negative Message Count Interrupts

If the sum of the message_count registers for all nodes becomes negative, it
means that either a message was lost in transit or was counted incorrectly. If the
global message_count sum is negative when a Data Network operation is
attempted, a Yellow interrupt (dr count negative) is signaled. (See Section
D.3.3 in Appendix D.)

Note: If the massage_count register is incremented or decremented beyond its
32-bit signed value capacity, its value “wraps around,” becoming negative. How-
ever, the register is large enough that this should not happen unless there is a
serious error (a hardware problem that causes messages to be lost, nodes that do
not agree on counting of tag messages, etc.).

IMPORTANT — Check the Tag before Receiving a Message

Tag values are not mandatory. You can, for instance, simply supply a tag value
of 0 for all Data Network messages. However, this does not mean that you can
simply ignore tag values altogether. The CM-5 operating system itself sends Data
Network messages with interrupt tags. Whether or not you use tags yourself, you
must always check the tag field of a Data Network message before retrieving it,
so that you do not accidentaily read a message intended as an interrupt.

The Data Network only checks the tag field of a message after the message has
been delivered to the receive FIFO. If the message has a tag that is set to signal
an interrupt (either by the user or by the supervisor), the appropriate interrupt is
signaled, with the assumption that the interrupt handler takes care of removing
the message from the FIFO.

Version 7.1, October 1992

38

NI Systems Programming

o A 03 < S B R D
N D e A G N S R S O e e e e

3.5.3

This means that if you're not careful, you can accidentally read a message with
an interrupt-triggering tag value before the NI has signaled the interrupt. The ef-
fect of doing so is unpredictable; an error may be signaled, or your partition may
crash. To avoid this problem, always check the tag of a Data Network message
before retrieving it, to make certain that it is neither a supervisor message or a
message with a tag value that you have assigned to trigger an interrupt.

The Send and Receive State Fields

The DR interface is mutually exclusive with the LDR and RDR interfaces. It is
an error to try to write a message to the DR send FIFO while there is a partially
completed message in either the LDR or RDR send FIFOs.

Likewise, having a partially completed message in the DR send FIFO makes it an
error 1o try to send a message via the LDR or RDR FIFOs. In either case, the status
registers and FIFOs of the excluded interface(s) are invalidated.

You can use the ni_dr_ send state field to determine which interfaces are in
use. The value of this field is an integer from 0 to 2, with the following meanings:

0 No partial messages in any send FIFO.
1 Partial message in the DR send FIFO.
2 Partial message in either or both of the LDR or RDR send FIFOs.

There is also a corresponding ni_dr rec_state field that you can use to deter-
mine which receive interfaces are in use. (However, because the DR interface
cannot be used to receive messages, this field is not as useful as
ni_dr send_state.) ‘

The value of the ni_dr_ rec_state field is again an integer from O to 2:

0 No partial messages in any receive FIFO.,
1 Reserved. (The DR interface cannot receive messages.)
2 Partial message in either or both of the LDR or RDR receive FIFOs.

Note: The two half-network interfaces are not mutually exclusive. There is no
restriction on having partially completed messages simultaneously in the LDR
and RDR FIFOs. (This kind of simultaneous message sending is one reason that
the LDR and RDR interfaces exist.)

Version 7.1, October 1992

2T

Chapter 3. The Data Network 39

3.5.4

3.6

The Network-Done Flag

The ni_router_done_complete flag is used by the Control Network as part
of its network-done message function. This feature is designed to make it easy
to synchronize the nodes after a Data Network operation.

As noted above, the message-counting register ni_dr message_count also
plays a part in the network-done feature. For more information on network-done
messages, see Section 4.2.7.

The Private Register

The private register for each of the network interfaces contains the following
subfields:

ni_dinterface_private Private register.
ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.
ni_rec_stop Interface stop flag.
ni_rec_full Flag, indicates receive FIFO is full.
ni_dr rec_all_fall down Flag, set for All Fall Down message.
ni_all fall down_ie All Fall Down interrupt enable flag.

ni_all fall down_enable Flag, triggers All Fall Down mode.

The rec_ok_ie, lock, rec_stop, and rec_full subfields are as described
in Chapter 2. The remaining three fields are used to control the All Fall Down
mode feature of the Data Network, as described in Section 3.7 below.

Note: The subfield ni_rec_stop is only accessible from the DR interface (that
is, its value is only defined for the ni_dr_private register).

Version 7.1, October 1992

3.7

3.7.1

3.7.2

NI Systems Programming

SRR R

All Fall Down Mode

All Fall Down mode is a feature of the Data Network that is used primarily by
the supervisor for swapping processes out of partitions. When All Fall Down
mode is triggered within a partition of the Data Network, all messages currently
in transit within that partition are immediately routed downwards through the
network to the nearest possible node, regardiess of their actual destinaton. This
process clears the Data Network of pending messages as swiftly as possible.

The three private register subfields, ni_dr_rec_all_fall_down,
ni_all_ fall down_ie, and ni_all fall down_enable, are used to trig-
ger All Fall Down mode, as well as to detect when an arriving Data Network
message is the result of All Fall Down mode.

Triggering All Fall Down Mode

To trigger All Fall Down mode in a partition, each node in the partition should
setits ni_all fall down_enable flag to 1. This informs the Data Network
hardware that the NIs are ready to receive All Fall Down messages.

For the Curious: The Data Network is organized in layers, with each layer man-
aged by internal switching nodes. When All Fall Down mode is started by the
nodes, it is broadcast through all the layers of the Data Network, causing the
internal switching nodes to begin routing messages downward and out of the net-
work. The Data Network is designed in a fault-tolerant manner, so that even if
a given Data Network switching node is not yet in All Fall Down mode, an All
Fall Down message sent through it by a higher level node “falls through” and
continues moving toward the processing nodes.

Detecting All Fall Down Mode Messages

The flag ni_dr rec_all fall down is set whenever the current message in
the receive FIFO is the result of an All Fall Down operation.

You can also have the NI trigger an interrupt when an All Fall Down message
becomes available in the receive FIFO (either by arriving at an empty FIFO, or
by being brought forward after a preceding message has been read out). If the
interrupt enable flag ni_all fall down_ie is set, the arrival of an All Fall
Down message triggers a Green interrupt (dr rec all fall down).

Version 7.1, October 1992

PN

s,

Chapter 3. The Data Network 41
e S R T

SR

3.7.3 Resending All Fall Down Mode Messages

Each message re-routed by All Fall Down mode carries with it enough informa-
tionso that the receiving node can resend the message to its intended destination.
When an All Fall Down message is read from the receive FIFO, the first word
read is not the first word of the message itself, but is an extra address word, con-
taining information about the intended destination of the message.

The All Fall Down address word has the following format:

31 28 27 24 23 20
_header g length

where
® header is a 4-bit header giving the length of the offser field
® tag is the original tag field of the message
* length is the message length in words, excluding the address word

® offset is an n-bit field used to construct the real address

The header field indicates the length of the offser field, but in a slightly convo-
luted manner. The length of the off'et field, n, is 4 times the least integer not less
than one-half of the header value, A. In symbols:

- 4]

(An algorithmic way to get ths result is to take bits 29 — 31 of the header field
as an integer, arithmetically add bit 28, and left-shift the result by two bits.)

Once you have the offser length, take the physical address of the current node and
replace the least significant » bits with the #-bit value from the offset field. This
gives the destination physical address. For example, if the header value is 1, then
the offset is 4 bits in length. If the offser value is OxC, and the physical address
of the current node is 0x00111, then the destination physical address is 0x0011C.

The tag and length fields duplicate the values obtainable from the rec_tag and
rec_length fields in the status register. However, these fields are included
in the All Fall Down address word because programmers may find them useful.

Note: When an All Fall Down message is received, the value of the
rec_length field is equal to the original length of the message — the number
of data words in the FIFO not counting the All Fall Down address word. How-
ever, the rec_length_left field contains the fotal number of words left in the
receive FIFO, and this count includes the All Fall Down address word.

Version 7.1, October 1992

3.8 Data Network Usage Note: Receive before You Send

An important strategy to keep in mind when using the Data Network is “Receive
before you send.” That is, in most cases you should structure your code so that:

= Eachnode attempts to read a message from the Data Network before send-
ing a new message into it.

®= If a node is unable to send a message, the node attempts to read a message
to help decrease the network load.

While the Data Network has a large capacity for messages from nodes, the sheer
number of nodes connected to it can simply overwhelm it if the nodes repeatedly
send messages into the network without attempting to receive them. For this rea-
son, your code should be biased towards removing messages from the network
rather than adding them.

However, your code should also provide fair opportunities for both receiving and
sending, where “fair” means that the ratio between the two actions should be
bounded both below and above, and where “opportunity’” means the opportunity
to attempt sending or receiving a message, whether or not the attempt is success-
ful. Thus, the sending and receiving portions of your code should be called with
fairly equal frequency.

When you are using the LDR and RDR concurrently, you should likewise main-
tain a balance in using both interfaces, so that neither interface becomes more
heavily loaded than the other.

In short, the rule of thumb is: “Receive before you send, but receive and send
fairly.”

Note: Some applications use the LDR and RDR interfaces for completely differ-
ent purposes, and thus do not normally maintain a load balance between the two
halves of the Data Network (that is, one network interface may be used less often
than the other). Nevertheless, such application code should still try to maintain
a receive/send balance within each of the two network interfaces.

Version 7.1, October 1992

Chapter 4
The Control Network

c

The Control Network consists of three interfaces, the broadcast interface (BC),
the combine interface (COM), and the global interface:

= 2

Figure 11. The three interfaces of the Control Network: BC, COM, and global.

The broadcast and combine interfaces are very similar, and there are some inter-
nal interactions between these two interfaces that you'll need to keep in mind.
The global interface, however, is different in both structure and purpose from
either of the other two interfaces.

This chapter describes the three Control Network interfaces, and presents the
registers that are used to manipulate them.

Version 7.1, October 1992 43

4.1

4.1.1

NI Systems Programming

The Broadcast Interface

The broadcast interface is used to broadcast a message from a single source node
to all nodes in the same partition (including the broadcasting node).

The broadcast interface provides two separate register interfaces, one for user
broadcasts (BC), and one for supervisor broadcasts (SBC). The two register in-
terfaces are completely independent, and can be used concurrently to broadcast
messages. Where the sections below refer to “broadcast messages™ generically,
the description applies equally and independently to both the user and supervisor
interfaces.

Implementation Note: Because of the way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 7.3.8.)

Broadcast Register Interfaces

The two broadcast register interfaces are based on the generic model presented
in Chapter 2. The only difference between them is that the supervisor broadcast
registers can only be accessed from the supervisor area.

The following NI registers form the broadcast interface:

ni_binterface_send_first Used to send the first value of a message.

ni_binterface_send Used to send the rest of the message.
ni_binterface_recv Used to receive a message.
ni_binterface_status Status register.
ni_binterface_control Control register.
ni_binterface_private Supervisor control register.

The binterface part of these names is a unique abbreviation for each interface:
be — user broadcast interface sbe - supervisor broadcast interface

The purpose and use of each of these registers is described in the sections below.
Figure 12 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

Version 7.1, October 1992

Chapter 4 The Control Network 45
SRR e R RS RILR LR AR RONN

The Broadcast Interface Registers at a Glance:

hex offsets
be sba

0x3000 0x4000

0x0640 0x0840
0x0630 0x0830
0x0620 0x0820

0x0610 0x0810

0x0608 0x0808

“1—":"“"“' 0x0600 0x0800

ni_interface_send_first Addressing Patterns

user/supervisor bit
interface

NI base addrass Lndex

SBC | ---—-- 1{o000|1]ofofofofofofo] 1engen | 000
BC | -——-- x|ocoo|of1]1 o[o]oLo[o length | 000
31 20 19 18 1S 14 12 11 6 32 0

Figure 12. NI registers associated with each of the broadcast interfaces.

4.1.2 Broadcast Messages

The broadcast interface is essentially synchronous in operation — a single node
broadcasts a message that is received by all nodes in its partition (including the
broadcasting node itself).

Only one node in each partition can broadcast by a given interface at any time.
If two or more nodes in the same partition attempt to broadcast simultaneously,
via the same interface (user or supervisor), the effect is unpredictable. An error
may be signaled and/or transmitted data may be lost. (Remember, however, that
the user and supervisor broadcast interfaces operate independently, and can be
used concurrently by different nodes in the same partition.)

Version 7.1, October 1992

46

4.1.3

NI Systems Programming
e e T L o e

Broadcast messages are atomic with respect to sending; a broadcast message is
not transmitted until all its component words have been written to the send FIFO.
Broadcast messages are not atomic in transit, however. A multiword message
may be split in transit into two or more smaller messages. Additionally, as broad-
cast messages arrive at each node they are concatenated together in the receive
FIFO.

From the point of view of each receiving node, it always appears as if there is
exactly one broadcast “message” waiting to be read from the receive FIFO. (Once
a node begins receiving a message, however, the length of the message is fixed,
and a new “message” is formed behind it in the FIFO from any words that arrive
while the first message is being read out.)

Although the length of a broadcast message is not maintained, the order of the
words within a message is maintained, as well as the order of messages sent and
received via the same interface, user or supervisor. (There is no predictible rela-
tionship, however, between the deliveries of user and supervisor messages to the
same node. Effectively, the two interfaces act as independent “streams” of mes-
sages.) :

Implementation Note: The broadcast interface is designed in such a way that
a message is not removed from the send FIFO before all non-abstaining nodes
have received it. This feature can be used to force synchronization of the nodes.

Sending Broadcast Messages

A broadcast message consists of a series of one or more words. The maximum
length allowed for a message is determined by the length limit of the send FIFOs.
The only auxiliary information associated with a broadcast message is its length.
However, the length is only meaningful for the node that sends a message, be-
cause of the way messages can be split and concatenated in transit.

Programming Note: The length limit of the broadcast send FIFOs is given by
the constants MAX_BROADCAST MSG_WORDS and MAX SBC_MSG_WORDS (cur-
rently 4 for both interfaces).

The following FIFO registers are used to send messages:

ni_binterface_send first Used to send the first value of a message.
ni_binterface_send Used to send the rest of the message.

Version 7.1, October 1992

4.1.4

4.1.5

e S e

The auxiliary data field of a broadcast message (BC or SBC) has the form

8 0
0 0 0 0 O length

where length is the length of the message in words. The lengrh field can have any
value from 1 up to MAX BROADCAST MSG_WORDS Or MAX SBC MSG_WORDS.
(The high-order bits of the auxiliary data have no useful meaning, but must al-
ways be specified as 0.)

The following constant specifies the starting bit position of the lengrh field:
NI_BC_SEND_AUXILIARY LENGTH_ P The length field offset (0).

Implementation Note: Each broadcast interface’s private register includes a
supervisor flag, ni_send_enable, which controls whether broadcast sending
is permitted via that interface. In the current CM-5 OS implementation, these
flags are tumed off by default, and must be enabled before broadcast sending is
attempted. (See Section 4.1.7 for a description of these flags.)

Receiving Broadcast Messages

Broadcast messages are received as described in Chapter 2. For each broadcast
interface, the following register is used to receive messages:

ni_binterface_recv FIFO register from which values are read.

The Broadcast Status Register

The status registers for each of the interfaces contain the following subfields:

ni_binterface_status Status register.
ni_send ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni_send empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates receipt of message.

ni_rec_length_left Field, words left in the FIFO.

The meanings of these subfields are as described in Chapter 2.

Version 7.1, October 1992

4.1.6

4.1.7

How to Interpret the Value of the “Length Left” Field

The NI combines broadcast messages as they are received, so there is never more
than one “message” waiting to be read from the receive FIFO. However, broad-
cast messages are never appended to a message that is in the process of being
retrieved, so you needn’t worry that a message will grow unexpectedly.

Once you have retrieved the first value of a received message, it is safe t0 assume
that reading a number of words equal to the rec_length_left value retrieves
the rest of the message. (Remember, however, that this method is not guaranteed
to read all words of a multiword message that was divided in transit.)

Abstaining from the Broadcast Interface

Each broadcast interface has an abstain flag that you can use to cause the NI to
ignore incoming broadcast messages. The abstain flag’s effects and use are as
described in Section 2.6.

ni_binterface_control Status register, contains rec_abstain field.
ni_rec_abstain Flag, broadcast interface abstain flag.

The Broadcast Private Register

The private register for each broadcast interface contains the following subfields:

ni_binterface_private Private register.

ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.

ni_send stop Interface stop flag.

ai_rec_full Flag, indicates receive FIFO is full.
ni_send enable Flag, enables/disables send FIFO.

The rec_ok_ie, lock, send stop, and rec_£ull subfields are as described
in Chapter 2. The remaining field is described below.

Version 7.1, October 1992

Chapter 4. The Control Network 49

4.2

The Send Enable Fiag

Each broadcast interface has an ni_send enable flag, which is used to enable
and disable the broadcast send FIFO. When this flag is set to 1, message sending
is permitted. When the flag is set to 0, an attempt to write a message to the send
FIFO signals a Bus Error. The send_enable flag should only be changed when
there are no broadcast messages pending for the interface.

Usage Note: While this flag can be used as a kind of “send abstain” flag to
ensure that only one node broadcasts at any given time (that is, by disabling send-
ing for all nodes but the one making the broadcast), it is much simpler to
structure your code so that only one node is permitted to broadcast at any time.

Important: The CMOST operating system sets this flag to 0 by default. The flag
must be set to 1 to permit broadcasting of messages.

The Combine Interface

The combine interface is used for executing operations that combine in parallel
a single value from each processing node.

The supported operations are:

® parallel prefix (scanning), which performs a cumulative operation (addi-
tion, maximum, logical AND, etc.) over the values from each node in
either increasing or decreasing order of send addresses

= reduction, which combines the values from all the nodes and then retumns
this single combined result to all participating nodes

= . network-done, which simplifies the task of synchronizing the nodes after
a Data Network operation

Each operation is described in more detail below.

Implementation Note: Because of way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation untl the combine operation is completed. (For
more information, see Section 7.3.8.)

Version 7.1, October 1992

50 NI Systems Programmmg

4.2.1 The Combine Register interface

The combine interface’s register interface is based on the generic model pres-
ented in Chapter 2, and includes the following registers:

ni_com send first Used to send the first value of a message.

ni_com send Used to send the rest of the message.

ni_com recv Used to receive a message.

ni_com status Status register.

ni_com control Control register.

ni_com private Supervisor control register.

ni_scan_start Control register used to set scanning segments.

The purpose and use of each of these registers is described in the sections below.
Figure 13 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

The Combine Interface Registers at a Glance:

hex offset

0x5000

0x0A40
0x0A30
0x0A20

0x0Al10

WW»MWW

ni_com private
B o

ni_com status

0x0A08

0x0AQ00

ni_interface_send_first Addressing Pattern

user/supervisor bit
interface
index

NI base address e———————
COM | ——-—-- %] 0000| 1|01 |pactern| coniner length | 000
31 2019'18 1514 1211 10 9 76 32 o

Figure 13. NI registers associated with the combine interface.

Version 7.1, October 1992

—

Chapter 4. The Con

8

4.2.2

4.2.3

Combine Messages

The combine interface is essentially synchronous — combine operations are not
completed until all non-abstaining nodes have sent the same type of combine
operation. If two nodes attempt to start different combining operations at the
same time, a Yellow interrupt (be or com collision) is signaled. Once this
interrupt has been signaled, combine messages are no longer guaranteed to be
valid — it is necessary to flush the Control Network to restore normal operation
(see the discussion of Control Network flushing in Section 6.4).

Combine messages are atomic in both sending and receiving; a combine message
is not transmitted until ail its component words have been written to the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The order of combine messages is strictly preserved in transit. With the exception
of the network-done operation, which uses a different mechanism, the resuits of
combine operations are delivered into the receive FIFO in the same order the
operatons were started.

Combine operations can be pipelined. Although all nodes must start the same
combine operation in order for that operation to complete, nodes are not required
to read the results of each combine message before sending the next. The length
of the pipeline is limited only by the capacity of the message FIFOs.

Important: Pipelined messages cannot use doubleword read/write operations.

Sending Combine Messages

A combine message consists of a series of one or more words, with the exception
of network-done messages, which are always 1 word in length. The maximum
length allowed for a message is determined by the length limit of the send FIFO.

Programming Note: The length limit of the combine interface send FIFO is giv-
en by the constant MAX COMBINE MSG_WORDS (currendy 5).

The following FIFO registers are used to send messages:

ni_com send first Used to send the first value of a message.
ni_com_send Used to send the rest of the message.

Version 7.1, October 1992

The auxiliary information has three components: the length of the message in
words, a three-bit combiner value, and a two-bit pattern value. (The legal com-
biner and pattern values are described below.)

The auxiliary data field of the message has the form
8 0

pattern| combiner length

where
® pattern is a two-bit value selecting the order in which values are combined
® combiner is a three-bit value selecting the combine operation performed

® Jength is the length of the message in words
The following constants specify the starting bit positions of these fields:

NI_COM SEND AUXILIARY PATTERN P The pattern field offset (7).
NI_COM SEND_AUXILIARY COMBINER P The combiner field offset (4).
NI_COM SEND_AUXILIARY LENGTH P The length field offset (0).

To construct a send_first address, add the following values:

—

The pattern value: partern <<NI_COM SEND_ AUXILIARY PATTERN_P
The combiner value: combiner << NI_COM SEND_ AUXILIARY COMBINER P
The length value: length << NI_COM_SEND_AUXILIARY LENGTH P

For scan and reduction operations, the legal pattern and combiner values are:

pattern
1 — Backward scan (combine in decending order of node address).
2 — Forward scan (combine in increasing order of node address).
3 — Reduction operations. ‘

combiner:
0 — Bitwise inclusive OR.
1 — Signed addition.
2 — Bitwise exclusive OR.
3 — Unsigned addition.
4 — Signed maximum.

A pattern value of 0, together with a combiner value of 5, specifies a network-
done operation, described later in this chapter.

The combiner values 6 and 7 are not currently used.

Version 7.1, October 1992

4.2.4

4.2.5

The following constants can be used to specify the value of the partern field:

SCAN_FORWARD Forward scan pattern (2).
SCAN BACKWARD Backward scan pattern (1).
SCAN_REDUCE Reduction scan pattern (3).
SCAN_ROUTER_ DONE Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR_SCAN Inclusive OR (0).
ADD_SCAN Signed addition (1).
XOR_SCAN Exclusive OR (2).
UADD_SCAN Unsigned add (3).

MAX SCAN Signed maximum (4).
ASSERT_ROUTER_DONE Network-done operation (5).

The length field can have any value from 1 up t0 MAX COMBINE MSG_WORDS.

Receiving Combine Message

The message-receiving interface of the combine interface is as described in
Chapter 2, with the exception of the network-done operation, which is received
through the Data Network status field ni_router_done_complete.

The following register is used to receive combine messages:

ni_com_recv FIFO register from which values are read.

The Combine Status Register

The combine status register contains the following subfields:

ni_com_status Status register.
ni_send ok Flag, status of message being sent.
ni_send space Field, space left in send FIFO.
ni_send_empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates receipt of message.
ni_rec_length Field, length of message in words.
ni_rec length_left Field, words left in the FIFO.
ni_com scan_overflow Flag, indicates add-scan overflow.

Version 7.1, October 1992

54

P " T A AR AN S
A N N R AR % SRR

4.2.6

NI Systems Programming

The send_ok, send_space, send_empty, rec_ok, rec_length, and
rec_length_left subfields are as described in Chapter 2. The remaining flag,
com_scan_overflow, is described in Section 4.2.6.

Scanning (Parallel Prefix) and Reduction Operations

In a scan or reduction operation, each node sends a single value that is combined
with the values sent by the other nodes in the partition.

When each participating node has sent a value, the values are combined accord-
ing to the combiner and pattern in the auxiliary data of the message, and the
result is delivered after a brief interval to the receive FIFOs of the nodes.

For scan operations, the node values are combined cumulatively — that is, the
result for each node is the combination of the values transmitted by all nodes
having lower (or higher) relative addresses. Forward scans combine values in
order of ascending node addresses. Backward scans combine values in order of
descending node addresses.

Reduction is a special case of scanning. When a reduction message is sent, the
values from all participating nodes are combined into a single value, and then
this single result is sent to all the nodes.

Important: If you are sending a message that is longer than one word, the order
in which the words of the message are written depends on the combine operation:
s Maximum operations require the most significant word to be written first.
= Both types of addition require the least significant word to be written first.

® Inclusive and exclusive OR have no word-ordering requirement.

Scanning with Segments

You can use segmented scanning to divide a partition into segments of nodes —
regions of nodes within which forward and backward scanning is done indepen-
dently of all other nodes in the partition. The scan values obtained within each
segment do not affect the values obtained in any other segment.

Note: Reduction operations do not use segmented scanning. Reduction scans
ignore the current segment settings.

