
The
Connection Machine
System

Paris Reference Manual

Version 6.0
February 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February 1989
Revised, February 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the
right to make changes to any products described herein to improve functioning or design. Although
the information in this document has been reviewed and is believed to be reliable, Thinking
Machines Corporation does not assume responsibility or liability for any errors that may appear in
this document. Thinking Machines Corporation does not assume any liability arising from the
application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
C*® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, and DataVault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
In Parallel® is a registered trademark of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun, Sun-4, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

1 Introduction

2 Virtual Machine Architecture
2.1 Virtual Processors and Virtual Processor Sets
2.2 Mapping V
2.3 VP Ratios
2.4
2.5
2.6
2.7
2.8
2.9
2.10

Fields .
Processor A
Send Addre
NEWS Ad(
Communici
Geometries
Flags ...

P Sets to the Physical Machine 5
· ·· · · · · · · · · · · ·.....................................· · · · · · · · .· .·· · · · 5

· · · · · ·· · · · · · · ·· · ·.....................................·· · · · ·· ·· · · · · · · · · · 6
ddresses 7

esses 7
dresses 8
ation across VP Sets 8

· · · · · · · · · · · · ·.................................... 8
. 10

3 Data Formats
3.1 Bit Fields
3.2 Signed Integers
3.3 Unsigned Integers
3.4 Floating-Point Numbers
3.5 Complex Floating-Point Numbers
3.6 Send Addresses
3.7 Configuration Variables.

4 Operation Formats
4.1 Field Id's
4.2 Constant Operands
4.3 Unconditional Operations
4.4 Naming Conventions
4.5 Argument Order

5 Instruction Set Overview
5.1 VP Sets
5.2 Geometries
5.3 Interned Geometries and vP
5.4 Fields

.

Sets

1

3
5

13
14
14
14
15
16
16
16

19
19
20
20
21
23

25
25
26
26
27

i

.......................
.

.......................

.......................

.......................
.......................

........................

........................

........................
.

.

.......................

.

........................
.......................

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27

Copying Fields
Field Aliasing
Bitwise Boolean Operations
Operations on Flags
Operations on Single Bits
Unary Arithmetic Operations
Binary Arithmetic Operations
Optimized Floating-Point Computations
Arithmetic Comparisons
Pseudo-Random Number Generation . .
Arrays
General Communication
NEWS Communication
Power of Two NEWS
NEWS with Floating-Point Combiners.
Scan, Reduce, Spread, and Multispread
Global Reduction Operations
Memory Data Transfers
Sorting
Timing Paris Code
The LEDS
Front End Operations
Environmental Interface

6 The C/Paris Interface
6.1 C/Paris Header Files
6.2 C/Paris Instruction Names and Argument Types

6.2.1 Id Types
6.2.2 Operand Field Addresses
6.2.3 Immediate Operands
6.2.4 Operand Field Lengths
6.2.5 Miscellaneous Signed and Unsigned Values.
6.2.6 Bit Sets and Masks
6.2.7 Vectors of Integers.
6.2.8 Multi-dimensional Front-end Arrays
6.2.9 Symbolic Values

6.3 C/Paris Configuration Variables
6.4 Calling Paris from C..........................

7 The
7.1
7.2

Fortran/Paris Interface
Fortran/Paris Header Files
Fortran/Paris Instruction Names and Argument Types .
7.2.1 Id Types.
7.2.2 Operand Field Addresses
7.2.3 Immediate Operands

ii

Contents
a··········::: I······ :: L····: ::::::::::::: ·· ::::::::::::::::

27
28
28
29
30
30
32
36
37
37
38
38
39
41
41
42
46
46
47
47
48
48
48

51
51
51
52
52
53
53
54
54
54
54
54
55
55

57
57
57
58
58
59

...................

....................

....................
....................

...................
...................

.

.
.

....................

....................

....................
.

.
...................
.

.

.
.
.
.

.

.

.

.

.

...........

...........

...........

...........
...........

7.2.4 Operand Field Lengths
7.2.5 Miscellaneous Signed and Unsigned Values
7.2.6 Bit Sets and Masks
7.2.7 Vectors of Integers.
7.2.8 Multi-dimensional Front-end Arrays
7.2.9 Symbolic Values.

7.3 Fortran/Paris Configuration Variables.
7.4 Calling Paris from Fortran

8 The Lisp/Paris Interface
8.1 Lisp/Paris Instruction Names and Argument Types.

8.1.1 Id Types.
8.1.2 Operand Field Addresses.
8.1.3 Immediate Operands
8.1.4 Operand Field Lengths
8.1.5 Miscellaneous Signed and Unsigned Values
8.1.6 Bit Sets and Masks
8.1.7 Vectors of Integers.
8.1.8 Multi-dimensional Front-end Arrays
8.1.9 Symbolic Values.

8.2 Lisp/Paris Configuration Variables
8.3 Calling Paris from Lisp

9 Dictionary of Paris Instructions
9.1 Conventions for Alphabetizing.
9.2 Programming Language Syntax

9.2.1 Syntax of Names.
9.2.2 Pseudocode Instruction Descriptions.
F-ABS

F-C-ABS.
S-ABS
C-ACOS.
F-ACOS.
C-ACOSH.
F-ACOSH.
C-ADD .
F-ADD
S-ADD
U-ADD
S-ADD-CARRY.
U-ADD-CARRY.
S-ADD-FLAGS.
U-ADD-FLAGS.
F-ADD-MULT

ADD-OFFSET-TO-FIELD-ID.

iii

Contents
. , -::... -.. - ,

59
60
60
60
60
60
61
61

63
....63
............ . .63
...64
.64
............ . .. 65
.65
............ . .65
............ . .66
............ . .66
............ . .66
............ . .66
............ . .67

69
............ . .69
............ . .. 70
............ . .. 70
.70
............ . .. 73
.74
............ . .75
............ . .76
.77
............ . .. 78
............ . .. 79
............ . .. 80
............ . .81
...83
............ . .85
....87
...89
...91
............ . .92
...93
.95

.

.
.
.
.
.
.
.

Contents
:: :::::: : B : R '::::::''�~~~~~~~:, . : ' .:, : '. . . :::: . · · : .:i:..:.:;:.::.

.. - . ..' .: : .::", .: '. : ' - -: ..: : . :·.·. · .. . ·. · · :·..

ALLOCATE-HEAP-FIELD
ALLOCATE-HEAP-FIELD-VP-SET
ALLOCATE-STACK-FIELD
ALLOCATE-STACK-FIELD-VP-SET
Al I nrAT _VID CT
'%LLV'..r I L- V r-.L. I

FE-ARRAY-FORMAT...
AREF
AREF32
AREF32-SHARED .
ASET
ASET32
ASET32-SHARED ..

C-ASIN
F-ASIN
C-ASINH
F-ASINH
C-ATAN
F-ATAN
F-ATAN2
C-ATANH
F-ATANH

ATTACH
ATTACHED
AVAILABLE-MEMORY

F-F-CEILING
S-CEILING

S-F-CEILING
U-CEILING

U-F-CEILING
CHANGE-FIELD-ALIAS

C-F-CIS
CLEAR-ALL-FLAGS
CLEAR-BIT
CLEAR-CONTEXT
CLEAR-flag
COLD-BOOT

F-COMPARE
S-COMPARE
U-COMPARE

COMPRESS-HEAP ..
C-CONJUGATE
C-COS
F-COS
C-COSH
F-COSH

iv

96
97
98
99

100
101
103
105
107
110
112
114
116
117
118
119
120
121
122
124
125
126
128
129
131
132
134
135
137
138
139
140
141
142
143
144
146
147
148
149
150
151
152
153
154

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · · · · · ·

· · · · · · ·

· · · · · · ·

· · · ·

· · · · · · ·

· · · · · ·

· · · · · · ·

· · · · · · ·

· · · · · · ·

· · · · · · ·

· · · · ·

· · · · ·

· · · ·

· · · · ·

·

· · · · · ·

· · · · · ·

· · · · ·

· · · · · · ·

· · · ·

· · · · · ·

· · · · · ·

· · · · · · ·

· · · · ·

· · · · · · ·

·

· · · · ·

· · · · · ·

· · · ·

· · · · ·

· · · ·

· · ·

· · · · · ·

· · · · ·

· · · · · · ·

Contents
:gXR' :. BB::: :>: :

ATE-DETAILED-GEOMETRY 155
ATE-GEOMETRY 159
SS-VP-MOVE 160
LLOCATE-GEOMETRY 163
.LOCATE-HEAP-FIELD 164
LLOCATE-STACK-THROUGH 165
LLOCATE-VP-SET 166
)SIT-NEWS-COORDINATE 167
)SIT-NEWS-COORDINATE 168
ACH 169
)E 171
)E 173
MERATE 175

....................................... 177

....................................... 178

....................................... 179

....................................... 180
...................................... 182
...................................... 183

RACT-MULTI-COORDINATE 184
RACT-NEWS-COORDINATE 185
IACT-NEWS-COORDINATE 186
LLOCATE-FFT-SETUP 187

................... 188
SETUP 191
)-VP-SET 193

.T 194
.T 195

)R 196
)R 197
)R 199
)R . 200
)R . 202
i-GRAY-CODE 203
I-GRAY-CODE 204

....................................... 205

....................................... 206

....................................... 208
METRY-AXIS-LENGTH 210
METRY-AXIS-OFF-CHIP-BITS 211
METRY-AXIS-OFF-CHIP-POS 212
METRY-AXIS-ON-CHIP-BITS 213
MAETRY-AXIS-ON-CHIP-POS 214
METRY-AXIS-ORDERING 215
METRY-AXIS-VP-RATIO 216

v

CREJ
CRE)
CRO!
DEAI
DEAI
DEAI
DEAI
DEP(

FE-DEP(
DETJ

C-DIVII
F-DIVII

ENUI
C-EQ.
F-EQ.
S-EQ.
U-EQ.
C-EXP
F-EXP

FE-EXTI
EXTF

FE-EXTI
DEAL

C-C-FFT
C-FFT-!

FIEL[
F-S-FLOA
F-U-FLOA
F-F-FLO

S-FLOC
S-F-FLOC

U-FLO
U-F-FLOC
FE-FROI

U-FROF
F-GE.
S-GE.
U-GE.

GEOI
GEOI
GEOI
GEOI
GEOF
GEOI
GEOI

Contents
: ::::::::::::::::::::::: ::::i :: :::::::::':::::::::::::::::: : ::::��:::::':'::::':::':: :�::: : : : :: :'::::: a::::::::::::::

GEOMETRY-COORDINATE-LENGTH 217
GEOMETRY-RANK 218
GEOMETRY-SEND-ADDRESS-LENGTH 219
GEOMETRY-SERIAL-NUMBER 220
GEOMETRY-TOTAL-PROCESSORS 221
GEOMETRY-TOTAL-VP-RATIO 222
GET 223
GET-AREF32 224
GET-FROM-NEWS 226
GET-FROM-POWER-TWO 227
GLOBAL-C-ADD 229
GLOBAL-F-ADD 230
GLOBAL-S-ADD 231
GLOBAL-U-ADD 232
GLOBAL-COUNT-BIT 233
GLOBAL-COUNT-CONTEXT 234
GLOBAL-COUNT-flag 235
GLOBAL-LOGAND 236
GLOBAL-LOGAND-BIT 237
GLOBAL-LOGAND-CONTEXT 238
GLOBAL-LOGAND-flag 239
GLOBAL-LOGIOR 240
GLOBAL-LOGIOR-BIT 241
GLOBAL-LOGIOR-CONTEXT 242
GLOBAL-LOGIOR-flag 243
GLOBAL-LOGXOR 244
GLOBAL-F-MAX 245
GLOBAL-S-MAX 247
GLOBAL-U-MAX 248
GLOBAL-U-MAX-S-INTLEN 249
GLOBAL-U-MAX-U-INTLEN 251
GLOBAL-F-MIN 253
GLOBAL-S-MIN 255
GLOBAL-U-MIN 256

F-GT 257
S-GT 258
U-GT 260
F-IEEE-TO-VAX 263

INIT 264
INITIALIZE-RANDOM-GENERATOR 265

S-INTEGER-LENGTH 266
U-INTEGER-LENGTH 267

INTERN-DETAILED-GEOMETRY 268
INTERN-GEOMETRY 270
INTERN-IDENTICAL-VP-SET 272

vi

INVERT-CONTEXT
INVERT-flag
IS-FIELD-AN-ALIAS
IS-FIELD-IN-HEAP
IS-FIELD-IN-STACK
IS-FIELD-VALID
IS-STACK-FIELD-NEWER
IS-VP-SET-VALID

S-ISQRT
U-ISQRT

LATCH-LEDS
F-LE
S-LE
U-LE
C-LN
F-LN

LOAD-CONTEXT
LOAD-flag

F-LOG2
F-LOG10

LOGAND
LOGAND-CONTEXT
LOGAND-CONTEXT-WITH-TEST
LOGAND-flag
LOGANDC1
LOGANDC2

S-LOGCOUNT
U-LOGCOUNT

LOGEQV
LOGIOR
LOGIOR-CONTEXT
LOGIOR-flag
LOGNAND
LOGNOR
LOGNOT
LOGORC1
LOGORC2
LOGXOR

F-LT .
S-LT
U-LT

MAKE-FIELD-ALIAS
MAKE-NEWS-COORDINATE

FE-MAKE-NEWS-COORDINATE
C-MATRIX- MULTIPLY

vii

Contents
:::::::::::::::::::::::::::::i: : : : : : : : : :' : : : : ::....... i

273
274
275
276
277
278
279
280
281
283
285
286
287
289
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
318
321
322
323
324

.............
............

.
.
.

............
............
.............
.............

............
.

.

.............
............

.

.

.

.

.

.
.
............

............

............

Contents
:::::::: .�, ::.:... .: .:: :::: X.:..... .:. :::: : ::. : .: ::::::: : ..: .:.

S-MATRIX-MULTIPLY 326
F-MAX 328
S-MAX 330
U-MAX 332
F-MIN 334
S-MIN 336
U-MIN 338
F-MOD 340
S-MOD 342
U-MOD 344
C-MOVE 346
F-MOVE 348
S-MOVE 350
U-MOVE 352
F-MOVE-DECODED-CONSTANT 354

MOVE-REVERSED 355
F-MULT-ADD 356
F-MULT-SUB 358
F-MULT-SUBF 360
C-MULTIPLY 362
F-MULTIPLY 364
S-MULTIPLY 366
U-MULTIPLY 368

MULTISPREAD-C-ADD 370
MULTISPREAD-F-ADD 371
MULTISPREAD-S-ADD 373
MULTISPREAD-U-ADD 374
MULTISPREAD-COPY 375
MULTISPREAD-LOGAND 376
MULTISPREAD-LOGIOR 377
MULTISPREAD-LOGXOR 378
MULTISPREAD-F-MAX 379
MULTISPREAD-S-MAX 380
MULTISPREAD-U-MAX 381
MULTISPREAD-F-MIN 382
MULTISPREAD-S-MIN 383
MULTISPREAD-U-MIN 384
MY-NEWS-COORDINATE 385
MY-SEND-ADDRESS 386

C-NE 387
F-NE .. 388
S-NE 389
U-N E 390
C-NEGATE 392
F-NEGATE 393

viii

Contents

S-NEGATE
U-NEGATE
F-NEWS-ADD
F-NEWS-ADD.
F-NEWS-MU L
F-NEWS-MU L
F-NEWS-MUU
F-NEWS-SUB
F-NEWS-SUB-

NEXT-STAC
FE-PACKED-AF

F-C-PHASE ..
PHYSICAL-S

C-C-POWER..
C-F-POWER .
C-S-POWER
C-U-POWER
F-F-POWER
F-S-POWER
F-U-POWER
S-S-POWER
S-U-POWER
U-S-POWER
U-U-POWER

POWER-UP
F-RANDOM
U-RANDOM
F-RANK
S-RANK
U-RANK
C-READ-FRON
F-READ-FRONI
S-READ-FROr
U-READ-FRONr
C-READ-FROr/
F-READ-FRONr
S-READ-FRO[N
U-READ-FRONI
C-RECIPROCA

REDUCE-WI
REDUCE-WI
REDUCE-WI
REDUCE-WI
REDUCE-WI
REDUCE-WI

................................... 394

................................... 395
................................. . 396

-MULT 398
.T 400

T-ADD 402
T-SUB 404

.................................. 406
MULT 408
;K-FIELD-ID 410
,RAY-FORMAT 411
................................... 413

VP-SET 414
................................... 415
................................... 417
................................... 419
................................... 421
................................... 422
................................... 424
................................... 426
................................... 428
................................... 430
................................... 432
................................... 434
................................... 436
................................... 437
................................... 438
................................... 439
................................... 441
................................... 443
4I-NEWS-ARRAY 445
4-NEWS-ARRAY 448
4-NEWS-ARRAY 451
4-NEWS-ARRAY : 454
4-PROCESSOR 457
4-PROCESSOR 458
-PROCESSOR 459
4-PROCESSOR 460
L 461
TH-C-ADD 462
TH-F-ADD 463
TH-S-ADD 464
TH-U-ADD . 465
TH-COPY . 466
TH-LOGAND 467

ix

Contents
:::'..' " ::::::: : : :::::::::.....:: ::::::: : :::::::: : :::: :: ::::::::: :::: ::::: ::::::: :::i :i:i:i:: :i:i:i:::::::: :

............ , ., .:..: _1 ... '. :::::::·:::·: I·: · ·:·:''''''' :': · '''''

REDUCE-WITH-LOGIOR 468
REDUCE-WITH-LOGXOR 469
REDUCE-WITH-F-MAX 470
REDUCE-WITH-S-MAX 471
REDUCE-WITH-U-MAX 472
REDUCE-WITH-F-MIN 473
REDUCE-WITH-S-MIN 474
REDUCE-WITH-U-MIN 475

F-REM 476
S-REM 478

U-REM 480
REMOVE-FIELD-ALIAS 482

F-F-ROUND 483
S-ROUND 484

S-F-ROUND 486
U-ROUND 487

U-F-ROUND 489
F-S-SCALE 491
F-U-SCALE 493

SCAN-WITH-C-ADD 495
SCAN-WITH-F-ADD 497
SCAN-WITH-S-ADD 499
SCAN-WITH-U-ADD 501
SCAN-WITH-COPY 503
SCAN-WITH-LOGAND 505
SCAN-WITH-LOGIOR 507
SCAN-WITH-LOGXOR 509
SCAN-WITH-F-MAX 511
SCAN-WITH-S-MAX 513
SCAN-WITH-U-MAX 515
SCAN-WITH-F-MIN 517
SCAN-WITH-S-MIN 519
SCAN-WITH-U-MIN 521
SCAN-WITH-F-MULTIPLY 523
SEND 5......... .. 525
SEND-ASET32-U-ADD 527
SEND-ASET32-LOGIOR 529
SEND-ASET32-OVERWRITE 531
SEND-TO-NEWS 533
SEND-TO-QUEUE32 534
SEND-WITH-C-ADD 537
SEND-WITH-F-ADD 539
SEND-WITH-S-ADD 541
SEND-WITH-U-ADD 543
SEND-WITH-LOGAND 545

x

SEND-WITH-LOGIOR
SEND-WITH-LOGXOR
SEND-WITH-F-MAX
SEND-WITH-S-MAX
SEND-WITH-U-MAX
SEND-WITH-F-MIN
SEND-WITH-S-MIN
SEND-WITH-U-MIN
SEN D-WITH-OVERWRITE
SET-BIT
SET-CONTEXT
SET-FIELD-ALIAS-VP-SET
SET-SAFETY-MODE
SET-SYSTEM-LEDS-MODE
SET-VP-SET
SET-VP-SET-GEOMETRY.
SET-flag

S-S-SHIFT
U-S-SHIFT
C-C-SIGNUM
F-F-SIGNUM
S-F-SIGNUM
S-S-SIGNUM

C-SIN
F-SIN
C-SINH
F-SINH

SPREAD-FROM-PROCESSOR .
SPREAD-WITH-C-ADD
SPREAD-WITH-F-ADD
SPREAD-WITH-S-ADD
SPREAD-WITH-U-ADD
SPREAD-WITH-COPY
SPREAD-WITH-LOGAND
SPREAD-WITH-LOGIOR.
SPREAD-WITH-LOGXOR
SPREAD-WITH-F-MAX
SPREAD-WITH-S-MAX
SPREAD-WITH-U-MAX
SPREAD-WITH-F-MIN
SPREAD-WITH-S-MIN
SPREAD-WITH-U-MIN

C-SQRT
F-SQRT

STORE-CONTEXT

xi

Contents

. 547
549
551
553
555
557
559
561
563
565
566
567
568
569
570
571
572
573
575
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

....................
.....................

....................

.

.....................

..
.....................

.
....................

.....................
.

.
.....................

.

.

.

....................

.

.
.

.

.

.
.

.....................
.

.
.

.

.

STORE-flag
FE-STRUCTURE-ARRAY-F

F-SUBF-CONST-MULT
FORMAT
.

F-SUB-MULT
C-SUBTRACT
F-SUBTRACT
S-SUBTRACT
U-SUBTRACT
S-SUBTRACT-BORROW
U-SUBTRACT-BORROW

SWAP
C-TAN
F-TAN
C-TANH
F-TANH

TIME
TIMER

FE-TO-GRAY-CODE
U-TO-GRAY-CODE

TRANSPOSE32
F-F-TRUNCATE
S-F-TRUNCATE

S-TRUNCATE
U-TRUNCATE

U-F-TRUNCATE
F-VAX-TO-IEEE

VP-SET-GEOMETRY
WARM-BOOT

C-WRITE-TO-NEWS-ARRAY.
F-WRITE-TO-NEWS-ARRAY.
S-WRITE-TO-NEWS-ARRAY......
U-WRITE-TO-N EWS-ARRAY ..
C-WRITE-TO-PROCESSOR.
F-WRITE-TO-PROCESSOR ...
S-WRITE-TO-PROCESSOR
U-WRITE-TO-PROCESSOR.

... 603

... 604

... 606

... 608

... 610

... 612

.... 614

... 616

... 618

... 620

... 622

... 623

... 624

... 625

... 626

... 627

... 629

... 632

... 633

... 634

... 637

.... 638

... 639

... 641
.................... 643

.... 645

... 646

... 647

.... 648

... 651

... 655

... 659

... 662

.... 663

...664

... 665

xii

Contents

List of Figures

2.1 65,536 processors

xiii

4

-%f

10ON

Customer Support
~'~~~~/~i ic ' t~'..~i

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

customer-support~think.com

ames!think!customer-support

(617) 234-4000
(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer-support@think.com

Please supplement the automatic report with any further pertinent information.

-looEk

lomplik

lonk"

Part I

Paris Concepts

Version 6.0, February 1991

**.14,

-IWIIN%

Chapter 1

Introduction

Paris is a low-level instruction set for programming the Connection Machine computer sys-
tem. It is the lowest-level protocol by which the actions of Connection Machine processors
are directed by the front-end computer. Paris is sometimes referred to as a "macroinstruc-
tion set" for the Connection Machine system because it is comparable in power to the
(macro)instruction sets of typical sequential processors such as the VAX, and to distinguish
it from the "microinstruction set" (microcode) that is executed by the Connection Machine
system sequencer and the "nanoinstruction set" that is directly executed by the individual
hardware Connection Machine processors.

Paris is intended primarily as a base upon which to build higher-level languages for
the Connection Machine system. It provides a large number of operations similar to the
machine-level instruction set of an ordinary computer. Paris supports primitive operations
on signed and unsigned integers and floating-point numbers, as well as message-passing
operations and facilities for transferring data between the Connection Machine processors
and the front-end computer.

The Paris user interface consists of a set of macros, functions, and variables to be called
from user code. The macros and functions direct the actions of the Connection Machine
system by sending macroinstructions to the Connection Machine sequencer, and the vari-
ables allow the user program to find out information about the Connection Machine system
such as the number of processors available.

Several different versions of the user interface are provided: one for the Lisp programming
language, one for C, and one for Fortran. These interfaces are functionally identical; they
differ only in conforming to the syntax and data types of one language or the other.

1

lloft%�

100,41.

-Oft.k.

Chapter 2

Virtual Machine Architecture

An important property of the Connection Machine architecture is scalability. At present, a
single Connection Machine system can have 16,384 or 32,768 or 65,536 physical (hardware)
processors, of which any single user can use a portion containing 8,192 or 16,384 or 32,768
or 65,536 processors. (See figure 2.1 for an illustration of 65,536 processors.) In most cases
the same software can be executed unchanged on Connection Machine systems (or portions)
with different numbers of physical processors; the number of processors affects only the size
of the problem that can be handled.

Paris enhances this scalability by presenting to the user an abstract version of the Con-
nection Machine hardware. The most important feature is the virtual processor facility,
whereby each physical processor is used to simulate some number of virtual processors. A
program can be written assuming any appropriate number of processors (but not fewer than
the number of physical processors); these virtual processors are then mapped onto physical
processors. In this way a program can be executed unchanged on Connection Machine sys-
tems with different numbers of physical processors, even if it requires a certain minimum
number of processors, with an essentially linear trade-off between number of physical pro-
cessors and execution time. (There is a memory trade-off as well: the memory of a physical
processor is divided among the virtual processors it supports.)

For the remainder of this chapter, when we refer to "the Connection Machine" or "the
machine" we mean that portion of a Connection Machine system to which the user is
attached. For example, if a user is attached to a 16,384 processor portion of a 65,536
processor Connection Machine, the expression "the machine" refers only to the user's 16,384
processors.

The Connection Machine hardware supports two mechanisms for interprocessor commu-
nication. The more general mechanism is the router, which allows data to be sent from any
processor directly to any other processor; indeed, many processors can send data to many
other processors simultaneously. The less general mechanism is redundant, but optimizes
an important case for speed. It organizes the processors as an n-dimensional grid and al-
lows every processor to send data to its immediate neighbors in the grid. This mechanism
is called the NEWS grid, from the initials of the four directions in a two-dimensional grid:
North, East, West, and South. Using these hardware mechanisms, Paris provides identical
virtual mechanisms within the virtual processor framework.

3

Chapter 2. Virtual Machine Architecture
:: :::: ::::::: ::::::::: ::::: :: :::::: :::: ::: :::: :::::::::: ::: :::::::: ::::: :::::::::: ::: :�::::::�::�::::: ::::~:::: ::: ::;:: :: : : :::: ::: : ::::::.

Figure 2.1: 65,536 processors

4

Chapter 2. Virtual Machine Architecture
:::::::: ::;:'::::::::::: :R :':. . .::: : ::;::::.:::::: .: : : : : : :: :: : : :: :: : : ' : .:: :.: : :: ' :::: ::::: : :::: :: .:.:

2.1 Virtual Processors and Virtual Processor Sets

The data parallel programming method associates one processor with each element of a
data set. In the virtual processor abstraction provided by Paris, we associate one virtual
processor, or VP, with each element of a data set. The set of all virtual processors associated
with a data set is called a virtual processor set, or VP set. For example, consider an image-
processing problem that deals with an image of 65,536 pixels, shaped in a 512 x 128 rectangle.
Each pixel is an element of the data set that makes up the image. Thus we would write a
program using one VP set of size 65,536: one VP for each pixel.

Because a single problem may be composed of more than one data set, Paris allows for
the simultaneous existence of more than one VP set. For example, a text retrieval program
might wish to deal with articles at some times, and with words in the articles at other times.
This problem is most conveniently modeled with two VP sets, the first corresponding to
the data set of all articles (one VP per article) and the second corresponding to the data
set of all words (one VP per word).

VP sets are created and deleted through function calls to Paris. The size of a VP set (the
number of virtual processors in the VP set) is fixed at the time of the VP set's creation.

Although multiple VP sets may co-exist, only one VP set may be active at any time.
This VP set is known as the current VP set. All VP sets other than the current VP set are
latent; that is, they can not execute any instructions. We say that Paris operates within
the current VP set. Paris provides a function CM: set-vp-set for setting the current VP set.

2.2 Mapping VP Sets to the Physical Machine

When a Paris program is run, the virtual processors in the user's program are mapped onto
the machine's physical processors. The size of the VP set(s) and the. size of the physical
machine determine how many virtual processors are assigned to each physical processor. In
effect, each Connection Machine processor and its memory are shared among the virtual
processors they support.

These concepts are further elaborated in the following sections. The time-slicing of the
Connection Machine processors is covered in the section "VP Ratios"; the sharing of physical
memory among virtual processors is covered in the section "Fields." Communication and
related concepts follow.

2.3 VP Ratios

Let p denote the number of Connection Machine physical processors, and let IXI denote
the number of virtual processors in a VP set X.

For each VP set X, each physical processor is assigned the task of simulating IXI /p
virtual processors. This number XI /p is called the virtual processor ratio, or VP ratio, of
VP set X. We denote the VP ratio of VP set X as vpr(X). The virtual processor ratio
must always be a power of two.

What exactly does this mean? When the machine is operating within VP set X, each
instruction in the user's program is executed vpr(X) times by each physical processor, that
is, once for every virtual processor. This is completely transparent to the user. A change of

5

Chapter 2. Virtual Machine Architecture
::::::::::;:::::;:-:: : : : : : :: ::: : : : -

VP set changes the VP ratio to be that of the newly current VP set; if the program changes
from VP set X to VP set Y, each instruction after that will be executed vpr(Y) times.

This method of assigning virtual processors to physical processors "spreads out" a VP
set as much as possible; the VP ratio for each VP set is as low as possible. The burden of
handling a VP set is shared by the entire physical machine.

As an example, suppose we have two VP sets A and B, where JIA = 64K and BI =
256K. Suppose we run our program on a Connection Machine system with 64K physical
processors (p = 64K). Then vpr(a) = 64K/64K = 1, and vpr(b) = 256K/64K = 4. When
executing within VP set A, each instruction is executed once by each physical processor.
When executing within VP set B, each instruction is executed four times by each physical
processor.

If the same program were to be run on a Connection Machine system with only 16K
physical processors (p = 16K), then we would have vpr(a) = 64K/16K = 4, and vpr(b) =
256K/16K = 16. When executing within VP set A, each instruction would be executed
four times by each physical processor. When executing within VP set B, each instruction
would be executed 16 times by each physical processor.

This description of "execute once for each virtual processor" applies most accurately to op-
erations such as arithmetic that can take place within each virtual processor independently
of other virtual processors. Operations that perform communication are more complicated,
but the idea is the same: each physical processor performs all necessary execution steps on
behalf of each virtual processor that is to participate in the operation.

As far as the user is concerned, physical processors are hardly visible. Paris is designed
to allow the programmer to think entirely in terms of the virtual processor as the basic unit
of computational power.

2.4 Fields

At the time of its creation, a VP set has no associated memory (except for its flags). This
is the same as saying that no VP in the VP set has any memory, because the memories of
all virtual processors in a VP set are always of the same size and layout. Paris provides
functions to allocate and deallocate memory to a VP set.

Memory is handled in units called fields. Conceptually, a field is simply some number of
consecutive bits. A field can be of any size greater than zero bits. When a field is allocated,
it has an initial size specified by the user. When we speak of allocating a field to a VP set,
we mean allocating a field to each VP in the VP set.

A field is referenced through a field ID. Paris returns a unique field ID for each new field
that is allocated, and all Paris calls that require a reference to a field take a field ID as a
parameter.

How does this abstraction of fields get mapped into physical Connection Machine mem-
ory? Again, the concept of VP ratios is important. Just as a Connection Machine physical
processor takes responsibility for vpr(X) virtual processors for each VP set X in the user's
program, those same physical processors (more precisely, their memories) take responsibility
for the fields of those same virtual processors. A single physical memory contains vpr(X)
copies of every field in VP set X, vpr(Y) copies of every field in VP set Y, and so on for
every VP set in the user's program.

6

Chapter 2. Virtual Machine Architecture
. .. %. :

There are two types of fields: heap fields and stack fields. The distinction between
them has to do with the storage management strategy employed in the physical memory
supporting the virtual processors. Heap fields are the more flexible of the two, but they
also have the higher overhead. Heap fields may be allocated and deallocated in any order.
Allocation of heap fields to VP set X may be freely intermixed with allocations to VP set
Y, and so on. Deallocations need pay no attention to the VP set to which a field belongs,
nor to the order in which other allocations and deallocations were done.

Stack fields may be allocated in any order, without regard to VP set. However, stack
fields must be deallocated in the reverse order in which they were allocated. This rule
applies globally to all fields in all VP sets. Thus, if a program allocates a field fi in VP set
A, and then allocates a field f2 in VP set B, and then allocates a field f3 in VP set A, they
must be deallocated in the order f3, f2, fi.

2.5 Processor Addresses

Paris supports two different sorts of addresses for virtual processors: the send address, which
is used for general purpose communication among virtual processors, and the NEWS address,
which describes a VP's position in the n-dimensional grid used to optimize nearest-neighbor
communication.

A virtual processor has one send address and one NEWS address at all times. Send
addresses and NEWS addresses are specific to a VP set; that is, every VP in a VP set has a
unique send address and a unique NEWS address, but it is possible for a VP in another VP set
to have the same send address or NEWS address. Since Paris always operates within a single
VP set, there is normally no ambiguity as to which VP is meant by a given address. For
communication across VP sets, Paris has other means of uniquely identifying the intended
destination VP.

2.6 Send Addresses

Send addresses are used as arguments to Paris communication operations to identify virtual
processors that are to supply or receieve data. The Paris operation CM:my-send-address
allows every VP in a VP set to find out its own send address.

The send address for a VP is composed of two parts, the physical part and the virtual part.
The physical part indicates the location in the CM of the physical processor supporting that
VP. The virtual part indicates which VP in that VP set on that physical processor is being
addressed. The virtual part is in the less significant bits of the send address.

The size (in bits) of a send address for a VP set depends on two things. The physical size
of the machine determines the size of the physical part of the send address. The VP ratio
for the VP set determines the size of the virtual part.

For example, in a 64K = 216 Connection Machine, the send addresses for VP set Q with
vpr(Q) = 64 = 26 require 22 bits: 16 bits for the physical part, and 6 bits for the virtual
part. In this example, send addresses range from 0 to 222 - 1.

7

Chapter 2. Virtual Machine Architecture
::::: :::.:. :: : . ..: :. :;:: ::: .:.. :. . : .-. .

212019181716151413121110 9 8 7 6 5 4 3 2 1 0

SEND ADDRESS PHYSICAL PROCESSOR VP

In this release of Paris, VP ratios must be a power of two. This results in a contiguous
address space for send addresses (that is, there are no "holes"). However, this feature is
likely to change in the future (thereby allowing a VP ratio to be any integer, not just a
power of two). We recommend that no Paris program be written so as to require send
addresses to occupy a contiguous range. In particular, we discourage arithmetic on send
addresses. Paris provides functions for manipulating send addresses in a "safe" manner.
Arithmetic is better done on NEWS addresses; if a total order on all processors is required,
please note that a NEWS grid may be one-dimensional.

2.7 NEWS Addresses

A NEWS address is an n-tuple of coordinates Xo, zl,..., XN-1, which specifies a VP's position
in an n-dimensional Cartesian-grid geometry. The number of bits required to specify each
coordinate depends on the size of that dimension in the geometry. NEWS addresses are
treated in more detail below when we discuss geometries.

The Paris operation CM:my-news-coordinate-lL allows every VP in a VP set to find out
its own NEWS coordinate along a given axis. Paris also provides functions for producing a
send address from a NEWS address, and vice versa. There are a number of variations on
these functions to handle only specific dimensions. All addresses are interpreted within the
current VP set.

2.8 Communication across VP Sets

Communication across VP sets takes place via the Paris send and get operations and their
variants. These operations each accept only a send address as the indicator of the remote
VP; NEWS addresses are not allowed. The send address must be of the proper size for the
remote VP set; that is, it must have as many bits as are necessary to specify a send address
in that VP set, which may be different from the number of bits needed to specify a send
address in the current VP set.

We have noted that send addresses are not unique across all VP sets in a program, but
that communication across VP sets is unambiguous anyway. This is because every call to
a Paris send or get operation also takes a field in a remote VP set as an argument. A field
is always associated with exactly one VP set, and this fact allows Paris to determine the
remote VP intended as a send destination or a get source.

2.9 Geometries

A geometry is an abstract description of an n-dimensional grid of elements. It specifies n,
the number of dimensions (also known as the rank of the geometry), and it specifies the
length of each dimension. There are other aspects of a geometry that may be specified by
the Paris user, but we first elaborate on the more basic issues.

8

Chapter 2. Virtual Machine Architecture
:: : : : : : ::::::::::::: :::::::::::::::::::::::·'::::.:...::: :::::::: :::

The rank of a geometry is an integer between 1 and 31, inclusive. This is the same as
saying that a geometry can describe anything from a 1-dimensional grid to a 31-dimensional
grid. We number the dimensions of a grid from 0 to the rank minus 1, so we say that a
1-dimensional grid has only dimension 0, a two-dimensional grid has dimensions 0 and 1,
etc.

The size of a dimension must be a power of two. The product of the sizes of all dimensions
of a geometry specifies the total number of elements in the geometry. For example, a three-
dimensional geometry of size 16 x 512 x 2 contains 16,384 elements in all.

Paris provides functions for defining geometries. See section 5.2. A geometry is defined
in the abstract, but it has no use until it is associated with a VP set, via another Paris
function. Associating a geometry with a VP set defines a "shape," or organization, for the
virtual processors of the VP set.

At the time of a VP set's creation, it is associated with some geometry. The geometry
specifies the size of the VP set and its conceptual organization in n-space. A VP set is always
associated with exactly one geometry, but it may be associated with different geometries
over time. Paris provides a function for associating a geometry with a VP set (and implicitly
dis-associating the previous one). See section 5.1. In this way, the user can "reshape" a
VP set. The only restriction is that all geometries associated with a VP set be of the same
total size, since a VP set is not allowed to change size. For example, a VP set originally
associated with a 16 x 512 x 2 geometry can later be associated with a 64 x 256 geometry,
since the total number of virtual processors described by both of these geometries is the
same (16,384 in this example).

The NEWS address of a virtual processor depends completely on the geometry currently
associated with its VP set. Thus, while the send addresses of virtual processors remain
constant for the life of a VP set, the NEWS addresses of those same virtual processors can
vary as the geometry is changed. When a VP set has a three-dimensional geometry, NEWS
addresses for that VP set have three coordinates: o, Z1, x2. When that VP set changes to
a two-dimensional geometry, NEWS addresses for that VP set have two coordinates: o, zl.

Given a VP set and given a geometry as we have described it so far (a rank and the size
of each dimension), there are many ways for Paris to assign virtual processors to physical
processors. However, not all mappings will provide equally efficient communication among
the virtual processors of a VP set. Paris allows the user to specify more information than
just rank and size of dimensions when creating a geometry. These additional pieces of
geometry information we call ordering and weight, and we discuss them in more detail
below.

It should be said, however, that the specification of these properties of a geometry af-
fects only the efficiency of inter-VP communication, and therefore the performance of the
program. Choosing suboptimal values will never cause an otherwise correct program to
execute in an erroneous manner. Also, for some problems (those involving little or no com-
munication among virtual processors of a VP set) it does not matter how the user specifies
these properties. Paris provides a function for creating geometries that does not require
specification of ordering or weight information.

Each dimension of a geometry is given an ordering. The ordering of a dimension specifies
how NEWS coordinates for that dimension are mapped onto physical processors. There are
currently two possible orderings: NEWS ordering and send-address ordering. (There may be

9

Chapter 2. Virtual Machine Architecture
ii* S C::::l ~ i:::::i..

more in the future.) Different dimensions of a geometry may be given different orderings.
The NEWS ordering specifies the embedding of the grid into the physical (hardware) n-

dimensional grid such that processors with adjacent NEWS coordinates are in fact neighbors
within the physical grid. The send-address ordering specifies that if processor A has a
smaller NEWS coordinate than processor B (in the specified dimension), then A also has a
smaller send address than B. Paris functions that provide nearest-neighbor communication
(the CM:get-from-news family of functions, for example) perform best with NEWS ordering.
Send ordering is useful for applications such as Fast Fourier Transform; under the send
ordering, processors that are nearest neighbors within the physical grid have grid coordinates
that differ by various powers of two.

What is the weight of a dimension for? Whenever the VP ratio of a VP set is greater
than 1, some number of virtual processors are co-resident on a physical processor. If these
virtual processors happen to all be in the same dimension of their geometry, communi-
cation among them will be even faster than if they were neighbors in the physical NEWS

grid. Communication among virtual processors assigned to the 16 physical processors on
a Connection Machine chip is also faster than communication between chips, even if the
processors concerned are neighbors in the physical NEWS grid.

Paris can lay out virtual processors on physical processors in such a way as to take advan-
tage of intra-processor and intra-chip communication, provided the Paris user knows which
dimension(s) of the geometry will sustain the heaviest communication. (By communica-
tion, we mean also operations such as scan and spread). Thus, Paris provides an operation
for creating geometries with an indication (the weight) of which dimension will have the
heaviest communication, which will be second heaviest, etc. Paris then maps the virtual
processors onto the physical processors in such a way as to favor the dimensions with the
heaviest communication.

2.10 Flags

Each Paris virtual processor has an assortment of one-bit flags. These flags are represented
as fields that are specially associated with VP sets. These fields are automatically created
when the VP set is created by CM:allocate-vp-set.

Many Paris operations store into these flags rather than, or in addition to, storing results
into explicitly supplied argument fields. For example, the CM:s-add-2-1L operation adds one
signed integer to another, but also stores information into the carry flag and the overflow
flag.

The entire set of flags for each virtual processor is as follows.

* The context-flag indicates which virtual processors are active within the current VP
set. Nearly all Paris operations are conditional; the operation is effectively carried out
only in those processors whose contezt-flag is 1, and processors whose context-flag is
0 are unaffected. Some operations are always unconditional.

* The test-flag holds the result of numeric comparisons and other tests, or indicates
which operations failed because of bad operands.

* The carry-flag holds the carry in and carry out for some integer arithmetic operations.
A few operations use the carry-flag as an implicit input.

10

Chapter 2. Virtual Machine Architecture

* The overflow-flag indicates which operations produced results that the destination
field was too small to contain. Many Paris operations can affect the overflow-flag.

11

-AM,"

-011

"ONq

Chapter 3

Data Formats

A data item always consists of a string of bits having consecutive addresses. Such a bit
string is called a field. The term field is also used to refer to a collection of fields, one for
each virtual processor.

Many Paris operations may be regarded as interpreting bit fields as being of particular
data types or formats. Currently Paris provides operations that regard the contents of bit
fields as structured according to the following data types:

* signed integers, represented in two's-complement format

* unsigned integers, represented in straight binary format

* floating-point numbers, represented in a format close to that specified by IEEE stan-
dard 754 for floating-point arithmetic

* complex floating-point numbers, represented as two floating-point numbers, the real
part and the imaginary part

* send-addresses, which are unsigned integers that label virtual processors for commu-
nication purposes

* NEWS coordinates, which are unsigned integers, tuples of which label virtual processors
within a Cartesian grid for communication purposes

The Connection Machine system allows unusual flexibility in that the hardware does not en-
force any particular length or alignment requirements. Paris supports integers and floating-
point numbers of almost any size. (However, certain sizes of floating-point number allow
particularly efficient execution by the hardware floating-point accelerator, and certain sizes
of integer allow certain other operations to be particularly efficient.)

Most Paris operations operate on fields within a virtual processor, delivering results to
other fields within that virtual processor. Frequently we speak of one data item, but really
mean to speak of many instances of that data item, one for each selected processor, to be
considered or operated on in parallel. For example, when we say that an operation sets
a flag when a field has such-and-so value, we mean that within each processor a separate
decision is made: whether to set that processor's flag based on the value of the field within
that processor.

13

Chapter 3. Data Formats

3.1 Bit Fields

A bit field is specified by a bit address a and a positive length n; the field consists of the
bits with addresses a through a + n - 1, inclusive. Therefore the address of a field is the
same as that of the lowest-addressed bit.

3.2 Signed Integers

A signed integer is specified in the same way as a simple bit field, by a bit address a and
a positive length n. The signed integer is represented in two's-complement form, and so
a signed integer of length n can take on values in the range -(2(n-1)) through 2(n- 1) - 1,
inclusive. The least significant bit has address a, and the most significant (sign) bit has
address a + n - 1.

All arithmetic on signed integers is performed in a strict wraparound mode. As a rule,
if the result of an operation overflows the destination field, the overflow-flag is set, and the
destination receives as many low-order bits of the true result as will fit. For example, using
4-bit signed arithmetic, multiplying 4 by -7 will produce the 4-bit result 4 (and also set the
overflow-flag), because the two's-complement representation of -28 is ... 111111100100, of
which the four low-order bits are 0100, or 4. Signed-integer operations that do not overflow
leave the overflow-flag unchanged.

In order to simplify the Connection Machine microcode, this arbitrary restriction is im-
posed: the length n may not be zero or one. In addition, certain operations on signed
integers cannot handle operands whose length is greater than the value of the variable
CM: *maximum-integer-length*; see section 3.7.

3.3 Unsigned Integers

An unsigned integer is specified in the same way as a simple bit field: by a bit address a
and a positive length n. The unsigned integer is represented in stright binary form, and so
an unsigned integer of length n can take on values in the range 0 through 2" - 1, inclusive.
The least significant bit has address a, and the most significant bit has address a + n - 1.

All arithmetic on unsigned integers is performed in a strict wraparound mode, modulo
2". As a rule, if the result of an operation overflows the destination field, the overflow-flag
is set, and the destination receives as many low-order bits of the true result as will fit.
For example, using 4-bit unsigned arithmetic, multiplying 4 by 7 will produce the 4-bit
result 12 (and also set the overflow-flag), because the two's-complement representation of
28 is ... 00000011100, of which the four low-order bits are 1100, or 12. Unsigned-integer
operations that do not overflow clear the overflow-flag.

Unsigned integers, unlike signed integers, may be of length zero or one as well as of larger
sizes. (Note that an unsigned integer of length zero is considered to have the value 0.)
However, certain operations on unsigned integers cannot handle operands whose length is
greater than the value of the variable CM:*maximum-integer-length*; see section 3.7.

14

Chapter 3. Data Formats

3.4 Floating-Point Numbers

A floating-point data item is specified by three parameters: a bit address a, a significand
length s, and an exponent length e. The total number of bits in the representation is
s + e + 1, and the data item occupies the bits with addresses a through a + s + e, inclusive.

The significand occupies bits a through a + s - 1, with the least significant bit at address
a. A hidden-bit representation is used, and so the significand is normally interpreted as
having a 1-bit as its most significant bit implicitly just above the bit at address a + s - 1.
If the exponent field is all zero-bits, however, then the hidden bit is taken to be 0.

The exponent occupies bits a + s through a + s + e - 1, with the least significant bit at
address a + s. An excess-(2e - l - 1) representation is used.

The sign bit occupies bit a + s + e, and is 1 for a negative number and 0 for a positive
number. Overall, a sign-magnitude representation is used, so inverting the sign of a floating-
point number merely involves flipping the sign bit. Note that there is both a plus zero and
a minus zero.

When s = 23 and e = 8, this is equivalent to the IEEE standard 754 single-precision
format, which looks like this:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

exponent significand

When s = 52 and e = 11, the Paris floating-point format is equivalent to IEEE standard 754
double-precision format. The IEEE standard single-extended and double-extended formats
can also be accommodated by suitable choices of s and e.

While the Paris floating-point format is equivalent to the IEEE standard format, it must
be emphasized that the Paris implementation does not support equivalent operations at
this time.1 "Soft" underflow (using denormalized numbers for the result) is not supported.
Rounding is performed correctly in all cases, using the round-to-nearest mode; the several
rounding modes are not supported. The not-a-number (NAN) values are not supported. The
standard exceptions and flags are not all supported. It is strongly recommended that a user
of Paris always use the IEEE standard formats unless careful analysis of the application
(such as a need for speed or additional exponent range) indicates that another format is
required and adequate.

The format of a floating-point operand must obey certain restrictions. The length s must
be greater than 0 and not greater than CM:*maximum-significand-length*. The length e
must be greater than 1 and not greater than CM:*maximum-exponent-length*. See section
3.7. These restrictions are additionally imposed: e > 2, s > 1, and 2e - 1 > s + 1. Values for
s and e not satisfying these restrictions will cause unpredictable results.

'Thinking Machines Corporation does intend to support all standard IEEE arithmetic operations in a
future software release.

15

Chapter 3. Data Formats

3.5 Complex Floating-Point Numbers

A complex floating-point data item is specified by three parameters exactly like those for a
floating-point data item: a bit address a, a significand length s, and an exponent length e.
The data item consists of two consecutive floating-point data items, with the real part at
address a and the imaginary part at address a + s + e + 1. The total number of bits in the
representation is 2(s + e + 1), and the data item occupies the bits with addresses a through
a + 2(s + e) + 1, inclusive.

3.6 Send Addresses

Every virtual processor in a VP set has an identifiying send address, a kind of serial number
that distinguishes it from all other virtual processors in that VP set. These addresses are
used to perform general interprocessor communication. For example, in the CM:send-lL
operation, each virtual processor provides a message and the send address of some other
processor, and that message is sent to the specified processor (all such messages effectively
being sent in parallel).

The number of bits in a send address depends on the VP set, or rather upon the geometry
of that VP set. The function CM:geometry-send-address-length may be used to determine
the length in bits of a send address for a given geometry. Suppose that for geometry G this
function returns m; then a send address a for a virtual processor in a VP set with geometry
G is an unsigned integer such that 0 < a < 2

m . (Programs should not, however, rely on
the fact that every integer k such that 0 < k < 2 is a valid send address. In a future
release of Paris the space of send addresses may contain "holes"; this could occur when the
total number of virtual processors in the geometry is not a power of two, an extension that
Thinking Machines is contemplating for the future.)

3.7 Configuration Variables

The current configuration of the machine is reflected in a few global variables. Programs may
refer to these so they can adapt to various sizes of machine. These variables are set by the
cold boot procedure. They should never be set by the user, as there are dependencies among
them, which, if violated, will result in errors. Some variables are fixed by the hardware,
while others depend on the arrangement of virtual processors set up by the attach or cold
boot process. Some variables represent implementation restrictions.

CM: *current-vp-set*

The VP set ID for the current VP set is always available in this variable. For example,
to determine the total number of processors in the current VP set, one might say (in
Lisp syntax)

(CM:geometry-total-processors

(CM:vp-set-geometry CM:*current-vp-set*))

or (in C syntax)

16

Chapter 3. Data Formats

CMgeometrytotalprocessors(CM_vpsetgeometry(CMcurrentvpset))

or (in Fortran syntax)

CMGEOMETRYTOTALPROCESSORS(CMVPSETGEOMETRY(CMCURRENTVPSET))

CM: *physica -processors-limit*

The total number of physical processors available for use.

CM: *physical-processors-length*

The base-2 logarithm of the total number of physical processors, that is, the minimum
length in bits for an unsigned integer field that can contain the number of any physical
processor.

CM: *physical-memory-limit*

The amount of physical memory per physical processor, including memory that is set
aside for system use. Note: Also see the dictionary entry for CM:available-memory,
which indicates how much Connection Machine memory is available for user programs.

CM: *physical-memory-length*

The base-2 logarithm of the amount of physical memory per physical processor.

CM: *maximum-integer-length*

Because of implementation restrictions, a few operations on signed and unsigned inte-
gers cannot handle operands longer than the value of CM:*maximum-integer-length*.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than this variable, but that fact is not
guaranteed in succeeding software releases.

The value of CM:*maximum-integer-length* is never smaller than 128.

CM: *maximum-significand-length*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with significands longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM:*maximum-significand-length* is never smaller than 96.

CM: *maximum-exponent-length*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with exponents longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM:*maximum-exponent-length* is never smaller than 32.

17

Chapter 3. Data Formats
::::: ::::: ::: :: :: : ... :: .B ..: : : :: :: :: .. :::: :::::::::.:::::::..:::::: :::::a.......<

CM: *heap-compression-enabled*

When this variable is true (T, 1), automatic heap compression is enabled. See the
dictionary entry for CM: compress-heap for information on explicit heap compression.

CM: *heap-compression-messages-enabled*

This variable determines whether a message is issued when heap compression occurs.

CM: *max-number-of-timers*

This represents the maximum number of timers that can be allocated by any one
program using the CM:timer- functions.

CM: *no-field*

The value of this variable is a dummy field ID suitable for use as an argument to
CM:send-lL and related instructions to indicate that no notify field is to be used, or
to CM:scan-with-... operations to indicate an unused sbit argument when the smode
argument is :none.

18

Chapter 4

Operation Formats

Paris operations are executed at the direction of a program running in the front-end machine.
For each operation there is a function or macro that, when called, causes the Connection
Machine hardware to perform the operation.

4.1 Field Id's

Most Paris operations operate on bit fields in the memories of the data processors. A bit
field is specified by a field id, a data object that serves to identify the field. A Paris operation
that allocates memory for a new field will generate and return a new field id; this field id
may then be used as an argument to other Paris operations.

For example, in Lisp one might create a new heap field and then unconditionally initialize
its contents to 5.0 in the following manner:

(let ((fld (CM:allocate-heap-field 32))) ;Allocate
(CM:f-move-const-always-iL fld 5.0 23 8) ;Initialize

.. .)

In C the same operation would look like this:

CMfieldidt fld = CMallocateheapfield(32); /* Allocate */
CMfmoveconstalwayslL(fld, 5.0, 23, 8); /* Initialize */

And in Fortran:

C Declare the variable
INTEGER FLD

C Allocate and initialize
FLD = CM_ALLOCATE_HEAP_FIELD(32)
CMFMOVECONSTALWAYS_IL(FLD, 5.0, 23, 8)

19

Chapter 4. Operation Formats

4.2 Constant Operands

Certain operations accept as an operand a single datum computed within the front end
that is broadcast to all of the Connection Machine processors as part of the operation.
Such operations have -constant in their names (or -const, in the case of certain compound
operations). As a rule, every operation with -constant in its name has a counterpart without
-constant in its name.

For example, to CM:f-add-constant-2-1L there corresponds CM:f-add-2-1L. These opera-
tions do exactly the same thing except that the first two operands to CM:f-add-2-1L are
field id's for fields containing floating-point numbers, whereas CM:f-add-constant-2-1L takes
a field id and a front-end floating-point number. This latter value is broadcast to all (active)
processors and then used in the same way that a second field would be used by CM:f-add-
2-IL. Here are examples of their use in Lisp:

(CM:f-add-2-IL x y 23 8) ;Add field y into field x
(CM:f-add-constant-2-iL x 2.7 23 8) ;Add 2.7 into field x

The same examples in C:

CM_f_add_2_.L(x, y, 23, 8); /* Add field y into field x */
CM_f_add_constant_2_L(x, 2.7, 23, 8); /* Add 2.7 into field x */

The same examples in Fortran:

C Add field y into field x
CM_F_ADD_2_iL(X, Y, 23, 8)

C Add 2.7 into field x

CM_F_ADD_CONSTANT_2_1L(X, 2.7, 23, 8)

4.3 Unconditional Operations

Most Paris operations are conditional: they take place only in processors that have a 1 in
the context-flag. But sometimes it is necessary to perform operations unconditionally (that
is, without respect to the context-flag). A number of Paris operations have unconditional
versions, generally named by inserting -always in the name of the conditional function. For
example, CM:s-move-always-lL is the unconditional equivalent of CM:s-move-lL.

Paris operations that deal directly with the context-flag are inherently unconditional. For
the sake of brevity, the names of these operations do not contain -always. Any Paris opera-
tion that has -context in its name deals with the context-flag and is implicitly unconditional
despite the fact that -always does not also appear in its name. One example is CM:set-
context.

A few other Paris operations also have only unconditional forms but do not have names
containing -always. These are typically specialized communications operations whose names
are already so long that inserting -always would exceed the limit on the length of a name.
One example is CM: u-read-from-news-array-lL.

20

Chapter 4. Operation Formats

4.4 Naming Conventions

Lisp, C, and Fortran impose different sets of rules and conventions on how functions and
variables are to be named. The description of Paris in this document strikes a compromise
among these languages. All names in this document are presented in Lisp syntax, but
carefully observing capitalization, to which C is sensitive even though Fortran and Lisp are
not. The Paris Dictionary contains a simple set of rules for converting a Lisp name into the
corresponding C or Fortran name.

The rest of this section describes the general rules that were used to achieve a regular
naming system for Paris operations. It is not necessary to know these rules to use Paris, but
a passing familiarity may help you to remember an exact operation name without having
to look it up, or to recognize the argument format from the operation name.

The name of every Paris operation is limited to 32 characters and begins with CM: (in
Lisp) or CM. (in C and Fortran). It also contains one or more words that are the "main
description" of the operation, such as add or send or read-from-news-array.

Between the leading CM: or CM_ and the main operation may be one or more prefixes. The
prefix fe- indicates an operation performed entirely on the front end (often such an operation
has a parallel counterpart without the fe- prefix). Examples of this correspondence are
CM:extract-news-coordinate and CM:fe-extract-news-coordinate. If an fe- prefix is present, it
appears before all other prefixes.

Other prefixes indicate the type of data to be operated upon:

c- complex number
f- floating-point number
s- signed integer
u- unsigned integer

For example, CM:f-add-2-1L adds floating-point numbers, whereas CM:s-add-2-1L add signed
integers.

If there is more than one type prefix, then the first type applies to the result of the
operation, and the other(s) apply to certain source operands, usually the last one(s). For
example, CM: s-f-truncate-2-2L produces a signed integer result from a floating-point source.

Some operations include in their names the name of another operation. In this case the
embedded operation may have a type prefix. An example is CM:spread-with-f-add-1L. (The
name of such an embedded operation is usually preceded by with-, but exceptions occur
when this would make names too long, as in CM: multispread-f-multiply-lL, an operation that
is not yet implemented but may be in the future.)

There are four groups of suffixes for operation names: -constant, -always, number of fields,
and number of lengths. They always appear (if at all) in this order.

A number-of-fields suffix is simply a digit (preceded by a hyphen or underscore), such as -3.
It tells how many source and destination arguments an instruction requires. The destination
arguments are fields; the source arguements are fields, or in some cases constants. In many
cases there are sets of similar operations differing primarily in their argument format. For
example, CM:f-multiply-3-1L takes three fields and stores the floating-point product of the
second and third fields into the first field, whereas CM:f-multiply-2-1L takes only two fields,
and stores their product back into the first field (thereby overwriting one source value).

21

Chapter 4. Operation Formats

These two formats are distinguished by a suffix indicating the number of arguments that
are fields (in this case -3 or -2). As a rule, this suffix is supplied only if it is necessary to
distinguish two or more possible formats. (Note that "field-like" arguments, such as the
constant used in place of a field in CM:f-multiply-constant-2-1L, are included in the number-
of-fields count.)

A number-of-lengths suffix is simply a digit (preceded by a hyphen or underscore) followed
by a capital L, such as -3L. This suffix indicates how many length arguments are required.
Such arguments indicate the lengths of field arguments. For example, CM: s-add-3-3L takes
three field arguments followed by three corresponding length arguments; but CM:s-add-3-
1L takes three field arguments and a single length argument that describes the length of all
three fields. Note that the format of a floating-point field is described by two arguments
(significand length and exponent length), but these two arguments are lumped together and
counted as a single length. As a rule this suffix always appears in the name of any operation
that takes one or more field length arguments.

To summarize, the name of a Paris operation is more or less of this form:

CM:[fe-]{f- s- I u-}*(main name)[(embedded name)][-constant][-always][-m][-nL]

An effort has been made to use full English words in the names of Paris operations. The
32-character limitation on the total length of names has made it necessary to use certain
abbreviations universally:

c- complex floating-point
divinto divide into
fe- front end
f- floating-point
max maximum
min minimum
mod modulo
rem remainder
s- signed integer
subfrom subtract from
u- unsigned integer

Some of these are standard abbreviations, of course, used in many programming languages.
Paris also uses standard abbreviated names for mathematical operations (tan for the tangent
function, for example).

Paris uses certain additional abbreviations in the names of compound operations:

mult multiply
const constant
sub subtract
a always

An example is CM:f-mult-const-sub-const-a-lL.

22

Chapter 4. Operation Formats
·:·:·:·:::::·.·:::::::i:::::i:::::::i~~~~~~~~~~~~~~~~~~~~~~~i: :

4.5 Argument Order

An attempt has been made to keep argument order consistent. The following rules of thumb
apply.

Arguments that are fields come first. If there is a destination field it always comes first.
Length fields usually come last. They appear in the same order as the fields to which they

apply, but if both integer and floating-point fields appear then the floating-point length ar-
guments appear last. For some complex communication operations, such as scan operations,
certain control arguments follow the lengths.

23

·Illl"N

Chapter 5

Instruction Set Overview

This chapter provides a quick guided tour of the entire Paris instruction set, organized by
categories of functionally related operations. The names of the operations are presented
in the form of charts that bring out the combinatorial structure of the instruction set.
Alternatives are stacked vertically between braces, and the symbol indicates a choice
that adds no characters to the operation name.

The next chapter, the Paris Dictionary, is organized alphabetically by operation name,
and provides detailed descriptions of all the operations.

5.1 VP Sets

allocate-vp-set
deallocate-vp-set
physical-vp-set

CM: is-vp-set-valid
set-vp-set
set-vp-set-geometry
vp-set-geometry

These operations create, destroy, and otherwise manipulate VP sets.

The operation CM: allocate-vp-set creates a new VP set having a specified geometry (which
must be created first). The operation CM: deallocate-vp-set may be used to inform the Paris
interface that the user program will not use a VP set any longer.

Of particular importance is CM:set-vp-set, which selects a given VP set as the current VP
set.

Given a VP set, the operation CM:vp-set-geometry returns the geometry associated with
that VP set.

25

Chapter 5. Instruction Set Overview

5.2 Geometries

CM:

create-detailed-geometry
create-geometry
deallocate-geometry
geometry-axis-length
geometry-axis-off-chip-bits
geometry-axis-off-chip-pos
geometry-axis-on-chip-bits
geometry-axis-on-chip-pos
geometry-axis-ordering
geometry-axis-vp-ratio
geometry-coordinate-length
geometry-rank
geometry-send-address-length
geometry-total- processors
geometry-total-vp-ratio

These operations create, destroy, and otherwise manipulate geometries. Note the many
operations that inquire about the shape of the geometry and various axis attributes.

5.3 Interned Geometries and vp Sets

Paris supports a special class of geometry and vP set objects: interned objects. The intern-
ing facility is especially useful to compiler writers because interned objects may be accessed
by description rather than by ID and are automatically reused as needed.

intern-geometry
CM: intern-detailed-geometry

intern-identical-vp-set)

These operations create interned geometries and vP sets.

Note that interned geometries and vP sets are substantively different kinds of objects from
their uninterned couterparts. For instance, a geometry created with CM: create-geometry is
never interchangeable with a geometry created with CM:intern-geometry.

26

Chapter 5. Instruction Set Overview
5.4 F ields.. I I ..

5.4 Fields

CM:

add-offset-to-field-id
allocate-heap-field
allocate-heap-field-vp-set
allocate-stack-field
allocate-stack-field-vp-set
deallocate-heap-field
deallocate-stack-th rough
field-vp-set
is-field-in-heap
is-field-in-stack
is-field-valid
is-stack-field-newer
next-stack-field-id

These operations create, destroy, and otherwise manipulate fields. Fields are used to contain
data to be operated upon in parallel. Most Paris operations require one or more fields as
arguments.

CM: available-memory

This instruction indicates the number of bits of memory, per virtual processor, currently
available for allocation on either the heap or stack.

CM: compress-heap

Automatic heap compression is enabled by default. Programmers can control heap com-
pression explicitly by setting the configuration variable CM: *heap-compression-enabled* to
NIL (false, 0) and then calling the above instruction to control fragmentation.

5.5 Copying Fields

A number of operations are provided simply to copy data from one place to another.

_ J -2L
CM: move

f-} -constant -always -1L
~c- -zero

The two-length versions of the move operations allow for sign-extension (or truncation) of
signed integers, zero-extension (or truncation) of unsigned integers, and changes of range
or precision for floating-point numbers.

27

I

CM:

move-reversed

swap

Chapter 5. Instruction Set Overview

-alwaysf

-always -2

The move-reversed operation reverses the order of the
swap operation exchanges the contents of two fields.

bits in a field as it copies them. The

CM:cross-vp-move -always -L
r-lwys

The cross-vp-move instruction copies all
from the current VP set into a similarly

or a portion of one multidimensional block of data
shaped region in another VP set.

5.6 Field Aliasing

change-field-alias
is-field-an-alias

CM: make-field-alias
remove-field-alias
set-field-alias-vp-set

These operations create, destroy, and manipulate field aliases. A field alias is a field ID that
references a field already referenced by at least one other field ID. By using field aliases, it
is possible to reference the same Connection Machine memory field from within different
VP sets.

5.7 Bitwise Boolean Operations

CM:

logand
logior
logxor
logeqv
lognand
lognor
logandcl
logandc2
logorcl
logorc2

-constant -2-1L
-always -3-1L
-const-always J

28

Chapter 5. Instruction Set Overview

CM:lognot {j-2-1L

Paris provides all ten non-trivial bitwise boolean operations on two operands, as well as the
logical NOT operation that inverts all bits.

5.8 Operations on Flags

Special operations are provided for operating on the flags.

CM:

'load-
store-
clear-
set-
invert-
logand-
logior-
global-logand-
global-logior-

,global-count-

{ test
overflowf

Flags can be loaded from or stored into another field; cleared to zero or set to one; inverted;
or combined with another field via logical AND or OR. One may also determine whether any
processor, or all processors, have a flag set, or count the number of processors that have a
flag set.

CM:clear-all-flags alays

For convenience, a special compound operation is provided for clearing all the flags except
the context.

CM:

'load-
store-
clear-
set-
invert-

logand- context
logand-
logior-
global-logand-
global-logior-
global-count-

logand-context-with-test

The context flag is distinguished from the others, in that operations on the context flag
are always unconditional, while most operations on the other flags are conditional (that is,

29

''

Chapter 5. Instruction Set Overview
:i: M . i~i~ : ::::::: :::::::: ::::::: :::..........I.................

depend on the state of the context flag).

5.9 Operations on Single Bits

Each of the following operations takes exactly one one-bit field as its operand.

clear-
set-

CM: global-logand- bit
global-logior-
global-count-

These operations on single-bit fields are provided purely for the sake of efficiency. For
example,

CM:clear-bit x

has the same effect as

CM:u-move-constant-lL x, 0, 1

but requires only one operand to be processed instead of three. Paris also provides uncon-
ditional forms of all these operations.

5.10 Unary Arithmetic Operations

Paris supports most of the unary arithmetic operations one might expect to find in a
computer instruction set, as well as a number that are unusual. Most of them are provided in
both one-operand and two-operand formats. The one-operand format treats the destination
field as also the source operand; the result replaces the input. The two-operand format has
a separate source operand, and ignores the previous contents of the destination field. (As a
rule, the two-operand format operates correctly if the two operands are the same field, but
may be slower than using the one-operand format.)
For signed and unsigned integers there are negation and integer square root. Absolute value
and signum are provided for signed operands only, as these operations are degenerate in the
unsigned case.

CM:
s-

i-2-1L }
-2-2LJ

The integer-length operation is a modified base-2 logarithm, useful for determining the
minimum number of bits required to represent an integer in signed or unsigned form. The
logcount operation counts the number of 1-bits in a binary representation (or, in the signed
case, it counts the bits that differ from the sign bit).

30

Chapter 5. Instruction Set Overview

CM: S_ integer-length -2-2L
[u logcount -

A shift instruction performs an arithmetic shift by a specified number of bit positions. Paris
supports shifts on either signed or unsigned source fields.

CM: {} -s-shift {-2 } -2LCM u -s-shift -constant-3

Operations are provided for converting to and from a Gray code representation of binary
integers.

CM:u- {from gray-code - -1L
to J-2-1L

These Paris instructions support converting floating-point numbers between the IEEE

format used in the Connection Machine system and VAX floating-point format.

ieee-to-vax
:'f- vax-to-ieeeJ

Some unary operations take a floating-point operand and produce an integer result, or vice
versa. The float operations convert an integer to a floating-point representation. There are
several different ways to convert a floating-point number to an integer, reflecting different
possible choices for rounding or truncation; floor and truncate provide two such cases.

CM:
f loor } { }22L

5- f- t rtruncate

Floating-point and complex absolute value, negation, and square root are provided.

CM: f_ negate -2-1L

sq rtion, rounding, and signum operations are available.

Floating-point floor, ceiling, truncation, rounding, and signum operations are available.

31

Chapter 5. Instruction Set Overview

f-ceiling
CM:f- f-truncate 21L

f-round -
f-signum

Complex signum, conjugate, and reciprocal operations are provided.

c-signum -1-1L
CM:c- c-conjugate -2-1L

c-reciprocal

These two unary operations on complex operands yield floating-point destination values.
One calculates the absolute value and the other calculates the phase of each complex source
value.

CM:f-c- abse -2-1L
tphasej

For both floating-point and complex numbers, Paris provides a complete set of transcen-
dental and trigonometric functions, including hyperbolic functions and their inverses.

-exp
-In
-sin

CM: {} {} -tan
|: {-a} -sinh

-cosh
-tanh

-2-1L

In addition, the cis instruction is available. It yields a complex field in which the real part
is the cosine of the floating-point source and the imaginary part is the sine of the source.

CM: c-f-cis-2-1L

5.11 Binary Arithmetic Operations

Paris includes most of the binary arithmetic operations one might expect to find in a com-
puter instruction set, as well as a number that are unusual. Most of them are provided

32

Chapter 5. Instruction Set Overview

in both two-operand and three-operand formats. The two-operand format treats the desti-
nation field as also one of source operands; the result replaces the first input. The three-
operand format has two separate source operands, and ignores the previous contents of the
destination field. (As a rule, the three-operand format operates correctly if the destination
field is the same as one or both source fields, but may be slower than using a two-operand
format.)

For signed and unsigned integers, the usual addition, subtraction, and multiplication
operations are provided, as well as max and min operations that store the larger or smaller
of the two inputs.

There is no single integer division operation; four are provided by the signed and un-
signed round and truncate instructions, whose names reflect the rounding or truncation that
must occur when integer division is not exact. Conceptually there are four corresponding
remainder operations, but only the two most commonly used are provided in Paris: rem,
which corresponds to truncate division; and mod, which corresponds to floor division.

CM: }
u

-add

-subtract
-multiply
-max
-min
-floor
-ceiling
-truncate
-round

CM mod -constant -3-IL

Subtraction is not commutative, and so for efficiency the special case of reverse subtraction
is provided. (Division is not commutative, either, but is a sufficiently expensive operation
that the relative cost of a separate instruction to copy a constant into a temporary field
first is small. Paris therefore does not provide integer reverse division operations.)

-2-1L

CM: { } -subfrom -constant {31L

Paris allows addition and subtraction on integers hundreds of bits long; but in case that is
not enough, the usual add-carry and subtract-borrow operations, which use the carry flag as
an implicit input, are provided to allow efficient programming of very high precision integer
arithmetic. Since the add-carry and subtract-borrow instructions take the carry-flag as
input as well as setting it upon completion, these instructions can be chained. (The one
exception to this rule are the -add-carry-3-3L instructions, which do not set the carry-flag

33

-3-3L

1i-contantj-2-1L i
-contant -3-1L

Chapter 5. Instruction Set Overview
::. : : :: :: S: : .S: :::.:. ::: : -:: :::.'::::: ' .:: .:'.: . .' .. '. '::::: : : ' ..: .:':.:::I, I I I I I I -` -·· ·~ ··` ··': ·.....:: .. ·:·: ·:: ' ::··:··'·X .::·- .'

because it is unclear what carry means in the 3L case.)

add-carry 3L
cm: { {subtract-borrow -2-1L

-3-1L

The add-flags operation performs an addition and sets the flags but stores no sum. This is
useful in a few specialized situations, such as CORDIc-type calculations.

CM: {} add-flags-2-1L

For floating-point and complex numbers, the usual addition, subtraction, multiplication,
and division operations are provided. Note that there are unconditional versions of these
operations in Paris; these can be much faster than the conditional versions when floating-
point hardware is used.

add
CM: c- subtract -constant -2-1L

f- multiply -always -3-1L
divide -const-alwaysJ

For floating-point numbers, max and min operations are provided, along with floating-point
remainder and modulo division operations, and a floating-point exponentiation instruction.

-maxn

fmind ~ l|-2-1L
-eCM:f I -mod t-constant -3-1L

-f-powerJ

Subtraction and division are not commutative, and so for efficiency special cases of reverse
subtraction and reverse division are provided for floating-point and complex floating-point
operands. (Unlike the integer case, floating-point division is sufficiently fast and sufficiently
common that these special cases are worthwhile.)

34

Chapter 5. Instruction Set Overview
::::::::::::::::::::::::::::::::::::::.

CM:c- subfrom
CM:f- | divinto

-2-1L

-2-1L
-ML

Other useful floating-point operations include scaling, as well as exponentiating to an integer
power.

-2-2L

CM:f s -power -3-2L
CMf { -scale -constant-2-1L

-constant-3-1L

Paris supports integer exponentiation instructions for both signed and unsigned operands.

-power-3-3L
-p ower-constant-2-1L

uM {: ['u -power-constant- 3 2L

Exponentiation of complex number is supported for powers of any data type.

f-

CM:c- f
s-

u-

-2-1L
-3-1L

power
-constant-2-1L

-constant-3-1L

The exp operations calculate e for complex operands and 2 for floating-point operands,
where s is the value of the source field and e is the base of the natural logarithms.

J-2-1L

Instructions are provided that calculate the base 2 or base 10 logarithm of a floating-point
source field or the natural logarithm of a complex source field.

35

Chapter 5. Instruction Set Overview
...

CM: f-log2 -1L

c-A two-input ctngent opetion is povided.

A two-input arctangent operation is provided.

CM:f-atan2-3-1L

5.12 Optimized Floating-Point Computations

Paris supports compound floating-point operations that are functionally identical to se-
quences of simpler floating-point operations. The compound operations are provided purely
for the sake of efficiency; they can be implemented so to exploit floating-point hardware
more cleverly.

These compound operations perform calculations of the following forms: za + b, za - b,
(z + a)b, and (z - a)b, where z is always a field in memory, and a and b may each be either
a field or a constant.

CM:f

-mult -cnst} subf} {-cons }
{Cont -u-const

-sub l{ }-mult
-subf -const

-always 1L

:'~~ }·

Note: Where using the term -always in an unconditional instruction name would cause the
name to exceed the 32 character limit for Paris instruction names, the implementation uses
the term -a instead. In the above chart, this is the case only for instructions that contain
const twice. An example is CM:f-sub-const-mult-const-a-lL.
These compound instructions combine floating-point multiplication with reverse subtraction
in a variety of ways. The unconditional versions may be faster than the conditional versions.
(Note that the name CM:subf-const-mult-const-a-lL uses -a instead of-always in order to stay
within the 32-character Paris operation name length limit.)

-mult-subf
CM:f -mult-const-subf 1L-subft-const-multJ -const -always

-subf-const-mult

36

Chapter 5. Instruction Set Overview
:: : :..

5.13 Arithmetic Comparisons

Paris supports the usual six comparison operations =, 7, <, , >, and > for integers and
floating-point numbers. Each is available in three forms: compare two fields, compare a
field to a constant, and compare a field to zero. The integer operations also allow integer
fields of differing length to be compared.