Version 7.1, October 1992

4.2.7

The following control register is used to read and set the current segmentation:

ni_scan_start One-bit control register, indicates start of scan segments.

The one-bit flag in ni_scan_staxrt is used to indicate the starting points of
segments. Segments begin in each node where ni_scan_start is 1, and extend
through the nodes in order of node address — upward for forward scans, down-
ward for backward scans. If no ni_scan_staxt flags are set in a partition, then
the entire partition is treated as one segment.

Important: If you are sending a multiword message, the value of
ni_scan_start when the first value is written applies to the entire message.
Altering the flag after the first value is written has no effect on the message.

Addition Scan Overflow

Addition scans on large values can cause arithmetic overflow in some nodes. The
ni_com_scan_overflow flag in the status register indicates whether the
current scan result has suffered arithmetic overflow. This flag is 1 if the current
message in the receive FIFO sufferred arithmetic overflow; otherwise, it is 0.

Note: The com_scan_overflow flag’s value is only defined when the current
message in the receive FIFO is the result of a scan or reduction operation with
a combiner of addition or unsigned addition.

You can also instruct the NI to signal an interrupt for scan overflow. The
private register contains a flag, ni_com_scan_overflow_ie, that when set
to 1 causes an a Green interrupt (scan overflow) to be signaled when a scan
result that overflowed is read from ni_com_recw.

Network-Done Messages

Network-done messages are used to synchronize the processing nodes after a
Data Network operation. A network-done message is sent by a node when it has
completed sending its Data Network messages and is waiting for the other nodes
to finish. (Of course, even after a node has sent a network-done message, it may
still receive Data Network messages.)

Version 7.1, October 1992

Important: Although network-done messages are directly related to the opera-
tion of the Data Network, they are a feature of the combine interface of the
Conrtrol Network. All non-abstaining processors must start a network-done mes-
sage before the network-done operation can be completed.

A network-done message is always of length 1, and the actual word written is
ignored — all that matters is the sending of the message itself. Network-done
messages have a unique pair of combiner and pattern values: the combiner field
for the message must be 5, and the pattern field must be 0.

Network-done messages are an exception to the usual message-reception inter-
face of the combine interface. The result of a network-done message is not
delivered as a value in the receive FIFO.

Instead, the Data Network flag ni_router_done complete is used to indi-
cate when the network-done message has been sent by all nodes:

ni_dr status Data Network (DR) status register.
ni_router done complete Network-done completion flag.

‘When a node sends a network-done message, the ni_router_done_complete
flag of that node is set to 0. When all non-abstaining nodes have sent a network-
done message, and when the Data Network has no pending messages for any
node, the ni_router_done_complete flag is set to 1 for all nodes.

Usage Note: An attempt to send a network-done message with a length other
than 1, or to send a network-done message while another such message is still
in progress (that is, while the ni_router_done_complete flag is zero) signals
a Bus Error.

How Network-Done Works...

Network-done messages continually use the combine interface hardware until
they are completed, so any combine operations started after a network-done
won’t complete until after the network-done message is completed.

The network-done operation makes use of the ni_dr_message_count register
of the Data Network to determine when the Data Network is clear. As described
in Section 3.5.1, each node increments this register when it sends a message, and
decrements the register when it receives a message. (Not counting, of course,
messages for which counting is disabled by a O flag in ni_count_mask.)

Version 7.1, October 1992

When the ni_dr_message_count register is zero for all non-abstaining nodes,
there should be no messages in transit through the Data Network. (Again, this
may not be the case if there are messages for which message-counting is dis-
abled, but this does not prevent the use of the network-done operation.)

A network-done message basically does a repeated addition scan on the values
of the ni_dr_message_count register for all non-abstaining nodes. When the
global resuit of this scan is zero, then the NI assumes that the Data Network is
clear, and sets the ni_router_done_complete flag to 1.

...And Why You Should Care

Since network-done operations involve a combine interface scan of the value of
a Data Network register, you should be careful about setting and changing the
abstain flags of the combine interface when you intend to send a network-done
message. (See Section 4.2.8 for a discussion of the combine interface’s abstain
flags.)

For example, if you change the combine abstain flags of one or more nodes while
a Data Network operation is in progress, you may inadvertently exclude one or
more nodes that have non-zero message_count registers. If you then start a
network-done operation, these registers are ignored by the implied addition scan.
In most cases, this prevents the result of the scan from ever becoming zero, and
thus prevents the network-done message from completing.

To send a network-done message safely, make sure that the combine abstain flags
of all nodes that might send or receive a message via the Data Network are
cleared before starting the Data Network operation, and make sure those abstain
flags remain cleared until after the network-done message has been completed.

Because of a hardware defect, Revision A NI chips don’t al-
ways execute network-done operations correctly. For more
information, see Section 7.3.5.

SRR

R A e s R e : RS
e R e

Version 7.1, October 1992

58

NI Systems Programming

4.2.8 Abstaining from the Combine Interface

The combine interface has two abstain flags that you can use to cause the NI to
abstain from combine interface transactions. The use of these flags differs slight-
ly from the description in Chapter 2, as described below.

ni_com control Status register, contains combine abstain flags.
ni_rec_ abstain Flag, combine interface abstain flag.
ni_reduce_rec_abstain Flag, special reduction abstain flag.

Setting the ni_rec_abstain flag to 1 causes the NI to discard any arriving
combine interface messages, and allows any messages sent by other nodes to
complete without the participation of the abstaining node. In effect, abstaining
nodes provide an appropriate identity value for any type of combine message.

Important: As with all abstain flags, the ni_rec_abstain flag and the
ni_reduce_rec_abstain flag should only be changed when there are no
messages pending in the combine interface. If a message is currently being writ-
ten to the send FIFO when either abstain flag is changed, a Yellow interrupt (com
abstain changed) is signaled.

Implementation Note: Because of way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 7.3.8.)

The Reduction Receive Abstain Flag

For scan operations, no result value is written to an abstaining node’s receive
FIFO. For reduction operations, however, there is an additional abstain flag,
ni_reduce_ rec_abstain, that controls whether or not the abstaining node
receives the result.

Setting this flag to 1 causes a node to ignore the results of reduction operations.
If ni_rec_abstain is 1 and ni_reduce_rec_abstain is 0, the node
receives the results of reduction operations without having to supply a value for
them. (For more detail, see the section on reduction operations below.)

For the Curious: The reason for this distinction is that there are important cases
where it is necessary for a node to receive the result of a reduction without having
to participate in it. For example, when you want to transfer a value from the
nodes of a partition to the partition manager, you can set the combine abstain
flags so that the nodes transmit a reduction message and only the PM receives it.

Version 7.1, October 1992

Chapter 4. The Control Network 59

4.2.9 The Combine Private Register

The combine interface’s private register contains the following subfields:

ni_com private Private register.
ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.
ni_rec_stop Interface stop flag.
ni_ rec_full Flag, indicates receive FIFO is full.
ni_com scan_overflow_ie Flag, scan overflow interrupt enable.
ni_com_rec_empty_ie Flag, empty rec. FIFO inter. enable.
ni_com send length Field, send message length.
ni_com send combiner Field, send message combine value.
ni_com send pattern Field, send message pattern value.
ni_com send start Flag, scan segmentation flag.

The rec_ok_ie, lock, rec_stop, and rec_f£ull subfields are as described
in Chapter 2. The ni_com_scan_overflow_ie flag is described in Section
4.2.6. The remaining fields are described in the sections below.

Empty Receive FIFO Interrupt

When the ni_com rec_empty_ie flag is set to 1, the NI signals a Green inter-
rupt (com rec empty) if the receive FIFO ever becomes empty (that is, when
the rec_ok flag becomes 0). This allows the supervisor to insert one or more
messages into the empty receive FIFO, so that from a user program’s point of
view, the FIFO is never empty. (This is used by the OS in context switching.)

Clearing the Combine Send FiIFO

The pipelining feature of the combine interface means that when the supervisor
needs to swap a process out, there may be several complete messages pending
in the combine send FIFO, each of which has its own auxiliary information (each
message may have different combine and pattern values, for instance).

The supervisor extracts messages from the send FIFO by reading them, one at a
time, from the ni_com_send register. Reading a value from this register extracts
the word (or doubleword) that was most recently pushed into the FIFO.

Important: Once the supervisor begins reading words from the send FIFO, the
FIFO must be emptied before a new message can be written to it. (This avoids

Version 7.1, October 1992

NI Systems Programming

R R S e e R R e e e e e

the potential for accidentally pushing a new message on top of a half-extracted
old message.) The effect of violating this restriction is undefined.

Usage Note: It is only legal to read a value from the ni_com_send register
when the combine interface is not being used (that is, when the receive FIFO is
empty and no node in the partition is or will be in the process of writing a com-
bine message while the contents of the send FIFO are being read out.

The four private register fields send_length, send_combiner,
send pattern, and send_start contain the auxiliary data and segmentation
information for the most recent message in the send FIFO (that is, the message
that includes the next word that the supervisor can read from the send FIFO).

Specifically:
ni_com send length Field, send message length.
ni_com send combiner Field, send message combine value.
ni_com send pattern Field, send message pattern value.
ni_com send start Flag, scan segmentation flag.

® send length is the number of words in the entire message.
®* send combiner is the combine value for the message.
®* send_pattern is the pattern value.

® send start is the ni_scan_start register value for the message.

The supervisor can use these fields like the corresponding status register fields
to obtain the auxiliary data for messages extracted from the send FIFO. The
send_length ficld is undefined for a network-done message. (The message is
always one word in length.) The value of scan_staxrt is undefined for reduc-
tion and network-done messages, which ignore the segmentation flag.

Version 7.1, October 1992

Chapter 4. The Control Network 61

4.3 The Global Interface

The global interface provides a generic synchronization mechanism for the
CM-5’s processing nodes. It is much like the network-done feature of the com-
bine interface, but without the additional condition that the Data Network must
be clear before the operation can complete.

The global interface combines a single bit from every participating node in a
logical OR operation, and then returns the result to each node. The actual values
sent by the nodes, however, can be completely arbitrary. The sending of the mes-
sage itself is sufficient to provide synchronization of the nodes.

A global interface message can be sent by one of three subinterfaces:

= the synchronous global interface, which requires that all nodes send a
message before any receive the result

s the asynchronous global interface, which permits nodes to send a message
and read the result at any time, with the network continually monitoring
the state of all participating nodes

= the supervisor asynchronous global interface, which is identical to the
asynchronous global interface save that its registers are accessible only
from the supervisor area

There is a separate register set for each of these three methods. Each of these
interfaces is described in more detail in the sections below.

The Global Interface Registers at a Glance:

hex offset

ni_syno_global send | oxooco
ni_hodgepodge 0x00B8
ni_async_sup_global 0x00BO
| iasyne_global | oxooas
pl_sync_global abstalh ;10098
ni_sync_global 0%0090

Figure 14. NI registers associated with the global interface.

Version 7.1, October 1992

4.3.1

4.3.2

The Three Global Register Interfaces

Unlike the broadcast and combine interfaces, the global interface does not use
the generic interface model presented in Chapter 2. The following registers are
used for the three interfaces:

Synchronous global interface:

ni_sync_global_send Used to send the first value of a message.
ni_sync_global_abstain Used t0 abstain from synch global msgs.
ni_sync_global Used to receive a message.
ni_hodgepodge Contains interrupt enable flag.

Aynchronous global interface:
ni_async_global Asynchronous send and receive flags
ni_hodgepodge Contains interrupt enable flag.

Supervisor aynchronous global interface:
ni_async_sup_global Supervisor asynch. send and receive flags
ni_hodgepodge Contains interrupt enable flag.

The purpose and use of these registers is described in the sections below, and
Figure 14 contains a memory map showing their relative locations in NI
memory.

The Synchronous Global Interface

The synchronous global interface takes the global OR of a flag set by each node.
Each non-abstaining node must set its synchronous global flag (and thereby send
a synchronous global message) before the result of the operation is reported to
any node.

The following registers and flags form the synchronous global interface:

ni_sync_global_ send Used to send the first value of a message.
ni_sync_global_abstain Used to abstain from synch. global msgs.

ni_sync_global Used to receive a message.
ni_sync_global_rec Synchronous global receive flag.
ni_sync_global_complete Synchronous giobal completion flag.

ni_hodgepodge Contains interrupt enable flag.
ni_sync_global_rec_ie Receive interrupt enable flag.

Version 7.1, October 1992

Chapter 4. The Control Network 63
B R R R oo S R e e R R e

Sending and Receiving Messages

To start a synchronous global interface message, write a value (either O or 1) to
the the ni_sync_global_ send register.

When you write a value to the global_send register, the ni_sync_glob-
al_complete flag is set to 0, indicating that a message is in progress. (Note:
It is an error to write to the ni_sync_global_send register when the
ni_sync_global_complete flag is 0.)

When all participating nodes have sent a message, the global interface takes the
logical OR of the ni_syne_global_send flag in each node, and then sets the
ni_sync_global_rec flag of every participating node to the result. At the
same time, the ni_sync_global_complete flag is set back to 1 to indicate
completion of the message.

Abstaining from Synchronous Global Messages

The synchronous global interface includes an abstain flag that can be used to
exclude a node from the interface’s operations:

ni_sync_global_abstain Status register, contains global abstain flag.

When the ni._sync_global_abstain flagis setto 1, synchronous global mes-
sages complete without the node’s participation (as if the node has sent the
message with its ni_sync_global_send flag set t0 0).

Note: As with all abstain flags, ni_sync_global_abstain should only be
changed when there is no global message pending. A Bus Error is signaled if the
abstain flag is modified when the ni_sync_global_complete flag is 0.

Also, a Bus Error is signaled if the ni_sync_global_send register is written
while the abstain flag is 1.

Synchronous Global Receive Interrupt

If the ni_sync_global_rec_ie flag in the hodgepodge register is set to 1,
then a Green interrupt (syne global rec) is signaled whenever the
ni_sync_global_rec flag changes from 0 to 1.

Version 7.1, October 1992

4.3.3 The Asynchronous Global Interface

The asynchronous global interface is not so much a node synchronization tool as
a means for determining whether all the nodes are still operating properly, or
whether some global action needs to be taken. As with the synchronous interface,
the asynchronous interface takes the global OR of a flag set by each node. How-
ever, this global OR is performed continually, so that a change of a flag by any
node is reported almost immediately to the other nodes.

For example, each node can set its flag to 1 before performing an operation, and
set the flag to O when the operation is completed. The global interface retumns a
1 value until all nodes have set their flags to 0, guaranteeing that all nodes hav
completed the operation. :

The following registers and flags form the asynchronous global interface:

’ ni_async_global Control register, contains the following flags:

ni_global_send Flag, used to “send” asynchronous messages.
ni_global_rec Flag, always set to logical OR of send flags.
ni_hodgepodge Control register, includes the following flag:

ni_global rec_ie Flag, global receive interrupt enable.

Sending and Receiving Messages

Because the asynchronous global interface operates continually, there really is no
such thing as “sending” or “receiving” a message via this interface.

The ni_global_rec flag in each node is continually updated to reflect the
“current” logical OR of the ni_global_send flag in all nodes. When any node
writes a new value into its ni_global_send flag, the change is propagated to
the ni_global_rec flag of all other nodes after a brief interval.

Important: Because this is an asynchronous mechanism, the ni_global_rec
flag may not always reflect the present state of the ni_global_send flags in
all the nodes. There is always a delay between the instant any node changes its
ni_global_send flag and the instant that all nodes receive the result of the
change. You should not write code that depends on this delay having any exact
length, but you can assume that the delay is no longer than the time taken to
transmit a synchronous message.

Version 7.1, October 1992

Asynchronous Global Receive Interrupt

If the ni_global_rec_ie flag in the hodgepodge register is set to 1, then a
Green interrupt (global rec) is signaled whenever the ni_global_rec flag
changes from 0 to 1.

4.3.4 The Supervisor Asynchronous Global Interface

The supervisor asynchronous global interface is identical to the asynchronous
interface described above, except that its registers are only accessible from the
supervisor area. This interface is typically used by the operating system to syn-
chronize the nodes during OS operations such as context switching.

For example, if each node sets its flag to 0, then the global interface returns a 0
value until one of the nodes signals a 1 instead. If any node reaches a point in
its operations where OS intervention is required, the node can set its flag to 1,
signaling a 1 value to all the other nodes, and also indicating to the OS that some
global action must be taken.

The following register and flags form the supervisor asynchronous interface:

ni_async_sup_global Control register, contains these flags:
ni_supervisor_global_send Flag, used to “send” messages.
ni_supervisor_global rec Flag, logical OR of send flags.

ni_hodgepodge Control register, includes the flag:

ni_supervisor_global_rec_ie Supervisor receive interrupt enable.

Sending and Recelving Messages

The ni_supervisor_global_send and ni_supervisor_global_rec
flags are used to send and receive messages the same way that the asynchronous
interface does (described above).

Supervisor Asynchronous Global Receive Interrupt

If the ni_supervisor_global_ rec_ie flag in the hodgepodge register is
set to 1, then a Green interrupt (supervisor global rec) is signaled when-
ever the ni_supervisor_global_rec flag changes from O to 1.

Version 7.1, October 1992

Chapter 5

NI Interrupts

5.1

The NI chip is, in many ways, the “interrupt gateway” of the CM-5. Most node
hardware and software exceptions, whether or not they originate in the NI chip,
are signaled to the node microprocessor via NI interrupts.

The NI is capable of signaling an interrupt in any of five classes and at any of
a number of levels of severity. Interrupts can be signaled by events beyond the
programmers’s control (such as hardware failures), or by fatal errors in the way
a program uses the NI, or deliberately, under program control.

Interrupts are signaled by one of two different methods:
® as alocal interrupt to the NI’s associated microprocessor
® as a broadcast interrupt to the other NIs in the partition
This chapter describes the kinds of interrupts available on the NI, their causes,

the registers used to determine their type and severity when they are signaled,
and the mechanism used to signal a broadcast interrupt.

Interrupt Classes

The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts tend to be the most severe and green interrupts
the least severe. The five types are distinguished as follows:

Version 7.1, October 1992 67

68

NI Systems Programming

Red interrupts indicate a failure of the hardware, such as checksum vio-
lations and message format errors.

They occur at unpredictable times relative to the instruction stream and are
usually irrecoverable. Determining the precise cause of a Red interrupt
may require the use of the Diagnostic Network.

The possible Red interrupts are:

internal fault Failure detected in NI chip itself.

dr checksum error Data Network checksum failure.

cn checksum error Control Network checksum failure.
en hard error Control Network hardware failure.
mc error Error detected in memory subsystem.
cmu error Cache/MMU error.

be interrupt red Red broadcast interrupt.

Orange interrupts indicate that the attention of the operating system is
required, as in timer interrupts and broadcast interrupt messages.

They occur at unpredictable times relative to the instruction stream and do
not destroy any information that might be needed to determine the cause
of the interrupt.

The possible Orange interrupts are:

timer interrupt NI timer reached interrupt_now.
bec interrupt orange Orange broadcast interrupt.

Yellow interrupts indicate that the software has made an error. They are
usually irrecoverable, as they indicate that your program is doing some-
thing illegal and must be rewritten. Sufficient information is retained in
the NI to permit isolation of the cause of the interrupt, but it is not always
possible to recover all the information relating to the cause of the interrupt.

Yellow interrupts are associated with particular instructions, but usdally
are not signaled at the exact point of the offending instruction, because of
the loose coupling between the NI and the microprocessor.

The possible Yellow interrupts are:

dr count negative Negative DR message count.

bec or com collision Conflict in broadcast/combine ops.
com abstain changed Flag changed while interface in use.
bad relative address Address outside partition, etc.

be interrupt yellow Yellow broadcast interrupt.

Version 7.1, October 1992

Chapter 5. NI Interrupts

.......... > SRR

= Green interrupts indicate the occurrence of common events for which
the software has requested notification, such as the arrival of messages,
the signaling of broadcast interrupts, arithmetic overflow in a scan, etc.
There is one interrupt for each event, and each event’s interrupt can be
enabled and disabled independently under the control of the supervisor.

Depending on the type of event, the interrupt may or may not occur syn-
chronously with a particular instruction. No information is lost by a Green
interrupt.

The possible Green interrupts are:

scan overflow Overflow in combine interface scan.
dr rec ok DR message received.

1dr rec ok LDR message received.

rdr rec ok RDR message received.

bc rec ok Broadcast received.

sbc rec ok Supervisor broadcast received.

com rec ok Combine message received.

com rec empty Empty combine receive FIFO.

dr rec tag Message with interrupt tag received.
dr rec all fall down All Fall Down message received.
sync global rec Synchronous global msg received.
global rec Asynchronous global msg received.
supervisor global rec Supervisor asynch. msg received.
be interrupt green Green broadcast interrupt.

* Bus Errors indicate that a bus transaction cannot be completed, as in an
attempt to read an address that does not correspond to a register, or to write
a message that does not conform to sending protocol (send_£irst, then
send). Bus Errors are signaled asynchronously, and are irrecoverable.

There is basically one flavor of Bus Error:
bad memory access Meaningless or illegal reference.

Bus Errors are treated differently from the four colored interrupts. Bus
Errors are always handled as traps, primarily because they occur only on
read operations, and do not involve the NI chip.

Note: Bus Errors are distinct from segmentation violation errors. Seg-
mentation errors result from attempting to read an unmapped virtual
address, and are signaled synchronously with the offending instruction.
Bus Errors result from errors with physical addresses, once the address has
been transmitted to the Mbus itself.

Version 7.1, October 1992

70 NI Systems Programming

5.2 Interrupt Pathways

The four colored interrupts (Red, Orange, Yellow, and Green) result from a num-
ber of different causes. Figure 15 shows the pathways followed by the various
types of interrupts on their way to the microprocessor. These pathways are
described in detail in the sections below.

64-bit Bus

I Memory | s Memory

Controlier Subsystem
CMU/Cache

RISC ~ RED
micro-
processor

l Network Interface

LDR
RDR
BC
SBC
COM
GLOBAL

Violations

errupt |

BC Int

FP Unit

Figure 15. The possible pathways for colored interrupts.

5.2.1 Red Interrupts

The Red interrupts are of two varieties:
® On-chip faults — hardware errors detected by the NI itself
® Off-chip faults — problems on other devices that are signaled via the NI

Version 7.1, October 1992

Chapter 5. NI Interrupts

A s

On-chip faults are universally fatal — that is, they always cause the OS to halt
(usually forcefully). It is then necessary to use diagnostic measures to determine
the cause of the problem.

Off-chip faults are caused by problems on other components, and it is necessary
for the OS to poll those devices to find out what happened.

Of the red interrupts, the following are off-chip faults:

mc arror — error in MC (memory controller)
cmu arror — error in CMU (cache and memory unit)

The cause of these faults can only be determined by examining the state of the
appropriate hardware:

= MC errors are caused by either a fault in the MC itself (usually fatal), or
(if the CM-5 has the vector unit option installed) by an error signaled from
one or more of the vector units. In either case, it is necessary to examine
the state of the appropriate hardware to determine the actual cause of the
interrupt.

* CMU errors are only caused by bad memory writes (typically memory
writes to illegal addresses) and are always fatal. CMU errors are asynchro-
nous, so that the error is not signaled until some time after the offending
write instruction.

All the remaining Red interrupts are on-chip faulits. Three are caused by network

problems:
dr checksum error — Data Network fauit.
en checksum error — Control Network fault.
cn hard error — Control Network hardware fault.

One is caused by NI chip problems:
internal fault — NI chip fault.
And one can be signaled by software:
be interrupt red — Red broadcast interrupt.

Warning: A Red broadcast interrupt is functionally equivalent to deliberately
causing a fatal error, so use it with caution — if you use it at all!

Version 7.1, October 1992

72

5.2.2

5.2.3

5.2.4

Orange Interrupts

There are only two Orange interrupts. One is caused by the NI timer:
timer interrupt — Timer alarm interrupt.
And the other can be signaled by software:

bec interrupt orange — Orange broadcast interrupt.

Yellow Interrupts

The Yellow interrupts are, with one exception (the Yellow broadcast interrupt),
caused by NI violations produced in user code:

com abstain changed — [llegal abstain flag change.
bec or com collision — Multiple message collision.
bad relative address — Illegal DR destination.

dr count negative — Negative DR message count.

There is also a Yellow broadcast interrupt that can be signaled by software:

bec interrupt yellow — Yellow broadcast interrupt.

Green Interrupts

The Green interrupts are, for the most part, indications of non-error network
events for which the user may want to assign a specific code handler.

For example, there are nine Green interrupts, one for each major network inter-
face, that indicate when a message has arrived in the interface’s recv register:

bc rec ok — BC interface message received.

sbc rec ok — SBC interface message received.

com rec ok — COM interface message received.

dr rec ok — DR interface message received.

ldr rec ok — LDR interface message received.

rdr rec ok — RDR interface message received.
global rec — Asynchronous global message received.
sync global rec — Synchronous global message received.

supervisor global rec — Supervisor asynchronous global message.