I I
eq

-ne

CM {su }-It

-gt
- -i7

-1L

eq

It
CM:f- -constant -L

-zero
gt
ge

CM: c- e -constant -1L
-zero

5.14 Pseudo-Random Number Generation

Paris provides a built-in generator of uniformly distributed pseudo-random numbers. Use
these instructions to generate unsigned integers over a specified range, or floating-point
numbers in the range from 0.0 (inclusive) to 1.0 (exclusive).

CM: {i} random -1L

CM: initialize- random-generator

37

Chapter 5. Instruction Set Overview

5.15 Arrays

Often it is convenient to treat a large field as an array of smaller fields. These operations
allow each virtual processor to index independently into its own array.

CM:

aref

aref32 -shared -always

aset

aset32 -shared

-2L

Three kinds of arrays are supported. An ordinary array is laid out in memory exactly as
one would expect: each processor contains its own array elements, concatenated end-to-end
to form one large field.

A slicewise array is laid out in such a way that an array element logically belonging to
one processor is actually stored in memory belonging to 32 processors. The total amount of
memory involved is the same, of course, but because the data is laid out in this peculiar man-
ner ordinary Paris operations (such as CM:f-add-2-1L, for example) cannot properly operate
on slicewise array elements directly. Only special operations designed to operate on slicewise
arrays can properly fetch or store slicewise array elements. Examples are CM: aref32-2L and
CM:aset32-2L. These special operations are much faster than the corresponding operations
on ordinary arrays.

A shared array is shared among all the virtual processors occupying a group of 32 physical
processors. This can save a great deal of memory, and is useful for lookup tables that are
the same for all processors. Of course, care is required when storing into such arrays. In
principle this sharing concept could be supported in both ordinary and fast versions, but
in fact Paris provides special operations only for fast shared arrays.

Paris also provides, for efficiency, certain compound operations that combine communi-
cation with access to a fast array.

5.16 General Communication

The router functions (send and get) transmit data in a general fashion that allows any
processor to communicate directly with any other processor.

38

Chapter 5. Instruction Set Overview
.. : ::I :

CM: send-aset32 {
-overwrite)
-logior -2

-u- add -2L

CM:send-to-queue32-1L

-g aref32-2L

CM: my-send-address

Every processor within a VP set is identified by an unsigned binary integer called its send-
address. If processor A is to send a message M to processor B, then procesor A must contain
the send-address of processor B as well as the data M to be sent.

For efficiency, Paris includes compound operations that combine general communication
with a fast array reference (aref32 or aset32) within the addressed processor.

5.17 NEWS Communication

The NEWS functions (send-to-news and get-from-news) organize the processors into a
multidimensional rectangular grid, and transmit data from every processor to its neighbor
along a specified grid axis. The NEWS operations are considerably more efficient, when
applicable, than using the general router mechanism.

The following operations copy data from each processor to the adjacent processor along
any NEWS axis.

39

-overwrite
-logand
-logior
-Iogxor
-c-add

-u- m
f J m

CM:send -with -1L
Id
in
ax I

Chapter 5. Instruction Set Overview

CM: get-from- news -1Lsend-to- -always

The instructions in the chart below all work with NEWS coordinates.

my-news-coordinate
extract-news-coordinate

CM: deposit-news-coordinate -1L
deposit-news-constant
make-news-coordinate

The operation my-news-coordinate stores the NEWS coordinate of each selected processor
along a specified NEWS axis into a destination field within that processor.

The operation extract-news-coordinate defines the mapping between send-addresses and
NEWS coordinates. If g is a geometry, a is an axis number, and s is a send-address, then
extract-news-coordinate(g, a, s) is the coordinate within geometry g of processor s along the
NEWS axis described by a.

A related operation, deposit-news-coordinate, may be used to construct a send-address
given a set of coordinates by incrementally modifying a send-address one coordinate at a
time. If g is a geometry, s is a send-address (for a processor in that geometry), a is an axis
number, and c is a coordinate along that axis, then deposit-news-coordinate(g, s, a, c) is a
new send address s' such that

,extract-news-coordinate(g, a', s') = 1 C' if a' = a
extract-news-coordinate(g, aextract-news-coordinate(g, a', s), if a' a

In other words, deposit-news-coordinate(g, s, a, c) computes a new send-address that has
exactly the same NEWS coordinates as s except for the coordinate on axis a, which is altered
to be c.

Another related operation, make-news-coordinate, constructs, within each selected pro-
cessor, the send-address of a processor that has a specified coordinate along a specified
NEWS axis, with all other coordinates zero. If g is a geometry, a is an axis number, and
c is a coordinate along a, then make-news-coordinate(g, a,c) is s, the send-address of the
processor with coordinate c along the NEWS axis a within geometry g and with all other
coordinates held at zero. Thus, given a set of zero coordinates of rank(g), s',

make-news-coordinate(g, a, c) = deposit-news-coordinate(g, s', a, c) = s

In other words, make-news-coordinate is the same as deposit-new-coordinate except that it
does not need a send-address operand.

The following routines define the relationship between a processor whose send-address is
k and its neighbors in a NEWS grid.

function news-neighbor(g, k, ais, direction) is
return news-relative(g, k, axis, direction, 1)

40

Chapter 5. Instruction Set Overview

function news-relative(g, k, azis, direction, distance) is
case direction of

: upward : let z = (eztract-news-coordinate(g, axis, k) + distance)
:downward: let z = (extract-news-coordinate(g, axis, k) - distance)

let z' = z mod geometry-axis-length(g, axis)
return deposit-news-coordinate(g, k, axis, x')

5.18 Power of Two NEWS

One special-purpose instruction performs near-neighbor communication between processors
that are separated by a particular distance. That distance must be a power of two, measured
in intervening processors and inclusive of the source processor.

CM: get-from-power-two -always -L

5.19 NEWS with Floating-Point Combiners

A series of special-case combining operations that use NEWS communication are supported.
These instructions calculate a form of binary addition, subtraction, and multiplication in
which one operand is retrieved from a NEWS neighbor of the destination field.

. .1 - %

CM:f-news

I -add i (-) 1L
-sub G~'~ -2-1L
-mult J -{always -3-1L

-add-const I 3
-sub-const -a -3-1L

-const -mult-4-4L-const

-mult-const {} -4-1L

-mult | -add 4-1L
-const -sub -4-L

41

Chapter 5. Instruction Set Overview
B a .;; a , s :: : '::: : ::::1: ' ::: ::::':::::::::::..: : ': : : : : : :::::: :::- .::::::::::: :::: ::::::::: ::::::~ ~~: : :~~~~~~~~:. IX. . .. - - . :11 : - ..

5.20 Scan, Reduce, Spread, and Multispread

The spread-from-processor operation provides a simple way to take the value found in one
processor and replicate it throughout the machine.

CM:spread-from-processor- } 1L
a-

Extending this idea, the following operations provide extremely powerful combinations
of communication and computation in regular patterns on multidimensional grids.

-copy
-logand

scan-with -logior
CM: reduce-with -logxor

spread-with -c-add
multispread add

{u }{min
max

-1L

CM:scan-with-f-multiply -1L

CM:enumerate -1L

In a scan operation, every selected processor receives the result of combining source fields
from many processors. The reduce and spread operations are special cases of scans that
are particularly useful and can be made especially fast. The multispread and enumerate
operations generalize the spread operations.

A scan operation requires that a NEWS axis be specified. The processors are thereby
divided into disjoint ordered sets of processors called scan classes. Two processors belong
to the same scan class if their NEWS coordinates differ only along one axis, and they are
ordered by their coordinates along that axis. Only active processors participate in a scan
operation; all scan and scan-like operations are conditional. The set of active processors
along a NEWS axis is called the scan subclass.

The scan result computed for a given processor may be produced by combining values from
all processors within a scan subclass. That is, all active processors along a specified axis may
contribute to the result for each processor along that axis. However - and more usefully - a
scan subclass may be divided into pieces called scan sets, such that each processor belongs
to just one scan set.

The scan set chosen for each processor is controlled by the smode operand and by the
purpose it assigns to the sbit operand.

* If smode is :segment-bit, then the sbit field is interpreted as a "segment bit."

42

Chapter 5. Instruction Set Overview
:S:::S:'::::::::: ::::S::::::R:::::: ':::::::S::::::::::::::::::::::::::::::::: :::

The segment bit divides a scan class unconditionally (that is, without respect to
context) into segments, and a separate scan operation is done within each segment.
Operationally speaking, a processor (active or not) is the lowest-addressed processor
in a segment if either it is the lowest-addressed processor in its scan class or if its sbit
field value is 1.

There are two remarkable points here. First, the way in which a segment bit divides
a scan class does not depend on either the contezt-flag or the direction of the scan.
Second, values from one segment never contribute to the result for any processor in
another segment.

a If smode is :start-bit, then the sbit field is is interpreted as a "start bit."

Operationally speaking, in each selected processor in which this bit is 1, the scan
operation will start over again. The start bit therefore divides a scan subclass into
pieces, and a scan operation is done within each piece, or scan set. These pieces differ
from the segments determined by a segment bit.

There are three remarkable points here. First, the start bit is examined only in selected
processors. Second, the way in which a start bit divides a scan subclass depends on the
direction of the scan. In an upward scan, a processor with a start bit of 1 is the first
participant in a scan set that includes its neighbor with the next higher coordinate
along the specified NEWS axis; in a downward scan, the same processor begins a scan
set that includes its neighbors with lower NEWS axis coordinates.

Third, for an exclusive scan, a selected processor whose start bit is 1 will receive
the identity for the combining operation only if no other selected processor in the
same scan subclass precedes it in the ordering; otherwise, it will receive the combined
values from all processors in the piece preceding it in the ordering. (Exclusive scans
are described below.)

* If smode is :none, then there is no need for a one-bit field, and the sbit operand is
ignored. The scan set for a processor k is the entire scan subclass for k.

A scan operation furthermore behaves as if all the processors in the specified scan set
were passed over ("scanned") in linear order; therefore the result computed for a given
processor, k, depends only on processors below it in the ordering, or only on processors
above it, depending on the direction of the scan. The direction and inclusion operands
determine which processors within the scan set can potentially contribute to the result for
L. This final, most narrowed set of potential contributors is called the scan subset for k.

If direction is :upward, then the scan subset for processor k will contain only processors
below k in the ordering. If direction is :downward, then the scan subset for k will contain
only processors above k in the ordering.

If inclusion is :exclusive, then the scan subset for processor k will not contain k itself. If
inclusion is :inclusive, then the scan subset for k will contain k itself.

The set of processors whose source fields actually do contribute to the dest field of pro-
cessor k is called the scan subset for k. This will be a subset of the scan set for k (possibly
the entire scan set).

43

Chapter 5. Instruction Set Overview
i::j : i::..:::::...::::....::::.::::..

These concepts are embodied in the following pseudo-code routines, which are used in the
Paris Dictionary to describe the behavior of the scan, spread, reduce, rank, and multispread
operations.

Consider representing several NEWS coordinate values in a single integer called
a multi-coordinate. We can define two operations, extract-multi-coordinate and
deposit-multi-coordinate, for accessing and altering multi-coordinates. They are analogous
to extract-news-coordinate and deposit-news-coordinate, the difference being simply that a
multi-coordinate contains values for several news coordinates.

Suppose that g is a geometry, A is an axis-set, and s and t are send-addresses, and let

s' = deposit-multi-coordinate(g, s, A, extract-multi-coordinate(g, A, t))

Then s' is the same as s except that coordinates for axes in A have been replaced by
corresponding coordinates extracted from t. More formally,

c, extract-news-coordinate(g, a, s), if a f A
extract-news-coordinate(g, a, t), if a E A

The Paris instruction CM: multispread-copy-lL actually requires a multi-coordinate as an
argument and the instruction CM:fe-extract-multi-coordinate constructs a multi-coordinate.
Beyond this, the notion of a multi-coordinate providess a useful conceptual building block
in the following pseudo-code definitions.

Now we can define scan classes in terms of the more general concept of a hyperplane,
which is any subset of the processors obtained by holding some NEWS coordinates fixed
while letting the others range freely over their respective axes.

function hyperplane(g, k, axis-set) is
let other-axes = { a O0 < a < rank(g) } \ axis-set
let c = extract-multi-coordinate(g, other-axes, k)
return { m I m E current-vp-set A extract-multi-coordinate(g, other-axes, m) = c)

function scan-class(g, k, axis) is
return hyperplane(g, k, { axis })

function scan-subclass(g, k, axis) is
return { m I m scan-class(g, k, axis) A context-flag[m] = 1 }

44

Chapter 5. Instruction Set Overview
I::: :: :¢' :: : : ¢: :: :::::: :: : :R : :: :': ::: :: : : " " :..: .. ::: :: : :: : :::: :::::

.... 7: .: . .-.% ! !:... .:...::::::::::::: ::·: ·: ···· .·· · ..·`.... ..`

function scan-set(g, k, axis, direction, smode, sbit) is
let C = scan-subclass(g, k, axis)
function coord(s) = extract-news-coordinate(g, axis, s)
case (smode) of

(:none) :
return C

(:segment-bit):
let Q = { m I m E hyperplane(g, k, { axis }) A (sbit[m] = 1 }
return ({ m I m E C A -3j : (j E Q A coord(m) < coord(j) < coord(k)) }

(:start-bit):
let Q = { m I m E hyperplane(g, k, { axis }) A (sbit[m] = 1 }
case (direction) of

(:upward):
return (m I m E C A -3j: (j E (C n Q) A coord(m) < coord(j) < coord(k)) }

(:downward):
return { m Im E C A -3j: (j E (C n Q) A coord(k) < coord(j) < coord(m)) }

function scan-subset(g, k, axis, direction, inclusion, smode, sbit) is
let S = scan-set(g, k, axis, direction, smode, sbit)
function coord(s) = extract-news-coordinate(g, axis, s)
case (direction, inclusion) of

(:upward, :exclusive): return { m I m E S A coord(m) < coord(k) }
(:upward, :inclusive): return {m I m E S A coord(m) < coord(k)}
(:downward, :exclusive): return {m I m E S A coord(m) > coord(k)}
(:downward, :inclusive): return { nm mE S A coord(m) > coord(k) }

A spread operation is like a scan, except that rather than producing "intermediate" or
"running" results by using scan sets, every processor gets the result of combining the values
from every active processor in the scan class.

A reduce operation is like a spread, except that instead of storing the result in every active
processor in the scan class, it stores the result into oniy one specified processor of the scan
class.

A multispread operation is like a spread, but allows hyperplanes of any rank, not just of
rank 1, to serve as the scan classes. In this manner, for example, a single value within each
hyperplane can be replicated throughout its hyperplane.

The following table shows the results computed for various operand combinations for a
scan with unsigned addition over a set of values all of which are 1.

45

Chapter 5. Instruction Set Overview
* : : : : ::::::::::::::::::: :::: : ::: :::::::::: ::: ::

5.21 Global Reduction Operations

A global operation combines a number of values in much the same manner as a scan or reduce
operation, but delivers the result to the front end rather than storing it in a processor field.

CM:global

'-logand
-logior
-logxor
-c-add

-s- { add

-u- Zmin
-f- Jmax

u-max {:} -intlen
-u-

-1L

All the usual combining operations are provided. In addition, the compound operation
max-intlen is provided for efficiency; it is much faster than than a separate integer-length
operation followed by a global-max operation.

5.22 Memory Data Transfers

These operations simply transfer data between a field in the processor array and the front
end.

46

scan-vith-u-add contezt-flag 1 1 1 1 0 0 0 0 1 1 0 0 1i 1 0
sbit 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

source I i i I i 1 1 1I 1 1 1 1 1 1 1
direction inclusion smode

:upward :exclusive :none 0 1 2 3 4 5 6 7 8
:downward :exclusive :none 8 7 6 5 4 3 2 1 0
:upward :inclusive :none 1 2 3 4 5 6 7 8 9
:downward :inclusive :none 9 8 7 6 5 4 3 2 1

: upward :exclusive :segment-bit 0 1 0 0 1 2 0 1
:downward :exclusive :segment-bit i1 21 0 i 0

: upward :inclusive :segment-bit 1 2 1 2 1 2 3 1 2
: downward :inclusive :segment-bit 2 i 2 1 3 2 1 2 1

:upward :exclusive :start-bit 0 1 2 1 2 3 4 5 1
:downward :exclusive :start-bit 2 1 5 4 3 2 1 1 0

:upward :inclusive :start-bit 1 2 1 2 3 4 5 1 2
:downward :inclusive :start-bit 3 2 1 5 4 3 2 1 1

i(_ i{_ <-

Ir

Chapter 5. Instruction Set Overview

read-from } -processor
write-to -news-array

CM: write-tofrom

The operations read-from-processor and write-to-processor each transfer a single datum (in-

teger or floating-point).
The operations read-from-news-array and write-to-news-array can transfer entire arrays or

subarrays. Their implementation is optimized for relatively high throughput.

5.23 Sorting

Paris provides operations for sorting data based on integer or floating-point keys.

CM: s- rank-2-L

The rank operation does not actually put records into sorted order. Instead, it produces
ranking information from which appropriate send addresses can be calculated; a send op-
eration can then be used to put the records in order. This allows the ranking operation to
deal only with sort keys and not with entire records.

5.24 Timing Paris Code

A set of instructions beginning with CM:timer- provide a timing facility with microsecond
precision.

clear
start
stop
print
read-starts

CM:timer-
read-elapsed
read-cm-busy
read-cm-idle
read-run-state
set-starts

47

Chapter 5. Instruction Set Overview
:::::::::::::�:· ~~~~~~~~ .:::........::.....:. ..:.

From the Lisp/Paris interface, this timing facility is incorporated in the macro CM:time,
which may be wrapped around code in order to time it.

5.25 The LEDS

One of the most attractive features of a Connection Machine system is the array of blinking
lights on the faces of its cabinet. The following operation specifies whether the lights are
to be blinked automatically, or turned on and off under user program control.

CM: set-system-leds-mode

These operations turn lights on and off according to the contents of a one-bit data field.

CM:latch-leds -always

5.26 Front End Operations

Programs that use Paris operations frequently need to perform certain calculations on the
front end that are not easily expressed in the host programming language. These operations
are provided as part of the Paris library interface; they deal primarily with Gray codes and
NEWS coordinates.

from-gray-code
to-gray-code

CM fe- extract-news-coordinate
extract-multi-coordinate
deposit- news-coordinate
make-news-coordinate

5.27 Environmental Interface

These operations pertain to allocating, deallocating, initializing, and debugging the Con-
nection Machine.

48

Chapter 5. Instruction Set Overview
... :

CM:

'attach
attached
cold-boot
detach
init
power-up
reset-timer
set-safety-mode
start-timer
stop-timer
time

Iwarm-boot

The attach operation is used to attach the front end process to a specified portion of all
Connection Machine processors.

The attached operation returns true if the front end process actually has Connection
Machine processors attached for use.

The cold-boot operation is used to initialize the Connection Machine hardware allocated
to the executing front end.

The detach operation frees attached Connection Machine processors from the currect
front end process.

The init operation is used by the C/Paris and Fortran/Paris interfaces to initialize the
Connection Machine hardware.

The power-up operation resets the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system.

The set-safety-mode operation allows the user to specify the level of run-time error check-
ing to be performed by the Paris interface.

The time family of operations are used to measure both the execution and the elapsed
time taken by other operations.

The warm-boot operation is used by the Lisp/Paris interface to reinitialize the Connection
Machine system without disturbing user memory.

49

101"I

Chapter 6

The C/Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in any one of a number of languages. This chapter explains how to call Paris
instructions from C programs.

6.1 C/Paris Header Files

Type specification statements required for programs that access the C/Paris interface are
given in the header file named

/usr/include/cm/paris.h

This header file contains four kinds of declarations that provide an environment for calling
Paris instructions from C.

* Type declarations define new data types (struct types, for example) needed for com-
munication with certain Paris operations.

* Function declarations define the result types of all C/Paris function subprograms.

* Variable declarations define configuration variables that provide access to the state of
the Connection Machine system.

* #define statements define symbolic numeric constants to be used as arguments to
certain C/Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

6.2 C/Paris Instruction Names and Argument Types

This section describes how to call these instructions from C and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary). Each name is easily converted to the corresponding C name using the
following two-part rule:

51

Chapter 6. The C/Paris Interface

* If the Lisp name begins with a colon, add "CM" to the front.

* Drop all asterisks, and convert all colons and hyphens to underscores.

This usually results in a name written in mixed case (some letters uppercase and some
lowercase). The name must be written in exactly that way, for C identifiers are case-
sensitive. (Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this
document are written in mixed case so as to produce the correct C name after applying the
conversion rules.)

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect
on operand fields residing in Connection Machine memory, and the result (if any) that
it returns to the front end. The same argument name is often used in several different
instruction definitions, but arguments with the same name always have the same type (as
viewed by the front-end C program). For example, dest is used throughout to represent the
field ID of a destination field; the field itself may be a floating-point or an integer field, the
width of which is specified by other arguments to the instruction, but to the C program the
argument is always simply a field ID.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the C/Paris interface.

6.2.1 Id Types

These are values that should be treated as abstract entities, or "black boxes." They are
created using special Paris instructions, and their actual values have no significance to the
calling C program; they are simply tokens that may be passed to other Paris routines.

VP set ID

A value representing a virtual processor set. Its C type is CM_vp_setjd_t.

geometry ID

A value representing a geometry with a particular shape. Its C type is
CMgeometryidt.

field ID

A value representing a field allocated on the CM. Its C type is CMfieldjdt.

6.2.2 Operand Field Addresses

Most Paris operations require one or more field IDS to indicate one or more regions of
Connection Machine memory to be processed. Such field IDs are obtained from memory
allocation calls. Their C type is CMfield_id_t.

dest, source, sourcel, source2

These field IDs specify fields to be used as source or destination operands of an in-
struction.

52

Chapter 6. The C/Paris Interface

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS

coordinate of a processor (possibly the same one, possibly another).

notify

A field ID for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit

A field ID for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

6.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field ID had
been supplied. Paris operations that take "immediate" operand values of this sort usually
have "constant" or "const" in their names.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed. The C type
of such an immediate operand is long for a signed integer value, unsigned long for a
signed integer value, or double for a floating-point value.

send-address-value

An integer, the send address of a single particular processor. The C type of such an
immediate operand is CM.sendaddr-t.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.
The C type of such an immediate operand is unsigned long.

6.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their C type is unsigned.

len, slen, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of C long variables on the front end,
but other lengths may be used as well-longer ones for additional precision, shorter
ones for improved speed.

53

Chapter 6. The C/Paris Interface

8s ds, ss

An integer value designating the significand length of a floating-point field. For single-
precision (C type float) fields, this value should be 23; for double-precision (C type
double) fields, the value should be 52.

e, de, se

An integer value designating the exponent length of a floating-point field. For single-
precision (C type float) fields, this value should be 8; for double-precision (C type
double) fields, the value should be 11.

6.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in C by variables and values
whose C type is unsigned long. These are variously referred to, depending on their roles
within particular operations, under the following names:
offset, axis, ais-length, coordinate, rank, multi-coordinate

6.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2 is 1 to indicate that element j is in the set.
Their C type is unsigned long.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
geometry.

6.2.7 Vectors of Integers

These arguments should be represented as C one-dimensional arrays whose elements are of
C type unsigned. The maximum size of these vectors is 31.
azis-vector, start-vector, offset-vector, end-vector, dimension-vector

6.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of any C integer or floating-point type can be transferred
to and from CM memory using a single instruction (see section 5.22).

front-end-array A pointer to a front-end array is passed simply by mentioning the name of
the array.

6.2.9 Symbolic Values

The symbolic constants defined in #define statements in the C/Paris header file should be
used when supplying values for these arguments:

direction

One of the values CM_upward or CMdownward, indicating the direction of a scan,
NEWS, or other instruction.

54

Chapter 6. The C/Paris Interface

inclusion

One of the values CM-exclusive or CMinclusive, indicating the boundaries of a scan
instruction.

smode

One of the values CM-none, CM.startbit, or CMsegment-bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add "CM" to
the front and then convert colons and hyphens to underscores, yielding CM.startbit.

6.3 C/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The C/Paris interface makes these
variables accessible through variables declared in the C/Paris header file. They are ini-
tialized in an application program by a call to the subroutine CMinit and should not be
changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM.physicalprocessorslimit is a value that depends
upon the size of the Connection Machine to which the application is attached.

Numeric values that are constant for a given release of the CM System Software are given
in #define statements.

6.4 Calling Paris from C

This section describes how to build C programs that access the Paris instruction set using
the C/Paris interface. Such programs must manage the dynamic allocation and deallocation
of Connection Machine fields directly. This section describes the form of C main programs
and subprograms that call the C/Paris interface, as well as the steps involved in compiling
and linking such programs.

The following code fragment illustrates the structure of a C main program that calls Paris
instructions.

#include <cm/paris.h>

main() {
CMinit();

CMparisinstruction(...);

if (CMconfigurationvariable > limit) ...

55

Chapter 6. The C/Paris Interface
.:::-` ... :.·.:::.,~.~;:::~;. ;~,;:: ,~I::::: ::::::::::::....·

}
Note that the call to CM-init is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a C subroutine subprogram that

calls Paris instructions.

#include <cm/paris.h>

float test() {

CMparisinstruction(...);

if (CMconfigurationvariable > limit) ...

}
It looks exactly like a main program in its use of Paris, except that a subprogram should
not call CMinit.

Use the following command to compile and link these program units:

% cc main.c test.c -lparis -lm

Note that there should be no space between the -I option and its argument.

56

Chapter 7

The Fortran/Paris Interface

Paris is used as a set of variables and subroutines within a program that may be written
in any one of a number of languages. This chapter explains how to call Paris instructions
from Fortran programs, especially those compiled by VAX Fortran and Sun Fortran.

The Fortran/Paris interface is itself an interface to C/Paris (see chapter 6).

7.1 Fortran/Paris Header Files

Type specification statements required for programs that access the Fortran/Paris interface
are given in the header file named

/usr/include/cm/paris-configuration-fort.h

This header file contains three kinds of declarations that provide an environment for calling
Paris instructions from Fortran.

* Type specification statements define the result types of all Fortran/Paris function
subprograms.

* A declaration of a common block named cmval defines configuration variables that
provide access to the state of the Connection Machine system.

* PARAMETER statements define symbolic numeric constants to be used as arguments
to certain Fortran/Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

7.2 Fortran/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Fortran and what types of argu-
ments to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary). Each name is easily converted to the corresponding Fortran name using
the following two-part rule:

57

Chapter 7. The Fortran/Paris Interface
. ::::::-:::.. .::::::::::::::::::::..... .. : ...:::. ' . .:.

* If the Lisp name begins with a colon, add "CM" to the front.

* Drop all asterisks, and convert all colons and hyphens to underscores.

It is also permissible to convert names to entirely uppercase letters if desired, as Fortran
identifiers are not case-sensitive.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by the
front-end Fortran program). For example, dest is used throughout to Represent the field ID

of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Fortran program the
argument is always simply a field ID.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Fortran/Paris interface.

7.2.1 Id Types

These are integer values that should be treated as abstract entities, or "black boxes." They
are created using special Paris instructions, and their actual values have no significance
to the calling Fortran program; they are simply tokens that may be passed to other Paris
routines. Their Fortran type is INTEGER.

vP set ID

An integer value representing a virtual processor set.

geometry ID

An integer value representing a geometry with a particular shape.

field ID

An integer value representing a field allocated on the CM.

7.2.2 Operand Field Addresses

Most Paris operations require one or more field IDS to indicate one or more regions of
Connection Machine memory to be processed. Such field IDs are obtained from memory
allocation calls. Their Fortran type is INTEGER.

dest, source, sourcel, source2

These field IDS specify fields to be used as source or destination operands of an in-
struction.

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

58

Chapter 7. The Fortran/Paris Interface

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS

coordinate of a processor (possibly the same one, possibly another).

notify

A field ID for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit

A field ID for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

7.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field ID had
been supplied. Paris operations that take "immediate" operand values of this sort usually
have "constant" or "const" in their names.

The Fortran type of such an immediate operand must be INTEGER for an integer value,
and DOUBLE PRECISION for a floating-point value.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

7.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their Fortran type is INTEGER.

len, slen, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of Fortran INTEGER variables on the
front end, but other lengths may be used as well-longer ones for additional precision,
shorter ones for improved speed.

s, ds, ss

An integer value designating the significand length of a floating-point field. For single-
precision (Fortran type REAL) fields, this value should be 23; for double-precision
(Fortran type DOUBLE PRECISION) fields, the value should be 52.

59

Chapter 7. The Fortran/Paris Interface

e, de, se

An integer value designating the exponent length of a floating-point field. For single-
precision (Fortran type REAL) fields, this value should be 8; for double-precision (For-
tran type DOUBLE PRECISION) fields, the value should be 11.

7.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Fortran by variables and values
whose Fortran type is INTEGER. These are variously referred to, depending on their roles
within particular operations, under the following names:
offset, axis, axis-length, coordinate, rank, multi-coordinate

7.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2 is 1 to indicate that element j is in the set.
Their Fortran type is INTEGER.

At present, the only universe of interest in Paris is axis-mask, the set of axes for a given
geometry.

7.2.7 Vectors of Integers

These arguments should be represented as Fortran one-dimensional INTEGER arrays. The
maximum size of these vectors is 31.
axis-vector, start-vector, offset-vector, end-vector, dimension-vector

7.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of Fortran type LOGICAL, INTEGER, REAL, or DOUBLE
PRECISION can be transferred to and from CM memory using a single instruction (see section
5.22).

front-end-array

Such an array is passed simply by mentioning the name of the array.

7.2.9 Symbolic Values

The symbolic constants defined in PARAMETER statements in the Fortran/Paris header file
should be used when supplying values for these arguments:

direction

One of the values CMupward or CMdownward, indicating the direction of a scan,
NEWS, or other instruction.

inclusion

One of the values CMexclusive or CMinclusive, indicating the boundaries of a scan
instruction.

60

Chapter 7. The Fortran/Paris Interface
.: :: ':::: ''::: :::' ::::' :: : I ' ' ' ' ._ : ...' ..I. .: . - , -: : :..., . ., :

smode

One of the values CM-none, CM-start-bit, or CM-segment-bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add "CM" to
the front and then convert colons and hyphens to underscores, yielding CMstart-bit.

7.3 Fortran/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The Fortran/Paris interface makes
these variables accessible through variables declared in the common block named cmval,
defined by the Fortran/Paris header file. They are initialized in an application program by
a call to the subroutine CMJnit and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM-physicalprocessors-limit is a value that depends
upon the size of the Connection Machine to which the application is attached. Most of
these configuration variables are declared to be of Fortran type INTEGER.

Numeric values that are constant for a given release of the CM System Software are also
given in PARAMETER statements.

7.4 Calling Paris from Fortran

This section describes how to build Fortran programs that access the Paris instruction set
using the Fortran/Paris interface. Such programs must manage the dynamic allocation
and deallocation of Connection Machine fields directly. This section describes the form of
Fortran main programs and subprograms that call the Fortran/Paris interface, as well as
the steps involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Fortran main program that
calls Paris instructions.

PROGRAM main
C VAX Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris-configuration-fort.h'
CALL CMinit()

CALL CMparisinstruction(...)

IF (CMconfigurationvariable .GT. limit) ...

END

61

Chapter 7. The Fortran/Paris Interface

Note that the call to CMjnit is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a Fortran subroutine subprogram

that calls Paris instructions.

SUBROUTINE test
C VAX Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris-configuration-fort.h'

CALL CMparisinstruction(...)

IF (CMconfigurationvariable .GT. limit) ...

END

It looks exactly like a main program in its use of Paris, ezcept that a subprogram should
not call CMinit.

Using VAX Fortran, the following command compiles and links these program units to
run on the Connection Machine Model 2:

% fort main.for test.for -parisfort -paris

Note that there should be no space between the -I option and its argument.
Using Sun Fortran, the following command compiles and links these program units to

run on the Connection Machine Model 2:

% f77 main.f test.f -parisfort -paris

Note that there should be no space between the -I option and its argument.

62

Chapter 8

The Lisp/Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in any one of a number of languages. This chapter explains how to call Paris
instructions from Lisp programs.

8.1 Lisp/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Lisp and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary).

Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this document
are written in mixed case so as to produce the correct C name after applying certain
conversion rules. The Lisp programmer may write names entirely in uppercase letters or
entirely lowercase letters, if desired.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by
the front-end Lisp program). For example, dest is used throughout to represent the field ID

of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Lisp program the
argument is always simply a field ID.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Lisp/Paris interface.

8.1.1 Id Types

These are values that should be treated as abstract entities, or "black boxes." They are
created using special Paris instructions, and their actual values have no significance to the
calling Lisp program; they are simply tokens that may be passed to other Paris routines.

vP set ID

63

Chapter 8. The Lisp/Paris Interface

An integer value representing a virtual processor set.

geometry ID

A structure of type CM:geometry ID representing a geometry with a particular shape.

field ID

An integer value representing a field allocated on the CM.

8.1.2 Operand Field Addresses

Most Paris operations require one or more field ID's to indicate one or more regions of
Connection Machine memory to be processed. Such field ID's are obtained from memory
allocation calls. Their Lisp type is integer.

dest, source, sourcel, source2

These field IDs specify fields to be used as source or destination operands of an in-
struction.

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify

A field ID for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit

A field ID for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

8.1.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field ID had
been supplied. Paris operations that take "immediate" operand values of this sort usually
have "constant" or "const" in their names.

The Lisp type of such an immediate operand is integer for an integer value, or float for a
floating-point value (any of the several kinds of Common Lisp floating-point numbers may
be supplied).

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.

64

Chapter 8. The Lisp/Paris Interface

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

8.1.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their Lisp type is integer.

len, slen, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for the programmer to choose this value to match the size of Lisp fixnum
variables on the front end, but other lengths may be used as well-longer ones for
additional precision, shorter ones for improved speed.

s, ds, ss

An integer value designating the significand length of a floating-point field. Floating-
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 23; for double-precision (Lisp type double-
float) fields, the value should be 52.

e, de, se

An integer value designating the exponent length of a floating-point field. Floating-
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 8; for double-precision (Lisp type double-
float) fields, the value should be 11.

8.1.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Lisp by variables and values
whose Lisp type is integer. These are variously referred to, depending on their roles within
particular operations, under the following names:
offset, axis, axis-length, coordinate, rank, multi-coordinate

8.1.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2j is 1 to indicate that element j is in the set.
Their Lisp type is integer.

At present, the only universe of interest in Paris is axis-mask, the set of axes for a given
geometry.

65

Chapter 8. The Lisp/Paris Interface

8.1.7 Vectors of Integers

These arguments should be represented as Lisp vectors (one-dimensional arrays); they may
be specialized vectors, capable of holding integers only, or general vectors, capable of holding
any Lisp objects but into which only integers happen to have been stored. The maximum
size of these vectors is 31.
axis-vector, start-vector, offset-vector, end-vector, dimension-vector

8.1.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays, whether specialized or general, can be transferred to
and from CM memory using a single instruction (see section 5.22).
front-end-array

Such an array is passed simply by mentioning the name of the array.

8.1.9 Symbolic Values

These symbolic constants should be used when supplying values for these arguments:

direction

One of the values :upward or :downward, indicating the direction of a scan, NEWS, or
other instruction.

inclusion

One of the values :exclusive or :inclusive, indicating the boundaries of a scan instruc-
tion.

smode

One of the values :none, :start-bit, or :segment-bit, indicating how a scan operation is
to be partitioned.

There are other symbolic values as well, but these are the most important.

8.2 Lisp/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The Lisp/Paris interface makes these
variables available. They are initialized in an application program by a call to subroutine
CM:cold-boot and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM: *pysical-processors-limit* is a value that depends
upon the size of the Connection Machine to which the application is attached.

66

Chapter 8. The Lisp/Paris Interface
.. z

8.3 Calling Paris from Lisp

This section describes how to build Lisp programs that access the Paris instruction set
using the Lisp/Paris interface. Such programs must manage the dynamic allocation and
deallocation of Connection Machine fields directly. This section describes the form of Lisp
main programs and subprograms that call the Lisp/Paris interface, as well as the steps
involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Lisp function program that
calls Paris instructions.

(defun test (...)

(CM:paris-instruction ...)

(if (> CM:configuration-variable limit) ...)

)

Remember that CM:cold-boot should be called once before beginning a computation that
uses Paris; it is not appropriate to call CM: cold-boot on entrance to every function.

67

-m's

"Ift"

Ir"ON

Part II

Paris Dictionary

Version 6.0, February 1991

la,

Chapter 9

Dictionary of Paris Instructions

9.1 Conventions for Alphabetizing

The operations and variables in this dictionary are ordered alphabetically, but with certain
conventions that cause parts of the names to be ignored. The purpose is to ignore "prefixes"
and "suffixes" in the name so as to group instructions that have the same main operation
name.

* If the name contains a colon (and most do), the colon and any characters preceding
it (usually "CM") are ignored.

* If the name begins with "fe-" then those three characters are dropped.

* Similarly, if the name begin with a single letter followed by a hyphen, those two
characters are dropped.

* Similarly, if the name contains a single letter (or digit) surrounded by hyphens, each
such letter (or digit) and the hyphen following it are dropped.

* Any occurrence of the modifier subsequence "-constant-" or "-const-" or "-always-" is
replaced by a single hyphen.

* If the name ends in a hyphen, a digit, and the letter "L" then those three characters
are dropped.

* Any asterisks in the name are dropped.

These rules are to be applied repeatedly and in any order until a name is reduced to a
form where none of the rules apply.

The running heads on the top outside corners of the dictionary pages show the names
with characters dropped according to these rules. Any ties in the ordering are broken by
reconsidering letters dropped by the preceding rules.

As an example, CM:s-logcount-2-2L and CM:u-logcount-2-2L appear together (and in
that order). As another example, CM:extract-news-coordinate-1L and CM:fe-extract-news-
coordinate appear together (and in that order).

69

Chapter 9. Dictionary of Paris Instructions

9.2 Programming Language Syntax

Paris is not a single language, but rather a library to be used within any of several program-
ming languages, including C, Fortran, and Lisp. These languages have different syntactic
conventions for names, operations, and procedure calls. This dictionary strikes a compro-
mise among these conventions that allows straightforward transformations into the specific
syntax of any of these languages. See chapters 6, 7, and 8 for information about language-
specific aspects of the Paris interface.

9.2.1 Syntax of Names

All names in this dictionary are presented in Lisp syntax (specifically, that of Common
Lisp). A simple rule is given below for converting such names to C or Fortran syntax.

Lisp allows names to contain hyphens, asterisks, and colons, among other characters. For
the Lisp interface, Paris follows Common Lisp conventions for names:

* Words in a multiword name are separated with hyphens.

* The name of a global variable is surrounded with asterisks.

* Related names are grouped into a single package, indicated by a common prefix ending
with a colon. Paris uses the prefix CM: for this purpose. Certain names used as
constants, called keywords, have a null prefix, and therefore begin with a colon.

These rules are applied in the order given. Examples of names are CM:set-system-leds-mode,
CM:s-add-2-1L, :news-order (a keyword), and CM: *maximum-exponent-length* (a global vari-
able).

Fortran and Lisp are not case-sensitive, but C is. Therefore, this dictionary presents Paris
instructions names using the upper-case and lower-case letters appropriate for C syntax.
Similarly, to satisfy C and Fortran conventions, Paris names are limited to 32 characters
(including any suffix and the trailing "L").

The rule for translating a Lisp name to a C or Fortran name has two parts.

* If the Lisp name begins with a colon, first add "CM" to the front.

* Then drop all asterisks, and convert all colons and hyphens to underscores.

Thus the example Lisp names shown above become CM-setsystemleds rnode,
CM-s-add 2_L, CM.newsorder, and CM maximum-exponent-length in C syntax.

For Fortran, this assumes a compiler that accepts 31-character names and permits un-
derscores in names.

9.2.2 Pseudocode Instruction Descriptions

For most of the instructions two descriptions of the operation are given. One is in English,
and the other is in pseudocode. The pseudocode is written in an ad hoc combination
of programming constructs, mathematical notation, and occasional dabs of English. For
the most part the notation should be self-explanatory, but several features deserve special
remarks.

70

Chapter 9. Dictionary of Paris Instructions

The constructs "let z = y" and "x - y" are superficially similar; each causes x to have
the value y. There are two differences, however. First, a "let" statement merely defines a
temporary variable for later use in the pseudocode description of that instruction, whereas
an arrow assignment represents an actual effect on the CM machine state (usually in the
processor memories) that may be detected by subsequent Paris operations. Second, a "let"
statement is assumed to give x the precise mathematical value computed for y, whereas
an arrow assignment may have to truncate, round, or otherwise approximate the infinitely
precise mathematical result before storing it.

When referring to actual machine state, square brackets are used to indicate a particular
processor. For example, if dest names a field, then dest[k] refers to the contents of that field
within processor k. Actual subscripts are used rather than square brackets for temporary
quantities; thus one has "dest[k] - 1" but "let Sk = 1" because the latter does not involve
machine state.

Angle brackets are used to select bits within a field (or sometimes within an integer value,
to be regarded as a field of bits in binary representation). For example, dest[k](O) is the
least significant bit of the field dest within processor k, and dest[k](O: 3) is the four least
significant bits.

Multiplication is always indicated explicitly by the symbol x, never by juxtaposition. The
notation LxJ means the floor of x, the largest integer that is not greater than x; 3.5 = 3
and L-3.5 = -4. The notation [xl means the ceiling of x, the smallest integer that is not
less than x; 3.51 = 4 and [-351 = -3.

The symbols , A, V, and respectively represent logical (or bitwise, if appropriate)
NOT, AND, inclusive OR, and exclusive OR.

The symbols n represents set intersection; U is set union; \ is set difference (thus A \ B
is the set of elements of A that are not in B); and is the set inclusion predicate (and so
x E A is true if x is an element of A).

Other mathematical notations are used freely, including square roots, summation signs,
and set notation. The purpose of the pseudocode is to provide a clear explanation of the
results of an operation, not to provide clues to performance; the particular algorithm shown
is not necessarily the one used in the implementation.

71

-A

ABS

F-ABS

Computes, in each selected processor, the absolute value of a floating-point source field and
stores it in the destination field.

Formats CM:f-abs-1-
CM:f-abs-2-

Operands dest

-1L dest/source, s, e
-1L dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] > 0 then dest[k] - source[k]
else dest[k] - -source[k]

The absolute value of the source operand is placed in the dest operand.

For floating-point numbers, absolute value is calculated by changing the sign bit to 0 (pos-
itive). All other bits in the number are unchanged.

73

Definition

ABS

The absolute

F-C-ABS

value of the source field is returned in the destination field.

Formats CM:f-c-abs-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is s + e + 1. The
total length of the source field in this format is 2(s + e + 1).

Overlap The dest field must be either identical to source, identical to (source+s+e+l),
or disjoint from source.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - /(source[k].real)2 + (source[k].imag)
if (overflow occurred in processor k) then overflow-flag[k] 1

The absolute value of the source operand is placed in the dest operand.

74

ABS

S-ABS

Computes the absolute value of a signed integer source field and stores it in the destination
field.

Formats CM:s-abs-1-
CM:s-abs-2-
CM:s-abs-2-

Operands dest

-1L dest/source, len
-1L dest, source, len
-2L dest, source, dlen, slen

The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] O0 then dest[k] - source[k]
else dest[k] - -source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

The absolute value of the source operand is placed in the dest operand. (If the length of
the dest field equals the length n of the source field, overflow can occur only if the source
field contains -2 n. If the length of the dest field is greater than the length of the source
field, then overflow cannot occur.)

75

ACOS
.:::i~i:::i::: :

C-ACOS

Computes, in each selected processor, the arc cosine of the complex source field and stores
it in the complex destination field.

Formats CM:c-acos-l-1L dest/source, s, e
CM:c-acos-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - cos 1 source[k]

if (overflow occurred in processor k) then overflow-flag[k] - 1

The arc cosine of the value of the source field is stored into the dest field.

The following definition of arc cosine determines the range and branch cuts for a complex
number z.

-ilog (z + idTZ)

76

ACOS

F-ACOS

Computes, in each selected processor, the arc cosine of the floating-point source field and
stores it in the floating-point destination field.

Formats CM:f-acos-l-1L dest/source, s, e
CM:f-acos-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than -1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - cos- 1 source[k]
if source[k] < -1 or source[k] > 1 then

test-flag[k] 1
else

test-flag[k] - 0

The arc cosine of the value of the source field is stored into the dest field.

77

ACOSH
C I... . s.

C-ACOSH
Computes, in each selected processor, the arc hyperbolic cosine of the complex source field
and stores it in the complex destination field.

Formats CM: c-acosh-l-lL
CM: c-acosh-2-11

Operands dest The.

dest/source, s, e
dest, source, s, e

field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - cosh- 1 source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

The arc hyperbolic cosine of the value of the source field is stored into the dest field.

The following definition of inverse hyperbolic cosine determines the range and branch cuts
of a complex number z.

log z+(z+l)Z+ 1)

78

Definition

ACOSH
::: ::: . -:: : ::::: ::I X

F-ACOSH

Computes, in each selected processor, the arc hyperbolic cosine of the floating-point source
field and stores it in the floating-point destination field.

Formats CM:f-acosh-1-lL
CM:f-acosh-2-1L

Operands dest

destlsource, s, e

dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than 1; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - cosh- 1 source[k]
if source < 1 then test-flag[k] - 1
else test-flag[k] +- 0
if (overflow occurred in processor k) then overflow-flag[k] - 1

The arc hyperbolic cosine of the value of the source field is stored into the dest field.

79

Definition

ADD
::::::: . : : ::::sI........ -... . .s . s:

C-ADD

The sum of two complex source values is placed in the destination field.

Formats CM:c-add-2-1L
CM:c-add-always-2-1L
CM:c-add-3-1L
CM: c-add-always-3-
CM: c-add-constant-2-1 L
CM: c-add-const-always-2-1 L
CM: c-add-constant-3-1L
CM: c-add-const-always-3-1L

Operands

dest/sourcel, source2, s, e
dest/sourcel, source2, s, e
dest, source1, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

dest The field ID of the complex destination field.

sourcel The field ID of the complex first source field.

source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
2(s +e+ 1).

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

if (always or context-flag[k] = 1) then
dest[kI] - sourcel [k] + source2 [k]
if (overflow occurred in processor k) then overflow-flag[] + 1

Two operands, sourcel and source2, are added as complex numbers. The result is stored
into memory. The various operand formats allow operands to be either memory fields or
constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s. and e.

80

as the second

Definition

ADD

F-ADD

The sum of two floating-point source values is placed in the destination field.

Formats CM:f-add-2-1L
CM:f-add-always-2-1L
CM:f-add-3-1L
CM:f-add-always-3-1L
CM :f-add-constant-2- 1L
CM :f-add-const-always-2- 1L
CM:f-add-constant-3- 1L
CM: f-add-const-always-3-1L

Operands dest

dest/sourcel, source2, s, e
dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] -- sourcel[k] + source2[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

81

ADD

Two operands, sourcel and source2, are added as floating-point numbers. The result is
stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

82

ADD

S-ADD

The sum of two signed integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats CM:s-add-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-2-1L dest/sourcel, source2, len
CM:s-add-3-1L dest, sourcel, source2, len
CM:s-add-constant-2-1L dest/sourcel, source2-value, len
CM:s-add-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

dlen For CM:s-add-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl For CM:s-add-3-3L, the length of the sourcel field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen2 For CM:s-add-3-3L, the length of the source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

83

ADD

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel [k] + source2[k]
carry-flag[k] - (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[l] 1
else overflow-flag[k] 0

Two operands, sourcel and source2, are added as signed integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

84

ADD

U-ADD

The sum of two unsigned integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats CM:u-add-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-add-2-1L dest/sourcel, source2, len
CM:u-add-3-1L dest, sourcel, source2, len
CM: u-add-constant-2-1L dest/sourcel, source2-value, len
CM: u-add-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM: u-add-3-3L, the length of the dest field. This must be non-
negative and no greater than CM: *maximum-integer-length*.

slenl For CM: u-add-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slen2 For CM: u-add-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

85

ADD

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel [k] + source2[k]
carry-flag[k] - (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] -- 0

Two operands, sourcel and source2, are added as unsigned integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag are altered by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

86

ADD-CARRY

S-ADD-CARRY

The sum of the carry-flag and two signed integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats CM:s-add-carry-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-carry-2-1L dest/sourcel, source2, len
CM:s-add-carry-3-1L dest, sourcel, source2, len

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-add-carry-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slenl For CM:s-add-carry-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

slen2 For CM: s-add-carry-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

87

ADD-CARRY

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] +- sourcel [k] + source2[k] + carry-flag[k]
carry-flag[k] - (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag0k] - 0

Two operands, sourcel and source2, are added as signed integers. The carry-flag is used as
the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

88

ADD-CARRY
U -A DD....- C A R RY.

U-ADD-CARRY

The sum of the carry-flag and two unsigned integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats CM:u-add-carry-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-add-carry-2-1L dest/sourcel, source2, len
CM:u-add-carry-3-l dest, sourcel, source2, len

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM: u-add-carry-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

slenl For CM:u-add-carry-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

slen2 For CM:u-add-carry-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] -- sourcel[k] + source2[k] + carry-flag[k]

89

ADD-CARRY

carry-flag[k] - (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[] - 1
else overflow-flag[k] - 0

Two operands, sourcel and source2, are added as unsigned integers. The carry-flag is used
as the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

90

ADD-FLAGS
: :::S-AD:::::::::.::: : ::::::::D-FL A G S..:::

S-ADD-FLAGS

The carry-out and overflow are computed for the sum of two signed integer source values.
The sum itself is not stored.

Formats CM:s-add-flags-2-1L sourcel, source2, en

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The flags may be altered only in processors
whose conteat-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

Compute sourcel [k] + source2[k]
carry-flag[k] - (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

Two operands, sourcel and source2, are added as signed integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

91

Definition

ADD-FLAGS
.... s -

U-ADD-FLAGS

The carry-out and overflow are computed for the sum of two unsigned integer source values.
The sum itself is not stored.

Formats CM:u-add-flags-2-1L dest, sourcel, source2, len

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The flags may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

Compute sourcel [k] + source2[k]
carry-flag[k] - (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

Two operands, sourcel and source2, are added as unsigned integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

92

ADD-MULT

F-ADD-MULT

Calculates a value (a + z)b and places it in the destination.

Formats CM:f-add-mult-1L
CM:f-add-mult-always- 1L
CM:f-add-const-mult-1L
CM:f-add-const-mult-always- 1 L
CM:f-add-mult-const-1L
CM :f-add-mult-const-always-lL
CM:f-add-const-mult-const- 1 L
CM: f-add-const-mult-const-a-1 L

Operands dest

dest,
dest,
dest,
dest,
dest,
dest,
dest,
dest,

sourcel,

sourcel,

sourcel,

sourcel,
sourcel,

sourcel,

sourcel,
sourcel,

source2, source3, , e
source2, source3, s, e
source2-value, sources, s, e
source2-value, source3, s, e
source2, source3-value, s, e
source2, source3-value, s, e
source2-value, source3-value, s, e
source2-value, source3-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source (addend) field.

source2 The field ID of the floating-point second source (augend) field.

source2-value A floating-point immediate operand to be used as the second
source (augend).

source3 The field ID of the floating-point third source (multiplier) field.

source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and source3 fields. The total length of an operand in this format
is s+e+l.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - (sourcel[k] + source2[k]) x source3[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

93

ADD-MULT

Two operands sourcel and source2 are added as floating-point numbers, and then the sum
is multiplied by a third operand source3. The result is stored in the destination field.

The various formats allow the second source operand to be either a memory field or a
constant.

The constant operand source2-value or source3-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

A call to CM:f-add-mult-lL is equivalent to the sequence

CM:f-add-3-1L temp, sourcel, source2, s, e
CM:f-multiply-3-1L dest, temp, source3, s, e

but may be faster.

94

ADD-OFFSET-TO-FIELD-ID
I~~~i~~~i::::::8i:::::i~~~~~~~~~~~~~~i::::::::::::::::................ ...

ADD-OFFSET-TO-FIELD-ID

Returns a new field ID that specifies the same field but possibly a different offset within
that field.

Formats result - CM:add-offset-to-field-id field-id, offset

Operands field-id A field ID.

offset A signed integer, the number of bits by which to offset the field-id.

Result A field ID, identifying the newly offset field ID.

Context This operation is unconditional. It does not depend on the context-flag.

Associates a new field ID with the portion of the specified field that begins at the specified
bit offset. The size of the field referenced by the new field ID is equal to the size of the
original field minus the offset. The offset must be smaller than the size in bits of the original
field. Offset fields may themselves have offset fields formed from them.

95

ALLOCATE-H EAP-FIELD
:::`::`::..:.:::::`.:..::::.::..::.:. . = = = = ==.= = == == == === = = := == == ==. :== ==. =.:. · =.·=.:=. · =.:

ALLOCATE-HEAP-FIELD

Allocates a heap field of specified length in the current VP set and returns a unique identifier.

Formats result - CM:allocate-heap-field len

Operands len An unsigned integer, the length in bits of the field to be allocated.

Result A field ID, identifying the new field ID.

Context This operation is unconditional. It does not depend on the context-flag.

A new field of length len is allocated in the heap within the current VP set. A field ID for
the newly created field is returned.

96

ALLOCATE-H EAP-FIELD-VP-SET

ALLOCATE-HEAP-FIELD-VP-SET

Allocates a new heap field of the specified length in the specified vP set and returns a unique
identifier.

Formats

Operands

Result

Context

result - CM:allocate-heap-field-vp-set len, vp-set-id

len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A VP set ID. This may specify any vP set, including the current
VP set.

A field ID, identifying the new field ID.

This operation is unconditional. It does not depend on the context-flag.

A new field of length len is allocated on the heap within the specified vp set. A field ID for
the newly created field is returned.

97

ALLOCATE-STACK-FIELD

ALLOCATE-STACK-FIELD

Allocates a new stack field of specified length in the current VP set and returns a unique
identifier.

Formats result CM : allocate-stack-field len

Operands len An unsigned integer, the length, in bits, of the field to be allocated.

Result A field ID, identifying the new field ID.

Context This operation is unconditional. It does not depend on the context-flag.

A new field of length len is allocated on the stack within the current VP set. A field ID for
the newly created field is returned.

98

ALLOCATE-STACK-FIELD-VP-SET
:::: :::: : : ::: :: : :::: :::::::::: ::::::: ::::::::::::::::::::::. : : -:::::::.:::::::.::.::::: :.:.:.:::::::.::::::::::::::::::::::::

ALLOCATE-STACK-FIELD-VP-SET

Allocates a new stack field of the specified length in the specified vP set and returns a
unique identifier.

Formats

Operands

Result

Context

result -- CM:allocate-stack-field-vp-set len, vp-set-id

len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A VP set ID. This may specify any vP set, including the current
vP set.

A field ID, identifying the new field ID.

This operation is unconditional. It does not depend on the context-flag.

A new field of length len is allocated on the stack within the specified vP set. A field ID for
the newly created field is returned.

99

ALLOCATE-VP-SET

ALLOCATE-VP-SET

Create a new VP set, within which fields may be allocated.

Formats result +- CM:allocate-vp-set geometry-id

Operands geometry-id A geometry ID.

Result A VP set ID, identifying the newly allocated VP set.

Context This operation is unconditional. It does not depend on the context-flag.

This operation returns a vp-set-id for a newly created VP set. This may be given to other
Paris operations in order to create memory fields in which data may be stored. The size
and shape of the VP set is determined by the geometry specified by the geometry-id. It is
possible to alter the geometry later (by using CM:set-vp-set-geometry), but the total number
of virtual processors in the VP set remains forever fixed.

100

ARRAY-FORMAT

FE-ARRAY-FORMAT

This front-end instruction returns an array format descriptor. An array format descriptor
may be passed to any array transfer instruction to specify a front-end array format, although
this is not required.

See also CM:fe-packed-array-format and CM:fe-structure-array-format.

Formats result - CM:fe-array-format [cm-element-size, array-element-size,
stride, ordering]

Operands cm-element-size A signed integer immediate operand to be used as the
number of bits each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 128.

In Lisp/Paris this is a keyword argument. If not specified, it
defaults to array-element-size. If array-element-size is also not
specified, cm-element-size defaults to the size of the Connection
Machine field being read or written.

array-element-size A signed integer immediate operand to be used as the
number of bits in each front-end array element. This must be a
power of two between 1 and 128.

In Lisp/Paris this is a keyword argument. If not specified,
array-element-size defaults to the actual front-end element size
or, if the front-end array elements are general (i.e., of type t),
array-element-size defaults to the value of cm-element-size.

stride A signed integer immediate operand to be used as the distance,
in units of array-element-size, between adjacent front-end array
elements. This must be either a null value or a positive integer
between 1 and 65,535 that obeys the following restrictions. The
product (stride x array-element-size) must be either a multiple of
cm-element-size or a multiple of 32 bits. If stride is specified as a
null value (null in C, 0 in Fortran, nil in Lisp), it defaults to the
minimum legal value. In Lisp/Paris this is a keyword argument.

ordering The order in which Connection Machine elements are stored
in a front-end array. The value of ordering must be either a
null value or one of: :front-end-order, :Isb-first (least significant
bit first), or :msb-first (most significant bit first). (These are
CMfront-end-order, CMlsbfirst, or CMmsbfirst from C or For-
tran.) If specified as a null value (null in C, 0 in Fortran, nil in
Lisp), it defaults to :front-end-order, which is the standard order-
ing for the front end. (Most significant bit first on Suns; least

101

ARRAY-FORMAT

significant bit first on VAXes.) In Lisp/Paris this is a keyword
argument.

Result The array format descriptor specified.

Context This is a front-end operation. It does not depend on the value of the context-
flag.

The return value is a format descriptor for arrays; it can be passed to any array transfer
instruction as the value of format. CM:fe-array-format provides the most generality in spec-
ifying an array format for tranfers. More specific descriptors may be obtained with CM:fe-
packed-array-format and CM:fe-structure-array-format.

The value of cm-element-size defines the unit of measure for the fe-offset-vector argument
to the CM: read-from-news-array and CM: write-to-news-array instructions.

The value of array-element-size defines the unit of measure for the fe-dimension-vector
argument to the CM:read-from-news-array and CM:write-to-news-array instructions. How-
ever, for extended-element array transfers, the unit of measure for the fe-dimension-vector
argument is (array-element-size x stride).

If cm-element-size is less than array-element-size, a packed transfer is specified. That is,
multiple Connection Machine array elements are packed into each front-end array element.
If cm-element-size is greater than array-element-size, an extended-element array is specified.
That is, more than one front-end array element is used to store each Connection Machine
array element.

For most arrays, the value of stride is 1. For packed array transfers, stride must be 1. For
extended-element array transfers, the stride must be large enough to ensure that consecutive
elements do not overlap on the front end. To read or write every other (non-packed, non-
extended) front-end array element, use a stride value of 2.

For a normal (non-packed, non-extended) array transfer, specify ordering as a null value.

A packed format with :Isb-first ordering stores the Connection Machine element with the
smallest coordinates in the least significant bits of the array element. A packed format
with :msb-first ordering stores the CM element with the largest coordinates in the most
significant bits of the front-end array.

An extended-element format with :lIsb-first ordering stores the low-order bits of the Con-
nection Machine element in the front-end array location with the smallest coordinate. An
extended-element format with: msb-first ordering stores the high-order bits of the CM ele-
ment in the front-end array location with the smallest coordinate.

102

AREF

AREF

Takes array
nation.

elements specified by a per-processor index and copies them into a fixed desti-

Formats CM:aref-2L dest, array, index, dlen, index-len, index-limit, element-len

Operands dest The field ID of the destination field.

array The field ID of the source array field.

index The field ID of the unsigned integer index into the array field.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

index-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

element-len An unsigned integer immediate operand to be used as the
length of an array element.

Overlap The fields array and index may overlap in any manner. However, the array
and index fields must not overlap the dest field.

test-flag is set if the value in the index field is less than the
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be
in processors whose context-flag is 1.

index-limit;

altered only

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index[k] < index-limit then
let p = index[k] x element-len
dest[k] +- array[k](p : p + dlen - 1)
test-flag[k] 1

else
test-flag[k] 0

This is a simple form of array reference, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field index. This is used to

103

Flags

AREF

index into an array, whose length in bits should be index-limit x element-len. The element
indexed (or a portion of it) is copied into dest in all selected processors. Thus different
processors may access different elements of their arrays.

More precisely, a field of length dlen and starting at address array + i x element-len, where
i is the unsigned number stored at index, is copied to dest in all selected processors.

The argument index-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to index-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than index-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it is
worthwhile for it to differ. For example, from an array of 128-bit records one may fetch just
one 16-bit component of an indexed record by letting dlen be 32, letting element-len be 128,
and by offsetting the array address by the offset within each record of the 16-bit quantity
to be fetched. As another example, to extract a 4-character substring from a string of 8-bit
characters, one may let dlen be 32 and element-len be 8.

104

AREF32
.: '- .-X -X -,

AREF32

Takes array elements specified by a per-processor index and copies them into a fixed desti-
nation. The array is stored in a special format that allows fast access.

Formats CM: aref32-:
CM:aref32-;

Operands dest

array

index

dlen

2L
always-2L

dest, array, index, dlen, index-len, index-limit
dest, array, index, dlen, index-len, index-limit

The field ID of the destination field.

The field ID of the source array field. This must contain data
stored in a special format by either CM:aset32 or CM:transpose32.

The field ID of the unsigned integer index field. This is used as
the per-processor index into the array.

The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the array
extent.

Overlap The fields array and index may overlap in any manner. However, the array
and index fields must not overlap the dest field.

Context The non-always operations are conditional. The destination may
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may
regardless of the value of the context-flag.

be altered

be altered

For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

if index[k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = L[] mod 32
let i = index[k]
for all j such that 0 < j < dlen do

dest[k](j) -- array[k - m x r + (j mod 32) x r](32 x (i +))

else
(error)

105

Definition

AREF32

This is a simple form of array reference for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
index-limit with elements of length dlen.

The array element indexed by each active processor is copied into the dest field of that
processor. Different processors may reference different elements of their arrays. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field index. This is used to index into an
area of CM memory, array, whose allocated length in bits should be at least

(index-limit x [d3en) x 32

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

A field of length dlen, and starting at address array + i x 32, where i is the the unsigned
number stored at index, is copied to dest in all selected processors. Even this is not quite
accurate, because the array data is not organized in the same manner as for CM: aref. Instead,
it is organized in a peculiar way for fast per-processor access. Parallel arrays stored in this
format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM: aref32 should
be accessed only through the operations CM:aset32 and CM: aref32, related operations such
as CM:get-aref32 and CM:send-aset32-overwrite, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

106

AREF32-SHARED

AREF32-SHARED

Takes an array element specified by a per-processor index and copies it into to a fixed
destination. The source array is stored in a special format that allows fast access, and is
accessed in such a way that all the virtual processors within a group of 32 physical processors
share the same array.

Formats CM: aref32-shared-2L
CM: aref32-shared-always-2L

Operands dest

array

index

dlen

dest, array, index, dlen, index-len, index-limit
dest, array, index, dlen, index-len, index-limit

The field ID of the destination field.

The field ID of the source array field. This must be a contiguous
region in CM memory. It need not be in the current vP set.

The field ID of the unsigned integer index field. This is used as
the per-processor index into array.

The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This is normally
taken as the length of array elements and must be a multiple of
32. As a special case, dlen may be 8 or 16 and, if so, access into
both the source and the destination fields is offset appropriately.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the extent of
array if dlen is a multiple of 32. However, if dlen is 8 or 16, then
index-limit is taken as the number of 32-bit elements that would
fit into the array field.

Overlap The fields array and index may overlap in any manner. However, the array
and index fields must not overlap the dest field.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

For every virtual processor k
if (always or context-flag[k]

if index[k] < index-limit

in the current-vp-set do
= 1) then
then

107

Definition

AREF32-SHARED
:................:.::.:::..:.:.:::........::...:.:.:::::::::..:::.:::;::.::..........

for all j such that 0 < j < dlen do
dest[k](j)
array [32 [J + (j mod 32)] (index-limit 3- 2- + index[k])

else
(error)

where r is the vP ratio, and where j is the bit position in each field.

This is a simple form of array reference for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent index-limit with elements of length dlen.

The shared array element (or a portion of it) indexed is copied into dest in all (selected)
processors. Different processors may access different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field index. This is used to index into array.
The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

The data within the source array area is not organized in the same manner as for CM: aref;
instead, it is organized in a peculiar way for fast per-processor access. Shared arrays stored
in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa-
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 x index-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM: aref32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a vP ratio of 1, with
a single call to CM:allocate-stack-field or to CM:allocate-heap-field. Alternatively, from Lisp,
the memory may be allocated within a with-stack-field form at a VP ratio of 1.

The area of CM memory occupied by array should be allocated at a VP ratio of 1 as a field
whose length in bits is exactly

index-limit x d 32 1

Shared array memory should be accessed only with the operations CM:aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all processors
(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM:transpose32 instruction.

108

AREF32-SHARED

As a special case, if the dlen argument is specified as 8 or 16, then each processor accesses
one byte or one half-word of a 32-bit element. The index-limit argument must be specified
as the extent of the array when considered to contain 32-bit elements. Nonetheless, valid
index values are integers 0 through 2 or 4 times this index-limit. The index argument may
be thought of as consisting of two fields, one that indexes a 32-bit array element and one
that indexes an 8- or 16-bit offset into that element. To index bytes, the low 2 bits of index
specify the offset. To index half-words, the low 1 bit of index specifies the offset.

109

ASET

ASET
Stores into an array element specified by a per-processor index a value copied from a fixed
source field.

Formats CM: aset-2L source, array, index, slen, index-len, index-limit, element-len

Operands source The field ID of the source field.

array The field ID of the destination array field.

index The field ID of the unsigned integer index into the array field.

slen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

element-len An unsigned integer immediate operand to be used as the
length of an array element.

Overlap The fields source and index may overlap in any manner. However, the source
and index fields must not overlap the array field.

test-flag is set if the value in the index field is less than the
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be
in processors whose context-flag is 1.

index-limit;

altered only

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index[k] < index-limit then.
let p = index[k] x element-len
array[k](p : p + slen - 1) - source[k]
test-flag[k] - 1

else
test-flag[k] - 0

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field index. This is used to

110

Flags

ASET
.-

index into an array, whose length in bits should be index-limit x element-len. The source
field is copied into the element indexed (or a portion of it) in all selected processors. Thus
different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
array + i x element-len, where i is the unsigned number stored at index in all selected
processors.

The argument index-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to index-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than index-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it
is worthwhile for it to differ. For example, within an array of 128-bit records one may
store into just one 16-bit component of an indexed record by letting slen be 32, letting
element-len be 128, and by offsetting the array address by the offset within each record of
the 16-bit quantity to be modified. As another example, to modify a 4-character substring
of a string of 8-bit characters, one may let slen be 32 and element-len be 8.

111

ASET32

ASET32

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The destination array is stored in a special format that allows fast access.

Formats CM:aset32-2L source, array, index, slen, index-len, index-limit

Operands source

array

index

slen

The field ID of the source field.

The field ID of the destination array field.

The field ID of the unsigned integer index field. This is used as
the per-processor index into array.

The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the array
extent.

Overlap The fields source and index may overlap in any manner. However, the source
and index fields must not overlap the array field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index[k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = [kJ mod32
let i = index[k]
for all j such that 0 < j < slen do

array[k - m x r + (j mod 32) x r](32 x (i + [3j2)) - source[k](j)
else

(error)

This is a simple form of array modification for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
index-limit with elements of length slen.

112

Definition

ASET32

The source field value for each active processor is copied into the indexed array element
belonging to that processor. Thus different processors may modify different elements of
their arrays. For this reason, this form of array access is known as indirect addressing.

Each processor has an array index stored in the field index. This is used to index into an
area of CM memory, array, whose allocated length in bits should be at least

(index-limitx [32]) x 32

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

In all selected processors, the source field is copied to a field of length slen and starting at
address array + i x 32, where i is the the unsigned number stored at index. Even this is not
quite accurate, because the data within the destination array area is not organized in the
same manner as for CM: aset. Instead, it is organized in a peculiar way for fast per-processor
access. Parallel arrays stored in this format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM: aset32 should
be accessed only through the operations CM: aref32 and CM:aset32, related operations such
as CM: send-aset32-overwrite and CM:get-aref32, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

113

ASET32-SHARED

ASET32-SHARED

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The array is stored in a special format that allows fast access, and is accessed in
such a way that all the virtual processors within a group of 32 physical processors share the
same array.

Formats CM:aset32-shared-2L source, array, index, slen, index-len, index-limit

Operands source

array

index

slen

The field ID of the source field.

The field ID of the destination array field. This must be contiguous
region in CM memory. It need not be in the current vP set.

The field ID of the unsigned integer index field. This is used as
the per-processor index into the array.

The length of the source field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be a
multiple of 32 and is taken as the array element length.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the extent
of array.

Overlap The fields source and index may overlap in any manner. However, the source
and index fields must not overlap the array field.

Context This operation is conditional, but whether data is copied depends only on the
context-flag of the originating processor; the data, once transmitted to the
receiving processor, is stored into the field indicated by array regardless of
the context-flag of the receiving processor.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index[k] < index-limit then
for all j such that 0 < j < dlen do

array [32 [] + (j mod 32)] (index-limit LJ] + index[k])
source[k](j)

else
(error)

114

Definition

ASET32-SHARED
..

where r is the VP ratio, and where j is the bit position in each field.

For any two active virtual processors, k and k', if index[k] = index[k'], then
either source[k] or source[k'] is stored in dest, depending upon the implemen-
tation.

This is a simple form of array modification for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent index-limit with elements of length slen.

The source field in each selected processor is copied into the array element (or a portion of
it) indexed. Different processors may modify different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing. If several processors
sharing the same array attempt to modify the same element in a single CM:aset32-shared
operation, then one of the values is stored and the rest are discarded.

Each processor has an array index stored in the field index. This is used to index into array.
The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

The data within the destination array area is not organized in the same manner as for
CM:aset; instead, it is organized in a peculiar way for fast per-processor access. Shared
arrays stored in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa-
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 x index-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM: aset32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a vP ratio of 1, with
a single call to CM:allocate-stack-field or to CM:allocate-heap-field. Alternatively, from Lisp,
the memory may be allocated within a with-stack-field form at a vP ratio of 1.

An area of CM memory occupied by array should be allocated at a vP ratio of 1 as a field
whose length in bits is exactly

slenlindex-limit x 2 1

Shared array memory should be accessed only with the operations CM:aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all processors
(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM:transpose32 instruction.

115

ASIN

C-ASIN

Calculates the arc sine of the complex source field values and stores the result in the complex
destination field.

Formats CM:c-asin-1-lL dest/source, s, e
CM:c-asin-2-l dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] c- sin 1l source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

The arc sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

The following definition of arc sine determines the range and branch cuts of a complex
number z.

-ilog (i x z + Vl-iz 2)

116

Definition

ASIN
::: :::::::::::... '... :: :::::: : :::::::::::: :::: ::::::::::::::: :. :::::::: ::::::::::::::::::: :

F-ASIN

Calculates the arc sine of the floating-point source field values and stores the result in the
floating-point destination field.

Formats CM:f-asin-l-1L dest/source, s, e
CM:f-asin-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than -1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k]+- sin-l source[k]
if source[k] < -1 or source[k] > 1 then

test-flag[k] - 1
otherwise test-flag[k] - 0

The arc sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

117

ASINH

C-ASINH
Calculates the arc hyperbolic sine of the complex source field values and stores the result
in the complex destination field.

Formats CM:c-asinh-l-lL
CM: c-asinh-2-1L

Operands dest The

dest/source, s, e
dest, source, s, e

field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sinh- 1 source[k]

The arc hyperbolic sine of the value of the source field is stored into the dest field.

The following definition of the inverse hyperbolic sine determines the range and branch cuts
for a complex number z.

log (z + + Z2)

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

118

Definition

ASINH

F-ASINH

Calculates the arc hyperbolic sine of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-asinh-l-1L dest/source, s, e
CM:f-asinh-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- sinh -l source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

The arc hyperbolic sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

119

ATAN

C-ATAN

Calculates the arc tangent of the complx source field values and stores the result in the
complex destination field.

Formats CM:c-atan-l-1L dest/source, s, e
CM:c-atan-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

test-flag is set if source contains i or -i, where i C(0, 1) ; otherwise it is
cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] tan-' source[k]

The arc tangent of the value of the source field is stored into the dest field.

The following definition for arc tangent determines the range and branch cuts for a complex
number z

-ilog (1 i+X. (+z 2)

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

120

ATAN
::::: : ::::; ::: :;:;:: '.: .." I.'. :. : :.:: ::- : ' :::::::::::::::::::..'::: :::::.:

F-ATAN

Calculates the arc tangent of the floating-point source field values and stores the result in
the floating-point destination field.

Formats CM:f-atan-l-1L dest/source, s, e
CM:f-atan-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- tan-l source[k]

The arc tangent of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

121

ATAN2

F-ATAN2

Calculates the arc tangent of the quotient of two floating-point source fields and stores the
result in the floating-point destination field.

Formats CM:f-atan2-3-1L dest, sourcel, source2, s, e

Operands dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point y source field.

source2 The field ID of the floating-point x source field.

S, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

test-flag is set if sourcel and source2 are both zero; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] > 0 then
dest[k] - tan' ourcesoutce2jk]

else if source2[k] < 0 then

dest[k] +- sign(sourcel[k]) x (r - tan- 1 I ° u rceli k)X tan1 sourceztk]x
else if sourcel[k] = 0 A sign(source2[k]) > 0 then

dest[k] e- sign(sourcel[k]) 0
else if sourcel[k] = 0 A sign(source2[k]) < O then

dest[k] - sign(sourcel[k]) x r
else

dest[k] sign(sourcel[k]) x
if (overflow occurred in processor Ick) then overflow-flag[k] 1

122

ATAN2
::a S: :::::.

The arc tangent of the quotient of the source1 and source2 fields is stored into the dest
field. The signs of the source fields are taken into account to produce a result in the correct
quadrant of the Cartesian plane.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

123

ATANH

C-ATANH

Calculates the arc hyperbolic tangent of the complex source field values and stores the result
in the complex destination field.

Formats CM:c-atanh-l-lL
CM:c-atanh-2-1L

Operands dest

dest/source, s, e
dest, source, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

test-flag is set if source is 1 or -1; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - tanh-1 source[k]

The arc hyperbolic tangent of the value of the source field is stored into the dest field.

The following definition of the arc hyperbolic tangent determines the range and branch cuts
for a complex number z.

log (1 + Z)1 2)

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

124

Definition

ATANH
:::::::::::::::::::::::::::::::::::: ::::::::::::.... ·:::: . :==I...................... .

F-ATANH

Calculates the arc hyperbolic tangent of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-atanh-l-1L
CM:f-atanh-2-IL

Operands dest The

dest/source, s, e
dest, source, s, e

field ID of the floating-point destination field.

source The field ID of the floating-point source field.

S, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the magnitude of source is greater than or equal to 1; otherwise
it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - tanh -l source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1
if Isource[k]l > 1 then test-flag[k] - 1
otherwise test-flag[k] - 0

The arc hyperbolic tangent of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

125

Definition

ATTACH

ATTACH

Attaches the Connection Machine hardware to the front end computer and returns the
number of physical processors attached.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the shell level cmattach command,
documented in the CM System User's Guide.