Version 7.1, October 1992

Chapter 5. NI Interrupts 73

5.3

In addition, there is a Green interrupt for an important combine interface event:
scan overflow — Combine interface add-scan overflow.

There are a number of interrupts for OS-related events:

dr rec tag — DR message arrived with interrupting tag.
dr rec all fall down — DR All Fall Down mode message received.
com rec empty — Combine receive FIFO empty.

And as usual there is a broadcast interrupt that can be signaled by software:

be interrupt greem — Green broadcast interrupt.

The Interrupt Cause and Clear Registers

Once an interrupt has been signaled, there are four NI registers that you can use
to determine which interrupt it is, and also to clear it once you have finished
handling it: :

ni_interrupt_cause Flags set by non-Green interrupts.
ni_interrupt_clear Flags used to clear non-Green interrupts.
ni_interrupt_cause_green Flags set by Green interrupts.
ni_interrupt_clear_ green Flags used to clear Green interrupts.

When an event causing an interrupt occurs, a bit in the ni_interrupt_cause
orni_interrupt_cause_green registeris set. Which bit is set indicates what
the event was. If more than one interrupt occurs before any are cleared, several
bits in these registers may be set simultaneously.

The interrupt_cause and interrupt_cause_green registers may also be
written explicitly (by the supervisor, not user code) to cause interrupts to be sig-
naled without their normal triggering event occurring.

Interrupts can be cleared by writing a value to the ni_interrupt_ clear or
ni_interrupt_clear_ green registers. Any value written to these registers
should contain 1’s in locations corresponding to the interrupts that are to be
cleared. It is not possible to read the value of the ni_interrupt_clear or
ni_interrupt_clear_green registers — use the corresponding cause reg-
ister to determine whether any interrupts have not yet been cleared.

Version 7.1, October 1992

5.4

Note: If a given interrupt has an interrupt enable flag (a flag with a name ending
in _ie) and the flag is set to 0, then the interrupt is not signaled and the corre-
sponding ni_interrupt_cause Or ni_interrupt_cause_green flag is
not set.

Interrupt Levels

Each of the four color classes of interrupt include a “level” or “priority” value
that can be used to provide the software with information about the relative im-
portance or priority of interrupts of various colors.

Any interrupt level can be assigned to each color of interrupt. It is, for example,
permissible to give Green interrupts a level of 15 while Red interrupts have a
level of 4. However, the relative interrupt levels are intended to indicate priority
or severity; for example, there are mechanisms for masking all interrupts (of any
color) below a given level.

The following register is used to set the priority value for each interrupt color:

ni_interrupt_ level Control register, contains these fields:
ni_interrupt_level red Red interrupt priority level.
ni_interrupt_level_orange Orange interrupt priority level.
ni_interrupt_level_vyellow Yellow interrupt priority level.
ni_interrupt_level_green Green interrupt priority level.

The four eight-bit fields, level red through level green, each indicate the
level at which the corresponding color of interrupt is signaled. For example, if
the level red field is set to 13, all red interrupts from that point onwards are
signaled to the microprocessor with a level of 13.

If more than one color of interrupt is signaled simultaneously, the interrupt level
signaled to the processor is the inclusive OR of the levels for each interrupt color.

If any of the interrupt_level fields is set to 0, then all interrupts of the corre-
sponding color are suppressed. (When the NI is reset, for example, all four
interrupt level fields are set to 0.)

Implementation Note: Currently, only the low-order bit of each interrupt level
field is used. The other bits are required to be 0.

Version 7.1, October 1992

PN

5.5 Broadcast Interrupts

The broadcast interrupt mechanism allows an interrupt to be signaled from one
NI to all other NIs in the current partition. Each NI receiving the broadcast im-
mediately signals an interrupt to its associated miCroprocessor.

Important: Only one NI in each partition can use the broadcast interrupt facility.
If two or more NIs try to broadcast simultaneously in the same partition, a Yel-
low interrupt (be or com collision) is signaled to all nodes in the
partition, and the broadcast interrupt messages that are received are undefined.

The broadcast interrupt can be of any color, Red, Orange, Yellow, or Green. A
unique flag exists in the cause and cleax registers for each color of broadcast
interrupt. Only Bus Errors cannot be broadcast — mainly because it is not useful
(and doesn’t really make sense) to do so.

The following register and flags are used to send a broadcast interrupt:

ni_interrupt_send Register used to send broadcast interrupt.
ni_hodgepodge Control register, includes the flags:
ni_interrupt_send ok Flag, set when broadcast is sent.

ni_interrupt_rec_enable Flag, enables receipt of interrupts.

To send a broadcast interrupt, write a value to the ni_interrupt_send register
indicating the color of interrupt to be signaled. The permissible values for each
color of interrupt are:

Value Interrupt Description
8 bc interrupt red Red broadcast interrupt.
4 be interrupt orange Orange broadcast interrupt.
2 bc interrupt yellow Yellow broadcast interrupt.
1 be interrupt green Green broadcast interrupt.

Note: More than one color of interrupt can be broadcast at a time (for example,
by combining the above values with a logical-OR operation). Multi-colored
broadcast interrupts are signaled by the hardware exactly as if each colored inter-
rupt was signaled separately. The software effects of such multi-colored
interrupts are determined entirely by the current interrupt handlers on the nodes.

Writing a value t0 ni_interrupt_send sets the ni_interrupt_send ok
flag to O until the interrupt has been successfully broadcast, at which point the
flag is set back to 1. An attempt to write a value t0 ni_interrupt_send while
ni_interrupt_send ok is O signals a Bus Error.

Version 7.1, October 1992

76

5.6

R D D R AR D o o K SRR T 2 353 R

NI Systems Programming

A

Any NI can disable broadcast interrupts by setting its ai_interrupt_rec_en-
able flag to 0. Doing so causes all broadcast interrupts received by that NI chip
to be ignored. Setting the flag back to 1 re-enables broadcast interrupts.

Note: There is a special class of broadcast interrupt, the Reset interrupt, which
cannot be disabled. See Section 6.10 for more information about the cause and
effects of an NI Reset.

Recovering from Interrupts
The methods used to recover from an interrupt depend heavily on the type of

interrupt itself. Appendix D of this manual provides guidelines describing the
steps needed to recover from each of the possible interrupts.

Version 7.1, October 1992

Chapter 6

Other NI Interfaces and Features

This chapter describes the remaining NI registers and features not covered in the
preceding chapters. Except as noted, all registers and features described in this
chapter are accessible only to the supervisor.

6.1 The “Hodgepodge” Register

The ni._hodgepodge register, as its name suggests, contains a collection of mis-
cellaneous flags that are used by various features of the NI.

ni_hodgepodge Register with “hodgepodge” of flags:
ni_sync_global_rec_ie Sync global receive interrupt enable.
ni_global_rec_ie Asynch global receive intrpt. enable.

ni_ supervisor global_rec_ie
Supervisor asynch. rec. intrpt. enable.

ni_interrupt_send ok Broadcast interrupt send ok flag.
ni_interrupt_rec_enable Broadcast interrupt receive enable.
ni_flush_complete Combine flush complete flag.
ni_timer ie NI timer interrupt enable flag.
ni_configuration_complete Configuration complete flag.
ni_cn_stop_send Control Network disable flag.

For more information on the meaning and use of these flags, refer to the sections
describing the NI features that use them. (Look up the individual flags by name
in the Index.)

Version 7.1, October 1992 77

6.2

6.3

6.3.1

NI Systems Programming
R S e A

R N R A R Rl RN A

Node Address Registers

There are three NI registers that provide information about the physical address
of the current node within the CM-5, as well as the size and location of the cur-
rent partition:

ni_physical_self 20-bit physical address of current node.
ni_partition_ base 20-bit address of first node in partition.
ni_partition_size Number of nodes in current partition.

These registers are used by other NI chip features, such as the chunk table
address translation mechanism described in Section 6.3 below.

NI Chunk Table and Address Translation

The NI chunk table is a small array stored in the NI itself that determines the
locations of the *“‘chunks” of processing nodes that make up a Data Network
partition on the CM-5. A chunk is a contiguous sequence of physical addresses
that correspond to real, working processing nodes. Addresses corresponding to
broken or missing hardware are isolated by not being included in any chunk.

Important: The chunk table specifies chunks of node addresses — the chunk
table has nothing to do with memory allocation on the nodes.

Node Address Translation

The chunk table is used to convert from relative node addresses used within a
partition to the physical addresses required by the Data Network.

For the Curious: A side effect of the use of the chunk table is that it implicitly
divides the Data Network up into “partitions” of nodes. That is, there is no hard-
ware restriction preventing a Data Network message from traveling between
partitions; it is the chunk tables that determine whether a relative address is legal
for a given partition of nodes.

The mapping from relative to physical addresses is performed in three steps:

First, the relative address is compared with the ni_partition_size register,
to determine whether it is legal for the current partition. (If the relative address

Version 7.1, October 1992

Chapter 6. Other NI Interfaces and Features 79
SRS T T D S S L S S O S S e

SRR LS R N Y

is greater than or equal to ni_partition_size, the address is guaranteed not
to correspond to a node in the current partition, and an error is signaled.)

Next, the relative address is split into two parts (see Figure 16).

Relative Address

- Chunk address
—Ghunk (a bits)

select address
(2 ni_chunk size bits)

q-——-—h;————»
A

—1_chunk position
{ p bits)

Absolute Addresfs
| 1]

ni_partition base

Physical Address

Figure 16. Translation from relative addresses to physical addresses.

The two parts of the address are:
® the high-order bits of the address, known as the chunk address
®» the low-order bits of the address, known as the select address

The chunk address is used as a pointer into the NI’s chunk table. The referenced
chunk table entry, known as the chunk position, is recombined with the select
address to form an absolute address — essentially an offset from the address of
the first processor in the current partition.

Finally, the absolute processor address is added to the value of the register
ni_partition_base to get the required physical address.

Version 7.1, October 1992

6.3.2 Chunk Sizes and Address Allocation

The size of the chunk table is determined by the number of bits in a chunk ad-
dress (call this a), and the number of bits in a chunk position (call this p). The
chunk table consists of 22 entries, each p bits long. The values of g and p are
currently fixed by hardware at a = 6 and p = 8. Thus, the chunk table contains
64 entries, each 8 bits long.

However, while the size of the chunk table is fixed, the size of the chunks it refer-
ences (that is, the number of physical addresses per chunk) is under supervisor
control. The following register is used to set the chunk size:

ni_chunk size Size of chunks referenced by the chunk table.

The ni_chunk_size register contains a three-bit value that determines the
number of bits in the select address part of a relative address, and thus sets the
number of addresses per chunk.

The number of bits in a select address is 2ni_chunk_size Ag 3 result, the number
of physical addresses in a chunk is 4ni_cbunk_size and this means that the num-
ber of possible relative addresses (in other words, the number of accessible
nodes) is 22 * 4ni_chunk_size Thijs also means that the total physical address
space accessible through the chunk table is 2P * 4ni_chunk_size Thusg, the acces-
sible physical address space is always 2P times the size of the relative address
space. This extra “unused” space between chunks is used to isolate regions of
broken or missing hardware. (See Figure 17.)

Relative Address Space ni_rartiti;n_size

Physical Address Space Table

Figure 17. The chunk table is used to map contiguous relative addresses
onto discontiguous physical addresses.

Version 7.1, October 1992

6.3.3

In the simplest case, the chunk table is set up to map all relative addresses to a
contiguous region of 22 * 4ni_chunk size physical addresses. In this case, chunk
table entry n simply has the value 7.

The table below lists the permissible values for the ni_chunk size register,
along with the corresponding number of relative addresses (nodes) per chunk,
and the maximum size of the physical address space in nodes and addresses.

ni chunk size Addresses/chunk Nodes Phys. address space
1 4 256 1K
2 16 1K 4K
3 64 4K 16K
4 256 16K 64K
5 1K 64K 256K
6 4K 256K M

Note: The effects of writing ni_chunk_sizae with a value not listed in this table
are undefined, but almost certainly disastrous.

Modifying the Chunk Table

The following registers are used to read and write chunk table entries:

ni_chunk_table_data Location used to read/write table entries.
ni_chunk_ table_address Chunk table location that is read/written.

Note: The chunk table is set up by the OS when the nodes are grouped into parti-
tions, and from then on the chunk table is normally not modified. Accordingly,
the registers listed above are accessible only from the supervisor area.

When the ni_chunk_table_data register is written, the value written is
stored in the chunk table entry indicated by ni_chunk table_address. When
the table_data register is read, the value read is the current contents of that
chunk table entry.

The ni_chunk_table_address register determines the entry of the chunk
table that is affected by reading or writing the ni_chunk_table_data regis-
ter. The size of the values that are read from and written to this register depends
on the size of chunk addresses (see the discussion in Section 6.3.2).

Version 7.1, October 1992

NI Systems Programmmg

6.4

Important: In order for the Control Network to operate correctly, the entries of
the chunk table must be in ascending order. In other words, each chunk table
entry must contain a larger address than the entry that precedes it.

Note: The effects of reading or writing the table_data register while the Data
Network is in use are undefined, and best avoided.

Combine Interface Flush

The combine interface flush operation is used to reset the hardware of the com-
bine interface, canceling any uncompleted combine operations. As with all other
Control Network operations, a combine flush must started in unison by all of the
nodes in a partition — nodes cannot “abstain” from a flush. Also, flushes only
affect the single partition in which they are started; they don’t cross partition
boundaries.

Important: The broadcast and global interfaces are not affected by flushing, and
must be cleared separately.

The combine flush interface consists of the following registers and flags:

ni_com flush_send Single-flag register used to start a flush.
ni_hodgepodge Control register, includes the flag:
ni_flush_complete Flag, set when flush is completed.

To start a flush operation, write any value (either 0 or 1) to the
ni_com flush send register. This sets ni_f£lush complete to 0, and then
starts the interface flush. When the flush is completed, the £lush_complete
flag is set back to 1. Attempting to write the ni_com flush_send register
while ni_£lush_complete is 0 orni_com abstain is 1 signals a Bus Error.

Important: A flush operation should be executed only when there are no mes-
sages in transit through the combine interface, that is, when
ni_com send empty is 1, and ni_com rec_ok is 0.

Usage Note: The combine flush operation is only useful when the send and
receive FIFOs of the combine interface are empty. The combine flush operation
does not clear out the FIFOs — it merely resets the communications hardware of
the interface itself. The flush operation is only intended to be used in context
switches, after the FIFOs have been cleared and saved.

Version 7.1, October 1992

Chapter 6. Other NI In

..........

6.5

6.6

terfaces and Features 83
Ay R R K SO KRS SRS R R R L oS P o

The NI Timer

The NI contains a simple timing mechanism that can be used to measure the time
between two events and to interrupt the microprocessor after a specific interval.

The following registers and flags form the timer interface:

ni_time Timer register, regularly incremented.

ni_interrupt_now Register, timer value that triggers interrupt.

ni_hodgepodge Control register, includes the flag:
ni_timer ie Timer interrupt enable flag.

The 32-bit register ni_time contains an unsigned value that is incremented at
every microprocessor clock cycle. When the timer value exceeds the register’s
capacity, it wraps around to 0.

The value of the ni_time register can be read at any time, and can be written
by the supervisor to set the NI’s timer to a chosen value.

The NI timer can signal an interrupt at a specific timer value. When the value of
ni_time equals the value stored in the ni_interrupt_now register, an Orange
interrupt (timer interrupt) is signaled.

This interrupt can be enabled and disabled by setting the ni_timer ie flag in
the hodgepodge register. When this flag is 1, timer interrupts are enabled. When
this flag is O, timer interrupts are disabied.

The Bad Address Register

When a Bus Error is signaled as the result of an illegal memory reference, the
ni_bad_address register contains the illegal address, the data size, and the
type (read or write) of the transaction. The data returned by a read from an illegal
memory address is undefined. Data written to an illegal memory address is lost.

ni_bad address Bad address register, contains the fields:
ni_bad_address_low Low 20 bits of illegal address.
ni_bad_address_type Size and type of transaction.

Version 7.1, October 1992

6.7

Usage Note: The ni_bad_address register is updated every time a memory
transaction is made, not just when an error occurs. Thus, its value is only valid
when a Bus Error (ni bad memory access) has actually been signaled. If
more than one illegal access is performed before the first one is handled, the val-
ue of the ni_bad_address register is the most recent bad memory address.

Currently, the format of the ni_bad_address_type ficld is:
29 28 27 26 24 23 20

pins | lok|csh :size;) ty_:pe

= type indicates the transaction type (0 = write, 1 = read)

" size gives the data size (2 = word, 3 = doubleword)

® ¢sh, lok are the MBUS cacheable and lock bits

= pins is the setting of the NI's two physical base address pins

Values for the zype and size fields other than those shown above are reserved. The
csh, lok, and pins fields are hardware-related and not useful to NI programmers.

NI Partition Configuration

The NI has a register that can be used to change the partitioning of the CM-5.
The following register and flag are used to control the partitioning feature:

ni_configuration Partition configuration control register.
ni_hodgepodge Control register, includes the flag:
ni_configuration_complete Flag, set when partitioning is done.

The ni_configuration is a five-bit register that controls the configuration, or
set of processor partitions, that is in use. The value in this register is actually the
“height” (number of layers) of the Control Network partition to which the node
belongs. Control Network operations use this value to determine the maximum
height of the network to which a message needs to be sent.

By writing a value to the configuration register, you can temporarily change
the size of the current partition. (Since the actual size of the partition is currently
determined by the state of the Control Network itself, you can only reduce the
size of the partition.)

Version 7.1, October 1992

Chapter 6. Other NI Interfaces and Features

6.8

R Rn D

Note: Only one NI per partition needs to write a value to the configuration
register — the configuration operation includes all nodes in the same partition.

The actual value written to the ni_configuration register is an encoded ver-
sion of the new partition size:

configuration = log2(partition_size) + 2

Extra for Experts: By writing a 0 to the configuration register, you can tem-
porarily isolate each node in the partition in its own “mini-partition,” so that
network operations performed by each node apply only to that node. Obviously,
you should restore the original value of the configuration register when you
are finished using this “mini-partition” effect.

The flag ni_configuration_complete is set to O while the repartitioning is
in progress, and then set back to 1 to indicate its completion. At the same time,
the ni_configuration register of the NI that sent the message is updated to
the new partitioning value. The configuration registers and flags of the other NIs
are not affected. An attempt to write a value to the ni_configuration register
while ni_configuration_ complete is 0 signals a Bus Error.

Important: A partition change should not be done when the Control Network
is in use — the effect of doing so is undefined, but certainly disastrous.

Disabling the Control Network

There is one last flag in the hodgepodge register that has not yet been described:

ni_hodgepodge Control register, includes the flag:
ni_cn_stop_send Flag, disables Control Network sending.

This flag is used to completely disable the Control Network, preventing any mes-
sages from being sent into it — including the periodic “idle” packets that are sent
when the network is not otherwise being used.

The stop_send flag is generally used only during an NI Reset (see Section
6.10) when it is necessary to totally disable the Control Network. When the

Version 7.1, October 1992

6.9

6.10

NI Systems Programming
R O

SR

R

stop_send flag is 1, the Control Network is disabled. When the stop_send
flag is set to 0, normal network operations resume.

For the Curious: The Control Network is designed in such a way that packets
are periodically sent into it even when the network is not in use. When no mes-
sage is being sent by the user or by the OS, these “idle” packets simply contain
no data, and have no effect on the nodes. However, idle packets can affect the
state of the Control Network itself in unwelcome ways, especially during a reset
operation, when it is important for the state of the network to remain unchanged.

For the Even More Curious: Because the Data Network operates in an essen-
tially asynchronous manner, with messages being sent from the nodes “on
demand,” the Data Network does not transmit idle packets, and thus has nothing
analogous to the Control Network’s stop_send flag.

NI Serial Number

Finally, one NI register contains the hardware serial number of the NI chip:
ni serial number Version serial number of NI chip.
This serial number identifies the version of NI chip that is installed.

Usage Note: Most revisions of the NI chip do not have usefully distinguishable
serial numbers, so this register is not particularly valuable.

NI Reset

Under the following conditions, the NI chip is completely reset:

= The system administrator requests a repartitioning of the CM-5.

= The system administrator uses the diagnostic hardware of the CM-5 10
reset the processing nodes and networks.

Version 7.1, October 1992

R

Chapter 6. Other NI Interfaces and Features 87

When the NI is reset, a number of its register fields and flags are set to known
states. The following events occur on an NI Reset:

® All abstain and lock flags are set to 1, thus isolating the NI from all net-
works. These flags are:

ni_dr lock ni ldr lock ni_rdr lock
ni_be_lock ni_sbe_lock ni_com lock
ni_reduce rec_abstain ni_com abstain
ni_bc_rec_abstain ni_sbe_rec_abstain
ni_sync_global_ abstain

®* ni_interrupt_level is set to 0. This disables all colored interrupts.
® All sending and receiving FIFOs are cleared.

® ni_flush complete and ni_sync_global_complete are setio 1.
The values of all other NI registers are undefined, and must be set by software.

NI Reset is triggered by a special broadcast interrupt, the Reset interrupt, that can
be sent from another NI or from the partition manager. This interrupt is always
effective and cannot be disabled.

Version 7.1, October 1992

Chapter 7

This chapter presents a number of NI programming issues that you should keep
in mind, as well as important performance and programming hints and warnings.

7.1 The Partition Manager

As described in Section 1.1.3, each node in a partition has a unique address in
its partition. However, the PM is not part of this addressing scheme. The PM is
always located outside the address space of the partition that it manages.

PM
Partition Manager

Figure 18. The partition manager stands apart from the partition it manages.

This means that sending messages to and from the partition manager involves
some careful coordination between the PM and the nodes.

Version 7.1, October 1992 89

7.1.1

7.1.2

NI Systems Programming

RN

Sending Messages between the PM and the Nodes

To send a message from the PM to a node, use one of the broadcast interface
interfaces. A common strategy is for the PM to send a broadcast message with
two pieces of data: the address of the node that should “receive” the message, and
the actual message itself. Each node does two broadcast interface reads, one to
determine whether the address of the message matches the node’s own address,
and one to receive the message itself (or to discard it, if the address doesn’t
match).

To send a message from one or more nodes back to the PM, use the combine
interface. The PM should set its ni_rec_abstain flag to 1 and its ni_re-
duce_rec_abstain flag 10 0, so that it can receive a combine message without
having to send a value. The nodes send a combine interface reduction message
(for example, a UADD_SCAN reduction), and the PM, because of the settings of
its abstain flags, receives the result as a combine interface message.

For the Curious: Using the Data Network

You can use the Data Network to send messages between the PM and the nodes.
This is primarily useful in cases where you want to send a message to a specific
node without forcing the other nodes to do a network operation at the same time.
However, owing to the distinction between node and PM addressing, it’s not as
clear-cut an operation as using the combine interface.

To send a message from the partition manager t0 a specific node via the Data
Network, you can simply use the node’s relative address within the partition as
the destination address for the message. To send a message from a node to its
partition manager, the node must send a message outside of its partition. This can
only be accomplished via an OS function call.

For example, in the CMOST operating system, the following function is used to
send a message from a node to its PM:

int *source, length, tag
CMNA_interface_send_packet_to_scalar(source, length, tag)

where the interface abbreviation is dr, 1dx, or rdr, depending on the interface
involved. The partition manager can then receive this message as usual. The
send_packet_to_scalar system call is currently implemented as a trap
instruction, so it is much less efficient than using the combine interface.

Version 7.1, October 1992

7.2 Performance Hints

7.2.1 NI Register Operation Times

Here are some rough estimates of the time taken by a number of basic operations:

register access (register variable): 1 cycle

cache memory (previously accessed variable): 2-3 cycles
NI register read (ni_interface_status, etc.): 7-8 cycles
NI register write (ni_interface_status, etcC.): 34 cycles
memory access (newly accessed variable): ~25 cycles

The time taken to perform an NI register read or write operation is longer than
the time taken for cached memory accesses, but much shorter than the time for
full memory accesses. (NI register writes are faster than reads because an NI read
operation requires that the node microprocessor wait for the read operation to
move through the Mbus buffer before a value is actually read and returned.)

7.2.2 Reading and Writing Registers with Doubleword Values

While this document focuses for the most part on reading and writing network
messages in terms of single (32-bit) words, you can also use doubleword (64-bit)
operations in reading and writing network registers.

Writing a doubleword to a register has the same effect as writing two single-word
values, but involves only one register operation. Likewise, reading a doubleword
from a register. is the same as reading two single words.