Formats result - CM: attach [physical-size], [interface], [wait-p]

Operands physical-size The number of physical processors to be attached. This ar-
gument is an optional argument.

interface The integer indicating a particular bus interface to be used. This is
an optional keyword argument and defaults to 0. When specified,
the invocation must include the keyword :interface followed by an
integer.

wait-p The answer to the question, "Do you want to wait for processors
to become available?". This is an optional keyword argument and
defaults to nil. When specified, the invocation must include the
keyword :wait-p followed by T or NIL.

Result An unsigned integer, the exact number of physical processors allocated.

Context This operation is unconditional. It does not depend on the contezt-flag.

From the Lisp/Paris interface, this function allocates Connection Machine processors for
use by the front end. To deallocate the processors, use CM:detach.

In the Lisp/Paris interface, CM:attach is a function of several arguments.

The physical-size argument is optional; if no physical-size argument is specified, then the
smallest possible amount of hardware will be allocated. This default is the smallest number
of processors associated with one sequencer, and varies between 8,192 and 16,384 physical
processors, depending of site requirements.

If specified, the physical-size argument indicates the number of processors desired. It may
be any one of the following values:

:8kp or 8192 Exactly 8,192 physical processors are to be allocated.

:16kp or 16384 Exactly 16,384 physical processors are to be allocated.

126

ATTACH

:32kp or 32768 Exactly 32,768 physical processors are to be allocated.

:64kp or 65536 Exactly 65,536 physical processors are to be allocated.

Alternatively, the physical-size argument may specify the sequencer or sequencers desired
by using one of the following values: (These options are useful primarily for hardware
diagnostic procedures.)

:ucc, :uccl, :ucc2, or :ucc3 Exactly the specified sequencer (also known as a microcon-
troller port) is to be attached, regardless of whether that port controls 8,192 or 16,384
physical processors.

:uccO-i, :ucc2-3, or :ucc0-3 Exactly the specified sequencers (0 and 1, 2 and 3, or all
four) are to be attached, regardless of the number of physical processors involved.

The :interface keyword argument is used at sites with more than one Connection Machine.
If used, it indicates which Connection Machine is to be attached by specifying the integer
value of the interface for the desired Connection Machine.

The :wait-p keyword is used if you want to wait for the requested processors to become
available. To quit waiting, type Ctrl-C. (From Gmacs, type Ctrl-C, Ctrl-C; from a Lisp
Machine front end, type Ctrl-ABORT.)

The value returned by CM:attach is the number of physical processors that were attached.

An error is signalled if the required number of physical processors or the required set of
microcontroller ports is not available.

The
variable CM: *before-attach-initializations* and the variable CM: *after-attach-initializations*
contain sets of initialization forms that are respectively evaluated before and after anything
else occurs.

Note: On a Symbolics Lisp Machine, the Lisp/Paris interface will also accept :8k, :16k,
:32k, and :64k as physical-size specifications. However, these are not valid symbols in all
Common Lisp implementations-technically speaking, they have the syntax of "potential
numbers" in Common Lisp-and therefore users are encouraged to use the forms :8kp,
:16kp, :32kp, and :64kp in code to ensure portability. The "k" forms will continue to be
available to preserve back-compatibility with existing code that uses them.)

In the C/Paris and Fortran/Paris interfaces, the attaching operation is performed by a user
command cmattach at shell level. See the CM System User's Guide manual or the cmattach
man page for more information.

127

ATTACHED

ATTACHED

Returns true if the front end process has Connection Machine processors attached for use.

Formats result - CM:attached

Result True if the front end process has Connection Machine processors attached for
use, and false otherwise.

Context This operation is unconditional. It does not depend on the context-flag.

This predicate allows a program to determine whether there are any Connection Machine
processors attached (whether actual hardware or simulated) before it issues other Paris
operations.

128

AVAILABLE-M EMORY

AVAILABLE-MEMORY

Determines the number of bits of memory, per virtual processor, that remain available for
allocation on either the heap or the stack.

Formats result - CM:available-memory

Result An unsigned integer, the number of bits available.

Context This operation is unconditional. It does not depend on the contezt-flag.

The number of bits available for allocation by either CM:allocate-heap-field or CM:allocate-
stack-field is returned to the front end as an integer. The return value represents the number
of bits available for each virtual processor in the current vP set.

129

"",IN

-,W*.,

CEILING
I:::::!::::j:':i~~~~~~~~~~~~~~i. :.:-....... .

F-F-CEILING

Determines the smallest integral value that is not less than the floating-point source field
value in each selected processor and stores it in the floating-point destination field.

Formats CM:f-f-ceiling-l-lL
CM:f-f-ceiling-2-1L

Operands dest The fie

dest/source, s, e
dest, source, s, e

-ld ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - [source[k]l

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +oo, which is stored into the dest field as a floating-point-number.

Note that overflow cannot occur.

131

Definition

CEILING

S-CEILING

The ceiling of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:s-ceiling-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-ceiling-2-1L dest/sourcel, source2, len
CM:s-ceiling-3-1L dest, sourcel, source2, len
CM: s-ceiling-constant-2-1L dest sourcel, source2-value, len
CM:s-ceiling-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer quotient field.

sourcel The field ID of the signed integer dividend field.

source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

dlen For CM:s-ceiling-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl For CM:s-ceiling-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

slen2 For CM:s-ceiling-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

132

CEILING

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] [sourcel k]

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0
if source2[k] = 0 then

test[k] , 1

else test[k] 0

The signed integer sourcel operand is divided by the signed integer source2 operand. The
ceiling of the mathematical quotient is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

133

CEILING
. .. I .. . -a:

S-F-CEILING

The floating-point source field values are converted to signed integer values and stored in
the destination field.

Formats CM:s-f-ceiling-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.

source The field ID of the floating-point source field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] [source[k]l
if (overflow occurred in processor k) then overflow-flag[k] 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +oo. The result is stored into the dest field as a signed integer.

134

CEILING

U-CEILING

The ceiling of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM: u-ceiling-3-3L
CM: u-ceiling-2-1L
CM: u-ceiling-3-1L
CM: u-ceiling-constant-2-1L
CM: u-ceiling-constant-3-1L

Operands dest

dest, sourcel, source2, dlen, slenl, slen2
dest/sourcel, source2, len
dest, sourcel, source2, len
dest/sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the unsigned integer quotient field.

sourcel The field ID of the unsigned integer dividend field.

source2 The field ID of the unsigned integer divisor field.

len

dlen

slenl

slen2

The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM:u-ceiling-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-ceiling-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-ceiling-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] -[sourcel [k]]
""'L"J` sOuce2 [kl

135

CEILING
:::::' ':5 ;::2::;:: ':::;;:;;::::::::: :;:::::::::::;::::::: :: :::::: : ::: :: ::: :: :::::5:::::::::::::::::::::::::::::::::::::25:::;::::::::;:55: ::::::5::5:::::::::::::::::5:::: :::::_ : : : : : 5::5::: :::: :::::::::: ::::::5:5 :: 5:::::5: : ::::5:::::::::5::55:::

if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] +- 0
if source2[k] = 0 then

test[k] 1
else test[k] - 0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The ceiling of the mathematical quotient is stored into the unsigned integer memory field
dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

136

CEILING

U-F-CEILING

The floating-point source field values are converted to unsigned integer values and stored
in the destination field.

Formats CM:u-f-ceiling-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest - [sourcel
if (overflow occurred in processor k) then overflow-flag[k] 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +oo, which is stored into the dest field as an unsigned integer.

137

Definition

CHANGE-FIELD-ALIAS

CHANGE-FIELD-ALIAS

Changes the referent of the specified field alias.

Formats CM:change-field-alias alias-id, field-id

Operands alias-id An alias field ID. This must be an alias field ID returned by
CM:make-field-alias. It need not be in the current vP set.

field-id A field ID. This must be a field id returned by CM: allocate-stack-
field or CM:allocate-heap-field; it may not be an offset into a field.
The field need not be in the current vP set.

Context This operation is unconditional. It does not depend on the contezt-flag.

The alias field ID alias-id is made to reference the field identified by field-id. This function
allows field aliases to be recycled.

After a call to CM: change-field-alias, the field length and the physical length associated with
alias-id are exactly what they would be if CM: make-field-alias had been called with field-id.

An error is signaled if the physical length of the aliased field is not exactly divisible by the
vP ratio of the vP set to which field-id belongs. (For more on the physical length associated
with an alias field see the dictionary entry for CM:make-field-alias.)

The alias field ID can be used in all the same ways as a regular field ID can, with the
following exceptions:

* It cannot be passed to CM:deallocate-heap-field.

* It cannot be passed to CM:deallocate-stack-through.

138

CIS
::::::::::::::::::::::::::::::': ::::::> :::::::::::::::::::::: :::> :::: :: :::::::::::::::::: :::: A: :::::::: :a::::

C-F-CIS

Calculates the cosine and sine for the floating-point source field and stores the result in the
complex destination field.

Formats CM:c-f-cis-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is 2(s + e + 1). The
total length of the source field in this format is s + e + 1.

Overlap The source field must be either identical to dest, identical to (dest + s + e + 1),
or disjoint from dest.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k].real c- cos source[k]
dest[k].imag - sin source[k]

The result is a complex number whose real part is the cosine of the source and whose
imaginary part is the sine of the source. The term cis signifies cos +i sin.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

139

CLEAR-ALL-FLAGS

CLEAR-ALL-FLAGS

Clears all flags (but not the context bit).

Formats CM:clear-all-flags
CM: clear-all-flags-always

Context The non-always operation is conditional.

The always operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

test-flag[k] - 0
overflow-flag[k] - 0

Within each processor, all flags for that processor are cleared (but not the context bit).

140

CLEAR-BIT
.

CLEAR-BIT

Clears a specified memory bit.

Formats CM: clear-bit dest
CM:clear-bit-always dest

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] O

The destination memory bit is cleared within each selected processor.

141

CLEAR-CONTEXT
:::B::B::::: :B: ...:: B : .;:kB: :BB::::::::: :: : : :: :: .: :::: : : ::: ::: :::::: ..: :::::

CLEAR-CONTEXT

Unconditionally makes all processors inactive.

Formats CM:clear-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
contezt-flag[k] O- 0

Within each processor, the context bit for that processor is unconditionally cleared.

142

CLEAR-FLAG
. : : : :: : : : ::: ::-:: :: ::': *:::':::::::::::. ::. :::.: :: :::.r ·2. ;·:·: ·····;·' ········. · · ! :.... ·.....; ·······

CLEAR-flag

Clears a specified flag bit.

Formats CM:clear-test
CM: clear-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

flag[k] 0

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is cleared.

143

COLD-BOOT

COLD-BOOT
This operation completely resets the state of the hardware allocated to the executing front
end, loads microcode, initializes system tables, and clears user memory.

Formats result - CM:cold-boot microcode-version, dimensions

Operands microcode-version Either :paris or :diagnostics. This specifies which ver-
sion of the microcode is to be used. This argument is optional
(actually a keyword argument in the Lisp interface).

dimensions The dimension information for initializing the NEWS grid.
This argument is optional (actually a keyword argument in the
Lisp interface).

Result In the Lisp/Paris interface three results are returned (as Common Lisp "mul-
tiple values"):

An unsigned integer, the number of virtual processors.

An unsigned integer, the number of physical processors.

An unsigned integer, the number of bits available per virtual processor.

Context This operation is unconditional. It does not depend on the context-flag.

The facility for cold-booting Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:cold-boot is a function that accepts optional keyword argu-
ments.

The :microcode-version argument specifies what set of microcode is to be loaded into the
microcontroller(s). There are two choices for this argument: :paris (the default) specifies
microcode that interprets the macroinstruction set, and :diagnostics specifies special
microcode used for hardware maintenance.

The :dimensions argument is largely obsolete now that multiple VP sets may be allocated,
but it is still supported for the sake of compatibility with previous releases of Paris. The
:dimensions argument must be an integer, a list of 1 or 2 integers, or unsupplied. (Passing
nil as the value is the same as not supplying a value.) An integer or a list of one integer
specifies the total number of virtual processors desired. A list of two integers specifies the
desired size of the virtual NEWS grid. Each dimension must be a power of two.

If the :dimensions argument is unsupplied, then the configuration of virtual processors
depends on the most recent CM:cold-boot or CM:attach operation preceding this one. If the

144

COLD-BOOT
:: ::B :: X: ... ::: : ::.: . . ::: :ri ::::::: g

most recent such operation was CM:cold-boot, then the same virtual processor configuration
set up then will be used this time. If the most recent such operation was CM:attach, then
the number of virtual processors will be equal to the number of physical processors, and
the virtual NEWS grid will have the same shape as the physical NEWS grid.

Bootstrapping a Connection Machine system includes the following actions:

* Evaluating all initialization forms stored in the variable CM:*before-cold-boot-
initializations*. This is done before anything else.

* Loading microcode into the Connection Machine microcontroller and initiating mi-
crocontroller execution.

* Clearing and initializing the memory of allocated Connection Machine processors.

* Initializing all of the global configuration variables described in section 3.7.

* Initializing the pseudo-random number generator by effectively invoking the operation
CM: initialize-random-number-generator with no seed.

* Initializing the system lights-display mode by effectively invoking the operation
CM:set-system-leds-mode with an argument of t.

* Evaluating all initialization forms stored in the variable CM:*after-cold-boot-
initializations*. This is done after everything else.

If the cold-booting operation fails, then an error is signalled. If it succeeds, then three
values are returned: the number of virtual processors, the number of physical processors,
and the number of bits available for the user in each virtual processor. (These are exactly
the values of the configuration variables CM: *user-cube-address-limit*, CM: *physical-cube-
address-limit*, and CM:*user-memory-address-limit*.

In the C/Paris and Fortran/Paris interfaces, the cold-booting operation is performed by a
user command cmcoldboot at shell level. See the Front End Subsystems manual.

145

COMPARE

F-COMPARE

Compares two floating-point source values and stores into the signed integer destination
field the result -1, O, or depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:f-compare-3-2L dest, sourcel, source2, dlen, s, e

Operands · dest The field ID of the signed integer destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

dlen

s, e

The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields sourcel and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] < source2[k] then
dest[k] -- -1

else if sourcel[k] > source2[k] then
dest[k] -- 1

else
dest[k] - 0

Two operands are compared as floating-point numbers. The destination receives the signed
integer value -1, 0, or depending on whether the first source value is less than, equal'to,
or greater than the second source value.

146

COMPARE

S-COMPARE

Compares two signed integer source values and stores into the signed integer destination
field the result -1, O, or depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:s-compare-3-3L dest, sourcel, source2, den, sleni, slen2

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields sourcel and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] < source2[k] then
dest[k] - -1

else if sourcel[k] > source2[k] then
dest[k] 1

else
dest [k] -

Two operands are compared as signed integers. The destination receives the value -1, 0,
or depending on whether the first source value is less than, equal to, or greater than the
second source value.

147

COMPARE
:::::::::::::::::::::::: :.·..

U-COMPARE

Compares two unsigned integer source values and stores into the signed integer destination
field the result -1, O, or depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:u-compare-3-3L dest, sourcel, source2, dlen, slenl, sen2

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields sourcel and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] < source2[k] then
dest[k] - -1

else if sourcel[k] > source2[k] then
dest[k] 1

else
dest[k] 0

Two operands are compared as unsigned integers. The destination receives the signed
integer value -1, 0, or depending on whether the first source value is less than, equal to,
or greater than the second source value.

148

COMPRESS-HEAP
.:::::~::::Y: " : ::: . U:::.........: I: .. . I.-, .. : ··:: ··:: .::IIr: :·: I·::: :j:::I i i :: ::j..::.I::::':

COMPRESS-HEAP

Invokes the heap compression mechanism on demand.

Formats CM:compress-heap

Context This operation is unconditional. It does not depend on the contezt-flag.

Heap compression removes heap memory fragmentation.

By default, the configuration variable CM:*heap-compression-enabled* is T (true), causing
automatic heap compression whenever the stack and heap try to grow into each other.
Therefore, under normal circumstances it not necessary to use the CM:compress-heap in-
struction.

Automatic heap compression can, however, make performance calculations unpredictable.
To ensure deterministic performance, set CM:*heap-compression-enabled* to NIL (false,
0), arrange data structures to avoid fragmentation where possible, and explicitly invoke
CM:compress-heap as necessary.

The variable CM:*heap-compression-messages-enabled* determines whether a message is
issued when heap compression occurs. By default, this value is T (true, 1) and heap
compression messages are issued. If this variable is NIL (false, 0), heap compression occurs
without report.

149

CONJ UGATE
,:~~~,::·: s: : : : .:· : r·.....

C-CONJUGATE
The conjugate of the complex source field is placed in the complex dest field.

Formats CM:c-conjugate-l-lL
CM: c-conjugate-2-1L

Operands dest

destlsource, s, e
dest, source, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contest-flag[k] = 1 then

dest[k].real - source[k].real
dest[k].imag - -source[k].imag

Given a complex number C the conjugate C' consists of a real part equal to the real part of
C and an imaginary part equal to the negation of the imaginary part of C. The conjugate
of the complex source field is placed in the dest field.

150

Definition

Cos
:: :C -':C OS:: ::.:::: :: :: ::: ::::::::::: :.:::.::.: ::: : ::::: : .

C-COS

Calculates the cosine of the
destination field.

complex source field and stores the result in the complex

Formats CM:c-cos-l
CM: c-cos-2-

Operands dest

-1L dest/source, s, e
-1L dest, source, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k]- cos source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

The cosine of the value of the complex source field is stored into the complex dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

151

Definition

Cos

F-COS

Calculates, in each selected processor, the cosine of the floating-point source field value and
stores it in the floating-point destination field.

Formats CM:f-cos-1-
CM:f-cos-2-

Operands dest

-1L dest/source, s, e
-1L dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] cos source[k]

The cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

152

Definition

COSH

C-COSH

Calculates, in each selected processor, the hyperbolic cosine of the complex source field
value and stores it in the complex destination field.

Formats CM: c-cosh-
CM: c-cosh-:

Operands dest

1-1L dest/source, s, e
2-1L dest, source, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contet-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - cosh source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

153

Definition

COSH
::j.> >.:::::::::::·. ·... ;::::·- ···::·::

F-COSH
Calculates the hyperbolic cosine of the floating-point source field and stores it in the floating-
point destination field.

Formats CM:f-cosh-l-1L dest/source, s, e
CM:f-cosh-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

a, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - coshsource[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

154

Definition

...... ;"''; I - - __

CREATE-DETAILED-GEOM ETRY

CREATE-DETAILED-GEOMETRY

Creates a new geometry given detailed information about how the grid is laid out.

For most applications, the simpler CM: create-geometry instruction is recommended over this
one. Use CM:create-detailed-geometry only to tune the performance of an application with
stable, known inter-processor communication patterns. (See also CM:intern-geometry and
CM: intern-detailed-geometry).

Formats result +- CM:create-detailed-geometry axis-descriptor-array, [rank]

Operands axis-descriptor-array A front-end vector of descriptors for the grid axes.

In the C interface, the elements of the axis-descriptor-array must
be of type CM-axisdescriptort, that is, they must be pointers to
structures of type CM-axisdescriptor.

In the Lisp interface, the axis-descriptor-array may be either a list
of descriptors or an array of descriptors.

rank An unsigned integer, the rank (number of dimensions) of the ge-
ometry being created. This must be between 1 and CM:*max-
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

Result A geometry ID, identifying the newly created geometry. This is of type
CM-geometry-id-t in C, of type CM:geometry-id in Lisp, and an integer in
Fortran.

Context This operation is unconditional. It does not depend on the context-flag.

CM:create-detailed-geometry takes an array of axis descriptors, one for each axis. The oper-
ation returns a geometry ID, which may then be used to create a vP set or to respecify the
geometry of an existing vP set.

Each axis descriptor specified by CM:axis-descriptor-array is a structure describing one NEWS

axis in some detail. Most of the descriptor components are unsigned integers, but the
value of the ordering component is different. From Lisp, the ordering component must be
either :news-order, :send-order, or :framebuffer-order. From C or Fortran, it must be either
CMnewsorder, CM.send order, or CMiframebufferorder.

The C definitions of the type of the ordering component and of the axis descriptor are shown
below. Notice that the elements of the axisdescriptor-array must be pointers to type struct
CMaxis-descriptor.

155

CREATE-DETAILED-GEOM ETRY
.. :..I

typedef enum {CMnews_order, CM_sendorder } CMaxisordert;

typedef struct CMaxisdescriptor {
unsigned length;
unsigned weight;
CMaxisordert ordering;
unsigned char onchipbits;
unsigned char offchipbits;

} * CMaxisdescriptort;

Actually, this structure has other components as well. C code should use the definition of
CMaxisdescriptor from the cmtypes.h include file.

The Fortran/Paris interface defines CMaxis.descriptor as an array:

INTEGER RANK,DESCRIPTORARRAY(7,RANK)

The elements of each Fortran axis descriptor are defined such that:

DESCRIPTORARRAY(1, I) is the length of axis I
DESCRIPTORARRAY(2, I) is the weight of axis I
DESCRIPTORARRAY(3, I) is the ordering of axis I
DESCRIPTORARRAY(4, I) is the on-chip bits of axis I
DESCRIPTORARRAY(6, I) is the off-chip bits of axis I

Thus CM: axis-descriptor-array is, in Fortran, an array of axis descriptor arrays.

The Lisp definitions of the type of the ordering component and of the axis descriptor are
shown below.

(deftype cm:axis-order () '(member :news-order :send-order))

(defstruct CM:axis-descriptor
(length O) (weight O) (ordering :news-order)
(on-chip-bits O) (off-chip-bits 0))

The axis-descriptor-array operand must be created by first making one axis descriptor for
each axis and then using these to assign values to the array elements. An example in C is
given below. Notice that axisi and axis2 are pointers to axis descriptor structures and that
the descriptor structures are zeroed before any values are assigned.

CMgeometryidt mygeometry;
CMaxisdescriptort mygeometryaxes [2;
CMaxisdescriptort axisi, axis2;

156

CREATE-DETAILED-GEOM ETRY

axisi = (cmaxisdescriptort)malloc(sizeof(struct CMaxisdescriptor));
axis2 = (cmaxisdescriptort)malloc(sizeof(struct CMaxisdescriptor));
bzero(axisi, sizeof(struct CMaxisdescriptor));

bzero(axis2, sizeof(struct CMaxisdescriptor));

axisi->length = 128;

axis2->length = 256;

axisl->weight = 5;
axis2->weight = 10;

axisi->ordering = CMnewsorder;

axis2->ordering = CMnewsorder;

mygeometryaxes[O] = axisi;

mygeometryaxes [1 = axis2;
mygeometry = CMcreatedetailedgeometry(mygeometryaxes, 2);

The following example specifies the same axes, descriptor array, and geometry in Lisp.
Notice that the constructor CM: make-axis-descriptor is used.

(setq my-geometry-axes make-array(2))
(setq axisl
(CM:make-axis-descriptor :length 128 :weight 5
:ordering :news-order))

(setq axis2

(CM:make-axis-descriptor :length 256 :weight 10
:ordering :news-order)))

(setf (aref my-geometry-axes 0) axisi)

(setf (aref my-geometry-axis 1) axis2)

(setq my-geometry (CM:make-detailed-geometry my-geometry-axes 2)

Once the geometry has been created, the user may destroy the descriptors and the array
used to provide axis information. All necessary information is copied out of these structures
as the geometry is created.

The "length" component of an axis descriptor specifies the length of the axis; it must be a
power of two.

The "weight" component of the axis descriptors specifies the relative frequency of inter-
processor communication along different axes. For instance, in the above example it is
assumed that communication occurs about half as often along axisl, which is given a weight
of 5, as along axis2, which is given a weight of 10. Only the relative values of the weight
components matter. The same communication traffic could be specified with weights of
1 and 2, or of 3 and 6. If all weights are 1, it is assumed that all axes are used equally
frequently.

157

CREATE-DETAILED-GEOM ETRY

Given a set of weight components, Paris lays out the hypercube grid for optimal per-
formance. Virtual processors are mapped onto the physical hypercube in a pattern that
exploits the fact that communication is especially rapid among virtual processors within
the same physical processor and among virtual processors within the same physical chip.

The "ordering" component of an axis descriptor specifies how NEWS coordinates are mapped
onto physical processors for that axis. The value: news-order specifies the usual embedding
of the grid into the hypercube such that processors with adjacent NEWS coordinates are in
fact neighbors within the hypercube. The value :send-order specifies that, if processor A has
a smaller NEWS coordinate than processor B, then A also has a smaller send-address than B.
This ordering is rarely used. However, :send-order ordering is useful for specific applications
such as FFT. The value :framebuffer-order is provided solely for creating vP sets that are
used as image buffers (for details, see chapter 1 of the Generic Display Interface Reference
Manual).

If the "weight" components are all 1, then the mapping of virtual to physical processors
can be specified with the "on-chip-bits" and "off-chip-bits" components of the axis descrip-
tors. This is not recommended. To tune performance for communication, use the weight
component.

158

CREATE-GEOMETRY
····~··~---~-' .:::·:·:21:·:::: 11:·::·:·:·:·:·: ····················-······;··-·;: ···· · ::~:::::::::::::::::~:::::::::.Z X:::

CREATE-GEOMETRY
Creates a new geometry given the grid axis lengths. See also CM: intern-geometry.

Formats result - CM:create-geometry dimension-array, [rank]

Operands dimension-array A front-end vector of unsigned integer lengths of the
grid axes. In the Lisp interface, this may be a list of dimension
lengths instead of an array of dimension lengths, at the user's
option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array. This must be between 1 and CM: *max-geometry-
rank*, inclusive. This argument is not provided when calling Paris
from Lisp.

Result A geometry ID, identifying the newly created geometry.

Context This operation is unconditional. It does not depend on the context-flag.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of 2. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

This operation returns a geometry ID for a newly created geometry whose dimensions are
specified by the dimension-array. The length of axis j of the resulting geometry will be
equal to dimension-array[j]. Such a geometry ID may then be used to create a VP set, or
to respecify the geometry of an existing VP set.

The geometry will be laid out so as to optimize performance under the assumption that
the axes are used equally frequently for NEWS communication. The operation CM:create-
detailed-geometry may be used instead to get more precise control over layout for perfor-
mance tuning.

Once the geometry has been created, the user may destroy the array used to provide the
dimension information. All necessary information is copied out of this array as the geometry
is created.

159

CROSS-VP-MOVE
:::::::`::: :: :::: :::::::::::: : :!: : :: ::::::s::::::::s ::: :::: ::::::

CROSS-VP-MOVE

Copies data from a source field with a particular shape and orientation to a destination
field with the same shape, but possibly with a different orientation within the CM. The
source and destination vP sets are not required to have matching dimensionality along all
axes. However, every source axis selected for inclusion in this copying operation must be
mapped to a destination axis of the same length. The source field must be in the current
vP set; the destination field may be in a different vP set.

Formats CM:cross-vp-move-1L dest, source, axis-mapping,
source-axis-coords, dest-axis-coords, len

CM:cross-vp-move-always-1L dest, source, axis-mapping,
source-axis-coords, dest-axis-coords, len

Operands dest The field ID of the dest field. This is in the destination VP set.

source The field ID of the source field. This is in the current VP set.

axis-mapping A front-end vector of unsigned integer values. The set of
valid values also includes the null value CM: *cvpm-indexed*.

This vector defines how the source axes are mapped to the desti-
nation axes during data transfer. The length of this vector is equal
to the number of axes in the source VP set. Thus, axis-mapping
element 0 corresponds to source axis 0, and so forth. The value of
each vector element should indicate to which destination axis the
corresponding source axis is mapped.

For any source axis that is not to be copied, give the corresponding
axis-mapping element the value CM:*cvpm-indexed*; treatment of
such axes is further specified by the next argument.

source-azis-coords A front-end vector of unsigned integer values.. The set
of valid values also includes the null value CM: *cvpm-mapped*.

This vector defines what source data is copied by the operation.
The length of this vector is equal to the number of axes in the
source VP set. Thus, source-axis-coords element 0 corresponds to
source axis 0, and so forth. Any source axis that is mapped in
the axis-mapping vector should have a source-axis-coords value of
CM: *cvpm-mapped*; the shape of the data to be copied is described
by these mapped axes.

The remaining, unmapped, source-axis-coords elements should be
integers, each of which indexes a specific point along its corre-
sponding source axis; these coordinates describe the location of
the source data to be copied.

160

CROSS-VP-MOVE

dest-axis-coords A front-end vector of unsigned integer values.. The set of
valid values also includes the null value CM:*cvpm-mapped*.
This vector defines where within the destination vP set the source
data is transferred. The length of this vector is equal to the number
of axes in the destination vP set. Thus, dest-axis-coords element
O corresponds to dest axis 0, and so forth. Any destination axis
that is mapped in the axis-mapping vector should have a dest-axis-
coords value of CM:*cvpm-mapped*; the final orientation of the
copied data is described by these mapped axes.
The remaining, unmapped, dest-axis-coords elements should be in-
tegers, each of which indexes a specific point along its correspond-
ing dest axis; these coordinates describe the final location of the
copied data.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap For d, e, s, and t, the fields s, o, u, r, c, and e must be either nonoverlapping
or identical.

Context This operation is conditional.

Data values of len bits each are copied from the source field into the dest field, where the
source field is in the current vP set and the dest field may be in the same or a different
VP set. During this operation, the copied data is moved from one orientation within the
Connection Machine - dictated by the layout of the participating source axes - into another
orientation dictated by the layout of the participating dest axes.

The three vector arguments determine what source data is copied, where within the des-
tination geometry it is put, and how it is moved or reoriented within the CM during this
process.

The source-axis-coords vector specifies what source data is copied. It contains one elenwmnt
for each source geometry axis such that element 0 corresponds to axis 0, and so forth. It
is not necessary to copy all the source data: along each axis, either one point or all points
may be included in the shape that is copied. For example, to copy a 2-dimensional shape
from a 3-dimensional geometry, we include two entire axes and one point along the third
axis.

To include all the data along a particular source axis, specify the corresponding
source-axis-coords value as CM:*cvpm-mapped* - meaning this axis is mapped in its en-
tirety to some destination axis. The shape of the source data to copy is defined by the
lengths of the axes specified as mapped. The exact mapping is given by the axis-mapping
vector. To include only one point along a particular source axis, specify the corresponding
source-axis-coords value as an unsigned integer between 0 and one less than the extent of
the axis.

161

CROSS-VP-MOVE
.......

The dest-axis-coords vector specifies where in the destination to put the source data. This
vector is analogous to source-axis-coords in that it specifies which destination axes recieve
data and where along the remaining axes the copying is carried out. There must be one
dest-axis-coords element for each destination geometry axis and each element value must
be either an integer or CM:*cvpm-mapped*.

To transfer data to an entire axis, specify the corresponding dest-axis-coords value as
CM:*cvpm-mapped*. To transfer data only at a specific coordinate along an axis, specify
an integer value. In dest-azis-coords and source-azis-coords, the number and lengths of the
axes specifed as mapped must exactly match. For example, when copying a 2-dimensional
shape from a 3-dimensional vP set into a 2-dimensional vP set, the source-axis-coords will
include two mapped axes and one coordinate while the dest-axis-coords will include two
mapped axes and no coordinates.

The axis-mapping vector specifies how the copied data is reoriented as it is transferred from
the source geometry to the destination geometry. As discribed above, the source-axis-coords
and dest-axis-coords vectors each specify certain source and dest axes as "mapped." The
axis-mapping vector determines which source axis is mapped to which destination axis. It
contains one element for each source geometry axis such that element 0 corresponds to
source axis 0 and so forth. Each element value is either an integer or CM: *cvpm-indexed*.

For each source axis that is not mapped to a destination axis, give the corresponding
asis-mapping element the value CM:*cvpm-indexed* - meaning that this axis is indexed.
The source-axis-coords vector gives coordinates from which data along an indexed axis is
copied. For each source axis that is mapped to a destination axis, give the corresponding
azis-mapping element an unsigned integer value indicating which destination axis is to
recieve data from this source axis. Each pair of mapped axes must be of the same length.

Note: Proper execution of this instruction requires that the lengths of the source and
destination axes not be changed between invocations. Be especially careful if a CM: set-vp-
set-geometry call changes the geometry of either the source or destination v set between
invocation of CM: cross-vp-set-move-lL.

The code fragment below demonstrates copying a 2-dimensional shape from a 3-dimensional
source geometry into a 2-dimensional destination geometry. Source axes 0 and 1 are copied
from coordinate i along source axis 2. Source axis 0 maps to destination axis 1 and source
axis 1 maps to destination axis 0.

162

DEALLOCATE-GEOMETRY

DEALLOCATE-GEOMETRY

Declare that a geometry will no longer be used.

Formats CM: deallocate-geometry geometry-id

Operands geometry-id A geometry ID.

Context This operation is unconditional. It does not depend on the context-flag.

By this operation a user program declares that a geometry will no longer be used. The
system is permitted to reclaim any and all resources associated with that geometry. It is
an error for the user program to give the specified geometry ID as an argument to any Paris
operation once it has been deallocated.

It is an error to deallocate a geometry that is still in use by some vP set.

163

DEALLOCATE-H EAP-FIELD

DEALLOCATE-HEAP-FIELD

Declare that a heap field will no longer be used.

Formats CM: deallocate-heap-field heap-field-id

Operands heap-field-id A field ID.

Context This operation is unconditional. It does not depend on the context-flag.

By this operation a user program declares that a field will no longer be used. The system
is permitted to reclaim any and all resources associated with that field, in particular the
memory that it occupied. It is an error for the user program to give the specified field ID
as an argument to any Paris operation once it has been deallocated.

164

DEALLOCATE-STACK-TH ROUGH
.

DEALLOCATE-STACK-TH ROUGH

Declare that a stack field and all fields allocated more recently than it will no longer be
used.

Formats CM:deallocate-stack-through stack-field-id

Operands stack-field-id A field ID.

Context This operation is unconditional. It does not depend on the context-flag.

By this operation a user program declares that the specified field on the stack, and all fields
allocated more recently than it, will no longer be used. (Note that any fields allocated more
recently than the specified field are necessarily closer to the top of the stack.) The system
is permitted to reclaim any and all resources associated with those fields, in particular the
memory that they occupied. It is an error for the user program to give the field ID of a
deallocated field as an argument to any Paris operation.

165

DEALLOCATE-VP-SET
: :: :::':: ::: :·:·:·:·:·:·:· : :: : :·:·:·:·:· :· ::::::::: :: :'::'::::::: ::: ::::::::::::::::::::::::::::::::-::::::::::::::::::::::::::::::::::::::R:::::::::::::::::::::::::: :S·t:::: ::::::::::: ::::::::-::&

DEALLOCATE-VP-SET

Declare that a vP set will no longer be used.

Formats CM: deallocate-vp-set vp-set-id

Operands vp-set-id A VP set ID.

Context This operation is unconditional. It does not depend on the context-flag.

By this operation a user program declares that a vP set will no longer be used. The system
is permitted to reclaim any and all resources associated with that vP set. It is an error for
the user program to give the specified vP set ID as an argument to any Paris operation once
it has been deallocated.

It is an error to deallocate a vP set for which there are still fields that have not yet been
deallocated. The user should first deallocate all fields belonging to that vP set, except the
flags, which are deallocated automatically when the vP set is deallocated.

166

DEPOSIT-N EWS-COORDINATE
.... .. - : ,, " , , , ,

DEPOSIT-NEWS-COORDINATE

Modifies a send address to reflect a specific NEWS coordinate.

Formats CM:deposit-news-coordinate-iL geometry, dest/send-address,
axis, coordinate, slen

CM: deposit-news-constant- 1L geometry, dest/send-address,
axis, coordinate-value, slen

Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used.

dest The field ID of the unsigned integer destination field. (In the
instruction formats currently provided, the dest field is always the
same as the send-address source field. The length of this field is
implicitly the same as geometry-send-address-length(geometry).)

send-address The field ID of the unsigned integer send address field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate The field ID of the unsigned integer NEWS coordinate. field.
This specifies the position along the corrsponding axis of the pro-
cessor whose send address is to be calculated.

coordinate-value An unsigned integer immediate operand to be used as
the NEWS coordinate along the specified axis.

slen The length of the coordinate field. This must be non-negative and
no greater than CM:*maximum-integer-length*.

Overlap For CM:deposit-news-coordinate-lL, the coordinate field must not overlap the
dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - deposit-news-coordinate(geometry, send-address, axis, coordinate)

where deposit-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWS axis, with all other coordinates equal
to those for the processor identified by send-address.

167

DEPOSIT-NEWS-COORDINATE
. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~.-,.._

FE-DEPOSIT-NEWS-COORDINATE

Calculates on the front end the modification of a send address to reflect a specific NEWS
coordinate.

Formats result - CM:fe-deposit-news-coordinate geometry, send-address,
axis, coordinate

Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

Result An unsigned integer, the send address of the processor whose coordinate along
the specified axis is coordinate and whose coordinate along all other axes
equals those of send-address.

Context This operation is performed on the front end. It does not depend on the CM
context-flag.

Definition Return deposit-news-coordinate(geometry, send-address, axis, coordinate)

where deposit-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWS axis, with all other coordinates equal to those
for the processor identified by send-address.

168

DETACH
::: :�: :::::::::::::::::::::::::::::::::::::::�:::::::::::::::::::::�::::::::::"'::. :

DETACH

Detaches the specified front-end computer from the Connection Machine hardware previ-
ously allocated for and attached to it.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the shell level cmdetach command,
documented in the CM System User's Guide.

Formats CM:detach front-end-name, suppress-confirmation

Operands front-end-name The name of a front end, or a list of a front end name and a
bus-interface specifier. This argument is optional.

suppress-confirmation The confirmation suppression flag. This argu-
ment is optional. If supplied and not false, then the interactive
query and prompt requesting confirmation of the detach opera-
tion is suppressed.

Context This operation is unconditional. It does not depend on the context-flag.

The facility for detaching Connection Machine hardware is provided in different ways in the
Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces (on
the other hand).

In the Lisp/Paris interface, CM:detach is a function of two arguments. The arguments are
optional.

In most normal use no argument is specified. In this case the front end executing the call to
CM:detach releases all Connection Machine hardware to which it had been attached, reset-
ting relevant parts of the Nexus so that the front end can no longer issue macroinstructions
to the Connection Machine system. (An error is signalled if in fact no hardware had been
attached in the first place.) This use of CM:detach is the normal way of releasing attached
hardware and will not disrupt users on other front ends.

If a front-end-name argument is specified, it must be the name of a front end that is con-
nected to the same Connection Machine system (that is, Nexus) as the front end executing
the call, or perhaps a list of a front end name and a small integer identifying a bus interface
on that front end. A front end name may be either a string or a symbol. Examples (assum-
ing, for the sake of exposition, that front end computers are named after Shakespearean
characters):

(detach 'hamlet) ;Detach front end named Hamlet

169

DETACH
..; '...

(detach "lear" t) ;Detach front end named Lear, and don't confirm
(detach '(desdemona 1)) ;Detach bus interface of front end Desdemona

Specifying the name of the front end that is executing the call has the same effect as
specifying no argument; the front end is gracefully detached. But specifying the name of
some other front end forcibly detaches that other front end, possibly disrupting any ongoing
interaction with the Connection Machine system. The external communications network is
used to send a message to the detached front end to inform its user that it has been forcibly
detached.

There are two sets of initialization forms, kept in the variables CM: *before-detach-
initializations* and CM: *after-detach-initializations*, that are evaluated before and after any-
thing else occurs.

In the C/Paris and Fortran/Paris interfaces, the detaching operation is performed by a user
command cmdetach at shell level. See the Front End Subsystems manual or the cmdetach
man page.

170

DIVIDE

C-DIVIDE

The quotient of two complex source values is
division is performed by the round, truncate,

placed in the destination field. Note: Integer
rem, and mod operations.

Formats CM:c-divide-2-1L
CM: c-divide-always-2-1L
CM: c-divide-3-1L
CM: c-divide-always-3-1L
CM: c-divide-constant-2-1L
CM: c-divide-const-always-2-1L
CM: c-divide-constant-3-1L
CM: c-divide-const-always-3- 1 L
CM:c-divinto-2-l
CM: c-divinto-always-2-1L
CM: c-divinto-constant-2-1L
CM: c-divinto-const-always-2-1 L
CM: c-divinto-constant-3-1L
CM: c-divinto-const-always-3- 1 L

Operands dest

dest/sourcel, source2, s, e
dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest/source2, sourcel, s, e
dest/source2, sourcel, s, e
dest/source2, sourcel-value, s, e
dest/source2, sourcel-value, s, e
dest, source2, sourcel-value, s, e
dest, source2, sourcel-value, s, e

The field ID of the complex destination field. This is the quotient.

sourcel The field ID of the complex first source field. This is the dividend.

source2 The field ID of the complex second source field. This is the divisor.

sourcel-value A complex immediate operand to be used as the first source.

source2-value A complex immediate operand to be used as the second
source.

8, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
2(s + e + 1).

Overlap' The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags test-flag is set if division by zero occurs; otherwise it is unaffected.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-filag is 1.

171

DIVIDE

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

dest[k] - sourcel [k]/source2[k]
if source2[k] = 0 then test-flag[k] 1
if (overflow occurred in processor k) then overflow-flag[k]) 1

The sourcel operand is divided by the source2 operand, treating both as complex numbers.
The result is stored into memory. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The constant operand sources-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

172

DIVIDE

F-DIVIDE

The quotient of two floating-point source values is placed in the destination field.

Note: Integer division is performed by the round, truncate, rem, and mod operations.

Formats CM:f-divide-2-1L
CM:f-divide-always-2-1L
CM:f-divide-constant-2- 1L
CM:f-divide-const-always-2-1 L
CM:f-divinto-2-1L
CM:f-divinto-always-2-1L
CM: f-divinto-constant-2-1 L
CM:f-divinto-const-always-2- L
CM:f-divide-3-1L
CM :f-divide-always-3-1L
CM :f-divide-constant-3-1L
CM:f-divide-const-always-3-
CM:f-divinto-constant-3-1L
CM :f-divinto-const-always-3-1L

dest/sourcel,
destlsourcel,
destlsourcel,
dest/sourcel,
dest/source2,
dest/source2,
dest /source2,
dest/source2,
dest, sourcel,
dest,
dest,
dest,
dest,
dest,

sourcel,
sourcel,
sourcel,

source2, s, e
source2, , e
source2-value, s, e
source2-value, s, e
sourcel, s, e
sourcel, , e
sourcel-value, s, e
sourcel-value, s, e
source2, , e
source2, s, e
source2-value, s, e
source2-value, s, e

Operands dest The field ID of the floating-point destination field.
quotient.

sourcel The field ID of the floating-point first source field.
dividend.

This is the

source2 The field ID of the floating-point second source field. This is the
divisor.

sourcel-value A floating-point immediate operand to be used as the first
source.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e + 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

test-flag is set if division by zero occurs; otherwise it is unaffected.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

173

source2, sourcel-value, s, e
source2, sourcel-value, s, e

This is the

Flags

DIVIDE

Context The non-always operations are conditional. The destination and flags may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flags may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - sourcel[k]/source2[k]
if source2[k] = 0 then test-flag - 1
if (overflow occurred in processor k) then overflow-flag[k] 1

The sourcel operand is divided by the source2 operand, treating both as floating-point
numbers. The result is stored into memory. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

174

ENUMERATE
... ..':::: :::: :::::::::::

ENUMERATE

The destination field in every selected processor receives the number of processors below or
above it in some ordering of the processors.

Formats CM:enumerate-1L dest, axis, len, direction, inclusion, smode, sbit

Operands dest

axis

len

The field ID of the unsigned integer destination field.

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The sbit field must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let Sk = scan-subset(k, axis, len, direction, inclusion, smode, sbit)
dest[k] - ISl

where scan-subset is as defined on page 45.

See section 5.20 on page 42 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The CM:enumerate-lL operation stores into the dest field of each selected processor the size
of the scan subset for that processor. This means that every processor within a scan set of
size N will receive a different integer in the range 0 to N - 1 (for an exclusive enumeration)
or in the range 1 to N (for an inclusive enumeration).

A call to CM:enumerate-1L is equivalent to the sequence below, but may be faster.

175

ENUMERATE

CM:u-move-constant-lL temp, 1, len
CM:scan-with-u-add-lL dest, temp, ais, len, direction, inclusion, smode, sbit
CM:u-subtract-constant-lL dest, 1, len

176

EQ

C-EQ

Compares two complex source values. The test-flag is set if they are equal, and otherwise
it is cleared.

Formats CM:c-eq-lL
CM: c-eq-constant-lL
CM:c-eq-zero-lL

Operands sourcel

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, s, e

The field ID of the complex first source field.

source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source. For CM:c-eq-zero-iL, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is 2(s + e + 1).

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contet-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] = source2[k]
test-flag[k] - 1

else
test-flag[k] - 0

Two operands are compared as complex numbers. The first operand is a memory field; the
second is a memory field or an immediate value. The test-flag is set if the first operand is
equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and - are considered to be equal.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

177

Definition

EQ

F-EQ

Compares two floating-point source values. The test-flag is
wise is cleared.

set if they are equal, and other-

Formats CM:f-eq-1L
CM:f-eq-constant-lL
CM:f-eq-zero-lL

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-eq-zero-lL, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel[k] = source2[k]
test-flag[k] 1

else
test-flag[k] - 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and -O are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

178

Definition

EQ

S-EQ

Compares two signed integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM:s-eq-lL sourcel, source2, len
CM:s-eq-2L sourcel, source2, slenl, slen2
CM:s-eq-constant-lL sourcel, source2-value, len
CM:s-eq-zero-lL sourcel, len

Operands sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-eq-zero-lL, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] = source2[k] then
test-flag[k] 1

else
test-flag[k] 0

Two operands are compared as signed integers. Operand source1 is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

179

EQ

U-EQ
Compares two unsigned integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM: u-eq-1L
CM: u-eq-2L
CM: u-eq-constant-IL
CM: u-eq-zero-lL

sourcel, source2, len
sourcel, source2, slenl, slen2
sourcel, source2-value, len
sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM: u-eq-zero-IL, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] = source2[k] then
test-flag[k] 1

else
test-flag[k] 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is equal to the second operand, and is cleared otherwise.

180

Definition

EQ

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

181

EXP
::;::3:::::: i :i:: :::: :::::: ::::::::::::: :::::i:i::::i::: :~:(:~:! ' :,:'i:::i:::i:: :::::::::::::::::

C-EXP

The exponent of the complex source field is stored in the complex destination field.

Formats CM:c-exp-1
CM: c-exp-2

Operands dest

-1L dest/source, s, e
-1L dest, source, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - exp source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

The value el is stored into the dest field, where s is the value of the source field, and e is
the base of the natural logarithms; e z 2.718281828...

182

Definition

EXP

F-EXP

Calculates, in each selected processor, the exponential function e of the floating-point
source field and stores it in the floating-point destination field.

Formats CM:f-exp-1-
CM:f-exp-2-

Operands dest

-1L dest/source, s, e
-1L dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source[k] = +oo then
dest[k] -- +oo

else if source[k] = -oo then
dest[k] - +0

else
dest[k] exp source[k]

if (overflow occurred in processor k) then oerflow-flag[k] 1

Call the value of
2.718281828... is

the source field s; the value e' is stored into the dest field, where e ,:
the base of the natural logarithms.

183

Definition

EXTRACT-MULTI-COORDINATE

FE-EXTRACT-MULTI-COORDINATE

Calculates, on the front end, the NEWS multi-coordinate of a processor specified by send-
address. A multi-coordinate is needed in order to use the CM: multispread-copy-lL instruc-
tion.

Formats result - CM:fe-extract-multi-coordinate geometry, axis-mask, send-address

Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used.

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

Result An unsigned integer, the NEWS multi-coordinate of the specified processor
along the specified axes.

Context This operation is performed on the front end. It does not depend on the CM
context-flag.

Definition Let axis-set = { m I 0 < m < r A (axis-mask(m) = 1) }
Return extract-multi-coordinate(geometry, axis-set, send-address)

where extract-multi-coordinate is as defined on page 44.

This function calculates, entirely on the front end, the NEWS multi-coordinate of a processor
along specified NEWS axes. The axes are indicated by the axis-mask argument; the processor
is identified by its send-address.

184

EXTRACT-N EWS-COORDINATE

EXTRACT-NEWS-COORDINATE

Determines the NEWS coordinate of a processor specified by send-address.

Formats CM:extract-news-coordinate-lL geometry, dest, axis, send-address, dlen

Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used.

dest The field ID of the unsigned integer destination field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

send-address The field ID of the send address field. For each processor,
this identifies the send address of some other processor.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - extract-news-coordinate(geometry, axis, send-address)

where extract-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the NEWS coordinate of a processor
along a specified NEWS axis. The axis is indicated by the axis argument; the processor is
identified by its send-address.

185

EXTRACT-N EWS-COORDINATE

FE-EXTRACT-NEWS-COORDINATE

Calculates, on the front end, the NEWS coordinate of a processor specified by send-address.

Formats result -- CM:fe-extract-news-coordinate geometry, axis, send-address

Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

Result An unsigned integer, the NEWS coordinate of the specified processor along the
specified axis.

Context This operation is performed on the front end. It does not depend on the CM
context-flag.

Definition Return extract-news-coordinate(geometry, axis, send-address)

where extract-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the NEWS coordinate of a processor along
a specified NEWS axis. The axis is indicated by the axis argument; the processor is identified
by its send-address.

186

FFT

DEALLOCATE-FFT-SETU P

Deallocates a front-end setup descriptor that has been used to prepare information for
execution of an FFT routine.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. A more efficient set of FFT routines are included in the CM
Scientific Subroutines Library.

Formats CMSSL: deallocate-fFt-setup setup-id

Operands setup-id The ID of the FFT setup descriptor to be deallocated.

Context This is a front-end operation. It does not depend on the value of the context-
flag.

This routine may be used to remove an FFT setup descriptor when it is no longer needed.
The setup-id argument must have been obtained by a call to CMSSL:c-ft-setup.

An fft setup descriptor occupies memory both on the front end and on the Connection
Machine. It is therefore wise to free this space by calling CMSSL:deallocate-fft-setup after
completion of all FFT routines that use the specified setup descriptor.

187

FFT

C-C-FFT

The Discrete Fourier Transform of the complex source field is calculated using a Fast Fourier
Transform (FFT) algorithm. The complex result is stored in the destination field.

A Fourier transform routine converts (possibly multidimensional) sequences between the
time or space domain and the frequency domain. This type of transform has a variety
of useful applications. For example, an FFT can be used to filter discrete signals, to
smooth input data or output images, to interpolate or extrapolate from a given data set,
to measure the correlation between two samples, or to multiply polynomials and extremely
large integers.

The Fast Fourier Transform is called a fast transform because it exhibits O(N log N) com-
plexity, where O is the order of complexity and N is the length of the input sequence. By
comparison, the Discrete Fourier Transform exhibits only O(N 2) complexity.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix c-c- to signify that single-precision
complex operands are involved. A more efficient set of FFT routines are included in the cM
Scientific Subroutines Library.

Formats CMSSL:c-c-fft dest, source, setup, ops, source-bit-order, dest-bit-order,
source-cm-order, dest-cm-order, scale

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

setup The setup-id. This must be a setup ID returned by CMSSL:c-fft-
setup. The geometry information of the setup must be identical to
that of the source and destination fields.

ops A front-end vector of operation identifiers. Each element spec-
ifies whether the corresponding source axis is transformed and,
if so, by what method. Valid vector element values are :f-xform
(FFTfxform in C; 1 in Fortran) for a forward transform, :i-xform
(FFTi xfrom in C; 2 in Fortran) for an inverse transform, and : nop
(FFT-nop in C; 0 in Fortran) for no transform.

source-bit-order A front-end vector of input bit orderings. Each element iden-
tifies the bit ordering of the corresponding source axis and must
be either :normal or :bit-reversed. (The corresponding values are
are FFTnormal and FFTbit-reversed in C, and 0 and 1 in Fortran,
respectively.)

dest-bit-order A front-end vector of output bit orderings. Each element
identifies the bit ordering of the corresponding destination axis

188

FFT

and must be either :normal or :bit-reversed. (The corresponding
values are are FFT-normal and FFT.bitreversed in C, and 0 and 1
in Fortran, respectively.)

source-cm-order A front-end vector of input orderings. Each element
declares the addressing mode of the corresponding source axis and
must be one of the following: :send-order, :news-order, or :default.
(The corresponding values are FFTsendorder, FFTnewsorder,
and FFT-default in C, and 1, 2, and 0 in Fortran, respectively.)

A value of :default causes the current ordering of an axis to be
used.

dest-cm-order A front-end vector of output orderings. Each element
declares the addressing mode of the corresponding destination
axis and must be one of the following: :send-order, :news-
order, or :default. (The corresponding values are FFT-sendorder,
FFT-news-order, and FFT-default in C, and 1, 2, and 0 in Fortran,
respectively.)

A value of :default causes the current ordering of an axis to be
used.

scale A front-end vector of output scaling methods. Each element spec-
ifies whether the corresponding destination axis is rescaled and,
if so, by what method. Valid values are :noscale for no rescaling,
:scale-sqrt for scaling by the inverse square root of the FFT, and
:scale-n for scaling by the inverse of the size of the FFT. (The corre-
sponding values are FFT.noscale, FFT-scale-sqrt, and FFTscale.n
in C, and 0, 1, and 2 in Fortran, respectively.)

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format. FFT performance is slightly better if the two fields are identical.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
dest[k] - FFT(source[k])

The Discrete Fourier Transform of the source field is stored in the dest field. A multi-
dimensional transform is computed by performing the transform across each dimension in
sequence.

The source and destination fields must either belong to the same VP set or to VP sets of
identical shape and size.

189

FFT

The ops, source-bit-order, dest-bit-order, source-cm-order, dest-cm-order, and scale argu-
ments are one-dimensional front-end arrays. The length of each is equal to the rank of the
setup geometry.

By convention, a Fast Fourier Transform operation reverses the order of the data bits when
storing the result in the destination. The vectors source-bit-order and dest-bit-order specify
whether the source and destination data are treated as normal or as bit-reversed.

Along any given dimension of the data's geometry, the Connection Machine FFT instruction
is most efficient for data arranged in send order. Many FFT applications do not depend
on the order of the data elements. The dest-cm-order and source-cm-order arguments are
therefore provided to permit the most efficient execution possible along each dimension.

C/Paris code that calls the Paris FFT routine must include the line

*include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris FFT.

Fortran/Paris code should include the line

INCLUDE '/usr/include/cm/cmssl-paris-fort.h'

at the top of any program unit that calls the Paris FFT.

190

FFT
... . > I .I."I,, ..:. .I., . '.- - : ; . , -:·.·:·..:I::::::::::::::.::: :·:·.·.·.·.·.·;;.;·.:.:.:.:.X:':.:·. :·~~~~~~~~~0):: ~~:~~:;~,. ...·...,,·...;,..,·'·:''5' :·:·:·:·:::·~~~~~~·:·:·:·:·:;:::;::·: ·········i······ :·:·:·:·::·:·:·:·::·: ·~~~~~~ ::: 2 ·. ·..

C-FFT-SETUP

Allocates a front-end setup descriptor for use with the CMSSL:fft Fast Fourier Transform
routines and returns a setup ID.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix c- to signify that single-precision complex
operands are involved. A more efficient set of FFT routines are included in the CM Scientific
Subroutines Library.

Formats result +- CMSSL: c-fft-setup geometry-id

Operands geometry A geometry ID.

Result The ID of the newly created FFT setup descriptor.

Context This is a front-end operation. It does not depend on the value of the contezt-
flag.

This routine computes information needed to perform a Fast Fourier Transform (FFT),
stores it in an FFT setup descriptor, and return the setup-id.

In Lisp/Paris, a setup ID is a structure of type CMSSL:fft-setup. In C/Paris, it is a pointer
to a structure of type FFT.fft.setupt. In Fortran/Paris it is an integer.

The geometry argument must be a geometry ID returned by a call to CM:create-geometry,
CM:create-detailed-geometry, intern-geometry, or intern-detailed-geometry.

The returned setup ID is a valid value for the setup argument to any CMSSL FFT routine
if the following requirement is obeyed. The geometries of the FFT source and destination
fields must be identical to that of the setup geometry.

This routine must be reinvoked whenever the geometry of an FFT source field VP set is
changed. CMSSL:c-fft-setup allocates memory both on the front end and on the CM. To free
this memory, use CMSSL:deallocate-fft-setup.

C/Paris code that calls the Paris FFT routine must include the line

#include <cm/cmtypes.h>

at the top of the main program file. This
constants, including those for the Paris FFT.

declares all C/Paris functions and symbolic

191

FFT

Fortran/Paris code should include the line

INCLUDE '/usr/include/cm/cmssl-paris-fort.h'

at the top of any program unit that calls the Paris FFT.

192

FIELD-VP-SET
:.:.::::::::::::.::::::::::::::::

FIELD-VP-SET

Returns the vP set associated with a field.

Formats

Operands

Result

Context

result +- CM:field-vp-set field

field The field ID of the field.

A VP set ID, identifying the vP set to which the field belongs.

This operation is unconditional. It does not depend on the context-flag.

Definition Return vp-set(field)

This operation may be used to determine the vP set with which any given field is associated.
The field need not belong to the current vP set.

193

FLOAT
::: ; : : : ; : - ; : ; . . : ; : :::-:: ::: :::::: :::: :::. ::::.::::::.;:~:; ~.:.:

F-S-FLOAT

Converts a signed integer field into a floating-point number field.

Formats

Operands

Overlap

Flags

Context

Definition

CM:f-s-float-2-2L dest, source, slen, s, e

dest The field ID of the floating-point destination field.

source The field ID of the signed integer source field.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

The fields dest and source must not overlap in any manner.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if contet-flag[k] = 1 then

dest[k] source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The source field, treated as a signed integer, is converted to a floating-point number, which
is stored into the dest field.

194

Converts an

F-U-FLOAT

unsigned integer field into a floating-point number field.

Formats

Operands

Overlap

Flags

Context

Definition

CM:f-u-float-2-2L dest, source, slen, s, e

dest The field ID of the floating-point destination field.

source The field ID of the unsigned integer source field.

slen The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

The fields dest and source must not overlap in any manner.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] -- source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

The source field, treated as an unsigned integer, is converted to a floating-point number,
which is stored into the dest field.

195

FLOAT
.: .: : : : ..:... .:

FLOOR

F-F-FLOOR

In each selected processor, calculates the largest integer that is not greater than a specified
floating-point value and stores the result as a floating-point field.

Formats CM:f-f-floor-l-1L
CM:f-f-floor-2-1L

Operands dest The

dest/source, s, e
dest, source, s, e

field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- Lsource[k]I

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of -oo, which is stored into the dest field as a floating-point number.

Note that overflow cannot occur.

196

Definition

FLOOR

S-FLOOR

The floor of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:s-floor-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-floor-2- L dest/sourcel, source2, len
CM: s-floor-3-lL dest, sourcel, source2, len
CM: s-floor-constant-2- 1L dest/sourcel, source2-value, len
CM: s-floor-constant-3- 1L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer quotient field.

sourcel The field ID of the signed integer dividend field.

source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-floor-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl For CM:s-floor-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slen2 For CM:s-floor-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

197

FLOOR

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k]- uce
source2k]J

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0
if source2[k] = 0 then

test[k] 1
else test[k] - 0

The signed integer sourcel operand is divided by the signed integer source2 operand. The
floor of the mathematical quotient is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

198

FLOOR
:::::' *:::::::::::':: :::::::::::::::::: : : * :::::::::::::*: : :::: : :.:.:........... .

S-F-FLOOR

Calculates, in each selected processsor, the largest integer that is not greater than a specified
floating-point value and stores the result as a signed integer field.

Formats CM:s-f-floor-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.

source The field ID of the floating-point source field.

len

s, e

The length of the dest field. This must be no smaller
no greater than CM: *maximum-integer-length*.

The significand and exponent lengths for the source
total length of an operand in this format is s + e + 1.

than 2 but

field. The

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - Lsource[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] 4- 0

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of -oo, which is stored into the dest field as a signed integer.

199

Definition

FLOOR
~~~~~~~~~~. .... . .. ... ..... .. ... ......

U-FLOOR

The floor of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM: u-floor-3-3L
CM:u-floor-2-1L
CM: u-floor-3-lL
CM: u-floor-constant-2-lL
CM: u-floor-constant-3-1L

Operands dest

dest, sourcel, source2, dlen, slenl, slen2
dest/sourcel, source2, len
dest, sourcel, source2, len
dest/sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the unsigned integer quotient field.

sourcel The field ID of the unsigned integer dividend field.

source2 The field ID of the unsigned integer divisor field.

source2-value An unsigned integer immediate operand to be used as the
second source.

dlen

slenl

slen2

For CM:s-floor-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM:s-floor-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

For CM:s-floor-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition

200

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - source2[k] ]



FLOOR

if (overflow occurred in processor k) then overflow-flag[k] ,- 1
else overflow-flag[k] - 0

if source2[k] = 0 then
test[k] 1

else test[k] - O0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The floor of the mathematical quotient is stored into the unsigned integer memory field
dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

201



FLOOR
:: : :::: :::::::::: :::::::::s: ::::::: .......... - -::::s:::::: .......:-::::s: : s::::::s:: s ::::::::::: ::::: 

U-F-FLOOR

Converts floating-point source field values into unsigned integers by rounding towards -oo.

irmats CM: u-f-floor-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest - Lsource]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of -oo. The result is stored into the dest field as an unsigned integer.

202

Fc

Definition



FROM-GRAY-CODE

FE-FROM-GRAY-CODE

Calculates, on the front end, the Gray code representation of a specified integer.

Formats result +- CM:fe-from-gray-code code

Operands code An unsigned integer immediate operand to be used as the Gray
encoding, represented as a nonnegative integer.

Result An unsigned integer, the nonnegative integer represented by code.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let n = integer-length(code)

Return ED- code 
j=O 23i

This function calculates, entirely on the front end, the integer represented by a bit-string
encoding code in a particular reflected binary Gray code.

Note that the binary value 0 is always equivalent to a Gray code string that is all 0-bits.

203



FROM-GRAY-CODE
: ::: : :: ::.: ::::::::. .......... : :: ::::::::: : ............. ....

U-FROM-GRAY-CODE

Converts a bit string representing a Gray-coded integer value to the usual unsigned binary
representation.

Formats CM: u-from-gray-code-1-lL
CM: u-from-gray-code-2-1L

Operands dest

dest/source, len
dest, source, len

The field ID of the unsigned integer destination field.

source The field ID of the source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

for j from len - 1 to 0 do

dest[k](j) source[k](i)j
i=j

The source operand is considered to be a value in a particular reflected binary Gray code.
The position of that value in the standard Gray code sequence is calculated as an unsigned
binary integer. This is done as follows: bit i of the result is 1 if and only if all the bit
positions of the source to the left of (and including) bit i contain an odd number of l's.

Note that a Gray code string that is all 0-bits is always equivalent to the binary value 0.

204



GE

F-GE

Compares two floating-point source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:f-ge-lL
CM:f-ge-constant-1L
CM:f-ge-zero-lL

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-ge-zero-iL, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] > source2[k]
test-flag[k] 1

else
test-flag[k] o 0

Two operands are compared as floating-point numbers. The first operand is a memory
field; the second is a memory field or an immediate value. The test-flag is set if the first
operand is greater than or equal to the second operand, and is cleared otherwise. Note that
comparisons ignore the sign of zero; +0 and -0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

205

Definition



GE

S-GE

Compares two signed integer source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:s-ge-1L sourcel, source2, len
CM:s-ge-2L sourcel, source2, slenl, slen2
CM:s-ge-constant-IL sourcel, source2-value, len
CM:s-ge-zero-lL sourcel, len

Operands sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-ge-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel[k] > source2[k] then
test-flag[k] 1

else
test-flag[k] 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is greater than or equal to the second operand, and is cleared otherwise.

206



GE

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

207



GE

U-GE
Compares two unsigned integer source values. The test-flag is set if the first is greater than
or equal to the second, and otherwise is cleared.

Formats CM:u-ge-lL
CM: u-ge-2L
CM: u-ge-constant-IL
CM: u-ge-zero-lL

Operands sourcel

sourcel, source2, len
sourcel, source2, slenl, slen2
sourcel, source2-value, len
sourcel, len

The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-ge-zero-lL, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] > source2[k] then
test-flag[k] - 1

else
test-flag[k] - 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is greater than or equal to the second operand, and is cleared otherwise.

208

Definition



GE

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as* the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

209



GEO METRY-AXIS-LENGTH
::::.::::....:::: s:::::::::::::::::: : .. : :.

GEOMETRY-AXIS-LENGTH
Returns the length of one axis of a geometry.

Formats

Operands

Result

Context

Definition

result - CM:geometry-axis-length geometry-id, axis

geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose lengthis de-
sired.

An unsigned integer, the length of the indicated axis.

This operation is unconditional. It does not depend on the context-flag.

Return axis-descriptors(geometry-id)[axis].length

This operation returns the length of the specified axis of the geometry specified by the
geometry-id.

210



GEOMETRY-AXIS-OFF-CHIP-BITS

GEOMETRY-AXIS-OFF-CHIP-BITS

Returns the number of off-chip bits that are allocated for the specified NEWS axis within
the off-chip bits portion of a send address associated with the specified geometry.

Formats result - CM:geometry-axis-off-chip-bits geometry-id, axis

Operands geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose off-chip bits
count is desired. This must be between 0 and the rank of the
geometry minus one. Note that vP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the count of the off-chip bits associated with the specified
axis. If axis has no off-chip bits, the result is 0.

Context This operation is unconditional. It does not depend on the context-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vP bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The vP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates how many of the off-chip bits within the off-chip bits partition
are used in the send addresses of virtual processors that lie along the specified dimension.

Note that the integer returned does not indicate the total number of all off-chip bits within
the send address but the number of off-chip bits used for a particular dimension.

211



GEOM ETRY-AXIS-OFF-C H IP-POS
.:: ..::: ..:::: . .::::::::::::::::::. ... .................... :: ::..................... ....... ... .. ......

GEOMETRY-AXIS-OFF-CHIP-POS
Returns the starting position for the off-chip bits that are allocated for the specified NEWS
axis within the off-chip bits portion of a send address associated with the specified geometry.

Formats result +- CM:geometry-axis-off-chip-pos geometry-id, axis

Operands geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose off-chip bits
position is desired. This must be between 0 and the rank of the
geometry minus one. Note that vP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the location in the send address of the first off-chip bit
associated with the specified axis. This is zero-based; the first location is
numbered 0.

Context This operation is unconditional. It does not depend on the context-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vP bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The vP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates where, within the off-chip bits partition, the off-chip bits for the
specified dimension lie.

Note that the integer returned does not indicate the absolute position of all off-chip bits
within the send address but the position of the off-chip bits for a particular dimension
relative to the start of all off-chip bits in an address.

212



GEO M ETRY-AXIS-ON-CH IP-B ITS

GEOMETRY-AXIS-ON-CHIP-BITS

Returns the number of on-chip bits that are allocated for the specified NEWS axis within
the on-chip bits portion of a send address associated with the specified geometry.

Formats result - CM:geometry-axis-on-chip-bits geometry-id, axis

Operands geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose on-chip bits
count is desired. This must be between 0 and the rank of the
geometry minus one. Note that vP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the count of the on-chip bits associated with the specified
axis. If axis has no on-chip bits, the result is 0.

Context This operation is unconditional. It does not depend on the context-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vP bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The vP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates how many of the on-chip bits within the on-chip bits partition
are used in the send addresses of virtual processors that lie along the specified dimension.

Note that the integer returned does not indicate the total number of all on-chip bits within
the send address but the number of on-chip bits used for a particular dimension.

213



G EO METRY-AXIS-O N-CH IP-POS

GEOMETRY-AXIS-ON-CHIP-POS

Returns the starting position for the on-chip bits that are allocated for the specified NEWS
axis within the on-chip bits portion of a send address associated with the specified geometry.

Formats result - CM:geometry-axis-on-chip-pos geometry-id, azis

Operands geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose on-chip bits
position is desired. This must be between 0 and the rank of the
geometry minus one. Note that vP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the location in the send address of the first on-chip bit
associated with the specified axis. This is zero-based; the first location is
numbered 0.

Context This operation is unconditional. It does not depend on the context-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and VP bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The vP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates where, within the on-chip bits partition, the on-chip bits for the
specified dimension lie.

Note that the integer returned does not indicate the absolute position of all on-chip bits
within the send address but the position of the on-chip bits for a particular dimension
relative to the start of all on-chip bits in an address.

214



GEOM ETRY-AXIS-ORDERING
' :: : ' : :: :: : ':: ::' '::' :::: .... ... '.'.'.::'. . :::::... .. . . . ..............-. . ... ; . _ . ... . .... a......I..... .. . - , ::: . .. %s ·c·: · .... . . ..::

Returns the

Formats

Operands

Result

Context

Definition

GEOMETRY-AXIS-ORDERING

ordering of one axis of a geometry.

result - CM:geometry-axis-ordering geometry-id, axis

geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose ordering is
desired.

The ordering of the specified axis (either :news-order or :send-order).

This operation is unconditional. It does not depend on the context-flag.

Return azis-descriptors(geometry-id)[azis]. ordering

This operation returns the ordering of the specified axis of the geometry specified by the
geometry-id.

215



GEOMETRY-AXIS-VP-RATIO
. i::: . .:::: . .... :: .: ....... . ...

Returns the

Formats

Operands

Result

Context

Definition

GEOMETRY-AXIS-VP-RATIO

vP ratio of one axis of a geometry.

result - CM:geometry-axis-vp-ratio geometry-id, axis

geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose VP ratio is
desired.

An unsigned integer, the vP ratio of the indicated axis.

This operation is unconditional. It does not depend on the context-flag.

Return axis-descriptors(geometry-id)[axis].vp-ratio

This operation returns the vP ratio of the specified axis of the geometry specified by the
geometry-id.

216



GEOMETRY-COORDINATE-LENGTH

GEOMETRY-COORDINATE-LENGTH

Returns the number of bits needed to represent a NEWS coordinate.

Formats result - CM:geometry-coordinate-length geometry-id, axis

Operands geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose coordinate
length is desired.

Result An unsigned integer, the number of bits required to represent a coordinate
for the indicated axis.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return integer-length(axis-descriptors(geometry-id)[axis].length - 1)

This operation returns the number of bits required to represent (as an unsigned integer) a
NEWS coordinate for the specified axis of the geometry specified by the geometry-id.

217



GEOMETRY-RANK
:::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::

Returns the

Formats

Operands

Result

Context

Definition

GEOMETRY-RANK

number of axes for a geometry.

result CM:geometry-rank geometry-id

geometry-id A geometry ID.

An unsigned integer, the rank (number of axes) of the specified geometry.

This operation is unconditional. It does not depend on the context-flag.

Return rank(geometry)

This operation returns the number of grid axes for the geometry specified by the
geometry-id.

218



GEOMETRY-SEN D-ADDRESS-LENGTH

GEOMETRY-SEND-ADDRESS-LENGTH

Returns the number of bits needed to represent a send-address.

Formats result - CM:geometry-send-address-length geometry-id

Operands geometry-id A geometry ID.

Result An unsigned integer, the number of bits required to represent a send-address
for a processor in the specified geometry.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let n = rank(geometry-id)
n-1

Return E integer-length( axis-descriptors(geometry-id)[j].length - 1)
j=O

This operation returns the number of bits required to represent a send-address for a virtual
processor in any VP set whose geometry is the one specified by the geometry-id. This will
be equal to the sum of the numbers of bits needed to represent NEWS coordinates for all
the axes.

219



GEO M ETRY-SERIAL-N U M BER

GEOMETRY-SERIAL-NUMBER

Assigns a unique number to the specified geometry.

Formats result +- CM:geometry-serial-number geometry-id

Operands geometry-id A geometry ID. This geometry ID must be obtained by call-
ing CM:create-geometry or CM:create-detailed-geometry.

Result The serial number that uniquely identifies the geometry.

Context This operation is unconditional. It does not depend on the context-flag.

A unique number, the serial number, is assigned to the specified geometry. This facilitates
geometry-based caching; geometry serial numbers are useful as hash table keys.

Note that geometry ID's are not unique identifiers. After a geometry is deallocated, its ID

may be reused for another geometry. In contrast, geometry serial numbers are guaranteed
to be unique.

220



GEOMETRY-TOTAL-PROCESSORS
:::::::::::::i:::::·:::·:·:·:.·:·:::: :·:::::::::: :: , -: . :,:., .. :: : :::

Returns the

Formats

Operands

Result

Context

Definition

GEOMETRY-TOTAL-PROCESSORS

number of virtual processors for a geometry.

result - CM: geometry-total-processors geometry-id

geometry-id A geometry ID.

An unsigned integer, the total number of processors in the specified geometry.

This operation is unconditional. It does not depend on the contezt-flag.

Let n = rank(geometry-id)
n-1

Return n axis-descriptors(geometry-id)[j].length
j=o

This operation returns the total number of virtual processors in any vP set whose geometry
is the one specified by the geometry-id. This will be equal to the product of the lengths of
all the axes.

221



GEOMETRY-TOTAL-VP-RATIO

GEOMETRY-TOTAL-VP-RATIO
Returns the total VP ratio for a specified geometry.

Formats result - CM:geornmetry-total-vp-ratio geometry-id

Operands geometry-id A geometry ID.

Result An unsigned integer, the number of virtual processors represented within each
physical processor for the specified geometry.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let n = rank(geometry-id)
n-1

Return r azis-descriptor(geometry-id)[j].vp-ratio
j=o

This operation returns the total vP ratio for a specified geometry. This is equal to the
total number of virtual processors for the geometry, divided by the total number of physical
processors.

222



GET
~~~~~~~~~~~~~~~~~~~~~~~~~~~~. . . . . .. . ... . .. S

:·:: '''' ~ ~ ~ ~ ~ :~~0:. ~ ~ .;; .·;·;rs~~~~~ ~~;.... :::::. ::,. '- -..........: .: :.: · , ;%1. I 1. . . X . .1 X .I .1 . . % ... I.. . . : .: ·; ;·

GET

Each selected processor gets a message from a specified source processor, possibly itself. A
source processor may. supply messages even if it is not selected. Messages are all retrieved
from the same memory address within each source processor, and all the source processors
may be in a vP set different from the vp set of the destination processors.

Formats CM:get-1L dest, send-address, source, en

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates from which processor a message is retrieved.

source The field ID of the source field.

len The length of the dest and source fields.

Overlap The send-address and dest may overlap in any manner. Similarly, the send-
address and source may overlap in any manner. However, it is forbidden for
the dest and source to overlap.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - source[send-address[k]]

For every selected processor pd, a message length bits long is sent to Pd from the processor p,
whose send-address is in the field send-address in the memory of processor Pd. The message
is taken from the source field within processor p, and is stored into the field at location
dest within processor Pd. Although the send-address operand is a field in the vP set of the
destination processors, its value must specify a valid send address for source, which may
belong to a different vP set.

Note that more than one selected processor may request data from the same source processor
p,, in which case the same data is sent to each of the requesting processors.

223

GET-AREF32

GET-AREF32

Each selected processor gets a message from a specified array field within any specified
source processor (possibly itself). A source processor may supply messages even if it is
not selected. Messages are all retrieved from the same memory address within each source
processor.

Formats CM:get-aref32-2L dest, send-address, array, index, dlen, index-len, index-limit

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates from which processor a message is retrieved.

array

index

dlen

The field ID of the source array field. This must be stored in the
special format required by CM: aref32.

The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of dlen.

The length of the dest field.

index-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the extent
of array.

Overlap The send-address and array may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
array and dest to overlap.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index[k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = [k] mod 32
let i = indez[k]
for all j such that 0 < j < dlen do

let q = send-address[k] - m x r + (j mod 32) x r

224

GET-AREF32

let b = i + 3'2J

dest[k](j) ,- array[q](b)
else

(error)

For every selected processor Pd, a message length bits long is sent to Pd from the processor p,
whose send-address is in the field send-address in the memory of processor pd. The message
is taken from the array field within processor p, as if by the operation aref32 and is stored
into the field at location dest within processor Pd.

Note that more than one selected processor may request data from the same source processor
p,, possibly from different locations within the array. Note also that in each case the array
element to be sent from processor p, to processor Pd is determined by the value of index
within Pd, not the value within p,.

225

GET-FROM-N EWS

GET-FROM-NEWS

Each processor gets a message from a specified neighbor processor.

Formats CM:get-from-news-1L dest, source, axis, direction, len
CM:get-from-news-always-IL dest, source, axis, direction, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operation is conditional. The destination may be altered only
in processors whose context-flag is 1.

The always operation is unconditional. The destination may be altered re-
gardless of the value of the context-flag.

Note that in the conditional case the storing of data depends only on the
context-flag of the processor receiving the data, not on the context-flag of the
processor from which the data is obtained.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let g = geometry(current-vp-set)
dest[k] - source[news-neighbor(g, k, axis, direction)]

where news-neighbor is as defined on page 40.

The dest field in each processor receives the contents of the source field of that processor's
neighbor along the NEWS axis specified by axis in the direction specified by direction.

If direction is :upward then each processor retrieves data from the neighbor whose NEWS

coordinate is one greater, with the processor whose coordinate is greatest retrieving data
from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less, with the processor whose coordinate is zero retrieving data from the
processor whose coordinate is greatest.

226

GET-FROM-POWER-TWO
:::::::::::: :: :::: ::::::::. :::............ ... ::::::::::::::.::: :::::::: ::::::::::::: :::::::::::::

GET-FROM-POWER-TWO

Each processor gets a message from a processor that is a specified distance away in the
NEWS grid. The distance must be a power of two.

Formats CM: get-from-power-two- 1L
CM: get-from-power-two-always- L

Operands dest

dest, source, axis, log-2-distance, direction, len
dest, source, axis, log-2-distance, direction, len

The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

log-2-distance An unsigned integer immediate operand to be used as the
base 2 logarithm of distance, where distance must be a power of
2.

direction Either :upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Note that in the conditional case data storage depends only on the context-flag
of the processor receiving the data, not on the context-flag of the processor
from which the data is obtained.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let g = geometry(current-vp-set)
dest[k] - source[news-relative(g, k, axis, direction, log-2-distance)]

where news-relative is defined in the NEWS Communication section of the
Instruction Set Overview chapter.

The dest field in each processor receives the contents of the source field of that processor's
relative along the NEWS axis specified by axis, in the direction specified by direction, and
at the distance specified by log-2-distance.

227

GET-FROM-POWER-TWO
.i . ~.::::k:·:····:···:·:·:·::: .:...:: .:·:·:·:·: :::::s :· ::i:::i::::i::::ii:::i:::i~: :::::·:: ··:: :::::: . . ::::.. . 1 1 . .. -............,::.:.

The immediate operand log-2-distance, is log2 distance, where distance is the distance, along
axis axis, between each destination processor and the source processor from which it re-
trieves data. In terms of this operand, distance is 2log-2-di'tance

If direction is :upward then each processor retrieves data from a relative whose NEWS coor-
dinate is (coordinate + distance mod azis-length). For most processors, this means getting
from a processor whose coordinate is greater. The GET wraps around however; the pro-
cessor whose coordinate is greatest retrieves data from the processor whose coordinate is
(0 + distance).

If direction is :downward then each processor retrieves data from a relative whose NEWS

coordinate is (coordinate - distance mod axis-length). For most processors, this means
getting from a processor whose coordinate is less. The GET wraps around however; the
processor whose coordinate is zero retrieves data from the processor whose coordinate is
(max-coordinate(azis) - distance).

228

GLOBAL-ADD
.....................

GLOBAL-C-ADD

The sum of the values in the complex source field is returned to the front end as a complex
number.

Formats result - CM:global-c-add-lL source, s, e

Operands source The field ID of the complex source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e + 1).

Result A complex number, the sum of the source field.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let P = {m O < m < CM: *user-send-address-limit* }
Let S = { m I m E P A context-flag[m] = 1 }
If ISI=0 then

return +0 to front end
else

return (m source[m) to front end

The CM:global-c-add-1L operation sums the source field values from all selected processors,
treated as complex numbers. The sum is sent to the front-end computer as a complex
number and returned as the result of the operation. If there are no selected processors,
then the value +0 is returned.

229

GLOBAL-ADD

GLOBAL-F-ADD

One floating-point number is examined in every selected processor, and the sum of all these
fields is returned to the front end as a floating-point number.

Formats result - CM:global-f-add-1L source, s, e

The field ID of the floating-point source field.

The significand and exponent lengths for the
total length of an operand in this format is s +

source field. The
e+1.

A floating-point number, the sum of the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends
sors whose context-flag is 1.

only upon proces-

Let S = { m I m E current-vp-set A context-flag[m] = 1 }
If ISI = 0 then

return +0 to front end
else

return (S source[m]) to front end

The CM:global-f-add operation sums the source fields, treated as floating-point numbers,
in all selected processors. The sum is sent to the front-end computer as a floating-point
number and returned as the result of the operation. If there are no selected processors,
then the value +0 is returned.

230

Operands source

s, e

Result

Definition

GLOBAL-ADD

GLOBAL-S-ADD

One signed integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as a signed integer.

Formats result -- CM:global-s-add-lL source, len

Operands source

len

Result

The field ID of the signed integer source field.

The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

A signed integer, the sum of the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Let S = { m I m E current-vp-set A context-flag[m] = 1 }
If ISI = 0 then

return 0 to front end
else

return (mES source[m] to front end
mES

The CM:global-s-add operation sums the source fields, treated as signed integers, in all
selected processors. The sum is sent to the front-end computer as a signed integer and
returned as the result of the operation. If there are no selected processors, then the value
0 is returned.

231

Definition

GLOBAL-ADD
: :::::: -:: :'..::' :::': ' :Ii: : :: ' : : : ' : : : : :::::::: : :

.. ::, : 1.:: . :: :.:.:" X : :..: :.. .-.·. ·.··. .. .

GLOBAL-U-ADD

One unsigned integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-add-IL source, len

Operands source

len

Result

The field ID of the unsigned integer source field.

The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

An unsigned integer, the sum of the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends
sors whose context-flag is 1.

only upon proces-

Let S = { m I m E current-vp-set A context-flag[m] = 1 }
If IS] = 0 then

return 0 to front end
else

return (,S source[m]) to front end
mES

The CM: global-u-add operation sums the source fields, treated as unsigned integers, in all
selected processors. The sum is sent to the front-end computer as an unsigned integer and
returned as the result of the operation. If there are no selected processors, then the value
0 is returned.

232

Definition

GLOBAL-COUNT-BIT

GLOBAL-COUNT-BIT
One bit is examined in every selected processor, and the count of bits that are 1 is delivered
to the front end.

Formats result - CM:global-count-bit source
result - CM:global-count-bit-always source

Operands source The field ID of the source bit (a one-bit field).

Result An unsigned integer, the number of 1 bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operations are conditional. The result returned depends only
upon processors whose context-flag is 1.

The always operations are unconditional. The result returned does not depend
on the contezt-flag.

Definition If always then
let S = (m I m E current-vp-set A source[m] = 1 }

else
let S = { m m E current-vp-set A context-flag[m] = 1 A source[m] = 1 }

return ISI to front end

The CM: global-count-bit operation sums the one-bit bit-source fields in all selected proces-
sors; in other words, it returns a count of how many processors have a 1-bit in that field.
The count is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned.

Using CM:global-count-bit is identical in effect to using CM: global-unsigned-add on a one-bit
field, but may be faster.

233

GLOBAL-COU NT-CONTEXT
:: ::::: ::::: :: : ::::: ::::: ::::::::: ::::::::::::::::: : ::::: :::::::'':: ::: :: :: ::: :' :

GLOBAL-COUNT-CONTEXT

Returns the number of active processors.

Formats result -- CM:global-count-context

Context This operation is unconditional.

Definition Let S = { m I m E current-vp-set A contezt-flag[m] = 1 }
Return SI to front end

The number of processors whose context bit is 1 is returned to the front end.

234

GLOBAL-COUNT-flag
::::::::::::: ::::::::::::::::: :::::::::::: ==....... ===== == = .===== .=======================================.=========================.==========..=========.....================. =========== :./ : :. ··... .:.: ::.::.: : ..

Returns the

GLOBAL-COUNT-flag

number of processors that have a specified flag set.

Formats CM:global-count-test
CM: global-cou nt-overflow

Context This operation is conditional.

Definition Let S = { m I m E current-vp-set A context-flag[m] = 1 A flag[m] = 1 }
Return IS to front end

where flag is test-flag or overflow-flag, as appropriate.

The number of processors for which the specified flag is 1 is returned to the front end.

235

GLOBAL-LOGAN D

GLOBAL-LOGAND
One field is examined in every selected processor, and the bitwise logical AND of all these
fields is returned to the front end as an unsigned integer.

Formats result -- CM:global-logand-1L source, len

Operands source

len

The field ID of the source field.

The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND

of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends
sors whose context-flag is 1.

only upon proces-

Let S = { m I m E current-vp-set A context-flag[m] = 1 }
If IS = 0 then

return 21en - 1 to front end
else

return (A source[m]) to front end
ES

The CM:global-logand operation combines the source fields in all selected processors by
performing bitwise logical AND operations. A bit is 1 in the result field if the corresponding
bit is a 1 in all of the fields to be combined. The resulting combined field is then sent to
the front-end computer as an unsigned integer and returned as the result of the operation.
If there are no selected processors, then the value - 21en - 1 is returned, representing a field
of length len containing all ones.

236

Definition

GLOBAL-LOGAN D-BIT

GLOBAL-LOGAN D-BIT

One memory
zero.

bit is examined in each processor; 1 is returned if they are all 1, 0 if any is

Formats result
result

Operands source

CM:global-logand-bit source
- CM:global-logand-bit-always source

The field ID of the source field.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND

of all the source bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operations are conditional. The result returned depends only
upon processors whose context-flag is 1.

The always operations are unconditional. The result returned does not depend
on the context-flag.

If always then
let S = current-vp-set

else
let S = { m I m E current-vp-set A context-flag[m] = 1 }

If ISI = 0 then
return 1 to front end

else

return A source[m] to front end
mES

The CM:global-logand-bit operation combines the source bits in all selected processors by
performing a bitwise logical AND operation. The result is 1 if all the examined bits are 1;
otherwise the result is 0. The result is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. If there are no selected processors, then the
value 1 is returned.

Using CM:global-logand-bit is identical in effect to using CM:global-logand on a one-bit field,
but may be faster.

237

Definition

GLOBAL-LOGAN D-CONTEXT

GLOBAL-LOGAN D-CONTEXT
Return 1 if all processors are active, 0 if any processor is inactive.

result CM:global-logand-context

This operation is unconditional.

Definition Return (EcAur -- p-,et context-flag[m]) to front end

If all processors are active, then 1 is returned to the front end; otherwise 0 is returned.

238

Formats

Context

GLOBAL-LOGAN D-flag

GLOBAL-LOGAND-flag

Return 1 if a specified flag is set in all processors, 0 if it is clear in any processor.

Formats CM: global-logand-test
CM: global-logand-overflow

Context This operation is conditional.

Definition Let S = { m I m E current-vp-set A context-flag[m] = 1 A flag[m] = 1 }
If ISI = 0 then

return 0 to front end
else

return (A flag[m]) to front end

where flag is test-flag or overflow-flag, as appropriate.

If all processors have the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

239

GLOBAL-LOGIO R

GLOBAL-LOGIOR
One field is examined in every selected processor, and the bitwise logical inclusive oR of all
these fields is returned to the front end as an unsigned integer.

Formats result ,- CM:global-logior-1L source, ten

Operands source

len

The field ID of the source field.

The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
INCLUSIVE OR of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends
sors whose contezt-flag is 1.

only upon proces-

Let S = { m I E current-vp-set A context-flag[m] = 1 }
If IS = O then

return 0 to front end
else

return (mV source[m]) to front end
mES

The CM: global-logior operation combines the source fields in all selected processors by per-
forming bitwise logical INCLUSIVE OR operations. A bit is 1 in the result field if the cor-
responding bit is a 1 in any of the fields to be combined. The resulting combined field is
then sent to the front-end computer as an unsigned integer and returned as the result of
the operation. If there are no selected processors, then the value 0 is returned, representing
a field of length len containing all zeros.

240

Definition

GLOBAL-LOGIOR-BIT

GLOBAL-LOGIOR-BIT

One memory
zero.

bit is examined in each processor; 1 is returned if any is 1, 0 if they are all

Formats result
result

Operands

Result

source

- CM:global-logior-bit
,- CM: global-logior-bit-always

source
source

The field ID of the source field.

An unsigned integer to be regarded as a vector of bits, the bitwise logical OR

of all the source bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operation is conditional. The result returned depends only
upon processors whose context-flag is 1.

The always operation is unconditional. The result returned does not depend
on the context-flag.

If always then
let S = current-vp-set

else
let S = { m I m E current-vp-set A context-flag[m] = 1 }

If IS = 0 then
return 0 to front end

else

return (mVS source[m]) to front end
mES

The CM:global-logior-bit operation combines the source bits in all selected processors by
performing a bitwise logical inclusive oR operation. The result is 1 if any examined bit is
1; otherwise the result is 0. The result is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. If there are no selected processors, then
the value 0 is returned.

Using CM:global-logior-bit is identical in effect to using CM:global-logior on a one-bit field,
but may be faster.

241

Definition

GLOBAL-LOGIO R-CONTEXT

GLOBAL-LOGIO R-CONTEXT

Return 1 if any processor is active, 0 if no processors are active.

Formats result +- CM:global-logior-context

Context This operation is unconditional.

Return E rret-p-
mE current-vp-set

contezt-flag[m]) to front end

If any processor has its context bit set, then 1 is returned to the front end; otherwise 0 is
returned.

242

Definition

GLOBAL-LOGIO R-flag

GLOBAL-LOGIOR-flag

Return 1 if a specified flag is set in any processor, 0 if it is clear in all processors.

Formats CM:global-logior-test
CM: global-logior-overflow

Context This operation is conditional.

Definition Let S = {(n m E current-vp-set A context-flag[m] = 1 A flag[m] = 1 }
If ISI = 0 then

return 0 to front end
else

return (V flag[m) to front end

where flag is test-flag or overflow-flag, as appropriate.

If any processor has the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

243

GLOBAL-LOGXOR

GLOBAL-LOGXOR

One field is examined in every selected processor, and the bitwise exclusive OR of all these
fields is returned to the front end as an unsigned integer.

Formats result - CM:global-logxor-1L source, len

Operands source The field ID of the source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
exclusive OR of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let S = { m m E current-vp-set A context-flag[m] = 1 }
If SI 0 then

return 0 to front end
else

return (E source[m]) to front end

The CM: global-logxor operation combines the source fields in all selected processors by per-
forming bitwise logical EXCLUSIVE OR operations. A bit is 1 in the result field if the
corresponding bit is a 1 in an odd number of the fields to be combined. The resulting com-
bined field is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned,
representing a field of length len containing all zeros.

244

GLOBAL-MAX

GLOBAL-F-MAX

One floating-point number is examined in every selected processor, and the largest of all
these integers (that is, the one closest to +oo) is returned to the front end as a floating-point
number.

Formats result -- CM:global-f-max-1L source, s, e

Operands source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the largest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let S = { m m E current-vp-set A context-flag[m] = 1 }
If ISI = 0 then

return -oo to front end
else

let R = source[m])

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] 1

else
test-flag[k] 0

return R to front end

The CM:global-f-max operation returns the largest (that is, closest to +oo) of the floating-
point source fields of all selected processors. This largest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value -oo is returned.

245

GLOBAL-MAX
::::::j:::j~i:::·:::::::::::::::::·::::: ::.:I

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

246

GLOBAL-MAX

GLOBAL-S-MAX

One signed integer is examined in every selected processor, and the largest of all these
integers (that is, the one closest to +oo) is returned to the front end as a signed integer.

Formats result +- CM:global-s-max-1L source, len

Operands source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

Result A signed integer, the largest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let S = { m m E current-vp-set A context-flag[m] = 1 }
If ISI= 0 then

return -2l en -1 to front end
else

let R = (max source[m])

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source[k] = R then
test-flag[k] - 1

else
test-flag[k] 0

return R to front end

The CM:global-s-max operation returns the largest (that is, closest to +oo) of the signed-
integer source fields of all selected processors. This largest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the
value -21en-1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

247

GLOBAL-MAX
`::::::::::::::::::::S:~�:::::::::�s'`''`''':::'':::::::::..

GLOBAL-U-MAX

One unsigned integer is examined in every selected processor, and the largest of all these
integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-lL source, len

Operands source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Result An unsigned integer, the largest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let S = m I m E current-vp-set A context-flag[m] = 1 }
If ISj =0 then

return 0 to front end
else

let R = (mx source[m

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] 1

else
test-flag[k] O

return R to front end

The CM:global-u-max operation returns the largest of the unsigned-integer source fields of
all selected processors. This largest value is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

248

GLOBAL-MAX-INTLEN

GLOBAL-U-MAX-S-INTLEN

One signed integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-s-intlen-lL source, len

Operands source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

Result An unsigned integer, the length of the source field value of greatest length.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contest-flag is 1.

Definition Let S = m m E current-vp-set A context-flag[m] = 1 }
If ISI = 0 then

return 0 to front end
else

let R= (max [log2 (+ + source[m])l)oES 2(2 1

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] 1

else
test-flag[k] 0

return R to front end

The CM:global-u-max-s-intlen operation computes the integer-length of each signed integer
source value. The largest length is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. In addition, the test-flag is set in every selected
processor whose field is equal to the finally computed value, and is cleared in all other
selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM:global-u-max-s-intlen-lL is equivalent to the sequence

249

GLOBAL-MAX-INTLEN

CM:s-integer-length-2-2L temp, source, len, len
CM:global-u-max-1L temp, len

but may be faster.

250

G LO BAL-MAX-INT LEN

GLOBAL-U-MAX-U-INTLEN

One unsigned integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-u-intlen-1L source, len

Operands source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Result An unsigned integer, the length of the source field value of greatest length.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let S = { m I m E current-vp-set A context-flag[m] = 1 }
If IS0=O then

return 0 to front end
else

let R = [log2 (1 + source[m])l)

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] 1

else
test-flag[k] 0

return R to front end

The CM:global-u-max-u-intlen operation computes the integer-length of each unsigned in-
teger source value. The largest length is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM:global-u-max-u-intlen-1L is equivalent to the sequence

251

G LO BAL-MAX-INT LEN
::::::::::::::::::: :::::::::: :::: ::::::::::. . . .: .: :::::::-. --....

CM:u-integer-length-2-2L temp, source, len, len
CM:global-u-max-lL temp, len

but may be faster.

252

GLOBAL-MIN

GLOBAL-F-MIN

One floating-point number is examined in every selected processor, and the smallest of all
these integers (that is, the one closest to -oo) is returned to the front end as a floating-point
number.

Formats result - CM:global-f-min-1L source, s, e

Operands source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let S = { m E current-vp-set A context-flag[m] = 1 }
If S = 0 then

return +oo to front end
else

let R = (min source[m])

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source[k] = R then
test-flag[k] - 1

else
test-flag[k] 4- 0

return R to front end

The CM:global-f-min operation returns the smallest (that is, closest to -oo) of the floating-
point source fields of all selected processors. This smallest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value +oo is returned.

253

GLOBAL-MIN
:·:·:·:·:·:·:·:·:·:·:·:·::·:·. ..·.··:·:·.·.· ·...... -..............

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

254

GLOBAL-MIN

GLOBAL-S-MIN

One signed integer is examined in every selected processor, and the smallest of all these
integers (that is, the one closest to -oo) is returned to the front end as a signed integer.

Formats result - CM:global-s-min-1L source, en

Operands source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

Result A signed integer, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let S = { m I m E current-vp-set A context-flag[m] = 1 }
If IS = 0 then

return 2 len-1 - 1 to front end
else

let R = (rin source[m]) to front end

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] 1

else
test-flag[k] - 0

return R to front end

The CM:global-s-min operation returns the smallest (that is, closest to -oo) of the signed-
integer source fields of all selected processors. This smallest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the
value 2 n-1 - 1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

255

GLOBAL-MIN

GLOBAL-U-MIN

One unsigned integer is examined in every selected processor, and the smallest of all these
integers is returned to the front end as an unsigned integer.

Formats result -- CM:global-u-min-1L source, len

Operands source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Result An unsigned integer, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let S = {m I m E current-vp-set A context-flag[m] = 1
If ISI =0 then

return 21en - 1 to front end
else

let R = (min source[m])

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] 1

else
test-flag[k] 0

return R to front end

The CM: global-u-min operation returns the smallest (that is, closest to zero) of the unsigned-
integer source fields of all selected processors. This smallest value is sent to the front-end
computer as an unsigned integer and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value 2 1en - 1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

256

GT
............... ~~~~~~.

F-GT

Compares two floating-point source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:f-gt-1L
CM:f-gt-constant-1 L
CM:f-gt-zero-1L

Operands sourcel

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, s, e

The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-gt-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] > source2[k]
test-flag[k] 1

else
test-flag[k] O 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is greater than the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 is not greater than -0.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

257

Definition

GT

S-GT

Compares two signed integer source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:s-gt-lL sourcel, source2, len
CM:s-gt-2L sourcel, source2, slenl, slen2
CM:s-gt-constant-1L sourcel, source2-value, len
CM:s-gt-zero-lL sourcel, len

Operands sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-gt-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM:*maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel[k] > source2[k] then
test-flag[k]) 1

else
test-flag[k] - 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is greater than the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly

258

GT
.. ... : ...:..;: �..:. ~:~~~;~~:;;:::;:~:~~~;; ~:~ ;:::;.:~ ~: ~.;.:~ :: ~.. ~:: ~:~:::.~~.;::~:.::::::::: :... ...:.~ .;::. ' !'.. .

'

required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

259

GT

U-GT

Compares two unsigned integer source values. The test-flag is set if the first is strictly
greater than the second, and otherwise is cleared.

Formats CM:u-gt-lL sourcel, source2, len
CM: u-gt-2L sourcel, source2, slenl, slen2
CM: u-gt-constant- 1L sourcel, source2-value, len
CM: u-gt-zero-lL sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM: u-gt-zero-lL, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may oerlap in any manner.

Flags test-flag is set if sourcel is greater than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = then

if sourcel[k] > source2[k] then
test-flag[k] - 1

else
test-flag[k] 0

Two operands are compared as unsigned integers. Operand source1 is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is greater than the second operand and is cleared otherwise.

260

GT
:::::::::........

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

261

-

IEEE-TO-VAX

F-IEEE-TO-VAX

Converts the floating-point source field values from IEEE floating-point format to VAX
floating-point format and stores the result in the destination field.

Formats CM:f-ieee-to-vax-1L vax-dest, ieee-source, en

Operands vax-dest The field ID of the floating-point destination field.

ieee-source The field ID of the floating-point source field.

len The length of the vaz-dest and ieee-source fields. The value of ten
must be either 32 or 64.

Overlap The fields vax-dest and ieee-source may overlap in any manner.

Flags overflow-flag is set if the ieee-source cannot be represented in the destination
field; otherwise it is cleared. If ieee-source represents oo or NaN, then vax-dest
is set to the "undefined variable" value in VAX format and the overflow-flag
is cleared. If ieee-source represents -0.0, it is converted to VAX 0.0 and the
overflow-flag is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

The Connection Machine operates internally on floating point data in IEEE format whereas
the VAX uses a VAX floating-point format. In each active processor, this function converts
a floating-point field in standard IEEE format to a field in VAX format.

The value of len specifies the precision of vaz-dest. If len is specified as 32, then VAX 'F'
format is used. If len is specified as 64, then VAX 'D' format is used.

VAX and IEEE floating-point formats are incompatible, so there are a number of potential
inaccuracies in the translation. In general, if the conversion is accurate then the overflow
flag is cleared; if inaccurate, then the overflow flag is set. See the flags description above.

This instruction is useful for rapidly converting floating-point data to VAX format, even if a
VAX front end is not being used. For example, if data is to be transferred from a file in the
CM file system to a VAX, CM:f-ieee-to-vax-1L should be called before writing the data file.

All Paris CM to front end data transfer functions automatically convert the data to the
appropriate front-end format so it is not necessary to call CM:ieee-to-vax before calling, for
instance, one of the read-from-news-array instructions.

To convert data back to IEEE floating-point format, see the definition of CM:f-vax-to-ieee-
1L.

263

INIT
::.......: : : : . : : . ::.. .: :: : : : . :: : : : :. . : : .:..:.......

INIT

For the C/Paris and Fortran/Paris interfaces only. Makes various machine parameters
available and performs a warm boot operation.

Formats CM:init

Context This operation is unconditional. It does not depend on the contezt-flag.

The facility for initializing Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, there is no CM: init operation. Part of the work done by CM:init
is performed by CM:cold-boot, and the remainder by CM:warm-boot.

In the C/Paris and Fortran/Paris interfaces, CM:init makes available to the user program
various machine parameters that are initialized by the cmattach and cmcoldboot shell com-
mands. It also performs all the functions of CM:warm-boot.

Every C or Fortran program that uses Paris should call CM:init before invoking any other
Paris operations.

264

INITIALIZE-RAN DOM-GEN ERATOR

INITIALIZE-RANDOM-GENERATOR

Formats CM: initialize-random-generator seed

Operands seed An unsigned integer immediate operand to be used as the seed
value for initializing the pseudo-random number generator.

Context This operation is unconditional. It does not depend on the context-flag.

Explicitly initializes the pseudo-random generator of numbers used by the Paris random
number generator operations CM:f-random-IL and cm:u-random-ll. The seed (a front-end
integer, which must be non-zero) determines the initial state.

If it has not been explicitly initialized by a call to this operation, the Paris random number
generator is automaticaly initialized the first time it is called. Automatic initialization uses
a seed based on the date and time.

In the Lisp/Paris interface, the seed argument is optional; if it is omitted, then a value
based on the date and time of day is used.

Note: Less simple but more flexible random number generation routines are provided as
part of the CM Scientific Subroutines Library (CMSSL). For instance, the CMSSL random
number generators may be checkpointed to guard against accidental interuptions.

265

INTEGER-LENGTH
.. - .::''...1...'.., , .: - _..: .-.- , - - : , : - , ' : : : : : : : : : : : : : : , : .. : -. : . . 5 : : ' : :

S-INTEGER-LENGTH

The minimum number of bits, minus one, needed to represent a signed integer value is
placed in the destination field.

Formats CM:s-integer-length-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the signed integer source field.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] > 0 then dest[k] - [log2(source[k] + 1)]
else dest[k] - [log2(-source[k])1
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

The dest field receives, as an unsigned integer, the result of the computation

[log2(s + 1)1
Flog2 (-s)]

if s > 0
if s < O

where s is the source value. This quantity is one less than the minimum number of bits
required to represent s as a signed number, and will therefore be strictly less than slen.

266

Definition

INTEGER-LENGTH

U-INTEGER-LENGTH

The minimum number of bits needed to represent an unsigned integer value is placed in the
destination field.

Formats CM:u-integer-length-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

dlen

slen

The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - [log 2(source[k] + 1)1
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

The dest field receives, as an unsigned integer, the value [log2(s + 1)1, where s is the source
value. This quantity is the minimum number of bits required to represent s as an unsigned
number, and will therefore be no greater than slen.

267

INTERN-DETAILED-GEOM ETRY

INTERN-DETAILED-GEOM ETRY

Returns an interned geometry given detailed information about how the grid is laid out.

Formats result - CM:intern-detailed-geometry axis-descriptor-array, [rank]

Operands axis-descriptor-array A front-end vector of descriptors for the grid axes. In
the C interface, the elements of the axis-descriptor-array must
be of type CMaxisdescriptor_t, that is, they must be pointers to
structures of type CM.axis.descriptor.

In the Lisp interface, the axis-descriptor-array may be either a list
of descriptors or an array of descriptors.

rank An unsigned integer, the rank (number of dimensions) of the
axis-descriptor-array. This must be in between 1 and CM:*max-
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

Result A geometry ID, identifying the existing or newly created interned geometry.

Context This operation is unconditional. It does not depend on the context-flag.

By using interned geometries, modules that require identical geometries can use identical
geometries - without having to keep track of the geometryID's.

CM:intern-detailed-geometry takes an array of descriptors. Each descriptor describes one
NEWS axis in some detail. Most of the components are unsigned integers, but the value of
the ordering component must be either :news-order or :send-order. The CM:create-detailed-
geometry dictionary entry defines the type of the ordering component and of the descriptor
for each language interface.

CM:intern-detailed-geometry is identical to CM: create-detailed-geometry with this exception:
it returns an interned geometryID. A list of interned geometries is maintained and whenever
CM:intern-detailed-geometry or intern-geometry is called, a previously interned geometry is
returned if one exists that matches the specifications of the call, otherwise a new geometry
is created and added to the list.

An interned geometryID is a geometryID returned by CM:intern-detailed-geometry or by
CM:intern-geometry; a geometryID returned by CM:create-detailed-geometry or by CM:create-
geometry may not be interned.

CM:create-detailed-geometry returns a unique, uninterned geometryID each time it is called.
In contrast, CM:intern-detailed-geometry returns an existing interned geometryID if it can.
If there is an interned geometry with an axis descriptor array that matches the supplied

268

INTERN-DETAILED-GEOM ETRY

axis-descriptor-array, it is returned. Otherwise, CM:intern-detailed-geometry returns a new
interned geometryID. The returned geometryID may be used to create a vP set or to respecify
the geometry of an existing vP set.

Once the interned geometry has been created, the user may destroy the array created to
provide the dimension information. All necessary information is copied from this array
when the geometry is created.

269

INTERN-GEOMETRY

INTERN-GEOMETRY

Returns an interned geometry given grid axis lengths.

Formats result - CM:intern-geometry dimension-array; [rank]

Operands dimension-array A front-end vector of unsigned integer lengths of the
grid axes. In the Lisp interface, this may be a list of dimension
lengths instead of an array of dimension lengths, at the user's
option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array. This must be in between 1 and CM:*max-
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

Result A geometry ID, identifying the existing or newly created interned geometry.

Context This operation is unconditional. It does not depend on the context-flag.

By using interned geometries, codes that require identical geometries can use identical
geometries - without having to keep track of the geometryID's.

CM:intern-geometry is identical to CM:create-geometry with this exception: it returns an
interned geometryID. An interned geometryID is a geometryID returned by CM:intern-
geometry or by CM:intern-detailed-geometry; a geometryID returned by CM:create-geometry
or by CM:create-detailed-geometry may not be interned.

CM:create-geometry returns a unique, uninterned geometryID each time it is called. In
contrast, CM:intern-geometry returns an existing interned geometryID if it can. If there is
a geometry, created by CM:intern-geometry and with dimensions that match those specified
in dimension-array, it is returned. Otherwise, CM:intern-geometry returns a new interned
geometryID. The returned geometryID may be used to create a vP set or to respecify the
geometry of an existing vP set.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of two. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

The geometry is laid out so as to optimize performance under the assumption that the axes
are used equally frequently for NEWS communication. The operations CM:create-detailed-
geometry or CM: intern-detailed-geometry may be used instead to more precisely control layout
for performance tuning.

270

INTERN-GEOMETRY

Once the interned geometry has been created, the user may destroy the array used to
provide the dimension information. All necessary information is copied out of this array
when the geometry is created.

271

INTERN-IDENTICAL-VP-SET

INTERN-IDENTICAL-VP-SET

Returns an interned vP set, within which fields may be allocated.

Formats result -- CM:intern-identical-vp-set geometry-id

Operands geometry-id A geometry ID.

Result A VP set ID, identifying the existing or newly allocated interned vP set.

Context This operation is unconditional. It does not depend on the contezt-flag.

This operation returns a vP set ID for an interned vP set. An interned vP set is a vP set
referenced by a vP set ID returned by CM:intern-identical-vp-set. vP set interning allows
different modules to reference identical vP sets and reduces vP set memory management
overhead.

CM:intern-identical-vp-set returns an existing, interned vP set ID if there is an existing,
interned vP set whose geometry is identical to the geometry specified by geometry-id. Oth-
erwise, CM:intern-identical-vp-set returns a new, interned vP set ID.

Once a VP set has been created as interned, it may never be uninterned. Similarly, an
uninterned VP set (created for instance with CM:create-vp-set) may never become interned.

An interned vP set may be used in the same ways as an uninterned VP set. For instance, it
may be given to other Paris operations in order to create memory fields in which data may
be stored. It may also be deallocated with CM:deallocate-vp-set.

272

INVERT-CONTEXT
..

INVERT-CONTEXT

Unconditionally makes all active processors inactive and vice versa.

Formats CM: invert-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flag[k] - contet-flag[k]

Within each processor, the context bit for that processor is unconditionally inverted.

273

INVERT-FLAG

INVERT-flag

Inverts a specified flag bit.

Formats CM:invert-test
CM: invert-test-always
CM:invert-overflow
CM: invert-overflow-always

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

flag[k]- flag[]
where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is inverted.

274

IS-FIELD-AN-ALIAS

IS-FIELD-AN-ALIAS

Returns true if the specified field ID is an alias field ID, false otherwise.

Formats result -- CM:is-field-an-alias field-id

Operands field-id A field ID.

Result True if field-id is an alias field ID, and false otherwise.

Context This operation is unconditional. It does not depend on the context-flag.

This operation tests whether the provided field ID is an alias field ID created with CM:make-
field-alias, as opposed to a regular field ID created with a field allocation instruction such as
CM: allocate-stack-field.

275

IS-FIELD-IN-H EAP
::i:::i~i:::i:::i:::::i~i::::....... ..

Returns true

Formats

Operands

Result

Context

IS-FIELD-IN-HEAP
if the specified field is a heap field, false otherwise.

result - CM:is-field-in-heap field-id

field-id A field ID.

True if the fieldID indicates a field allocated in the heap, and false otherwise.

This operation is unconditional. It does not depend on the context-flag.

This instruction allows a program to test whether a given field has been allocated in the
heap (as opposed to the stack).

276

IS-FIELD-IN-STACK
X

Returns true

Formats

Operands

Result

Context

IS-FIELD-IN-STACK

if the specified field is a stack field, false otherwise.

result - CM:is-field-in-stack field-id

field-id A field ID.

True if the fieldID indicates a field allocated on the stack, and false otherwise.

This operation is unconditional. It does not depend on the context-flag.

This instruction allows a program to test whether a given field has been allocated on the
stack (as opposed to the heap).

277

IS-FIELD-VALID

IS-FIELD-VALID

Returns true if the specified field ID corresponds to a currently allocated CM field ID, false
otherwise.

Formats result +- CM:is-field-valid field-id

Operands field ID A field ID.

Result True if field-id is a valid field ID, and false otherwise.

Context This operation is unconditional. It does not depend on the contezt-fiag.

This instruction allows a program to test whether the provided field ID is valid. Valid field
ID's are assigned and returned by operations such as CM: allocate-stack-field, CM:allocate-
heap-field, CM: add-offset-to-field-id, and CM: make-field-alias.

278

IS-STACK-FIELD-N EWER

IS-STACK-FIELD-NEWER

Formats result - CM:is-stack-field-newer stack-query-field, stack-base-field

Operands stack-query-field A field ID. The field must be in the stack.

stack-base-field A field ID. The field must be in the stack.

Result True if the stack-query-field has been allocated more recently than the
stack-base-field, and false otherwise.

Context This operation is unconditional. It does not depend on the contezt-flag.

This operation compares two stack fields and returns true if the second has been allocated
more recently than the first.

279

IS-VP-SET-VALID

Returns true
otherwise.

Formats

Operands

Result

Context

IS-VP-SET-VALID
if the specified vP set ID corresponds to a currently allocated vP set, false

result - CM: is-vp-set-valid vp-set

field ID A VP set ID.

True if vp-set-id is a valid vP set ID, and false otherwise.

This operation is unconditional. It does not depend on the context-flag.

This instruction allows a program to test whether the provided vP set ID is valid. Valid vP
set ID's are assigned and returned by CM:allocate-vp-set.

280

ISQRT

S-ISQRT

The integer square root of a signed integer source field is placed in the destination field.
This is the largest integer not larger than the true mathematical square root.

Formats CM:s-isqrt-l- L dest/source, en
CM:s-isqrt-2-1L dest, source, len
CM:s-isqrt-2-2L dest, source, dlen, slen

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM: *rnaximum-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags test-flag is set if the source value is negative; otherwise it is cleared.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:s-isqrt-2-2L.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source[k] > 0 then
dest[k] - LsourceJ
test-flag[k] - 0

else
dest[k] - (unpredictable)
test-flag[k] 1

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] 4- 0

as appropriate.

281

ISQRT
::B : .: C: . .

If the source value is non-negative, then the integer square root of that value (the largest
integer not greater than the mathematical square root) is placed in the destination, and
test-flag is cleared. Otherwise the test-flag is set and an unpredictable value is placed in the
dest field.

282

ISQRT
:::::::::::::::::::::::::SQ RT::::::::::::: :...:: .:: : ::

U-ISQRT

The integer square root of an unsigned integer source field is placed in the destination field.
This is the largest integer not larger than the true mathematical square root.

Formats CM: u-isqrt-
CM: u-isqrt-
CM: u-isqrt-

Operands dest

1-1L dest/source, len
2-1L dest, source, len
2-2L dest, source, dlen, slen

The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:u-isqrt-2-2L.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - LbTurceJ
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

as appropriate.

The integer square root of the source value (the largest integer not greater than the math-
ematical square root) is placed in the destination.