The combine interface is an excepton to this rule, because of its pipelining fea-
ture. You can’t use doubleword writes when you are pipelining combine
operations. However, you can use doubleword reads with pipelined operations,
and doubleword writes are permitted for non-pipelined combine operations.

In addition, attempting a doubleword read or write for a message that consists of
only one word (as is the case for network-done tests) signals an error.

For C Programmers: To use doubleword read and write operations, the values
you send must be doubleword aligned in memory. To ensure that this is the case,
use the compiler switch ~dalign when compiling any file that includes double-
word function calls or variable definitions. For example:

cc -c -g -DCMS -dalign -I/usr/include ni_code.c

Version 7.1, October 1992

7.23

7.2.4

NI Systems Programming
S R LR R A R S S e

SRR

R

Use Message Discarding for Efficiency

When a message you are writing to a network send FIFO is discarded, it is com-
pletely discarded — effectively, it is as if you never began writing the message.

Many NI programmers take advantage of this property by writing a complete
message to a network FIFO, and only then checking to see whether it was dis-
carded (and if so, writing it again). This might seem a sloppy practice, but it is
actually a safe and efficient strategy.

Because messages are typically only a few words long, and because the NI com-
pletely ignores a discarded message, it's perfectly reasonable to check the
send_ok flag just once, after you’ve written the entire message. Also, if your
code is properly written it should be rare for a message to be discarded, and thus
unlikely that checking the send_ok flag after writing each value of the message
provides any benefit. In fact, checking the send ok flag after you write each
value of a message can slow your code down considerably.

Set the Abstain Flags Once and Forget Them

In most cases, abstain flags of a network interface can be changed only when the
network is not in use — that is, when there are no messages pending in either the
send or receive FIFOs, and no messages in transit in the network. While this cer-
tainly does not prevent you from toggling the state of the abstain flags within
your code, it does make this kind of flag-toggling more prone to programming
ITOTS.

A more straightforward strategy to use is to set the values of the abstain flags
once, at the beginning of your program, leave them alone while the program
runs, and then restore their original values before your program exits.

Note: This last point is important. As noted in Section 2.6.4, some programming
systems (such as CMMD) use the abstain flags for their own purposes. These sys-
tems are written with the assumption that the abstain flags won’t change
unexpectedly, so if the flags do change these systems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before your code exits. Failing
to do so can cause your code to signal obscure errors that are hard to trace.

Version 7.1, October 1992

Chapter 7 NI Programmmg Issues 93

7.3

7.3.1

7.3.2

Potential Programming Traps and Snares

Here are some potential sources of serious errors that you should keep in mind.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

Pay Attention to Data Network Addresses

When sending a Data Network message with a relative address, the address must
be valid within the current partition. If an address higher than CMNA_parti-
tion_size is supplied, the NI signals an error.

Also, there is currently a 20-bit limit on the length of a Data Network address,
and the remaining high-order bits in a 32-bit address value must be 0. If any of
these high-order bits are nonzero, the NI signals a serious error, and in some
cases the entire partition of nodes may crash. You should either write your code
so that the high-order bits of a network address can never be other than zero, or
failing that mask out the top 12 bits of an address before using it.

Check the Tag before Retrieving a Data Network Message

As described in Section 3.5.2, whether or not you use tag-driven interrupts to
receive messages, you must take care not to accidentally read a message intended
as an interrupt, because the operating system of the CM-5 itself sends Data Net-
work messages with interrupt tags.

The Data Network only checks the tag field of a message after the message has
been delivered to the receive FIFO. This means that if you’re not careful, you can
accidentally read a message with an interrupt-triggering tag value before the NI
has signaled the interrupt. The effect of doing so is unpredictable. An error may
be signaled, or your partition may crash.

To avoid this problem, check the tag value of a Data Network message before
retrieving it to make certain that it is a non-interrupting message (that is, a mes-
sage with a tag value from O to 7 that you have not assigned as an interrupt tag.)

Version 7.1, October 1992

7.3.3

7.3.4

7.3.5

NI Systems Programming
T T, DTN SIS L

SRS 5

Make Sure Doubleword Data Is Doubleword Aligned

C Programmers: This is also mentioned in the performance section above, but
it’s as well to re-emphasize it. When you use doubleword read and write opera-
tions in your C code, you must compile your code with the —dalign compiler
switch, so that doubleword values are properly aligned in memory:

cc -c¢c —g -DCM5 -dalign -I/usr/include ni_code.c

If the doubleword values in your code are not properly aligned, the nodes will
most likely signal “illegal address” errors, and your code won'’t run.

Order Is Important in Combine Messages

As noted in Section 4.2.6, for scan messages longer than one word, the order in
which the words of the message are written depends on the combine operation:

®* Maximum operations require the most significant word to be written first.
® Both types of addition require the least significant word to be written first.

®* Inclusive and exclusive OR have no word-ordering requirement.

Restriction on Network-Done Operations for Rev A NI Chips

As described in Section 4.2.7, the ni_dr_message_count register is used to
keep track of the number of Data Network messages sent and received, and also
to determine when a network-done operation has completed.

Revision A NI chips, however, do not correctly increment and decrement this
register. This defect has been corrected in later revisions, but to run code on a
machine that includes any Rev A chips, you must use a software workaround:
you must yourself use a program variable to keep track of the number of mes-
sages sent and received, and you must “force” the NI message-count register to
have this value during a network-done operation.

Note: This software workaround is necessary if and only if the CM-5 on which
you execute your code contains any Rev A NI chips in its processing nodes. On
CM-5 systems with no Rev A NI chips, this workaround is not needed (and is
inefficient, as well).

Version 7.1, October 1992

Chapter 7. NI Programming Issues 95

The recommended variable to use is CMNA_router_msg_count (this variable
is predefined for you in the header files loaded by cmna.h). The workaround
strategy is as follows:

Set CMNA _router_msg_count t0 0 at the beginning of the node program
(for example, at the same point that you set the values of the abstain flags).

Every time the node program successfully sends a message via the Data
Network (that is, writes a message (o the send FIFO and detects that the
send_ok flag is set), it should increment the msg_count variable.

Likewise, whenever the node program receives a message from the Data
Network (that is, detects that the rec_ok flag is set and reads all the val-
ues of the message), it should decrement the msg_count variable.

Just before sending a network-done message, write the current value of the
msg_count variable into the msg_count register.

Note: Because the msg_count register is restricted to the supervisor, user
code must make an OS call to set its value. In the CMOST operating sys-
tem, the following system call is used:

CMOS_set_dr_msg_count_reg (CMNA_ router msg_count);

While waiting for the network-done operation to complete, repeatedly
write the current value of the msg_count variable into the register. This
must be done before checking the ni_router done_complete flag.
Otherwise, the flag may not be correct.

7.3.6 Simulating Receipt of Messages

As noted in Section 3.4.2, a hardware defect in the NI chip does not allow recv
registers to be written by the supervisor to simulate the arrival of messages. The
workaround is for a node t0 send a message into the network using its own
address as the destination. Assuming the network is clear (as it is, for example,
during context switches) this causes the message to be delivered to the front of
the node’s receive queue.

Version 7.1, October 1992

96

B R R Py R R R R R e R R R R R S SRR SRR

7.3.7

7.3.8

7.3.9

NI Systems Programming

Broadcast Enabling

As noted in Section 4.1.7, each broadcast interface has a send_enable flag.
These flags are set to 0 by default in the CMOST operating system, and must be
set to 1 before broadcasts are used. The CMOST system call to set these flags is:

CMNA _participate_in(NI_BC_SEND_ENABLE) ;
CMNA_participate_in (NI_SBC_SEND_ENABLE) ;

Broadcast and Combine Interface Conflicts

Because of the way the broadcast and combine interfaces interact, you should be
careful in using the abstain flags of these interfaces. If your code causes a node
(processing node or PM) to abstain from the combine interface, and if:

® the abstaining node is sending a broadcast message

= simultaneously, the other nodes are sending a combine message,

then because of timing conflicts in the Control Network hardware, the two types
of messages can collide, possibly causing your partition to crash. This situation
most often occurs when you have instructed the PM to abstain from the combine
interface so that it can receive the results of a scan or reduction operation, yet at
the same time you want the PM 1o broadcast messages to the nodes telling them
what to do. The conflict arises when the PM needs to broadcast a message at the
same time that the nodes are sending a combine message. To avoid this problem,
your code must include safety checks that prevent a broadcast message from be-
ing sent at the same time that other nodes are sending a combine message. The
CMOST operating system includes a function you can call to send a broadcast
message that implicitly performs this safety checking:

int *msg, length;
CMNA bc_send msg(msg, length);

Be Careful When Altering Abstain Flags

As mentioned in Section 2.6.4, some programming systems (such as CMMD) use
the abstain flags for their own purposes. When you alter the values of the abstain
flags, you must take care to save the original settings of these flags and to restore
them before handing control back to these systems. Failing to do so can cause
either user or OS code to signal obscure errors that are hard to trace.

Version 7.1, October 1992

Appendixes

Version 7.1, October 1992 97

Appendix A
NI Memory Map

On the following page is a two-sided memory and register map, showing the
overall arrangement of the NI's registers, as well as the layout of subfields within
those registers. |,

Version 7.1, October 1992 99

000%0
800%0
0T10%0
8T10X0
020%0
820%0
0€0X0
8€0X0
0¥0%0
8v0xX0
050%0
8G0X0
090%0
890%0
0L0*0
8L0%0
080%0
880%0
060%0
860%0
0¥0X0
8Y0X0
04d0%*0
8d0X0
000%0
800%0
0do0*0
800*0
030X0
8A0X0

040X0
081X0

(ep1s os19A01 LO SBunsi| 69G)
spieyqns ynm seysibel sejeoipu) +

esnes jdnIizejur Tu

ueeah esnes jdnzaejuy Fu

1eaeT 3dnizejur TU

gres Teotrsdyd Tu

eseq uvorarired Tu

ezTs uvorayrared tu

sgeIppe oTqel] Junys Tu

e3ep eTqe3 Yunyo TU

®zTs Junyo TUu

aunoo ebessew Ip TU

26610 EEN
Aieyapdold pue jepuapyuod
uopeiodio) saupoep Bupjuiy)

jysew junoco Tu
— e

ysew jdnizequy oex Tu

ysew Hey aesn Tu

suTy TU

Ajuo spomiep joauo) |

vorjeanbrFuon TU

pues adnixejur TU

Joqunu Teties TUu

Teqoth ouks Tu

uregsqe TeqoTh ouks tu

pues ysniy woo TU

Teqo1h oukse TU

1eqo1b dns oukse Tu

ebSpodebpoy Tu

pues feqorh ouks Tu

aeeTo adnixejur TU

ueaxh aeslo 3dnirejuUl TU

mou 3dnizequr TU

qTe38 uEDS TU

sseIppe peq TU

jesjj0

X84 graisibay wo1sAs ® [£qOID

—

00%0

snjel}s X Tu |»x

80X0
01X0

020
0EX0
0¥X0

jes)j0
xey

pues X Tu

119G 1918169y
ejdweg

002*0
00FX0
009%0
008X0
00YX0
000%0
003X0

1es]j0 X0Y

si9)s|bay aosenslu|

0 z € 9 L 6 01 1121 p1 6T 8T 61 02 1€

0 —O _ 0 yabuay zoujquos fursyjed 1 _ 0 —.m 0 _ 0 _ 0 — 0ix:i —————-

ofofoi wiuwer ioJoJofoJoit|t]oiofofoloixi -~ o8
ofo! wewt iofofofofoiofo]tio]ofofoiti - 08S

ofofoi wbuer be3 t[t]tiofofo]oixi - Hay

ofofoi wbuer beq oft]tiofofofoixi - Hal
0Jofoi wbuer = tfofoiofofo]oixi Ha
Yopat *mnmunvm aseq IN
ETlS B CRith
apow buyssaippe 31q 1osyAxadns/issn
suianed Buissalppy 11} puss adsepudlul ju
0000 0000%0
0002 0000%0 Bosd
0000%0 — — weiBoud se8n
SHIALSIDIY $B)qRIEA 1881
.:‘A__zm.hmym....\ L } deoy jeooy
- ®IVE0TY - 0000 000Z%0 : -
- S T N eale Jasn
00Z0%0 S
0000 800zx0 |- - -~ 8BS IN - - - -
ease Josinedns
SHALSIDAYH
o Ey | AR 0000 010ZX0 4
HOVIHILNI » ‘deay eqolb
0000 000¥X0 - :

- \ ‘ suoibay yoeig
000TX0 [1exyy pues xp Tu |) pue desH fIA
0002%*0 i 0000 000DX(Q sy —rmsur
000€%0 e - SOaL 103D

IeXTI pues °q 1@ 0000 000FX0 « P
IR P —p—— HOEIS [EqOID
0005%0 38ITJ pues wod Ju » vﬂvﬂw {80
0009%0 [os 2pT Tu 0000 008.%0 FERp———"
000LX0 = on 1ox1al./ 0000 0¥8.I%0 .
348ITJ pues IpI v "
AGIAHISIH
19s]j0 X0y - : :
sselippe xey

(1osjatedns 10 sesn)
ealy Alowow [BeNUIA IN

(PeneISUl SNA INOYNIM 1O YiM)
dew Aiowap [eniijA SPON

N

z66 1 10

Aiejajidolg pue jspuappuod
uopeiodio) saupyoepy Bupjuiyl

o081 TeqoTb 10sjazadns ju

i 1
1 0

puas Teqo1b losjazedns Tu

102)5 :s0d :awen plejd
teqorh dns oukse tu :19)S|HoY
oy T et
L 0 puas Teqoib ju
'ez|S :sod ‘eweN piold
Teqorh oukse tu :191S)160H

o391dwod teqorh ouks ju

o091 Teqolh ouks ju

:s0d eweN plejd

adky ssaappe peq ju

14} 0c
0z 0

:s0d

moY ssaippe peq Ju

‘ezis :ewieN pieid

ssexppe peq Tu 135100y

Teqoth ouks Tu :13iS169Y

paa 1enal adnizajuf Ju

3 ve
r wp
w

8 morTek tane1 3dnizajuy ju

obueao TanoT 3dnizejuy fu

uesib 1aaa1 3dnizajuf Ju

3 0
:sod

‘ez|5 :swieN piojd

1eaeT adnrxzejur Tu 1915|609y

puas do3s ud ju

o} aawyy Ju

a1 081 Teqot1h oduks ju
a1qeus 021 3dnizajuy ju
aj3a1dwoo uojjeanbijuod Ju
o puas 3jdnizajuj ju

a321dwoo ysnyj ju

Ll ol o o N i
NI N OMD

a7 oa1 1eqo1b 10sjAazadns Ju
0 3} 081 teqorh ju
:ouwieN pisl4
:10)s)6oy

-

921§ :sod

ebpodebpoy Tu

31035 pUSs WOD JU

M~
-

uio3yjed puas wod Ju

wn
-

18UTqWod pues WOD Ju

N
pe

y3jbuat pues woo u
aTqeus umop T3 TI® Ju
a7 umop [Te1 TTE U

a7 Kydwa dax wos Tu
umop TTe3 ITe o1 ap Ju
8] MOT3IX2A0 uEDS wod Ju
a1qeua pues Ju

1103 081 U

doys puas ju

do3ys 081 Ju

1]
e =y P =G N

0NN LW OND

%001 Ju

8] 30 081 Ju

'
-
(=]

WOD 2d/S HAHM Ha

19z1g :s0d eweN piejd

01T ¢ ¢€ v S 9 L 8 TITcCt VU ST 9T LT 8T 1€
[oo [ieifomelooe] o]oee] e’ [Ppia] o] e

Haav

* ay \\

X0 221 3A0 ueds a7

7
K3duwe 0ax

ejeatxd eoegrequr tu :I9)S|foy

umop TTe3J T1® 081 Ap 1BR[D/9508D fU

€l
cl
(48
oi

be3y oe1 ap aEa[d/asnes ju

30 081 1pa Ie8[D/9F0ED U

3o o921 1p1 Ie8[D/PSTED JU

30 081 1p iea[d/asNED U

o501 Teqoib 10sfazedns” aeaio/ssnEd ju
o081 Teqolb 1eao/osned ju

o091 Teqorb ouks 1eeio/esnes ju
Kadws 081 woo aeayd/esnen ju
3o 081 wod 1eaId/asnED TU

30 081 oqs 1eslo/esnen fu

%0 581 0oq 1E83[O/8SNED JU

MOTJI2A0 UEDS 1BA[D/@SNED JU

~NOTOOMNOO®

usa1b 3dnizejuy o 1ea[D/88NED U

o

ss000€ Azowaw peq 1eayo/asnes Ju

<
-

6S81ppe aAJleIal peq 1ea[D/3sNEd JU

el
-

eafiebau junod ap Iea[d/sENED U

N
ey

pabueyo ujelsqe wWoo Ie2[D/98NED JU

-
-

UOTETITOD Wod 10 oG IeI[D/9SNED JU

(=]
>~

mor1ek 3dnizejuf oq aealo/asned Ju
sbueio 3dnizajuy oq ieayd/asnEd JU
3du1iajuy Iawyy Ieayd/esned ju
10138 UMEYORYD Ip Ied[D/98NED U
10119 piey uo Iea[0/95TNED [U

101318 UMEYORYD UD JEDTO/8SnNED JU
paa 3dnizejuy oq 1eayd/asned Ju

10118 nwo 1eaTd/a8NED U

NN TV ONON

103119 ow ieD2[d/dsNEd U

Jine3 Teuizejuf Ieafo/osned fu

o

's0d talleN plold

ueexb zweyo/esnec 3dnizejur TU

(sBey e ‘suopisod jg ewes) ”mhwuw_amm

:s0d :eweN piojd

IeeTo/esneo jdnrzejur TU

{sBey yre ‘suopsod 4q eures) :s1181bey

T

uje3sqe 0a1 @onpax Ju

ujelsqe oax1 ju

-1 0

WOO 28/S HadM Ha

8z|§ :sod :eleN plejd

foxjuos eoegrequr tu -191S|6oy

>

[l
[
t

[
[

'

1
ks

T

'

[}

>

>

1
t
v
t
1
)
'
1
'

]

'
>

]

1

1

1]

>

'

S B>

>

]

83e3s pa1 1p Ju

174
1e
02

aje3s puas 1p Ju

MOTJI3A0 UEDS WOD FU

- Gi bey 081 ap U
L yjbuay oax ju
- 1l 3391 yjbuay oax Ju

Kyduwe puas ju

aje1dwod auop Tajnox ju

%o puas ju

t
™ v v oy P W T~ NN

T OO

3o 081 fu

soeds puas Ju

'
<
(=]

WOD 024/5 HaAHM HA
0 €Ev S 9 L 01 T1

:8z|g :sod :ewep ple|d

3381 U927 281

— aoeds puas _ ~ —

b1 6T 61 0¢ 1¢ ¢¢ tC vC S¢ 1€
y3buar o1 — bey oax u>o— Nmmww wwwwm

\ ’ / Kaydws pues

NO D91 jO pus BUOP YI0MIBU

11915160y

snje3s eoeyIB]jUT TU

Appendix B

NI Reglsters, Fields, and Constants

This appendix presents a tabular summary of the registers and fields of the NI
chip, as well as the programming constants that can be used to locate them.

Note: To get access to these constants, your program must either include the
header file emna.h (see Section 1.3.3), or include the appropriate header file
from the CMNA header file set (see Appendix F).

B.1 NI Registers

For each register the following information is provided:
® the name of the register
" the hex offset of the register from the user or supervisor base address
8 the size of the register in bits
® the length (number of memory words to which the register is mapped)

= the read/write permissions of the register for both user and supervisor

Register Constants

Note: With the exception of the send_£irst registers (which are described in
Section B.3 below), the names of the constants used to access NI registers are
derived from the names of the registers themselves by uppercasing the register
name and adding the suffix “_a”.

Version 7.1, October 1992 103

104 NI Systems Programming
e R S D S e e e S X RS o e

Each register constant provides the absolute address of the register, in either the
user or supervisor memory area, depending on which header file (cmna.h or
cmna_sup.h) has been included.

B.1.1 Gilobal and System Registers

Permissions:
Register Name: Address: Size: Len: Super: User:
ai_interrupt_cause 0x0000 15 1 R/W None
ni_interrupt_cause green 0x0008 14 1 R/W None
ni_interrupt_level 0x0010 32 1 R/W None
ni_physical_self 0x0018 20 1 R/W None
ni_partition_base 0x0020 20 1 R/W None
ni_partition_size 0x0028 20 1 R/W None
ai_chunk_table_address 0x0030 6 1 R/W None
ni_chunk_table data 0x0038 8 1 R/W None
ni_chunk_size 0x0040 3 1 R/W None
ni_dr_message_count 0x0048 32 1 R/W None
ni_count_mask 0x0050 16 1 R/W None
ni_rec_interrupt_mask 0x0058 16 1 R/W None
ni_user_tag_mask 0x0060 16 1 R/W None
ni_time 0x0070 32 1 R/W R
ni_configuration 0x0078 5 1 R/W None
ni_interrupt_send 0x0080 5 1 R/W None
ni_serial_number 0x0088 32 1 R None
ni_sync_global 0x0090 2 1 R R
ni_sync_global_abstain 0x0098 1 1 R/W R/W
ni_com flush_send 0x00A0 1 1 W None
ni_async_global 0x00A8 2 1 R/W R/W
ni_async_sup_global 0x00BO 2 1 R/W None
ni_hodgepodge 0x00B8 6 1 R/W None
ni_sync_global_send 0x00CO 1 1 R/W R/W
ai_interrupt_clear 0x00C8 15 1 w None
ni_interrupt_clear _green (x00D0 14 1 W None
ni_interrupt_now >~ 0x00D8 32 1 R/W None
ni_scan_start 0x00EO 1 1 R/W R/W
ni_bad address 0x00E8 32 1 R/W None

Version 7.1, October 1992

Appendix B. NI Registers, Fields, and Constants

B R R R R L2

B.1.2

Network Interface Registers

Combined Data Network Interface (DR)

105
R

Permissions:
Register Name: Address: Size: Len: Super: User:
ai_dr_status 0x0200 24 1 R/W R
ni_dr private 0x0208 10 1 R/W None
ni_dr_recv 0x0220 32 16 R/W R
ni_dr send 0x0230 32 16 "% w
ni_dr send first (block) 0x1000 32 2 w w
Left Data Network Interface (LDR)

Parmissions:
Register Name: Address: Size: Len: Super: User:
ai_ldr status 0x0c00 32 1 R/W R
ni_ldr privatae 0x0c08 24 1 R/W None
ni_ldr recv 0x0c20 32 16 R/W R
ni_ldr_send 0x0c30 32 16 w w
ni_ldr_send_first (block) 0x6000 32 2 w W
Right Data Network Interface (RDR)

Permissions:
Register Name: Address: Size: Len: Super: User:
ni_rdr_status 0x0e00 32 1 R/W R
ni_rdr privata 0x0e08 24 1 R/W None
ni_rdr_ recv 0x0e20 32 16 R/W R
ni_rdr_send 0x0e30 32 16 N W
ni_rdr send_ first (block)0x7000 32 2 w W
Broadcast Interface (BC)

Permissions:
Register Namae: Address: Size: Len: Super: User:
ni_bc_status 0x0600 6 1 R R
ni_bc_private 0x0608 17 1 R/W None
ni_be_control 0x0610 1 1 R/W R/W
ai_be_recv 0x0620 32 16 R/W R
ni_bec_send 0x0630 32 16 W W
ni_be_send first (block) 0x3000 32 2 W A%

Version 7.1, October 1992

106

ARGERTRE

B.2

NI Systems Programming

2

Supervisor Broadcast Interface (SBC)

Permissions:

Register Name: Address: Size: Len: Super: User:
ni_sbc_status 0x0800 6 1 R None
ni_sbc_private 0x0808 17 1 R/W None
ni_sbc_contzrol 0x0810 1 1 R/W None
ni_sbc_recv 0x0820 32 16 R/W None
ni_sbc_saend 0x0830 32 16 W None
ni_sbe_send_first (block) 0x4000 32 2 w None
Combine interface (COM)

Permissions:
Register Name: Address: Size: Len: Super: User:
ni_com_status 0x0a00 12 1 R/W R
ni_com private 0x0a08 6(18) 1 R/W None
ni_com_control 0x0a10 2 1 R/W R/W
ni_com recv 0x0a20 32 16 R/W R
ai_com_ send 0x0a30 32 16 R'W W
ni_com_send_first (block) 0x5000 32 2 W A%

NI Message Length Limit Constants

The following constants give the message length limits of the network interfaces:

MAX ROUTER_MSG_WORDS DR/LDR/RDR interface length limit.
MAX COMBINE_MSG_WORDS Combine (COM) interface length limit.
MAX BROADCAST MSG_WORDS Broadcast (BC) interface length limit.
MAX SBC MSG_WORDS Supervisor broadcast (SBC) length limit.

These constants determine the maximum values that can be supplied in the length
component of the auxiliary data of a network message. (See the descriptions of
the auxiliary data formats for the various interfaces below.)

Version 7.1, October 1992

Appendix B. NI Registers, Fields, and Constants
a0 e R e S T R

B.3 Send First Register Addresses

The send_£irst address for a network message is a 32-bit value of the form:

31 12 14 12 11 3 0
SS base address | interface SS auxiliary data 0 ' 0 gO

where interface is the interface number (an integer from 0 to 7 representing the
interface being used), auxiliary data is the auxiliary information of the message.
(The base address portion is the base address of the NI memory area, either user
Or supervisor.)

The following constants are used to construct send_£irst addresses:

NI_BASE The NI base address.
SF_FIFO_OFFSET The interface field offset (12).
AUXILIARY START P The auxiliary data field offset (3).

To construct 2 send_£irst address, add the following values, left-shifted as

shown:
The NI base address: NI_BASE
The interface constant: interface_number << SF_FIFO_OFFSET
The auxiliary data: auxiliary_data << AUXILIARY START P

The following interface_number constants are defined:

DATA ROUTER_FIFO DR network interface (1).

LEFT DR_FIFO LDR network interface (6).

RIGHT DR FIFO RDR network interface (7).
USER_BC_FIFO User broadcast (BC) interface (3).
SUPERVISOR_BC_FIFO Supervisor broadcast (SBC) interface (4).
COMBINE_FIFO Combine (COM) interface (5).

The constants specifying the auxiliary data format for each interface are listed
in the sections below.

Version 7.1, October 1992

108 NI Systems Programming

A A A
B R R R R R RS

Data Network (DR/LDR/RDR) Auxillary Data Fields

The format of the auxiliary data of a Data Network message is:

8 4 0
md| | iag | length
where
* md is the addressing mode (0 = relative, 1 = physical).
® rag is the 4-bit tag value.

= Jength is the length of the message in words, excluding address word.
The following constants specify the starting bit positions of these fields:

NI_DR_SEND_AUXILIARY ADDRESS_ MODE_P The md field offset (8).
NI_DR_SEND AUXILIARY TAG P The tag field offset (4).
NI_DR_SEND_ AUXILIARY LENGTH P The length field offset (0).

To construct a send_first address, add the following values:

The md flag: md <<NI_DR_SEND AUXILIARY ADDRESS_MODE P
The tag value: tag << NI_DR_SEND AUXILIARY TAG_P
The length value: length << NI_DR_SEND_ AUXILIARY LENGTH P

The following constants can be used to specify the md flag:

RELATIVE Relative node addressing (0).
PHYSICAL Physical node addressing (1).

The tag can be any value from O to 3 inclusive for user messages, or from 0 to
15 for supervisor messages. (The length value limit is given in Section B.2.)

Broadcast (BC/SBC) Auxiliary Data Fields

The format of the auxiliary data of a broadcast message is:

8 0
0‘0‘0‘0‘0 length

where length is the length of the message in words. (The high-order bits of the
auxiliary data have no useful meaning, but must always be 0.) The following
constant specifies the starting bit position of the lengzh field:

NI_BC_SEND_AUXILIARY LENGTH P The length field offset (0).

Version 7.1, October 1992

sters, Fields, and Constants 109

Combine Auxiliary Data Fields
The format of the auxiliary data of a combine interface message is:

8 4 0

Y T T

pattern| combiner length

where
® pattern is a two-bit value selecting the order in which values are combined
" combiner is a three-bit value selecting the combine operation performed

= Jength is the length of the message in words
The following constants specify the starting bit positions of these fields:

NI_COM_SEND_AUXILIARY PATTERN_P The partern field offset (7).
NI_COM_SEND_AUXILIARY COMBINER_P The combiner field offset (4).
NI_COM_SEND AUXILIARY LENGTH P The length field offset (0).

To construct a send_£irst address, add the following values:

The partern value: pattern << NI_COM_ SEND_AUXILIARY PATTERN P
The combiner value: combiner << NI_COM SEND AUXILIARY COMBINER P
The length value: length ~ << NI_COM_ SEND_AUXILIARY LENGTH_P

The following constants can be used to specify the value of the pattern field:

SCAN_FORWARD Forward scan pattern (2).
SCAN_BACKWARD Backward scan pattern (1).
SCAN_REDUCE Reduction scan pattern (3).
SCAN_ROUTER_DONE Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR_SCAN Forward scan pattern (0).
ADD_SCAN Backward scan pattern (1).
XOR_SCAN Reduction scan pattern (2).
UADD_SCAN Network-done operation (3).
MAX SCAN Reduction scan pattern (4).
ASSERT_ ROUTER DONE Network-done operation (3).

Version 7.1, October 1992

B.4 NI Fields

B.4.1

The register subfields of the NI are presented below, grouped by register. For
each field, the following information is provided:

= the name of the field

= the name of the position constant used to access the field (see note below)
® the starting position and bit length of the field

= the read/write permissions of the field for both user and supervisor

Note: The programming constants used to access NI fields come in pairs.

One constant, with a suffix of *“_p”, gives the starting bit position of the field.

In the tables below, this value appears in the Pos: (position) column.

The other constant, with a suffix of “_1.”, gives the length of the field. In the

tables below, this value appears in the Len: (length) column.

Only the “_P” constant name is shown in the tables below. Unless otherwise

noted, you can assume that the “_L” constant exists as well.

Combined Data Network (DR) Fields

The ni_dr_status Register

Permissions:

Fleld Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND_SPACE P 0 4 R R
ni_rec ok NI RECOK P 4 1 R R
ni send ok NI_SEND OK P 5 1 R R
ni_router_done_complete NI_ROUTER_DONE_COMPLETE P . 6 1 R R
ni_rec_length left..... NI_REC_LENGTH IEFT P ... 7 4 R/W R
ni_reec length NI REC IENGTH P 11 4 R/W R
ni_dr rec tag NI_DR REC TAG P 15 4 R/W R
ni_dr_send state NI_DR SEND_STATE P 21 2 R R
ni_dr_rec_state NI_DR REC STATE P 23 2 R R

Version 7.1, October 1992

Appendix B. NI Registers, Fields, and Constants 111

. 2 caANAGEs . R 3 A e A S
B R e e R O B R R R R A B R

The ni_dr_private Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_reac ok_ie@ NI_REC OK IE P 0 1 R/W None
ni lock NI LOCK Pco0... 1 1 R/W None
nl_rec stop NI_REC STOP_P e 2 1 R/W None
ni_reec_full NI REC FULL P 3 1 R None
ni_dr rec_all fall down NI_DR_REC_ALL FALL DOWN P . 5 1 R/W None
ni_all_fall down_ie.... NI_ALL FALL DOWN_IE P 0 1 R/W None
ni_all fall down_aenabla NI_ALL FALL DOWN_ENABLE_P 7 1 R/W None

B.4.2 Left Data Network Interface (LDR) Fields

The ni_1ldr_status Register

Permissions:

Fleld Name: Constant: Pos: Len: Super: User:
ni_send_space NI_SEND_SPACE P 0 4 R R
ai_rec ok NI REC OK P 4 1 R R
ni_send ok NI SEND OKR P 5 1 R R
ni_rec_length_left..... NI_REC_LENGTH LEFT P ... 7 4 R/W R
ni_raec_length NI_REC_LENGTH P 11 4 R/W R
ni_dr rec tag NI_DR REC TAG P 15 4 R/W R

The ni_ldr_private Register

Permissions:

Fieid Name: Constant: Pos: Len: Super: User:
ni_rec ok i@ NI REC OK IE P 0 1 R/W None
ni_lock NI LOCK P 1 1 R/W None
ni_rec_full NI REC FULL P 3 1 R None
ni_dr_rec_all_fall down .. NI_DR_REC_ALL FALL DOWN P . 5 1 R/W None

Version 7.1, October 1992

B.4.3

B.4.4

SR

Right Data Network Interface (RDR) Fields

The ni_rdr status Register

NI

Systems Programming

SN 3 2

Permissions:

Fleld Name: Constant: Pos: Len: Super: User:
ni_send space KI_SEND SPACE P 0 4 R R
ni rec Oki0000n NI RECORP.......o.... 4 1 R R
ni_send ok NI_SEND OK P 5 1 R R
ni_rec_length left..... NI_REC LENGTH IEFT P ... 7 4 R/W R
ai_rec length NI_REC LENGTH P 11 4 R/W R
ni_dr rec tag NI DR REC TAG P 15 4 R/W R

The ni_zdr_private Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_rec ok_ie NI REC OK IE P 0 1 R/W None
ai_lock0.uunn NI LOCK Poon.nn. 1 1 R/W None
ai_rec_full NI REC FULL P 3 1 R None
ni_dr_rec_all_fall_down .. NI_DR REC_ALL FALL DOWN P . 5 1 R/W None

Broadcast Interface (BC) Fields

The ni_bc_status Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND SPACE P 0 4 R R
nirec ok NI RECORP............ 4 1 R R
ni send ok NI SEND OK P 5 1 R R
ni_send empty NI_SEND EMPTY P 6 1 R R
ni_rec_length left..... NI_REC_LENGTH IEFT P ... 7 4 R R

Version 7.1, October 1992

Appendix B. NI Registers, Fields, and Constants

SRS

The ni_bc_private Register

113

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_rec ok i@ NI_REC OK IE P 0 1 R/W None
ni_lock NI LOCK P 1 1 R/W None
ni_raec stop NI_REC STOP P 2 1 R/W None
ni_rec_full NI_REC FULL P 3 1 R None
ni_send enable NI_SEND ENABLE P 4 1 R/W None
The ni_bc_control Register
Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_rec_abstain NI_REC ABSTAIN P 0 1 R/W R/W

B.4.5 Supervisor Broadcast Interface (SBC) Fields

The ni_sbec_status Register

Permissions:

Fleld Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND SPACE P 0 4 R None
ni_rec_ ok NI REC OK P 4 1 R None
ni_send ok NI SEND OK P 5 1 R None
ni_send empty NI_SEND EMPTY P 6 1 R None
ni_rec_length left..... NI_REC_LENGTH LEFT P ... 7 4 R None
The ni_sbe_private Register
Permissions:

Fleld Name: Constant: Pos: Len: Supsr: User:
ni_rec ok ia NI REC OK IE P 0 1 R/W None
ni_lock NI LOCK P 1 1 R/W None
ni_rec_stop NI REC STOP P 2 1 R/W None
ni_rec_full NI REC FULL P 3 1 R None
ni_send_enablae NI_SEND_ENABLE P 4 1 R/W None

Version 7.1, October 1992

114 NI Systems Programming

The ni_sbe_control Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_rec_abstain NI_REC ABSTAIN P 0 1 R/W None

B.4.6 Combine Interface (COM) Fields

The ni_com_status Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND SPACE P 0 4 R R
ni rec Ok NI RECOK P 4 1 R R
ni_send ok NI SEND OK P........... 5 1 R R
ni_send empty NI_SEND EMPTY P 6 1 R R
ni_rec length left..... NI_REC_LENGTH IEFT P ... 7 4 R/W R
ni_rec length NI_REC LENGTH P 11 4 R/W R
ni_com_scan_overflow... NI_COM SCAN OVERFLOW P .20 1 R/W R

The ni_com private Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_rec ok _ie NI REC OK IEP 0 1 R/W None
ni_lockn.n NI LOCK Pcovunnnn 1 1 R/W None
ni_rec_stop NI_REC STOP P 2 1 R/W None
ni_rec full NI REC FULL P 3 1 R None
ni_com scan_overflow_ie NI_COM SCAN OVERFLOW_IE P . 4 1 R/W None
ni_com rec empty ie.... NI_COM REC EMPTY IE P .. 5 1 R/W None
ni_com send _length..... NI_COM SEND ILENGTE P ... 8 4 R None
ni_com send combiner ... NI_COM SEND COMBINER P . 12 3 R None
ni_com send pattern.... NI_COM SEND PATTERN P .. 15 2 R None
ni_com send stazt NI_COM SEND START P 17 1 R None

Version 7.1, October 1992

Constants 115

RN

The ni_com_contzol Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_rec_abstain NI_REC ABSTAIN P 0 1 R/W R/W
ni_reduce_rec_abstain .. NI_REDUCE_REC_ABSTAIN. ? 1 1 R/W R/W

B.4.7 Global Interface Fields

The ni_sync_global Register

Permissions:

Fleld Name: Constant: Pos: Len: Super: User:
ni_sync_global rec..... NI_SYNC GLOBAL REC P ... 0 1 R R
ni_sync_global_complete NI_SYNC_GLOBAL COMPLETE P . 1 1 R R

The ni_async_global Register

Permissions:

Fleld Name: Constant: Pos: Len: Super: User:
ni_global_send NI_GLOBAL SEND P 0 1 R'W R/W
ni_global rec NI _GLOBAL REC P 1 1 R R

The ni_async_sup_global Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_supervisor_global_send NI_SUPERVISOR_GLOBAL SEND_P 0 1 R/W None
ni_ supervisor_global_rec . NI_SUPERVISOR GLOBAL REC_P 1 1 R None

Version 7.1, October 1992

Interrupt Register Fields

Note: The position (“_P”) constants for these flags are as described above. The
length for all flags (1) is given by the single constant NI _INTERRUPT L.

The ni_interrupt_cause Register

Permissions:
Flag Name: Pos: Len: Super: User:
ni_cause internal fault............. 0 1 R/W None
ni_cause mC_@rTor 1 1 R/W None
ni_cause _Cmu @rIoOT.................. 2 1 R/W None
ni_cause_bc_interrupt red........... 3 1 R/W None
ni_cause_cn_checksum error.......... 4 1 R/W None
ni_cause_cn_hard @rror.............. 5 1 R/W None
ni_cause_dr_checksum error.......... 6 1 R/W None
ni_cause timer interrupt............ 7 1 R/W None
ni_cause bc_interrupt_orange........ 8 1 R/W None
ni_cause bc_interrupt_yellow........ 9 1 R/W None
ni_cause bc_or_com collision........ 10 1 R/W None
ni_cause_com abstain changed........ 11 1 R/W None
ni_cause_dr count_negative 12 1 R/W None
ni_cause_bad_relative_address 13 1 R/W None
ni_cause_bad memory access.......... 14 1 R/W None
The ni_interrupt_cause_green Register
Permissions:

Flag Name: Pos: Len: Super: User:
ni_cause bc interrupt green......... 0 1 R/W None
ni_cause_scan overflow.............. 1 1 R/W None
ni _cause be rec oK.................. 2 1 R/W None
ni_cause_sbc_rec OK................. 3 1 R/W None
ni_cause com Tec OK................. 4 1 R/W None
ni_cause com Tec empty 5 1 R/W None
ni_cause_sync_global zrec............ 6 1 R/W None
ni_cause global _rXeG................. 7 1 R/W None
ni_cause_supervisor_global_zec...... 8 1 R/W None
ni_cause dr rec_ok.................. 9 1 R/W None
ni_cause ldr rec oK................. 10 1 R/W None
ni cause _rdr rec ok................. 11 1 R/W None
ni_cause dr rec tag................. 12 1 R/W None
ni_cause dr rec_all_fall down 13 1 R/W None

Version 7.1, October 1992

The ni_interrupt_clear Register

Permissions:

Fleid Name: Pos: Len: Super: User:
ni_clear internal fault............. 0 1 w None
ni_clear mc_@XTOrccee0es 1 1 w None
ni_clear_cmu @rror........... e 2 1 \' None
ni_clear_bec_interrupt_red......... .. 3 1 w None
ni_clear_cn_checksum @rror.......... 4 1 w None
ni_clear_cn_hard error....... e 5 1 w None
ni_clear_dr checksum @rror.......... 6 1 W None
ni_clear_timer_ interrupt............ 7 1 N None
ni_clear_ba_intarrupt_orange 8 1 w None
ni_clear_bec_interrupt_vellow........ 9 1 w None
ni_clear_bc_or_com collision........ 10 1 W None
ai_clear_com abstain changed........ 11 1 N None
ni_clear_dr_count_negative.......... 12 1 w None
ni_cleazr_bad_relative_address 13 1 W None
ni_clear_bad memory access.......... 14 1 N None
The ni_interrupt_clear_green Register
Permissions:

Field Name: Pos: Len: Super: User:
ni_clear_bc_interrupt green......... 0 1 W None
ni_clear_scan overflow.............. 1 1 w None
ni_clear be Tec oKcouvuiiunn 2 1 N None
ni_clear sbo_rea ok................. 3 1 W None
ni _clear com Tac OK..........cc00n.n 4 1 w None
ni_clear_com rec @mpty S 1 w None
ni_clear sync_global rec............ 6 1 W None
ni_clear global r@c................. 7 1 w None
ni_clear_ supervisor_global rec...... 8 1 w None
ni_clear dr rec_ OK.................. 9 1 W None
ni_clear ldr rec ok................. 10 1 w None
ni_clear_rdr rec ok................. 11 1 w None
ni_clear dr rec tag................. 12 1 w None
ai_clear_dr rec_all_fall down 13 1 N None

Note: To locate the flags in the interrupt_clear registers, use the constants
defined for the interrupt_cause registers — the flag positions are the same.

Version 7.1, October 1992

NI Systems Programming
R e

B.4.9 Other Register Fields and Constants

Note: The programming constants for these flags are obtained by uppercasing
the name of the flag, then adding *“_p” for the position, or “_1” for the length.

The ni_interrupt_level Register

Permigsions:

Field Name: Pos: Len: Super: User:
ni_interrupt_level greem............ 0 1 R/W None
ni_interrupt_level yellow........... 8 1 R/W None
ai_interrupt_level orange........... 16 1 R/W None
ni_interrupt_level red.............. 24 1 R/W None

The ni_hodgepodge Register

Permissions:

Fleld Name: Pos: Len: Super: User:
ni_global rec i@nn 0 1 R/W None
ni_supervisor_glcbal rec_ie......... 1 1 R/W None
ni_flush complete 2 1 R None
ni interrupt send ok................ 3 1 R None
ni_configuration complete........... 4 1 R None
ni_interrupt rec enable............. 5 1 R/W None
ni_sync_global rec i@............... 6 1 R/W None
ni timear 1@iiiieannn 7 1 R/W None
ni_cn stop send 8 1 R/W None
The ni_bad_address Register
Permissions:

Fleld Namae: Pos: Len: Super: User:
ni_bad address_low.................. 0 20 R/W None
ni_bad address type................. 20 12 R/W None

Note: The contents of the ni_bad_address register are implementation-de-
pendent, so there are no predefined constants for this register.

Version 7.1, October 1992

Appendix C

Predefine

s R

d Low-Level NI Constants

S
SRR X SRR,

For ease of reference, here are the low-level programming constants defined in
the header files cmsys/ni_constants.h, and cmsys/ni_defines.h (see
Appendix F), grouped by register and field.

Note for C Programmers: These constants are defined as raw, unsigned integer
values. If you use them in C code, you must recast them as pointer values of type
(unsigned *). Otherwise, the C compiler will treat them as integers, possibly
causing “illegal pointer operation” errors.

=== Send First Register Constants ===
Field Offsets:

SF_FIFO_OFFSET (12)

AUXILIARY START_P (3)

Length Constant: NI_SEND_FIRST_L (32)

Interface Number constants:
DATA_ROUTER_FIFO (1)

LEFT_DR_FIFO (6)
RIGHT _DR_FIFO (7)
USER_BC_FIFO (3)
SUPERVISOR_BC_FIFO (4)
COMBINE_FIFO (5)

=== Auxiliary Data Field Constants ===

--— DR/LDR/RDR Interface ---

NI_DR_SEND_AUXILIARY ADDRESS_MODE_P (8)

RELATIVE (0)

PHYSICAL (1)

NI_DR_SEND_AUXILIARY_TAG_P (4) NI_DR_TAG L (4)
NI_DR_SEND_AUXILIARY_ LENGTH P (0) NI_DR_LENGTH_L (4)

Version 7.1, October 1992 119

120

=== Auxiliary Data Field Constants, cont. ===
--— BC/SBC Interface —--—-
NI_BC_SEND_AUXIL IARY LENGTH_P (0)

-—=— COM Interface -—
NI_COM_SEND_AUXILIARY PATTERN P (7)
NI_COM_SEND_PATTERN_L (2)

SCAN_ROUTER_DONE (0)
SCAN_BACKWARD (1)
SCAN_FORWARD (2)
SCAN_REDUCE (3)

NI_COM_SEND_AUXILIARY COMBINER_P (4)
NI_COM_SEND_COMBINER L (3)

OR_SCAN (0)
ADD_SCAN (1)
XOR_SCAN (2)
UADD_SCAN (3)
MAX SCAN (4)

ASSERT_ROUTER_DONE (5)
NI_COM _SEND_AUXILIARY_ LENGTH P (0)
NI_COM_SEND_LENGTH_ L (4)

(no length constant)

=== Interface send/receive FIFQO size limits ===

MAX ROUTER_MSG_WORDS (5)
MAX_COMBINE_MSG_WORDS (5)
MAX BROADCAST_MSG_WORDS (4)
MAX SBC_MSG_WORDS (4)

=== Send Registers ===

NI_DR_SEND_A (NI_BASE | 0x0230)
NI_LDR_SEND_A (NI_BASE | 0x0c30)
NI_RDR_SEND_A (NI_BASE | 0x0e30)
NI_BC_SEND_A (NI_BASE | 0x0630)
NI_SBC_SEND_A (NI_BASE | 0x0830)
NI_COM_SEND_A (NI_BASE | 0x0a30)
NI_SEND_L (32)

=== Receive Registers ===
NI_DR_RECV_A (NI_BASE | 0x0220)
NI_LDR_RECV_A (NI_BASE | 0x0c20)
NI_RDR_RECV_A (NI_BASE | 0x0e20)
NI_BC_RECV_A (NI_BASE | 0x0620)
NI_SBC_RECV_A (NI_BASE | 0x0820)
NI_COM_RECV_A (NI_BASE | 0x0a20)

NI_REC_L (32)

Version 7.1, October 1992

Appendix C. Predefined NI Constants

121

=== Status Register

NI_DR_STATUS_A (NI_BASE | 0x0200)
NI_LDR_STATUS_A (NI_BASE | 0x0c00)
NI_RDR_STATUS_A (NI_BASE | 0x0e00)
NI_XDR_STATUS_L (19)

NI_BC_STATUS_A (NI_BASE | 0x0600)
NI_SBC_STATUS_A (NI_BASE | 0x0800)
NI_BC_STATUS_L (11)

NI_COM_STATUS_A (NI_BASE | 0x0a00)

NI_COM_STATUS_L (21)
NI_STATUS_L (25)

Field Constants:
NI_SEND_SPACE_P
NI_REC_OK_P (4)
NI_SEND_OK_P (5)
NI_ROUTER DONE_COMPLETE_P (6)
NI_SEND_EMPTY P (6)
NI_REC_LENGTH_LEFT_P
NI_REC_LENGTH_P (11)
NI_DR_REC_TAG_P (15)

(0)

(7)

NI_SEND_SPACE_L
NI_REC_OK L (1)
NI_SEND_OK_L (1)
NI_ROUTER_DONE_COMPLETE_L
NI_SEND_EMPTY L (1)
NI_REC_LENGTH_LEFT_L (4)
NI_REC_LENGTH_L (4)
NI_DR_REC_TAG L (4)

(4)

(L)

NI_COM_SCAN_OVERFLOW_P (20) NI_COM_SCAN OVERFLOW_L (1)
NI_DR_SEND_STATE P (21) NI_DR_SEND_STATE_L (2)
NI_DR_REC_STATE P (23) NI_DR_REC_STATE L (2)

=== Control Registers ===

NI_BC_CONTROL_A (NI_BASE | 0x0610)
NI_SBC_CONTROL_A (NI_BASE | 0x0810)
NI_BC_CONTROL_L (1)

NI_COM_CONTROL_A (NI_BASE | 0x0al0)

NI_COM_CONTROL_L (2)
NI_CONTROL_L (2)
Field Constants:
NI_REC_ABSTAIN P (0)

NI_REDUCE_REC_ABSTAIN P (1)

Version 7.1, October 1992

NI_REC_ABSTAIN L (1)
NI_REDUCE_REC_ABSTAIN L (1)

122

R S R

=== Private Registers

NI Systems Programming

SRR

NI_DR PRIVATE A (NI_BASE | 0x0208)
NI_DR_PRIVATE_L (10)

NI_LDR_PRIVATE A (NI_BASE | 0x0c08)
NI_RDR PRIVATE A (NI_BASE | 0x0e08)
NI_XDR_PRIVATE_L (6)

NI _BC_PRIVATE A (NI_BASE | 0x0608)
NI_SBC_PRIVATE_A (NI_BASE | 0x0808)
NI_BC_PRIVATE_L (5)

NI_COM_PRIVATE_A (NI_BASE | 0x0a08)
NI_COM PRIVATE L (18)

NI _PRIVATE L (18)

=== Private Registers, cont. ===

Field Constants:

NI_REC_OK_IE_P (0)
NI_LOCK_P (1)
NI_REC_STOP_P (2)
NI_REC_FULL_P (3)

NI_SEND_ENABLE_P (4)
NI_BC_SEND_ENABLE P (4)
NI_COM_SCAN_OVERFLOW_IE_P(4)
NI_DR_REC_ALL_FALL DOWN_P (5)
NI_COM_REC_EMPTY IE P (5)
NI_ALL FALL DOWN_IE P (6)
NI_ALL_FALL DOWN ENABLE P (7)
NI_COM SEND_LENGTH_P (8)
NI_COM_SEND_COMBINER P (12)
NI_COM_SEND_PATTERN P (15)
NI_COM_SEND_START P (17)

NI_INTERRUPT_CAUSE_A
NI_CAUSE_INTERNAL_FAULT P
NI_CAUSE_MC_ERROR_P (1)
NI_CAUSE_CMU_ERROR_P (2)
NI_CAUSE_BC_INTERRUPT RED P

NI_CAUSE_CN_CHECKSUM_ERROR_P

NI_CAUSE_CN_HARD ERROR P (5)

NI_CAUSE_DR_CHECKSUM ERROR_P

(cont.)