283

Definition

-O*N

LATCH-LEDS
~~~~~~~~~~~~~~~~~. .. . .. .... .... .. .... .. ... .-. .... .. .

LATCH-LEDS

Uses a one-bit field to turn the front-panel lights on or off.

Formats CM: latch-leds source
CM: latch-leds-always source

Operands source The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Let g = geometry(current-vp-set)
Let r = geometry-total-vp-ratio(g) x 16
Let n = geometry-total-processors/r
For all m such that 0 < m < n do

if always then
turn on led m if and only if

r-1

V source[m X n + j0 = 0
j=o

else
turn on led m if and only if

r-1

V (source[m x n + j] A context-flag[m x n + j]) = 
j=o

The specified 1-bit field is read from every selected processor (or every processor, for the
always version) and used to determine which LEDs should be illuminated. There is one
LED associated with each group of 16 physical processors; each physical processor has some
number of virtual processors. Two virtual processors belong to the same group if their
virtual processor numbers agree in their log2 n most significant bits, where n is the total
number of LEDs. A LED is illuminated if every selected virtual processor in the group has
a 0 in the selected source field (that is, the fields are combined for each group by a logical
NOR operation).

Note that the pattern will actually persist in the lights only if CM:set-system-leds-mode
has been called with the argument nil (in the Lisp/Paris interface) or 0 (in the C/Paris or
Fortran/Paris interface); otherwise the Connection Machine system software will present
other patterns in the lights.

285

Definition



LE

F-LE

Compares two floating-point source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM:f-le-1L
CM:f-le-constant-IL
CM:f-le-zero-lL

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, S, e

Operands sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-le-zero-lL, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is less than or equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] < source2[k]
test-flag[k] +- 1

else
test-flag[k] - 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is less than or equal to the second operand, and is cleared otherwise. Note that comparisons
ignore the sign of zero; +0 and -0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

286

Definition



LE
1 .:.. ... -. . - ...... ... .. . .......

S-LE

Compares two signed integer source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM :s-le-1L
CM:s-le-2L
CM: s-le-constant-IL
CM:s-le-zero-IL

Operands sourcel The fiel(

sourcel, source2, len
sourcel, source2, slenl, slen2
sourcel, source2-value, len
sourcel, len

I ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-le-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is less than or equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] < source2 [k] then
test-flag[k] - 1

else
test-flag[k] O 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;,
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is less than or equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly

287



LE

required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

288



LE

U-LE

Compares two unsigned integer source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM:u-le-1L
CM: u-le-2L
CM: u-le-constant- 1L
CM: u-le-zero-lL

sourcel, source2, len
sourcel, source2, slenl, slen2
sourcel, source2-value, len
sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-le-zero-lL, this implicitly has the value
zero.

len

slenl

slen2

The length of the source1 and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is less than or equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] < source2[k] then
test-flag[k] +- 1

else
test-flag[k] +- 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is less than or equal to the second operand, and is cleared otherwise.

289

Definition



LE

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

290



LN

C-LN

The natural logarithm of the complex source field values is placed in the complex destination
field.

Formats CM:c-ln-1-lL dest/source, s, e
CM:c-ln-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags test-flag is set if the source is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] -- In source[k]

The value In s is stored into the dest field, where s is the value of the source field. This is
the natural logarithm to the base e ~ 2.718281828....

291



LN

F-LN
The natural logarithm of the floating-point source field values are placed in the floating-
point destination field.

Formats CM:f-ln-l-l
CM:f-ln-2-1

Operands dest

L dest/source, s, e
L dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

S, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is non-positive; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-up-set do
if context-flag[k] = 1 then

dest[k] - Ilnsource[k]
if source[k] < 0 then

test[k] - 1
else test[k] 0

Call the value of the source field s. The value Ins is stored into the dest field; this is the
natural logarithm to the base e x 2.718281828...

292

Definition



LOAD-CONTEXT

LOAD-CONTEXT

Unconditionally reads a bit from memory and loads it into the context bit.

Formats

Operands

Context

Definition

CM: load-context source

source The field ID of the source bit (a one-bit field).

This operation is unconditional.

For every virtual processor k in the current-vp-set do
context-flag[k] - source[k]

Within each processor, a bit is read from memory and unconditionally loaded into the
context bit for that processor.

293



LOAD- FLAG

LOAD-flag

Reads a bit from memory and loads it into a flag.

Formats CM:load-test source
CM: load-test-always source
CM: load-overflow source
CM: load-overflow-always source

Operands source The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

flag[k] - source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and loaded into the indicated flag for
that processor.

294



LOG

F-LOG2

The base two logarithm of the floating-point source field is placed in the floating-point
destination field.

Formats CM:f-log2-1
CM:f-log2-2

Operands dest

.-1L dest/source, s, e
-1L dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] _ log 2 source[k]

The value log2 s is stored into the dest field, where s is the value of the source field. This
is the logarithm to the base two of the floating-point source field.

295



LOG

F-LOG10

The base ten logarithm of the floating-point source field is placed in the floating-point
destination field.

Formats CM:f-loglO-1-1L
CM:f-loglO-2-1L

Operands dest The

dest/source, s, e
dest, source, s, e

field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - log10 source[k]

The value log10 s is stored into the dest field, where s is the value of the source field. This
is the logarithm to the base ten of the floating-point source field.

296

Definition



LOGAND
Be S . . .... . S t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.......: ..: ..: .: :.I .... ... ... : . x . .. .7. :. : , .............. .:.::: : ::: .:·:·:·':':'I ' '

LOGAND

Combines two source values using a bitwise logical AND operation, and places the result in
the destination field.

Formats CM:logand-2-1L
CM: logand-always-2-1L
CM: logand-constant-2-1L
CM: logand-const-always-2-1L
CM: logand-3-1L
CM: logand-always-3-1L
CM: logand-constant-3-lL
CM: Iogand-const-always-3-1L

dest/sourcel,
dest/sourcel,
dest/sourcel,
dest/sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,

source2, len
source2, len
source2-value, len
source2-value, len
source2, len
source2, len
source2-value, len
source2-value, len

Operands dest The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

For every virtual processor k in the current-vp-set do
if (always or contet-flag[k] = 1) then

dest[k] - sourcel[k] A source2[k]

Each bit of the dest field is set if both of the corresponding bits of the sourcel and source2
fields are 1, and is cleared if either of the corresponding bits of the sourcel and source2
fields is 0.

297

Definition



LOGAN D-CONTEXT

Reads a bit

Formats

Operands

Context

Definition

LOGAND-CONTEXT
from memory; if it is zero, the context bit is cleared, unconditionally.

CM: logand-context source

source The field ID of the source bit (a one-bit field).

This operation is unconditional.

For every virtual processor k in the current-vp-set do
context-flag[k] +- context-flag[k] A source[k]

Within each processor, a bit is read from memory and is "anded" into the context bit for
that processor.

298



LOGAN D-CONTEXT-WITH-TEST

LOGAND-CONTEXT-WITH-TEST

If the test flag is zero, the context bit is cleared.

Formats CM: logand-context-with-test

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flag[k] - context-flag[k] A test-flag[k]

Within each processor, the test flag is "anded" into the context bit for that processor.

299



LOGAN D-FLAG

LOGAND-flag

Reads a bit from memory; if it is zero, a specified flag is cleared.

Formats CM: logand-test source
CM: logand-test-always source
CM: logand-overflow source
CM: logand-overflow-always source

Operands source The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

flag[k] flag[k] A source[k]
where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and is "anded" into the indicated flag
for that processor.

300



LOGAN DC1
.:;.. -:.'·..·'·'·'··'·'·','·`·'·'' ···'·' *·:·:·:: :::: :·:- - . .......-... .

. .. ..7 .1. ., ... .. . . . . .. .. .. ~ :-. : . " .%" .,: .... ... ... ... X . : . .. " : . .:X X ....... .... .......

LOGANDC1

Combines the second source and the bitwise logical NOT of the first source using a bitwise
logical AND operation. Places the result in the destination field.

Formats CM:logandcl-2-1L
CM: logandcl-always-2-1L
CM: Iogandcl-constant-2-1L
CM: logandcl-const-always-2-1L
CM: logandcl-3- 1L
CM: logandcl-always-3- L
CM: logandcl-constant-3-1L
CM: Iogandcl-const-always-3-1L

Operands dest

dest/sourcel, source2, len
dest/sourcel, source2, len
dest/sourcel, source2-value, len
dest/sourcel, source2-value, len
dest, sourcel, source2, len
dest, sourcel, source2, len
dest, sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - (-isourcel [k]) A source2[k]

Each bit of the dest field is set if the corresponding bit of the sourcel field is 0 and the
corresponding bit of the source2 field is 1; otherwise it is cleared.

301



LOGANDC2

LOGANDC2
Combines the first source and the bitwise logical NOT of the second source using a bitwise
logical AND operation. Places the result in the destination field.

Formats CM:logandc2-2-l
CM: logandc2-always-2-1L
CM: logandc2-constant-2-L
CM: logandc2-const-always-2-1L
CM:logandc2-3-1L
CM: logandc2-always-3-1L
CM: logandc2-constant-3-1L
CM: logandc2-const-always-3-1L

dest/sourcel,
dest/sourcel,
dest/sourcel,
dest/sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,

source2, len
source2, len
source2-value, len
source2-value, len
source2, len
source2, len
source2-value, len
source2-value, len

Operands dest The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - sourcel [k] A (-'source2[k])

Each bit of the dest field is set if the corresponding bit of the sourcel field is 1 and the
corresponding bit of the source2 field is 0; otherwise it is cleared.

302

Definition



LOGCOUNT
: : : : : : : : : : ::*: ......... .. . ...... ............

S-LOGCOUNT

The destination field receives a count of the number of bits that differ from the sign bit in
a two's-complement binary representation of a signed integer source value. For nonnegative
values, this is a count of 1 bits.

Formats CM:s-logcount-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the signed integer source field.

dlen

slen

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] > 0 then dest[k] - count-of-one-bits(source[k])
else dest[k] - count-of-one-bits(-source[k])
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

The dest field receives, as an unsigned integer, a count of the number of bitsin the two's-
complement representation of the signed source value that are different from the sign bit of
that value.

303

Definition



LOGCOUNT

U-LOGCOUNT
The destination field receives a count of the number of 1 bits in the binary represenation of
an unsigned integer source value.

Formats CM:u-logcount-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] 4- count-of-one-bits(source[k])
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

The dest field receives, as an unsigned integer, a count of the number of bits in the binary
representation of the unsigned source value.

304

Definition



LOG EQV

LOGEQV
Combines two source values using a bitwise logical EQUIVALENCE operation, and places the
result in the destination field.

Formats CM: logeqv-2-1L
CM: logeqv-always-2- L
CM: logeqv-constant-2-1L
CM: logeqv-const-always-2-1L
CM: logeqv-3-1L
CM: logeqv-always-3- iL
CM: logeqv-constant-3-L
CM: Iogeqv-const-always-3-1L

dest/sourcel,
dest/sourcel,
dest/sourcel,
dest/sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,

source2, len
source2, len
source2-value, len
source2-value, len
source2, len
source2, len
source2-value, len
source2-value, len

Operands dest The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and sources fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] +- (source [k] source2[k])

Each bit of the dest field is set where corresponding bits of the sourcel and source2 fields
are alike, and is cleared where corresponding bits of the sourcel and source2 fields differ.

305

Definition



LOGIOR
. : : : ::: : :::::::..:::::::::;:::::::::.::::;:::;:::::. .... . .. ....

LOGIOR

Combines two source values using a bitwise logical inclusive oR operation, and places the
result in the destination field.

Formats CM:logior-2-1L
CM: logior-always-2-1L
CM: logior-constant-2-1L
CM: logior-const-always-2-1L
CM: logior-3-1L
CM: logior-always-3-1L
CM: logior-constant-3-1L
CM: logior-const-always-3-1L

Operands dest

destlsourcel, source2, len
destlsourcel, source2, len
destlsourcel, source2-value, en
dest/sourcel, source2-value, len
dest, sourcel, source2, len
dest, sourcel, source2, len
dest, sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

dest[k] - source [k] V source2[k]

Each bit of the dest field is set if either of the corresponding bits of the sourcel and source2
fields is 1, and is cleared if both of the corresponding bits of the sourcel and source2 fields
are 0.

306



LOGIOR-CONTEXT
::::::::::::::::::.:.:. ::.:. :::::: :: : : : : : : : ::::::::::: ::: :: : ::::::::::::::::::::::::::.::::::::.:::

Reads a bit

Formats

Operands

Context

Definition

LOGIOR-CONTEXT

from memory; if it is one, the context bit is set, unconditionally.

CM: logior-context source

source The field ID of the source bit (a one-bit field).

This operation is unconditional.

For every virtual processor k in the current-vp-set do
context-flag[k] - contezt-flag[k] V source[k]

Within each processor, a bit is read from memory and is "ored" into the context bit for
that processor.

307

__



LOGIOR-FLAG

LOGIOR-flag

Reads a bit from memory; if it is 1, a specified flag is set.

Formats CM: logior-test
CM: logior-test-always
CM: logior-overflow
CM: logior-overflow-always

Operands source

source
source

source
source

The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

flag[k] - flag[k] V source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and is "ored" into the indicated flag for
that processor.

308



LOGNAND
S- -:~: : S ' :: ~ '':`: ',,::':::: :.::': :: .::,...................................................................

LOGNAND

Combines two source values with a bitwise logical NAND operation, and places the result in
the destination field.

Formats CM:lognand-2-1L
CM: lognand-always-2-1 L
CM: lognand-constant-2-1L
CM: lognand-const-always-2-1L
CM: lognand-3-l
CM: lognand-always-3-1L
CM: lognand-constant-3-lL
CM: lognand-const-always-3-1L

Operands dest

dest/sourcel, source2, len
dest/sourcel, source2, len
dest/sourcel, source2-value, len
dest/sourcel, source2-value, len
dest, sourcel, source2, len
dest, sourcel, source2, len
dest, sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - -^(sourcel[k] A source2[k])

Each bit of the dest field is set if either of the corresponding bits of the sourcel and source2
fields is 0, and is cleared if both of the corresponding bits of the sourcel and source2 fields
are 1.

309



LOGNOR

LOGNOR

Combines two source values with a bitwise logical NOR operation, and places the result in
the destination field.

Formats CM:lognor-2-1L
CM: lognor-always-2-IL
CM: lognor-constant-2-L
CM: lognor-const-always-2-1L
CM: lognor-3-1L
CM: lognor-always-3-ZL
CM: lognor-constant-3- 1L
CM: lognor-const-always-3-1L

Operands dest

dest/sourcel, source2, en
dest/sourcel, source2, len
dest/sourcel, source2-value, len
dest/sourcel, source2-value, len
dest, sourcel, source2, len
dest, sourcel, source2, len
dest, sourcel, source2-value, en
dest, sourcel, source2-value, len

The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

ten The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - -(sourcel [k] V source2[k])

Each bit of the dest field is set if both of the corresponding bits of the sourcel and source2
fields are 0, and is cleared if either of the corresponding bits of the sourcel and source2
fields is 1.

310



LOG NOT
:: ' ' ' * : : : : : * : : : : : : : : :: : : : : : : : ' : : : : : : : : : : : : : :

LOGNOT
Copies a source field, inverts all the bits, and places them in the destination field.

Formats CM:lognot-l-lL dest/source, en
CM: lognot-always-l-lL dest/source, en
CM: lognot-always-2-1L dest, source, len
CM: lognot-2-lL dest, source, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-up-set do
if (always or contet-flag[k] = 1) then

dest[k] - -isource[k]

Each bit of the dest field is set to the inverse of the corresponding bit of the source field.

311



LOGORC1

LOGORC1

Combines the second source and the bitwise logical NOT of the first source using a bitwise
logical inclusive oR operation. Places the result in the destination field.

Formats CM:logorcl-2-1L
CM: logorcl-always-2- L
CM: logorcl-constant-2-L
CM: logorcl-const-always-2-1L
CM: logorcl-3-lL
CM: Iogorcl-always-3-IL
CM: logorcl-constant-3-lL
CM: logorcl-const-always-3- 1L

Operands dest

dest/sourcel, source2, len
dest/sourcel, source2, len
dest/sourcel, source2-value, len
destlsourcel, source2-value, len
dest, sourcel, source2, len
dest, sourcel, source2, len
dest, sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] (source [k]) V source2[k]

Each bit of the dest field is cleared if the corresponding bit of the sourcel field is 1 and if
the corresponding bit of the source2 field is 0; otherwise it is set.

312



LOGORC2

LOGORC2

Combines the first source and the bitwise logical NOT of the second source using a bitwise
logical inclusive OR operation. Places the result in the destination field.

Formats CM:logorc2-2-1L
CM: logorc2-always-2-1L
CM: logorc2-constant-2-1L
CM: logorc2-const-always-2- 1L
CM: Iogorc2-3-L
CM: logorc2-always-3-L
CM: Iogorc2-constant-3-1L
CM: logorc2-const-always-3-1L

Operands dest

dest/sourcel, source2, len
dest/sourcel, source2, len
dest/sourcel, source2-value, len
dest/sourcel, source2-value, len
dest, sourcel, source2, len
dest, sourcel, source2, len
dest, sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - source [] V (-'source2[k])

Each bit of the dest field is cleared if the corresponding bit of the sourcel field is 0 and if
the corresponding bit of the source2 field is 1; otherwise it is set.

313



LOGXOR
::: ::: ::::: :::: :: ::::: :: :: : :::: :�::::::::::::::::::::::::::::::: ::::: ::::::::::: ::::::::::::: : : ::. ::::::: :::::::: ::::::............ . . .::.: ::: .....

LOGXOR

Combines two source values using a bitwise logical exclusive OR operation, and places the
result in the destination field.

Formats CM:logxor-2-1L
CM: logxor-always-2-lL
CM: logxor-constant-2-1L
CM: logxor-const-always-2-1L
CM: Iogxor-3-1L
CM: Iogxor-always-3-1L
CM: logxor-constant-3-1L
CM: logxor-const-always-3-1L

Operands dest

dest/sourcel, source2, len
dest/sourcel, source2, len
dest/sourcel, source2-value, len
dest/sourcel, source2-value, len
dest, sourcel, source2, len
dest, sourcel, source2, len
dest, sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the destination field.

sourcel The field ID of the first source field.

source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

dest[k] - sourcel[k] d source2[k]

Each bit of the dest field is set where corresponding bits of the sourcel and source2 fields
differ, and is cleared where corresponding bits of the sourcel and source2 fields are alike.

314



LT
.................::! ..:;;;;; ~;:~~;~:~::~~:::~~..:.:;:. : ;!!: ....:.......::;.:;....;....:.:;.:.;.:.:::!!;~~~~~9;::::!;:!:~~~:;~;!;;~:i;;;~!:~;;:;;;:i~::;::~;::::;~~;~:::?~~:;:;:;:;;~;:~~.;~:::::~;;.;.~~:;5~;.;~:~;;~:

F-LT

Compares two floating-point source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:f-lt-IL sourcel, source2, s, e
CM:f-lt-constant-1L sourcel, source2-value, s, e
CM:f-lt-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-lt-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is less than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] < source2[k]
test-flag[k] 1

else
test-flag[k] - 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is less than the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; -0 is not less than +0.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

315



LT
:: ::::::::::::::::: :::.:::::: ::::::: :: :::: ::::::::: ::::::: :::::::::: :::::::: ::::::::::: ::::::.: 

S-LT

Compares two signed integer source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:s-lt-lL sourcel, source2, len
CM:s-lt-2L sourcel, source2, slenl, slen2
CM:s-lt-constant-lL sourcel, source2-value, len
CM:s-lt-zero-lL sourcel, len

Operands sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-lt-zero-lL, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is less than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] < source2[k] then
test-flag[k] 1

else
test-flag[k] - 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is less than the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly

316



LT

required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

317



LT
: :D ::::: :: :: ::: ::: ::::: ::: :: : :::::::::::: :::� ::::: :!:' : ::::::::.::.:.::::: i::.::...::::i::i::: :::::::: ::::i::: :::::::i::::::::::::i:::!

U-LT
Compares two unsigned integer source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM: u-lt-lL
CM: u-lt-2L
CM: u-lt-constant-lL
CM: u-lt-zero-lL

sourcel, source2, len
sourcel, source2, slenl, slen2
sourcel, source2-value, len
sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-lt-zero-lL, this implicitly has the value
zero.

len The length of the sourcel and sources fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is less than sources; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] < source2 [k] then
test-flag[k] 1

else
test-flag[k] - 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is less than the second operand, and is cleared otherwise.

318

Definition



LT

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

319



'"N~

-,rN

-O*N



MAKE-FIELD-ALIAS

MAKE-FIELD-ALIAS

Creates a new field ID that points to an existing field.

Formats result +- CM:make-field-alias field-id

Operands field-id A field ID. This must be a field ID returned by CM:allocate-stack-
field or CM:allocate-heap-field; it may not be an offset into a field.
The field need not be in the current VP set.

Result A field ID, identifying the alias field ID. This ID initially resides in the current
vP set.

Context This operation is unconditional. It does not depend on the context-flag.

The return value is a field alias. It is a new field ID that identifies the same area of memory
as does field-id.

The field identified by field-id can be in a VP set other than the current VP set. The returned
alias field ID initially resides in the current vP set. The alias field ID can be used in all the
same ways as a regular field ID can, with the following exceptions:

* It cannot be passed to CM:deallocate-heap-field.

* It cannot be passed to CM:deallocate-stack-through.

Associated with a field alias is a physical length: the number of bits that the field occupies
in each physical processor. Also associated with a field alias is a field length: the number
of bits the field occupies in each virtual processor. The physical length is equal to the field
length multiplied by the VP ratio of the current vP set. It is an error if the physical lelLgth
is not exactly divisible by the vP ratio of the current vP set.

It is possible for the field length of an alias field to be different from the field length of the
original field. This is the case when make-field-alias is called on a field in a vP set that has a
vP ratio different from the vP ratio of the current vP set. Suppose, for example, the current
vP ratio is 32. If we make an alias for a 32-bit field that resides in a vP set with a vP ratio
of 1, the resulting alias field is a 1 bit field (in a vP ratio of 32).

321



MAKE-NEWS-COORDINATE
" ' .. .. ... .. ... .. ... .. ... .. ... .. ... ..X . .. ... .. ... . ... .. ... .. ... .. .....

MAKE-NEWS-COORDINATE

Determine the send-address of a processor with the specified NEWS coordinate.

Formats CM: make-news-coordinate-lL geometry, dest, axis, news-coordinate, slen

Operands geometry A geometry ID. This determines the NEWS dimensions to be used.

dest The field ID of the unsigned integer destination, to receive the
send address of the processor whose coordinate along the specified
axis is news-coordinate and whose coordinate along all other axes
is a zero field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

news-coordinate The field ID of the unsigned integer NEWS coordinate along
the specified axis field.

slen The length of the news-coordinate field. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - make-news-coordinate(axis, news-coordinate)

where make-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWS axis, with all other coordinates zero.

322



MAKE-N EWS-COORDINATE

FE-MAKE-NEWS-COORDINATE

Calculates, entirely on the front end, the send-address of the processor with the specified
coordinate along the specified NEWS axis and with all other coordinates zero.

Formats result - CM:fe-make-news-coordinate geometry, axis, news-coordinate

Operands geometry A geometry ID. This determines the NEWS dimensions to be used.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

news-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

Result An unsigned integer, the send address of the processor whose coordinate along
the specified axis is news-coordinate and whose coordinate along all other axes
is zero.

Context This operation is performed on the front end. It does not depend on the CM
context-flag.

Definition Return make-news-coordinate( axis, news-coordinate)

where make-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWS axis, with all other coordinates zero.

323



MATRIX-M ULTIPLY
''::: ::. -::::.-:': :::::: .... ::. .::: : ........ ::::::::: ::::: :::::::::

.. .. . .1 .. .: ...... .:. .1 . . ... . .. .. .... ... ......... ·-;·;·; ··:::··: · :·::·':·': :;:..% .... ·.. ·~ 2·

C-MATRIX-MULTIPLY

Computes matrix multiplication using three single-precision complex operands and stores
the result in the last.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix c- to signify that single-precision complex
operands are used. A more efficient version of this operation is included in the CM Scientific
Subroutines Library.

Formats CMSSL:c-matrix-multiply sourcel, source2, dest/source3

Operands dest The field ID of the complex destination field.

sourcel The field ID of the complex first source field.

source2 The field ID of the complex second source field.

sourceS The field ID of the complex third source field.

Overlap The fields sourcel, source2, and dest/source3 must not overlap in any manner.

Context This operation is unconditional. It does not depend on the context-flag.

The calculation dest - sourceS + sourcel x source2 is performed on three conforming
matrices, represented as CM fields.

The operands sourcel, source2, and dest/source3 must be fields of 64-bit single-precision
complex values whose real and imaginary parts are 32-bit floating-point values.

All three operands may belong to separate VP sets if the geometries of those VP sets obey
the following rule:

* The sourcel dimensions are n x m

* The source2 dimensions are m x p

* The dest/source3 dimensions are n x p

where n, m, and p are each powers of two. Otherwise, all three operands must belong to
the same square VP set.

The matrix multiply is performed using Cannon's systolic algorithm, which can be summa-
rized in three steps:

324



MATRIX-MULTIPLY

1. The sourcel and source2 matrices are aligned so the elements in each processor have
conforming indices for matrix multiplication. In terms of data motion, this implies
aligning the diagonal entries of the sourcel matrix to the first column and aligning
the diagonal entries of the source2 matrix to the first row.

2. The systolic part of the algorithm involves local multiplication of sourcel and source2
elements followed by nearest neighbor data moves that simulate the inner product.

3. The sourcel and sources matrices are aligned back to the original form supplied by
the calling program.

In order to exploit the full potential of the floating-point hardware, a block version of the
algorithm is implemented. See the Thinking Machines technical report entitled "Matrix
Multiplication on the Connection Machine" for details.

The CM matrix multiplication operation performs best for square matrices and at high VP
ratios.

C/Paris code that calls the Paris matrix multiplication routine must include the line

#include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris matrix multiplication routine.

Fortran/Paris code should include the line

INCLUDE '/usr/include/cm/cmssl-paris-fort.h'

at the top of any program unit that calls the Paris matrix multiplication routine.

325



MATRIX-M ULTIPLY
*: " : .:. .. - I .X" .: .: .: : .: .: .: `-'-.S.`.!..!: .n .:. :.:. :. .:. ' · :

S-MATRIX-MULTIPLY

Computes matrix multiplication using three single-precision floating-point operands and
stores the result in the last.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix s- to signify that single-precision floating-
point operands are used. A more efficient version of this operation is included in the CM
Scientific Subroutines Library.

Formats CMSSL:s-matrix-multiply sourcel, source2, dest/source3

Operands dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

sourceS The field ID of the floating-point third source field.

Overlap The fields sourcel, source2, and dest/source3 must not overlap in any manner.

Context This operation is unconditional. It does not depend on the contezt-flag.

The calculation dest - source3 + sourcel x source2 is performed on three conforming
matrices, represented as CM fields.

The operands sourcel, source2, and dest/source3 must be fields of
floating-point values.

All three operands may belong to separate VP sets if the geometries
the following rule:

32-bit single-precision

of those VP sets obey

* The sourcel dimensions are n x m

* The source2 dimensions are m x p

* The dest/source3 dimensions are n x p

where n, m, and p are each powers of two. Otherwise, all three operands must belong to
the same square VP set.

The matrix multiply is performed using Cannon's systolic algorithm, which can be summa-
rized in three steps:

326



MATRIX-M ULTIPLY

1. The sourcel and source2 matrices are aligned so the elements in each processor have
conforming indices for matrix multiplication. In terms of data motion, this implies
aligning the diagonal entries of the sourcel matrix to the first column and aligning
the diagonal entries of the source2 matrix to the first row.

2. The systolic part of the algorithm involves local multiplication of sourcel and source2
elements, followed by nearest neighbor data moves that simulate the inner product.

3. The sourcel and source2 matrices are aligned back to the original form supplied by
the calling program.

In order to exploit the full potential of the floating-point hardware, a block version of the
algorithm is implemented. See the Thinking Machines technical report entitled "Matrix
Multiplication on the Connection Machine" for details.

The CM matrix multiplication routine performs best for square matrices and at high VP
ratios.

C/Paris code that calls the Paris matrix multiplication routine must include the line

*include <cm/cmtypes. h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris matrix multiplication routine.

Fortran/Paris code should include the line

INCLUDE '/usr/include/cm/cmssl-paris-fort.h'

at the top of any program unit that calls the Paris matrix multiplication routine.

327



MAX

F-MAX
Two floating-point values are compared. The larger is placed in the destination field.

Formats CM:f-max-2-1L
CM:f-max-3-1L
CM:f-max-constant-2- 1L
CM :f- max-constant-3-1L

Operands dest

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition

dest[k] +- source2[k]
test-flag[k] - 1

Two operands are compared as floating-point numbers. Operand sourcel is always a mem-
ory field; operand source2 is a memory field or an immediate value. The larger of the two

328

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] source2[k] then
dest[k] - sourcel [k]
test-flag[k] - 0

else



MAX
: . :;:::: : : : :::::::::::::::::: ::;:;:;::;::: ::::.:::: :::::.: : ·::: : :: :::·: ::::.. .. ....::. ........... .. .,. . . .....

values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

329



MAX
::·:::::::::::··::''..........-':

S-MAX
Two signed integer values are compared. The larger (the one closer to +oe) is placed in the
destination field.

Formats CM:s-max-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-max-2-1L dest/sourcel, source2, len
CM:s-max-3-1L dest, sourcel, source2, len
CM:s-max-constant-2-lL dest/sourcel, source2-value, len
CM:s-max-constant-3-IL dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-max-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl For CM:s-max-3-3L, the length of the sourcel field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen2 For CM:s-max-3-3L, the length of the source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

330



MAX

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] > source2[k] then
dest[k] - sourcel[k]
test-flag[k] O- 0

else
dest[k] - source2[k]
test-flag[k] - 1

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The larger of the two values is
copied to the dest field. The test-flag is set or cleared to indicate which operand was copied;
if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

331



MAX
s.. ; o:: . . . .... . .B I ........ .

U-MAX

Two unsigned integer values are compared. The larger is placed in the destination field.

Formats CM:u-max-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM: u-max-2-1 L dest/sourcel, source2, len
CM: u-max-3-lL dest, sourcel, source2, len
CM:u-max-constant-2-1L dest/sourcel, source2-value, len
CM: u-max-constant-3-lL dest, sourcel, source2-value, len

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

dlen For CM:u-max-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

slenl For CM: u-max-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

slen2 For CM: u-max-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

332



MAX

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel[k] > source2[k] then
dest[k] +- sourcel[k]

test-flag[k] O 0
else

dest[k] - source2[k]
test-flag[k] - 1

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The larger of the two
values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

333



MIN

F-MIN
Two floating-point values are compared. The smaller is placed in the destination field.

Formats CM:f-min-2-1L
CM:f-min-3-1L
CM:f-min-constant-2-1L
CM: f-min-constant-3-1 L

Operands dest

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag
in processors whose context-flag is 1.

may be altered only

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] < source2[k] then
dest[k] - sourcel [k]
test-flag[k] o- 0

else
dest[k] -- source2[k]
test-flag[k] 1

Two operands are compared as floating-point numbers. Operand sourcel is always a mem-
ory field; operand source2 is a memory field or an immediate value. The smaller of the two

334



MIN

values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

335



MIN
.. .. : ·: . ........ ........ .. : : ......

S-MIN

Two signed integer values are compared. The smaller (the one closer to -oo) is placed in
the destination field.

Formats CM:s-min-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-min-2-1L dest/sourcel, source2, len
CM:s-min-3-1L dest, sourcel, source2, len
CM:s-min-constant-2-1L dest/sourcel, source2-value, len
CM: s-min-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-min-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl For CM: s-min-3-3L, the length of the sourcel field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen2 For CM: s-min-3-3L, the length of the source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

336



MIN
..... , :·. ··..... ·. ; : ··-::::::: ... ·;.;;;;. ::::::: ····: ·· :· ·····i ''S··'' :::~::~ ~ ·r:::

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel[k] < source2[k] then
dest[k] sourcel[k]
test-flag[k] 0

else
dest[k] -- source2[k]
test-flag[k] 1

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The smaller of the two values is
copied to the dest field. The test-flag is set or cleared to indicate which operand was copied;
if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

337



MIN
·::: ··:·:~·::: ·::···:···ii::1: ·.·:·;::::::::·:·:··: ···:·: ··:.·.·: $ ::: :··· · ·········:·:·:·: · :: : ·:R::·:·:: : :'::::::::: : : ::······- ··: ······· ·: ·...... .. . .

U-MIN

Two unsigned integer values are compared. The smaller is placed in the destination field.

Formats CM: u-min-3-3L
CM: u-min-2-1L
CM: u-min-3-1L
CM: u-min-constant-2-1L
CM: u-min-constant-3-1L

Operands dest

dest, sourcel, source2, dlen, slenl, slen2
dest/sourcel, source2, len
dest, sourcel, source2, len
dest/sourcel, source2-value, len
dest, sourcel, source2-value, en

The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len

dlen

slenl

slen2

The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-min-3-3L, the length of the dest field. This must be non-
negative and no greater than CM:*maximum-integer-length*.

For CM:u-min-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

For CM: u-min-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition

338

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] < source2[k] then
dest[k] - sourcel [k]



MIN

test-flag[k] 0
else

dest[k] - source2[k]
test-flag[k] 1

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The smaller of the two
values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

339



MOD
.X . . . . .. . . . . . .. ..

F-MOD
One floating-point source field is divided by another and the residue is placed in the desti-
nation field. Overflow is also computed.

This operation's name is derived from the term modulus; the destination field receives the
the residue of taking one source field modulus another source field.

Formats CM:f-mod-2-1L
CM:f-mod-3-1L
CM :f-mod-constant-2-1L
CM: f- mod-constant-3-1L

Operands dest The field ID
quotient.

sourcel The field ID
dividend.

source2 The field ID
divisor.

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
destl/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

of the floating-point destination field. This is the

of the floating-point first source field. This is the

of the floating-point second source field. This is the

source2-value A floating-point immediate operand to be used as the second
source.

8, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if division by zero occurs; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] = 0 then
dest[k] - (unpredictable)

340

Definition



MOD

test-flag[k] 1
else

dest[k] - sourcel[k]- source2[k] x source2[k]l

test-flag[k] O 0

if (overflow occurred in processor k) then overflow-flag[k] - 1

The residue resulting from the reduction of the floating-point sourcel operand divided by
the source2 operand is stored in the dest field. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

341



MOD
'j:::I:::I:::I:I:~~~~~~~~~~~~~~::·:·:·x::::::::::::: ::l:I~~~~~~~~~~~~~~~~~~~~i~~~i~~i::s::::::::::::::·:i.- ... :.: -. .: : i : : " :.

., .: ': . ': .. . I .·:. . ., -XI .:.:'': ·: ''' ::~i:i ::·:·:·c ... :.. ·.. ii : :: : :Ii .ii:: .. :::i ::

S-MOD

One signed integer source field is divided by another and the residue is placed in the desti-
nation field. Overflow is also computed.

This operation's name is derived from the term modulus; the destination field receives the
the residue of taking one source field modulus another source field.

Formats CM:s-mod-2-1L
CM:s-mod-3-1L
CM: s-mod-constant-2- 1L
CM:s-mod-constant-3- 1L

Operands dest

dest/sourcel, source2, len
dest, sourcel, source2, len
dest/sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the signed integer residue field.

sourcel The field ID of the signed integer dividend field.

source2 The field ID of the signed integer modulus (divisor) field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the modulus (divisor) is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may
in processors whose contezt-flag is 1.

be altered only

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source2[k] = 0 then
dest[k] (unpredictable)

else

dest[k] sourcel[k] - source2[k] x [sourcel[lk]

if (divisor was zero in processor k) thentest-flag[k] - 1
else test-flag[k] ,- 0

342

Definition

--



MOD

The residue resulting from the reduction of the signed integer sourcel modulo the signed
integer source2 operand is stored into the dest field. The result always has the same sign
as the source2 operand. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

If the divisor is zero occurs, then the test-flag is set and the value of the destination is
unpredictable

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

343



MOD

U-MOD
One unsigned integer source field is divided by another and the residue is placed in the
destination field. Overflow is also computed.

This operation's name is derived from the term modulus; the destination field receives the
the residue of taking one source field modulus another source field.

Formats CM:u-mod-2-1L
CM: u-mod-3-1L
CM: u-mod-constant-2-1L
CM: u-mod-constant-3-1L

Operands dest

dest/sourcel, source2, len
dest, sourcel, source2, len
dest/sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the unsigned integer residue field.

sourcel The field ID of the unsigned integer dividend field.

source2 The field ID of the unsigned integer modulus (divisor) field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the modulus (divisor) is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may
in processors whose contezt-flag is 1.

be altered only

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source2[k] = 0 then
dest[k] - (unpredictable)

else

dest[k] +- sourcel[k] - source2[k] x source2[kl

if (divisor was zero in processor k) thentest-flag[k] 1
else test-flag[k] - 0

344

Definition



MOD

The residue resulting from the reduction of the unsigned integer sourcel modulo the un-
signed integer source2 operand is stored into the dest field. The various operand formats
allow operands to be either memory fields or constants; in some cases the destination field
initially contains one source operand.

If the divisor is zero occurs, then the test-flag is set and the value of the destination is
unpredictable

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

345



MOVE

C-MOVE
Copies a complex source value into the destination field.

Formats CM: c-move-2L
CM:c-move-lL
CM: c-move-always-1L
CM: c-move-constant-lL
CM: c-move-const-always- 1L
CM: c-move-zero-lL
CM: c-move-zero-always- L

Operands dest

dest, source, ds, de, ss, se
dest, source, s, e
dest, source, s, e
dest, source-value, s, e
dest, source-value, s, e
dest, s, e
dest, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

source-value The field ID of the complex source field. For CM:c-move-
zero-IL and CM:c-move-zero-always-L, this implicitly has the value
zero.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

ds, de For CM:c-move-2L, the significand and exponent lengths for the
dest field. The total length of an operand in this format is 2(ds +
de + 1).

ss, se For CM:c-move-2L, the significand and exponent lengths for the
source field. The total length of an operand in this format is
2(ss + se + 1).

Overlap The fields dest and source may overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:c-move-2L.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

dest[k] - source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

346



MOVE

else overflow-flag[k] - 0
as appropriate.

The source field or value is copied into the dest field.

However, overlapping fields are not handled carefully and should be avoided.

347



MOVE

F-MOVE

Copies a floating-point source value into the destination field.

Formats CM:f-move-2L
CM:f-move-lL
CM:f-move-always-1L
CM :f- move-constant-1 L
CM :f- move-const-always- 1L
CM:f-move-zero-lL
CM:f- move-zero-always- L

Operands dest

dest, source, ds, de, ss, se
dest, source, s, e
dest, source, s, e
dest, source-value, s, e
dest, source-value, s, e
dest, s, e
dest, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

source-value A floating-point immediate operand to be used as the source.
This should be of type double-float in Lisp/Paris and will be co-
erced if necessary. For CM:f-move-zero-IL and CM:f-move-zero-
always-lL, this implicitly has the value zero.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

ds, de For CM:f-move-2L, the significand and exponent lengths for the dest
field. The total length of an operand in this format is ds + de + 1.

ss, se For CM:f-move-2L, the significand and exponent lengths for the
source field. The total length of an operand in this format is
ss + se + 1.

Overlap The fields dest and source may overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:f-move-2L.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] -- source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

348



MOVE

else overflow-flag[k] 0
as appropriate.

The source field or value is copied into the dest field.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

349



MOVE

S-MOVE
Copies a signed integer source value into the destination field.

Formats CM:s-move-2L
CM:s-move-1L
CM:s-move-always-lL
CM:s-move-constant-lL
CM:s-move-const-always-1L
CM:s-move-zero-1L
CM: s-move-zero-always-lL

Operands dest

dest, source, dlen, slen
dest, source, ten
dest, source, ten
dest, source-value, Len
dest, source-value, ten
dest, en
dest, len

The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

source-value A signed integer immediate operand to be used as the source.
For CM:s-move-zero-lL and CM:s-move-zero-always-lL, this implic-
itly has the value zero.

ten

dlen

slen

The length of the dest and source fields. This must be no smaller
than 2 but no greater than the maximum Paris field length.

For CM:s-move-iL, the length of the dest field. This must be no
smaller than 2 but no greater than the maximum Paris field length.

For CM:s-move-iL, the length of the source field. This must be no
smaller than 2 but no greater than the maximum Paris field length.

Overlap The fields dest and source may overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:s-move-2L.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

dest[k] - source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

350



MOVE

The source field or value is copied into the dest field. For CM:s-move-2L, if slen is less than
dlen then the source value, regarded as a bit field, is padded at the most significent end
with copies of the most significant source bit (sign extension), and if slen is greater than
dlen then truncation occurs and overflow may be detected.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

351



MOVE

U-MOVE

Copies an unsigned integer source value into the destination field.

Formats CM: u-move-2L
CM: u-move-lL
CM: u-move-always-lL
CM: u-move-constant- L
CM: u-move-const-always- L
CM: u-move-zero-IL
CM: u-move-zero-always-lL

Operands dest

dest,
dest,
dest,
dest,
dest,
dest,
dest,

source, dlen, slen
source, len
source, len
source-value, len
source-value, len
len
len

The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

source-value An unsigned integer immediate operand to be used as the
source. For CM:u-move-zero-1L and CM:u-move-zero-always-lL, this
implicitly has the value zero.

len

dlen

slen

The length of the dest and source fields. This must be no smaller
than 2 but no greater than the maximum Paris field length.

For CM: u-move-iL, the length of the dest field. This must be no
smaller than 2 but no greater than the maximum Paris field length.

For CM:u-move-lL, the length of the source field. This must be no
smaller than 2 but no greater than the maximum Paris field length.

Overlap The fields dest and source may overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM: u-move-2L.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose contest-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - source[k]

if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

352



MOVE
:: ::: :: :::: :::::::::::::::'::-::::::: ::'::::::::::::::::::::::::::::: ::::::: ;::::: :::::::::::: :� :fi::::: ::::::::: : :: :::::::;:::::::::::::::: `~:~::: ::::::: ;:: : ::::::;::: ·:;::·:::::~:`-::

The source field or value is copied into the dest field. For CM: u-move-2L, if slen is less than
dlen then the source value, regarded as a bit field, is padded at the most significent end
with zero bits, and if slen is greater than dlen then truncation occurs and overflow may be
detected.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

353



MOVE-DECODED-CONSTANT

F-MOVE-DECODED-CONSTANT

Copies a decoded immediate floating-point source value into the destination field.

Formats CM:f-move-decoded-constant-lL dest, low-s-value, high-s-value,
e-value, sign-value, s, e

Operands dest The field ID of the floating-point destination field.

low-s-value An unsigned integer immediate operand to be used as the
low 32 bits of the integer significand.

high-s-value An unsigned integer immediate operand to be used as the
high bits of the integer significand.

e-value A signed integer immediate operand to be used as the integer
exponent.

sign-value A signed integer immediate operand to be used as the integer sign.
This must be either 1 or -1.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sign-value x (low-s-value + 232 x high-s-value) x 2e-value

The three quantities low-s-value + 232 x high-s-value, e-value, and sign-value are three
integers that together describe a floating-point value. (This is the same decoded form that
is used by such Common Lisp operations as integer-decode-float.) This floating-point value
is copied into the dest field.

In the Lisp interface one may use a "bignum" as the low-s-value and always pass zero for
the high-s-value. In the C interface, however, it is not possible to pass an integer of more
than 32 bits. The high-s-value operand provides a way around this difficulty that works
compatibly in either language.

354



MOVE-REVERSED

MOVE-REVERSED

Copies the source values into the destination field, reversing the order of the bits.

Formats CM: move-reversed-lL
CM: move-reversed-always-lL

Operands dest

dest, source, en
dest, source, en

The field ID of the destination field.

source The field ID of the source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operation is conditional. The destination may be altered only
in processors whose context-flag is 1.

The always operation is unconditional. The destination may be altered re-
gardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

for j from 0 to len - 1 do
dest[k](j) - source[k](len - j - 1)

The source field or value is copied into the dest field, with the order of the bits reversed;
that is, the least significant bit of the source field is copied into the most significant bit of
the dest field, and so on.

355



MULT-ADD

F-MULT-ADD

Calculates a value za + b and places it in the destination.

Formats CM:f-mult-add-1L
CM:f-mult-add-always- 1L
CM :f-mult-const-add-lL
CM:f-mult-const-add-always-lL
CM:f-mult-add-const-1L
CM:f-mult-add-const-always-lL
CM:f- mult- const-add-const- iL
CM: f- mult- const-add-const-a- 1 L

Operands dest

dest,
dest,
dest,
dest,
dest,
dest,
dest,
dest,

sourcel,
sourcel,

sourcel,
sourcel,
sourcel,
sourcel,
sourcel,
sourcel,

source2, source3, s, e
source2, sourceS, s, e
source2-value, source3, s, e
source2-value, source3, s, e
source2, source3-value, s, e
source2, source3-value, s, e
source2-value, source3-value, s, e
source2-value, source3-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source (multiplier) field.

source2-value A floating-point immediate operand to be used as the second
source (multiplier).

sourceS The field ID of the floating-point third source (augend) field.

source3-value A floating-point immediate operand to be used as the third
source (augend).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and source3 fields. The total length of an operand in this format
is s+e + 1.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

dest[k] - (sourcel[k] x source2[k]) + source3[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

356



MULT-ADD
X::::: : : : : : : : . :::: :..............I.........::::. :::::: :;:. :~; ;;;·:: ··:: ··:: ··:: ·· :: ·· :::: ·· ·:: ··:: ·· :. ...::: ........................ I......I................:·::.:·: ·

Two operands, sourcel and sources, are multiplied as floating-point numbers and then a
third operand, source3, is added to the product. The result is stored in the destination
field. The various operand formats allow the second and third source operands to be either
memory fields or constants.

The constant operands source2-value and source3-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by s and e before the operation is performed.

A call to CM:f-mult-add-1L is equivalent to the sequence

CM:f-multiply-3-1L temp, sourcel, source2, s, e
CM:f-add-3-1L dest, temp, sourceS, s, e

but may be faster.

357



MULT-SUB
::::::::::::::::::::::::::::: ' ::: ::::::::::::.: :::::::::::::::::*::::::::::::

F-MULT-SUB

Calculates a value a - b and places it in the destination.

Formats CM:f-mult-sub-lL
CM:f-mult-sub-always-lL
CM:f-mult-const-sub-lL
CM:f-mult-const-sub-always-lL
CM:f-mult-sub-const-1L
CM:f-mult-sub-const-always- L
CM:f-mult-const-sub-const-lL
CM:f-mult-const-sub-const-a-lL

Operands dest

dest,
dest,
dest,
dest,
dest,
dest,
dest,
dest,

sourcel,
sourcel,
sourcel,
sourcel,
sourcel,
sourcel,
sourcel,
sourcel,

source2, source, s, e
source, srce, sourceS, s, e
source2-value, sources, s, e
source2-value, source3,, e
source2, sourceS-value, s, e
source2, source3-value, , e
source2-value, source3-value, s, e
source2-value, source3-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source (multiplier) field.

source2-value A floating-point immediate operand to be used as the second
source (multiplier).

source3 The field ID of the floating-point third source (subtrahend) field.

source3-value A floating-point immediate operand to be used as the third
source (subtrahend).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and source3 fields. The total length of an operand in this format
is s+e + 1.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] (sourcel[k] x source2[k])- source3[k]
if (overflow occurred in processor ) then overflow-flag[k] +- 1

358



MULT-SUB

Two operands, sourcel and source2, are multiplied as floating-point numbers and then
a third operand, source3, is subtracted from the product. The result is stored in the
destination field. The various operand formats allow the second and third source operands
to be either memory fields or constants.

The constant operands source2-value and source3-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by and e before the operation is performed.

A call to CM:f-mult-sub-1L is equivalent to the sequence

CM:f-multiply-3-1L temp, sourcel, source2, s, e
CM:f-subtract-3-1L dest, temp, source3, s, e

but may be faster.

359



MULT-SUBF

F-MULT-SUBF

Calculates a value b - za and places it in the destination.

Formats CM:f-mult-subf-lL
CM :f-mult-subf-always- 1L
CM: f-mult-const-subf-1 L
CM: f-mult-const-subf-always-lL
CM:f-mult-subf-const- 1L
CM:f-mult-subf-const-always- 1L
CM:f-mult-const-subf-const- 1L
CM: f-mult-const-subf-const-a- IL

dest, sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,
dest, sourcel,
dest, source},
dest, sourcel,
dest, sourcel,

source2, sourceS, s, e
source2, sourceS, s, e
source2-value, sources, s, e
source2-value, source3, s, e
source2, source3-value, s, e
source2, source3-value, s, e
source2-value, source3-value, s, e
source2-value, source3-value, s, e

Operands dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

sources The field ID of the floating-point second source (multiplier) field.

source2-value A floating-point immediate operand to be used as the second
source (multiplier).

sourceS The field ID of the floating-point third source (minuend) field.

source3-value A floating-point immediate operand to be used as the third
source (minuend).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and sourceS fields. The total length of an operand in this format
is s+e+l.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - source3[k] - (sourcel[k] x source2[k])
if (overflow occurred in processor k) then overflow-flag[k] 1

360

Definition



MULT-SUBF
: .. ::::::::::: .. x: ' : : ::: :::::::::::::::: ::: ::::: : :::::::::.: ...................1. % i. .: . . .% .................... .·: . ··..·. ..·: ·

Two operands sourcel and source2 are multiplied as floating-point numbers and the product
is subtracted from a third operand, sourceS. The result is stored in the destination field. The
various operand formats allow the second and third source operands to be either memory
fields or constants.

The constant operands source2-value and sourceS-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by s and e before the operation is performed.

A call to CM:f-mult-subf-1L is equivalent to the sequence

CM:f-multiply-3-1L temp, sourcel, source2, s, e
CM:f-subtract-3-1L dest, source3, temp, s, e

but may be faster.

361



MULTIPLY
....... :::::::::::::S::::::::: .............. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::..........:S:::::

C-MULTIPLY
The product of two complex source values is placed in the destination field.

Formats CM:c-multiply-2-1L
CM: c-multiply-always-2- L
CM: c-multiply-3-1L
CM: c-multiply-always-3-1L
CM: c-multiply-constant-2-1L
CM: c-multiply-const-always-2-1L
CM: c-multiply-constant-3-1L
CM: c-multiply-const-always-3-1L

Operands dest The field ID of the

dest/sourcel, source2, s, e
dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

complex destination field.

sourcel The field ID of the complex first source field.

source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
2(s + e + 1).

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel[k] x source2[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

Two operands, sourcel and source2, are multiplied as complex numbers. The result is stored
into memory. The various operand formats allow operands to be either memory fields or
constants; in some cases the destination field initially contains one source operand.

362

Definition



MULTIPLY
:::: N.::.:. : :. : i · ... . .... . .. :.:: ' ··: · : : ···: :::: .':

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

363



MULTIPLY

F-MULTIPLY
The product of two floating-point source values is placed in the destination field.

Formats CM:f-multiply-2-1L
CM:f-multiply-always-2-1L
CM:f-multiply-3-1L1
CM:f-multiply-always-3-1L
CM:f-multiply-constant-2-1L
CM:f-multiply-const-always-2- L
CM: f- multiply-constant-3- 1L
CM: f-multiply-const-always-3- L

Operands dest

dest/sourcel, source2, s, e
dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - sourcel [k] x source2[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

364



MULTIPLY

Two operands, sourcel and sources, are multiplied as floating-point numbers. The result
is stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by and e.

365



MULTIPLY

S-MULTIPLY

The product of two signed integer source values is placed in the destination field. Overflow
is also computed.

Formats CM:s-multiply-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-multiply-2-1L dest/sourcel, sources, len
CM:s-multiply-3-lL dest, sourcel, source2, len
CM:s-multiply-constant-2-1L dest sourcel, source2-value, en
CM:s-multiply-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-multiply-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slenl For CM:s-multiply-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slen2 For CM:s-multiply-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the product cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

366



MULTIPLY
:: :: ::::::::::::::*::::: :::: : : : : : :::::: : : :::::::::::: :::::::::::::::::: :::::::::::::::::::::::: : ::::::: :::::::::::::::::::::

C···'·'·'·:·' ···''·'·'; ..·.·.·.·. ~.·. ·''.:·'·'·,.. . . . ..·': ' : ..

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] sourcel[k] x source2[k]
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

Two operands, sourcel and source2, are multiplied as signed integers. The result is stored
into the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

367



MULTIPLY

U-MULTIPLY

The product of two unsigned integer source values is placed in the destination field. Overflow
is also computed.

Formats CM:u-multiply-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:u-multiply-2-1L dest/sourcel, source2, len
CM: u-multiply-3-1L dest, sourcel, source2, len
CM:u-multiply-constant-2-1L dest/sourcel, source2-value, len
CM: u-multiply-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM: u-multiply-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

slenl For CM:u-multiply-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM:*maximum-integer-
length*.

slen2 For CM:u-multiply-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

368



MULTIPLY
::: .: - ..::-::::::::::.. ..::.:..:..::: : :::::: ::::::: :. :::: :: ;:: .... I. .. ..........................................

if context-flag[k] = 1 then
dest[k] - sourcel [] x source2[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

Two operands, sourcel and source2, are multiplied as unsigned integers. The result is
stored into the memory field dest. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

369



MU LTISPREAD-ADD

MULTISPREAD-C-ADD
The destination field in every selected processor receives the sum of the complex floating-
point source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-c-add-L dest, source, axis-mask, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let ais-set = m 0 < m < r (axis-mask(m) = 1) }
let Ck = { m I m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] - (nC source[m])
mECa,

where hyperplane is as defined on 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-c-add operation combines source fields by performing complex floating-point
addition.

A call to CM: multispread-c-add-lL is equivalent to the sequence

for all integers j, 0 < j < rank(geometry(current-vp-set)), in any sequential order, do
if axis-mask(j) = 1 then

CM:spread-with-c-add-L dest, source, j, s, e

but may be faster.

370

Definition



MU LTISPREAD-ADD

MULTISPREAD-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-add-lL dest, source, axis-mask, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = { m I 0 < m < r A (axis-mask(m) = 1) }
let Ck = { m I m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] (- (: source[m])
mECj,

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-f-add operation combines source fields by performing floating-point addi-
tion.

A call to CM:multispread-f-add-lL is equivalent to the sequence

CM:f-move-zero-always-L temp, s, e
CM:f-move-1L temp, source, s, e
CM: store-context ctemp
CM: set-context

371



MU LTISPREAD-ADD

for all integers j, 0 < j < rank(geometry(current-vp-set)), in any sequential order, do
if azis-mask(j) = 1 then

CM:spread-with-f-add-1L temp, temp, j, s, e
CM: load-context ctemp
CM:f-move-1L dest, temp, , e

but may be faster.

372



MU LTISPREAD-ADD

MULTISPREAD-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-s-add-1L desi, source, axis-mask, len

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let ais-set = {m I 0 < m < r A (azis-mask(m) = 1) }
let Ck = { m I m E hyperplane(g, k, axis-set) A contezt-flag[m] = 1 }

dest[k] -( source[m]
MECa,

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-s-add operation combines source fields by performing signed integer addi-
tion.

373



M ULTISPREAD-ADD
::: ' ''::':: ::' ::::'::::' :,:: ' '::'::'' ':::' ':' :': :::::::' ::: ':'::::::::' : ::::::::::::::'::::::' '::::::::::::::: ::::::::::::: ::::: :: *: ':''.:'.::::::':::'.'.':.:::::

MULTISPREAD-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-u-add-lL dest, source, axis-mask, en

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

ten The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = { m I 0 < m < r A (axis-mask(m) = 1) }
let Ck = ({ m m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] +- (EcS 0source[m])

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-u-add operation combines source fields by performing unsigned integer ad-
dition.

374

Definition



MULTISPREAD-COPY
.....S.":·'·:·:·:·'·:·:S·X·:~:~:~:·:~:' ''''''''`'''.""'::::l>j::j .. .x v~~r-ir.,.:.;,-.:..,.,.. ·..·. ···.·,·;. ·.·. ······. ··.·. ··· ·.· ..... ..... ..... ......... .....

MULTISPREAD-COPY

The destination field in every selected processor receives a copy of the source value from a
particular value within its scan subclass.

Formats CM: multispread-copy-lL dest, source, axis-mask, len, multi-coordinate

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

multi-coordinate An unsigned integer, the multi-coordinate indicating
which element of each hyperplane is to be replicated throughout
that hyperplane.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let ais-set = {m I 0 m < r < (axis-mask(m) = 1)}
let c = deposit-multi-coordinate(g, k, axis-set, multi-coordinate)
dest[k] - source[c]

where deposit-multi-coordinate is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations.

To construct a multi-coordinate, construct a send-address and provide it as an argument to
CM:fe-extract-multi-coordinate.

375

Definition



MULTISPREAD-LOGAND
..: ..... . ... :.:.: i: . . .

MULTISPREAD-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logand-lL dest, source, axis-mask, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry( current-vp-set)
let r = rank(g)
let ais-set = { m I 0 m < r A (axis-mask(m) = 1) }
let Ck =( { m 6 hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] - (,A source[m])
uMEC, 

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-logand operation combines source fields by performing bitwise logical AND

operations.

376

Definition



MULTISPREAD-LOGIOR

MULTISPREAD-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logior-IL dest, source, axis-mask, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = { m I 0 < m < r A (axis-mask(m) = 1) }
let Ck = { m m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] - (, V source[m])
mECA,

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-logior operation combines source fields by performing bitwise logical inclu-
sive OR operations.

377

Definition



M U LTISPREAD-LOGXOR
:::::::::' :::::::':::::::: ':::::'::::R ::::::::::::::::::: :>'S'::' ::::::::::::::' ::::::::.:::::::::::::::::::::::::::::.::::::.::::..::::.:::::..::::.::

MULTISPREAD-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive oR of
the source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logxor-lL dest, source, axis-mask, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m I 0 < m < r A (axis-mask(m) = 1)}
let Ck = m m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] ( (,~ source[m])
mECj,

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-logxor operation combines source fields by performing bitwise logical ex-
clusive OR operations.

378



MU LTISPREAD-MAX

MULTISPREAD-F-MAX

The destination field in every selected processor receives the largest of the floating-point
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-max-lL dest, source, axis-mask, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m I 0 < m < r A (axis-mask(m) = 1) }
let Ck = { m I m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] - (max source[m])

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-f-max operation combines source fields by performing a floating-point max-
imum operation.

379

Definition



MU LTISPREAD-MAX
:: :: :: ::: ::: :::::' ::: :::: : ::B:::::::: ::::::: ':::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::

MULTISPREAD-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-s-max-lL dest, source, axis-mask, len

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m I 0 < m < r A (axis-mask(m) = 1) }
let Ck = m mI m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }
dest[k] - (max source[m])

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-s-max operation combines source fields by performing a signed integer max-
imum operation.

380



MULTISPREAD-MAX

MULTISPREAD-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-u-max-lL dest, source, ais-mask, len

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = { m I < m < r A (azis-mask(m) = 1) }
let Ck = { m m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }
dest[k] (max source[m])

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-u-max operation combines source fields by performing an unsigned integer
maximum operation.

381

Definition



MULTISPREAD-MIN
::: .. " , " :B EB > a, , B:.: -.'- .,: S': a".:: ::: B:: i:: X 

11.1'. .. l`:':::'' ,:. .··.. ·.;. ··. ··. ···. ··: . .... .. ......·····: ··:: ··:: i::::

MULTISPREAD-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-min-lL dest, source, azis-mask, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let ais-set = {m I 0 < m < r A (azis-mask(m) = 1) }
let C = { m m E hyperplane(g, k, axis-set) A context-flag[m] = 1 

dest[k] -- min source[m])

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-f-min operation combines source fields by performing a floating-point mini-
mum operation.

382



MULTISPREAD-MIN
::'::...;.i;:z' : .: :' ':; ::::'· u :':' ::... ':' ' ' ':': ' ::' ' ' ' :':' : : ' :..: :' ' :: :': : ' . :~~~ . ....". ., : ::::::::. ·::: ··:: .: :::: .. .. :~:': ·~: ~ 8

MULTISPREAD-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-s-min-lL dest, source, azis-mask, len

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = { m I < m < r A (azis-mask(m) = 1) }
let Ck = { m I m E hyperplane(g, k, azis-set) A contezt-flagfm] = 1 

dest[k] - (min source[m])
,,,, t~~C~Eck ·

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-s-min operation combines source fields by performing a signed integer min-
imum operation.

383



MU LTISPREAD-MIN

MULTISPREAD-U-MIN
The destination field in every selected processor receives the smallest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-u-min-lL dest, source, axis-mask, len

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = { m I O < m < r A (axis-mask(m) = 1) }
let Ck = { m { m E hyperplane(g, k, azis-set) A context-flag[m] = 1 }

dest[k] (min source[m])
\mC.

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM: multispread-u-min operation combines source fields by performing an unsigned integer
minimum operation.

384



MY-N EWS-COORDINATE

MY-NEWS-COORDINATE

Stores the NEWS coordinate of each selected processor along a specified NEWS axis into'a
destination field within that processor.

Formats CM: my-news-coordinate-lL dest, axis, dlen

Operands dest

azis

dlen

The field ID of the unsigned integer destination field.

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
dest[k] - extract-news-coordinate(g, axis, k)

where extract-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the NEWS coordinate of that pro-
cessor along a specified NEWS axis.

385

Definition



MY-SEND-ADDRESS
. . .; ..::::::::::::::::::::::::::.....

MY-SEND-ADDRESS

Stores the send-address of each selected processor into a destination field in that processor.

Formats CM:my-send-address dest

Operands dest The field ID of the unsigned integer destination field. This must
be no less than the value returned by CM: geometry-send-address-
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] k

This function stores into the dest field, within each selected processor, the send-address of
that processor.

386



NE
:::::::::::::::::::~::::::::::::: ::::::::::::::::: :: :::::'::::::::::::::::::::: ::: ::: :::::::::: :: :::::::: :::::::::: :::::::: :::::::::::::::::::::: : ' :: :::::: ::::::::::: :.::: :: : : : ::::::

C-NE

Compares two complex source values. The test-flag is set if they are not equal; otherwise it
is cleared.

Formats CM:c-ne-lL
CM: c-ne-constant-lL
CM: c-ne-zero-lL

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, s, e

Operands sourcel The field ID of the complex first source field.

source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source. For CM:c-ne-zero-lL, this implicitly has the value zero.

S, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is 2(s + e + 1).

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is not equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only
whose context-flag is 1.

in processors

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] source2[k]
test-flag[k] 1

else
test-flag[k] 0

Two operands are compared as complex numbers. The first operand is a memory field; the
second is a memory field or an immediate value. The test-flag is set if the first operand is
not equal to the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 and -0 are considered to be equal.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

387

Definition



NE
:::::: ::::::::::::::::::::::: :::: :::::�::::::::: ::::: :::::::: : ::::::::::::.::::::: :::::::::::.::::.:.:..:.:.:.:.:.:.:.:.:.:.:.:.:.:.:..:.:. .:: :::.:.. :..: ..:.: .: ..::::::::.

F-NE

Compares two floating-point source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:f-ne-1L
CM:f-ne-constant-lL
CM:f-ne-zero-1L

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-ne-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the source1 and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is not equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only
whose context-flag is 1.

in processors

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] source2[k]
test-flag[k] - 1

else
test-flag[k] O- 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is not equal to the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 and -0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

388



NE

S-NE

Compares two signed integer source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:s-ne-1L sourcel, source2, len
CM:s-ne-2L sourcel, source2, slenl, slen2
CM:s-ne-constant-lL sourcel, source2-value, len
CM:s-ne-zero-lL sourcel, en

Operands sourcel The field ID of the signed integer first source field.

source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-ne-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is not equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel[k] $ source2[k] then
test-flag[k] 1

else
test-flag[k] O

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is not equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

389



NE
:::: : ::: :: :::::::: : :: ::':: :::::: ::::::::::::::: ::':::::::::: :::':':: :::::::::::::::: ::::�:::::::::::::::::::::::::::::'::::::::::: ::::::::::::::::::::: ::::::::::::::::::: ::::::::::::.::::::::::: ::::::::::::::::.:::::::;:::::::::::::::~::::::::::: ::::::::::: ::::::::.` :~::: ::::::i::::: ::::::::::::::::

U-NE

Compares two unsigned integer source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:u-ne-lL
CM: u-ne-2L
CM: u-ne-constant-lL
CM: u-ne-zero-lL

sourcel, source2, en
sourcel, source2, slenI, slen2
sourcel, source2-value, en
sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.

source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM: u-ne-zero-lL, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is not equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] $ source2[k] then
test-flag[k] - 1

else
test-flag[k] O 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is not equal to the second operand, and is cleared otherwise.

390

Definition



NE
. ;. ' '''; " :;':.:': ':';' ;"'.:: '::' :: ; .. ::.::":;

": :
::::::: :.:.:::.:.:::

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

391



NEGATE

C-NEGATE
Copies a complex number with both signs inverted.

Formats CM:c-negate-l-lL
CM: c-negate-2-IL

Operands dest

dest/source, s, e
dest, source, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contet-flag[k] = 1 then

dest[k].real .- -source[k].real
dest[k].imag - -source[k].imag

A copy of the source operand, with both sign bits inverted, is placed in the dest operand.

392

Definition



NEGATE
C. I .. .. '. -.7 ...... . .... .

F-N EGATE

Copies a floating-point number with its sign inverted.

Formats CM:f-negate-l-1L
CM:f-negate-2-1L

Operands dest

dest/source, s, e

dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - -source[k]

A copy of the source operand, with its sign bit inverted, is placed in the dest operand. This
is done even if the operand is a NaN, whether a signalling NaN or a quiet NaN.

This operation therefore differs from the operation of subtracting a floating-point number
from the constant zero when the operand is ±0 or a NaN.

393



NEGATE
.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . .. .....

S-NEGATE

Computes the negative (that is, the additive inverse) of a signed integer source field and
places it in the destination field.

Formats CM:s-negate-l-1L
CM:s-negate-2-1L
CM:s-negate-2-2L

Operands dest

dest/source, len
dest, source, len
dest, source, dlen, slen

The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- -source[k]
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

The negative of the source operand is placed in the dest operand. If overflow occurs, then
the overflow-flag is set. (If the length of the dest field equals the length n of the source
field, overflow can occur only if the source field contains -2n. If the length of the dest field
is greater than the length of the source field, then overflow cannot occur.)

394

Definition



NEGATE
.... ... .... ... .... ...... ... .... ... .:. . .... ... ... .

U-NEGATE

The "negative" (that is, the unsigned additive inverse) of an unsigned integer source field is
placed in the destination field. This is an unsigned value that, when added to the original
source field, will produce zero (possibly with overflow).

Formats CM:u-negate--1L dest/source, len
CM:u-negate-2-1L dest, source, len
CM:u-negate-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

len

dlen

slen

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in
otherwise it is cleared. Overflow occurs whenever the
zero.

Context This operation is conditional. The destination and flag
in processors whose contezt-flag is 1.

the destination field;
source value is non-

may be altered only

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - -source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] 0

The negative of the source operand is placed in the dest operand. If overflow occurs, then
the dest field will contain a value equal to 21en - source. This operation matches the
functionality of the unary "-" operator on unsigned integers in the C language.

395



NEWS-ADD

F-NEWS-ADD
The sum of two floating-point source values (one from a NEWS neighbor) is placed in the
destination field.

Formats CM:f-news-add-2-1L dest, source, axis, direction, s, e
CM:f-news-add-always-2-1L dest, source, axis, direction, s, e
CM:f-news-add-3-1L dest, sourcel, source2, axis, direction, s, e
CM:f-news-add-always-3-1L dest, sourcel, source2, axis, direction, s, e
CM:f-news-add-const-3-1L dest, sourcel, source2-value, axis, direction, s, e
CM:f-news-add-const-a-3-11 dest, sourcel, source2-value, axis, direction, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+l.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Note that in the conditional cases the storing of data depends only on the
context-flag of the processor receiving the data.

396



NEWS-ADD
.. :............ . ... .... . ............... ..... ...

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
dest[k] - sourcel [k] + source2[news-neighbor(g, k, axis, direction)]
if (overflow occurred in processor k) then overflow-flag[k] - 1

where news-neighbor is is defined in the NEWS Communication section of the
Instruction Set Overview Chapter.

Two source operands are added as floating-point numbers and the result is stored in dest.
The various operand formats allow source operands to be either memory fields or constants.
Each instruction takes one source field from a NEWS neighbor; the default is source2.

The instructions with two operands take source from a NEWS neighbor, sum it with dest
and store the result back in dest.

For the instructions CM:f-news-add-3-1L and CM:f-news-add-always-3-1L, source2 is taken
from a NEWS neighbor.

The instructions CM:f-news-add-const-3-1L and CM:f-news-add-const-a-3-1L take sourcel
is from a NEWS neighbor. Note that the ain CM:f-news-add-const-a-3-1L stands for "always."

If direction is: upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along axis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less along axis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-add-1L is equivalent to the sequence

CM:get-from-news-lL temp, source2, axis, direction, (s + e + 1)
CM:f-add-3-1L dest, sourcel, temp, s, e

but is faster at high vP ratios and requires little temporary memory.

397



NEWS-ADD-M ULT

F-NEWS-ADD-MULT

Calculates the value (a + z)b, where one of the operands is taken from a NEWS neighbor,
and places the result in the destination.

Formats CM:f-news-add-mult-4-1L dest, sourcel, source2, sourceS, axis, direction, s, e
CM:f-news-add-const-mult-4-1L dest, sourcel, source2-value, source3, axis, direction, s, e

Operands dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

source3 A floating-point immediate operand to be used as the third source.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either : upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1. Note that in the conditional cases the
storing of data depends only on the context-flag of the processor receiving the
data.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
dest[k] - (sourcel + source2[news-neighbor(g, k, axis, direction)]) x source3[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

398



NEWS-ADD-MU LT
:::::::::::::::! : ::::::!:~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::!::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

The sum of two source operands is multiplied by the value of a third source operand. The
result is stored in dest. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.
Each instruction takes one source field from a NEWS neighbor; the default is source2.

The CM:f-news-add-mult-4-1L instruction takes source2 from a NEWS neighbor. For the
CM:f-news-add-const-mult-4-1L instruction, source2 is a constant and source3 is taken from
a NEWS neighbor.

If direction is: upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along axis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less along axis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-add-mult is equivalent to the sequence

CM:get-from-news-1L temp, source2, axis, direction, (s + e + 1)
CM:f-add-mult-1L soucel, temp, sourceS, s, e

but is faster at high vP ratios and requires little temporary memory.

399



NEWS-MULT
:.:: ·:: · ::: ::::i:: ':`: '::' I:'::''::::I·:I. ·····; ··.·. ··.. · ::i: ::'':: : :'::'`::'' .. :': . . ... .......··: ··:: · ·:::·: ......::ii:

F-NEWS-MULT

The product of two floating-point source values (one from a NEWS neighbor) is placed in
the destination field.

Formats CM:f-news-mult-2-1L
CM:f-news-mult-always-2-1L
CM:f-news-mult-3-1L
CM:f-news-mult-always-3-1L
CM: f- news-mult-const-3-1L
CM: f-news-mult-const-a-3-1 L

Operands dest

dest,
dest,
dest,
dest,
dest,
dest,

source, azis, direction, s, e
source, axis, direction, s, e
sourcel, source2, azis, direction, s, e
sourcel, source2, ais, direction, s, e
sourcel, source2-value, axis, direction, s, e
sourcel, source2-value, azis, direction, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

I Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag. Note that in the conditional
cases the storing of data depends only on the context-flag of the processor
receiving the data.

Definition For every virtual processor k in the current-vp-set do

400



NEWS-MU LT

if context-flag[k] = 1 then
let g = geometry(current-vp-set)
dest[k] +- sourcel [k] x source2[news-neighbor(g, k, axis, direction)]
if (overflow occurred in processor k) then overflow-flag[k] - 1

Two source operands are multiplied as floating-point numbers. The result is stored in dest.
The various operand formats allow operands to be either memory fields or constants; in
some cases the destination field initially contains one source operand. Each instruction
takes one source field from a NEWS neighbor; the default is source2.

The instructions with two operands take source from a NEWS neighbor, multiply it with
dest, and store the result back in dest.

For the instructions CM:f-news-mult-3-1L and CM:f-news-mult-always-3-1L, source2 is taken

from a NEWS neighbor.

For the instructions CM:f-news-mult-const-3-1L and CM:f-news-mult-const-a-3- L, sourcel
is taken from a NEWS neighbor. Note that the a in CM:f-news-mul-const-always-3-l stands
for "always." This is necessary to meet the 31 character limit on instruction names.

If direction is: upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along axis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-mult-3-1L is equivalent to the sequence

CM:get-from-news-lL temp, source2, azis, direction, (s + e + 1)
CM:f-multiply-3-1L dest, sourcel, temp, s, e

but is faster at high vP ratios and requires little temporary memory.

401



NEWS-MULT-ADD

F-NEWS-MULT-ADD

The product of two floating-point source values (one from a NEWS neighbor) is added to
yet another floating-point source value; the result is placed in the destination field.

Formats CM:f-news-mult-add-4-1L dest, sourcel, source2, source3,
azis, direction, s, e

CM:f-news-mult-const-add-4-1L dest, sourcel, source2-value, source3,
axis, direction, s, e

Operands dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point multiplicand field.

source2 The field ID of the floating-point multiplier field. These values
may be taken from a NEWS neighbor.

source2-value A floating-point immediate operand to be used as the mul-
tiplier.

source3 The field ID of the floating-point addend field. These values may
be taken from a NEWS neighbor.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address, and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Note that in the conditional cases the storing of data depends only on the
context-flag of the processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

402



NEWS-MU LT-ADD
:I. .. .. . . :: . . ... ::. . . . .

let g = geometry(current-vp-set)
dest[k] - sourcel [k] x source2[news-neighbor(g, k, axis, direction)] + source3[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

Two operands are multiplied as floating-point numbers; to the product is added a third
operand. The result is stored into memory. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand. Each instruction takes one source field from a NEWS neighbor; the
default is source2.

For CM:f-news-mult-add-4-1L, source2 is taken from a NEWS neighbor.

For CM:f-news-mult-const-add-4-1L, source2 is a constant and source3 is taken from a
NEWS neighbor.

If direction is: upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along axis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less along axis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value or source3-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-mult-add-4-1L is equivalent to the sequence

CM:get-from-news-lL temp, source2, axis, direction, (s + e + 1)
CM:f-multiply-3-1L temp, sourcel, temp, s, e
CM:f-add-3-1L dest, temp, source3, s, e

but is faster at high vP ratios and requires little temporary memory.

403



NEWS-M U LT-SU B
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::;;; : : : ::::::::::::::::::::::::::::::::::::::::::::::2:::::::::::::::::::::::::::::::::

F-NEWS-MULT-SUB
From the product of two floating-point source values (one from a NEWS neighbor) is sub-
tracted yet another floating-point source value; the result is placed in the destination field.

Formats CM :f-news-mult-sub-4-lL
CM:f-news-mult-const-sub-4-1L

Operands dest

dest, sourcel, source2, source3, ais, directi n, s, e
dest, sourcel, source2-value, source3,

azis, direction, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point multiplicand field.

source2 The field ID of the floating-point multiplier field.

source2-value A floating-p )int immediate operand to be used as the mul-
tiplier.

source3 The field ID of the floating-point subtrahend field.

source3-value A floating-point immediate operand to be used as the sub-
trahend.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s + e + 1.

Overlap The fields sourcel, source2, and sourceS may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Note that in the conditional cases the storing of data depends only on the
context-flag of the processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
dest[k] -- sourcel [k] x source2[news-neighbor(g, k, azis, direction)] - source3[k]
if (overflow occurred in processor k) then overflow-flag[k) 1

404



NEWS-MULT-SUB

Two operands, sourcel and source2, are multiplied as floating-point numbers; from the
product is subtracted a third operand, source3. The result is stored into memory. The
various operand formats allow operands to be either memory fields or constants; in some
cases the destination field initially contains one source operand. Each instruction takes one
source field from a NEWS neighbor; the default is source2.

For CM:f-news-mult-sub-4-1L, source2 is taken from a NEWS neighbor.

For and CM:f-news-mult-const-sub-4-1L, source2 is a constant and source3 is taken from a
NEWS neighbor.

If direction is: upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along axis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less along axis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value or source3-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-mult-sub-4-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, axis, direction, (s + e + 1)
CM:f-multiply-3-1L temp, sourcel, temp, s, e
CM:f-subtract-3-lL dest, temp, source3, s, e

but is faster at high vP ratios and requires little temporary memory.

405



NEWS-SUB
a : : : ::':::�: : : . .. ... d :a......R.......: : : ::1:::I:I::1:::I: :::::':1:::::1::1:::1: ::jjjj::::r~i:~:~....... %.; .1;:- ..

F-NEWS-SUB

The difference of two floating-point source values (one from a NEWS neighbor) is placed in
the destination field.

Formats CM:f-news-sub-2-1L dest, source, axis, direction, s, e
CM:f-news-sub-always-2-1L dest, source, axis, direction, s, e
CM:f-news-sub-3-1L dest, sourcel, source2, axis, direction, s, e
CM:f-news-sub-always-3-1L dest, sourcel, source2, axis, direction, s, e
CM:f-news-sub-const-3-1L dest, sourcel, source2-value, axis, direction, s, e
CM:f-news-sub-const-a-3-1L dest, sourcel, source2-value, axis, direction, s, e

Operands dest The field ID of the floating-point destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the floating-point first source field) field. This is
the minuend.

source2 The field ID of the floating-point second source field. This is the
subtrahend.

source2-value A floating-point immediate operand to be used as the second
source.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Note that in the conditional cases the storing of data depends only on the
context-flag of the processor receiving the data.

406



NEWS-SUB
:: : : , I:: : : : :::: :-: .:.: ::: :x: : X· :: :::::::::::: : : :::::::::::::

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry(current-vp-set)
dest[k] - sourcel [k] - source2[neus-neighbor(g, k, axis, direction)]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The operands are treated as as floating-point numbers and one is subtracted from another.
The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields are constants; in some cases the destination field initially contains
one source operand. Each instruction takes one source field from a NEWS neighbor; the
default is source2.

The instructions with two operands take source from a NEWS neighbor, subtract it from