Global and System Registers

(0)

NI_REC_OK_IE_L (1)
NI_LOCK_L (1)
NI_REC_STOP_L (1)
NI_REC_FULL L (1)
NI_SEND_ENABLE L (1)
NI_BC_SEND_ ENABLE L

(1)
NI_COM_SCAN_OVERFLOW_IE L
NI_DR_REC_ALL_FALL_DOWN_L

(1)
(1)
NI_COM_REC_EMPTY IE L (1)
NI_ALL_FALL DOWN IE L (1)
NI_ALL FALL_DOWN_ENABLE_ L
NI_COM_SEND_LENGTH L (4)

NI_COM_SEND_COMBINER L (3)
NI_COM_SEND_PATTERN L (2)
NI_COM_SEND_START L (1)

(1)

(NI_BASE | 0x0000)

(3)

(4)

(6)

Version 7.1, October 1992

Appendix C. Predefined NI Constants

T o S S G e s e

NI_INTERRUPT_ CAUSE_A
NI_CAUSE_TIMER_INTERRUPT P (7)
NI_CAUSE_BC_INTERRUPT ORANGE_P (8)
NI_CAUSE_BC_INTERRUPT_ YELLOW P (9)

NI_CAUSE_BC_OR_COM_COLLISION_P
NI_CAUSE_COM_ABSTAIN CHANGED P

NI_CAUSE_DR_COUNT_NEGATIVE_P

NI_CAUSE_BAD_MEMORY_ACCESS_P
NI_INTERRUPT_TYPE L (15)
NI_INTERRUPT L (1)

{10)
(11)
(12)

NI_CAUSE_BAD RELATIVE_ADDRESS_P (13)

(14)

NI_INTERRUPT CAUSE_GREEN_A (NI_BASE | 0x0008)
NI_CAUSE_BC_INTERRUPT_GREEN_P
NI_CAUSE_SCAN_OVERFLOW_P (1)

NI_CAUSE_BC_REC_OK_P (2)

NI_CAUSE_SBC_REC_OK_P (3)

NI_CAUSE_COM REC_OK_P (4)

NI_CAUSE_COM REC_EMPTY_P (5)
NI_CAUSE_SYNC_GLOBAL REC_P (6)

NI_CAUSE_GLOBAL_REC P (7)

NI_CAUSE_SUPERVISOR_GLOBAL REC_P (8)
NI_CAUSE_DR_REC_OK_P (9)

NI_CAUSE_LDR_REC_OK_P (10)

NI_CAUSE_RDR_REC_OK_P (11)

NI_CAUSE_DR_REC_TAG_P (12)
NI_CAUSE_DR_REC_ALL_FALL DOWN P (13)
NI_INTERRUPT GREEN TYPE L (14)

NI_INTERRUPT L (1)

NI_INTERRUPT LEVEL_A (NI_BASE | 0x0010)
NI_INTERRUPT LEVEL L (32)

NI_INTERRUPT LEVEL_COLOR_L (8)

NI_PHYSICAL_SELF_A (NI_BASE | 0x0018)
NI_PARTITION_BASE_A (NI_BASE | 0x0020)
NI_PARTITION_SIZE A (NI_BASE | 0x0028)
NI_PHYSICAL ADDRESS L (20)

NI_CHUNK_TABLE_ADDRESS_A (NI_BASE | 0x0030)
NI_CHUNK_TABLE_ADDRESS_L (6)

NI_CHUNK_TABLE DATA A (NI_BASE | 0x0038)

NI_CHUNK_TABLE_DATA_ L (8)

Version 7.1, October 1992

124

NI_CHUNK_SIZE_A
NI_CHUNK_SIZE L (3)

NI_DR_MESSAGE_COUNT_A

(NI_BASE |

(NI_BASE |

NI_DR_MESSAGE_COUNT_L (32)

NI_COUNT MASK_A
NI_REC_INTERRUPT_ MASK_A
NI_USER_TAG_MASK_A
NI_TAG_MASK_L (16)

NI_TIME A

NI_TIME_L (32)

NI_CONFIGURATION A
NI_CONFIGURATION_ L (5)

NI_INTERRUPT_SEND_A
NI_INTERRUPT_SEND_L (5)

NI_SERIAL_ NUMBER_A
NI_SERIAL_NUMBER L (32)

NI_SYNC_GLOBAL A
NI_SYNC_GLOBAL_REC_P
NI_SYNC_GLOBAL_REC_L (1)

(NI_BASE |
(NI_BASE |
(NI_BASE |

(NI_BASE |

(NI_BASE |

(NI_BASE |

(NI_BASE |

(NI_BASE |

NI_SYNC_GLOBAL_COMPLETE_P (1)
NI_SYNC_GLOBAL_COMPLETE_L (1)

NI_SYNC_GLOBAL_L (2)

NI_SYNC_GLOBAL_ABSTAIN_A

(NI_BASE |

NI_SYNC GLOBAL_ABSTAIN L (1)

NI_COM_FLUSH_SEND_A
NI_FLUSH_SEND_L (1)

NI_ASYNC_GLOBAL A
NI_GLOBAL_SEND_P
NI_GLOBAL_REC_P (1)
NI_GLOBAL_L (2)

NI_ASYNC_SUP_GLOBAL A

(NI_BASE |

(NI_BASE |
NI_GLOBAL_SEND L (1)
NI_GLOBAL_REC_L (1)

(NI_BASE |

NI_SUPERVISOR_GLOBAL SEND_P (0)
NI_SUPERVISOR GLOBAL_SEND_L (1)
NI_SUPERVISOR_GLOBAL REC P (1)
NI_SUPERVISOR_GLOBAL REC_L (1)

NI_GLOBAL_L (2)

Version 7.1, October 1992

NI Systems Programming

0x0040)

0x0048)

0x0050)
0x0058)
0x0060)

0x0070)

0x0078)

0x0080)

0x0088)

0x0090)

0x0098)

0x00a0)

0x00a8)

0x00b0)

Appendix C. Predefined NI

33888 2R

Constants 125

NI_HODGEPODGE_A (NI_BASE | 0x00b8)
NI_GLOBAL_REC_IE P (0)
NI_GLOBAL_REC_IE L (1)
NI_SUPERVISOR GLOBAL REC_IE P (1)
NI_SUPERVISOR_GLOBAL REC_IE L (1)
NI_FLUSH_COMPLETE_P (2)
NI_FLUSH_COMPLETE_L (1)
NI_INTERRUPT_SEND_OK_P (3)
NI_INTERRUPT_SEND_OK_L (1)
NI_CONFIGURATION_COMPLETE P (4)
NI_CONFIGURATION_COMPLETE L (1)
NI_INTERRUPT_ REC_ENABLE_P (5)
NI_INTERRUPT REC_ENABLE L (1)
NI_SYNC_GLOBAL_REC_IE P (6)
NI_SYNC_GLOBAL_REC_IE L (1)
NI_TIMER_IE P (7)

NI_TIMER IE_L (1)
NI_CN_STOP_SEND P (8)
NI_CN_STOP_SEND_L (1)
NI_HODGEPODGE L (9)

NI_SYNC_GLOBAL_SEND_A (NI_BASE | 0x00C0)
NI_SYNC_GLOBAL_SEND L (1)

NI_INTERRUPT CLEAR A (NI_BASE | 0x00c8)
NI_INTERRUPT_CLEAR GREEN_A (NI_BASE | 0x00d0)
(use same constants as for CAUSE register)

NI_INTERRUPT_NOW_A (NI_BASE | 0x00d8)
NI_INTERRUPT NOW_L (32)

NI_SCAN_START A (NI_BASE | 0x00e0)
NI_SCAN_START L (1)

NI_BAD_ADDRESS_A (NI_BASE | 0x00e8)
NI_BAD_ADDRESS L (32)

Version 7.1, October 1992

Appendix D

S R R S iR

NI Interrupts

The methods used to recover from an NI interrupt depend heavily on the type of
interrupt itself. This appendix describes each of the possible interrupts in detail,
and provides guidelines describing how you can and should recover from them.
For each interrupt, the following information is provided:

s the name and color of the interrupt

® the ni_interrupt_cause Or ni_interrupt_cause_green flag
that is set when the interrupt is signaled

®= the ni_interrupt_clear Or ni_interrupt_clear_green flag
that is used to clear the interrupt when it has been handled

= the triggering event that causes the interrupt to be signaled

s the effect of the interrupt on the NI and the networks

= the correct method for handling the interrupt
Note: It is possible for the supervisor to trigger an interrupt artificially, by setting
the appropriate ni_interrupt_cause Or ni_interrupt_cause_green

flag. Since this can be done for any interrupt, it is not documented under the
triggering events given below for each interrupt.

Also, since the ni_interrupt_clear and ni_interrupt_clear_green
flags must be used to clear every interrupt once the required handling operations
have been performed, this step is assumed, and is not listed under the handling
guidelines for each interrupt.

Version 7.1, October 1992 127

D.1.1

D.1.2

Red Interrupts

Red interrupts indicate a failure of the hardware, such as checksum violations
and message format errors. They occur at unpredictable times relative to the in-
struction stream and are usually irrecoverable. Determining the precise cause of
a Red interrupt may require the use of the Diagnostic Network.

The cause and clear flags listed for each interrupt are found in these registers:

ni_interrupt_cause ni_interrupt_clear
internal FaultL Red Interrupt
Flags: ni_cause/clear_internal fault

Cause: A fault has been detected in the NI chip.
Effect: The effects are undefined and irrecoverable.

Handling: No software-serviceable parts inside. Please report this fault to your
applications engineer or systems manager for correction.

CN Checksum Error, DR Checksum Error Red Interrupt

Flags: ni_cause/clear_cn_checksum error
ni_cause/clear_dr_checksum error

Cause: A message with a bad checksum value was received from either the
Control Network or Data Network. This interrupt is signaled as
soon as the bad checksum value is received by the NI

Effect: None. The received message(s) may still be read. However, they
will almost certainly contain an error either in data or address.

Handling: This interrupt indicates that a network chip (or the NI chip itself)
has failed. The failed chip must be tracked down with the Diagnos-
tic Network. Please report this fault to your applications engineer
or systems manager for correction.

Version 7.1, October 1992

Appendix D. NI Interrupts 129

D.13

D.1.4

CNHardError ... Red Interrupt
Flags: ni_cause/clear_cn_hard error

Cause: A hardware error occurred in the Control Network.

Effect: The effects are undefined and irrecoverable.

Handling: This interrupt indicates one of two things: either a hardware prob-
lem in the Control Network, which must be located by use of the
Diagnostic Network; or a serious software problem (specifically, a
double trap forcing a processor (IU) reset). Please report this fault
to your applications engineer or systems manager for correction.

MC Error, CMUError Red Interrupt

Flags: ni_cause/clear_mc_error
ni_cause/clear_cmu_error

Cause: An interrupt is being signaled by either the memory controller, or
by the CMU (cache and memory management unit). These two
kinds of external interrupt are signaled to the microprocessor by
way of the NI chip.

Effect: None, aside from the interrupt itself.

Handling: These interrupts continue to be signaled until they are cleared on the
memory controller or CMU.

Note: Unlike most NI interrupts, these two interrupts are not
cleared by writing the corresponding ni_interrupt_clear flag.
Instead, a flag on the memory controller or CMU must be reset.

Nevertheless, it is legal to write a 1 to the ni_interrupt_clear
flags for these interrupts. While this has no effect, it is permitted so
that you can write uniform interrupt handler code.

Version 7.1, October 1992

130

D.15

D.2

D.2.1

NI Systems Programming

BCinterruptRed U Red Interrupt
Flags: ni_cause/clear_bc interrupt_ red

Cause: The NI received a Red broadcast interrupt, and the broadcast inter-
rupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program. -

Orange Interrupts

Orange interrupts indicate that the attention of the operating system is required,
as in timer interrupts and broadcast interrupt messages. They occur at unpredict-
able times relative to the instruction stream and do not destroy any information
that might be needed to determine the cause of the interrupt.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt cause ni_interrupt_clear

Timerinterrupt Orange Interrupt
Flags: ni_cause/clear_timer interrupt

Cause: The ni_time register is equal to the ni_interrupt: now register,
and the timer interrupt flag ni_timer ie flagis 1.

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

Version 7.1, October 1992

Appendix D. NI Interrupts _ ¢ 131

D.2.2

D.3

D.3.1

BC InterruptOrange Orange Interrupt
Flags: ni_cause/clear_bc_intaerrupt_orange
Cause: The NI received a Orange broadcast interrupt, and the broadcast in-

terrupt enable flag ni._interrupt_rec_enable was set to 1.
Effect: None, aside from the interrupt itseif.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

Yellow Interrupts

Yellow interrupts indicate that the software has made an error. They are usually
irrecoverable, as they indicate that your program is doing something illegal and
will have to be rewritten. Sufficient information is retained in the NI to permit
isolation of the cause of the interrupt, but it is not always possible to recover all
the information relating to the cause of the interrupt.

Yellow interrupts are associated with particular instructions, but usually are not
signaled at the exact point of the offending instruction, because of the loose cou-
pling between the NI and the microprocessor.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt_cause ni_interrupt_ clear

BC Interrupt Yellow Yellow Interrupt
Flags: ni_cause/clear_bc_interrupt_yellow

Cause: The NI received a Yellow broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

Version 7.1, October 1992

132 NI Systems Programming
D.3.2 COM AbstainChanged Yellow Interrupt

Flags: ni_cause/clear_com abstain_changed

Cause: The ni_com_abstain Or ni_reduce_rec_abstain flags were
changed while the combiner send FIFO was not empty.

Effect: The attempted change does not occur. Whether execution is allowed
to continue depends on the interrupt handler.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to quietly recover from it, perhaps displaying a warning
message.

D.3.3 DR Count Negative Yellow Interrupt

Flags: ni_cause/clear_dr count_negative

Cause: The combined value of all ni_dr message_count registers in
the Data Network has become negative, indicating a mismatch in
the sending and/or receiving of Data Network messages.

Effect: None, but this interrupt is signaled repeatedly until the situation is
corrected.

Handling: This may occur either when a failure in a Data Network or NI chip

causes the annihilation of a message, or when an OS error causes
a countable Data Network message to0 be sent out of its partition.
This interrupt may also occur if two or more nodes in a paritition
do not agree on which Data Network message tags are to be counted
(that is, their ni_count_mask registers are not equal).

To restore the Data Network to a proper state, make sure that the
partition is empty of Data Network messages, and then set all the
ni_dr message_count registers in the partition to 0.

Note: It may be that by the time the interrupt is signaled, the values
of one or more of the ni_dr message_count registers will have
changed. This may make it difficult to locate the error, since the
sum of the ni_dr_message_count registers may be positive by
the time the interrupt is signaled.

Version 7.1, October 1992

Appendix D. NI Interrupts 133

D.3.4 BCor COM Collision Yellow Interrupt

Flags:

Cause:

Effect:

Handling:

ni_cause/clear_bc_or_com collision

Three separate conditions cause this interrupt:
= Two NIs attempted to broadcast at the same time.
= Two different combine operations signaled at the same time.
= Two NIs simultaneously attempted a broadcast interrupt.

No combining or broadcast operations can proceed while the
ni_cause_bc_oxr_ com_collision flag is set. If the error was
colliding broadcast interrupts, the broadcast is not signaled.

If the error was colliding combine messages, the messages are still
in the combine send FIFO. The supervisor should take control of
this FIFO and read out the messages to determine where the colli-
sion occurred. If the error was colliding broadcast messages, the
ni_bc_send empty (or ni_sbc_send_ empty) flags will be set
10 0 in the contending processors. If the error was colliding broad-
cast interrupts, the ni_intezzupt_send_ ok Wwill be O in the
processors that sent the colliding broadcast interrupts.

Note: When the ni_clear_bc_or_com collision flagis writ-
ten, all messages in the broadcast and supervisor broadcast send
FIFOs disappear, and the ni_interrupt_send ok flagissetto 1.
None of the other FIFOs, either send or receive, are affected.

D.3.5 Bad Relative Address Yellow Interrupt

Flags:

Cause:

Effect:

Handling:

Version 7.1, October 1992

ni_cause/clear_bad relative_address

An attempt was made to send a Data Network message with a rela-
tive address that is illegal for the current partition.

The message with the bad address is discarded and the appropriate
ni_interface_send_ok flag is set to 0, indicating that the attempt
to send the message failed.

Your interrupt handler should decide whether to signal this as an
error, or to quietly recover from it, perhaps displaying a warning
message.

D.4

D.4.1

D.4.2

Green Interrupts

Green interrupts indicate the occurrence of common events for which the soft-
ware has requested-notification, such as the arrival of messages, the signaling of
broadcast interrupts, arithmetic overflow in a scan, etc. There is one interrupt for
each event, and each event’s interrupt can be enabled and disabled independently
under the control of the supervisor.

Depending on the type of event, the interrupt may or may not occur synchronous-
ly with a particular instruction. No information is lost by a Green interrupt.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt_cause green ni_interrupt_clear_green

BCinterrupt Green Green Interrupt
Flags: ni_cause/clear_bc_interrupt_green

Cause: The NI received a Green broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interrupt_rec_enable was set 10 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

DRReceiveTagcoooiviiinn.... Green Interrupt
Flags: ai_cause/clear_dr rec_tag

Cause: A message arrived at the front of a Data Network receive FIFO that
has an interrupting tag (a tag corresponding to a set flag in the regis-
ter ni_rec_interrupt_mask).

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

Version 7.1, October 1992

..... 8

Appendix D. NI Interrupts 135

D.4.3 DR Receive AllFallDown Green Interrupt

Flags: ni_cause/clear_dr rec_all fall down

Cause: An All Fall Down mode message arrived at the front of a Data Net-
work receive FIFO, while ni_all_fall down_ie is 1.

Effect: The first word read from the FIFO is the All Fall Down mode ad-
dress word, which is used to determine the correct destination
address for the message. The zac_leagth field contains the length
of the message not counting the address word, while the
rec_length left field contains the total length of the message
counting the address word.

Handling: Your handler should receive and store the message in such a way

that it can later be resent to its correct destination.

D.4.4 Interface (DR, BC, COM, etc.) Receive OK ... Green Interrupt

Flags:

Cause:

Effect:

Handling:

Version 7.1, October 1992

ni_cause/clear_bc_rec_ok
ni_cause/cleaxr_sbc_rec ok
ni_cause/clear_com_rec_ok
ni_cause/clear_dr rec ok
ni_cause/clear_ldr_rec_ok
ni_cause/clear_rdr_rec_ok

A new message became available from the receive FIFO of one of
the interfaces while the corresponding ni_interface_rec_ok_ie
flag was set to 1.

While enabled, each of these interrupts is signaled once for each
arriving message in the appropriate interface’s receive FIFO.

This interrupt is software-controlled, and should be handled by
your interrupt handler. (Typically, your handler reads the interrupt-
ing message from the FIFO, but you can decide to do otherwise.)

R R S R R IR AR R e O B A S R R S

D.4.5 Global Rec (Sync, Global, or Supervisor) Green Interrupt

D.4.6

Flags: ni_cause/clear_sync_global_rec
ni_cause/clear_global_ rec
ni_cause/clear_ supervisor global rec

Cause: One of the following events happened:
A synchronous global operation completed with a result of 1, and
the ni_sync_global rec_ie flagis 1.
The asynchronous global receive flag ni_global_rec changed
from 0 to 1, and the ni_global_rec ie flagis 1.
The supervisor asynchronous receive flag ni_supervi-
sor_global_rec changed from O to 1, and the
ni_supervisor_global rec_ie flagis 1.

Effect: None, aside from the interrupts themselves.

Handling: These interrupts are software-controlled, and should be handled by
your interrupt handler.

Com Receive Empty Green Interrupt

Flags: ni_cause/clear_com_rec_empty

Cause: The combine receive FIFO became empty while the empty receive
FIFO interrupt flag ni_com rec empty ie is 1.

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by

your interrupt handler.

Version 7.1, October 1992

Appendix D. NI Interrup, ' 137

G500 D By B T e o R e L e

D47 ScanOverflowco Green Interrupt

Flags: ni_cause/clear_scan_overflow
Cause: The first word of a scan or reduce message that suffered arithmetic

overflow was read from the combine receive FIFO, and the
ni_scan_overflow_ie interrupt enable flag is 1. This can only
happen if the message combiner is a signed or unsigned addition.

Effect: None. The arrived message may be read normally.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to quietly recover from it, perhaps displaying a warning
message.

D.5 Bus Errors

Bus Errors indicate that a bus transaction cannot be completed, as in an attempt
to read a virtual address that does not correspond to a register, or to write a mes-
sage that doesn’t conform to protocol. Bus Errors are signaled asynchronously
and are usually irrecoverable. Bus Errors are distinct from segmentation viola-
tion errors, which result from attempting to read an unmapped virtual address,
and are signaled synchronously with the offending instruction.

The cause and clear flags listed for each interrupt are found in these registers:
ni_interrupt cause ni_interrupt_ clear

D51 Bad Memory ACCeSSccoiiiiiiiiiinennnins Bus Error
Flags: ni_cause/clear_bad memory access

Cause: Bus Errors are signaled for number of reasons, including:
®= Attempting to read a read-protected address.
* Attempting to write a write-protected address.
= Attempting to read or write a value that does not fit in a register.

= Attempting to read or write an address that is not a register.

Version 7.1, October 1992

NI Systems Programming

e N A e

Some specific examples are:

Bus Errors caused by reads or writes:

reading or writing a supervisor-only register from the user area
reading the ni_interface_rac register of an empty receive FIFO

attempting to read a doubleword from a FIFO that has only a word left, or
attempting to use a doubleword operation to write a single-word message

writing the send_£irst register of a network interface while there is an
incomplete message pending in the send FIFO

writing the send register of a network interface without having first writ-
ten a value to the corresponding send_f£irst register

Bus Errors caused by sending a message:

attempting to send a message longer than the entire send FIFO

attempting to send a message via a network interface for which the corre-
sponding abstain flag is set

attempting to send a user message with a supervisor-reserved tag

attempting to send or receive a message through an excluded Data Net-
work interface.

attempting to send a combine message with an illegal combiner or pattern
value.

attempting to send a network-done message with a length greater than 1,
or attempting to send any network-done message while the ni_net-
work_done flag is 0 or the ni_com_abstain flagis 1

attempting to send a synchronous global message or to change the
ni_sync_global_abstain flag while the ni_sync_global com-~
plete flagis O

Version 7.1, October 1992

Bus Errors caused by other operations:

® attempting to start a flush operation while the ni_£1lush complata flag
is 0

* attempting to start a configuration operation while the ni_configura-
tion_complete flag is 0

* arttempting to send a broadcast interrupt while the ni_inter-
rupt_send ok flagis 0

® attempting to write a value to the ni_interface_rec register when the re-
ceive FIFO is full.

Effect: The address, size and type of the offending memory transaction is
be stored in the ni_bad_address register.

Any data written by the offending transaction is lost. Any side-
effects that would have been triggered by the offending transaction
(such as the initiation of a synchronous global operation) do not oc-
cur. In particular, an attempted doubleword read from a receiving
FIFO containing only one word will not result in popping the word.

Handling: Examine the ni_bad_address register to determine what
memory transaction caused the error.

Version 7.1, October 1992

ry

oo ATy
W

9

Appendix E

NI Programmlng Examples

For C programmers, here are some examples of macros that you can use to access
the registers and fields of the NI. In most cases, these macros take as arguments
the register and field constants defined previously in this manual.

E.1 Reading and Writing Registers

The simplest NI register operations involve reading and writing the value of a
register, typically with one of three types of values: unsigned, float, and double.
The macros below provide a simple register reading/writing interface.

#define ni_register(type, reg) *((type *) (req))
#define ni_read_reg(reg) ni_register(unsigned, regq)
#define ni_read_reg f(reg) ni_register(float, reg)
#define ni_read reg_d(req) ni_register(double, regq)

#define ni_set_register (type, reg,value)
ni_register (type, reg) = ((type) (value))

#define ni_write_reg(req)

ni_set_register(unsigned, reg, value)
#¥define ni_write_reg_f (reqg)

ni_set_register(float, reg, value)
#define ni_write reg_d(reg)

ni_set_register(double, reg, value)

In these examples the reg argument is the address constant of the appropriate
register, and the value argument is the word, float, or double to be written.

Version 7.1, October 1992 141

142 NI Systems Programming
ARt e s AR R R R o R S U S R TR

o

E.2 Reading and Writing Subfields

Often, you'll want to read or write the value of a register subfield. Here’s a set
of macros that efficiently extract a field from a register. (Note that the field argu-
ment in these examples is the name of the field constant without the _P or _L
suffixes — these are added automatically by the macros themselves.)

/* mask for values that will fit into the given field */
#define ni_mask_field values (field length) \
{(~{~0 << field_length))

/* mask that extracts a field from the register */
#define ni_mask_field (position, length) \
(ni_mask_field values (length) << position)

/* right-shift register value, mask out the field */
#define ni_get_field(register_val, pos, len) \
({registex_val >> pos) & ni_mask_field values(len))

#define ni_read_field(register, pos, len) \
ni_get_field(ni_read_reg(register), pos, len)

And here’s a set of macros that efficiently modify the value of a register field:

/* mask that is ANDed with register to change field */
#define ni_new_value_mask (pos, len, new_value) \
~((new_value " ni _mask_field values(len)) << pos)

/* Logical AND register with mask that changes field */
#define ni_set_field(reg val, pos, len, new_value) \
(reg_val & ni_new_value mask(pos, len, new_value))

#define ni_write_field(reg, pes, len, new_value) \
ni_write_reg(register, \
ni_set_field(ni_read reg(reg), pos, len, new_value))

You may also want to simply set or clear an arbitrary set of register bits:

#define ni_set_bits_in register(reg, bitmask) \
ni_write_reg(reg, ni_read reg(reg) | (bitmask))

#define ni_clear bits_in_register(reg, bitmask)\
ni_write_reg(reg, ni_read_reg(reg) & ~(bitmask))

Version 7.1, October 1992

s |

W

Appendix E. NI Programming Examples 143

E.3 Constructing Send-First Addresses

The only other major set of programming tools that you might need are macros
that construct a send_£irst address for a given interface. For example:

#define ni_send_first_a(interface,auxiliary data) \

({unsigned *) (NI_BASE | \
interface << SF_FIFO_OFFSET | \

auxiliary data << AUXILIARY START P))

#define ni_send_ first (interface,auxiliary_data,value) \
ni_write_reg({ni_send first_a(interface,auxiliary_data), \
value)

Data Network Send-First Macros

Here’s a set of macros that constructs the send_£irst addresses for the three
Data Network interfaces:

#define ni_xdr auxiliary data (mode,tag,length) \
(mode << NI_DR_SEND_AUXILIARY ADDRESS_MODE P | \

tag << NI_DR_SEND_AUXILIARY TAG_P | \

length << NI_DR_SEND_AUXILIARY LENGTH_P)

#define ni_dr_send first (mode, tag, length, value) \
ni_send first (DATA_ROUTER_FIFO, \
ni_xdr_auxiliary_data (mode, tag, length), \
value)

#define ni_ldr_send first (mode, tag, length, value) \
ni_send first (LEFT_DR _FIFO, \
ni_xdr_auxiliary data(mode, tag,length), \
value)

#define ni_ rdr send_first (mode, tag, length, value) \
ni_send_first (RIGHT_DR_FIFO, \
ni_xdr auxiliary_ data (mode,tag,length), \
value)

Version 7.1, October 1992

144 NI Systems Programming
8 T o

Broadcast Interface Send-First Macros

Here’s a set of macros that constructs the send_£irst addresses for the two
broadcast interfaces:

#define ni_xbc_auxiliary_data(length) \
(length << NI_BC_SEND_AUXILIARY LENGTH_P)

#define ni_bc_send first(length, value) \
ni_send first (USER_BC_FIFO, \
ni_xbc_auxiliary_data(length), \
value)

#define ni_sbc_send_ first (length, value) \

. ni_send_first (SUPERVISOR_BC_FIFO, \
ni_xbc_auxiliary_data(length), \
value)

Combine Interface Send-First Macros

Finally, here’s a set of macros that constructs the send_f£irst addresses for the
combine interface:

#define ni_com_auxiliary data(pattern,combiner,length) \
(pattern << NI_COM_SEND_AUXILIARY PATTERN P | \
combiner << NI_COM_SEND_AUXILIARY COMBINER P | \
length << NI_COM_SEND_AUXILIARY_ LENGTH_P)

#define ni_bc_send_first(pattern,combiner,lengtﬁ,value)\
ni_send first (COMBINE_FIFO, \
ni_com auxiliary data(pattern,combiner, \
length) \
value)

Version 7.1, October 1992

4

Appendix F
CMNA Header Flles

F.1

To access the NI constants described in this document, you must #include the
header file cm/cmna . h:

#include <cm/cmna.h>

This file #includes many other header files that provide access to NI constants,
register macros, and accessor functions. These constants, macros, and functions
are collectively referred to as CMNA (CM Network Accessors), and can serve as
a basis for your own NI accessor code.

Note: The functions and macros in CMNA are designed to be very generic in
operation. As such, they are much less efficient than the special-purpose macros
and functions you’ll probably write on your own. Nevertheless, you can use the
operations defined in CMNA as a jumping-off point for your own code, to help
you understand what needs to be done to get your code to run correctly.

What is CMNA?

There are two main parts to CMNA:

®» The NI Interface — Constants and macros used to manipulate NI registers.

® CnC (“C-and-C”) — C functions that perform NI operations such as
reading and writing messages of arbitrary length.

The CMNA header files define the NI interface explicitly, in terms of register
accessor macros and constants. The header files also provide C prototypes for the
CnC functions, which are part of the CMOST operating system code.

Version 7.1, October 1992 145

146 NI Systems Programming

F.2 CMNA Header Files

The following header files are part of CMNA:

/usr/include/
cm/cmna.h — Main CMNA header file.
cmsys/cmna.h — CMNA user header file.
cmsys/cmna_sup.h — CMNA supervisor header file.
cmsys/ni_interface.h — Main NI interface header file.
cmsys/ni_macros.h — NI macro definitions.

cmsys/ni_constants.h — NI register/flag constant definitions.
cmsys/ni_defines.h — Low-level NI constant definitions.

The following diagram shows the relationship among the header files that make
up CMNA:

cm/cmna.h

\‘NI supervisor area

cmna_sup.h

cmsys/cmna.h —

T~

" NI userarea

ni_interface.h
ni_constants.h ni_macros.h
ni_defines.h

Figure 19. Relationship between CMNA and NI header files.

Version 7.1, October 1992

F.2.1

F.2.2

F.2.3

The Main CMNA Header File: cm/cmna.h

This single file #includes all the header files that are needed to define CMNA.
However, it contains virtually no definitions of its own. It simply #ineludes
either of the two header files cmsys/cmna .h Or cmsys/cmma_sup . h, accord-
ing to which NI register area (user or supervisor) the #includeing code needs.

Implementation Note: At present, emsys/cmna_sup.h is only #included
for diagnostic code (that is, code that defines the symbol CMDIAG).

The User Header File: cmsys/cmna.h

This file #includes the NI constant and macro files described below, and also
defines a number of useful C mask constants and C macros that are used in
CMNA. However, the constants and macros defined here are only sufficient for
the needs of CMNA, and are not by any means a complete set. (See the descrip-
tion of the ni_constants.h, and ni_defines files below.)

The Supervisor Header File: cmsys/cmna_sup.h

This file modifies a few key constant definitions so that any absolute memory
address constants defined in the other header files will refer to the NI supervisor
area, rather than the NI user area. It then #includes cmsys/cmna.h, 5o it has
much the same effect as that header file.

Note: The emsys/cmna_sup.h file is only of use to programmers with legal
access to the NI supervisor area. Including this file does not in itself grant access
to the NI’s supervisor area; it simply redefines many CMNA constants to have
address values that are only legal for supervisor code.

Version 7.1, October 1992

148

S R O SR e

F.2.4

F.2.5

F.2.6

NI Systems Programming

A N N SN
R R PR R PR R e g

The NI Interface Header File: ni_interface.h

This file defines the NI accessor interface. It #includes the file
ni_constants.h, and defines a number of basic NI register macros that are
used by CMNA. It then #includes ni_macros.h to define the remainder of the
CMNA macros.

This file also defines a number of NI register constants that are suitable for use
in C code. (That is, constants that have been cast as (unsigned *) values. See
the description of ni_constants.h and ni_defines.h below.)

The NI Macros Header File: ni_macros.h

This file defines a number of C macros that perform sterotypical NI operations
such as sending and receiving messages via a specific network interface.

The NI Constants Header Files: ni_constants.h, ni_defines.h

These files define a number of register constants and masks that are used by
CMNA. In particular, ni_constants . ¢ includes definitions of constants speci-
fying the absolute memory address for each of the NI's registers. The file
ni_defines.h defines hundreds of constants that give the size and offset of the
register fields of the NI. These two sets of constants provide a complete interface
for NI operations written in assembly code. Appendix C provides a complete list
of these constants, grouped by register and category.

Note For C Programmers: The register address constants are unsigned pointer
values. To use them in C code, you must first cast them 10 type (unsigned *).
For example:

unsigned *ni_dr_ status = ((unsigned *) NI_DR_STATUS);

If you don’t perform this casting step, the C compiler by default treats the
constants as signed integers, possibly causing your code to fail. Many of these
constants are recast in just this fashion in the header file ni_interface.c, S0
you may be able to just use those constants without having to do any recasting
yourself.

Version 7.1, October 1992

Indexes

Version 7.1, October 1992 149

Programming

23 R0

B

This index lists the register names and fields, programming constants, functions and macros referred to
within this document. Bold page numbers indicate a defining reference or important description.

A

ADD_SCAN
combine combiner constant, 53
combine pattern constant, 109

ASSERT_ROUTER_DONE
combine combiner constant, 53
combine pattern constant, 109

AUXILIARY START P,

send-first field offset constant,
17,107

bad memory access,
bus error, 69, 137
bad relative address,
Yellow interrupt, 31, 68, 72, 133
be interrupt green,
Green interrupt, 69, 73, 75, 134
interrupt orange,
Orange interrupt, 68, 72, 75, 131
interrupt red,
Red interrupt, 68, 71, 75, 130
interrxupt yellow,
Yellow interrupt, 68, 72, 75, 131
or com collision,
Yellow interrupt, 51, 68, 72, 75, 133
rec ok,
Green interrupt, 23, 69, 72, 135

be

be

be

be

be

Version 7.1, October 1992

151

o

CMNA participate_in () ,system fn., 96
CMNA_router_msg_count, variable, 95
CMOS_signal (), system call, 35
cmu error, Red interrupt, 68, 71, 129
¢cn checksum erxror,

Red interrupt, 68, 71, 128
cn hard error, Red interrupt, 68, 71, 129
com abstain changed,

Yellow interrupt, 58, 68, 72, 132
com rec empty,

Green interrupt, 59, 69, 73, 136
com rec ok,

Green interrupt, 23, 69, 72, 135
COMBINE_FIFO,

interface number constant, 18, 107

D

DATA ROUTER_FIFO,
interface number constant, 18, 107

dr checksum error,

Red interrupt, 68, 71, 128
count negative,

Yellow interrupt, 37, 68, 72, 132
rec all fall down,

Green interrupt, 40, 69, 73, 135
rec ok, Green interrupt, 23, 69, 72, 135
rec tag, Greenint’rpt., 35, 69, 73, 134

dr

F& K

152

G-L
global rec,

Green interrupt, 65, 69, 72, 136
internal fault,

Red interrupt, 68, 71, 128
ldr rec ok,

Green interrupt, 23, 69, 72, 135
LEFT _DR_FIFO,

interface number constant, 18, 107

MAX BROADCAST MSG_WORDS,
constant, 46, 47, 106
MAX_COMBINE_MSG_WORDS,
constant, 51, 106
MAX_ROUTER_MSG_WORDS,
constant, 32, 33, 106
MAX SBC_MSG_WORDS,
constant, 46, 47, 106
MAX SCAN
combine combiner constant, 53
combine pattern constant, 109
me error, Red interrupt, 68, 71, 129

N

ni_all fall down_enable,

flag, 39, 40, 111
ni_all fall down_ie, flag, 39, 40, 111
ni_async_global,

register, 62, 64, 104, 115
ni_async_sup_global,

register, 62, 65, 104, 115
ni_bad_address, register, 83, 104, 118
ni_bad_address_low, ficld, 83, 118
ni_bad address_type, ficld, 83, 118
NI_BASE, constant, 9, 17, 107
ni_bc_...,register.

See ni_binterface_...
ni_bc_control,register, 105, 113
ni_bc_private, register, 105, 113
ni_bc_recv, register, 105
ni_bc_send, register, 105

NI_BC_SEND_AUXILIARY LENGTH_P,

field offset, 47, 108
ni_bc_send first, register, 105
ni_bc_status, register, 105, 112
ni_binterface_control, register, 44, 48
ni_binterface_private, register, 44, 48
ni_binterface_recw, register, 44, 47
ni_binterface_send, register, 44, 46
ni_binterface_send_first,

register, 44, 46
ni_binterface_status, register, 44, 47
ni_cause_bad memory access,

flag, 116
ni_cause_bad_relative_address,

flag, 116
ni_cause_bc_interrupt green,

flag, 116
ni_cause_bec_interrupt_orange,

flag, 116
ni_cause_bc_interrupt_red, flag,

116
ni_cause_bc_interrupt_yellow,

flag, 116
ni_cause_bc_or_com collision,

flag, 116
ni_cause_bc_rec_ok, flag, 116
ni_cause cmu_error, flag, 116
ni_cause cn_checksum error,

flag, 116
ni_cause cn _hard error,flag, 116
ni_cause_com_abstain_changed,

flag, 116
ni_ cause_com rec_empty, flag, 116
ni_cause com rec_ok, flag, 116
ni_cause_dr_checksum error,

flag, 116
ni_cause dr count_ negative,

flag, 116
ni_cause_dr_rec_all_ fall_ down,

flag, 116
ni_cause dr rec_ok, flag, 116
ni_cause dr_rec_tag, flag, 116
ni_cause_global_rec, flag, 116
ni_cause_internal fault,flag, 116

-Version 7.1, October 1992

Programming Tools Index
s e e S e T O S S

ni_cause_ldr_rec_ok, flag, 116
ni_cause mc exror, flag, 116
ni_cause_rdr_rec_ok, flag, 116
ni_cause_sbc_rec_ok, flag, 116
ni_cause_scan_overflow, flag, 116
ni_cause_supervisor_global_rec,
flag, 116
ni_cause_sync_global_rec, flag, 116
ni_cause_timer interrupt, flag, 116
ni_chunk size, register, 30, 104
ni_chunk table_ address,
register, 81, 104
ni_chunk_table_data, register, 81, 104
ni_clear bad memory access,
flag, 117
ni_clear_bad_relative_address,
flag, 117
ni_clear_bec_interrupt_green,
flag, 117
ni_clear_bc_interrupt_orange,
flag, 117
ni_clear_bc_interrupt_red,
flag, 117
ni_clear_bc_interrupt_yellow,
flag, 117
ni_clear_bc_or_com_collision,
flag, 117
ni_clear_ bc_rec ok, flag, 117
ni_clear_cmu_error, flag, 117
ni_clear_cn checksum error,
flag, 117
ni_clear_cn_hard error, flag, 117
ni_clear_com_abstain_changed,
flag, 117
ni_clear_com rec_empty, flag, 117
ni_clear_com_rec_ok, flag, 117
ni_clear_dr checksum error,
flag, 117
ni_clear_dr count_negative,
flag, 117
ni_cleaxr_dr rec_all _fall down,
flag, 117
ni_clear_ dr rec ok, flag, 117
ni_clear_dr_rec_tag, flag, 117

Version 7.1, October 1992

153

ni_clear_global_rec, flag, 117
ni_clear_internal fault, flag, 117
ni_clear_ldr_ rec_ok, flag, 117
ni_clear_mc_error, flag, 117
ni_clear_rdr rec_ok,flag, 117
ni_clear_sbc_rec_ok, flag, 117
ni_clear_scan_overflow, flag, 117
ni_clear supervisor_global_rec,
flag, 117
ni_clear_ sync_global_rec, flag, 117
ni_clear_timer interrupt,flag, 117
ni_cn_stop_send, flag, 77, 85, 118
ni_rec_abatain, flag
of a network, 21, 21
of broadcast interface, 48
of combine interface, 58
ni_com_control,
register, 50, 58, 106, 115
ni_com flush_send, register, 82, 104
ni_com private,
register, 50, 59, 106, 114
ni_com rec_empty_ie, flag, 59, 114
ni_com recw,register, 50, 53, 106
ni com scan overflow,
flag, 53, 55, 114
ni_com_scan_overflow_ie,
flag, 55, 59
inni_com private register, 114
ni_com_send, register, 50, 51, 59, 106
NI_COM_SEND_AUXILIARY COMBINER P,
field offset, 52, 109
NI_COM_SEND_AUXILIARY LENGTH P,
field offset, 52, 109
NI_COM_SEND_AUXILIARY_ PATTERN_P,
field offset, 52, 109
ni_com_send combiner,
field, 59, 60, 114
ni_com send first,
register, 50, 51, 106
ni_com_send_length, field, 59, 60, 114
ni_com_send pattern,
field, 59, 60, 114
ni_com_send start, flag, 59, 60, 114
ni_com status, register, 50, 53, 106, 114

154

ni_configuration, register, 84, 104
ni_ configuration_complete,
flag, 77, 84, 118
ni_count_mask, register, 29, 36, 56, 104
ni_dinterface private,
register, 28, 39
ni_dinterface_ recv, register, 28, 33
ni_dinterface_send, register, 28, 32
ni_dinterface send first,
register, 28, 32
ni_dinterface_status,
register, 28, 34, 56
ni_dr_ .. Seeni_dinterface_...
ni_dr message count,
register, 29, 36, 39, 56, 104
ni_dr private,register, 105, 111
ni_dr rec_all fall down,
flag, 39, 40, 111
inni_ldr_ private register, 111
inni_rdr private register, 112
ni_dr rec_state, field, 34, 38, 110
ni_dr_rec_tag, ficld, 34
inni_dr_status register, 110
inni_ldr_status register, 111
inni_rdr_status register, 112
ni_dr recv, register, 105
ni_dr_send, register, 105
NI_DR_SEND_AUXILIARY_ADDRESS_MODE_®,
offset constant, 32, 108
NI_DR_SEND_AUXILIARY LENGTH P,
offset constant, 32, 108
NI_DR_SEND_AUXILIARY TAG_P,
offset constant, 32, 108
ni_dr send first,register, 105
ni_dr send_state, field, 34, 38, 110
ni_dr status, register, 105, 110
ni_flush_complete, flag, 77, 82, 118
ni_global_rec, flag, 64, 115
ni_global rec_ie, flag, 64, 65, 77, 118
ni_global_send, flag, 64, 115
ni_hodgepodge, register, 77, 104, 118
and asynchronous global interface, 62
and supervisor asynch global interface, 62
and synchronous global interface, 62

NI Systems Programming

asynch global rec interrupt
enable flag, 64, 65
broadcast interrupt flags, 75
configuration flag, 84
flush complete flag, 82
NI timer interrupt enable flag, 83
send stop flag, 85
supervisor rec interrupt enable flag, 65
synch global rec interrupt
enable flag, 62, 63
ni_interface_contxrol, register, 21
ni_interface private, register, 13,23
ni_interface_ recw,register, 13, 18
ni_interface_send, register, 13, 15
ni_interface send first,
register, 13, 15
ni_interface_status, register, 13,19
ni_interrupt_cause,
register, 73, 104, 116
ni_interrupt cause green,
register, 73, 104, 116
ni_interrupt clear,
register, 73, 104, 117
ni_interrupt_clear_ green,
register, 73, 104, 117
ni_interrupt_level,
register, 74, 104, 118
ni_interrupt_level green,
field, 74, 118
ni_interrupt level orange,
field, 74, 118
ni_interrupt level red,
field, 74, 118
ni_interrupt level vellow,
field, 74, 118
ni_interrupt_now, register, 83, 104
ni_interrupt_rec_enable,
flag, 75,77, 118
ni_interrupt_send, register, 75, 104
ni_interrupt_ send ok,
flag, 75,77, 118
ni_ldr .. Seeni_dinterface_...
ni_ldr_ private, register, 105, 111
ni_ldr_recwv, register, 105

Version 7.1, October 1992

Programming Tools Index

ni_ldr_send, register, 105
ni_ldr send €£irst,register, 105
ni_ldr status, register, 105, 111
ni_lock, flag
inni_bc_private register, 113
inni_com_private register, 114
inni_dr_ privata register, 111
inni_ldr_privata register, 111
inni_rdr private register, 112
inni_sbc_private register, 113
of a network, 23, 24
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39
ni_interface_purpose,
register naming format, 7
ni_interface send first,
register, 107
ni_partition_base,
register, 78, 79, 104
ni_partition_size,
register, 78, 78, 104
ni_physical self, register, 78, 104
ni_xdr_...Seeni_dinterface_...
ni_rdr private, register, 105, 112
ni_rdr_recwv,register, 105
ni_rdr_send, register, 105
ni_rdr_send first, register, 105
ni_rdr status, register, 105, 112
ni_rec_abstain, flag
inni_bec_control register, 113
inni_com_control register, 115
inni_sbe_control register, 114
ni_rec_f£full, flag
inni_be_privatae register, 113
inni_com privatae register, 114
inni_dr private register, 111
inni_ldr privatae register, 111
inni_rdr privata register, 112
inni_sbe_private register, 113
of a network, 23, 25
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39

Version 7.1, October 1992

155

ni_rec_interrupt_mask,

register, 29, 35, 104

ni_rec_length, field

in ni_com _status register, 114
inni_dr_status register, 110
inni_ldr_ status register, 111
inni_zdr status register, 112
of a network, 19, 20

of combine interface, 53

of Data Networks, 34

ni_rec_length left, field

in ni_be_status register, 112
inni_com_status register, 114
in ni_dr status register, 110
inni_ldr_status register, 111
inni_rdr_status register, 112
in ni_sbc_status register, 113
of a network, 19, 20

of broadcast interface, 47, 48

of combine interface, 53

of Data Networks, 34

ni_rec_ok, flag

inni_bec_status register, 112
inni_com status register, 114
inni_dr_status register, 110
inni_ldr_status register, 111
inni_rdr_ status register, 112
inni_sbec_status register, 113
of a network, 19, 20

of broadcast interface, 47

of combine interface, 53

of Data Networks, 34

ni_rec_ok_ie, flag

inni_bec_private register, 113
inni_com private register, 114
inni_dr_ private register, 111
inni_ldr_ private register, 111
inni_rdr_private register, 112
inni_sbc_privata register, 113
of a network, 23, 23

of broadcast interface, 48

of combine interface, 59

of Data Networks, 39

156

S N RO R R A A R R D

ni_rec_stop,flag

inni_bec_private register, 113

inni_com_private register, 114

inni_dr_ private register, 111

inni_sbec_private register, 113

of a network, 23, 24

of combine interface, 59

of Data Networks, 39
ni_reduce_rec_abstain,

flag, 58, 115

of combine interface, 21

ni_router done_complete,
flag, 34, 39, 53, 56, 110

ni_sbc_..., register. See ni_binterface._...
ni_sbc_control, register, 106, 114
ni_sbc_private, register, 106, 113
ni_sbc_recw, register, 106
ni_sbc_send, register, 106
ni_sbc_send first,register, 106
ni_sbc_status, register, 106, 113
ni_scan_start, register, 50, 55, 104
ni_send empty, flag

inni_bec_status register, 112

inni_com status register, 114

inni_sbec_status register, 113

of a network, 19

of broadcast interface, 47

of combine interface, 53
ni_send enable, flag

inni_be_private register, 113

inni_sbc_private register, 113

of broadcast interface, 48,49
ni_send ok, flag

for Data Networks, 34

inni_bc_status register, 112

inni_com status register, 114

inni_dr status register, 110

inni_ldr status register, 111

inni_rdr status register, 112

inni_sbc_status register, 113

of a network, 19, 19

of broadcast interface, 47

of combine interface, 53

N A R 0 R0 N e A O LR Qv

NI Systems Programming

ni_send space, ficld
inni_bc_status register, 112
inni_com status register, 114
inni_dx_ status register, 110
inni_ldr status register, 111
inni_rdr status register, 112
inni_sbc_status register, 113
of a network, 19, 20
of broadcast interface, 47
of combine interface, 53
of Data Networks, 34
ni_send stop, flag,
of broadcast interface, 23, 25, 48
ni_serial number, register, 86, 104
ni_supervisor global_ rec,
flag, 65, 115
ni_supervisor_ global_ rec_ie,
flag, 65, 77, 118
ni_supervisor global_ send,
flag, 65, 115
ni_sync_global,
register, 62, 62, 104, 115
ni_sync_global_abstain,
register, 62, 63, 104
ni_sync_global complete,
flag, 62, 63, 115
ni sync_global_rec,
flag, 62, 63, 115
ni_sync_global_rec_ie,
flag, 62, 63,77, 118
ni_sync_global_send,
register, 62, 63, 104
ni_time, register, 83, 104
ni_timer ie, flag, 77, 83,118
ni_user tag_ mask, register, 29, 35, 104

o)

OR_SCAN
combine combiner constant, 53
combine pattern constant, 109

Version 7.1, October 1992

Programming Tools Index

P
PHYSICAL, flag value constant, 33, 108

R

rdr rec ok,

Green interrupt, 23, 69, 72, 135
RELATIVE, flag value constant, 33, 108
RIGHT DR _FIFO,

interface number constant, 18, 107

S

sbec rec ok,

Green interrupt, 23, 69, 72, 135
scan overflow,

Green interrupt, 55, 69, 73, 137
SCAN_BACKWARD,

combine pattern constant, 53, 109
SCAN_FORWARD,

combine pattern constant, 53, 109
SCAN_REDUCE,

combine pattern constant, 53, 109
SCAN_ROUTER_DONE,

combine pattern constant, 53, 109
SF_FIFO_OFFSET, send-first field

offset constant, 17, 107

Version 7.1, October 1992

supervisor globkal rec,

Green interrupt, 65, 69, 72, 136
SUPERVISOR BC_ FIFO,

interface number constant, 18, 107
sync global rec,

Green interrupt, 63, 69, 72, 136

T

timer interrupt,
Orange interrupt, 68, 72, 83, 130

u

UADD_SCAN
combine combiner constant, 53
combine pattern constant, 109
USER_BC_FIFO,
interface number constant, 18, 107

X

XOR_SCAN
combine combiner constant, 53
combine pattern constant, 109

This index lists the essential concepits referred to within this document. Bold page numbers indicate 5
defining reference or important description.