dest, and store the result stored back in dest.

For the instructions CM:f-news-sub-3-1L and CM:f-news-sub-always-3-1L, source2 is ob-
tained from a NEWS neighbor.

For the instructions CM:f-news-sub-const-3-1L and CM:f-news-sub-const-a-3-1L, source2 is
a constant and sourcel is obtained from a NEWS neighbor. Note that the a in CM:f-news-
sub-const-a-3-1L stands for "always."

If direction is: upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along axis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less along axis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-sub-3-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, axis, direction, (s + e + 1)
CM:f-subtract-3-1L dest, sourcel, temp, s, e

but is faster at high vP ratios and requires little temporary memory.

407

___ ---



NEWS-SUB-M ULT

F-NEWS-SUB-MULT

Calculates the value (a - z)b, when one of the operands is taken from a NEWS neighbor,
and places the result in the destination.

Formats CM:f-news-sub-mult-4-1L dest, sourcel, source2, sources, axis, direction, s, e
CM:f-news-sub-const-mult-4-1L dest, sourcel, source2-value, source3, axis, direction, s, e

Operands dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

source3 The field ID of the floating-point third source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be
in processors whose context-flag is 1.

Note that in the conditional cases the storing of data depends
context-flag of the processor receiving the data.

altered only

only on the

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
dest[k] - (sourcel - source2[news-neighbor(g, k, axis, direction)]) x source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

408

Definition



NEWS-SUB-M ULT
... S ..... . .. ... .. .. ... ....

The difference of two operands is multiplied by the value of a third operand. The result
is stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.
Each instruction takes one source field from a NEWS neighbor; the default is source2.

The CM:f-news-sub-mult-4-1L instruction takes source2 from a NEWS neighbor. For the
CM:f-news-sub-const-mult-4-1L instruction, source2 is a constant and source3 is taken from
a NEWS neighbor.

If direction is: upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-sub-mult-4-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, ais, direction, (s + e + 1)
CM:f-sub-mult-1L dest, sourcel, temp source3, s, e

but is faster at high vP ratios and requires little temporary memory.

409



NEXT-STACK-FIELD-ID
E > . > .:.: .: X!· 6 · :

Determines
field.

NEXT-STACK-FIELD-ID
the next stack field id that would be returned by a call to CM:allocate-stack-

Formats result - CM:next-stack-field-id

Operands None.

Result An unsigned integer, the field ID that will be returned by the next invocation
of CM: allocate-stack-field.

Context This operation is unconditional. It does not depend on the contezt-flag.

This function returns the next stack field id to be allocated.

410



PACKED-ARRAY-FORMAT
:::::::::::::::i::: ·· i:: ::: i:: ::: ::: i::: ::: :i~ i~i~. .. .. :··: ·.. .. .... ...I : :i . .. ... ··. · .··. ·. ·. ·.. . ··.····. .. ·

FE-PACKED-ARRAY-FO RMAT

This front-end instruction returns an array format descriptor for a packed front-end array
format. A format descriptor may be used as the format argument to any array transfer
instruction, although this is not required.

See also CM:fe-array-format and CM:fe-structure-array-format.

Formats result - CM:fe-packed-array-format cm-element-size, [array-element-size]

Operands cm-element-size A signed integer immediate operand to be used as the
number of bits each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 128.

array-element-size A signed integer immediate operand to be used as the
number of bits in each front-end array element. This must be a
power of two between 1 and 128.
In Lisp/Paris, this argument is optional. If not specified, it de-
faults to the actual front-end element 'size or, if the front-end array
elements are general (i.e., of type t), array-element-size defaults
to the value of cm-element-size.

Result The array format descriptor specified.

Context This is a front-end operation. It does not depend on the value of the context-
flag.

The return value is a format descriptor for packed arrays; it can be passed to any array
transfer instruction. In this format, multiple Connection Machine array elements are packed
into each front-end array element during array transfers in either direction between the
Connection Machine and the front-end computer.

By using this instruction, it is also possible to specify an extended-element front-end array
format. In an extended-element format, each CM element is stored in multiple front-end
array elements.

The value of cm-element-size defines the unit of measure for the fe-offset-vector argument
to the CM: read-from-news-array and CM:write-to-news-array instructions.

The value of array-element-size defines the unit of measure for the argument
fe-dimension-vector to the CM:read-from-news-array and CM:write-to-news-array instruc-
tions.

The number of Connection Machine elements packed into each front-end array element
is the ratio of array-element-size to cm-element-size. If array-element-size is larger than

411



PACKED-ARRAY-FORMAT
X,~~~~~~~~~~~~~~~~~~~~~~~~~

cm-element-size, multiple Connection Machine elements are packed into each front-end
array element. Alternatively, if array-element-size is smaller than cm-element-size, each
CM element is stored in more than one front-end array element.

The ordering of the packing defaults to the standard ordering for the front end. For example,
on a VAX the Connection Machine element with the smallest coordinates is put into the least
significant bits of the front-end array element. On a Sun, the Connection Machine element
with the largest coordinates is put into the least significant bits of the front-end array
element.

412



PHASE

F-C-PHASE

Calculates the phase of the complex source field and puts the result in the floating-point
destination field.

Formats CM:f-c-phase-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is s + e + 1. The
total length of the source field in this format is 2(s + e + 1).

Overlap The dest field must be either identical to source, identical to (source+s+e+l),
or disjoint from source.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - atan2(source[k].imag, source[k].real)
if (overflow occurred in processor k) then overflow-flag[k] 1

The phase of a number is the angle part of its polar representation as a complex number.

413

Definition



PHYSICAL-VP-SET
::: .: .. a.. R ses.. .. B:~8':1, ::::" ' i: ..: : `: :::::: : ::::: : :: :::::::: ::::: ::::: : :::':': ' : " :: *::::::: :: :: .::':: : .'

PHYSICAL-VP-SET
Returns a VP set that has one virtual processor for each physical processor.

Formats result - CM:physical-vp-set

Operands None.

Result A VP set ID, identifying the vP set whose VP ratio is 1.

Context This operation is unconditional. It does not depend on the contest-flag.

414



POWER
a .:.:: ::::::::::::R:S ::R B :::::R : ::B: a 5 B In.. ...' . -. ... ... . ................................. R

.%%....-...:. . .. .:% . - ... : .1%.1: . .: '. %.. -. ', -I-.-.- . .. , . _ :. , . .'. 

C-C-POWER

Raises a complex number to a complex power.

Formats CM:c-c-power-2-1L
CM: c-c-power-3-lL
CM: c-c-power-constant-2-1L
CM: c-c-power-constant-3-1L

Operands dest

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, , e
dest, sourcel, source2-value, s, e

The field ID of the complex destination field.

sourcel The field ID of the complex first source field.

source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source.

5, e The significand and exponent lengths for the dest, sourcel, and
sources fields. The total length of an operand in this format is
2(s + e + 1).

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if zero is raised to a non-positive power; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

The sourcel field (the base) is raised to the power source2 (the exponent), using exp and
In operations.

415

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel [k]'"ute[k]
if sourcel [k] = 0.0 and source2[k].real < 0.0
and source2[k].imag = 0.0 then

test-flag[k] + 1
else test-flag[k] 4 0
if (overflow occurred in processor k) then overflow-flagfk] - 1



POWER
' :-: : A: '::R ' : ' ::':: ': " ¢B ' : : :::::::::::' ' : :::::::::::: "' ' : i::::: : ::::::: :::S:: :::::·:·: ': 3:':':':': ' ::: ::: *:::': ' :'::::: ::::::: :' ::::::::::::' :': ::' ::' :::i:::- ' ....... ' ....:;~;i:::::::··:i ':i~ ~ ~~··.. ·~~~i :ii::~~·~;·; ·:: : :··::;·····:··:··::::::2::s:::·: · ··:r ··· ·

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

416



POWER
:: .. '$::f:- I : : : : : R : : : : : : :::::::::::: ::::: : :::::.:.::::: : :.:.:.:::::::: : ::::::::::::::::::: :.:::::

C-F-POWER

Raises a complex number to a floating-point power.

Formats CM:c-f-power-2-1L
CM:c-f-power-3-1L
CM: c-f-power-constant-2-1L
CM: c-f-power-constant-3-1 L

Operands dest

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the complex destination field.

sourcel The field ID of the complex first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest and sourcel and
source2 fields. The total length of the dest and sourcel field in
this format is 2(s + e + 1). The total length of the source2 field in
this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if zero is raised to a non-positive power; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

The sourcel field (the base) is raised to the power source2 (the exponent), using exp and
In operations.

417

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel[k]Ostoce[k]
if sourcel [k] = 0.0 and source2[k].real < 0.0
and source2[k].imag = 0.0 then

test-flag[k] - 1
else test-flag[k] - 0
if (overflow occurred in processor k) then overflow-flag[k] - 1



POWER
.·.:.~1: :I:1:1:I:::1: '·'·'·'·'·i:·' ··.. · ... ·' .·' .... .... ..... : ... ..... : · : · : : ·:9!·: · :`:':':':':':'::::i':':':':::::::: ::::

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

418



POWER
:':'':':: : ... . .. . .;.;:': : ::: - :: ..: ::.:.::::·:::::::::::::::::::::::::;~;:·:5;:5.::~: ·5:: ·::·::i·i. · ;;:;;·;;·;;·;;·;;·.;.;..;. .: ...·· :.·····X:::: ·····

C-S-POWER

Raises a complex number to a signed integer power.

Formats CM: c-s-power-3-2L
CM: c-s-power-2-2L
CM: c-s-power-constant-2- 1L
CM: c-s-power-constant-3- 1L

Operands dest

dest, sourcel, source2, slen2, s, e
dest/sourcel, source2, slen2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the complex destination field.

sourcel The field ID of the complex base field.

source2 The field ID of the signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second
source.

s, e

slen2

The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is 2(s + e + 1).

The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two complex fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if zero is raised to a negative power; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition

The sourcel field (the base) is raised to the power source2 (the exponent), using repeated
multiplications.

419

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- sourcel [k]'°"'uce[k]

if sourcel [k] = 0.0 and source2[k] < 0 then
test-flag[k] 1

else test-flag[k] - 0
if (overflow occurred in processor k) then overflow-flag[k] - 1



POWER
::: ::::: ::::: .. ::::: > .. .. ....

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

420



POWER
.::::::::::::::::::::::.. .-------- .....

C-U-POWER
Raises a complex number to an unsigned integer power.

Formats CM:c-u-power-3-2L
CM: c-u-power-2-2L
CM: c-u-power-constant-2-1L
CM: c-u-power-constant-3-1L

Operands dest

dest, sourcel, source2, slen2, s, e
dest/sourcel, source2, slen2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the complex destination field.

sourcel The field ID of the complex base field.

source2 The field ID of the unsigned integer exponent field.

source2-value An unsigned integer immediate operand to be used as the
second source.

s, e

slen2

The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is 2(s + e + 1).

The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two complex fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

deslk[k] - sourcel[k]ouce[k]

if (overflow occurred in processor k) then overflow-flag[k] - 1

The sourcel field (the base) is raised to the power source2 (the exponent), using repeated
multiplications.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

421



POWER
:-:::::R> : : I .': : ::: : -: :: :::::: ..' :· .!

F-F-POWER

Raises a floating-point number to a floating-point power.

Formats CM:f-f-power-2-1L
CM:f-f-power-3-1L
CM: f-f- power-constant-2-1 L
CM:f-f-power-constant-3-1L

Operands dest

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point base field.

source2 The field ID of the floating-point exponent field.

source2-value A floating-point immediate operand to be used as the expo-
nent.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+l.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if the base is negative and the exponent is non-zero, or if the
base is zero and the exponent is non-positive; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition

422

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if sourcel [k] = 0 then
if source2[k] < 0 then

dest[k] 0
test-flag[k] 1

else
dest[k] - 0
test-flag[k] 0

else if sourcel [k] < 0 then



POWER
.... ... ....... : :.: . ... : : ::::- .:.:: : : ::: : ::: :: : :: : : .:::::::..::: : :::::: :' :: a.. .. ... .- . .. .. - V . . ._ ", . . .... . -···.·..·-·- -..r · 7 r . ·. .: .·. -

if source2[k] = 0 then
dest[k] 1.0
test[k] 4 0

else
dest[k] - (undefined)
test-flag[k] - 1

else
dest[k] - exp(source2[k] x In sourcel [k])
test-flag[k] - 0
if (overflow occurred in processor k) then overflow-flag[k] 4 1

The sourcel field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

423



POWER
..: ..: ...' .*. ..... ..... .... . X ..S . '. .... ... ... ... ... ... .. ... ... ... - x:.. .

F-S-POWER

Raises a floating-point number to a signed integer power.

Formats CM:f-s-power-3-2L
CM:f-s-power-2-2L
CM:f-s-power-constant-2-1L
CM:f-s-power-constant-3-1L

Operands dest

dest, sourcel, source2, slen2, s, e
dest/sourcel, source2, slen2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point base field.

source2 The field ID of the signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second
source.

s, e

slen2

The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s + e + 1.

The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the
if contezt-flag[k] = 1 then

if source2[k] < 0 then
let templ k = l.O/sourcel[k]
let temp2k = -source2[k]

else
let templ k = sourcel [k]
let temp2& = source2[k]

if temp2k(O) = 0 then
dest[k] - 1.0

else

current-vp-set do

424

Definition



POWER
... ... ··:: ,, ~ ,;, ,,,·:: :·:: ··::::..:..::x :::: I ::::::. %·: -,: :: %::: :.- %i: :: : .

dest[k] -- tempik
for j from 1 to slen2 - 1 do

if temp2k(j : slen2 - 1) $ 0 then let templk = templk x templk
if temp2k(j) then dest[k] - dest[k] x templk

if (overflow occurred in processor k) then overflow-flag[k] - 1

The sourcel field (the base) is raised to the power sources (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

425



POWER
a··· .:;..:.2.:·;X(:: :···::::: S~ ::s ::: ··:::':·'' ··s z:·.. ···· ·'::: ····':' asps·:': ··': ·:B

F-U-POWER

Raises a floating-point number to an unsigned integer power.

CM :f-u-power-3-2L
CM:f-u-power-2-2L
CM: f-u-power-constant-2-1L
CM: f- u-power-constant-3- L

dest, sourcel, source2, slen2, s, e
dest/sourcel, source2, slen2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point base field.

source2 The field ID of the unsigned integer exponent field.

source2-value An unsigned integer immediate operand to be
second source.

s, e

slen2

The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s + e + 1.

The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let tempk = sourcel[k]
if (slen2 = 0) V (source2[k](0) = 0) then

dest[k] 1.0
else

dest[k] tempk
for j from 1 to slen2 - 1 do

if source2[k](j : slen2 - 1) $ 0 then let tempk = tempk x tempk
if source2[k](j) then dest[k] - dest[k] x tempk

if (overflow occurred in processor k) then overflow-flag[k] - 1

426

Formats,

Operands

used as the

Definition



POWER

The sourcel field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands

to be either memory fields or constants; in some cases the destination field initially contains

one source operand.

427



POWER
. . .. .:: . . .:.:.: . : . ......... ......!' . '. .: : ..: .........................::.I ::: ::: :::: :::

.. . . .. ... .. . ...' . . . .. .! . .. : ! .: .: ... . ... .. .... . . ..! .. .... .. ...··: ·

S-S-POWER

Raises a signed integer to a signed integer power.

Formats CM:s-s-power-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-s-power-2-1L dest/sourcel, source2, len
CM: s-s-power-3-IL dest, sourcel, source2, len
CM: s-s-power-constant-2-1L dest/sourcel, source2-value, len
CM:s-s-power-constant-3-1L dest, sourcel, source2-value, len
CM:s-s-power-constant-3-2L dest, sourcel, source2-value, dlen, slen

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer base field.

source2 The field ID of the signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-s-power-3-3L and CM:s-s-power-constant-3-2L, the length
of the dest field. This must be no smaller than 2 but no greater
than CM: *maximum-integer-length*.

slen For CM:s-s-power-constant-3-2L, the length of the sourcel field.
This must be no smaller than 2 but no greater than CM: *maximum-
integer-length*.

slenl For CM:s-s-power-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slen2 For CM:s-s-power-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

test-flag is set if zero is raised to a negative power; otherwise it is unaffected.

428



POWER

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] < 0 then
if sourcel[k] = 1 then dest[k] - 1
else dest[k] - 0

else if source2[k] = 0 then
dest[k] 1

else
dest[k] e- (sourcel [k]) '°ouce2[k]

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

The sourcel field (the base) is raised to the power source2 (the exponent). If the exponent
is negative, the result is always 0; if the exponent is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

429



POWER
:,:.:,:: .:::j::: :::, . X :~:~· ~ :~~i~ ::··. :: '' t:::::: :·::·:·: · :· X:: ::: :

S-U-POWER
Raises a signed integer to a unsigned integer power.

Formats CM:s-u-power-3-3L dest, sourcel, source2, dien, slenl, slen2
CM:s-u-power-constant-2-1L dest/sourcel, source2-vallue, len
CM:s-u-power-constant-3-1L dest, sourcel, source2-value, en
CM:s-u-power-constant-3-2L dest, sourcel, source2-value, dien, slenl

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer base field.

source2 The field ID of the unsigned integer exponent field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

dlen For CM:s-u-power-3-3L and CM:s-u-power-constant-3-2L, the length
of the dest field. This must be no smaller than 2 but no greater
than CM: *maximum-integer-length*.

slenl For CM:s-u-power-3-3L and CM: s-u-power-constant-3-2L, the length
of the sourcel field. This must be no smaller than 2 but no greater
than CM: *maximum-integer-length*.

slen2 For CM:s-u-power-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, sourcel
must be either disjoint from or identical to the dest field while source2 must
be disjoint from the dest field. Two integer fields are identical if they have
the same address and the same length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

430



POWER
::':::: : :::: ::: :::: :: ::....:>:.::::::: .. :.:::::::::: : :.:.::.::.:::: :::: ::: :::::::............ : : : :::::::::.......... :::::::: : :

if contezt-flag[k] = 1 then
if source2[k] = 0 then

dest[k] - 1
else
dest[k] +- (sourcel[k]) °o" ce' [k]
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

The source field (the base) is raised to the power source2 (the exponent). If the exponent
is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

431



POWER
'::::;:.' f::-;'' . . :.. . .::'::'::.'.-:'-':. -':.:''''.:"'::;."::.:''' : : : ' : '.":.":':::''::::.'..''-..'.'.':'.::;-:..'.'.::'....:'.': :B' ::':',BB:-B..:s............:.'

U-S-POWER
Raises a unsigned integer to a signed integer power.

Formats CM:u-s-power-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM: u-s-power-constant-2-1L dest/sourcel, source2-value, len
CM: u-s-power-constant-3-1L dest, sourcel, source2-value, len
CM: u-s-power-constant-3-2L dest, sourcel, source2-value, dlen, slenl

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer base field.

source2 The field ID of the signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM: u-s-power-3-3L and CM: u-s-power-constant-3-2L, the length
of the dest field. This must be non-negative and no greater than
CM: *maximum-integer-length*.

slenl For CM: u-s-power-3-3L and CM: u-s-power-constant-3-2L, the length
of the sourcel field. This must be non-negative and no greater
than CM: *maximum-integer-length*.

slen2 For CM: u-s-power-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, sourcel
must be either disjoint from or identical to the dest field while source2 must
be disjoint from the dest field. Two integer fields are identical if they have
the same address and the same length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

test-flag is set if zero is raised to a negative power; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

432



POWER
..: : .::.: . : :: : : .. ::: :::::::::: .::::::::::::::::::::::: :::::::::::... .::: ::::::::::::::: ::: ........:::::... . :: , . . -. .. ,... .... 7 .. . .. .! :.: :. . . . .

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

test-flag[k] - 0
if sourcel [k] = 0 then

test-flag[k] - 1
if source2[k] < 0 then

dest[k] L- [1 sourcel [kIource2[k]J

else if source2[k] = 0 then
dest[k] +- 1

else
dest[k] - (sourcel[k])our'c[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] 4- 0

The sourcel field (the base) is raised to the power source2 (the exponent). If the exponent
is negative, the result is the truncation of the reciprocal of sourcel raised to the absolute
value of source2. If the exponent is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag and test-flag may be altered by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.
If, in any particular processor, an attempt is made to raise zero to a negative power, the
test flag in that processor is set.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

433



POWER
gas S S..... . ... .': , S , .:. X.. : "-: I ". .... . ., E.I.-- .1 s ... x _ - I. ..

U-U-POWER
Raises an unsigned integer to an unsigned integer power.

Formats CM: u-u-power-3-3L
CM: u-u-power-2-l
CM: u-u-power-3-1L
CM: u-u-power-constant-2-1L
CM: u-u-power-constant-3-1L
CM: u-u-power-constant-3-2L

dest, sourcel,
dest/sourcel,
dest, sourcel,
dest/sourcel,
dest, sourcel,
dest, sourcel,

source2, dlen, slenl, slen2
source2, len
source2, en
source2-value, len
source2-value, len
source2-value, dlen, slenl

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer base field.

source2 The field ID of the unsigned integer exponent field.

source2-value An unsigned integer immediate operand to be used as the
second source.

ten The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

dlen For CM: u-u-power-3-3L and CM: u-u-power-constant-3-2L, the length
of the dest field. This must be non-negative and no greater than
CM: *maximum-integer-length*.

slenl For CM: u-u-power-3-3L and CM: u-u-power-constant-3-2L, the length
of the sourcel field. This must be non-negative and no greater than
CM: *maximum-integer-length*.

slen2 For CM:u-u-power-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

434



POWER

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source2[k] = 0 then
dest[k] 1

else
dest[k] - (sourcel[k])oure*2[k]

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

The sourcel field (the base) is raised to the power source2 (the exponent). If the exponent
is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

435



POWER-UP

POWER-UP

This operation resets the Nexus, causing all front-end computers to become logically de-
tached from the Connection Machine system.

Formats CM:power-up

Context This operation is unconditional. It does not depend on the contezt-flag.

This function resets the state of the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system. When a Connection Machine
system is first powered up or is to be completely reset for other reasons, this is the first
operation to perform. Any of the front-end computers may be used to do it.

If users on other front-end computers are actively using the Connection Machine system,
their computations will be disrupted. Normally all the front-end computers are connected
not only through the Connection Machine Nexus but also through some sort of commu-
nications network; a front end that executes CM:power-up will attempt to send messages
through this network to the other front-end computers on the same Nexus indicating that
a CM: power-up operation is being performed.

436



RANDOM
. .... .. ........... .... .. .. .. . .. .. . . . .

F-RANDOM

Stores a pseudo-randomly generated floating-point number into the destination field.

Formats CM:f-random-1L dest, s, e

Operands dest The field ID of the floating-point destination field.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] ~(pseudo-random choice of some j, +0 j < 2len)
21CR

where len is the length of the destination field.

Into the destination field of each selected processor is stored a floating-point number pseudo-
randomly chosen from a uniform distribution between zero (inclusive) and one (exclusive).

The seed for the Paris random number generator is automaticaly initialized the first time
the random number generator is called. A value derived from the system clock is used.
It is nonetheless possible to explicitly initialize the random number generator by call
CM: initialize-random-generator.

Note: Less simple but more flexible random number generation routines are provided as
part of the CM Scientific Subroutines Library (CMSSL). For instance, the CMSSL random
number generators may be checkpointed to guard against accidental interuptions.

437



RANDOM

U-RANDOM
Stores a pseudo-randomly generated unsigned integer into the destination field.

Formats CM:u-random-1L dest, len, limit

Operands dest

len

limit

The field ID of the unsigned integer destination field.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

An unsigned integer immediate operand to be used as the exclusive
upper bound on values to be generated.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] +- (pseudo-random choice of some j, 0 < j < limit)

The dest field in each selected processor receives a pseudo-randomly chosen from a uniform
distribution ranging from zero (inclusive) to the specified limit (exclusive).

438



RANK
R rB g : .&::::: :: ::.;·...·.·:,...·.;s·.·. · : ·: ::: .*: : :·: : : ··:I:·:·:·:·:··: - : ·:·:·:·. * .:... .. .·.. 7. .

F-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM:f-rank-2L dest, source, ais, dlen, s, e,
direction, smode, sbit

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the floating-point source field. This is the sort key.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM:geometry-coordinate-length.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-set(g, k, axis, direction, smode, sbit)
case direction of

:upward:
let Lk = { m Sk A ((source[m] < source[k]) V (source[m] = source[k] A m 

:downward:
let Lk = { m m E Sk A ((source[m] > source[k]) V (source[m] = source[k] A m:

dest[k] - kl

where scan-set is as defined on page 44.

439



RANK

See section 5.20 on page 42 for a general description of scan sets and the effect of the axis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where
the data should be moved so as to sort it. A stable ranking is guaranteed. That is, two
identical keys will be ranked in the order in which they occur in the source field.

In more detail: The dest field in each selected processor receives, as an unsigned integer, the
rank of that processor's key within the set of keys in the scan set for that processor. This
rank may be used to calculate a send address a CM:send operation may then be used to
put the data into sorted order. (An advantage of decoupling the rank determination from
the reordering process is that the data to be moved may be much larger than the key that
determines the ordering, and indeed it may be desirable to reorder the other data but not
the key itself. In this way ranking and reordering each need operate only on the relevant
data.)

The way in which the rank operation uses scan sets .has one unusual twist: A rank that
is partitioned into scan sets restarts the rank ordering within each scan set (or segment).
However, the rank indices assigned are not restarted within each scan set.

Specifically, along the entire axis specified, only one processor receives a rank index of 0.
Rank indices in the first scan set (segment) begin at 0 and run through n - 1, where n
is the number of active processors in the scan set; ranks in the second segment begin at
n; and so forth. Thus, the smallest key in the first scan set has rank 0, the next smallest
has rank 1; the smallest key in the second scan set has rank n, the next smallest has rank
n + 1, and so on. Within each scan set the ranking index assigned to any given processor
determines the rank of that processor's key value relative to the keys of all other active
processors within that scan set. The non-repeating indices produce correctly sorted values
when used by a send operation either along the entire axis (the scan subclass) or within
one or more segments (the scan sets).

This operation was originally documented to result in a set of indexes that restart at 0 for
each segment. To obtain that effect use the following strategy:

1) Use the rank function.

2) Set the context bit on for processors with segment bits and then call CM: my-news-address.

3) Use a segmented copy-scan operation to copy the NEWS address within each segment.

4) Subtract the results of the segmented copy scan from the results of the rank ordering.

440



RANK

S-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM:s-rank-2L dest, source, axis, dlen, slen,
direction, smode, sbit

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the signed integer source field. This is the sort key.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM:geometry-coordinate-length.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

direction Either :upward or :downward.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-set(g, k, axis, direction, smode, sbit)
case direction of

: upward:
let Lk = {m m E Sk A ((source[m] < source[k]) V (source[m] = source[k] A m 

: downward:
let L =-{ m m E Sk A ((source[m] > source[k]) v (source[m] = source[k] A m:

dest[k] ILki

where scan-set is as defined on page 44.

441

Definition



RANK
. .· ·. · :·:·: X ........... . .. -_ _ .... .~, ,,~, ,, ~:I.:·..::1. ··. :? ·.·: :..::''::'. :. :: :'.::'':·''::''::''::''·:.. ·' :· .: · . .. I..... ........ .1·:: ··::·-'-····::·'; ::

See section 5.20 on page 42 for a general description of scan sets and the effect of the axis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where
the data should be moved so as to sort it. A stable ranking is guaranteed. That is, two
identical keys will be ranked in the order in which they occur in the source field.

In more detail: The dest field in each selected processor receives, as an unsigned integer, the
rank of that processor's key within the set of keys in the scan set for that processor. This
rank may be used to calculate a send address a CM:send operation may then be used to
put the data into sorted order. (An advantage of decoupling the rank determination from
the reordering process is that the data to be moved may be much larger than the key that
determines the ordering, and indeed it may be desirable to reorder the other data but not
the key itself. In this way ranking and reordering each need operate only on the relevant
data.)

The way in which the rank operation uses scan sets has one unusual twist: A rank that
is partitioned into scan sets restarts the rank ordering within each scan set (or segment).
However, the rank indices assigned are not restarted within each scan set.

Specifically, along the entire axis specified, only one processor receives a rank index of 0.
Rank indices in the first scan set (segment) begin at 0 and run through n - 1, where n
is the number of active processors in the scan set; ranks in the second segment begin at
n; and so forth. Thus, the smallest key in the first scan set has rank 0, the next smallest
has rank 1; the smallest key in the second scan set has rank n, the next smallest has rank
n + 1, and so on. Within each scan set the ranking index assigned to any given processor
determines the rank of that processor's key value relative to the keys of all other active
processors within that scan set. The non-repeating indices produce correctly sorted values
when used by a send operation either along the entire axis (the scan subclass) or within
one or more segments (the scan sets).

442



RANK

U-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM:u-rank-2L dest, source, axis, dlen, slen,
direction, smode, sbit

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field. This is the sort
key.

azis

dlen

slen

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM:geometry-coordinate-length.

The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

direction Either: upward or :downward.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-set(g, k, axis, direction, smode, sbit)
case direction of

: upward:
let Lk = { m I'm E Sk A ((source[m] < source[k]) V (source[m] = source[k] A m 

:downward:

443

Definition



RANK

let Lk = m m E Sk A ((source[m] > source[k]) V (source[m] = source[k] m> k)),
dest[k] - Lk

where scan-set is as defined on page 44.

See section 5.20 on page 42 for a general description of scan sets and the effect of the azis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where
the data should be moved so as to sort it. A stable ranking is guaranteed. That is, two
identical keys will be ranked in the order in which they occur in the source field.

In more detail: The dest field in each selected processor receives, as an unsigned integer, the
rank of that processor's key within the set of keys in the scan set for that processor. This
rank may be used to calculate a send address a CM:send operation may then be used to
put the data into sorted order. (An advantage of decoupling the rank determination from
the reordering process is that the data to be moved may be much larger than the key that
determines the ordering, and indeed it may be desirable to reorder the other data but not
the key itself. In this way ranking and reordering each need operate only on the relevant
data.)

The way in which the rank operation uses scan sets has one unusual twist: A rank that
is partitioned into scan sets restarts the rank ordering within each scan set (or segment).
However, the rank indices assigned are not restarted within each scan set.

Specifically, along the entire axis specified, only one processor receives a rank index of 0.
Rank indices in the first scan set (segment) begin at 0 and run through n - 1, where n
is the number of active processors in the scan set; ranks in the second segment begin at
n; and so forth. Thus, the smallest key in the first scan set has rank 0, the next smallest
has rank 1; the smallest key in the second scan set has rank n, the next smallest has rank
n + 1, and so on. Within each scan set the ranking index assigned to any given processor
determines the rank of that processor's key value relative to the keys of all other active
processors within that scan set. The non-repeating indices produce correctly sorted values
when used by a send operation either along the entire axis (the scan subclass) or within
one or more segments (the scan sets).

444



READ-FROM-NEWS-ARRAY

C-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as complex numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current vp set.

Formats CM:c-read-from-news-array-lL front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, source, s, e,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of complex
data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-axis-vector A front-end vector of signed integer numbers specifying
NEWS axes.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e + 1).

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the context-flag.

445



READ-FROM-N EWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped sub-
block of an array in the front end. Complex number values are copied from the Connection
Machine processors to the specified front-end-array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to copy to
the front end. The cm-end-vector parameter specifies the coordinate of the last CM element
to copy to the front end. Both of these are permuted by by the values in cm-axis-vector.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end ar-
ray. An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed-
array-format, or CM:structure-array-format. Alternatively, from C or Fortran, one of the
following predefined complex format values may be used: CMcomplex-float.single or
CMcomplexfloatdouble. For complex data types in C, two front-end elements are used
for each Connection Machine element.

When calling Paris from Lisp, the format parameter is a keyword argument; for complex
transfers, only arrays of type t may be used.

446



READ-FROM-N EWS-ARRAY
.:.., .. :., .. ' .............................. .... ..........

rank-I
Definition For all i such that 0 < i < ]I (endj - startj) do

j=o
for all m such that 0 < m < rank do

let s(im) = rank-l | mod (endm - startm)

rank-1
let k = V make-news-coordinate(azisj, start + sij)

j=o
front-end-array.(iO),(,,),...,&,(,..~_ ) - source[ki]

Another formulation:

For all so such that 0 < so < (endo - starto) do
for all sl such that 0 s < (endl - startl) do

for all 2 such that 0 < s2 < (end2 - start2) do

for all S,.nk-1 such that 0 < sank- < (endrankl - start,.nk-l) do
rank-i

let ko,sl,,.,, 8rank- = V make-news-coordinate(azisj, startj + sj)
j=O

front-end-arrayoff , et-vcctor +soo ,offsct-vectorl +Sl ,...,offset-vectorank-l +arank-_

4- source[ko,,, ... ,s ank-l]

447



READ-FROM-N EWS-ARRAY

F-READ-FROM-N EWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as floating-point numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current vP set.

Formats CM:f-read-from-news-array-lL front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, source, s, e,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of floating-
point data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-axis-vector A front-end vector of signed integer numbers indicating
NEWS axes.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the context-flag.

448



READ-FROM-N EWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped
subblock of an array in the front end. Floating-point number values are transferred from
the Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to copy to
the front end. The cm-end-vector parameter specifies the coordinate of the last CM element
to copy to the front end. Both of these are permuted by by the values in cm-axis-vector.

The cm-axis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end
array. An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed-
array-format, or CM: structure-array-format. Alternatively, one of the predefined floatingpoint
format values may be used. These are CMfloat-single or CMfloat-double from C or Fortran,
and :float-single or :float-double from Lisp.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type and size of the Connection Machine field.

449



READ-FROM-N EWS-ARRAY

rank-1
Definition For all i such that 0 < i < [J (endj - startj) do

j=o
for all m such that 0 < m < rank do

let seim = | mod (endm - startm)rank-1
11( endj-startj )

rank-i
let ki = V make-news-coordinate(azisj, startj + si,j)

j=o
front-end-array.(i,o)(i,.) _(i k) source[ki]

Another formulation:

For all so such that 0 < so < (endo - starto) do
for all s such that 0 < s < (end - startl) do

for all S2 such that 0 < s2 < (end2 - start2) do

for all Srank-1 such that 0 < Stank-1 < (endrankl - startrank_l) do
rank-1

let k0,Sl,...,Srank- = V make-news-coordinate(axisj, startj + sj)
j=o

front-end-arrayoffseto+so ,offsetl +sl ,...offsetrank-l+srank-1

- source[kso,l . -*-srank- ]

450



READ-FROM-N EWS-ARRAY

S-READ-FROM-N EWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as signed integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current vP set.

Formats CM: s-read-from-news-array-1L

Operands front-end-array A front-end
teger data.

fe-offset-vector A front-end
front-end-array.

cm-start-vector A front-end
for NEWS indices.

cm-end-vector A front-end
for NEWS indices.

cm-axis-vector A front-end
NEWS axes.

front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, source, len,
[fe-rank, fe-dimension-vector,
format]

array (possibly multidimensional) of signed in-

vector of signed integer subscript offsets for the

vector of signed integer inclusive lower bounds

vector of signed integer exclusive upper bounds

vector of signed integer numbers indicating

source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the context-flag.

451



READ-FROM-N EWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped
subblock of an array in the front end. Signed integer values are transferred from the
Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

When calling Paris from Lisp, the array may be either a general array (of type t) containing
signed integers, or a specialized integer-element array (such as an array of type (unsigned-
byte 8)).

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to copy to
the front end. The cm-end-vector parameter specifies the coordinate of the last cM element
to copy to the front end. Both of these are permuted by by the values in cm-axis-vector.

The cm-axis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-axis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined signed format
values may be used.

452



READ-FROM-N EWS-ARRAY

From C or Fortran a value of CM_8bit, CM_16_bit, or CM_32_bit specifies an unpacked front-
end array while CM. 9bit-packed, or CM4_bit-packed specifies a front-end array in which
several CM elements are packed into each array element. From Lisp, the predefined signed
format keywords are :8-bit, :16-bit, :32-bit, :2-bit-packed, and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type and size of the Connection Machine field.

rank-1
Definition For all i such that 0 < i < fn (endj - startj) do

j=o

for all m such that 0 < m < rank do

II (endj-startj)
=+ - start

rank-1
let ki = V make-news-coordinate(axisj, startj + sij)

j=o

front-end-arrayj(,,) .. (il-(ik- ) source[ki]
Another formulation:

For all so such that 0 < so < (endo - starto) do
for all sl such that 0 < s < (endl - startl) do

for all 2 such that 0 < 2 < (end2 - start2 ) do

for all ank-1 such that 0 < srank-1 < (endrank - startrankl) do
rank-1

let ko,,...,-8rank- = V make-news-coordinate(axisj, startj + sj)
j=o

front-end-arrayofJet+o + so,offset l +sl ,... offetrankl + rank-l

-source[kso , .s rank-l ]

453



READ-FROM-N EWS-ARRAY
:. : : : : : : : :: :::: :::::::::: : : : :: :

............. .. ...... :::'. -.'- .' ;: ::: : X ::: ;:::., ::: X :: :: :;:: : ' ;;,., ::.,'. . .: : : X:, . : .:, . . . ::.-'...:: .. .; "" ' ... .. .% ..

U- READ- FROM-N EWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as unsigned integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current vP set.

Formats CM: u-read-from-news-array-li front-end-armray, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, source, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of unsigned
integer data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-azis-vector A front-end vector of signed integer numbers indicating
NEWS axes.

source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-ength*.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the contezt-flag.

454



READ-FROM-N EWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped
subblock of an array in the front end. Unsigned integer values are transferred from the
Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to copy to
the front end. The cm-end-vector parameter specifies the coordinate of the last CM element
to copy to the front end. Both of these are permuted by by the values in cm-axis-vector.

The cm-axis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-axis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined unsigned format
values may be used.

From C or Fortran a value of CM_8_bit, CM_16_bit, or CM_32_bit specifies an unpacked front-
end array while CMlbitpacked, CM 2_bitpacked, or CM_4bitpacked specifies a front-end
array in which several CM elements are packed into each array element. From Lisp, the
predefined unsigned format keywords are :8-bit, :16-bit, :32-bit, :1-bit-packed, :2-bit-packed,

455



READ-FROM-N EWS-ARRAY
* : : ... ... ... ... ... .. ... . . .. ... ...

and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the CM field.

rank-1
Definition For all i such that 0 < i < -I (endj - startj) do

j=o
for all m such that 0 < m < rank do

let s(i,,,) = |ran - j mod (endm - startm)rank-i
I (ndj-startj)

L$=m+l
rank-1

let ki = V make-news-coordinate(axisj, startj + sij)
j=o

front-end-array(,,0 ),s(,).... (ira n-) ' source[ki]

Another formulation:

For all so such that 0 < so < (endo - starto) do
for all st such that 0 < s < (end1 - startl) do

for all s2 such that 0 < s2 < (end2 - start2 ) do

for all Srank-1 such that 0 < Srank-1 < (endrank-1 - startrank-l) do
rank-1

let kO,s-...,rank_- = V make-news-coordinate(axisj, startj + sj)
j=o

front-end-array off, eto +o,offet +sl ,...,off eetrank_ l- +- rank-_
+- source[kso,s . rank-i ]

456



READ-FROM-PROCESSOR
: : : :'· ~ ~ ~ ~ ~ .................................... ..................

C-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as a complex number and returns it to
the front end.

Formats result - CM:c-read-from-processor-lL send-address-value, source, len

Operands send-address-value An immediate operand, the send address of a single
particular processor.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e + 1).

Result A complex number, the contents of the source field in the specified virtual
processor.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as a floating-point number to the front end.

457



READ-FROM-PROCESSOR
I:I~:::: l~: Y i :::1:: :s:::::::::::::::::::::::::::::::::.:.:::: :::::::::::::::::::::::::

F-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as a floating-point number and returns
it to the front end.

Formats result - CM:f-read-from-processor-L send-address-value, source, s, e

Operands send-address-value An immediate operand, the send address of a single
particular processor.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the contents of the source field in the specified virtual
processor.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as a floating-point number to the front end.

458



READ-FROM-PROCESSOR
,,,,.........> . . -- : : : :: : .::::.::.*:::::: : : : :: R: .::::::::: :::::::: : : :::: ::: ::

.. %: %: : ." .. ... . . . .... .

S-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as a signed integer and returns it to
the front end.

result -- CM:s-read-from-processor-lL send-address-value, source, len

send-address-value An immediate operand, the send address of a single
particular processor.

source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

A signed integer, the contents of the source field in the specified virtual pro-
cessor.

Context This operation is unconditional. It does not depend on the context-flag.

Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as a signed integer to the front end.

459

Formats

Operands

Result

Definition



READ-FROM-PROCESSOR

U-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as an unsigned integer and returns it
to the front end.

Formats result -- CM: u-read-from-processor-lL send-address-value, source, en

Operands send-address-value An immediate operand, the send address of a single
particular processor.

source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Result An unsigned integer, the contents of the source field in the specified virtual
processor.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as an unsigned integer to the front end.

460



RECIPROCAL

C-RECIPROCAL

Calculates the reciprocal of a complex number.

Formats CM:c-reciprocal-l-1L
CM: c-reciprocal-2-1L

Operands dest The field

dest/source, s, e
dest, source, s, e

ID of the complex destination field.

source The field ID of the complex source field.

S, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating point overflow occurs; otherwise it is unaffected.

test-flag is set if divistion by zero occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] 1source[k]

A reciprocal of the complex source field is place in the complex dest field.

461

Definition



REDUCE-WITH-ADD
: .:: :: . ..... . .::::: : . . .. .....

REDUCE-WITH-C-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
complex source fields from all the selected processors in that scan class.

Formats CM:reduce-with-c-add-lL dest, source, axis, s, e, to-coordinate

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] -( E source[m])

where scan-subclass is as defined on page 36 of the Paris Reference Manual.

See section 5.16 beginning on page 34 for a general description of reduce operations. The
CM: reduce-with-c-add operation combines source fields by performing complex addition.

The operation CM: reduce-with-c-add-ll differs from CM:spread-with-c-add-ll only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

462



REDUCE-WITH-ADD

REDUCE-WITH-F-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
floating-point source fields from all the selected processors in that scan class.

Formats CM: reduce-with-f-add-lL dest, source, axis, s, e, to-coordinate

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry( current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] (mECk source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-f-add operation combines source fields by performing floating-point addition.

The operation CM:reduce-with-f-add-lL differs from CM:spread-with-f-add-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

463



REDUCE-WITH-ADD
- -s ::::::::: :s:: :s:::s:::::::s:s:s:: :.........::::::::::::.. ::s::....... s:s::::::::::s

REDUCE-WITH-S-ADD
Within each scan class one particular processor (if it is selected) receives the sum of the
signed integer source fields from all the selected processors in that scan class.

Formats CM: reduce-with-s-add-lL dest, source, ais, len, to-coordinate

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-ength*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along ais indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] i E( source[m]

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-s-add operation combines source fields by performing signed integer addition.

The operation CM:reduce-with-s-add-lL differs from CM:spread-with-s-add-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

464



REDUCE-WITH-ADD

REDUCE-WITH-U-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-add-lL dest, source, axis, len, to-coordinate

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, azis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] source[m]

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-u-add operation combines source fields by performing unsigned integer addition.

The operation CM:reduce-with-u-add-lL differs from CM:spread-with-u-add-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

465



REDUCE-WITH-COPY

REDUCE-WITH-COPY

Within each scan class one particular processor (if it is selected) receives a copy of the
source value from a particular value within its scan subclass.

Formats CM: reduce-with-copy-lL dest, source, axis, len, to-coordinate, from-coordinate

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along ais indicating which element of the scan
class, if any, is to receive the result.

from-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class is to be read.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let c = deposit-news-coordinate(g, k, azis, from-coordinate)
if extract-news-coordinate(g, azis, k) = to-coordinate then

dest[k] +- source[c]

where deposit-news-coordinate is as defined on page 40.

See section 5.20 on page 42 for a general description of reduce operations.

466



REDUCE-WITH-LOGAN D

REDUCE-WITH-LOGAND

Within each scan class one particular processor (if it is selected) receives the bitwise logical
AND of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logand-iL dest, source, azis, en, to-coordinate

Operands dest The field ID of the destination field.

source The field ID of the source field.

azis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if eztract-news-coordinate(g, azis, k) = to-coordinate then

destk] source[m])
Eck

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-logand operation combines source fields by performing bitwise logical AND operations.

The operation CM: reduce-with-logand- L differs from CM:spread-with-logand- L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

467



REDUCE-WITH-LOGIOR

REDUCE-WITH-LOGIOR

Within each scan class one particular processor (if it is selected) receives the bitwise logical
inclusive OR of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logior-lL dest, source, axis, len, to-coordinate

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] ( V source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-logior operation combines source fields by performing bitwise logical inclusive oR op-
erations.

The operation CM:reduce-with-logior-lL differs from CM:spread-with-logior-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

468



REDUCE-WITH-LOGXOR

REDUCE-WITH-LOGXOR

Within each scan class one particular processor (if it is selected) receives the bitwise logical
exclusive OR of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logxor-lL dest, source, ais, en, to-coordinate

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] ( source[m ])
umik, 

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-logxor operation combines source fields by performing bitwise logical exclusive OR op-
erations.

The operation CM:reduce-with-logxor-lL differs from CM:spread-with-logxor-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

469

Definition



REDUCE-WITH-MAX
...::. ..;: :: : . : : . : .: :: ` ..: ` ; .: `:. : . ; : ; ` : . . . : . . : . . : . : . . : : . : : : : . . : : : :...:::::.. : . . : : ..

REDUCE-WITH-F-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
floating-point source fields from all the selected processors in that scan class.

Formats CM:reduce-with-f-max-1L dest, source, axis, s, e, to-coordinate

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry( current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] - (max source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-f-max operation combines source fields by performing an floating-point maximum op-
eration.

The operation CM:reduce-with-f-max-iL differs from CM:spread-with-f-max-IL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

470



REDUCE-WITH-MAX
:.:: : : : ::: B .....:::.:: :::::::.:...............

REDUCE-WITH-S-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
signed integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-s-max-lL dest, source, axis, len, to-coordinate

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] - (max source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-s-max operation combines source fields by performing a signed integer maximum oper-
ation.

The operation CM:reduce-with-s-max-lL differs from CM:spread-with-s-max-iL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

471



REDUCE-WITH-MAX

REDUCE-WITH-U-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-max-lL dest, source, axis, len, to-coordinate

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry( current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] - (max source[m

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-u-max operation combines source fields by performing an unsigned integer maximum
operation.

The operation CM: reduce-with-u-max-lL differs from CM:spread-with-u-max-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

472



REDUCE-WITH-MIN
::: :: : ::: :::: ::R::::::::::::::::::::::::::: ::::::::-::::::::::: :::: :::::::::::::::: ::::::::::::::::.::::::::::::::::::::::: :::::::.:::::.:::::::::.:::::::::::::::

REDUCE-WITH-F-MIN

Within each scan class one particular processor (if it is selected) receives the smallest of the
floating-point source fields from all the selected processors in that scan class.

Formats CM:reduce-with-f-min-1L dest, source, axis, s, e, to-coordinate

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] +- (ndn source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-f-min operation combines source fields by performing an floating-point minimum oper-
ation.

The operation CM:reduce-with-f-min-lL differs from CM:spread-with-f-min-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

473



REDUCE-WITH-M IN
: B: :::: :;; :·:r··:·~·:·:·j:~:·.. .. .::: ... $: .... ... ...

-': ::::;; ::.:::: :: ..... ~~~~~~': ................ ::::::I:,." ::·: :: :: - I.'.: . .1-. :: , ... ~ ~ ~ ~ ~ ::··:··:: ·.." :. _ :. ....... .' : .' .: -- -- -.- .... . . .'. .. ! . . '.. .. .

REDUCE-WITH-S-MIN

Within each scan class one particular processor (if it is selected) receives the smallest of the
signed integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-s-min-lL dest, source, ais, len, to-coordinate

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if eztract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] (min source[m])
\mEC,

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-s-min operation combines source fields by performing a signed integer minimum oper-
ation.

The operation CM:reduce-with-s-min-ll differs from CM:spread-with-s-min-L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

474



REDUCE-WITH-MIN
:: ' . : : : I : : : ::::::::: : : :::::::::::: : : : ::: :::::: : :: :: !:: :i::: i·: '·. : :: ····:·: : ·: ····: .!:: : :: ~ .: : % N % : % : % : :::::::::::::::::::

REDUCE-WITH-U-MIN

Within each scan class one particular processor (if it is selected) receives the smallest of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM: reduce-with-u-min-lL dest, source, axis, len, to-coordinate

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along ais indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] +- min source[ml)

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-u-min operation combines source fields by performing an unsigned integer minimum
operation.

The operation CM:reduce-with-u-min-lL differs from CM:spread-with-u-min-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

475



REM
':>:'::':::::: : ':B:::'' ::'::'::::>::::':''::~8 :':'::S:.BB:'' >': R .

F-REM

The remainder from dividing one floating-point source value by another is placed in the
destination field.

Formats CM:f-rem-2-1L
CM:f-rem-3-1L
CM:f-rem-constant-2-1L
CM:f-rem-constant-3-1L

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

Operands dest The field ID of the floating-point destination field.
quotient.

This is the

sourcel The field ID of the floating-point first source field.
dividend.

This is the

source2 The field ID of the floating-point second source field. This is the
divisor.

source2-value A floating-point immediate operand to be used as the second
source.

a, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

test-flag is set if division by zero occurs; otherwise it is cleared.

overflou-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source2[k] # 0 then
let v = soturcel[k]/source2[k]

if v> v+J then

let n = LvJ

else if v < [ + ] then

476

Flags

Definition



REM

let n = [v
else if even( LvJ) then

let n = Lvj
else

let n = [vl
dest[k] sourcel [k] - source2[k] x n

else
dest[k]- (unpredictable)
test-flag[k] +- 1

if (overflow occurred in processor k) then overflow-flag[k] - 1

The remainder from the sourcel operand when divided by the source2 operand is calculated
treating both as floating-point numbers. The result is stored into memory. The various
operand formats allow operands to be either memory fields or constants; in some cases the
destination field initially contains one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

477



REM

S-REM
The remainder from the truncating division of one signed integer by another is placed in
the destination field. Overflow is also computed.

Formats CM:s-rem-2-1L
CM:s-rem-3-1L
CM:s-rem-constant-2-1L
CM: s-rem-constant-3-1L

Operands dest

dest/sourcel, source2, len
dest, sourcel, source2, len
dest /sourcel, source2-value, en
dest, sourcel, source2-value, len

The field ID of the signed integer remainder field.

sourcel The field ID of the signed integer dividend field.

source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag
in processors whose contezt-flag is 1.

may be altered only

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source2[k] = 0 then
dest[k] - (unpredictable)

else

dest[k] ,- sign(sourcel[k]) x (isourcel[k] - source2h L I [k]ls rc )

if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] - 0

The remainder resulting from the truncating division of the signed integer sourcel by the
signed integer source2 operand is stored into the dest field. The result always has the same

478

Definition



REM
.. - . - - - BE X .' 

sign as the sourcel operand. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The value of the destination is unpredictalbe if the divisor is zero.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

479



REM

U-REM

The remainder from the truncating division of one unsigned integer by another is placed in
the destination field. Overflow is also computed.

Formats CM: u-rem-2-1L
CM: u-rem-3-1L
CM: u-rem-constant-2-1L
CM: u-rem-constant-3-1L

Operands dest

destlsourcel, source2, len
dest, sourcel, source2, len
dest sourcel, source2-value, len
dest, sourcel, source2-value, len

The field ID of the unsigned integer remainder field.

sourcel The field ID of the unsigned integer dividend field.

source2 The field ID of the unsigned integer divisor field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag
in processors whose context-flag is 1.

may be altered only

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] = 0 then
dest[k] - (unpredictable)

else

dest[k] +- sourcel[k] - source2[k] x source[k 

if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] - 0

The remainder resulting from the truncating division of the unsigned integer source by
the unsigned integer source2 operand is stored into the dest field. For unsigned integers
this is of course the same as the mod operation.

480

Definition



REM
:::; 1 "Iz ̀ :: '' ::: : : > : :: :::: :::: ::': ::::: :: :::::*: '':::::::: : ':: ::: :: :::... ... I...:.: Ix..5...". ··*· ·5 · X.·: :w- ·:·:··: .. :· X:':~sX:~88~$i::~i:~:.. -- M ....". '. .: .: :: ;··-·.S·::.. · :. .I . .. .. - . .: I. .

The various operand formats allow operands to be either memory fields or constants; in
some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The value of the destination is unpredictable if the divisor is zero.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

481



REMOVE-FIELD-ALIAS

Removes the

REMOVE-FIELD-ALIAS

specified alias field ID from the field to which it refers, leaving the field intact.

Formats CM: remove-field-alias alias-id

Operands alias-id An alias field ID. This must be an alias field ID returned by
CM: make-field-alias.

Context This operation is unconditional. It does not depend on the contest-flag.

Removing an alias field ID does not affect the memory field to which it refers.

482



ROUND
.. .. . . ... ..:--:: - . . - - 1 . .. ...i .. . .. . .. .. . .. . ..I .. . ... . ... ..:l : :::!::!.. .......

F-F-ROUND

Rounds each source field value to the nearest integer value and stores the result as a floating-
point number in the destination field.

Formats CM:f-f-round-l-lL
CM:f-f-round-2-1L

Operands dest The fi,

dest/source, s, e
dest, source, s, e

eld ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sign(source) x round(source[k])

The source field, treated as a floating-point number, is rounded to the nearest integer and
the result is stored in the dest field as a floating-point number.

If the source field value is exactly midway between two integers, then it is rounded to the
even integer.

483

Definition



ROUND
-:: :: - : X : : : : : : : : : .. ::::::.:.:::.:.:.: :: : ....................... ::::::::::: ::::: : :::::::::::::::::::::::: : : :::::: : .; :::::: ::

...... ..: . ... ... ...% . . . . .: .: .: : . .: :.: . . ... ... .: .: .: ...... . .. : ." ..I

S-ROUND
The quotient of two signed integer source values, rounded to the nearest integer, is placed
in the destination field. Overflow is also computed.

Formats CM:s-round-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM: s-round-2-1L destlsourcel, source2, len
CM:s-round-3-1L dest, sourcel, source2, en
CM: s-round-constant-2- L dest/sourcel, source2-value, len
CM:s-round-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer quotient field.

sourcel The field ID of the signed integer dividend field.

source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

484



ROUND

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

sourceslk]let v = source2[k]
if v> [v+l then

dest[k] [vJ
else if v < Lv+ ½J then

dest[k] - [Tl
else if even(Lv]) then

dest[k] LvJ
else

dest[k] -v
if (overflow occurred in processor k) then overflow-flag[k] 1

The signed integer sourcel operand is divided by the signed integer source2 operand. The
mathematical quotient, rounded to the nearest integer (or to whichever of two equally near
neighbors is even) is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

485



ROUND
:: : : : : ::: : : ::::: :: : ::: :::::::: : : ::::: : ::::::::::::::: :::::~:~:::::::'::::::::::~:::I:::: · .·.: ::I :::: :.. :'·: %: :I::·:%: :i .::: .::.

S-F-ROUND

Converts floating-point source field values to signed integer values by rounding to the nearest
integer.

Formats CM:s-f-round-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.

source The field ID of the floating-point source field.

len

s, e

The length of the dest field. This must be no smaller
no greater than CM: *maximum-integer-length*.

The significand and exponent lengths for the source
total length of an operand in this format is s + e + 1.

than 2 but

field. The

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k
if context-flag[k] = 1 then

let v = source[k]

if v> Lv+lJ then

dest[k] t Lv]

else if v < lv + ] then

dest[k] -- rvl
else if even( LvJ ) then

dest[k] - Lvj
else

in the current-vp-set do

dest[k] - v
if (overflow occurred in processor k) then overflou-flag[k] - 1

The source field, treated as a floating-point number, is rounded to the nearest integer (to
the nearest even integer if its value is equal to an integer plus 1). The result is stored into
the dest field as a signed integer.

486

Definition



ROUND
: : : : : : : : : :::::: ::::: .........::: :-:: : :. ..:: :.: : : : :

·:·" :~~~~~·:·: ~ ~ ~ -' .. .:· : ·· ::1 : :. - : . ix .... . , X .: ... ...... " .. ... .' . '. ·2·.··;... 1. .. . o. ; '·:·::·:: · ··...·

U-ROUND

The quotient of two unsigned integer source values, rounded to the nearest integer, is placed
in the destination field. Overflow is also computed.

Formats CM:u-round-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM: u-round-2-1L dest/sourcel, sources, len
CM:u-round-3-l dest, sourcel, source2, len
CM: u-round-constant-2-L dest/sourcel, source2-value, len
CM: u-round-constant-3-lL dest, sourcel, source2-value, en

Operands dest The field ID of the unsigned integer quotient field.

sourcel The field ID of the unsigned integer dividend field.

source2 The field ID of the unsigned integer divisor field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

487



ROUND

let v sourceIk]source2[k]
if v> v+ then

dest[k] 4-- [,]

else if v < v+ then

dest[k] - v
else if even( LvJ) then

dest[k] - LvJ
else

dest[k] - [vl
if (overflow occurred in processor k) then overflow-flag[k] - 1

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The mathematical quotient, rounded to the nearest integer (or to whichever of two equally
near neighbors is even) is stored into the unsigned integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by Len.

488



ROUND
'' : :i : :::::::: ?i ::::i S:z .... :: -'-··:::·::: ···I:::. ·:.::: ,.:.. ..:..: ..:..::··:::: ··... : ···:::: ···!.. .. . : .:7. . .:. .:: . .: . . . . . : . ··. ·······. ···. . ...::·:. ··:::

U-F-ROUND

Converts the floating-point source field values to unsigned integer values, which are stored
in the destination field.

Formats CM:u-f-round-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the floating-point source field.

len

s, e

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

overflow-flag is set if the result cannot be represented in
wise it is cleared.

Context This operation is conditional. The destination and flag
in processors whose contezt-flag is 1.

the dest field; other-

may be altered only

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if dest > Lsource then
dest +- Lsource

else if dest < Lsource then
dest - [sourcel

else if even(t Lsource ) then
dest +- Lsourcej

else
dest r- [source]

if (overflow occurred in processor k) then overflow-flag[k] +- 1

The source field, treated as a floating-point number, is rounded to the nearest integer (to
the nearest even integer if its value is equal to an integer plus ), which is stored into the
dest field as an unsigned integer.

489

Flags

Definition



- J



SCALE
:::::: ::: : : .::.:. .::::: : : : : : ... : : .. .::.:::.:.: .... :::: ............ : : ........ :::: : : : .

F-S-SCALE
In each selected processor, multiplies a floating-point number by a specified power of two
and stores the result in the destination.

Formats CM:f-s-scale-2-2L
CM:f-s-scale-3-2L
CM :f-s-scale-constant-2-1L
CM:f-s-scale-constant-3-1L

Operands dest

dest/sourcel, source2, slen2, s, e
dest, sourcel, source2, slen2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.
quantity to be scaled.

source2 The field ID of the signed integer second source field.
base-2 logarithm of the scale factor.

This is the

This is the

source2-value A signed integer immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s + e + 1.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - Isourcel[k] x 2urc'e2[k]J

if (overflow occurred in processor k) then overflow-flag[k] 1

The operand sourcel is scaled by the power of two specified by source2. (This is faster than
an equivalent multiplication by a power of two.)

491



SCALE
- - . .............. ............................ . ........................... ..

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

492



SCALE
:R: ' ':::::' :':': ' :':: ':: ' ':: ':' ':::::' ::::::::::::::':: ' : ' : ' ' ': :: : : :·'·: ·~ ~ ~ .. .. . .; . . .. ... ...... . . : ::

F-U-SCALE

Multiplies a floating-point number by a specified power of two and stores the result into the
destination.

Formats CM:f-u-scale-2-2L
CM:f-u-scale-3-2L
CM:f-u-scale-constant-2-1L
CM:f-u-scale-constant-3-1L

Operands dest

dest/sourcel, source2, slen2, s, e
dest, sourcel, source2, slen2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field.
quantity to be scaled.

This is the

source2 The field ID of the unsigned integer second source field. This is
the base-2 logarithm of the scale factor.

source2-value An unsigned integer immediate operand to be used as the
second source.

8, e

slen2

The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s + e + 1.

The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - [sourcel[k] X 2u""2[k]]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The operand sourcel is scaled by the power of two specified by source2. (This is faster than
an equivalent multiplication by a power of two.)

493



SCALE

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

494



SCAN-WITH-ADD

SCAN-WITH-C-ADD

The destination field in every selected processor receives the sum of the complex source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-c-add-lL dest, source, azis, s, e, direction, inclusion, smode, sbit

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

acis

8, e

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if Ski = 0 then

dest[k] 0
else

dest [k] a source[m] )

where scan-subset is as defined on page 36 of the Paris Reference Manual.

495



SCAN-WITH-ADD
..- .. ·. · " :, S · , '' :-: ·.:··: ·· :..:i8:: i:: : :: ::ijii i: :::.·· ..... ··..··

See the section beginning on 34 for a general description of scan operations and the effect
of the azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-c-add operation combines source fields by performing complex addition.
If the scan subset for a selected processor is empty, then the complex value +0.0 is stored in
the dest field for that processor. Note that this can occur only when the inclusion argument
is :exclusive.

496



SCAN-WITH-ADD

SCAN-WITH-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-add-lL dest, source, ais, s, e,
direction, inclusion, smode, sbit

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry(current-vp-set)
let S = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if Ski = 0 then

dest[k] 0
else

dest [k] -( source[m])

where scan-subset is as defined on page 45.

497



SCAN-WITH-ADD

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-withMf-add operation combines source fields by performing floating-point ad-
dition. If the scan subset for a selected processor is empty, then the floating-point value
+0.0 is stored in the dest field for that processor. Note that this can occur only when the
inclusion argument is :exclusive.

498



SCAN-WITH-ADD
... . X : .. ... ... ... ... ... .. ... .. . . .. ... ... ... ... ... ... ... .

SCAN-WITH-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-add-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[k] 0 
else

dest [ 2source[mi]

where scan-subset is as defined on page 45.

499



SCAN-WITH-ADD
......... .. 

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM: scan-with-s-add operation combines source fields by performing signed integer addi-
tion. If the scan subset for a selected processor is empty, then the signed integer value 0 is
stored in the dest field for that processor. Note that this can occur only when the inclusion
argument is :exclusive.

500



SCAN-WITH-ADD

SCAN-WITH-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-add-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either: upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if Sk = O then

dest[k] 0
else

dest[k] source[m])

where scan-subset is as defined on page 45.

501



SCAN-WITH-ADD

See section 5.20 on page 42 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-u-add operation combines source fields by performing unsigned integer
addition. If the scan subset for a selected processor is empty, then the unsigned integer
value 0 is stored in the dest field for that processor. Note that this can occur only when the
inclusion argument is :exclusive.

502



SCAN-WITH-COPY
: ::::-B :: ::::::.:::RXoB::B:::: :: :: ::::::::.: :::.: :: :::: :::: :::: :::: :::::::::::: :::::::::::::: ::::::: :::::: ::::::::: :::&:R:S:: ::::: '::::::::fi:::::: :: :.:::::: ::::: : :::::: :: ::: :.:

SCAN-WITH-COPY

The destination field in every selected processor receives the first source field from the
processors below or above it in some ordering of the processors.

Formats CM:scan-with-copy-1L dest, source, azis, len,
direction, inclusion, smode, sbit

Operands dest The field ID of the destination field.

source The field ID of the source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contest-fiag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if Sk = 0 then

dest[k] - 000... 000
else

case direction of
:upward: let m' = min m

mESk,
:downward: let m' = max m

mES,

dest[ck] - source[m']

where scan-subset is as defined on page 45.

503



SCAN-WITH-COPY
. ... B B............ ...........:::

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM: scan-with-copy operation stores into each processor k the source field value from the
first processor in the scan subset for processor k (where "first" means the processor with
lowest address for an upward scan, or with highest address for a downward scan). Generally
speaking, the net effect is to propagate a value from the first processor in a group to all the
other processors in the group, although variations on this effect are provided by the various
possibilities for the inclusion and smode arguments.

If the scan subset for a selected processor is empty, then the dest field for that processor is
set to all zero bits. Note that this can occur only when the inclusion argument is :exclusive.

504



SCAN-WITH-LOGAND

SCAN-WITH-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-logand-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[k] +- iii... iii
else

dest[k] ( mE source[m])

where scan-subset is as defined on page 45.

505



SCAN-WITH-LOGAN D
...... . .. .. > ::::s::::::: .

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM: scan-with-logand operation combines source fields by performing bitwise logical AND

operations. If the scan subset for a selected processor is empty, then the unsigned integer
value -21en - 1 (all ones) is stored in the dest field for that processor. Note that this can
occur only when the inclusion argument is :exclusive.

506



SCAN-WITH-LOGIOR

SCAN-WITH-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-logior-1L dest, source, azis, len,
direction, inclusion, smode, sbit

Operands deat The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkJ = 0 then

dest[k] - 000... 000
else

dest[k] (V source[m])

where scan-subset is as defined on page 45.

507



SCAN-WITH-LOGIOR

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM: scan-with-logior operation combines source fields by performing bitwise logical in-
clusive OR operations. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 (all zero bits) is stored in the dest field for that processor. Note that this
can occur only when the inclusion argument is :exclusive.

508



SCAN-WITH-LOGXOR

SCAN-WITH-LOGXOR
The destination field in every selected processor receives the bitwise logical exclusive oa of
the source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-logxor-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if Sk = 0 then

dest[k] - 000... 000
else

dest[k] -( source[m])

where scan-subset is as defined on page 45.

509



SCAN-WITH-LOGXOR
: ' .::: ::: .:: : :: :S.:.::SS: X: B:::-: ::: : : : :: ::::::: :.:::::....::::...;;::::::. :::::':*:-::: :::::::: :.:': *:: ': :.::::

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-logxor operation combines source fields by performing bitwise logical ex-
clusive OR operations. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 (all zero bits) is stored in the dest field for that processor. Note that this
can occur only when the inclusion argument is :exclusive.

510



SCAN-WITH-M AX
: *:::'SX:':': :::::::::::::::: ': ' '::' '::: ': :::::::'R:::B:: :' ':E:':' '::'R: '':': ::::R::::' ::':':' :: :'* ':::, '::: ': 'R: *:::::::: ::::: :::.: ::.:S:::.<S:*,:,:<.g:'.::::.:'R::S;' ';:

SCAN-WITH-F-MAX
The destination field in every selected processor receives the largest of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-max-lL dest, source, ais, s, e,
direction, inclusion, smode, sbit

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contet-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if SAk = 0 then

dest[k] - -oo
else

dest[k] (max source[m])

where scan-subset is as defined on page 45.

511



SCAN-WITH-MAX

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-max operation combines source fields by performing an floating-point
maximum operation. If the scan subset for a selected processor is empty, then the floating-
point value -oo is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is :exclusive.

512



SCAN-WITH-MAX
::::: ': ' ::>:fi :' : :: :'' ': : : : - :::' :::::::::::::::::::::::: '::::: :: '': :: ': *: ' ' '::.:. : ' :: R :' : ::::S::::: '.:: ::::::::, "' : :· :::: : : ::: : :::::: : :·

·: : :: :·· · : · :: '. : ;:; ; :: " : -' : ::: . : % .:: . : ." , %: x .. . - ." .:%:.: .: . .. . . X ... : . .: : ..: .-.:. ..' .% ' . . '.:. . -.-- . .. ..:... .: .. 1. .' .. .. .1 . .. . .. . . . .' . . . .. . . .. . . .: . ...: : .

SCAN-WITH-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-max-IL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if Ski = 0 then

dest[k] -21n" - 1

else

dest[k] s a-(mea source[m])

where scan-subset is as defined on page 45.

513



SCAN-WITH-MAX
: s : : : : : : : s s ::..: : : :::: :: : s :: ::::::: . . . . . . ..:::: .:::::: . :: ::: : ::: : X .. ....... ... ... ...... .... ...... .......... .' .:· : :.: :I:: .. . . .. . . O.. . .. . . . . . :!.: .:. .. 1

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-s-max operation combines source fields by performing a signed integer
maximum operation. If the scan subset for a selected processor is empty, then the signed
integer value -2en- l1 is stored in the dest field for that processor. Note that this can occur
only when the inclusion argument is :exclusive.

514



SCAN-WITH-MAX

SCAN-WITH-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-max-lL dest, source, axis, en,
direction, inclusion, smode, sbit

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = then

dest[k] 0
else

dest[k] (max source[m])

where scan-subset is as defined on page 45.

515



SCAN-WITH-MAX
:::::: :::::::: :: :::::::: :' : ':: ' :: .:.. :·:: 6:: ··· I ··.;;. · ·;··:: .::iii :i:' .. ' "''`''' ::l :: : :::. i : .. ··. :: . .:::

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM: scan-with-u-max operation combines source fields by performing an unsigned integer
maximum operation. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is :exclusive.

516



SCAN-WIT H-M IN
.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . .... ..........

SCAN-WITH-F-M IN

The destination field in every selected processor receives the smallest of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-min-1L dest, source, axis, s, e,
direction, inclusion, smode, sbit

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

ais

s, e

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contet-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkI = 0 then

dest[k] - +oo
else

dest[k] - (min source[m])

where scan-subset is as defined on page 45.

517



SCAN-WITH-MIN

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-min operation combines source fields by performing an floating-point
minimum operation. If the scan subset for a selected processor is empty, then the floating-
point value +oo is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is :exclusive.

518



SCAN-WITH-MIN
. . ...... ...... ... .. .. ....... ...... ...

SCAN-WITH-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-min-1L dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if Ski = 0 then

dest[k] 2 e n -1 _ 1

else

dest[k] ( min source[m])

where scan-subset is as defined on page 45.

519



SCAN-WITH-M IN

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-s-min operation combines source fields by performing a signed integer
minimum operation. If the scan subset for a selected processor is empty, then the signed
integer value 2-1 - 1 is stored in the dest field for that processor. Note that this can
occur only when the inclusion argument is :exclusive.

520



SCAN-WITH-M IN

SCAN-WITH-U-MIN
The destination field in every selected processor receives the smallest of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-min-1L dest, source, axis, en,
direction, inclusion, smode, sbit

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[k] 2n - 1
else

dest[k] (n source[m])

where scan-subset is as defined on page 45.

521



SCAN-WITH-MIN

See section 5.20 on page 42 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The CM: scan-with-u-min operation combines source fields by performing an unsigned integer
minimum operation. If the scan subset for a selected processor is empty, then the unsigned
integer value 21en - 1 is stored in the dest field for that processor. Note that this can occur
only when the inclusion argument is :exclusive.

522



SCAN-WITH-MULTIPLY
... ........ .. .. .. .. .. !::: . ... .. .. . .. . .. . ... .. .. .. ... .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. ..

SCAN-WITH-F-MULTIPLY
The destination field in every selected processor receives the product of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-multiply-lL dest, source, axis, s, e,
direction, inclusion, smode, sbit

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either: exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, ais, direction, inclusion, smode, sbit)
if S = 0 then

dest[k] 1
else

dest[k] (s e sourcem) 

where scan-subset is as defined on page 45.

523



SCAN-WITH-MULTIPLY

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-multiply operation combines source fields by performing floating-point
multiplication. If the scan subset for a selected processor is empty, then the floating-point
value 1.0 is stored in the dest field for that processor. Note that this can occur only when
the inclusion argument is :exclusive.

524



SEND
': ;::::: ':'::' -::::*: :::::::::::::::::::::. :::::::::::::::::::::::::: ::::::: ::::::::::::::::::::::::::::::::: : : ':::.:

SEND

Sends a message from every selected processor to a specified destination processor. Each se-
lected processor may specify any processor as the destination, including itself. A destination
processor may receive messages even if it is not selected, and all the destination processors
may be in a vP set different from the vP set of the source processors. Messages are all
delivered to the same address within each receiving processor. If a processor receives more
than one message, then the message data received by that processor will be unpredictable.

Formats CM:send-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted to
the receiving processor, is stored into the dest field regardless of the context-
flag of the receiving processor. The notify bit may be altered in any processor
regardless of the value of the context-flag.

For every virtual processor k in the current-vp-set do
let Sk = { m m E current-vp-set A contezt-flag[m] = 1 A send-address[m] = k }
if lSk = 0 then

if notify[k] $ CM: *no-field* then notify[k] - 0
else if ISkI = 1 then

if notify[k] 0 CM:*no-field* then notify[k] - 1
dest[k] - source[choice(Sk)]

else
if notify[k] 0 CM:*no-field* then notify[k] - 1
dest[k] - (undefined)

525

Definition



SEND
...: .:.:.::. ::::::s :::: : .. . . . :::::::::::::::::::::::::.... . . . . .. .. . . . .. ... . . . . . . . .... .. ..... .

where the choice function arbitrarily but deterministically chooses an element
from a set.

For every selected processor p,, a message length bits long is sent from that processor to
the processor pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor Pd. Note that, although the send-address operand is a
field in the current vP set, its value must specify a valid send address for dest, which may
belong to a different vP set.

The CM:send operation combines multiple incoming messages in an unpredictable manner.
This operation may be used when the programmer can guarantee that no processor will
receive more than one message. Using this operation when it is appropriate may speed
message delivery. The destination area need not be prepared.

526



SEN D-ASET32-AD D

SEND-ASET32-U-ADD

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
unsigned integer addition.

Formats CM:send-aset32-u-add-2L array, send-address, source, index,
slen, index-len, index-limit

Operands array The field ID of the destination array field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

index The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of slen.

slen The length of the source field. This must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the data, once transmitted to the
receiving processor, is combined with the field indicated by array regardless
of the context-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
for every processor k' in Sk do

if index[k'] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

527



SEND-AS ET32-AD D

let m= L[kJ mod32
let i = index[k']
for all j such that 0 < j < dlen do

let tempk(j) = arrayk -m x r + (j mod 32) x r](32 x (i + [3 2))

let sumnk = tempk + source[kt]
for all j such that 0 < j < dlen do

array[k - m x r + (j mod 32) x r](32 x (i + L[z4)) - sumk(j)
else

(error)

For every selected processor p, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of index within p,, not the value within
Pd-

The CM:send-aset32-u-add operation combines incoming messages with unsigned integer
addition. To receive the sum of only the messages, the destination array should first be
cleared in all processors that might receive a message.

528



SEN D-ASET32-LOGIOR
' .: .:. .. .. IB '· & : : : ::: : : ::::: ::::: ..: .: : . :: :::: :: * ·. . . . . ': . . .' .

SEND-ASET32-LOGIOR

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
bitwise logical inclusive oR.

Formats CM:send-aset32-logior-2L array, send-address, source, index,
slen, index-len, index-limit

Operands array The field ID of the destination array field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

index The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of slen.

slen The length of the source field. This must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the data, once transmitted to the
receiving processor, is combined with the field indicated by array regardless
of the context-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
for every processor k' in Sk do

if index[k'] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

529



SEN D-ASET32-LOGIOR
: ::::: :::::::: : :: : ::::: :::: ::::: :: ::: :::::::::: :R :::: ::::::::::::: ::::::: :::::: : ::::::: ::::::::::::::::::::::::::::::::: :

let m= [jmod32
let i = indez[k']
for all j such that 0 < j < dlen do

let q = k - m x r + (j mod 32) x r

let b = 32 X (i + 32j)

array[q](b) - array[q](b) V source[k'](j)
else

(error)

For every selected processor p., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p.. The message is taken from the source field within processor p, and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of indez within p,, not the value within
Pd

The CM:send-aset32-Iogior operation combines incoming messages with a bitwise logical in-
clusive OR operation. To receive the logical inclusive OR of only the messages, the destination
array should first be cleared in all processors that might receive a message.

530



SEN D-AS ET32-OVERWRITE
. .. . .1: ': ... . .. .. .... .. . . . ....... ...............

SEND-ASET32-OVERWRITE

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
·not selected. If a processor receives more than one message destinated for the same array
element, then one is stored in that array element and the rest are discarded.

Formats CM:send-aset32-overwrite-2L array, send-address, source, indez,
slen, index-len, index-limit

Operands array The field ID of the destination array field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

index The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of slen.

slen The length of the source field. This must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the data, once transmitted to the
receiving processor, is combined with the field indicated by array regardless
of the context-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let Sk = (m m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
let k' = choice(Sk)
if index[k'] < index-limit then

let r = geometry-total-vp-ratio(geometry(current-vp-set))

531



SEN D-ASET32-OVERWRITE

let m= ] mod 32

let i = indez[k']
for all j such that 0 < j < dlen do

array[k - m x r + (j mod 32) x tr](32 x (i + 2)) - source[k'](j)

else
(error)

For every selected processor p,, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of index within p,, not the value within

Pd.

The CM:send-aset32-overwrite operation will store one of the messages sent to a particular
array element, discarding all other messages as well as the original contents of that array
element in the receiving processor.

532



SEN D-TO-N EWS
:::s:::: :::::::::::::: ::':: A:::.:::::: ::::: :: :·:·::: :: :::::::::::::::::: : :::: : R :: ::... .. ..· % .. . . . : .. .. - .2;·. · . - . ... .... . .... . ·. ·.. ·.

SEND-TO-NEWS

Each processor sends a message to a neighboring processor along a specified NEWS axis.

Formats CM:send-to-news-lL dest, source, axis, direction, len
CM:send-to-news-always-lL dest, source, axis, direction, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional, but whether data is copied depends only on the
context-flag of the originating processor; the data, once transmitted to the
receiving processor, is stored into the field indicated by dest regardless of the
context-flag of the receiving processor.

Note that in the conditional case the storing of data depends only on the
context-flag of the processor sending the data, not on the context-flag of the
processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let g = geometry(current-vp-set)
dest[news-neighbor(g, k, axis, direction)] - source[k]

The source field in each processor is stored into the dest field of that processor's neighbor
along the NEWS axis specified by axis in the direction specified by direction.

If direction is :upward then each processor stores data into the neighbor whose NEWS coor-
dinate is one greater, with the processor whose coordinate is greatest storing data into the
processor whose coordinate is zero.

If direction is :downward then each processor stores data into the neighbor whose NEWS

coordinate is one less, with the processor whose coordinate is zero storing data into the
processor whose coordinate is greatest.

533



SEN D-TO-QU EU E32
. . .::.:.:::. ..:'::.: : :::.....: .-... ........ .. . .

SEND-TO-QUEUE32
Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in a queue. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected, and all the destination processors may be in a vP set different from the vP set
of the source processors.

Formats CM:send-to-queue32-1L dest, send-address, source, slen, indez-limit

Operands dest The field ID of the queue field. The length of this field must
accommodate 32 bits for the queue.count subfield, plus index -
limit x slen bits for the queue.elements subfield, where index-limit
is the number of queue elements in each processor.

send address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

slen The length of the source field. This is also the length of each
queue element. It is currently restricted to 32 bits.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for a zero-based index into queue.elements.
The value of this argument must be at least 1 and should never
exceed the number of elements that can be stored in the queue.

Overlap The fields send-address and source may overlap in any manner. No overlap
with the dest field is allowed.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the data, once transmitted to the
receiving processor, is queued in the field indicated by dest regardless of the
contezt-flag of the receiving processor.

For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
let T be a sub-set of Sk where ITkl = min(iSk + queue.count, index-limit)
for i from queue.count to queue.count + IT/I - 1 do

queue.elements[i] - T,[i]
queue.count -- queue.count + Skl

Note that if (ISkl + queue.count > index-limit) then there is some choice in
picking the elements of Tk.

534

Definition



SEND-TO-Q U EUE32
:::::: ::::::: :: :: : :: :: ' :: *: : -:'::::::::: ': ::: .. : :::::::.: I: 7 :: ::::::: :: ::::::::::::::::::::::::: :::

The destination field is treated as two subfields: queue.count and queue.elements.
Queue.count is 32 bits long and records the number of enqueued messages. Queue.elements
stores the enqueued messages; it is formatted as a slicewise array (accessed using aref32 and
aset32), and starts at an offset of 32 bits from the start of the destination field. Its length
is a multiple of the message length: at least indez-limit x slen and possibly greater.

The index-limit argument specifies the maximum number of elements that any processor's
queue.elements subfield may accumulate. If any processor receives more messages than this
specified number, the queue overflows and messages are lost. If a queue.elements subfield
overflows, the queue.count subfield for that processor nonetheless accurately reflects the
number of messages received.

For any given communication pattern, both the order of message queueing and the selection
of messages preserved or discarded in case of queue overflow are deterministic. That is, the
order and selection of enqueued messages can be predictably reproduced from one invocation
to the next.

This determinism is especially important for applications that use successive CM:send-to-
queue32-1L calls to send large data structures by breaking up them up into chunks of length
slen. By holding the send-address argument constant, such applications can send successive
chunks of slen bits each to corresponding queues.

To prepare an empty queue for a CM:send-to-queue-lL instruction, the queue.count subfield
should be set to zero. From Lisp/Paris, this is done by executing the following code in the
destination context:

(let ((zeros (allocate-stack-field 32))
(context-hold (allocate-stack-field 1)))
(cm:move-constant-always zeros 0 32)
(cm: store-context context-hold)
(cm: set-context)
(cm:aset32-2L zeros queue zeros 32 32 1)
(cm:load-context context-hold)

The CM:send-to-queue32-lL operation is conditional on the context of the source field; the
set of queues that will receive messages is independent of the currently active set. To zero
the queue.count subfield in only those queues that are to receive messages, execute the
following code in the source context:

(let ((zeros (allocate-stack-field 32)))
(cm:move-constant-always zeros 0 32)
(cm:send-aset32-overwrite-2L queue dest zeros zeros 32 32 1)

)

535



SEN D-TO-QU EU E32

After the CM:send-to-queue32 operation, the local count can be retrieved by executing the
following code in the destination context:

(let ((zeros (allocate-stack-field 32)))
(count-field (allocate-stack-field 32))

)
(cm:move-constant-always zeros 0 32)

(cm:aref32-2L count-field queue zeros 32 32 1)

The i(th) message can be retrieved from queue.elements by executing the following code in
the destination context:

(let ((index (allocate-stack-field 32))
(data-field (allocate-stack-field message-length))

)
(cm:move-constant-always index i 32)

(cm:aref32-2L data-field (+ 32 queue) index len 32 queue-size)

Note that queue.elements is offset from the queue field by 32 bits.

An artificially small queue size may be used by passing CM:send-to-queue-lL an index-limit
value that is less than the number of elements of length slen that could be stored in the
queue.elements portion of the destination field. If this is done, the queues will be partially
filled. However, the correct queue size should always be used as the index-limit argument
to CM:aref32-2L when reading elements from the queue.

536



SEN D-WITH-ADD
.. .. . ...::::::::::-::::::.. . : 

SEND-WITH-C-ADD

Sends a message from every selected processor to a destination processor. Each selected
processor may specify any processor as the destination, including itself. A destination
processor may receive messages even if not selected, and all the destination processors may
be in a vP set different from the vP set of the source processors. Messages are all delivered
to the same address within each receiving processor. All incoming messages are combined
with the destination field using complex addition.

Formats CM:send-with-c-add-1L dest, send-address, source, s, e, notify

Operands dest The field ID of the complex destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

notify The field ID of the notification bit (a one-bit field).

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition Let P = { m I 0 < m < CM: *user-send-address-limit* }
For every virtual processor k in vp-set(dest) do

let Sk = { m I m E P A context-flag[m] = 1 A send-address[m] = k }
if ISki = 0 then

if notify[k] f CM:*no-field* then notify[k] O0
else

if notify[k] 0 CM: *no-field* then notify[k] - 1

dest[k] - dest[k] + ( , source[m])
mESAy

537



SEN D-WITH-ADD
:· : -:_: -- ----- - -S: I:.' :- - . N.;,

For every selected processor p,, a message length bits long is sent from that processor to the
processor Pd whose absolute send address is stored at location send-address in the memory
of processor p,. The message is taken from the source field within processor ps and is stored
into the dest field within processor pd.

The CM:send-with-c-add operation adds incoming messages to the dest field, treating all
quantities as complex numbers. To receive the sum of only the messages, the destination
area should initially be set to zero in all processors that might receive a message.

538



SEND-WITH-ADD
::: :::::: :::::::::::.::::::::::::::::::::::::::::::::::::::::::....................

SEND-WITH-F-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using floating-point addition.

Formats CM:send-with-f-add-1L dest, send-address, source, s, e, notify

Operands dest The field ID of the floating-point destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m m E current-vp-set A contest-flag[m] = 1 A send-address[m] = k }
if ISkI = 0 then

if notify[k] 0 CM:*no-field* then notify[k] 0
else

if notify[k] CM:*no-field* then notify[k] 1

dest[k] .--dest[k] + (, source[m])
mESs

539



SEND-WITH-ADD
.R ...... - -*::.:: a% : E.., B . :.:::. : : : :: :: :::::' :::· ::: : :::::::::::::::::::: : :: ::::: :::i:::::~~~· :::~~:::::~~::::::. ::io :. :i- : . :'-':..' ..................... ........

For every selected processor p,, a message length bits long is sent from that processor to
the processor pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pd.

The CM:send-with-f-add operation adds incoming messages together with the dest field as
floating-point numbers. To receive the sum of only the messages, the destination area should
first be set to zero in all processors that might receive a message.

540



SEND-WITH-ADD
.-:i:::::::::::::::::::::::::::::::::..

SEND-WITH-S-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using signed integer addition.

Formats CM:send-with-s-add-lL dest, send-address, source, len, notify

Operands dest The field ID of the signed integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the signed integer source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if ISkl = 0 then

if notify[k] f CM: *no-field* then notify[k] - 0
else

if notify[k] 0 CM:*no-field* then notify[k] - 1

dest[k] - dest[k] + ( source[m)
mESA,

541



SEND-WITH-ADD
B 'S::':'' : ':':: :'' :''.:::E. '' :'':::.:.: ' : '::B ':: ':kB'B ':: A '': ':::' :: *:: : 't:'':S ::' '::::' : ':: :B'::'' :: :':':::'::::::: '' ''* :': :; :: :''::

For every selected processor p,, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pd.

The CM:send-with-s-add operation adds incoming messages into the dest field as signed
integers. Carry-out and arithmetic overflow are not detected. To receive the sum of only
the messages, the destination area should first be cleared in all processors that might receive
a message.

542



SEND-WITH-ADD
'::::: ::::: ::: ::: :: :: : :: : : :::::: ::: : : ; : : : : : : ; : :::.:: ::g:.>. :.B :.:::$::.::: *: i- ::::···:···:: ······· : ···· : . ·, -; ... .. .:.,·; .::: .: ·.. .

SEND-WITH-U-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using unsigned integer addition.

Formats CM:send-with-u-add-lL dest, send-address, source, len, notify

Operands dest The field ID of the unsigned integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the unsigned integer source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contest-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I M E current-vp-set A contezt-flag[m] = 1 A send-address[m] = k )
if ISk = then

if notify[kJ 0 CM:*no-field* then notify[k] - O
else

if notify[k] 0 CM:*no-field* then notify[k] - 1

dest[k] - dest[k] + ( , source[m])

543



SEND-WITH-ADD
... . .. ... . . . .. . . . . . . . .. . . . . . . . .

For every selected processor p,, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor Pd.

The CM:send-with-u-add operation adds incoming messages into the dest field as unsigned
integers. Carry-out and arithmetic overflow are not detected. To receive the sum of only
the messages, the destination area should first be cleared in all processors that might receive
a message.

544



SEN D-WITH-LOGAN D

SEND-WITH-LOGAND

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical AND.

Formats CM:send-with-logand-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contest-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if ISI = 0 then

if notify[k] 0 CM:*no-field* then notify[k] - 0
else

if notify[k] 0 CM:*no-field* then notify[k] - 1

dest[k] -- dest[k] ( s source[m]
\ESl, 

545



SEN D-WITH-LOGAN D

For every selected processor P,, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pd.

The CM:send-with-logand operation will combine all messages and the original contents of
the destination field with a bitwise logical AND operation. To receive the logical AND of
only the messages, the destination area should first be set to all-ones in all processors that
might receive a message.

546



SEN D-WITH-LOGIOR
> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~. ..... : ." ... .. .. . .....:::., " . ::::: :;:: ;:::., ::: -: : '. . ' : :::.: : ` :: -' : --'-. -... .. - ' .......... ...... :-'·. . ... .. .· .... .. . . .... .. · . . . . .! .. .. .. .. : .. ..: ...

SEND-WITH-LOGIOR

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical inclusive oR.

Formats CM:send-with-logior-lL dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contest-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contest-flag.

Definition For every virtual processor k in the current-vp-set do
let S = { m I m E current-vp-set A contezt-flag[m] = 1 A send-address[m] = k }
if ISk = then

if notify[k] # CM: *no-field* then notify[k] O0
else

if notify[k] 0 CM:*no-field* then notify[k] + 1

dest[k] - dest[k] V ( V source[m])
mES&,

547



SEN D-WITH-LOGIOR
.:I:::I:::::::::::::1:'.. 51 :..........

For every selected processor p,, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor Pd.

The CM:send-with-logior operation combines incoming messages with a bitwise logical inclu-
sive OR operation. To receive the logical inclusive OR of only the messages, the destination
area should first be cleared in all processors that might receive a message.

548



SEN D-WITH-LOGXOR

SEND-WITH-LOGXOR

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical exclusive oR.

Formats CM:send-with-logxor-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if ISk = 0 then

if notify[k] 0 CM:*no-field* then notify[k] - 0
else

if notify[k] 0 CM:*no-field* then notify[k] - 1

dest[k] ,- dest[k] ( E source[m])
masse,

549



SEND-WITH-LOGXOR
::: : :: ·: : ·' :: ' : : : : : :: ':' :: :::::: : : :: :: : ::::: : :: ' : : :: ' : ::::- I ... : : : : : ::::::::::: . . ·::: : :·'·. : ::::: : -' 7: : ··:.. :.: ... : 

.". ' .:.:. .% .:. . :X ~~:' .:..: ' ' : : -.: :;." .: .: -' .. .' · :..- .:. "8: i:

For every selected processor p,, a message length bits long is sent from that processor to
the processor pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pd.

The CM:send-with-logxor operation is similar but combines incoming messages with a bitwise
logical EXCLUSIVE OR operation. To receive the logical EXCLUSIVE OR of only the messages,
the destination area should first be cleared in all processors that might receive a message.

550



SEN D-WITH-MAX
.:.. -.. - .., .:':': : : S 'S': X'- :::'::'::::: : :::::::::::: :::'^::: :::::::': : :: :: ::::: ' :: : : :I.."...... . . . . . . .. . .. . 1. - - -. : X : - . ...···':::I::::':::::::::::::::::::

SEND-WITH-F-MAX
Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a floating-point maximum operation.

Formats CM:send-with-f-max-1L dest, send-address, source, s, e, notify

Operands dest The field ID of the floating-point destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m m E current-vp-set A context-flag[m] = 1 send-address[m] = k }
if Sk = then

if notify[k] # CM:*no-field* then notify[k] - 0
else

if notify[k] 0 CM:*no-field* then notify[k] - 1

dest[k] max (dest[k], max source[m])

551



SEND-WITH-MAX

For every selected processor p,, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pd.

The CM:send-with-f-max operation combines incoming messages with the dest field using
floating-point maximum operations. The test-flag is not affected by the maximum operation.

To receive the maximum of only the messages, the destination field should first be set to
the smallest possible value: -oo.

552



SEN D-WITH-MAX
': ::SR: ........................:i:::: :::: :::: ::::::: ::::::::::::::::::::: ::::::::::::::::::::::::::::::: *:::::::::::::

SEND-WITH-S-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a signed integer maximum operation.

Formats CM:send-with-s-max-lL dest, send-address, source, len, notify

Operands dest The field ID of the signed integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the signed integer source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if ISkI = 0 then

if notify[k] 0 CM: *no-field* then notify[k] - 0
else

if notify[k] 0 CM: *no-field* then notify[k] - 1

dest[k] max (dest[k],ma source[m])

For every selected processor p,, a message length bits long is sent from that processor to
the processor pd whose send address is stored at location send-address in the memory of

553



SEN D-WITH-MAX
. .:: 1::::::.........:. .::::::::s::::..

processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor Pd.

The CM:send-with-s-max operation combines incoming messages with the dest field using
signed integer maximum operations. The test-flagis not affected by the maximum operation.

To receive the maximum of only the messages, the destination field should first be set to
athe smallest possible value: -2l n -1 .

554



SEN D-WITH-MAX
:::: :R :'::: : :: :::::: :::::::::: :::::::::::::::::::: ::::::::::::::::: R::::::::::::::::::::::::::: ::::: ::::::':::::::: : ::::::: ::' ::::::: ::· ···..

SEND-WITH-U-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using an unsigned integer maximum operation.

Formats CM:send-with-u-max-lL dest, send-address, source, len, notify

Operands dest The field ID of the unsigned integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the unsigned integer source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m m E current-vp-set A contezt-flag[m] = 1 A send-address[m] = k }
if ISkI = 0 then

if notify[k] 0 CM: *no-field* then notify[k] - 0
else

if notify[k] 0 CM:*no-field* then notify[k] - 1

dest[k] - max (dest[k], max source[m])

For every selected processor p,, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of

555



SEND-WITH-MAX

processor p.. The message is taken from the source field within processor p, and is stored
into the dest field within processor pd.

The CM:send-with-u-max operation combines incoming messages with the dest field using
unsigned integer maximum operations. The test-flag is not affected by the maximum oper-
ation.

To receive the maximum of only the messages, the destination field should first be set to
the smallest possible value: zero.

556



SEND-WITH-MIN

SEND-WITH-F-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a floating-point minimum operation.

Formats CM:send-with-f-min-1L dest, send-address, source, s, e, notify

Operands dest The field ID of the floating-point destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if ISkI = 0 then

if notify[k] 0 CM: *no-field* then notify[k] - 0
else

if notify[k] CM:*no-field* then notify[k] - 1

dest[k] -- min (dest[k], mi source[m])

557



SEND-WITH-MIN
*::::X - .:::: :::..:::::::s...:: . .:.::::: ...::::..

For every selected processor p,, a message length bits long is sent from that processor to
the processor pd whose send address is stored at location send-address in the memory of
processor p.. The message is taken from the source field within processor P. and is stored
into the dest field within processor pd.

The CM:send-with-f-min operation combines incoming messages with the dest field using
floating-point minimum operations. The test-flag is not affected by the minimum operation.

To receive the minimum of only the messages, the destination field should first be set to
the largest value possible: +oo.

558



SEND-WITH-MIN

SEND-WITH-S-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a signed integer minimum operation.

Formats CM:send-with-s-min-lL dest, send-address, source, len, notify

Operands dest The field ID of the signed integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the signed integer source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if Skl = 0 then

if notify[k] $ CM:*no-field* then notify[k] - 0
else

if notify[k] CM:*no-field* then notify[k] - 1

dest[k] - min (dest[k], min source[m]

For every selected processor pa, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of

559



SEN D-WITH-M IN

processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor Pd.

The CM:send-with-s-min operation combines incoming messages with the dest field using
signed integer minimum operations. The test-flag is not affected by the minimum operation.

To receive the minimum of only the messages, the destination field should first be set to
the largest possible value: 2 -1 - 1.

560



SEN D-WITH-MIN

SEND-WITH-U-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a vP set different from the vP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using an unsigned integer minimum operation.

Formats CM:send-with-u-min-lL dest, send-address, source, len, notify

Operands dest The field ID of the unsigned integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the unsigned integer source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if ISki = 0 then

if notify[k] $ CM:*no-field* then notify[k] - 0
else

if notify[k] CM:*no-field* then notify[k] - 1

dest[k] - min (dest[k], min source[m])

For every selected processor pa, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of

561



SEN D-WITH-MIN
........... ~~~~~~~~~~~~~~~~~~.. ... ..... ... .. .. ..... ..... ....... ... ....

processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pd.

The CM:send-with-u-min operation combines incoming messages with the dest field using
unsigned integer minimum operations. The test-flag is not affected by the minimum oper-
ation.

To receive the minimum of only the messages, the destination field should first be set to
the largest possible value: 2 n - 1.

562



SEND-WITH-OVERWRITE

SEND-WITH-OVERWRITE

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the vp set of the source processors. Messages
are all delivered to the same address within each receiving processor. If a processor receives
more than one message, then one is delivered and the rest are discarded.

Formats CM:send-with-overwrite-lL dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted to
the receiving processor, is stored into the dest field regardless of the context-
flag of the receiving processor. The notify bit may be altered in any processor
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m E current-vp-set A contezt-flag[m] = 1 A send-address[m] = k }
if S& = 0 then

if notify[k] $ CM:*no-field* then notify[k] 0
else

if notify[k] CM:*no-field* then notify[k] - 1
dest[k] - source[choice(S)]

For every selected processor p,, a message length bits long is sent from that processor to
the processor pd whose send address is stored at location send-address in the memory of

563



SEN D-WITH-OVERWRITE
........ . ........ . . ................. I......... .- . .. .. ..: ..: .

processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor Pd.

The CM:send-with-overwrite operation will store one of the messages sent, discarding all
other messages as well as the original contents of the dest field in the receiving processor.

564



SET-BIT
...:~;:;:~~: :'~:~ ::s :::1:..5..·.·.·.·.·.·.·... . .

SET-BIT

Sets a specified memory bit.

Formats CM:set-bit dest
CM:set-bit-always dest

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - 1

The destination memory bit is set within each selected processor.

565



SET-CONTEXT
................ ....... -' .......· :·:·::j~i:: · L: ~;.~..~. ·.·:·:·:·:·.·:·z:·::.· :%-.: . :,: "', -. '-" , _..- ....... ..% :' ':. :'::i I ::: .i: :,i:: .. .·::".: -:. '.. : . .. . %. . X .

SET-CONTEXT

Unconditionally makes all processors active.

Formats CM: set-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flag[k] - 1

Within each processor, the context bit for that processor is unconditionally set.

566



SET- FIELD-ALIAS-VP-SET
::::::::::i:: :: ::::: ::: : :: ..:::::::::.:::: :::..::

SET-FIELD-ALIAS-VP-SET
Sets the vP set of the specified alias fieldID to the specified vP set.

Formats CM:set-field-alias-vp-set alias-id, vp-set

Operands alias-id An alias field ID. This must be an alias fieldID returned by
CM:make-field-alias. This alias id need not be in the current vP
set.

vp-set A VP set ID. This need not be the current vP set.

Context This operation is unconditional. It does not depend on the contezt-flag.

This function sets the VP set of alias-id to vp-set.

An error is signaled if the physical length of the aliased field is not exactly divisible by the
vP ratio of vp-set. (See the definitions of CM:make-field-alias for more information about
the physical length of an aliased field.)

567



SET-SAFETY-MODE
.. . ...... ... .. . . .. . .: .: . ... . . . . . . . . . . 1

SET-SAFETY-MODE

Formats CM:set-safety-mode safety-mode

Operands safety-mode An unsigned integer, the safety level. Currently only the
values 0 and 1 are meaningful.

Context This operation is unconditional. It does not depend on the contezt-flag.

The safety mode is set to the specified value. A non-zero value indicates that the Paris
interface should perform various extra error checks and consistency checks that may be
helpful in detecting bugs in user programs. Of course, the price of these error checks is
reduced execution speed.

568



SET-SYSTEM-LEDS-MODE
.~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .....

SET-SYSTEM-LEDS-MODE

Formats CM: set-system-leds-mode leds-mode

Operands leds-mode Either : eds-off, : eds-on, : eds-throb, :leds-diagnostics, :leds-
perfmon, : leds-sync, or : leds-blink-sync.

Context This operation is unconditional. It does not depend on the contezt-flag.

The lights on the front and back of the Connection Machine system cabinet can be controlled
in a variety of ways. The cm: set-system-leds-mode operation selects what information
will be displayed in the lights. If the specified leds-mode is : leds-off, then all the lights are
turned off, and thereafter the user operations cm:latch-leds and cm: latch-leds-always
may be used to control the lights. Other values for leds-mode select one of the system-
supplied display modes. (The operations cm:latch-leds and cm: latch-leds-always may
still be used when in a system-supplied display mode, but the user-specified pattern is
unlikely to persist as it may be immediately altered by the system, depending on the mode.)

The names of the possible modes shown above are for the C/Paris and Fortran/Paris in-
terfaces. Through an accident of history, the names for the leds modes are different in the
Lisp/Paris interface:

C and Fortran
CMileds-off
CM-leds-on
CM leds-throb
CMleds-diagnostics
CM-leds-perfmon
CM-leds-sync
CM-ledsblink-sync

Lisp
nil
t
: throb
: diagnostics
: performance-monitor
:synch
:blink-and-synch

C'est la vie.

569

-



SET-VP-SET

SET-VP-SET

Declares a specified vp set to be current.

Formats

Operands

Context

CM:set-vp-set vp-set-id

vp-set-id A VP set ID.

This operation is unconditional. It does not depend on the contezt-flag.

Definition current-vp-set - vp-set-id

The vP set specified by the vp-set-id becomes the current VP set. Most Paris operations
implicitly operate within the virtual processors of the current vP set.

570



SET-VP-SET-GEOM ETRY

.4p

SET-VP-SET-GEOMETRY

Alters the geometry of an existing vP set.

Formats CM: set-vp-set-geometry vp-set-id, geometry-id

Operands vp-set-id A VP set ID.

geometry-id A geometry ID.

Context This operation is unconditional. It does not depend on the context-flag.

The VP set specified by the vp-set-id is altered so that its geometry is that specified by the
geometry-id. The new geometry must have the same total number of elements (product of
axis lengths) as the old geometry.

571



SET-flag

SET-flag

Sets a specified flag bit.

Formats CM:set-test
CM: set-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

flag[k] - 1
where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is set.

572



SHIFT

S-S-SHIFT

Shifts a signed integer by an amount specified by a signed integer.

Formats CM:s-s-shift-2-2L dest/sourcel, source2, dlen, slen2
CM:s-s-shift-constant-3-2L dest, sourcel, source2-value, dlen, slenl

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field. This is the
quantity to be shifted.

source2 The field ID of the signed integer second source field. This is the
shift distance (positive for a left shift, negative for a right shift).

source2-value A signed integer immediate operand to be used as the second
source. The same shift distance is applied to each sourcel value.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

slen2 For CM:s-s-shift-2-2L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slenl For CM: s-s-shift-constant-3-2L, the length of the sourcel field. This
must be no smaller than 2 but no greater than CM:*maximum-
integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - [sourcel[k] x 2utcI2[k]

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] +- 0

573



SHIFT
E E Bee : >: :> : E B::::::::: :2>:::X -::: ::: :'::- ·:·'::::: :::::::: :::::-::::: :::::::::::::::::':'::'::::-::f::I:::I:·:······;- ··:::::: j" ": .. ::::. ' -'-' .:::::·:··:·::· .· .. :j:: ...i

... -, --.'`- I. I., ·:::··: ··.· .. ·.. · '' ·: : : ·: :: ... .. : ·: : :.:

The operand sourcel is shifted by the number of bit positions specified by source2, where
a positive shift distance indicates a left shift (that is, a shift toward more significant bit
positions) and a negative shift distance indicates a right shift (that is, a shift toward less
significant bit positions). A left shift introduces zero bits into the vacated (least significant)
bit positions; a right shift introduces copies of the sign bit into the vacated (most significant)
bit positions. This operation is sometimes called an arithmetic shift.

The result is stored into the memory field dest. The various operand formats allow the
second source operand to be either a memory field or a constant. In the non-constant
version the destination field initially contains one source operand.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by dlen.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

574



SHIFT
x: 1 .:% ..' .-1 , .:X %,.: ..

U-S-SHIFT

Shifts an unsigned integer by an amount specified by a signed integer.

Formats CM: u-s-shift-2-2L dest/sourcel, source2, dlen, slen2
CM:u-s-shift-constant-3-2L dest, sourcel, source2-value, dlen, sleni

Operands dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field. This is the
quantity to be shifted.

source2 The field ID of the signed integer second source field. This is the
shift distance (positive for a left shift, negative for a right shift.)

source2-value A signed integer immediate operand to be used as the second
source. The same shift distance is applied to each sourcel value.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen2 For CM:u-s-shift-2-2L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slenl For CM: u-s-shift-constant-3-2L, the length of the sourcel field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be ei-
ther disjoint from or identical to the dest field. Two integer fields are identical
if they have the same address and the same length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - [sourcel[k] 2¢2lJ

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

575



SHIFT

The operand sourcel is shifted by the number of bit positions specified by source2, where
a positive shift distance indicates a left shift (that is, a shift toward more significant bit
positions) and a negative shift distance indicates a right shift (that is, a shift toward less sig-
nificant bit positions). Zero-valued bits are introduced into the vacated bit positions (least
significant for a left shift, most significant for a right shift). This operation is sometimes
called a logical shift.

The result is stored into the memory field dest. The various operand formats allow the
second source operand to be either a memory field or a constant. In the non-constant
version, the destination field initially contains one source operand.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by dlen.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

576



SIGNUM
.·.·.·.·.·.·.·r.·. ·. . ... · .. .. . , .. . . I . . . .! ... . ... .. , .... . .. ... ........ ·:·: ···: ... · .. : · : ...

C-C-SIGNUM

The signum of the complex source field is stored in the complex destination field.

Formats CM:c-c-signum-l-lL
CM:c-c-signum-2-1L

Operands dest

dest/source, s, e
dest, source, s, e

The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - signum(source[k])

The signum of a complex number is a complex number of the same phase but with unit
magnitude, unless the numer is a complex zero, in which case the result is a complex zero.

577

Definition



SIGNUM
': :1::: : : : : ::.:: I ::' :.:.::: ': :: :':'::: ' ' ::: '':::' ':: ::': :: :'::'::'::' ' '::':: ::::: ::::::'- :: :: : :: :: :.: ..... 1. I` .·I.· ,.·.: %.WiI :::~~lI ::''::~i ~ ~ '''·'`:::· ::::::::::i::

F-F-SIGNUM

Determines whether the floating-point source field is negative, minus zero, plus zero, or
positive and places the value -1. 0, +0. 0, -0.0, or 1.0 in the destination field accordingly.

Formats CM:f-f-signum-l-1L
CM:f-f-signum-2-1L

Operands dest

dest/source, s, e
dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contet-flag[k] = 1 then

if source[k] < 0 then dest[k] - -1.0
else if source[k] > 0 then dest[k] - 1.0
else dest[k] - source[k]

The signum function of the source operand is placed in the dest operand. The result is - 1 .0,
-0.0, +0.0, or 1.0 thus indicating whether the source value is negative, minus zero, plus
zero, or positive, respectively. If the source operand is a NaN, then it is copied unchanged.

578

Definition



SIGNUM
:::: ::: :: :: : ':':: : : ::: :' '::'' : R ::' :: : X : :: :: , ::: :: : : : : :::::: :·: : : : :' : : · ·: :. ·: : : · :: : ::::: :· :: : : : : : :B: :· .:· ·'X::: ::::

S-F-SIGNUM

Determines whether the floating-point source field is negative, zero, or positive and places
the value -i, 0, or in the destination field accordingly.

Formats CM:s-f-signum-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.

source The field ID of the floating-point source field.

dlen

s, e

The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source[k] < 0 then dest[k] +- -1
else if source[k] > 0 then dest[k] 1
else dest[k] - 0

The signumn function of the source operand is placed in the dest operand. The result is -1,
0, or according to whether the source value is negative (but non-zero), zero (+0 or -0),
or positive (but non-zero), respectively.

579

Definition



SIGNUM
`... ........... .......... .. . . ...s: :::::::: ::::::::::: ::::::: :::::::::::::::>:::::::::::::::::::.:... .' . : : .'- . . ......l.···:·:::'1 : · ::~ ·::: · ··::::: ··: : ·

S-S-SIGNUM
Determines whether the signed integer source field is negative, zero, or positive and places
the value -1, O, or in the destination field accordingly.

Formats CM:s-s-signum-1-lL
CM:s-s-signum-2-1L
CM:s-s-signum-2-2L

Operands dest The fiel

dest/source, len
dest, source, len
dest, source, dlen, slen

d ID of the signed integer destination field.

source The field ID of the signed integer source field.

len

dlen

slen

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source[k] < 0 then dest[k] - -1
else if source[k] > 0 then dest[k] - 1
else dest[k] - 0

The signum function of the source operand is placed in the dest operand. The result is -1,
0, or i according to whether the source value is negative, zero, or positive, respectively.

580

Definition



SIN
-. .. ..... :.I: I::: :: :::::::::::::::::::::::::::::::::::::::: :::::::::::::::: : : :: : :::: :: ::.::..: .:.:::::: :::::::::::::::::::::::::::::::::::::::............::.

C-SIN

The sine of the complex source field is placed in the complex destination field.

Formats CM:c-sin-l-lL dest/source, s, e
CM:c-sin-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sin source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

581

Definition



SIN
'-''.. :::: :B ''' :: :'B ' B : :: :: : : : :''':':': ':' :::: ''*'-: :'':':'::'::':: :::::' .... .. :: :':::: '::::" '.:' :' :': ::: ':':::':: ':':' '::: : ::· i:': :: :::.. · ·;. ··.'. ··:: I· ·:~ . . . .r - ......~~S~i:8::~: ~ ~ 8~:~~:~::S:.. : . .. ., .. . I . .; 1 . ..:.::: .. ::····· ·····.···. ······· ·

F-SIN

Calculates the floating-point sine of the source field values and stores the result in the
floating-point destination field.

Formats CM:f-sin-l-1L dest/source, s, e
CM:f-sin-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

5, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conteat-flag[k] = 1 then

dest[k] +- sinsource[k]

The sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

582



C-SINH

The hyperbolic sine of the complex source field is placed in the complex destination field.

Formats CM:c-sinh-l-1L dest/source, s, e
CM:c-sinh-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - sinh source[k]

The hyperbolic sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

583

Definition

y:::~~:::::~~:::~~::::::::::::::::g: ~ ~ ~ ~ ~-:- ::, :: :: :: i;: ..:- ; ;i-.:: ;;: :: ::; : :: : : :i:!::::XX .. ... 



SINH
> ~ ~ ~ ~ ~ 1 . I .: I .....

F-SINH
Calculates the floating-point hyperbolic sine of the source field values and stores the result
in the floating-point destination field.

Formats CM:f-sinh-1
CM:f-sinh-2

Operands dest

-1L dest/source, s, e
-1L dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sinh source[k]
if (overflow occurred in processor k) then overflow-flag[k] 1

The hyperbolic sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

584

Definition



SPREAD- FROM-PROCESSOR

SPREAD-FROM-PROCESSO R

A single source processor is specified. A copy of its source field value is spread to every
(selected) processor in the destination field. Neither the destination nor the source field
needs to be in the current vP set.

Formats CM:spread-from-processor-lL dest, send-address-value, source, len
CM:spread-from-processor-a-lL dest, send-address-value, source, len

Operands dest The field ID of the destination field.

send-address-value An unsigned integer immediate operand to be used as
the the send address of the processor whose source value is to be
spread.

source The field ID of the source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operations are conditional.

The always operations are unconditional.
For this instruction, -a is used instead of the standard -always suffix to indicate
unconditional operation.

Definition For every virtual processor k in vp-set(dest) do
if (always or context-flag[k] = 1) then

dest[k] +- source[send-address-value]

The value of the source field in the processor specified by send-address-value is spread to all
(selected) processors in the destination field. The source and destination fields may reside
in different vP sets.

585



SPREAD-WITH-ADD
i'::::ii !:ii:3::::::::::::::::::::::::: :::i:!:: :::::::::::::: :~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::I::::::::....:.:::.:.::::Z: :::::::: I:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

SPREAD-WITH-C-ADD
The destination field in every selected processor receives the sum of the complex source
fields from processors below or above it in some ordering of the processors.

Formats CM:spread-with-c-add-L dest, source, azis, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

axis

s, e

An unsigned integer immediate operand to be used as the the
number of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let Ck = scan-subclass(k, { axis })

dest[k] source[m]
EmIcS

where scan-subclass is as defined on page 36 of the Paris Reference Manual.

See the section beginning on page 36 for a general description of spread operations. The
CM:spread-with-c-add operation combines source fields by performing complex addition.

A call to CM:spread-with-c-add-1L is equivalent to the sequence

CM:scan-with-c-add-lL
CM: scan-with-copy-lL

dest, source, azis, s, e, :upward, :inclusive, :none, dont-care
dest, source, ais, 2 x (s + e + 1), :downward, :inclusive, :none, dont-care

but may be faster.

586

Definition



SPREAD-WITH-ADD

SPREAD-WITH-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from all processors in its scan subclass.

Formats CM:spread-with-f-add-lL dest, source, ais, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis

S, e

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contest-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] (- F, source[m]
mECk,

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-f-add operation combines source fields by performing floating-point addition.

A call to CM:spread-with-f-add-iL is equivalent to the sequence

CM: scan-with-f-add-lL
CM:scan-with-copy-lL

temp, source, azis, s, e, :upward, :inclusive, :none, dont-care
dest, temp, ais, s + e + 1, :downward, :inclusive, :none, dont-care

but may be faster.

587



SPREAD-WITH-ADD
.:........ ..:..: . .:..::: :: : :::: .::: :: .

SPREAD-WITH-S-ADD
The destination field in every selected processor receives the sum of the signed integer source
fields from all processors in its scan subclass.

Formats CM:spread-with-s-add-lL dest, source, azis, len

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

-axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] ( mEC source[m])
mECk

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-s-add operation combines source fields by performing signed integer addition.

A call to CM:spread-with-s-add-lL is equivalent to the sequence

CM: scan-with-s-add-lL
CM:scan-with-copy-lL

temp, source, ais, len, :upward, :inclusive, :none, dont-care
dest, temp, axis, len, :downward, :inclusive, :nonej dont-care

but may be faster.

588



SPREAD-WITH-ADD

SPREAD-WITH-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-u-add-lL dest, source, axis, len

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] - E source[m]

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-u-add operation combines source fields by performing unsigned integer addition.

A call to CM:spread-with-u-add-lL is equivalent to the sequence

CM:scan-with-u-add-lL temp, source, axis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-lL dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

589



SPREAD-WITH-COPY
... . .... .* * * * * * * . . * . . * . . * * * * . * * * . . .

SPREAD-WITH-COPY
The destination field in every selected processor receives a copy of the source value from a
particular value within its scan subclass.

Formats CM:spread-with-copy-1L dest, source, axis, len, coordinate

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis

len

coordinate

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class is to be replicated.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let c = deposit-news-constant(g, k, axis, coordinate-value)
dest[k] - source[c]

where deposit-news-constant is defined in the dictionary entry for CM: deposit-
news-coordinate.

See section 5.20 on page 42 for a general description of spread operations.

590



SPREAD-WITH-LOGAN D

SPREAD-WITH-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from all processors in its scan subclass.

Formats CM:spread-with-logand-lL dest, source, axis, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k]- (c A source[m])
whrs- mEC e

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The
with-logand operation combines source fields by performing bitwise logical AND

A call to CM:spread-with-logand-1L is equivalent to the sequence

CM: spread-
operations.

CM:scan-with-logand-lL temp, source, axis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

591



SPREAD-WITH-LOGIOR

SPREAD-WITH-LOGIOR
The destination field in every selected processor receives the bitwise logical inclusive oR of
the source fields from all processors in its scan subclass.

Formats CM:spread-with-logior-lL dest, source, azis, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] c-(nc V source[m4)

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-logior operation combines source fields by performing bitwise logical inclusive OR op-
erations.

A call to CM:spread-with-logior-lL is equivalent to the sequence

CM:scan-with-logior-lL temp, source, axis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-lL dest, temp, azis, len, :downward, :inclusive, :none, dont-care

but may be faster.

592

Definition



SPREAD-WITH-LOGXO R

SPREAD-WITH-LOGXO R

The destination field in every selected processor receives the bitwise logical exclusive oa of
the source fields from all processors in its scan subclass.

Formats CM:spread-with-logxor-lL dest, source, axis, len

Operands dest The field ID of the destination field.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] '(mC source[m]

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-logxor operation combines source fields by performing bitwise logical exclusive oR op-
erations.

A call to CM:spread-with-logxor-lL is equivalent to the sequence

CM:scan-with-logxor-lL temp, source, ais, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

593



SPREAD-WITH-MAX

SPREAD-WITH-F-MAX
The destination field in every selected processor receives the largest of the floating-point
source fields from all processors in its scan subclass.

Formats CM:spread-with-f-max-1L dest, source, ais, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axis

s, e

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] - max source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-f-max operation combines source fields by performing an floating-point maximum op-
eration.

A call to CM:spread-with-f-max-1L is equivalent to the sequence

CM:scan-with-f-max-1L temp, source, axis, s, e, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, ais, s + e + 1, :downward, :inclusive, :none, dont-care

but may be faster.

594



SPREAD-WITH-MAX

SPREAD-WITH-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-s-max-lL dest, source, axis, en

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] ( EC sourcetm])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-s-max operation combines source fields by performing a signed integer maximum oper-
ation.

A call to CM:spread-with-s-max-1L is equivalent to the sequence

CM:scan-with-s-max-lL temp, source, ais, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

595



SPREAD-WITH-MAX

SPREAD-WITH-U-MAX
The destination field in every selected processor receives the largest of the unsigned integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-u-max-iL dest, source, ais, en

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length *.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] - max source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-u-max operation combines source fields by performing an unsigned integer maximum
operation.

A call to CM:spread-with-u-max-1L is equivalent to the sequence

CM:scan-with-u-max-lL temp, source, axis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-lL dest, temp, axis, en, :downward, :inclusive, :none, dont-care

but may be faster.

596



SPREAD-WITH-MIN

SPREAD-WITH-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from all processors in its scan subclass.

Formats CM:spread-with-f-min-lL dest, source, axis, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

axss

s, e

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] - m source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM: spread-
with-f-min operation combines source fields by performing an floating-point minimum oper-
ation.

A call to CM:spread-with-f-min-lL is equivalent to the sequence

CM: scan-with-f-min-lL
CM:scan-with-copy-1L

temp, source, axis, s, e, :upward, :inclusive, :none, dont-care
dest, temp, axis, s + e + 1, :downward, :inclusive, :none, dont-care

but may be faster.

597

Definition



SPREAD-WITH-MIN

SPREAD-WITH-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-s-min-lL dest, source, axis, len

Operands dest The field ID of the signed integer destination field.

source The field ID of the signed integer source field.

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] (mm sOrcrm])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM: spread-
with-s-min operation combines source fields by performing a signed integer minimum oper-
ation.

A call to CM:spread-with-s-min-lL is equivalent to the sequence

CM:scan-with-s-min-lL temp, source, axis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-lL dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

598



SPREAD-WITH-MIN

SPREAD-WITH-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-u-min-L dest, source, axis, len

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

anis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[k] - m source[m])

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-u-min operation combines source fields by performing an unsigned integer minimum
operation.

A call to CM:spread-with-u-min-lL is equivalent to the sequence

CM:scan-with-u-min-lL temp, source, axis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-lL dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

599



SQRT

C-SQRT
Calculates the square root of the complex source field and places it in the complex destina-
tion field.

Formats CM:c-sqrt-l-lL dest/source, s, e
CM:c-sqrt-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] sourc

In each selected processor, the square root of the source field value is placed in the dest
field.

600



SQRT
:: :~::i:: :::::::::::::::::::::::::::::::::::::::::::::: :::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::ii ::.:::::

F-SQRT

Calculates the floating-point square root of the source field values and stores the result in
the floating-point destination field.

Formats CM:f-sqrt-l
CM:f-sqrt-2

Operands dest

source

s, e

-1L dest/source, s, e
-1IL dest, source, s, e

The field ID of the floating-point destination field.

The field ID of the floating-point source field.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is negative and non-zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] > 0 then
dest[k] +- Vsourcek

else if source[k] = ±0 then
dest[k] -- source[k]

else if: source: [k] < 0 then
dest[k] - (unpredictable)
test[k] 4- 1

If the source value is non-negative, then the square root of that value is placed in the
destination. The square root of - is defined to be -0.

If the source operand is a NaN, then it is copied to the dest field unchanged.

601

Definition



STORE-CONTEXT

STORE-CONTEXT
Unconditionally stores the context bit into memory.

Formats

Operands

Context

Definition

Within each
memory.

CM:store-context dest

dest The field ID of the destination bit (a one-bit field).

This operation is unconditional. The destination may be altered regardless of
the value of the contezt-flag.

For every virtual processor k in the current-vp-set do

For every virtual processor k in the current-vp-set do
dest[k] context-flag[k]

processor, the context bit for that processor is unconditionally stored into

602



STORE-FLAG

STO RE-flag

Conditionally stores a flag bit into memory.

Formats CM: store-test
CM: store-test-always
CM: store-overflow
CM: store-overflow-always

Operands dest

dest
dest
dest
dest

The field ID of the destination bit (a one-bit field).

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - flag[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is stored into memory.

603



STRUCTU RE-ARRAY-FORMAT

FE-STRUCTURE-ARRAY-FORMAT

This instruction returns an array format descriptor for a particular slot in an array of
structures. A format descriptor may be passed to any array transfer instruction to specify
a front-end array format, although this is not required. See also CM:fe-array-format and
CM: fe-packed-array-format.

This instruction is not provided for the Lisp interface to Paris.

Formats result -- CM :fe-structure-array-format cm-element-byte-size,
structure-byte-size

Operands cm-element-byte-size A signed integer immediate operand to be used as the
number of bytes each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 16.

structure-byte-size A signed integer immediate operand to be used as the
length of the front-end structure in bytes. This may be any positive
integer.

Result The array format descriptor specified.

Context This is a front-end operation. It does not depend on the value of the context-
flag.

The return value is a format descriptor for a front-end array of structures. Such a format
descriptor can be passed to any of the CM array transfer instructions in order to allow
transfers in either direction between CM fields and a front-end array of structures. If this
is done, one CM element per selected processor is copied into, or receives data from, the
specified slot across an array of structures on the front end.

Values for both cm-element-byte-size and cm-structure-byte-size may be obtained by calls
to sizeof(...).

The value of cm-element-byte-size specifies the length of the structure slot in bytes. It also
defines the unit of measure for the fe-offset-vector argument to the CM: read-from-news-array
and CM: write-to-news-array instructions.

The value of structure-byte-size specifies the length of the entire stucture in bytes. It also
defines the unit of measure for the argument fe-dimension-vector to the CM: read-from-news-
array and CM:write-to-news-array instructions.

If a slot other than the first slot in the front-end structure is the destination of a CM: read-
from-news-array or the source for a CM: write-to-news-array transfer instruction, then a pointer
to that slot must be provided as the value of front-end-array. This is a bit tricky. The

604



STRUCTU RE-ARRAY-FORMAT
... * . .i~i~i~i~i:::i::::j::::::::::. .

pointer must identify the location of the chosen slot in the structure that is the first element
of the array of structures.

Here is an example in C.

#define nfoos 256

/* declare array of structure foo */
struct foo { int a; double b; char c; } fooarraynfoos];

/* declare the format */
CMarrayformatt fooformat;

/* declare an offset for the 'b' slot of struct foo */
/* this is a pointer to a double - b is a double */
double *bslotpointer;

/* lots of other declarations etc. in here */

/* create format descriptor for foo.b */
fooformat = CMstructurearrayformat(sizeof(double), sizeof(struct foo));

/* create pointer offset to slot b of struct foo */
bslotpointer = fooarray[O].b;

/* store src-field values in slot b of each foo struct in fooarray */
/* all variables xxxxvector should be self explanatory */

CMfreadfromnewsarrayiL(bslotpointer, offsetvector,
startvector, endvector, axisvector,
srcfield, 23, 8, rank,
dimensionvector, fooformat);

Slot b of each foo structure in the array fooarray receives a copy of the value stored in the
corresponding CM srd-field processor.

The value of bslot-pointer is a pointer to the b slot of the first foo structure in fooarray.
Given this starting place, fooformat indicates how many bytes must be skipped between b
slots.

For further examples, refer to the manual entitled Introduction to Programming in C/Paris.

605



SUBF-CONST-M ULT

F-SUBF-CONST-MULT

Calculates a value (b - a)z and places it in the destination.

Formats CM:f-subf-const-mult-1L
CM:f-subf-const-mult-always-lL
CM: f-subf-const-mult-const- 1 L
CM :f-subf-const-mult-const-a-lL

Operands dest

dest, sourcel, source2-value, source3, s, e
dest, sourcel, source2-value, source3, s, e
dest, sourcel, source2-value, source3-value, s, e
dest, sourcel, source2-value, source3-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source (subtrahend) field.

source2-value A floating-point immediate operand to be used as the second
source (minuend).

sourceS The field ID of the floating-point third source (multiplier) field.

source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and source3 fields. The total length of an operand in this format
is s+e+l.

Overlap The fields sourcel and source3 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - (source2-value[k] - sourcel[k]) x source3[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The operand sourcel is subtracted from source2-value, treating them as floating-point num-
bers, and then the difference is multiplied by a third operand source3. The result is stored

606



SUBF-CONST-M ULT
:·:·:·::-:·:: :::i::i:::i ~ . ·. .·;·.:.:..·.;·....·....~~.. . . .... I .. ......... . . .% .

in the destination field. The various operand formats allow the second and third source
operands to be either memory fields or constants.

The constant operands source2-value and source3-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by s and e before the operation is performed.

A call to CM:f-subf-const-mult-L is equivalent to the sequence

CM:f-subfrom-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-multiply-3-1L dest, dest, source3, s, e

but may be faster.

607



SUB-MULT

F-SUB-MULT
Calculates a value (z - a)b and places it in the destination.

Formats CM:f-sub-mult-1L
CM:f-sub-mult-always-lL
CM:f-sub-const-mult- 1L
CM: f-sub-const-mult-always-lL
CM :f-sub-mult-const-1L
CM :f-sub-mult-const-always- IL
CM:f-sub-const-mult-const-lL
CM:f-sub-const-mult-const-a- 1L

Operands dest

dest,
dest,
dest,
dest,
dest,
dest,
dest,
dest,

sourcel,
sourcel,
sourcel,

sourcel,
sourcel,
sourcel,

sourcel,

sourcel,

source2, sources, s, e
source2, sources, , e
source2-value, source3, s, e
source2-value, source3, s, e
source2, source3-value, s, e
source2, source3-value, s, e
source2-value, source3-value, s, e
source2-value, source3-value, s, e

The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source (minuend) field.

source2 The field ID of the floating-point second source (subtrahend) field.

source2-value A floating-point immediate operand to be used as the second
source (subtrahend).

source3 The field ID of the floating-point third source (multiplier) field.

source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and source3 fields. The total length of an operand in this format
is s+e+1.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.,
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] (sourcel[k] - source2[k]) x source3[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

608



SUB-MULT
X ...: · * ... ... s. .. .. .::: : .: .'.- : ... i .. : .... i .. .. : : .:. : · ·I · .I : I........

The operand source2 is subtracted from sourcel, treating them as floating-point numbers,
and then the difference is multiplied by a third operand sources. The result is stored in the
destination field.

The various operand formats allow the second and third source operands to be either mem-
ory fields or constants.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-sub-mult-lL is equivalent to the sequence

CM:f-subtract-3-1L temp, sourcel, source2, s, e
CM:f-multiply-3-1L dest, temp, source3, s, e

but may be faster.

609



SUBTRACT

C-SUBTRACT
The difference of two complex source values is placed in the destination field.

Formats CM:c-subtract-2-1L
CM: c-subtract-always-2-1L
CM:c-subtract-3-l
CM: c-subtract-always-3-1L
CM: c-subtract-constant-2-1lL
CM: c-subtract-const-always-2-1 L
CM: c-subtract-constant-3-1L
CM: c-subtract-const-always-3-1L
CM: c-subfrom-2-1L
CM: c-subfrom-always-2-1L
CM: c-subfrom-constant-2-1L
CM: c-subfrom-const-always-2-1L
CM: c-subfrom-constant-3-1L
CM: c-subfrom-const-always-3-1L

Operands dest

dest/sourcel,
dest/sourcel,
dest, sourcel,
dest, sourcel,
dest/sourcel,
dest/sourcel,
dest, sourcel,
dest, sourcel,
dest/source2,
dest/source2,
dest / source2,
dest/source2,
dest, source2,

source2, 8, e

source2 s, e
source2, s, e
source2, s, e
source2-value, s, e
source2-value, s, e
source2-value, s, e
source2-value, s, e
sourcel, , e

sourcel, s, e
sourcel-value, s, e
sourcel-value, s, e
sourcel-value, s, e

dest, source2, sourcel-value, s, e

The field ID of the complex destination field. This is the difference,
the result of the subtraction operation.

sourcel The field ID of the complex first source field. This is the minuend.

source2 The field ID of the complex second source field. This is the sub-
trahend.

sourcel-value A complex immediate operand to be used as the first source.

source2-value A complex immediate operand to be used as the second
source.

5, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
2(s + e + 1).

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

610



SUBTRACT
a :::: :.: : .X %".' ' '> - · ·. ·II ':' ::.: : .......
. - .'.. .. ; ·.... 1"... ..· . , . . . . ' .. .: 7:. %:!..% M. .

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - sourcel [k] - source2 [k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The operand source2 is subtracted from sourcel, treated as as complex numbers. The result
is stored into the memory field dest. The various operand formats allow operands to be
either memory fields or constants; in some cases the destination field initially contains one
source operand. The "subfrom" operations allow for the destination to be subtracted from
the other operand, or for a memory field to be subtracted from an immediate value.

The constant operand sourcel-value or source2-value should be a double-precision complex
front-end value (in Lisp, automatic coercion is performed if necessary). Before the operation
is performed, the constant is converted, in effect, to the format specified by s and e.

611



SUBTRACT
:·:: N:: .. .:··::·: .. :·· ··: .. : ··: .::,... ,. : '. ...1 ·· -· ·· ::::7 ............. :: : :·

F-SUBTRACT
The difference of two floating-point source values is placed in the destination field.

Formats CM :f-subtract-2-1L
CM:f-subtract-always-2-1L
CM:f-subtract-3-1L
CM: f-subtract-always-3-1L
CM :f-subtract-constant-2- 1L
CM :f-subtract-const-always-2-1 L
CM :f-subtract-constant-3- 1L
CM :f-subtract-const-always-3-1 L
CM:f-subfrom-2-1L
CM: f-subfrom-always-2-1L
CM: f-subfrom-constant-2- 1 L
CM :f-subfrom-const-always-2- 1 L
CM :f-subfrom-constant-3-1L
CM: f-subfrom-const-always-3- 1 

Operands dest

dest/sourcel, source2, s, e
dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest, sourcel, source2, s, e
dest sourcel, source2-value, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest/source2, sourcel, s, e
dest/source2, sourcel, s, e
dest/source2, sourcel-value, s, e
dest/source2, sourcel-value, s, e
dest, source2, sourcel-value, s, e
dest, source2, sourcel-value, s, e

The field ID of the floating-point destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the floating-point first source field. This is the
minuend.

source2 The field ID of the floating-point second source field. This is the
subtrahend.

sourcel-value A floating-point immediate operand to be used as the first
source.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

612



SUBTRACT

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[lk] - sourcel [k] - source2[k]

if (overflow occurred in processor k) then overflow-flag[k] 1

The operand source2 is subtracted from sourcel, treated as as floating-point numbers. The
result is stored into the memory field dest. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand. The "subfrom" operations allow for the destination to be subtracted
from the other operand, or for a memory field to be subtracted from an immediate value.

The constant operand sourcel-value or source2-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

613



SUBTRACT
. .-:' : . .. . . . . ...

S-SUBTRACT

The difference of two signed integer source values is placed in the destination field. "Borrow-
in" and "borrow-out" are simulated by the carry-flag, and overflow is also computed.

Formats CM:s-subtract-3-3L
CM:s-subtract-2-1L
CM: s-subtract-3-1L
CM: s-su btract-constant-2- 1 L
CM:s-subtract-constant-3-1L
CM:s-subfrom-2-l
CM: s-su bfrom-constant-2-1 L
CM: s-subfrom-constant-3- L

Operands dest

dest, sourcel, source2, dlen, slenl, slen2
dest/sourcel, source2, len
dest, sourcel, source2, en
dest sourcel, source2-value, len
dest, sourcel, source2-value, len
dest/source2, sourcel, len
dest/source2, sourcel-value, len
dest, source2, sourcel-value, len

The field ID of the signed integer destination field.
difference, the result of the subtraction operation.

sourcel The field ID of the signed integer first source field.
minuend.

source2 The field ID of the signed integer second source field.
subtrahend.

This is the

This is the

sourcel-value A signed integer immediate operand to be used as the first
source.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

dlen For CM:s-subtract-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

slenl For CM:s-subtract-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

slen2 For CM:s-subtract-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

614

This is the



SUBTRACT

Flags carry-flag is set if there no borrow-in to the high-order bit position; otherwise
it is cleared.

For subtraction, "carry" is equivalent to "not borrow." Thus, if sourcel is
greater than or equal to source2, then the carry-flag is set - meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow is required
so the carry-flag is cleared.

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- sourcel [k] - source2[k]

if (no borrow needed in processor k) then carry-flag[k] - 1
else carry-flag[k] - 0
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

The operand source2 is subtracted from sourcel, treated as as signed integers. A borrow
bit is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The various operand formats allow the first and second source operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.
The "subfrom" operations allow for the destination to be subtracted from the other operand,
or for a memory field to be subtracted from an immediate value.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand sourcel-value or source2-value should be a signed integer front-end
value. Generally the constant has the same length as the field operand it replaces, although
this is not strictly required. Regardless of the length of the constant, however, the operation
is performed using exactly the number of bits specified by len.

615



SUBTRACT
* ~ ~ ~ ~ --- -:::X 1 -, .. . . . . . ... . ..... ., .. . ... .. . . .. . . . . .. .. . .

U-SU BTRACT

The difference of two unsigned integer source values is placed in the destination field.
"Borrow-in" and "borrow-out" are simulated by the carry-flag, and overflow is also com-
puted.

Formats CM:u-subtract-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM: u-subtract-2-1L dest/sourcel, source2, len
CM:u-subfrom-2-l dest/source2, sourcel, len
CM:u-subtract-3-1L dest, sourcel, source2, len
CM: u-subtract-constant-2-1L dest/sourcel, source2-value, len
CM: u-subfrom-constant-2-1L dest/source2, sourcel-value, len
CM: u-subtract-constant-3-1L dest, sourcel, source2-value, len
CM:u-subfrom-constant-3-1L dest, source2, sourcel-value, len

Operands dest The field ID of the unsigned integer destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the unsigned integer first source field. This is the
minuend.

source2 The field ID of the unsigned integer second source field. This is
the subtrahend.

sourcel-value An unsigned integer immediate operand to be used as the
first source.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM:u-subtract-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

slenl For CM:u-subtract-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

slen2 For CM:u-subtract-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

616



SUBTRACT

Flags carry-flag is set if there is no borrow-in to the high-order bit position; other-
wise it is cleared.

For subtraction, "carry" is equivalent to "not borrow." Thus, if sourcel is
greater than or equal to source2, then the carry-flag is set - meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow is required
so the carry-flag is cleared.

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] sourcel [k] - source2[k]
if (no borrow needed in processor k) then carry-flag[k] - 1
else carry-flag[k] - 0
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] 4- 0

The operand source2 is subtracted from sourcel, treated as as unsigned integers. A borrow
bit is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The various operand formats allow operands to be either memory fields or constants; in some
cases the destination field initially contains one source operand. The "subfrom" operations
allow for the destination to be subtracted from the other operand, or for a memory field to
be subtracted from an immediate value.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand sourcel-value or source2-value should be an unsigned integer front-
end value. Generally the constant has the same length as the field operand it replaces,
although this is not strictly required. Regardless of the length of the constant, however, the
operation is performed using exactly the number of bits specified by len.

617



SUBTRACT-BORROW

S-SUBTRACT-BORROW
In each selected processor, computes the difference of two signed integer source values and
places it in the destination field. "Borrow-in" and "borrow-out" are simulated by the carry-
flag, and overflow is also computed.

Formats CM:s-subtract-borrow-3-1L dest, sourcel, source2, len

Operands dest The field ID of the signed integer destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the signed integer first source field. This is the
minuend.

source2 The field ID of the signed integer second source field. This is the
subtrahend.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is no borrow-in to the high-order bit position; other-
wise it is cleared.

For subtraction, "carry" is interpreted as "not borrow." Thus, if source is
greater than or equal to source2, then the carry-flag is set - meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow is required
so the carry-flag is cleared.

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel [k] - source2[k] + (carry-flag[k] - 1)
if (no borrow needed in processor k) then carry-flag[k] 1
else carry-flag[k] - 0
if (overflow occurred in processor k) then overflow-flag[k] 4- 1
else overflow-flag[k] 0

618

Definition



SUBTRACT-BORROW

The operand source2 is subtracted from sourcel, treated as signed integers. A borrow bit
is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The carry-flag and overflow.-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

619



SUBTRACT-BORROW
... ... . ... ~~.... ................. .. . , , " '

U-SUBTRACT-BORROW

In each selected processor, computes the difference of two unsigned integer source values
and places it in the destination field. "Borrow-in" and "borrow-out" are simulated by the
carry-flag, and overflow is also computed.

Formats CM: u-subtract-borrow-3-1L dest, sourcel, source2, len

Operands dest The field ID of the unsigned integer destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the unsigned integer first source field. This is the
minuend.

source2 The field ID of the unsigned integer second source field. This is
the subtrahend.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there no borrow-in to the high-order bit position; otherwise
it is cleared.

For subtraction, "carry" is equivalent to "not borrow." Thus, if source is
greater than or equal to source2, then the carry-flag is set - meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow is required
so the carry-flag is cleared.

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel [k] - source2[k] + (carry-flag[k] - 1)
if (no borrow needed in processor k) then carry-flag[k] - 1
else carry-flag[k] - 0
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0

620



SUBTRACT-BORROW

The operand source2 is subtracted from sourcel, treated as as unsigned integers. A borrow
bit is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

621



SWAP
. .... ... . ..... ....... ...... ..... ..... ' ... ....... .......

SWAP
Swaps the contents of two bit fields.

Formats CM:swap-2-1L
CM: swap--always-2-1L

Operands destl

destl Isourcel, dest2/source2, len
destl sourcel, dest2/source2, len

The field ID of the first destination field.

sourcel The field ID of the first source (same as first destination) field.

dest2 The field ID of the second destination field.

source2 The field ID of the second source (same as second destination)
field.

len The length of the destl, sourcel, dest2, and source2 fields. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields destl and dest2 must not overlap in any manner.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let templ k = sourcel [k]
let temp2k = source2[k]
let destl [k] - temp2k
let dest2[k] - templ k

Each of the two provided fields is copied into the other so as to exchange their contents.

622

Definition



TAN

C-TAN

Calculates the complex tangent of the source field values and stores the result in the complex
destination field.

Formats CM:c-tan-1-lL dest/source, s, e
CM:c-tan-2-l dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - tan source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The tangent of the value of the source field is stored into the dest field.

623

Definition



TAN

F-TAN

Calculates the floating-point tangent of the source field values and stores the result in the
floating-point destination field.

Formats CM:f-tan-l-1L dest/source, s, e
CM:f-tan-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

8, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contest-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] - tansource[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The tangent of the value of the source field is stored into the dest field.

624

Definition



TANH
:: j : .......... I...I.........::::::::::

C-TANH
Calculates the complex hyperbolic tangent of the source field values and stores the result
in the complex destination field.

Formats CM:c-tanh-l-1L dest/source, s, e
CM:c-tanh-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] -- tanh source

The hyperbolic tangent of the value of the source field is stored into the dest field.

625



TANH

F-TANH

Calculates the floating-point hyperbolic tangent of the source field values and stores the
result in the floating-point destination field.

Formats CM:f-tanh-l-1L dest/source, s, e
CM:f-tanh-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - tanh source
if (overflow occurred in processor k) then overflow-flag[k] +- 1

The hyperbolic tangent of the value of the source field is stored into the dest field.

626



TIME
.;::i::~:::::i:~:i:::~. 

... ...... ... ... 
..

TIME

Times other operations and reports both the total amount of time elapsed and the amount
of time spent executing on the Connection Machine system.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the CM: timer- series of functions
- which may also be used from Lisp. The CM:timer- functions are documented in this
dictionary and also in the CM System User's Guide.

Formats CM:time form, [return-statistics-p]

Operands form The a Lisp, Lisp/Paris, or *Lisp form to be timed. This must be a
single Lisp expression. To time more than one expression, enclose
them in a progn form.

return-statistics-p The answer to the question, "Do you want timing
statistics returned as the value of the macro?". This is an op-
tional keyword argument and defaults to NIL. When specified, the
invocation must include the keyword :return-statistics-p followed
by T or NIL.

Context This operation is unconditional. It does not depend on the context-flag.

The CM:time facility is a Lisp macro, not a function. It is used in the Lisp/Paris interface
to time the execution of other operations on the Connection Machine system.

A call to the CM:time macro may contain a single Lisp expression; this is executed in the
normal manner, but before the value is returned, timing information is printed out as for
the Common Lisp time macro.

Specifying a NIL value to the :return-statistics-p (the default) causes the statistics to be
displayed on standard output.

Specifying a T value to the :return-statistics-p causes the statistics to be returned as two
floating-point values in a list that is the return value of the macro call.

The first number reported is elapsed time during execution on both the front-end computer
and the Connection Machine system. In addition, timing information related to Connection
Machine system performance is printed. The second number reported is the amount of that
time that the Connection Machine system was actually executing instructions (not waiting
for the front end). For optimal performance, the programmer strives to obtain the maximum
percentage of Connection Machine utilization possible.

For further information about timing code from the Lisp/Paris interface, see the CM System
User's Guide chaper entitled "In The Lisp Environment."

627



TIME
::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::':: :::,'.'~:;~; ~:::'~::::::::::::::::::::::::::::::::::::::: ::::~!'':~ ':':::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

The timing facility is provided in the C/Paris and Fortran/Paris interfaces through a set of
functions whose names all begin with CM:timer-.

628



TIMER

TIMER

The timing facility. A set of instructions that together determine how much time any part
of a program takes to execute on the Connection Machine.

Formats CM:timer-clear timer
CM:timer-start timer
CM:timer-stop timer
CM:timer-print timer
CM:timer-read-starts timer
CM:timer-read-elapsed timer
CM: timer-read-cm-busy timer
CM:timer-read-cm-idle timer
CM:timer-read-run-state timer
CM:timer-set-starts timer, int

Operands timer The integer used to identify the timer being used.. This must be
an unsigned integer immediate operand between 0 (inclusive) and
CM*max-number-of-timers* (exclusive).

int For CM:timer-set-starts, the start number to which the specified
timer is to be reset.

Context This operation is unconditional. It does not depend on the context-flag.

To activate multiple timers, assign each an integer identifier. Nested calls to different timers
is permitted. Each timer can record timings of up to 43 hours, with microsecond precision.

Four basic operations are required in order to use this timing facility. Use them in the
following order:

CM:timer-clear

Sets the total elapsed time, total CM busy time, and number of starts for timer to
zero.

CM: timer-start

Starts the clock running for timer. Elapsed time (also known as wall time) and CM
busy time are accumulated. Number of starts is incremented.

CM:timer-stop

Stops the clock running for timer. The specified timer's state variables for CM elapsed
time and CM busy time are updated. A subsequent call to CM:timer-start - without
an intervening call to CM:timer-clear - restarts the timer and adds to the accumulated
elapsed and busy values for this timer.

629



TIMER

CM: timer-print

Prints information about timer, including, but not limited to: the number of starts,
the total elapsed time, and the total time that the Connection Machine was busy
while this timer was active.

To use a timer, first invoke CM:timer-clear to zero the timer values. Then, call CM:timer-
start and CM:timer-stop any number of times. Finally call CM:timer-print.

For each timer, state variables for CM elapsed time and CM busy time are maintained.
Elapsed time records how much time has elapsed between each pair of CM:timer-start and
CM:timer-stop calls that have been made since CM:timer-clear was last called for timer.
CM busy time records the total time the CM has spent being active between each pair of
CM:timer-start and CM:timer-stop calls that have been made since CM:timer-clear was last
called for timer.

The following five functions return state values for a specified timer:

CM:timer-read-starts

Returns an unsigned integer, the number of times CM:timer-start has been called for
this timer.

CM: timer-read-elapsed

Returns the total elapsed time, in seconds, accumulated while timer was running.

CM:timer-read-cm-busy

Returns the total CM busy time, in seconds, accumulated while timer was running.

CM:timer-read-cm-idle

Returns the total CM idle time, in seconds, accumulated while timer was running.
CM idle time is equal to total elapsed time minus the CM busy time.

CM:timer-read-run-state

Returns TRUE (or t or 1) if and only if timer is running. Otherwise, returns FALSE (or
nil or 0).

One further operation is provided to reset the number of starts for the specified timer:

CM:timer-set-starts

Sets the number of starts for timer to the specified integer value. This is useful in
code that stops a timer to query it and then restarts the same timer. CM:timer-set-
starts can be used to set the number of starts to 1 less than the actual number of
starts before restarting the timer. In this way, querying a timer does not change the
number of starts ultimately recorded.

630



TIM ER
:.': :':. : ' ::' : :': "' ': ;1'1-."...': ':::r·' -l '-:'':: ' :' ::::f::::::: '':'::::':::::.:' :' :::::: ::'*:.:::' : ':' ':: :':: ::'' :::' :*:::'':: '::::' : :' '::::': :' ::..·..~·.·-·.x~.~:.. ·~~. ~ B~ ·::::::::iz:~;:'.: .... bs·:·. :. - ..; . ... .:~·'··''·' S~·:·...~.. ~ ··;:

For a detailed guide to using the new timing facility, including information about conditions
that affect timing accuracy, see the CM System User's Guide.

631



TO-GRAY-CODE
:'.'.'':'::::::'':::.:. : : : : : : : : : : : : : ::: : :: : ::::::�:::::::::::::::::. ... ::::::::::::::::::::::::::::: i::::i... . .. ....

FE-TO-GRAY-CODE

Converts, on the front end, a nonnegative integer into a bit string representing a Gray-coded
integer value.

Formats result +- CM:fe-to-gray-code integer

Operands integer An unsigned integer immediate operand to be used as the nonneg-
ative integer.

Result An unsigned integer, the Gray code equivalent of integer.

Context This operation is performed on the front end. It does not depend on the CM
contezt-flag.

Definition Return integer @ [intege

This function calculates, entirely on the front end, a bit-string encoding in a particular
reflected binary Gray code. The position of that value in the standard Gray code sequence
is equal to the specified integer.

Note that the binary value 0 is always equivalent to a Gray code string that is all 0-bits.

632



TO-GRAY-CODE
S; : fi : : - :::$:'·::::R.;::: B : ::: :: X :: :.: ... . _' ::~i~~::~i ~\··~::··:::I~· ::::' ···.. ·····......::: ··

U-TO-GRAY-CODE
Converts an unsigned binary integer to a bit string representing a Gray-coded integer value.

Formats CM: u-to-gray-code-l-lL
CM: u-to-gray-code-2-lL

Operands dest

dest/source, len
dest, source, len

The field ID of the destination field.

source The field ID of the unsigned integer source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contest-flag is 1.

Definition

The source operand is an unsigned binary integer, and is converted to a bit-string value in
a particular reflected binary Gray code. The position of that value in the standard Gray
code sequence is the source.

Note that the binary value 0 is always equivalent to a Gray code string that is all 0-bits.

633

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k](len - 1) - source[k](len - 1)
for j from len - 2 to 0 do

dest[k](j) - source[k](j) @ source[k](j + 1)



TRANSPOSE32
... ... .. .. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~.r.... :c:··c2. , ~:~;~ ···:::..r·;.r...···· ···········

TRANSPOSE32
Within each cluster of 32 physical processors, for every group of 32 virtual processors in
such a cluster, copies one 32-bit field to another. During this copying operation, transposes
the data as a 32-by-32 bit matrix. Thus, each virtual processor receives one bit from the
source value of each virtual processor in its group of 32.

Formats CM:transpose32-1-1L
CM:transpose32-2-1L

Operands source

dest

len

dest/source, len
dest, source, len

The field ID of the source field.

The field ID of the destination field.

The length of the source and dest fields. This must be non-negative
and no greater than CM: *maximum-integer-length*. This must be
a multiple of 32.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length. The
fields dest and source may overlap in any manner.

Context This operation is unconditional. The destination may be altered regardless of
the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

for all j such that 0 < j < dlen do
dest[k]() 
source [32r + k mod r) + r(j mod 32)] (32 L32iJ + kmo d32)

where r is the value of CM: *virtual-to-physical-processor-ratio* and j is the bit
position in each field.

This instruction copies each 32-bit field to the corresponding 32-bit field within each virtual
processor. In the course of copying the bits, it "transposes" them so that a 32-bit value
lying entirely within the source field of one virtual processor is made to occupy a memory
slice, that is, one bit in each of 32 virtual processors. The opposite is also true: the 32-bit
value that ends up in the dest field of a virtual processor is made up of one bit from each
of 32 virtual processors. Transposed data is said to be stored in a slicewise format.

For the purposes of this instruction, the physical processors are divided into clusters of 32.
Two processors are in the same cluster if their physical processor numbers agree in all but
the five least significant bits.

634



TRANSPOSE32
. .. - .. I .......... .. .

The virtual processors are similarly divided into groups of 32; a group of virtual processors
consists of one virtual processor from each physical processor of a cluster, such that the vir-
tual processors occupy the same physical memory locations within their respective physical
processors. Thus, two virtual processors are in the same group if their virtual processor
numbers agree in all but bit positions n through n + 4, where n is the number of virtual
processors bits in each physical processor.

The CM:transpose32 operation may then be understood as taking the 32 32-bit source values
from a group of 32 virtual processors as the rows of a 32-by-32 bit matrix, and then storing
the columns of this matrix into the dest fields of these same virtual processors.

The process may be understood pictorially. Suppose that before the operation the memory
of a group of 32 virtual processors looks like this:

prOCO

31
30
29

2
1
0

Then, after the CM:transpose32 operation, it will look like this:

635



TRANSPOSE32
... . ~~~~~~~~~~~~~.... ... ... - -

processor source dest_es_

I

U

1 I.

bit 0 * · · bit 31 bit 0 · · · bit 31

Knowledge of the internal details of Connection Machine vP memory layout is required to
use this instruction properly on source values represented in more than 32-bits.

This instruction reorients processor data into a slicewise format that permits rapid, indirect
field addressing. A memory region containing transposed data may be viewed either as a
single, shared slicewise array or as a set of parallel slicewise arrays. (See the CM: aref32 and
CM:aref32-shared dictionary entries for a description of these data formats.) Viewed as a
shared slicewise array, this is especially useful for quickly constructing lookup tables.

Transposition is reversed by applying the CM:transpose32 instruction to a field already
stored in the slicewise format. To preserve the correlation between processors and data,
this instruction should not be used on slicewise data that was orginally stored by providing
CM:aset32 or CM:aset32-shared with an index-limit other than 32.

636

31
30
29

2
1
0



TRUNCATE
: ::: : :::::::::.:::::::::::::::::::::::: ::::::.:::::: :::.::::::::::::::::::::::::::::::::::::

F-F-TRUN CATE

Rounds each source field value to the largest integral value not greater than that value and
stores the result as a floating-point number in the destination field.

Formats CM:f-f-truncate-l-1L
CM:f-f-truncate-2-1L

Operands dest

dest/source, s, e
dest, source, s, e

The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] sign(source) x Lsource[k]IJ

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, which is stored into the dest field as a floating-point number.

637

Definition



TRUNCATE

S-F-TRUNCATE

Rounds each floating-point source field value to the largest integer not greater than that
value and stores the result as a signed integer in the destination field.

Formats CM:s-f-truncate-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.

source The field ID of the floating-point source field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sign(source) x Llsource[k]IJ
if (overflow occurred in processor k) then overflow-flag[k] - 1 else overflow-flag[k] 4- 0

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, which is stored into the dest field as a signed integer.

638

Definition



TRUNCATE

S-TRUNCATE

The quotient of two signed integer source values, rounded toward zero to the nearest integer,
is placed in the destination field. Overflow is also computed.

Formats CM:s-truncate-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-truncate-2-1L dest/sourcel, source2, len
CM:s-truncate-3-11 dest, sourcel, source2, len
CM: s-truncate-constant-2-1L dest/sourcel, source2-value, len
CM: s-truncate-constant-3- 1 L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer quotient field.

sourcel The field ID of the signed integer dividend field.

source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-truncate-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slenl For CM:s-truncate-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slen2 For CM:s-truncate-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

639



TRUNCATE
:: . : . . . : .: :.:.:::: .:. : : .:::: : ::'::::· · : :......:.. :. : ::::.. : ::: ' SSSS..:: ::::. : : ...

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source2[k] = 0 then
dest[k] - (unpredictable)

else

dest[k] -sign(sourcel [k]) x sign(source2[k]) x L sorcetll[surce2 [k]
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] -- 0

The signed integer sourcel operand is divided by the signed integer source2 operand. The
mathematical quotient is truncated towards zero and stored into the signed integer memory
field dest. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

640



TRUNCATE

U-TRUNCATE

The quotient of two unsigned integer source values, rounded toward zero to the nearest
integer, is placed in the destination field. Overflow is also computed.

Formats CM:u-truncate-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM: u-truncate-2-1L dest/sourcel, source2, len
CM:u-truncate-3-1L dest, sourcel, source2, len
CM: u-truncate-constant-2-1L dest/sourcel, source2-value, len
CM: u-truncate-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the unsigned integer quotient field.

sourcel The field ID of the unsigned integer dividend field.

source2 The field ID of the unsigned integer divisor field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM:u-truncate-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slenl For CM:u-truncate-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM:*maximum-integer-
length*.

slen2 For CM:u-truncate-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

641



TRUNCATE

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] = 0 then
desit[k] (unpredictable)

else

dest[k] - sourcek]
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flagjk] - 0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The floor of the mathematical quotient is stored into the unsigned integer memory field
dest. The various operand formats allow operands to be either memory fields are constants;
in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

642



TRUNCATE
: .::: : ::::::::::: :: :: :::::::::::::::: :::: :::::::: ::::::: :: :i: :::::::::::::::::::::::::::::: .:::::.. .. .. .. . .... :::::::::::::::.:

U-F-TRUNCATE

Rounds each source field value to the largest integer not greater than that value and stores
the result as an unsigned integer in the destination field.

Formats CM:u-f-truncate-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum;integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest - sign(source) x LlsourcelJ
if (overflow occurred in processor k) then overflow-flag[k] +- 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, and the result is stored into the dest field as an unsigned integer.

643

Definition



100*1.

-11"*



VAX-TO-IEEE
.. . .. . . . : ...............~~~~~~~~~~~~~~~~~~~~~:i~::::::::::i: ·· ·:·.. ·············

F-VAX-TO-IEEE

Converts the floating-point source field values from VAX floating-point format to IEEE
floating-point format and stores the result in the destination field.

Formats CM:f-vax-to-ieee-1L ieee-dest, vax-source, len

Operands ieee-dest The field ID of the floating-point destination field.

vax-source The field ID of the floating-point source field.

len The length of the vax-source and ieee-dest fields. The value of len
must be either 32 or 64.

Overlap The fields ieee-dest and vax-source may overlap in any manner.

Flags overflow-flag is set if the vax-source cannot be represented in the destination