A

absolute address,
in chunk table translations, 79

abstain flag, 21

effect of, 21

in control registers, 7

of broadcast interface, 48

of combine interface, 21, 58

for reduction operations, 21

of global interface, 63

using efficiently, 92

using safely, 22
abstaining

from a network interface, 21

from a synchronous global message, 63

from broadcast interface, 48

from combine interface, 58
addition (signed), combine operation, 52
addition (unsigned), combine operation, 52
addition scan overflow, 55
address (node) registers, 78
address translation, and NI chunk table, 78
addresses

calculating send_first, 17

of registers, 103

programming constants, 8

addressing

of nodes, 30, 93

of registers, programming constants, 8

physical. See addressing

relative. See addressing

Version 7.1, October 1992

159

alignment of doubleword data, 94
*“All Fall Down interrupt enable” flag, 39, 40
“All Fall Down message” flag, 39, 40
All Fall Down Mode, 40
address word format, 41
detecting, 40
resending, 41
triggering, 40
“All Fall Down Mode enable” flag, 39, 40
“asynch global rec interrupt enable” flag,
of asynchronous giobal interface,
64,65,77
asynch global receive interrupt, 65
asynch supervisor global rec interrupt, 65
“asynch supervisor global receive” flag, of
supervisor asynch global interface, 5
“asynch supervisor global send” flag, of
supervisor asynch global interface, 65
“asynch supervisor global” register,
of supervisor asynch global interface,
62, 65
“asynch supervisor rec interrupt enable”,
of supervisor asynch global interface,
65,77
“asynch global receive” flag,
of asynchronous global interface, 64
“asynch global send” flag,
of asynchronous global interface, 64
“asynch global” register,

of asynchronous giobal interface,
62, 64

160 NI Systems Programming
RN DS e St ey

...

asynchronous interface, Bus Errors, con’t.
of global interface, 61, 62 on bad memory access, 69, 137

auxiliary information, 16 on broadcast interrupt error, 75

for broadcast messages, 47 on broadcasting with sending disabled, 49

for combine messages, 52 on combine flush error, 82

for Data Network messages, 32 on configuration error, 85

of a network message, 14 on excessively long messages, 15

on improper message format, 15
B on network-done message error, 56
) on reading from empty rec FIFO, 20

backward scan, combine pattern, 52 on reading/writing undefined addresses, 6

“bad address low" field, 83 on sending with abstain flag set, 21, 63

“bad address type” field, 83 on user access of supervisor features, 6

“bad address™ register, 83 _ on user sending message with supervisor
base address, of NI memory region, 10 tag, 35

programming constant, 9, 17
broadcast enabling, 49
CMost operation for, 96

on user sending physical mode message, 33

broadcast interface, 2, 43, 44 c
abstaining from, 48 casting register constants,
auxiliary information, 47 for C coding, 9
broadcast interrupt interface, 75 chunk address, 79
conflicts with combine interface, 96 chunk position, 79
enabling, 49 “chunk size” register, 80
CMOST operation for, 96 chunk sizes, 80
message format, 46 chunk table, 31, 78
message ordering, 46 modifying, 81
messages, 45 size of chunks, 80
receiving, 47 “chunk table address” register, 81
registers, 44 “chunk table data” register, 81
sending, 46 clearing combine send FIFO, 59
supervisor broadcast interface, 44 cm_sigmal.h, header file, 36
user broadcast interface, 44 CM-5,1
“broadcast interrupt rec enable” flag, 75, 77 networks, 2
“broadcast interrupt send ok™ flag, 75, 77 operating system, 4
*“broadcast interrupt send” register, 75 partition manager, 3
broadcast interrupts. partitions, 3
See interrupts, broadcast processing nodes, 3
broadcast messages, programs, 4
user and supervisor, 44 CMNA, 145
Bus Errors, 69, 137 (CM Network Accessors), 145
and bad address register, 83 header files, 146
on abstain flag change during global cmna . h, header file, 8, 145
message, 63

Version 7.1, October 1992

161

code
for nodes, 4
for PM, 4
*“combine add-scan overflow” flag, 53, 55
combine flush, 82
“combine flush complete™ flag, 77, 82
“combine flush” register, 82
combine interface, 2, 43, 49
abstaining from, 58
auxiliary information, 52
conflicts with broadcast interface, 96
flushing, 82
message format, 51
message ordering, 51
messages, 51
network-done messages, 55
parallel prefix. See scanning
pipelining, 51
receiving, 53
reduction messages, 54
registers, 50
scan overflow, 55
scanning, 54
sending, 51
status register, 53
word order in scans, 54, 94
combine messages, word order in, 94
combine patterns
addition (signed), 52
addition (unsigned), 52
backward scan, 52
exclusive OR, 52
forward scan, 52
inclusive OR, 52
maximum, 52
network-done, 52
reduction, 52
combiner field, combine interface,
legal values, 52
“combiner value” supervisor field,
of combine interface, 59, 60
communications networks.
See networks; CM-5 networks
configuration, partition, 84

Version 7.1, October 1992

“configuration complete” register, 77, 84
“configuration” register, 84
conflicts, between broadcast and combine
interfaces, 96
Connection Machine CM-5 Technical
Summary, xv
constants
NI base address, 9, 17
programming, 8
register, address, 9
register field, position and length, 9
Control Network, 1, 2, 43
See also broadcast interface;
combine interface;
global interface
disabling, 85
“Control Network disable” flag, 77, 85
control register, register type, 7
‘“control” register
of a network interface, 13, 21
of broadcast interface, 44, 48
of combine interface, 50, 58
“count mask” register, 29, 36, 56
“current” message, in receive FIFO, 19

D

Data Network (DR), 1, 2, 2, 27
addressing. See addressing
All Fall Down Mode, 40
address word format, 41
detecting, 40
resending, 41
triggering, 40
auxiliary information, 32
chunk table, 78
interactions between interfaces, 28
length field, 32
message format, 32
message length limit, 32
message mode bit, 32
message modes, physical and relative, 31
message ordering, 30

Data Network (DR), con’t
message tags, 34, 93
messages, 30

auxiliary information, 32
length field, 32
mode bit, 32
tag field, 32
receiving, 33
registers, 28
send FIFO, registers, 32
sending, 32
tag value of messages, 32

Data Network interfaces
Data Network (DR), 28
left interface (LDR), 2, 28
registers, 28

See also Data Network
right interface (RDR), 28

detecting arrival of messages, 18

Diagnostic Network, 2

disabling the Control Network, 85

discarded messages, 16
and send_ok flag, 19
using efficiently, 92

doubleword data, alignment, 94

doubleword operations, for reading/writing

registers, 1§

doubleword operators, 91

“DR network done” flag, 34, 39, 53

“DR receive state” field, 34, 38

“DR send state” field, 34, 34, 38

E
exclusive OR, combine operation, 52

F

fields, register
See also register fields
position and length constants, 9
flags and fields, status. See status registers,
flags and fields

NI Systems Programming

“flush complete” flag, 77, 82
“flush” register, of combine interface, 82
flushing, the combine interface, 82
format of messages, 14, 15

for asynchronous global interface, 64

for broadcast interface, 46

for combine interface, 51

for Data Network, 32

for supervisor asynch global interface, 65

for synchronous global interface, 63
forward scan,

combine pattern, 52

G

generic network interface, 13
using effectively, 25
“global abstain” register,
of synchronous global interface,
62, 63
global interface, 2, 43, 61
asynchronous interface, 64
supervisor asynch interface, 65
“global receive” register,
of synchronous global interface,
62,62
“global send” register,
of synchronous global interface,
62,63
Green broadcast interrupt, 75
Green interrupt, 69, 72, 134
Green broadcast interrupt, 69, 73, 75, 134
on add scan overflow, 55, 69, 73, 137
on All Fall Down message receipt,
40, 69, 73, 135
on empty combine receive FIFO,
59, 69, 73, 136
on interrupting DR message tag,
35,69,73,134
on message receipt,
23, 63, 65, 69, 72, 135, 136
“Green interrupt clear” register, 73
“Green interrupt level” field, 74

Version 7.1, October 1992

H

header files
cm signal.h, 36
cmna.h, 8, 145

“hodgepodge” register, 77
and asynchronous global interface, 62
and supervisor asynch global interface, 62
and synchronous global interface, 62
broadcast interrupt flags, 75
configuration flag, 84
flush complete flag, 82
global rec interrupt enable flag, 64, 65
NI timer interrupt enable flag, 83
send stop flag, 85
supervisor rec interrupt enable flag, 65
sync global rec interrupt enable flag, 62, 63

inclusive OR,
combine operation, 52
interface, register
of asynchronous global interface, 64
of broadcast interface, 44
of combine interface, 50
of Data Networks, 28
of global interface, 62
of supervisor asynch giobal interface, 65
of synchronous global interface, 62
“interrupt cause” register, 73
“interrupt clear” register, 73
“interrupt level” register, 74
“interrupt now” register, 83
interrupts, 11, 67, 127
and tag fields, 35
broadcast, 75
Bus Errors, 69
and bad address register, 83
on abstain flag change during global
message, 63
on bad memory access, 69
on broadcast interrupt error, 75
on broadcasting with
sending disabled, 49

Version 7.1, October 1992

interrupts, con’t.

on combine flush error, 82
on configuration error, 85
on excessively long messages, 15
on improper message format, 15
on network-done message error, 56
on reading from empty rec FIFO, 20
on reading/writing
undefined addresses, 6
on sending with
abstain flag set, 21, 63
on user access
of supervisor features, 6
on user sending message with
supervisor tag, 35
on user sending physical mode
message, 33
Bus errors, 137
on bad memory access, 137
cause and clear registers, 73
classes, 11, 67
detecting and clearing, 73
Green, 69, 72, 134
on add scan overflow, 55
on All Fall Down message receipt, 40
on broadcast interrupt, 75
on empty receive FIFQO, 59
on interrupting DR message tag, 35
on message receipt, 23, 63, 65
interrupt levels, 74
Orange, 68, 72, 130
on broadcast interrupt, 75
on NI timer interrupt, 83
pathways, 70
recovery, 76
Red, 68, 70, 128
off-chip fauits, 71
on broadcast interrupt, 75
on-chip fauits, 71
using to retrieve Data
Network messages, 35

interrupts, con't.
Yellow, 68, 72, 131
on bad relative address, 31
on broadcast interrupt, 75
on broadcast/combine collision, 51
on broadcast/combine conflict, 75
on combine/abstain flag error, 58
on negative message count, 37
IOR, combine operation, 52

L

left Data Network interface (LDR), 2, 27
length limit

of network interface FIFOs, 15

on broadcast interface messages, 46

on Data Network messages, 32
length of message

remaining words, 20

total (as received), 20
“lock” flag

of a network interface, 23, 24

of broadcast interface, 48

of combine interface, 59

of Data Network interfaces, 39

mapping, relative to physical addresses, 80
maximum, combine operation, 52
memory map,
NI memory region and registers,
quickref sheet, 99
memory maps
network interface registers, 14
node virtual memory, 11
of broadcast interface registers, 45
of combine interface registers, 50
of Data Network registers, 29
of global interface registers, 61
memory subsystem, of nodes, 3
“message count” register, 29, 36, 39, 56
message counting, 36
in network-done operations, 56

NI Systems Programmi
RS SRR SR, SN

Q0)

%

message format
asynchronous global interface, 64
broadcast interface, 46
combine interface, 51
Data Network, 32
supervisor asynch global interface, 65
synchronous global interface, 63
message ordering,
broadcast interface, 46
message tags, 34
user/supervisor, 35
messages
between PM and nodes, 90
using the Data Network, 90
broadcast interface, 45
combine interface, 51
word order, 94
Data Network, 30
detecting arrival of, 18
discarded, 16
and send_ok flag, 19
format, 14
for asynchronous global interface, 64
for broadcast interface, 46
for combine interface, 51
for Data Network, 32
for supervisor asynch
global interface, 65
for synchronous
global interface, 63
global interface, 61
length field, for Data Network, 32
mode bit, for Data Network, 32
modes, (for Data Network), 31
network, 14
receipt order, for Data Network, 30
receiving, 18
MiCroprocessor,
of processing node, 3
“middle” Data Network interface, 2

Version 7.1, October 1992

SRR QRN R R S R R A AR
..... RN

N

“network done” flag
See also “DR network done” flag
of Data Network,
(network-done operation), 56
Network Interface (NI), 1, §
base address, 10
constant, 9, 17
chip, 1,5
interrupts, 11, 67, 127
memory region,
occupied by registers, 6
memory regions,
physical and virtual, 10
operation times, 91
performance hints, 91
register names, 7
register types, 7
registers, 6
Reset, 12, 86
Revision A chip,
software workaround for, 94
serial number, 86
supervisor area, 6
timer, 83
user area, 6
network interfaces,
interactions between, 96
network-done
combine interface operation, 49, 55
combine operation, 52
message format, 56
network-done messages,
(via combine interface), 55
networks, 2
common features, 13
conflicts between.
See broadcast network, conflicts;
combine network, conflicts
interface, registers, 13
interface numbering, 17
interfaces, generic, 13
messages, 14
NI. See Network Interface (NI)

Version 7.1, October 1992

165

NI Reset, 86
*“NI timer enable” flag, 77, 83

node, program, 4
nodes. See processing nodes

o

off-chip faults, (Red interrupts), 71
on-chip faults, (Red interrupts), 71
operating system.
See CM-5 operating system

operation times, of NI, 91
OR, combine operation, 52

See also XOR, combine operation
Orange broadcast interrupt, 75
Orange interrupt, 68, 72, 130

NI timer interrupt, 68, 72, 83, 130

Orange broadcast interrupt, 68, 72, 75, 131
“Orange interrupt level” fieid, 74
order of words, in scan messages, 54
overflow, in addition scans, 55

P

parallel prefix, combine interface operation.
See scanning
partition. See partitions
“partition base address” register, 78, 79
partition configuration, 84
“partition configuration” register, 84
partition manager (PM), 3
address of, 31
code, 4
exchanging data with nodes, 89
“partition size” register, 78
partitioning, by system administrator, 3
partitions, 3
configuration, 84
defined by the NI chunk table, 78
relative addressing within,
(for Data Network), 31
size, 3
pattern field, combine interface,
legal values, 52
performance hints, 91

166 NI Systems Programming

PSP NN S N A IR 3

.....................................

physical, addressing “receive FIFO empty interrupt enable” flag,
See also addressing of combine interface, 59
translation from relative addressing, 78 “receive FIFO full” flag
-physical base address, of a network, 23, 25
of NI memory region, 10 of broadcast interface, 48
“physical self address” register, 78 of combine interface, 59
pipelining combine operations, 51 of Data Networks, 39
“private” register, 23 “receive ok interrupt enable” flag
of a network interface, 13, 18, 23 of a network, 23, 23
of broadcast interface, 44, 48 of broadcast interface, 48
of combine interface, 50, 59 of combine interface, 59
of Data Network interface, 28, 39 of Data Networks, 39
processing nodes, 1,3 “receive interrupt mask” register, 29, 35
address registers, 78 “receive length left” field
address translation, 78 of a network, 19, 20
addresses of, 30 of broadcast interface, 47, 48, 48
registers, 78 of combine interface, 53
addressing. See addressing of Data Networks, 34
exchanging data with PM, 89 “receive length” field
internal structure, 3 of a network, 19, 20
programming models, user and OS, 4 of combine interface, 53
Programming the NI, xv of Data Networks, 34
programs, NI, 4 “receive ok” flag
protocol of a network, 18, 19, 20
See also messages, format of broadcast interface, 47
for sending messages, 15 of combine interface, 53
of Data Networks, 34
Q receive FIFO
) network register for, 18
FIFO register of a network, 7, 14, 18
of a network interface. See receive FIFO receive FIFO register, of a network, 18
 register; send FIFO registers “receive state” field, of Data Network, 34, 38
register type, 7 “receive stop” flag, of a network, 24
“receive” register
R of a network, 13

of broadcast interface, 44, 47
of combine interface, 50, 53
of Data Networks, 28, 33

reading a message, 18
reading registers,
using doubleword operators, 91

“recei in” receiving
ret?:rl :m ir?tszace, 48 a bmadf:aSt' interface message, 47
of a network, 21, 21 a combine interface message, 53
of combine interface, 58 a Data Network message, 33
of global interface, 63 a network message, 14, 18

Version 7.1, October 1992

Concepts Index

receiving, con’t.
a network-done message, 56
> areduction-scan message, 54
a scan message, 54
a synchronous global message, 63
an asynch supervisor global message, 65
an asynchronous global message, 64
Red broadcast interrupt, 75
Red interrupt, 68, 70, 128
off-chip faults, 71
on cache/MMU error, 68, 71, 129
on Control Network
checksum failure, 68, 71, 128
on Control Network
hardware failure, 68, 71, 129
on Data Network
checksum failure, 68, 71, 128
on memory controller error, 68, 71, 129
on NI chip fault, 68, 71, 128
on-chip faults, 71
Red broadcast interrupt, 68, 71, 75, 130
“Red interrupt level” field, 74
reduction
combine interface operation, 49, 54
See also scanning
combine pattern, 52
“reduction abstain” flag,
of combine interface, 21, 58
reduction messages,
(via combine interface), 54
register constants, 3
casting, for C coding, 9
register fields
names, 7
programming constants, 8
register interface
of asynchronous global interface, 64
of broadcast interface, 44
of combine interface, 50
of Data Networks, 28
of global interface, 62
of supervisor asynch global interface, 65
of synchronous global interface, 62

Version 7.1, October 1992

register naming format,
ni_interface_purpose,7

register types, 7
register

address constants, 9

doubleword operators, 91

names, 7

NL 6

status, 19
relative, addressing

See also addressing

translation to physical addressing, 78
Reset, NI, 12, 86
Revision A NI Chip, software workaround, 94
right Data Network interface (RDR), 2, 27
RISC microprocessor, of processing node, 3
router, 27

See also Data Network
“router done” flag.

See “DR network done” flag

router-done, 52

See also network done

S

scan overflow, in addition scans, 55
“scan overflow interrupt enable” flag,
of combine interface, 55, 59
“scan start” register,
of combine interface, 50, 55
scanning
addition scan overflow, 55
combine interface operation, 49, 54
scanning with segments. See scanning
segmented scanning. See scanning
select address, for chunk table addressing, 79
“send combiner value” supervisor field,
of combine interface, 59, 60
“send empty” flag
of a network, 19, 20
of broadcast interface, 47
of combine interface, 53

“send FIFO enable” flag,
of broadcast interface, 48, 49
“send length” supervisor field,
of combine interface, 59, 60
“send ok” flag
and discarded messages, 19
of a network, 19, 19
of broadcast interface, 47
of combine interface, 53
of Data Networks, 34
*“send pattern” supervisor field,
of combine interface, 59, 60
send FIFO
network registers for, 15
of a network, 7, 14, 15
“send space” field
of a network, 19, 20
of broadcast interface, 47
of combine interface, 53
of Data Networks, 34
“send start” supervisor field,
of combine interface, 59, 60
“send state” field, of Data Network, 34, 38
“send stop” flag, of broadcast interface, 23, 25
“send” register
of a network, 13, 15
of broadcast interface, 44, 46
of combine interface, 50, 51
using to clear the send FIFO, 59
of Data Networks, 28, 32
send_first addresses
calculating, 17
constants, 17
“send-first” register
of a network, 13, 15
of broadcast interface, 44, 46
of combine interface, 50, 51
of Data Networks, 28, 32
sending
a broadcast interface message, 46
a combine interface message, 51
a Data Network message, 32
message modes, 31
a network message, 14, 15

NI Systems Programming
R T s L R A U L o

sending, con’t.
a network-done message, 55
a reduction-scan message, 54
a scan message, 54
a synchronous global message, 63
an asynch supervisor global message, 65
an asynchronous global message, 64
sending messages, between PM and nodes, 90
using the Data Network, 90
serial number (of NI), register, 86
simulating arrival of a message, 19, 95
status register
fields and flags, 19
of a network interface, 13, 19
of broadcast interface, 44, 47
of combine interface, 50, 53
of Data Networks, 28, 34, 56
register type, 7
“stop send” flag, 77, 85
“stop” flag
of a network, 23
of broadcast interface, 48
of combine interface, 59
of Data Networks, 39
supervisor area, of NI memory region, 6
supervisor asynchronous global interface,
of global interface, 61, 62
“supervisor asynchronous global” register,
of supervisor asynch global interface,
62, 65
supervisor broadcast interface, 44
See also broadcast network
supervisor message tags, 35
supervisor operations, 6
clearing combine send FIFO, 59
clearing interface send FIFO, 24
grabbing control of rec and
status registers, 24
reserving Data Network message tags, 35
simulating arrival of a message, 19, 95
triggering All Fall Down Mode in DR, 40
“synch global rec interrupt enable” flag,
of synchronous global interface,
62, 63,77

Version 7.1, October 1992

“synchronous global completion” flag,
of synchronous global interface,
62, 63

synchronous global receive interrupt, 63

“synchronous global receive” flag,
of synchronous global interface,
62, 63

synchronous interface, of global interface,
61, 62

T

tag fields
and interrupts, 35
and message counting, 36
of Data Network messages, 34
tag value, of Data Network message, 32
timer, NI. See NI timer
timer (NI), register, 83
“timer enable” flag, 83
timing, of NI operations, 91
total length of message, 20

u

user area, of NI memory region, 6
user broadcast interface, 44

See also broadcast network
user message tags, 35
user programming model, 4
“user tag mask” register, 29, 35

Version 7.1, October 1992

value, of a message, (single or doubleword),
15

virtual base address, of NI memory regions,
10

w

writing a value to recv register,

to simulate arrival of message, 19
writing registers,

using doubleword operators, 91

X

XOR, combine operation, 52

Y

Yellow broadcast interrupt, 75
Yellow interrupt, 68, 72, 131
on bad relative address, 31, 72
on broadcast/combine conflict, 51, 68, 72,
75,133
on combine abstain flag error, 58, 68, 72,
132
on illegal relative address, 68, 133
on negative DR message count, 37, 68, 72,
132
Yellow broadcast interrupt, 68, 72, 75, 131
“Yellow interrupt level” field, 74