field; otherwise it is cleared. If vax-source is the VAX "undefined variable",
the IEEE destination is set to NaN(all l's) and the overflow-flag is cleared.
VAX double precision format uses three more mantissa bits than the IEEE
double precision format uses. These bits are simply dropped during the con-
version. The overflow-flag is always cleared for double-precision conversion.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

The CM operates internally on floating point data in IEEE format whereas the VAX uses a
VAX floating-point format. In each active processor, this function converts a floating-point
field in VAX format to a field in standard IEEE format.

The value of len specifies the precision of vax-source. If len is specified as 32, then VAX 'F'
format is used. If len is specified as 64, then VAX 'D' format is used.

VAX and IEEE floating-point formats are incompatible, so there are a number of potential
inaccuracies in the translation. These are described in the flags description above.

This instruction is useful for rapidly converting floating-point data from VAX to IEEE
format. For example, if data is transferred from a VAX to a file in the CM file system,
CM:f-vax-to-ieee-1L should be called after reading the data file.

All Paris front end to CM data transfer functions automatically convert the data from the
front-end format appropriately so it is not necessary to call CM:vax-to-ieee before calling,
for instance, one of the write-to-news-array instructions.

To convert data back to VAX floating-point format, see the definition of CM:f-ieee-to-vax-
1L.

645



VP-SET-GEOM ETRY
':::R::': . ; R ..:B: .::e. R : :::. :::: .... : '::RIf . ; I >. .:'...... ... ... I . . . .; .: %:..: %:..: " ', X .".,: %;. -:'--% .. ·· ·······:r :. ..' .'·'

Returns the

Formats

Operands

Result

Context

Definition

VP-SET-GEOMETRY
geometry associated with a given vP set.

result - CM:vp-set-geometry vp-set-id

vp-set-id A VP set ID.

A geometry ID, identifying the current geometry of the specified vP set.

This operation is unconditional. It does not depend on the contezt-flag.

Return geometry(vp-set-id)

The geometry associated with the specified vP set is returned.

646



WARM-BOOT
S ¢ S ¢ ¢ . ::::::::s::::::::::::: ::::::: :::::;::::::::::::::::: ::: ~ ~ ~ ~ ~ ~ .......... ....... 

WARM-BOOT

This operation is used by the Lisp/Paris interface to reinitialize the Connection Machine
system without disturbing user memory.

Formats CM:warm-boot

Context This operation is unconditional. It does not depend on the context-flag.

This operation clears error status indicators for the attached Connection Machine hardware.
It also clears the IFIFO and OFIFO in the bus interface and possibly loads fresh microcode
into the attached microcontroller(s). The user memory areas in the Connection Machine
system are not disturbed, but are checked for errors; any memory errors are reported.
Certain system memory areas in the Connection Machine system are reinitialized, but the
state of the pseudo-random number generator is not altered and the system lights-display
mode is not altered. The intent is to recover from an error condition while preserving as
much of the machine state as possible.

The facility for warm-booting Connection Machine hardware is provided in different ways
in the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:warm-boot is a function.

This operation takes no arguments and returns no values. It signals an error if the warm-
boot process was not successful.

There are two sets of initializations, kept in the variables CM: *before-warm-boot-
initializations* and CM:*after-warm-boot-initializations*, that are evaluated before and af-
ter anything else occurs.

In the C/Paris and Fortran/Paris interfaces, there is no CM:warm-boot operation. Instead,
a related operation called CM:init is used.

647



WRITE-TO-N EWS-ARRAY
.............................;.;:;:;: :.::;:;-::.;::;:;..:.:.:.-.;.::.;;..; .....-................................ :..............-..:;.:..-..:.....:::::::::.:.:::.-.::.:.:::.:;:.:..:.:;:;:::::::::.::::-.::::.:;:::-.::-:;:::j:-.::-::::-.:::::--::;:::;..::::-.::::::::..:.:::::;.:..-.:.;::::::.:;.:;:.-.:::.:--.::...

C-WRITE-TO-NEWS-ARRAY
Copies a subarray of an array in the memory of the front end into a field within a set
of processors forming a subarray (of the same shape) of the NEWS grid. Both source and
destination values are treated as complex numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cM field be in the current vP set.

Formats CM:c-write-to-news-array-lL front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, dest, s, e,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of complex
data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices. Must be of length fe-rank.

cm-axis-vector A front-end vector of signed integer numbers indicating
NEWS axes. Must be of length fe-rank.

dest The field ID of the complex destination field. Must have length
equal to the rank of the dest geometry.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is 2(s + e + 1).

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-armay. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the context-flag.

648



WRITE-TO-N EWS-ARRAY

This operation copies a rectangular subblock of an array in the front end into a similarly
shaped subblock of the NEWS grid. Complex number values are transferred from the speci-
fied front-end-array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end. Both of these are permuted by by the values
in cm-axis-vector.

The cm-axis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-axis-vector[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to' the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end ar-
ray. An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed-
array-format, or CM:structure-array-format. Alternatively, from C or Fortran, one of the
following predefined complex format values may be used: CMcomplex-floatsingle or
CMcomplexfloatdouble. For complex data types in C, two front-end elements are used
for each Connection Machine element.

649



WRITE-TO-N EWS-ARRAY
: :::::: ::::::: :::' :' ':: ::: ::':::::::::::: ::: :: : :':::::::::':::: ::.:::: ::::::: : ::::::: :::::::::: ::::::::: :::::::::::::: ::::::::::: :::::::::::::::::::::::::::::::::

When calling Paris from Lisp, the format parameter is a keyword argument; for complex
transfers only arrays of type t may be used

rank-1
Definition For all i such that 0 < j < 1l (endj - startj) do

j=o

for all m such that 0 < m < rank do

ilet (i,m) = L. nl j mod (endm - startm)
(end$-start$)

rank-1
let ki = V make-news-coordinate(azisj, startj + Si,j)

j=o
dest[ki] +- front-end-arrayyJ(,),(i ) .*..J(i,)*van1)

Another formulation:

For all so such that 0 < s0 < (endo - starto) do
for all s such that 0 < sl < (endl - startl) do

for all 52 such that 0 < 2 < (end2 - start2) do

for all s.ank-1 such that 0 < srank_l < (endank_l - startrankl) do
rank-1

let k 81,... rank- l = V make-news-coordinate(asisj, startj + sj)
j=o

dest[kaO.,s ... . ,nk-i] 

front-end-arrayoff.to+o +s,offsetl +sl ...,offsetrnl + lank-1

650



WRITE-TO-N EWS-ARRAY
:: : :::: ......................:: ; : : :

F-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set
of processors forming a subarray (of the same shape) of the NEWS grid. Both source and
destination values are treated as floating-point numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current vP set.

Formats CM:f-write-to-news-array-lL front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, dest, s, e,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of floating-
point data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices. Must be of length fe-rank.

cm-axis-vector A front-end vector of signed integer numbers indicating
NEWS axes. Must have length equal to the rank of the dest geom-
etry.

dest The field ID of the floating-point destination field.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the context-flag.

651



WRITE-TO-N EWS-ARRAY
:~~.`:::~~``:::~~`~::::~`~::::~~~.:::~``~::::`~`::::`~~~:::`~`~::::~~~:;::~~~~:::~~~<``~~::::~~~::~`::::~~~:::`~~~~:;:~~~~::::~~`::::`~~~:::~~~~::::.<:...~::::...::::....;:::~..::::....:::....::::...::::....:::....::::...::::...~:::....::...::....::4:.`.

This operation copies a rectangular subblock of an array in the front end into a similarly
shaped subblock of the NEWS grid. Floating-point number values are transferred from the
specified array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end. Both of these are permuted by by the values
in cm-azis-vector.

The cm-axis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-axis-vector[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end
array. An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-
array-format, or CM:structure-array-format. Alternatively, one of the predefined floating-
point format values may be used. These are CMfloatsingle or CMfloat_double from C or
Fortran, and :float-single or :float-double from Lisp.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,

652



WRITE-TO-N EWS-ARRAY
... I 1. . .. .: ... . .. . ....................... "...

it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

653



WRITE-TO-N EWS-ARRAY

rank-1Definition For all i such that 0 j < ]l (endj - startj) do
j=0

for all m such that 0 < m < rank do

let (i,m) = rank-li mod (endm - start)
rm (( nde-atartjr)

j=m+l 
rank- 1

let ki = V make-news-coordinate(axisj, startj + si,j)
j=0

dest[ki] +- front-end-array (i,o),.(i, ra .. n-1)

Another formulation:

For all so such that 0 < so < (endo - starto) do
for all s such that 0 < s < (end 1 - startl) do

for all 2 such that 0 < s2 < (end 2 - start2) do

for all Srank-1 such that 0 < srank-1 < (endrank - startrank-1) do
rank- arank-i

let k ...,rank_ = V make-news-coordinate(axisj, startj + sj)
1=0

dest[kso,sl . .. ,rank-i] --
front-end-arrayoffseto, +oO ,offset sl+al...offsetrank -l+rank-1

654



WRITE-TO-N EWS-ARRAY

S-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NEWS grid. Both the source and
destination values are treated as signed integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current vP set.

Formats CM:s-write-to-news-array-lL front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, dest, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-army A front-end array (possibly multidimensional) of signed in-
teger data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices. Must be of length fe-rank.

cm-axis-vector A front-end vector of signed integer numbers indicating
NEWS axes. Must have length equal to the rank of the dest geom-
etry.

dest The field ID of the signed integer destination field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-arrmy. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the context-flag.

655



WRITE-TO-N EWS-ARRAY
::s: : ·: ;:::::::::::::::::.:::::::::::::::::::::::::::

This operation copies a rectangular subblock of an array from the front end into a similarly
shaped subblock of the NEWS grid. Signed integer values are transferred from the specified
array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

When calling Pa-is from Lisp, the array may be either a general array (of type t) containing
signed integers, or a specialized integer-element array (such as an array of type (unsigned-
byte 8)).

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end. Both of these are permuted by by the values
in cm-azis-vector.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-axis-vector[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined signed format

656



WRITE-TO-N EWS-ARRAY

values may be used.

657



WRITE-TO-N EWS-ARRAY
::::::::::::::::::: ::::::::: :::::::::::::::::::::::::::::::::: ::::: :::::::::::::::::.: ::::::::.::::::.::::: :::

From C or Fortran a value of CM_8bit, CM16bit, or CM232_bit specifies an unpacked front-
end array while CMl-bit-packed, CM2_bit-packed, or CM_4bit-packed specifies a front-end
array in which several CM elements are packed into each array element. From Lisp, the
predefined signed format keywords are :8-bit, :16-bit, :32-bit, : 1-bit-packed, :2-bit-packed,
and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

rank-I
Definition For all i such that 0 < j < f1 (endj - startj) do

j=o

for all m such that 0 < m < rank do

let s(i,n) = - ) mod (endm - startm)
rank-1-

1] (e ndj-startj)

rank-1
let ki = V make-news-coordinate(axisj, startj + sij)

j=o
dest[kl] - fjront-end-array(j,),8(ii)l .... (i, tt..u,_)

Another formulation:

For all so such that 0 so < (endo - starto) do
for all sl such that 0 s < (endl - startl) do

for all s2 such that 0 < s2 < (end2 - start2 ) do

for all Srank-I such that 0 < rank-1 < (endrank-1- startrank-l) do
rank- 

let ko,8 1 ,...' rank = V make-news-coordinate(axisj, startj + sj)
j=O

dest[koox J.... k] --
front-end-arayoff,eo +o,offsetl +8l ... ,offetrank_-l+rank-l

658



WRITE-TO-N EWS-ARRAY
::::::::::::31:::i:.:::::::::: ........... ........

U-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NEWS grid. Both the source and
destination values are treated as unsigned integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current vP set.

Formats CM: u-write-to-news-array-lL front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, dest, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of unsigned
integer data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices. Must be of length fe-rank.

cm-axis-vector A front-end vector of signed integer numbers indicating
NEWS axes. Must have length equal to the rank of the dest geom-
etry.

dest The field ID of the unsigned integer dest field.

len The length of the dest field. This must be non-negative an' no
greater than CM: *maximum-integer-length*.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the context-flag.

659



WRITE-TO-N EWS-ARRAY
:::;: : : : : : : ; : : ; : : :�:;;;:;:: ; ; ; ;;;;::;;:;;.. : :::: :..::;;:

This operation copies a rectangular subblock of an array from the front end into a similarly
shaped subblock of the NEWS grid. Unsigned integer values are transferred from the specified
array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end arr-y element
transferred to the Connection Machine. The length of this argument is measuIed in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end. Both of these are permuted by by the values
in cm-axis-vector.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined unsigned format
values may be used.

From C or Fortran a value of CMSbit, CM_16bit, or CM32_bit specifies an unpacked front-
end array while CMlbitpacked, CM 2bit-packed, or CMA4bitpacked specifies a front-end

660



WRITE-TO-N EWS-ARRAY
' : : ::: : :::::::::: ::: ' :!':B':':' : ':' ::::' ' ::' ::': ' ':' ':::':':':'..................'.'.':':':':'::::.:::.:::::::::::':::::::'::':':::::':':::'.': ':' ' ':: ':' ':::::::::' ::::::::':::::':':::::::::':'.':' ' ::' ' ::::' ':::':':: ':': ':

array in which several CM elements are packed into each array element. From Lisp, the
predefined unsigned format keywords are :8-bit, :16-bit, :32-bit,: :-bit-packed, :2-bit-packed,
and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

rank-1
Definition For all i such that 0 < j < fI (endj - startj) do

j=o
for all m such that 0 < m < rank do

let S(i,,m) = akil mod (endm - startm)

Pmrk-i n-,j=m+lrank-1let ki = V make-news-coordinate( aisj, startj + sij)
j=O

dest[ki] - font-end-array,.io),o(i',) ....oi,rank-l)
Another formulation:

For all so such that 0 < so < (endo - starto) do
for all s such that 0 < sl < (end, - start,) do

for all s2 such that 0 _ s2 < (end2 - start2) do

for all s.ank-i such that 0 < frank-1 < (endrank - startrankl) do
rank-1

let k 0,,*1 ...'srank,_ = V make-news-coordinate(azisj, startj + sj)
j=o

dest [ko,,,, . . srank- ] --
front-end-array offet + t, ,s...ioffet,an + .. rank-l

661



C-WRITE-TO-PROCESSOR
Stores an immediate complex number operand value into the destination field of a single
specified processor.

Formats CM:c-write-to-processor-IL send-address-value, dest, source-value, en

Operands send-address-value An immediate operand, the send address of a single
particular processor.

dest The field ID of the complex destination field.

source-value A complex immediate operand to be used as the source.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is 2(s + e + 1).

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition dest[send-address-value] - source-value

The specified source-value, a complex number, is stored into the dest field of the processor
whose send address is the immediate operand send-address-value.

The constant operand source-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary).

662

,, ' ", , ' .: :.,., .: ...X: ..::: : .: .~' :::::j::'':::': :·:.·.2':::~'::.:::'':: :': ::::: ::::::: jj::::. : :. .: .. :: : ... .. :::: ..: -"-' :: .......................~~:~:~~::;:·:;~~~;:;W:::N:::A:::::~~~~~::·:·:·: · ·.·.· .· :· : ! ·... . .. ... .. X. .. ... ..-....



WRITE-TO-PROCESSOR
: ~ ~ · :;;: a".: .ee :g e : e y : ::: eI'.. 'I. - I, '. '. :'. .'. -'.-: : :-, :'.. -' -'- '- ."I" I", " ."I.: : .. .. ... .'-: : . : -' ::::: Z : . ..I . . . .:.:- . . . . .1. . %. . . , .1 .. . . . . .

F-WRITE-TO-PROCESSOR
Stores an immediate floating-point number operand value into the destination field of a
single specified processor.

Formats CM:f-write-to-processor-lL send-address-value, dest, source-value, s, e

Operands send-address-value An immediate operand, the send address of a single
particular processor.

dest The field ID of the floating-point destination field.

source-value A floating-point immediate operand to be used as the source.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s e + 1.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition dest[send-address-value] +- source-value

The specified source-value, a floating-point number, is stored into the dest field of the
processor whose send address is the immediate operand send-address-value.

663



WRITE-TO-PROCESSOR
asWa&My:*x*uesse:,N.*s1ssx* >.>M: " .:>"X' ;:,: . ':>':::.:: :' :': 'X:.>: :: : : :

g: :.:1 I:g: .Z., .. --, :; -; s- ;, - ::.::: ...,::i~; ·.:., .' .' -.- ..' - '7'. .' ." , % . . .. '. . .:.,

S-WRITE-TO-PROCESSOR

Stores an immediate signed integer operand value into the destination field of a single
specified processor.

Formats CM:s-write-to-processor-L send-address-value, dest, source-value, en

Operands send-address-value An immediate operand, the send address of a single
particular processor.

dest The field ID of the signed integer destination field.

source-value A signed integer immediate operand to be used as the source.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition dest[send-address-value] - source-value

The specified source-value, a signed integer, is stored into the dest field of the processor
whose send address is the immediate operand send-address-value.

664



WRITE-TO-P ROCESSOR

U-WRITE-TO-PROCESSOR

Stores an immediate unsigned integer operand value into the destination field of a single
specified processor.

Formats CM:u-write-to-processor-lL send-address-value, dest, source-value, len

Operands send-address-value An immediate operand, the send address of a single
particular processor.

dest The field ID of the unsigned integer destination field.

source-value An unsigned integer immediate operand to be used as the
source.

ten The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition dest[send-address-value] - source-value

The specified source-value, an unsigned integer, is stored into the dest field of the processor
whose send address is the immediate operand send-address-value.

665



10"I'll



The
Connection Machine
System

Paris Release Notes

Version 6.1
January 1992

Thinking Machines Corporation
Cambridge, Massachusetts



First printing, January 1992

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM and CM-2, are trademarks of Thinking Machines Corporation.
Paris is a trademark of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111



Contents

List of Tables ........................................
About Version 6.1 Paris Release Notes ...................
Customer Support ....................................

1 About Paris Version 6.1 ...............................

1.1 Microcode Version ....................................

1.2 On-Line Documentation ................................

1.3 Layered Software Compatibility ..........................
Front-End Operating Systems .......................
High-Level CM Languages and Libraries .............

1.4 CM-2 Hardware Options Supported .......................
Memory Chips ...................................
Floating-Point Accelerators .........................

Double-Precision FPA Performance ............
Accuracy of Floating-Point Operations ..........

1.5 Back Compatibility ....................................
Back-Compatibility Mode ..........................

2 New and Enhanced Instructions ....

3 Enhanced Performance ............

4 Implementation Restrictions ...............

4.1 Field Allocation ..........................

4.2 Operand Lengths ..........................

4.3 Instructions Use Stack Memory ..............

4.4 Incomplete Support for IEEE Floating-Point ....

4.5 Integer Flags .............................

Version 6.1, January 1992

v

vii
xi

1

1

2
2

2

2

2

3
3
4

5

5

5

6

6

6

7

8

9

10

...........
...........
...........

...........

. . . . . . . . . .

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

. . . . . . . . . .
...........

...........

...........

...........

...........

...........
............

............

............

............

............

111



iv Paris Release Ntes

5 Implementation and Documentation Errors ......................

5.1 Known Errors Corrected ...........................................

5.2 Known Errors Outstanding .........................................
cm:power-up-ignores-nexus-clockspeed ......................
cross-vp-move-F77-constants-missing .......................
cross-vp-move-breaks-CMFIParis-array-section-transfers..
fleld-iength-do-mnisleading .................................
no-dest-overiap-for-sends-or-gets ...........................

6 Debugging Hint ......... ..................................
paris-safety-hint ...........................................

Appendix A CM-2 Performance Notes ............

A.1 General Router Communication ............
Send Speed ........................
Get Speed .........................

A.2 Arithmetic Timing Tables .................

Appendix B Paris Version 6.1 Change Pages ..........................

B.1 What to Do with These Change Pages ............................

10

10

10
11
11
12
13
13

14
14

15

15
16
17

18

51

51

Version 6.1, January 1992

iv Paris Release Notes

........... ...........



List of Figures

Table 1. Timings of Paris V6.1 Arithmetic Instructions
on CM-2 with 64-bit FPA's ........................... 19

Table 2. Timings of Paris V6.1 Arithmetic Instructions
on CM-2 with 32-bit FPA's ................... ........ 35

Version 6.1, January 1992 v



lofts

llft



About Version 6.1 Paris Release Notes

Objectives

These release notes describe how the Paris language fits into the existing suite of
Connection Machine programming languages. In addition, language features new with this
release are enumerated and change pages are provided. New timing tables for Paris arith-
metic operations running on a CM-2 are also included.

Intended Audience

The Paris language and its documentation are intended for experienced developers of
Connection Machine Models CM-2 and CM-200 system software and applications. Read
this document if you are using the Paris library contained in CM-2 System Software
Version 6.1.

Revision Information

These Version 6.1 Paris release notes supersede all previous Paris release notes and they
supplement the Paris Reference Manual, Version 6.0. A current Programming in Paris
binder, should contain the following documents:

· Paris Reference Manual Version 6.0, February 1991, as updated with the
Version 6.1 change pages contained in the release notes

* Paris Release Notes Version 6.1, January 1992

Version 6.1, January 1992 vii



viii Paris Release Notes

Organization of This Manual

Seven sections make up these release notes, as described below.

1. About Paris Version 6.1

Paris is introduced, the microcode version number is stated, instructions for using
the on-line manual pages are given, and compatibility between Paris and specific
layered software product versions is detailed. The CM-2 chip options supported by
Paris are described along with a permanent restriction on 32-bit FPAs. Back-
compatibility is discussed.

2. New and Enhanced Instructions

The Paris language features that are new or enhanced as of Version 6.1 are briefly
described.

3. Enhanced Performance

The major performance enhancements offered with Version 6.1 are discussed.

4. Implementation Restrictions

Restrictions imposed by the CM-2 Paris implementation are detailed. These include
restrictions on field allocation size, operand lengths, IEEE floating-point instruc-
tions and flags, and integer flags.

5. Implementation and Documentation Errors

Known errors corrected with this release are listed; known errors that remain out-
standing are explained.

6. Debugging Hint

The importance of using Paris safety checking while developing CM-2 application
code is emphasized.

Appendix A CM-2 Performance Notes

Helpful information about CM-2 performance is presented. General router commu-
nication is discussed, followed by a set of timing tables for Paris arithmetic
instructions.

Appendix B Paris Version 6.1 Change Pages

This is a set of dictionary pages for Paris instructions that are either new or changed
with Version 6. 1. Follow the instructions to update your Paris Reference Manual
with these change pages.

Version 6.1, January 1992



Preface . . : : - . : : .:..:

Related Documents

The following related documents are helpful to Paris programmers.

* CM User s Guide Version 6.1, printed October 1991

* Introduction to Programming in C/Paris Version 5.0, printed June 1989

Notation Conventions

The table below displays the notation conventions observed in Paris documentation.

Convention Meaning

bold typewriter

bold sans serif

italics

typewriter

UNIX and CM System Software commands, command options,
and filenames, when they appear embedded in text.

Language elements, such as keywords, operators, and function
names, when they appear embedded in text.

Argument names and placeholders in function and command
formats.

Code examples and code fragments.

All Paris Version 6.x documentation follows the conventions for alphabetizing, syntax, and
pseudocode established at the beginning of Chapter 9 of the Paris Reference Manual
Version 6.0. One further convention is observed.

In the Formats portion of dictionary entries, brackets, [ and ], enclose arguments that-for
the Lisp/Paris interface-are either optional, not provided, or are keywords. Wherever this
notation is used, the Operands list explicitly states whether the brackets enclose unpro-
vided, optional, or keyword arguments. For example, in the format line

Formats result - CM:intern-geometry dimension-array, [rank]

the rank operand is not provided when calling Paris from Lisp.

Version 6.1, January 1992

ixPreface



-O



1 About Paris Version 6.1

The Paris language is a relatively low-level instruction set designed for programming the
Connection Machine models CM-2 and CM-200. It provides a large number of operations
similar to the machine-level instruction set of a serial computer. Paris implements the virtu-
al processing paradigm, whereby each of up to 65,536 physical processors can simulate
multiple processors. Intended primarily as the basis for higher-level Connection Machine
languages, Paris may nonetheless be called directly from standard Lisp, C, or Fortran as
well as from the Connection Machine languages CM Fortran, C*, and *Lisp.

Paris Version 6.1 provides an expanded instruction set, significant performance improve-
ments for communication operations, and corrections to a number of implementation
errors.

1.1 Microcode Version

Paris Version 6.1 is shipped as part of the CM base system software (CMSS) microcode
version 6104. This microcode version number is used as part of certain commands to load
or link CM languages or libraries. For more information check the documentation provided
with the CM languages and libraries you are using.

1.2 On-Line Documentation

As of Version 6.1, on-line documentation of all Paris instructions is available. Use the
cmman command to display the manual pages for an instruction. Thus, at the UNIX prompt,

% cmman CM <rootname>

displays the man page for the Paris instruction CM <rootname>, where <rootname> is
the name that appears at the top of a dictionary page in the Paris Reference Manual. You

Version 6.1, January 1992 1



2 Paris Release Notes

can omit the _IL, .2L, etc suffixes, as well as the _always, _constant, _const qualifiers. If
you don't want to use cmman, you may use the UNIX man command or the xman facilities.
See Chapter 3 of the CM User Guide for further information. Note that the conceptual
material at the beginning of the Paris Reference Manual is not yet available on line.

1.3 Layered Software Compatibility

Front-End Operating Systems

* Sun-4 front ends require SunOS Version 4.1 or 4.1.1 in order to run CM System
Software (CMSS) Version 6.1. We recommend using SunOS 4.1.1 if possible.

* VAX front ends requires ULTRIX Version 4.2 in order to run CMSS Version 6.1.

High-Level CM Languages and Libraries

The following versions of CM languages
therefore may be used with Paris 6.1:

* CM Fortran

* C* Version

* *Lisp

* Visualization

· CMSSL

and libraries run with CMSS Version 6.1 and

Version 1.1

6.0.2

Version 6.1

Version 2.0

Version 2.2.1

1.4 CM-2 Hardware Options Supported

Memory Chips

* 256K chips, sometimes called small memories, which provide 64K bits/processor

* IM chips, sometimes called large memories, which provide 256K bits/processor

Version 6.1, January 1992

2 Paris Release Notes



PrisRlesNt

4M chips, sometimes called jumbo memories, which provide 1M bits/processor

Floating-Point Accelerators

CM-2 model Connection Machine systems may be configured either without floating-point
accelerator units or with one floating-point accelerator unit (FPA) for every 32 CM physical
processors. Two kinds of FPA chip are supported by the current system software: 32-bit
and 64-bit floating-point accelerators, known as single-precision and double-precision
FPAs.

CM-200 model Connection Machine systems are always configured with one 64-bit FPA for
every 32 CM physical processors.

For the majority of Paris instructions, the performance differences between systems with-
out FPAs, systems with single-precision FPAs, and systems with double-precision FPAs are
in the 5% to 10% range. Some instructions, however, exhibit substantial performance vari-
ations across machine configurations. These cases are described below.

Double-Precision FPA Performance

On a CM-2 configured with 64-bit FPAs and running CM System Software Version 6.x,
double-precision floating-point instructions are approximately 20 times faster than on ma-
chines that either have no FPAs or have 32-bit FPAs.

On a CM-2 configured with 64-bit FPAs and running CM System Software Version 6.x,
single-precision floating-point operations are approximately twice as fast as double-preci-
sion floating-point operations. The only exceptions are the single-precision tangent,
arctangent, arcsine, and arc cosine instructions, which are approximately three times faster
than their double-precision counterparts on 64-bit FPAs.

In addition, 64-bit performance differs from 32-bit performance in the following ways:

* Basic arithmetic without constants is 5-8% slower with 64-bit FPAs than with
32-bit FPAs

* Basic arithmetic with constants is 8-25% faster with 64-bit FPAs than with 32-bit
FPAs

* Transcendental functions are about as fast with 64-bit FPAs as with 32-bit FPAs,
with a 5% variance in either direction

Version 6.1, January 1992

3Paris Release Notes



4:':''¥':':¥'."/Z
: : : : - f- :: "

Paris Releas Notes '.&-~x
' "'' ' : : : : ::::-fi ¥ : ~ x : : : : ' '' ' ' ' ' ::' < : : ' ' >~

" ~~:"'~&:%'.:?':.,::

Accuracy of Floating-Point Operations

On machines configured either with 64-bit FPAs or with no FPAs, all single- and double-
precision floating-point operations are accurate and-where IEEE standards exist- are
IEEE compliant. For most operations, this is also true of machines configured with 32-bit
FPAs. The exceptions are described below.

This is a permanent restriction of the 32-bit FPA chip: On Model CM-2 Connection
Machines configured with 32-bit FPAs, single-precision floating-point divide and square
root operations are not IEEE compliant. Similarly, single-precision floating-point sine and
cosine operations are not as accurate as on machines configured otherwise (there are no
IEEE standards for the accuracy of transcendental functions). In all these cases the accuracy
is off by one or two bits only and thus, for most applications, presents no problem.

To get around this restriction, you may want to sacrifice speed for accuracy and change
your code in one of the two following ways:

1. Use only double-precision divide, square root, sine, and cosine operations.

2. Turn off the FPA before calling a single-precision divide, square root, sine, or
cosine operation, and turn it back on afterwards. Thus, to call CM:f-cos- -1L, for
instance,

from Lisp/Paris, wrap the call in a let form like so:

(let ((cmi::*wtl3132-p* nil)

(cmi::*sprint-chip-p* :sprint))

(CM:f-cos-1-lL field 23 8 ))

from C/Paris (or similarly from CM Fortran/Paris or Fortran/Paris) switch the
variable _CMI_wt13131_p off and then on again:

extern int _CMI_wt13132_p;

int oldwtl;

old_wtl = CMI_wtl3132_p;

CMI_wt13132_p = 0;

CM f cos 1 lL(field 23 8);

CMI_wt13132_p = old_wtl;

Version 6.1, January 1992

4 Paris Release Notes



Pans Release Note---

1.5 Back Compatibility

Version 6.1 supports all documented instructions provided in Versions 4.x, 5.x, and 6.x to
date.

Back-Compatibility Mode

Any existing programs that call Paris 4.x instructions must be recompiled and relinked with
the new Paris object library and then run in back-compatibility mode. Back-compatibility
mode implements the 4.x stack discipline by allocating the stack in field zero and making
stack address offsets into this field. See Appendix A in the CM User Guide for information
on executing programs in back-compatibility mode.

Be forewarned: There will be no support for back-compatibility mode after this release.

2 New and Enhanced Instructions

Paris Version 6.1 introduces the following new instructions:

* CM:pennuted-send-IL and CM:permuted-get-1L

These instructions are alternatives to CM:send-1L and CM:get-IL. Use them in
cases where congested communication patterns cause the original send and get
routines to perform poorly.

* CM:send-to-shared-queue32-1 L

This instruction sends a message from every selected processor to a specified desti-
nation sprint node and stores it there in a queue.

In addition, a related instruction is enhanced in this version:

* CM:send-to-queue32-1L

This instruction sends a message from every selected processor to a specified desti-
nation processor and stores it there in a queue. It now supports messages of lengths
32, 64, 96, or 128 bits. (Only 32-bit messages were supported in Version 6.0.)

These four instructions are documented in the change pages included at the end of these
release notes. Please insert the change pages into your Paris Reference Manual.

Version 6.1, January 1992

Paris Release Notes 5



6 Paris Release Notes

3 Enhanced Performance

Paris Version 6.1 includes several enhancements, which together make Paris code easier to
write and faster to execute.

* Better Communication Performance. In the area of communications, Paris
Version 6.1 offers significant performance improvements. In particular:

* Version 6.1 includes completely rewritten router microcode.

* CM:cross-vp-move-IL gains substantially improved performance due to
its use of CM:permuted-send-lL.

* Use of a "divided get" strategy drastically improves the performance of
the whole family of get instructions under limited memory conditions.

A get instruction that in previous versions would have run out of memory
now succeeds. If the system detects insufficient memory, it will divide the
data into two or more chunks, and transfer it in that manner. The perform-
ance penalty is slight.

* C/Paris Error Handler Improved. The C/Paris Error handler has been enhanced
to assist in debugging several obscure hardware problems.

* Support for Shared Libraries. On Sun front ends, a dynamically linked, shared
version of the Paris library is available, greatly reducing application size and link
time. (This will be available with patch release Version 6.1.1, expected in late
January, 1992.)

4 Implementation Restrictions

4.1 Field Allocation

In Version 6.1, Paris field allocations are supported up to, but not including, 64K bits. Thus
the largest Paris field that may be allocated is 65535 bits long. On a CM with memory chips
that provide either 256K or 1M bits/processor, therefore, it may not be possible to allocate
a field with a length equal to the value returned by the CM:available-memory function.

Version 6.1, January 1992

6 Paris Release Notes



PiS Release Notes

4.2 Operand Lengths

Paris instructions do not take arbitrarily long fields as operands. Also, almost all operand
fields must have lengths greater than zero.

As noted in the Paris Reference Manual, Section 3.7 "Configuration Variables," the only
field lengths guaranteed to work for any operand to any Paris instruction from one release
to the next are those less than or equal to CM:*maximum-integer-length* (128) for integer
fields and less than or equal to CM:*maximum-significand-length* + CM:*maximum-expo-
nent-length* (96 + 32) for floating-point fields. Some floating-point operations, such as the
transcendental and trigonometric functions, are further limited to work only for standard
floating-point lengths of 32 and 64 bits (as noted in the appropriate Paris Reference Manual
dictionary entries).

In Versions 6.x, certain Paris instructions will work for fields longer than the guaranteed
maximums. The limits to which an instruction is subject can generally be determined by
considering what kind of instruction it is:

* Arithmetic operations that require the implementation of complicated algorithms
that use internal "scratch" memory are affected by a fuzzy limit between 255 and
1,500 bits. Examples include multiplication and division, which must handle carry
and remainder bits. These are limited by the size of scratch memory and by the way
they use it. In general, such instructions are limited to lengths up to 255 bits.

* The basic mathematical instructions (addition, subtraction) and the bitwise logical
operations are limited by the size of the length argument they can receive. In Ver-
sions 6.x, most Paris length arguments are limited to 12 bits.1 If a longer length
argument is provided to Paris, only the 12 low-order bits are passed to microcode
functions. Since the maximum value that can be represented in 12 bits is 4095, the
maximum operand length for these Paris instructions is now 4095.

* The move and swap instructions, as well as the read-from-processor and write-to-
processor instructions, take 16-bit lengths (with one exception2). Thus, these
instructions can address the maximum field length (65535 bits). Please note that
on large memory machines (either 256K or 1M bits/processor), a VP ratio of 2 or
more is required to physically move more than 65535 bits at a time per physical
processor with the Paris move instructions.

1. This restriction has been in place since the release of Version 5.2 and was first reported in In
Parallel of March 1990.

2. The CM:f-move-2L operation is limited to 12-bit lengths and can therefore only work with
fields up to 4095 bits long.

Version 6.1, January 1992

Paris Release Notes 7



: Paris Release Notes

* The send and get instructions are generally constrained by the constant CM:*maxi-
mum-message-length*, which has been defined as 128. This constant is an upper
bound on the number of bits transferred between processors by certain router in-
structions. The CM:*maximum-message-length* restriction applies to the following
Version 6.x router instructions:

CM:send-with-f-max-1 L
CM:send-with-f-min-1 L
CM:send-with-f-add-1 L
CM:send-aset32-overwrite-1 L
CM:send-aset32-u-add-1 L
CM:send-aset32-ogior-1 L
CM:get-aref32

* The following Version 6.x router instructions have no message length upper
bound; their message size is limited only by available memory:

CM:get-1 L
CM:permuted-send-1 L
CM:send-1 L
CM:send-with-overwrite-1 L
CM:send-with-logxor-1 L
CM:send-with-logior-1 L
CM:send-with-logand-1 L
CM:send-with-u-min-1 L
CM:send-with-u-max-1 L
CM:send-with-s-min-1 L
CM:send-with-s-max-1 L
CM:send-with-u-add-1 L
CM:send-with-s-add-1 L

In general, Paris fields are assumed to have lengths greater than zero. (See the Paris Refer-
ence Manual, Section 2.4.) The only Paris operations that are guaranteed to work with
operand fields of zero length are the unsigned move instructions (CM:u-move-1 L, 2L et al)
and CM:allocate-stack-field.

4.3 Instructions Use Stack Memory

Most Paris instructions use some temporary memory space allocated on the stack. Stack
memory use falls into three categories: constant, proportional to VP ratio, and unbounded.
It is possible for a program to run out of stack space while executing an instruction that falls

Version 6.1, January 1992

Paris Release Notes8



Paris Release Notes 9

into any of these categories. If this happens, the program will fail with a message indicating
that there is insufficient temporary memory. Instructions that fall within the last category
are most likely to exhaust memory. These include gets, scans, ranks, and some sends. Solu-
tions include attaching to a bigger portion of the CM, upgrading to larger memory chips,
and changing data layouts to reduce VP ratios or restructure communication patterns.

4.4 Incomplete Support for IEEE Floating-Point

Support for IEEE floating-point instructions and flags is incomplete in Paris. In particular:

* the five IEEE floating-point flags are not supported

* denormalized numbers are not supported

* Infinity and NaN values are only partially supported

Also, all Version 6.x floating-point instructions:

* set the integer test-flag and the integer overflow-flag if division by zero occurs,
and otherwise leave them unaffected

* set the integer overflow-flag if floating-point overflow occurs, and otherwise leave
the overflow-flag unaffected

* produce a zero result on underflow, with no other indication

When floating-point overflow occurs, the value stored in the destination field varies depend-
ing on the floating-point hardware present.

A floating-point overflow on a machine equipped with double-precision floating-point ac-
celerators (FPAs) produces the IEEE overflow "biased" result (see IEEE spec Std
754-1985). On machines not equipped with the double-precision FPAs, the result will be
either 0.0, or a quiet NaN (plus or minus infinity).

For this reason, we recommend that you avoid writing code that depends on the resultant
values in overflow conditions.

Version 6.1, January 1992

Paris Release Notes 9



-10 Pari Rela ote

4.5 Integer Flags

All 6.x integer operations:

* set the overflowflag if an integer overflow occurs and otherwise clear it

On overflows, bits up to the destination length are correctly set. The few excep-
tions to this rule are noted in the appropriate Paris Reference Manual dictionary
entries.

* set the testflag if an integer divide by zero occurs and otherwise clear it

* produce a zero result on underflow, with no other indication

5 Implementation and Documentation Errors

5.1 Known Errors Corrected

The following implementation errors, reported in the Revised Paris Release Notes, Febru-
ary 1991, are fixed in Paris Version 6.1:

f-move-constant-O.O-slow
long-sends-with-notify-fall
no-segment-bits-for-rank

5.2 Known Errors Outstanding

All known bugs that remain unrepaired in Paris Version 6.1 are detailed below.

Version 6.1, January 1992

10 Paris Release Notes



Pai ReaeNes1

ID cm:power-up-ignores-nexus-clockspeed

DDTs ID: TMCaa00621 (cmos)

Environment

Any CM-200 configuration; any front end; Lisp/Paris Version 6.1.

Description

(cm:power-up) ignores the nexus clock speed parameter in the CM configuration
file (configuration. lisp). It always chooses crystal 0 when setting the CM nexus
speed.

Workaround

Explicitly specify which speed you want on powerup.

Status

Fixed in the upcoming patch release 6.1.1. Meanwhile, a patch is available from
Thinking Machines Corporation Customer Support.

ID cross-vp-move-F77-constants-missing

DDTs ID: TMCaaO00232 (paris)

Environment

Any CM-2 configuration; any front end; F77/Paris Version 6.1.

Description

From F77/Paris, the CM:cross-vpmove-1 L instruction does not work with its doc-
umented named constants.

The named constants CM_cvpm_indexed and CM_cvpm_mapped do not appear in
the include file paris-configuration-fort. h. They are however defined in

Version 6.1, January 1992

Paris Release Notes 11



12PrsRlesioe

the paris. h include file. These named constants are documented in the Paris Ref-
erence Manual, Version 6.0 dictionary entry for CM:cross-vp-move-IL.

Workaround

For either constant, substitute CM_no_axis, which also represents the null value.
Alternatively, explicitly define the constants for your application by copying the
paris.h definitions.

Status

Open

ID cross-vp-move-breaks-CMF/Paris-array-section-transfers

DDTs ID: TMCaaO00617 (paris)

Environment

Any CM-2 configuration; any front end; fieldwise CMF/Paris Version 6.1.

Description

A bug in cross-vp-move causes CMF/Paris array section transfers to fail.

Workaround

Set the internal variable CMI_cvpmmode = 1 (meaning: cvpm-go-slow)

Status

Fixed in the upcoming patch release 6.1.1 and in Version 6.2. Meanwhile, a patch
is available from Thinking Machines Corporation Customer Support.

Version 6.1, January 1992

12 Paris Release Notes



P ar-.i. R elease~-'.:': N ote::s f . " 1.3... :<~:::.'<:~.': :,...f-:.: :::3 :~~ :~~: ~:.'< .:::'.:::~. ~: :~.<-' ::.¥:.%: .::<:':..~'~:.~ ~~:¢V.< '4:::~ ::: .:::::::.': :: '.':>: ...v:~.....': '~ ':'~~:'".:-..:: .· -: ~'.:.~:~>--~- ~~ ' <~'-':::..''.::.:~ ~. : . :: ::'.'':Z..::' ~::3'.

ID field-length-doc-misleading

Description

1. All Paris field operands must have lengths greater than zero (with two excep-
tions, described below). All Paris Reference Manual dictionary entries with field
length definitions (len, dlen, slen) that read "This must be non-negative" should
read "This must be greater than zero."

2. One exception to the positive-length-field rule is that unsigned move- opera-
tions may take operands of length zero. The U-MOVE dictionary entry definitions
for len, dlen, and slen each read "This must be no smaller than 2," whereas they
should read, "This must be no smaller than zero."

3. A second exception to the positive-length-field rule is that each of the allocate-
instructions (allocate-heap-field, allocate-stack-field, etc.) may take a len argu-
ment of zero. This permits the trick of using the ID of a zero-length field as a
stack/heap pointer.

Status

1 and 2 are fixed in the Version 6.1 UNIX man pages for Paris and in the next
edition of the Paris Reference Manual.

The documentation for 3 was never in error but is clarified in the next edition of
the Paris Reference Manual.

ID no-dest-overlap-for-sends-or-gets

DDTs ID: TMCaa00662 (paris)

Description

For all Paris send and get instructions, the "Overlap" descriptions in the Paris Ref-
erence Manual Version 6.0 are in error. (However, the V6.1 change pages for the
new permuted-send and permuted-get operations are correct.) When invoking any
send or get, only the source and send-address fields may overlap. No overlap be-
tween the dest field and either the source or send-address is permitted.

Version 6.1, January 1992

Paris Release Notes 13



:14 Par.:: Re Noe

Status

Fixed in next edition of the Paris Reference Manual (V6.2)

6 Debugging Hint

Here is a hint for effective C/Paris debugging.

ID paris-safety-hint

Environment

Paris, Version 5.x or 6.x; UNIX front end, using the C-shell; any CM configuration.

Description

Paris safety checking can be turned on by default. When the C/Paris library is linked
with C code, Paris safety checking is turned off by default. To speed the debugging
process, turn safety checking on.

To turn Paris safety checking on by default, add the following line to your .cshrc file:

if ($?CMDEVICE) cmsetsafety on

This line turns Paris safety on each time you use a cmattach subshell.

Version 6.1, January 1992

Paris Release Notes14



Appendix A

CM-2 Performance Notes

Here we offer information to help you predict CM-2 performance for two classes of Paris
instructions. First, we discuss general router communication, broadly explaining the fac-
tors that determine execution speed for this class of instructions. Next, a table of test
timings for Paris Version 6.1 arithmetic instructions is presented.

A.1 General Router Communication

The Paris send and get instructions are among the most powerful operations available on
the Connection Machine system. The send and get instructions without -news in their
names are collectively referred to as general router communications. They allow any pro-
cessor to send or receive data from any other processor. (See the "General
Communication" section of the Paris Reference Manual, Version 6.0, Chapter 5.)

While powerful, general router communications are among the longest-running Paris oper-
ations provided. CM-2 programmers are therefore encouraged to use general router
communications judiciously. Wherever appropriate, NEWS communication (accomplished
with instructions whose names include the term -news) should be used.

The time required to execute a general router communication instruction depends primarily
on the degree of router "traffic congestion" induced by a particular instruction invocation.
Router congestion is caused by complex communication patterns and by high VP ratios.
The permuted send and get instructions should be used when router congestion is predict-
ably high. (CM:permuted-send- L and CM:permuted-get-1L are new with Version 6.1; see
the provided change pages.)

Guidelines helpful in predicting the performance of general router communication instruc-
tions are provided below.

Version 6.1, January 1992 15



16 Paris Release Notes:~~:~~~~~c~

Send Speed

To a first approximation, the time required to do a Paris send operation is controlled by the
following factors:

* Communication pattern complexity

* VP ratio

* Message length

* Specific instruction implementation

Communication pattern complexity. The relative locations of the source and destination
processors determine the degree of congestion. If, at a particular time during the send,
many messages must travel over the same path, then communication is slower than if, at
a particular time during the send, message paths are evenly distributed across the machine.

The congestion induced within the CM-2 router by a particular communication pattern is
quantified by the number of internal router cycles (termed petit cycles) required to com-
plete a send. In general, most patterns are low congestion patterns and take some small
number of petit cycles-less than a random pattern takes.

An example of an extremely low congestion pattern is one that emulates NEWS-that is,
a pattern in which each virtual processor sends a message to one of its neighbors. Low
congestion patterns involve many-to-many communication.

A high congestion pattern involves many-to-few communication at some point in the send.
That is, a pattern in which all or many processors send messages to virtual processors on
the same physical chip takes many petit cycles to complete. For instance, while matrix
transposition appears to require many-to-many communication, at a VP ratio greater than
one, it tends to create high congestion. Why? If the matrix rows are stored across a set of
physical processors and the columns are stored in virtual processor banks within these
processors, then sending a whole row to a single column is many-to-few communication.
Use a permuted send to increase the execution speed of this type of communication.

It is interesting to note that while most regular patterns are low congestion patterns, most
high congestion patterns are regular patterns.

VP ratio. The higher the VP ratio, the more messages are likely to be sent across the same
router paths. The number of petit cycles required to perform any given send instruction
increases in roughly linear proportion with the VP ratio.

Message length. The duration of each petit cycle is a fixed overhead plus a certain amount
per bit of data sent, so doubling a message length less than doubles the router time required
to send the message. The minimum message length handled is approximately 25 bits; fewer

Version 6.1, January 1992

16 Paris Release Notes



Paris Release Notes 17

bits may be sent, but this is no faster than sending 25. Messages over approximately 128
bits long are transferred as multiple messages, which can substantially slow and complicate
a send operation.

Generally, for message lengths within the range of approximately 25 to 128 bits, it takes
less time to send one long message than to send several short ones.

Specific instruction implementation. The exact operations performed by a specific send
instruction affect execution time.

For example, the instruction CM:send-with-f-add-1 L takes longer than its integer counter-
parts. Before the floating-point data is transmitted by the router, it is denormalized to a
fixed-point format. This denormalization takes time and also increases the message length.
(This is not the case for the CM:send-with-f-{min,max}-L instructions, which are im-
plemented in a manner that avoids denormalization.)

As another example, router time generally decreases with increased enroute combining.
Instructions whose names contain the term -with perform combining. While executing a
combining instruction, the router attempts to combine any two messages headed for the
same destination processor. Enroute combining reduces congestion and speeds up router
execution because, as messages are combined, their number is reduced.

An exceptional case is the instruction CM:send-with-Iogxor, for which there is no hardware
support. In contrast to other combining instructions, enroute combining is not done for a
CM:send-with-logxor operation. Therefore, the time required to accomplish a
CM:send-with-logxor operation is bounded below by a constant times the maximum num-
ber of items sent to any one destination.

Get Speed

A Paris get operation is accomplished by a process known as backwards routing. First, a
send is done by the processors that are requesting data, and routing state information is
saved. Then, the send is reversed, using the saved routing state information. Although this
second phase is slightly faster than the first, one may assume that, for any given communi-
cation pattern, a get takes twice as long as a send.

For a highly congested communication pattern at a high VP ratio, a get operation could use
a substantial amount of CM temporary memory if it attempted to move all the data at once.
To avoid this problem, a "divided get" is automatically used; when insufficient memory is
detected, the input data is divided into chunks that are moved separately.

Version 6.1, January 1992

Parls Release Notes 17



18. Paris.............................. Release..................................

A.2 Arithmetic Timing Tables

The following pages contain timing tables for the Paris Version 6.1 arithmetic instructions
running on CM-2 systems with both 64- and 32-bit floating-point accelerators (FPAs).
Reported times include only Connection Machine execution time. That is, they do not in-
clude front-end execution time. Each instruction was tested at a variety of VP ratios within
a 1-dimensional geometry. Reported times are in units of microseconds.

Table 1 reports times with 64-bit FPAs. Table 2 reports times with 32-bit FPAs. Each table
has five columns. In the first column, labeled "Size", the values 32 and 64 distinguish two
rows of times for each instruction: one using 32-bit operands and one using 64-bit
operands. The second column, labeled "Name", contains the name of the timed instruction.
The third and forth columns, labeled "VPR and Sdev" and "VPR 16 and Sdev", give timings
at VP ratios of 1 and 16, along with the standard deviation in each case. The last column,
labeled "Ave(1,4,16,128) and Sdev", gives the average (mean) time at VP ratios of 1, 4, 16,
32, and 128 and the standard deviation for the average. Timings taken using different input
data specifications will vary.

These timings were done in two batches, running on two separate hardware configurations:
The 32-bit FPA batch was run from a Sun 4/370 front end connected to a CM-2 with 8K
processors, 32-bit floating-point accelerator chips, and 256K bits of memory per processor.
The 64-bit FPA batch was run from a Sun-4/330 front end connected to a CM-2 with 512
processors, 64-bit floating-point accelerator chips and 256K bits of memory per processor.
Timings taken using different hardware configurations may vary.

The timing numbers reported here were empirically derived; they are reliable within a 10%
margin of accuracy. Use these numbers to compare the relative performance of different
Paris instructions.

A speedup of approximately 40% over these CM-2 timings can be expected on a CM-200
model Connection Machine system.

Version 6.1, January 1992

18 Paris Release Notes



Paris Release Notes

Table 1. Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM c acos 1 1L
64 CM c acos 1 1L

32 CM c acosh 1 1L
64 CM c acosh 1 1L

32 CM c asin 1 1L
64 CM c asin 1 LL

32 CM c asinh 1LL
64 CM c asinh I 1L

32 CM c atan lIL
64 CM c atan 1 1L

32 CM c atanh 1 1L
64 CM c atanh 1 1L

32 CM_c_c_signuml_lL
64 CM_c_c_signum_l_lL

32 CM_cconjugate _lL
64 CM_cconjugate_l_lL

32 CM c cos 1 1L
64 CM c cos 1 1L

32 CM c cosh 1 1L
64 CMccoshl_IL

32 CMcexpI_lIL
64 CMcexp_ 1L

32 CM c In 1 1L
64 CMcn In 1 1L

32 CM_c negate_l_l L
64 CM_c_negate_l_lL

32 CMcreciprocalllL
64 CM_c_reciprocal_l_l L

32 CM c sin 1 1L
64 CM c sin 1 1L

32 CM c sinh 1 IL
64 CM c sinh 1 1L

32 CMcsqrt_l_lL
64 CMcsqrt_l_lL

2564.85 0.3717
4603.19 0.5384

3159.46 0.5198
5702.83 0.5979

2558.84 0.3313
4596.81 0.6911

2474.00 0.4279
4450.37 0.5950

3038.54 0.3978
5497.38 0.5318

2162.92 0.5345
3990.53 0.4857

495.92 0.2367
870.48 0.4200

8.97 0.1779
8.98 0.1690

2740.21 0.2887
4390.34 0.3531

1688.55 0.3227
2905.94 0.3607

1165.70 0.2787
1956.72 0.3402

1443.49 0.3190
2663.95 0.4391

14.96 0.1604
14.95 0.1536

279.04 0.2065
510.47 0.2680

2732.98 0.3266
4383.12 0.4739

1688.48 0.3075
2905.97 0.3491

704.52 0.3562
1186.49 0.4350

32040.86
62056.99

39949.67
77524.20

32010.37
62022.80

30862.74
59886.13

38394.76
74555.03

27695.48
54350.70

6291.49
11945.37

0.6195
0.87185

0.6789
0.8493

0.8119
0.5782

0.8886
0.6406

0.7985
0.7006

0.6412
0.7994

0.6678
0.3916

44.92 0.1118
44.94 0.1116

34372.98 0.6820
58887.52 0.5389

23653.83 0.4725
41472.15 0.7512

16824.31 0.3531
28364.09 0.4669

18610.93 0.5336
36733.39 0.6368

87.15 0.1325
87.14 0.1268

3557.75 0.4113
6989.27 0.3491

34328.07 0.6423
58842.97 0.5455

23653.81 0.4968
41472.27 0.6839

8439.29 0.4348
15592.12 0.6344

2128.40 0.6228
4090.97 0.7233

2642.44 0.6478
5097.81 0.6911

2125.44 0.6663
4087.43 0.6145

2050.81 0.7070
3950.24 0.6603

2540.67 0.7118
4905.50 0.6782

1826.23 0.6321
3571.54 0.6716

415.76 0.4624
782.65 0.4112

4.20 0.1408
4.63 0.1464

2277.07 0.5867
3885.79 0.5337

1524.38 0.5308
2682.96 0.4920

1074.08 0.3543
1825.43 0.4078

1221.09 0.5326
2404.42 0.5517

7.55 0.1363
8.20 0.1320

234.83 0.3528
458.33 0.3301

2273.25 0.5978
3881.70 0.5184

1524.35 0.5220
2682.98 0.4720

566.47 0.4955
1036.27 0.5660

Version 6.1, January 1992

19



Paris Release Notes

Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM c tan 1 lL
64 CM c tan 1 1L

32 CM c tanh 1 IL
64 CM c tanh 1 1L

5940.31 0.3267
9648.49 0.3929

1837.30 0.4192
3177.45 0.3078

74754.94 0.7834
129822.66 0.8484

25383.55 0.5013
45083.26 0.6752

4951.03 0.6323
8563.38 0.5818

1641.52 0.5876
2923.00 0.5951

32 CM fabs 1 IL
64 CM fabs 1 IL

9.62 0.1594 28.29 0.1213
9.64 0.1752 28.29 0.1148

32 CMf acos 1 IL
64 CM f acos I lL

32 CM f acosh 1 1L
64 CM f acosh 1 1L

32 CM f asin 1 IL
64 CM-f asin 1 1L

32 CM f asinh 1 1L

64 CMf asinh 1 1L

32 CM f atan 1 IL
64 CM f atan 1 LL

32 CM fatanh 1 1L
64 CM fatanh 1 1L

32 CM fcos 1 IL
64 CM fcos 1 IL

32 CM f cosh 1 1IL
64 CM f cosh 1 1L

32 CM_f_exp_l_lL
64 CMfexp_l_lL

1052.19 0.5089
1927.83 0.3882

879.51 0.4148
1349.08 0.3429

1076.10 0.5695
1953.38 0.5010

833.03 0.4078
1194.53 0.3354

721.50 0.4360
1535.84 0.5759

1066.64 0.4854
1499.70 0.3488

343.09 0.1289
522.41 0.1896

929.92 0.6060
1486.52 0.4388

380.45 0.1697
671.62 0.1859

12818.90 0.5098
25898.65 0.5383

11547.98 0.3237
18382.36 0.7514

12942.20 0.5818
25962.33 0.4842

11183.33 0.4670
16746.81 0.3436

8701.37 0.5089
20620.25 0.4682

12817.88 0.4622
19271.39 0.3112

5205.17 0.1556
7863.67 0.2028

10795.50 0.4448
19062.70 0.3732

5348.68 0.2159
9727.23 0.1863

855.09 0.5617
1707.31 0.4642

752.25 0.4729
1206.83 0.4741

867.29 0.6603
1718.39 0.5469

724.22 0.5034
1089.33 0.4282

582.88 0.5294
1361.69 0.4762

856.42 0.5822
1290.93 0.3812

328.22 0.1744
498.08 0.2124

730.85 0.5520
1277.64 0.4379

344.48 0.2402
624.05 0.2837

32 CM_fexp2_1_1L
64 CM_fexp2_1_IL

379.13 0.1655 5347.34 0.2008
669.15 0.2348 9724.80 0.2078

32 CM f f ceiling I_IL
64 CM f f ceiling_l_l L

32 CM ff floor 1 1L
64 CM f f floor I 1L

32 CM f f round 1 1L
64 CM f fround I 1L

32 CMff signumrn_ _IL
64 CM f f signum_l_lL

32 CM f In 1 1L
64 CM fIn 1 1L

502.05 0.3397
731.57 0.5352

458.43 0.4416
734.48 0.3017

586.00 0.2655
1209.63 0.2852

6482.90 0.4277
11613.46 0.5051

6095.65 0.4841
11059.67 0.6440

9229.32 0.4294
19490.30 0.4150

27.90 0.2012 335.12 0.1788
41.32 0.1741 562.42 0.1958

346.91 0.2110
511.58 0.1561

5193.87 0.2554
7673.71 0.3478

418.14 0.5047
722.36 0.5481

397.09 0.5219
703.20 0.5224

576.13 0.4006
1208.76 0.3315

22.47 0.1868
36.95 0.1715

328.93 0.3109
486.40 0.3131

20

3.52 0.1422
4.07 0.1474

344.12 0.2395
623.23 0.2693

Version 6.1, January 1992



Paris Release Notes

Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_f loglO_l_lL
64 CMfloglO_l_lL

32 CMflog2_1_1L
64 CM flog2_1_1L

32 CM_fnegate_ _1L
64 CM_f_negate_l_IL

32 CM fsin 1 1L
64 CMf sin 1 1L

32 CM f sinh l_lL
64 CM f sinh 1 1L

32 CM_fsqrtl_lL
64 CM_fsqrt_l_lL

32 CM ftan 1 1L
64 CM ftanI 1L

32 CM f tanh 1 1L
64 CM ftanh 1 1L

32 CMlognot_l_l L
64 CMlognotllL

32 CM_lognot_alwaysl_lL
64 CMlognot_always_ 1L

32 CM s abs 1 1L
64 CM s abs 1 IL

32 CMsisqrt_l_lL
64 CMsisqrt_l_l

32 CM_snegate_I_iL
64 CM_ s negate_l_l L

32 CM_u_isqrt_l_lL
64 CMuisqrt_l_L

32 CM_u negate_l_lL
64 CM_u negate_1_l L

32 CM c acos 2 1L
64 CM c acos 2 1L

32 CM c acosh 2 1L
64 CM c acosh 2 1L

32 CM c add 2 1L
64 CM c add 2 1L

346.90 0.1881
512.20 0.1850

337.35 0.2217
501.12 0.1473

9.62 0.1657
9.63 0.1706

333.85 0.1378
578.97 0.2892

1004.79 0.5122
1574.01 0.3868

119.00 0.1248
225.04 0.1308

358.32 0.1335
1319.66 0.2914

789.57 0.4278
1358.05 0.4610

20.80
33.16

20.80
33.11

49.98
85.60

673.07
2200.40

27.53
44.96

690.01
2225.97

27.52
44.97

2564.88
4633.98

3160.05
5776.58

85.96
159.28

0.1334
0.1921

0.1850
0.1252

0.1676
0.1581

0.3497
0.5064

0.1991
0.1790

0.2947
0.4459

0.2149
0.1542

0.4433
0.7176

0.4802
0.5842

0.3197
0.2366

5193.88 0.2563
7673.71 0.3332

5059.07 0.2246
7538.18 0.3560

28.31 0.1330
28.30 0.1345

5128.32 0.1702
8612.53 0.2301

11475.27 0.7198
20023.71 0.4142

1710.64 0.1817
3325.69 0.3184

5520.02 0.2108
19017.70 0.4624

10143.15 0.3980
18580.40 0.3386

241.22 0.1206
449.02 0.1230

241.23 0.1201
449.03 0.1292

709.92 0.2254
1282.54 0.8852

10668.83 0.3302
35103.24 0.8657

344.71 0.1857
629.85 0.1399

10946.78 0.3333
35526.72 0.7926

346.40 0.1731
630.92 0.1788

32041.20 0.6994
62057.88 0.9735

39950.06 0.7257
77524.45 1.0702

1018.75 0.2950
2039.96 0.3235

328.93 0.3038
486.56 0.3131

320.26 0.2489
477.35 0.2394

3.53 0.1600
4.07 0.1565

321.81 0.2059
546.27 0.2284

780.49 0.6376
1345.66 0.4523

109.58 0.2086
212.84 0.2465

346.29 0.1957
1226.32 0.3670

668.13 0.5063
1217.50 0.3752

16.33 0.1330
29.55 0.1464

16.33 0.1464
29.54 0.1277

45.62 0.2106
81.76 0.5679

668.19 0.3634
2195.83 0.7074

22.87 0.1836
40.99 0.1597

685.46 0.3711
2222.05 0.6441

22.93 0.1858
41.05 0.1744

2126.38 0.6693
4098.73 0.8499

2646.10 0.8035
5116.25 0.8045

68.56 0.3532
136.77 0.3308

Version 6.1, January 1992

21



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size, Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_c_add_always_21L
64 CM c add always_2_1L

83.25 0.2354 814.72 0.2722
134.68 0.1982 1808.03 0.2357

32 CMcasin_2_IL
64 CM casin_2_1L

32 CM casinh_2_lL
64 CM casinh 2 IL

32 CM c _eatan_2_1L
64 CMecatan_2_1L

32 CMcatanh_2_1L
64 CM c atanh 2 1L

32 CM_cc_signum_2_L
64 CM_c_c_signum_2_1L

32 CM_c_conjugate_2_1L
64 CM_c_conjugateL2_L

2564.64 0.4225
4637.05 0.7600

2474.13 0.4608
4481.22 0.5876

3038.56 0.3579
5550.83 0.5122

2163.30 0.4864
4042.13 0.5133

539.06 0.2898
949.20 0.3785

32270.08 0.8260
62540.70 0.7651

30862.65 0.7916
59886.89 0.6457

38394.83 0.8636
74555.53 0.7622

27695.51 0.6586
54350.75 0.7285

7269.60 0.4495
13859.50 0.2734

50.46 0.1340 835.83 0.1916
86.12 0.1778 1588.94 0.1599

2135.26 0.6501
4121.83 0.7355

2048.81 0.7207
3958.01 0.6586

2543.20 0.6865
4918.90 0.6505

1828.53 0.6907
3584.44 0.6617

469.02 0.4011
892.25 0.3241

49.80 0.1854
96.40 0.1703

32 CM c cos 2 1L
64 CM c cos 2 1L

32 CMc cosh_2 IL
64 CM ccosh 2 lL

32 CM cdivide_2_1L
64 CMcdivide_2_1L

32 CM c divide always2_ IL
64 CM c divide always_2_1L

32 CMcdivinto_2 1L
64 CM c divinto 2 1L

32 CMcdivinto always_2 lL
64 CM c divintoalways_2_1L

32 CM_c_exp2_IL
64 CMcexp_2_IL

32 CM c fcis 2 IL
64 CM c fcis 2 1L

32 CM c In 2 IL
64 CM cln 2 IL

32 CM c_multiply_2_1L
64 CM_c_multiply_2_1L

32 CM _c_ multiply_always_2_1L
64 CMcmultiply_always_2_1L

2711.01 0.2411
4343.62 0.4A672

1688.48 0.3125
2909.69 0.3305

498.85 0.2273
919.35 0.4255

562.74 0.2599
947.07 0.1481

498.83 0.2367
919.35 0.4684

562.78 02756
947.07 0.1438

1165.53 02245
1956.60 0.3561

673.51 0.1796
1102.60 02082

1443.53 0.2689
2671.80 0.4340

234.77 02053
434.31 0.2277

263.68 02339
430.83 0.1550

3395430 0.5728
58090.16 0.5319

23653.37 0.4265
41471.65 0.6416

6473.43 0.4217
12888.47 03520

6424.46 0.3117
13721.57 0.2257

6473.40 0.4257
12888.47 0.3561

6424.41 0.3516
13721.56 0.2188

16898.42 0.2087
28512.62 0.3488

10404.18 0.1756
16625.94 0.2995

18611.21 0.4999
36734.44 0.6320

3109.25 0.3239
6245.91 0.2732

2749.54 0.2561
6042.11 0.3575

2251.96 0.5538
3841.44 0.5552

1523.17 0.4587
2683.89 0.4606

425.67 0.4564
839.72 0.3267

437.51 0.3344
884.71 0.2917

425.62 0.4631
839.72 03355

437.52 0.3398
884.73 0.2713

1079.94 0.3417
1832.32 0.3718

654.91 0.2158
1059.27 0.2655

1226.69 0.5290
2406.48 0.5323

203.53 0.3443
404.16 0.3128

192.19 0.3340
393.66 0.2637

Version 6.1, January 1992

58.02' 0.2391
119.34 0.2606

22 Paris Release Notes



P -i Release tes23-

Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Slze Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CMc_negate_2_1L
64 CMcnegate_2_1L

51.09 0.1482 834.54 0.2012
86.76 0.1335 1587.44 0.1489

32 CM_c_reciprocal_2_lL
64 CM_c_reciprocal_2_L

32 CM c sin_2 IL
64 CMcsin2 1L

32 CM c sinh_2.IL
64 CM_.sinh_2_lL

32 CM_c_sqrt_2_IL
64 CM_csqrt_2_IL

32 CM c subfrom 2 IL
64 CMc2subfirm2lL

32 CM_csubfrom_always_2_1L
64 CM_c_subfrom_always_2_1L

32 CM c subtract_2_1L
64 CM c subtract 2IL

32 CM subtract_always_2_1L
64 CM_c_subtact_always22_ _IL

32 CM c tan 2 1L
64 CMctan_2 1L

32 CM c tanh 2 lL
64 CMc..tanh_2_ L

280.21 0.2177
511.70 02871

2703.74 0.3146
4336.12 0.4203

1688.50 0.3107
2909.72 0.3286

704.81 0.3151
118720 0.4460

99.35 0.2758
171.73 0.2308

94.02 0.2846
144.32 0.2354

85.90 0.1983
159.25 02061

83.21 02054
134.65 0.1995

5905.98 0.5810
9651.77 0.4258

1837.25 0.3576
3181.97 0.2665

3559.75 0.4085
6994.39 0.3594

33909.42 0.5413
58045.99 0.4337

2365336 0.4348
41471.65 0.6758

8442.04 0.5251
15596.41 0.4560

1100.13 0.2119
212137 02833

864.03 0.1904
1857.83 0.2106

1018.80 0.2196
2039.94 0.2806

814.70 02398
1808.00 0.2455

74333.42 0.5884
129018.93 0.6569

25383.60 0.4883
45082.88 0.5956

235.25 0.3532
458.93 0.3474

2248.20 0.5459
3837.28 0.5601

1523.17 0.4587
2683.90 0.4681

566.78 0.5033
1036.64 0.4446

75.45 0.2347
144.00 0.3169

62.77 0.2261
124.33 0.2352

68.54 0.2534
136.76 0.2968

58.01 0.2258
119.33 0.2354

4923.42 0.6593
8530.99 0.6612

1639.67 0.5975
2924.13 0.5564

32 CM f abs 2 IL
64 CMf abs2 L

28.00 0.1549 418.79 0.1800
45.00 0.1396 795.36 0.1920

32 CM f acos 2 lL
64 CMf acos_2_lL

32 CM f acosh_2_lL
64 CMf acosh_2_lL

32 CMf add2 IlL
64 CMf add_2_lL

32 CM_f add_always_2_1L
64 CM f add always_2_L

32 CM f asin 2 IL
64 CM f asin 2 lL

32 CMf asinh_2_lL
64 CMf asinh_2_lL

1052.23 0.5060
1927.83 0.3727

879.64 03983
1349.14 0.4053

12818.93 0.5779
25898.62 0.5379

11548.21 03294
1838239 0.7202

44.68 02361 510.70 0.2055
81.03 0.1910 1020.65 0.2967

43.51 0.2371 409.04 0.2353
68.86 02263 905.16 0.2283

1075.93 0.5248
1953.79 0.4948

832.81 0.4468
1195.21 0.3131

13033.47 0.4328
26144.49 0.5400

11274.84 0.3701
16929.46 0.5372

854.97 0.5482
1710.37 0.4716

753.48 0.4714
1208.07 0.4944

34.72 0.2331
68.76 0.2795

29.50 0.2260
60.10 02186

870.44 0.5298
1725.99 0.5398

728.88 0.4667
1096.41 0.4758

Version 6.1, January 1992

49.87 0.1812
96.53 0.2048

25.54 0.1822
45.94 0.1568

Paris Release Notes 23



24 Paris Release Notes

Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM-fatan2 L
64 CM f atan_2_1L

32 CM f atanh 2 IL
64 CM f atanh2 IL

32 CM fe cabs 2 IL
64 CM f cabs 2 IL

32 CM fcos 2 IL
64 CM fcos_2 IL

32 CM f cosh 2 IL
64 CM fcosh 2 IL

32 CM f divide 2 IL
64 CM f divide 2 L

32 CM f divide always 2 1L
64 CM f divide always_2_1L

32 CM f divinto 2 IL
64 CM f divinto 2 lL

32 CMf divinto always 2_1L
64 CMf divintoalways_2_1L

32 CMfexp_2 IL
64 CMf exp_2_1L

32 CM_fexp2_2_IL
64 CM_fexp2_2_1L

32 CM_f f ceiling 2_1L
64 CMf f ceiling 2_1L

32 CM f f floor 2 IL
64 CM f ffloor 2 IL

32 CM f fround 2 IL
64 CM f fround 2 IL

32 CM f_f signum_2_1L
64 CM f f signum_2_1L

32 CM f In 2 IL
64 CM fn2 IL

32 CM_floglO_2_1L
64 CMfloglO _2_1L

32 CMflog2_2_1L
64 CM f log22_I1L

720.65 0.4117
1539.11 0.5222

1066.60 0.5293
1499.74 0.4106

225.68 0.2022
413.60 0.2295

343.08 0.1705
522.37 0.1947

930.14 0.5448
1486.53 0.4620

86.83 0.1674
161.54 0.1188

85.48 0.2376
14923 0.1667

89.78 02129
162.46 0.1708

86.45 0.1626
150.22 0.1524

380.88 0.1683
671.50 0.1703

379.55 0.2078
669.09 0.1977

528.49 0.4148
776.21 02968

532.47 0.3411
778.36 02735

613.04 02568
1254.33 0.3280

27.92 0.1666
41.27 0.1249

346.91 0.1889
511.60 0.1757

346.91 02052
512.16 0.1478

337.36 0.1872
501.10 0.1537

8793.28 0.3022
20803.58 0.5383

12909.31 0.3853
19454.51 0.4385

2906.83 0.3057
5714.29 0.4091

5205.18 0.1309
7863.65 0.1941

10795.51 0.4864
19062.71 0.3681

1186.36 0.3062
2305.03 0.2000

1084.48 02735
2189.40 0.2401

1187.29 0.2259
2303.95 0.2658

1082.61 02247
2188.80 0.2377

5348.70 0.2167
9727.25 0.1677

5347.37 0.2083
9724.77 0.1815

6673.00 0.4547
11432.54 0.5390

6609.78 0.4708
11364.15 0.8004

9650.50 0.4056
20288.64 0.2748

342.08 0.1393
569.40 0.1447

5381.73 0.2354
7673.70 0.3107

5381.73 0.2535
7673.71 0.3360

5245.94 0.1991
7538.08 0.4007

586.25 0.4387
1366.94 0.4863

861.18 0.5177
1296.57 0.4193

191.35 0.2813
373.42 0.3441

328.22 0.1677
500.97 0.1953

730.90 0.5582
1275.15 0.4173

76.94 0.3015
149.10 0.1836

71.67 0.2848
140.40 0.2268

77.63 02443
149.32 0.2385

71.80 0.2783
140.65 0.2433

344.57 0.2662
626.93 0.2236

34421 0.2606
626.12 0.2155

434.55 0.4895
744.83 0.4977

434.43 0.5276
745.23 0.5635

601.61 0.4378
1263.03 0.3453

22.73 0.1510
37.16 0.1275

335.97 0.2486
489.32 0.2936

335.97 0.2524
489.46 0.3013

327.26 0.2639
48026 0.2485

Version 6.1, January 1992



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CMf max_2_1L
64 CMf max_2_lL

32 CMf min_2_1L
64 CM-f min21L

53.42 0.1644 655.24 0.3033
94.53 0.1360 1231.22 0.2291

53.41 0.1601 655.20 0.3102
94.53 0.1556 1231.19 0.2085 

32 CMf mod_2_1L
64 CMf mod_2_1L

32 CMf multiply_2_1L
64 CM f multiply_2_1L

32 CM_f multiplyalways_2_1L
64 CMf multiplyalways_2_1L

32 CM_fnegate_2 IL
64 CM f ngate_2_1L

664.07 0.4402
1184.85 0.3983

8883.59 0.3963
16408.05 0.5334

44.77 0.2698 510.65 0.2158
81.05 0.2034 1020.65 0.3035

43.52 0.2456 409.06 0.2141
68.88 0.2127 905.19 0.2287

27.99 0.1504 418.81 0.1847
45.01 0.1425 795.36 0.1740

578.56 0.4982
1072.13 0.5504

34.73 0.2380
68.77 0.2704

29.50 0.2251
60.11 0.2163

25.54 0.1736
45.95 0.1546

32 CM frem 2 1L
64 CM f rem 2 1L

32 CM fsin_2 1L
64 CM f sin2 1L

32 CMf sinh_2_1L
64 CMf sinh_2_1L

501.93 0.3609
945.04 0.3243

333.87 0.1307
579.49 0.2182

1004.82 0.5230
1574.00 0.4477

6722.58 0.3959
13270.54 OA.4155

5202.47 0.2193
8760.80 0.1820

11568.61 0.4738
20207.03 0.3562

437.58 0.5058
861.70 0.4230

324.59 0.1719
555.68 0.1924

783.99 0.4870
1349.00 0.4451

32 CM_fsqrt_2_1L
64 CM_f..sqrt...2_ L

32 CMf subfrom_2 1L
64 CM f subfrom_2_1L

32 CM f subfromalways 2_ 1L
64 CM f subfrom_always_2_ 1L

32 CMf subtract_2_1L
64 CM f subtract_2_1L

32 CM f subtractalways 2 1L
64 CMf subtract_always 2 1L

119.83 02000
225.74 0.1725

1709.71 02181
3326.42 0.3702

46.49 0.1981 509.77 0.1987
82.08 0.2019 1019.92 0.3296

45.09 0.2466 407.09 0.1871
69.65 0.1985 904.25 0.1832

44.64 0.2319 510.69 0.2523
81.05 0.2077 1020.64 02975

43.50 0.2458 409.02 0.2406
68.85 0.1931 905.20 0.2220

32 CM-f tan 2 1L
64 CM f tan2 1L

32 CM f tanh_2_1L
64 CMftanh_2_1L

32 CM_logand_2_IL
64 CM_logand_2_1L

32 CMlogand_always_2_lL
64 CM_logand_always2_L

358.30 0.1702
1320.19 0.3426

789.52 0.4889
1358.45 0.4556

5594.05 0.1600
19200.80 0.3197

10234.03 0.3222
18763.40 0.5415

25.81 0.1692 412.49 0.1386
4329 0.1295 788.96 0.1401

24.62 0.1377 396.36 0.1432
42.16 0.1733 773.05 0.1586

349.06 0.1571
1233.65 0.3211

671.70 0.3638
1224.84 0.4133

24.76 0.1445
45.20 0.1563

23.73 0.1440
44.17 0.1504

Version 6.1, January 1992

43.69 0.3363
82.04 0.2059

43.68 0.3390
82.04 0.1950

109.72 0.2562
213.06 0.2822

35.06 0.2151
69.03 0.2671

29.75 02023
60.29 0.1906

34.71 02357
68.76 0.2670

29.50 02271
60.10 02070

Paris Release Notes 25



26 Paris Release Notes

Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CMlogandconst_always_2_1L
64 CM_logand_constalways_2_1L

32 CMlogand_constant_2_L
64 CM_logand_constant_2L

32 CM_logandcl 2_1L
64 CM_ogandcl 2_1 L

32 CM_logandcl _always_2_L
64 CM_logandcl _always 2_1L

46.64 0.1829 417.77 0.1690
81.78 0.2279 812.87 0.2018

47.75 0.2142 433.83 0.2757
82.94 0.1640 828.97 0.4176

25.76 0.1335 412.46 0.1260
43.28 0.1344 788.96 0.1240

24.63 0.1555 396.34 0.1151
42.10 0.1235 773.08 0.1847

32 CM_logandcl_const_always_2_lL 46.68 0.2191
64 CMlogandclconst_always_2_lL 83.55 0.4402

32 CM_logandcl _constant2_IL
64 CM_logandcl_constant_2_1L

32 CM_logandc2_2_lL
64 CM_logandc2_2_1L

32 CM_logandc2_always_2_lL
64 CM_logandc2_always_2_ L

417.84 0.2682
812.89 0.2643

47.79 0.1726 433.75 0.1635
82.90 0.2945 828.76 0.2286

25.86 0.2049 412.50 0.1364
43.29 0.1230 788.97 0.1459

24.63 0.1344 396.35 0.1008
42.10 0.1140 773.09 0.1728

32 CMlogandc2_const_always_2_lL 46.64 0.1892
64 CM_logandc2_const_always_2_1L 81.76 0.1695

32 CM_logandc2_constant_2_1L
64 CM_logandc2_constant_21 L

32 CM_logeqv_2_IL
64 CM logeqv_2_ 1L

32 CMlogeqv_always_2_lL
64 CM_logeqv_always_2_IL

32 CM_logeqv_const_always_2_1L
64 CMogeqv const_always_2_L

32 CMlogeqv_constant_2IL
64 CM_logeqv_constant_2_1L

32 CMlogior_2_1L
64 CMlogior_2_1L

32 CM_logior_always_2_l L
64 CM_logior_always_21L

32 CM_logiorconst_always_2_1L
64 CM_logiorconst_always_2_1L

32 CM_logior_constant_21L
64 CM_logior constant _ 21L

417.78 0.1751
812.88 0.2071

47.78 0.2064 433.74 0.1559
82.97 0.2050 828.77 0.2515

25.77 0.1400 412.48 0.1289
43.28 0.1090 788.95 0.1351

24.63 0.1184 396.34 0.1050
42.12 0.1223 773.10 0.1891

46.67 0.2109 417.92 0.2833
81.76 0.1904 812.97 0.3451

47.77 0.1930 433.73 0.1460
82.93 0.1565 828.75 0.1958

25.78 0.1284 412.48 0.1172
43.26 0.1168 788.96 0.1451

24.62 0.1180 396.35 0.1095
42.11 0.1118 773.10 0.1728

46.64 0.1975 417.80 0.1963
81.77 0.1879 812.85 0.2061

47.78 0.2076 433.75 0.1815
82.95 0.1786 828.75 0.2331

29.63 0.2055
60.33 0.2921

30.65 0.2593
61.36 0.2776

24.75 0.1323
45.19 0.1513

23.73 0.1441
44.15 0.1460

29.64 0.2660
60.77 0.3305

30.65 0.2098
61.35 0.3150

24.77 0.1476
45.20 0.1565

23.73 0.1304
44.15 0.1436

29.63 0.2308
60.32 0.2055

30.65 0.1703
61.37 0.2248

24.75 0.1261
45.19 0.1465

23.73 0.1317
44.16 0.1541

29.64 0.2711
60.32 0.2444

30.65 0.1642
61.35 0.1915

24.75 0.1214
45.19 0.1474

23.73 0.1282
44.16 0.1403

29.63 0.2052
60.33 0.2782

30.65 0.1902
61.36 0.2062

Version 6.1, January 1992



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_lognand_2_IL
64 CM_lognand_2_1L

32 CM_lognand_always_2_1L
64 CM_lond_always_2_1L

32 CM_lognand_const_always_2_1L
64 CM_logand_const_always2_1L

32 CMlognand_constant 2_1L
64 CM_lognand_constant_2_IL

32 CM_lognor_2_IL
64 CM_lognor_2_1L

32 CM_lognoralways_2_1L
64 CM_lognoralways_2_1L

32 CM_lognor_constalways_2_ 1 L
64 CM_lognor_const_always_2_1L

32 CM_lognor_constant_2_ IL
64 CM_lognor_constant_2_L

32 CM_lognot_2IL
64 CM_lognot_2_1L

32 CM_lognotalways_2_lL
64 CMlognotalways_2_1L

32 CM_logorcl_2_lL
64 CMlogorcl_2_1L

32 CM_logorcl_always2_1L
64 CMlogorcl_always_2_IL

32 CM logorcl _constalways 2 IL
64 CM_logorcl _const_always_2_1L

32 CM_logorcl_constant_2_IL
64 CMlogorc lconstant_2_1L

32 CM_logorc2_2_1L
64 CM_logorc2_2_lL

32 CMlogorc2_always_2_IL
64 CM_logorc2_always_2_1L

32 CM_logorc2_const always_2_lL
64 CMlogorc2_const always_2_1L

32 CM_logorc2_constant_2 1L
64 CMlogorc2_constant_2_1L

25.79 0.1432 412.50 0.1363
43.29 0.1219 789.01 0.1635

24.62 0.1214 396.35 0.1071
42.12 0.1129 773.10 0.1777

46.64 0.1988
81.76 0.1630

417.76 0.1604
812.89 0.2600

47.84 0.2415 433.92 0.3065
82.97 0.2653 828.75 0.2229

25.78 0.1437 412.48 0.1287
43.28 0.1144 788.94 0.1350

24.62 0.1179 396.35 0.1025
42.11 0.1127 773.09 0.1753

46.63 0.1877
81.79 0.1796

417.75 0.1480
812.87 0.2365

47.77 0.1847 433.72 0.1301
82.94 0.1656 828.74 0.1973

25.78 0.1359 412.48 0.1215
43.28 0.1090 788.96 0.1416

24.61 0.1300 396.34 0.1190
42.11 0.1052 773.03 0.1523

25.78 0.1326 412.47 0.1142
43.29 0.1137 788.95 0.1347

24.62 0.1219 396.35 0.1021
42.11 0.1130 773.08 0.1723

46.62 0.1843
81.76 0.1775

417.75 0.1532
812.88 0.2155

47.77 0.1883 433.74 0.1537
82.96 0.1912 828.79 0.2540

25.77 0.1262 412.48 0.1190
43.28 0.1106 788.95 0.1333

24.62 0.1200 396.35 0.1104
42.11 0.1095 773.09 0.1846

46.63 0.1932
81.75 0.1576

417.78 0.1720
812.86 0.2189

47.75 0.1797 433.73 0.1398
82.96 0.1981 828.78 0.2417

Version 6.1, January 1992

24.76 0.1486
45.20 0.1628

23.73 0.1269
44.16 0.1437

29.63 0.1860
60.32 0.2812

30.67 0.3011
6137 0.3025

24.75 0.1331
45.19 0.1472

23.73 0.1228
44.16 0.1426

29.63 0.1713
60.32 0.1941

30.65 0.1486
6136 0.2193

24.75 0.1197
45.19 0.1502

23.72 0.1398
44.15 0.1321

24.75 0.1199
45.19 0.1469

23.73 0.1256
44.16 0.1429

29.62 0.1748
60.32 0.2127

30.65 0.1648
61.36 0.2214

24.75 0.1162
45.19 0.1444

23.73 0.1298
44.16 0.1460

29.63 0.1818
60.31 0.1984

30.65 0.1606
61.36 0.2179

Paris Release Notes 27



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_logxor_2_lL
64 CM_logxor_2_1L

32 CMlogxor_always_2_lL
64 CM_logxor always_2_1L

32 CM_logxor const_always_2_L
64 CM_logxor_const always_2_ 1L

32 CM_logxor_constant2_L
64 CM_logxor_constant_21L

32 CM s abs 2 1L
64 CM s abs 2 1L

32 CM s add_2 IL
64 CM s add 2 IL

32 CM s addcany_2_1L
64 CM s add cany_2_IL

32 CM s add constant 2 IL
64 CM s addconstant 2 1L

32 CM _sadd flags_2_1L
64 CM s add flags_2_L

25.78 0.1328 412.47 0.1262
43.28 0.1074 788.95 0.1371

24.63 0.1173 396.35 0.1040
42.12 0.1186 773.08 0.1653

46.62 0.1862 417.76 0.1450
81.76 0.1633 812.88 0.2242

47.78 0.1831 433.72 0.1233
82.94 0.1727 828.82 0.3581

49.98 0.1399 901.97 0.1458
85.58 0.1332 1654.57 0.1227

28.63 0.1425 460.50 0.1297
46.13 0.1274 837.09 0.2002

29.17 0.1641 469.65 0.1374
46.66 0.1282 845.76 0.2015

34.93 0.1702 452.88 0.1873
64.72 0.1545 854.74 0.2182

28.63 0.1473 460.50 0.1224
46.13 0.1188 837.09 0.2096

32 CM_sceiling2_1L
64 CM_s_ceiling_2_lL

32 CMsceilingconstant2_1IL
64 CM_s_ceilingconstant_2_1L

32 CM s floor 2 1L
64 CMsfloor 2_1L

32 CMsfloorconstant2_ 1L
64 CM _sfloor constant_2_1L

32 CM_s_isqrt_2_1L

119124 0.3669
3880.14 0.6104

1196.50 0.3469
3867.51 0.6244

1196.02 0.3847
3889.80 0.5817

1201.33 0.3536
3877.39 0.6532

673.12 0.3569

19299.86 0.3261
62596.87 9.2663

19107.98 0.8953
62033.16 0.8206

19365.33 0.7001
62744.54 0.5304

19185.26 0.6973
62177.77 0.7823

10668.83 0.3441

1199.62 0.5356
3904.38 7.8702

1192A2 0.8169
3875.28 0.7460

1204.00 0.8585
3913.77 0.5502

1197.25 0.7556
3884.57 0.7543

668.21 0.3778

32 CMcadd_3_1L
64 CM cadd_3_1L

32 CM_c_add_always_3_1L
64 CMcadd always33_1L

32 CMcdivide 3 lL
64 CMcdivide 3_1L

32 CMcdivide_always_3_1L
64 CM cdivide always_3_1L

88.43 0.2521 1020.90 02361
160.70 0.1965 2045.01 0.3083

85.59 0.2490
135.91 0.1685

467.09 0.2935
862.19 0.3306

811.56 0.1944
1809.46 0.2364

5848.90 0.5270
11662.54 0.4435

531.73 0.2111 5800.39 0.3441
890.96 0.1711 12495.17 0.3062

69.22 0.2570
137.43 0.2777

58.44 0.2439
119.77 0.1982

387.99 0.4955
767.84 0.4195

400.05 0.3579
813.11 0.3172

24.75 0.1252
45.19 0.1425

23.73 0.1256
44.16 0.1447

29.62 0.1800
60.32 0.2043

30.65 0.1529
61.36 0.2818

52.82 0.1652
93.35 0.1717

27.65 0.1544
48.03 0.1612

28.21 0.1644
48.57 0.1618

29.77 0.1931
56.72 0.1953

27.65 0.1515
48.03 0.1638

Version 6.1, January 1992

28 Paris Release Notes



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_c multiply_3_lL
64 CM_ c _multiply_3_1L

32 CM c multiply_always_3_1L
64 CM c multiply always 3_ L

32 CMec subtract_3_1L
64 CM c subtract 3 1L

32 CM c subtract always_3_1L
64 CM_c_subtractalways_3_1L

32 CM fadd 3 1L
64 CMfadd_3 1L

32 CM_f add always_3_1L
64 CM f add always3_lL

193.67 0.2191
357.33 02500

259.31 0.2597
413.57 0.2317

2315.61 0.3578
4699.07 0.4317

2444.27 0.3309
5434.06 0.4686

88.41 0.2799 1020.95 0.2085
160.69 0.1867 2045.00 0.2835

85.71 0.2471 811.60 0.1872
135.93 0.1536 1809.45 0.2081

4630 0.3419 512.19 0.1876
82.02 0.1533 1024.02 0.2110

45.07 0.2150 407.54 0.2072
69.67 0.1734 906.44 0.1760

155.54 0.3205
312.28 0.3668

176.42 0.3451
361.25 0.3281

6921 0.2710
137.43 0.2828

58.47 0.2229
119.78 0.1860

35.11 0.2764
69.21 0.1882

29.76 0.2103
60.42 0.1772

32 CMf atan23_ 1L
64 CM f atan2_3_1L

32 CMfdivide3l L
64 CM fdivide 3 1L

32 CM_fdividealways_3_1 L
64 CM f divide always_3_ 1 L

32 CM fmax 3 1L
64 CM fmax 3 1L

32 CMf min_3_ 1L
64 CM fmin 3 1L

32 CM fmod 3 1L
64 CM fmod 3 1L

32 CM f multiply3_1L
64 CM_fmultiply_3_1L

32 CM f multiply always_3_ L

64 CM_f multiply_always_3_1L

840.79 0.3896
1714.09 0.4401

10121.97 0.3970
23132.67 0.3468

89.73 0.2520 1189.41 0.3381
162.47 0.1893 2308.64 0.2767

86.94 0.1617 1083.54 0.2510
150.20 0.1490 2190.77 0.1563

55.04 0.2675 654.83 0.4902
95.87 0.1419 1243.87 0.2809

54.56 0.1917 654.30 0.4671
95.87 0.1388 1243.89 0.3286

664.78 0.3100
1087.99 0.3190

8605.87 0.5889
16216.53 0.5370

46.38 0.3655 512.20 0.2372
82.02 0.1521 1024.00 0.1989

45.06 0.2075 407.52 0.1786
69.68 0.2026 906.44 0.1636

677.02 0.5295
1522.20 0.4280

77.71 0.3137
149.54 0.2371

71.95 0.2017
140.77 0.1677

44.01 0.4198
82.98 0.2043

43.91 0.4071
82.98 0.2639

566.74 0.5129
102828 0.4263

35.13 0.3864
69.21 0.1953

29.76 0.2729
60.44 0.2406

32 CM frem 3 1L
64 CM frem 3 IL

32 CM f subtract 3 IL
64 CM f subtract 3 1L

32 CM _fsubtract_always3_ 1L
64 CM_f subtract_always_3_IL

32 CMlogand_3_1L
64 CMlogand_3_1L

548.86 0.3099 6821.13 0.6631
848.10 0.2974 13175.83 0.5408

46.30 0.3442 512.18 0.1920
82.02 0.1567 1024.02 0.2131

45.05 0.2315 407.53 0.1585
69.66 0.1669 906.44 0.1639

32.19 0.2552 623.37 0.1481
53.99 0.1274 1207.36 0.3152

Version 6.1, January 1992

453.27 0.5092
820.46 0.4707

35.11 0.2665
69.21 0.1972

29.75 0.2151
60.42 0.1739

35.01 0.1885
68.06 0.2482

Paris Release Notes 29



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR I VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_logand_always_3_lL
64 CMlogandalways_3_lL

32 CM_logand_const_always_3_1L
64 CM_logandconst_always_3_1L

32 CM_logand_constant_3_1L
64 CM_logand_constant_3_1L

32 CM_logandcl_3_1L
64 CMlogandcl_3I1L

32 CM_logandcl_always_3_1L
64 CM_logandclalways.3_L

2625 0.1689 477.30 0.1248
43.27 0.1545 928.99 0.1361

47.66 0.1928 498.38 0.2491
84.09 0.2130 968.51 0.1562

53.25 0.1795 644.54 02198
93.60 0.1589 1246.95 0.2240

32.11 0.2652 623.37 0.1517
54.00 0.1304 1207.35 0.3151

26.25 0.1705 477.30 0.1204
43.26 0.1466 928.98 0.1388

32 CM_logandclconstalways_3_1L 47.64 0.1594
64 CM_logandclconst_always_3_L 84.07 0.2006

32 CM_logandcl_constant_3_1L
64 CM_logandcl constant_3 _1L

32 CM_logandc2_3_1L
64 CM_logandc2_3_IL

32 CM_logandc2_always_3_L
64 CM_logandc2_always_3_3L

32 CM_logandc2_const_always.3_1L
64 CMlogandc2_const_always_3_1L

32 CM_iogandc2_constant_3_1L
64 CM_logandc2_constant3_ 1L

32 CM_logeqv_3_1L
64 CM_logeqv_3_l L

32 CM logeqvalways 3_1L
64 CM_logcqv.always_3_IL

32 CM_logeqv_const_always_3_IL
64 CM_logeqvconst.always_3_1L

32 CM_logeqv_constant_3_1L
64 CM_logeqv_constant_3_ L

32 CM_logior_3_1L
64 CMlogior_3_1L

32 CM_logior_always_3_1L
64 CM_logior_always_3_1L

32 CM_logior_const_always_3_ L
64 CM_ogior_const_always_3_IL

49829 0.1530
968.55 0.2044

5323 0.1785 644.53 0.2078
93.62 0.1553 1246.95 0.2265

32.14 0.2689 623.38 0.1533
53.98 0.1382 1207.34 0.3056

26.24 0.1679 477.31 0.1350
4326 0.1496 928.98 0.1318

47.65 0.1854
84.10 0.2194

498.30 0.1499
968.52 0.1612

53.26 02498 644.55 0.2357
93.65 0.1939 1246.98 02794

32.11 0.2453 623.37 0.1567
53.99 0.1347 120737 0.3111

26.27 0.1879 477.31 0.1282
43.28 0.1579 928.98 0.1312

47.66 0.1845 498.34 0.1968
84.13 0.2208 968.55 0.1877

5321 0.1762 644.53 0.2225
93.85 0.5497 1246.94 0.2270

32.13 0.2548 623.39 0.1491
54.01 0.1635 1207.39 0.3115

26.24 0.1664 477.31 0.1383
4328 0.1654 928.98 0.1261

47.65 0.1590 498.31 0.1591
84.12 0.2319 968.54 0.1915

Version 6.1, January 1992

27.15 0.1538
54.04 0.1460

32.92 0.2609
67.65 0.1910

40.71 0.2058
81.38 0.2333

34.99 0.1895
68.07 0.2433

27.15 0.1538
54.04 0.1412

32.91 0.1757
67.64 0.2047

40.70 0.1881
81.39 0.2376

35.00 0.1921
68.06 0.2450

27.15 0.1553
54.04 0.1399

32.91 0.1859
67.65 0.2009

40.71 0.2221
81.40 0.3183

34.99 0.1931
68.06 0.2471

27.16 0.1586
54.04 0.1466

32.92 0.2071
67.65 0.2243

40.70 0.2326
81.45 0.3323

35.00 0.1900
68.07 02510

27.15 0.1561
54.05 0.1465

32.91 0.2351
67.66 0.2729

30 Paris Release Notes



31Paris Release Notes

Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CMlogior_constant_3_L
64 CMlogior_constant_3_L

32 CMlognand_3_1L
64 CMlognand_3_1L

32 CMlognand_always_3_1L
64 CMlognand_always_3_1L

32 CM lognand const_always_3_IL
64 CM lognand_const always_3_1L

32 CM_lognand_constant_3_1L
64 CM_lognand_constant_3_IL

32 CM_lognor_3_1L
64 CMlognor_3_lL

32 CMlognor always_3_lL
64 CMlognor_always_3_JL

32 CM_lognorconst_always_3_L
64 CM_lognorconst_always_3_1L

32 CMlognor_constant_3_IL
64 CMlognor_constant_3_1L

32 CMlogorcl_3_lL
64 CMlogorcl_3_lL

32 CM_logorcl always_3_1L
64 CM_logorcl_always_3_lL

32 CM_logorcl_const_always_3_1 L
64 CMlogorclconst always_3_1L

32 CMlogorcl_constant_3_IL
64 CMlogorcl constant_3_IL

32 CM_logorc2 3 1L
64 CM logorc2_3_1L

32 CMlogorc2_always_3_1L
64 CM_logorc2_always_3_1L

32 CMlogorc2 constalways_3_1L
64 CMlogorc2constalways_3_ 1L

32 CM_logorc2constant_3_1L
64 CMlogorc2_constant_3 1L

32 CMlogxor_3_1L
64 CM_logxor_3_1L

53.23
93.63

32.19
53.98

26.24
43.28

47.66
84.08

53.23
93.61

32.13
53.99

26.26
43.32

47.66
84.09

53.23
93.65

32.14
53.99

26.25
43.28

47.63
84.11

53.23
93.66

32.10
53.97

26.27
43.28

47.65
84.45

53.22
93.63

32.14

0.2120
0.1579

0.2646
0.1198

0.1653
0.1580

0.1748
0.2015

0.1690
0.1317

0.2598
0.1384

0.1741
0.2127

0.1936
0.2097

0.1737
0.2101

0.2706
0.1410

0.1656
0.1565

0.1643
0.2544

0.1745
0.2483

0.2432
0.1304

0.1672
0.1524

0.1887
0.3060

0.1700
0.1484

0.2608

644.62 0.3393
1246.97 0.2074

623.38 0.1556
1207.38 0.3335

477.31 0.1332
928.99 0.1382

498.31 0.1867
968.55 0.1895

644.55 0.2206
1247.11 0.3901

623.38 0.1579
1207.35 0.3239

477.32 0.1319
928.99 0.1439

498.34 0.1876
968.55 0.1899

644.56 0.2426
1247.26 0.5439

623.37 0.1531
1207.38 0.3080

477.31 0.1368
928.98 0.1321

498.30 0.1385
968.72 0.4763

644.57 0.2540
1246.96 0.2429

623.37 0.1528
1207.38 0.3026

477.31 0.1213
929.01 0.1347

498.32 0.1704
968.55 0.1800

644.53 0.2251
1246.96 0.2198

623.38 0.1526
53.99 0.1319 1207.36 0.3117

Version 6.1, January 1992

40.71
81.40

35.01
68.06

27.15
54.04

32.92
67.64

40.70
81.39

35.00
68.06

27.16
54.05

32.92
67.65

40.70
81.40

35.00
68.07

27.15
54.05

32.91
67.65

40.71
81.40

34.99
68.06

27.16
54.05

32.92
67.74

40.70
81.39

35.00

0.2648
0.2542

0.1902
0.2449

0.1591
0.1411

0.1807
0.1946

0.1982
0.2999

0.1888
0.2501

0.1520
0.1618

0.2205
0.1930

0.2030
0.3361

0.1973
0.2461

0.1574
0.1435

0.2332
0.3009

0.2979
0.2772

0.1865
0.2389

0.1604
0.1384

0.1884
0.2292

0.1996
0.2376

0.1899
68.06 0.2490



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1I VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_logxor_always_3_1L
64 CM_logxoralways_3_1L

32 CMlogxor const_always_3_1L
64 CM_logxor const always_3_1L

32 CM_logxorconstant_3_1L
64 CMlogxor_constant_3_lL

32 CM s add 3 1L
64 CM s add_3_1L

32 CM_s_add carry_3_1L
64 CM_s addcany_3_1L

32 CM s add constant_3_1L
64 CM s add constant 3 1L

26.24 0.1685 477.30 0.1300
43.27 0.1529 928.98 0.1306

47.64 0.1761 498.29 0.1431
84.07 0.1970 968.53 0.1727

53.22 0.1722 644.53 0.2162
93.63 0.1835 1246.95 0.2208

35.07 0.1877 669.44 0.1414
56.97 0.1530 1253.47 0.1649

35.62 0.1774 678.48 0.1752
57.46 0.1348 1262.41 0.1356

56.24 0.1521 690.69 0.1760
96.69 0.1591 1293.26 0.1829

32 CMsceiling_3_1L
64 CMs ceiling_3_1L

32 CM_s_ceiling_.constant_3_1L
64 CM_sceilingconstant3_IL

32 CM s floor 3 IL
64 CM s floor 3 1L

32 CMs-floor constant_3_1L
64 CM-s floorconstant3_ 1L

1191.19 0.4202
3880.09 0.6085

1197.30 0.3457
3868.17 0.5422

1195.96 0.3484
3889.71 0.5830

1202.15 0.3520
3878.19 0.5312

19300.21 0.5169
6259529 9.7806

19110.81 0.5435
62034.30 0.7361

19365.06 0.6890
62744.22 0.5579

19194.40 0.7794
62193.10 0.8088

1199.61 0.4759
3901.36 8.1275

1192.73 0.5923
3875.59 0.7438

1203.96 0.6127
3910.89 0.5739

1197.82 0.6820
3885.47 0.7686

32 CMs max 3 1L
64 CMhi s max 3 1L

32 CM s max constant_3_1L
64 CM s maxconstant_3_1L

32 CM-smin_3_1L
64 CM smin_3_1L

32 CM s min constant 3 1L
64 CM s min constant 3 1L

51.28 0.1756 1030.54 0.1740
91.80 0.1458 1990.97 0.1637

72.95 0.1701
131.58 0.1636

1051.85 0.2077
2030.74 0.2800

51.30 0.1899 1032.99 0.1830
91.77 0.1682 1993.38 0.1735

72.98 0.1625
131.58 0.1557

1054.16 0.1695
2033.28 0.3148

58.03 0.1768
114.26 0.1675

63.87 0.1995
127.64 0.2817

58.13 0.1949
114.34 0.1873

63.96 0.1954
127.72 0.2715

32 CM s mod 3 1L
64 CM s mod 3 1L

32 CM s mod constant 3 1L
64 CM s mod constant 3 IL

32 CM_s_multiply3_1L
64 CM_smultiply_3_1L

32 CM s multiply_constant_3_IL
64 CM_s_multiply_constant_3_1L

1079.46 0.2980
3680.74 0.4437

1096.37 0.2708
3716.82 0.4698

51.43 0.3576
3669.47 0.1550

45.47 0.3092
240.78 0.1663

17603.07 0.3831
59577.70 0.5889

17531.98 0.5073
59438.89 0.5813

562.79 0.2520
58595.19 0.3902

470.29 0.2393
3544.80 0.7800

1091.37 0.3461
3710.26 0.4874

1092.62 0.4231
3716.89 0.6272

38.68 0.2922
3664.33 0.3302

32.93 0.2632
221.34 0.4682

Version 6.1, January 1992

27.15 0.1539
54.04 0.1422

32.91 0.1751
67.64 0.1917

40.70 0.1900
81.39 0.2351

37.83 0.1785
71.01 0.1527

38.39 0.1842
71.47 0.1635

43.56 0.1744
84.37 0.1985

32 Paris Release Notes



PaIs RleBs te 3

Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM s rem 3 1L
64 CMsrem_3_1L

32 CM s rem constant 3 1L
64 CMsremconstant_3_1L

32 CM s round 3 1L
64 CM sround_3_1L

32 CMsround_constant_3_1L
64 CM s roundconstant3_ 1L

1067.56 0.3353
3655.85 0.3575

1088.74 0.2878
3695.22 0.4275

1234.60 0.4487
3963.88 0.5488

1240.81 0.2854
3952.61 0.4895

17373.44 0.8031
59143.32 0.4565

17296.18 0.4710
58999.77 0.7935

20004.27 0.3769
63950.68 0.5220

19804.59 0.5392
63376.02 0.8632

1077.63 0.8397
3680.83 0.5246

1079.49 0.5177
3688.38 0.7099

1243.26 0.5845
3985.79 0.5630

1236.17 0.5167
3959.46 0.7508

32 CM _s_ subfrom constant_3_1L
64 CMssubfiromconstant_3_ 1L

32 CM s subtract 3_1L
64 CM s subtract3_lL

32 CMssubtract borrow 3 1L
64 CM _ssubtract borrow 3_1L

32 CM s subtract constant 3_1L
64 CM s subtract constant 3 1L

32 CM uadd_3_1L
64 CMu add_3_1L

32 CM_u_add_carry_3_1L
64 CM_uadd_cany_3_1L

32 CM_u_add constant 3 1L
64 CM u add constant 3 1L

57.18 0.1859 691.16 0.1881
97.23 0.1507 1293.73 0.2199

35.06 0.1794 669.44 0.1330
56.95 0.1587 1253.46 0.1626

36.49 0.1765 678.92 0.1848
57.91 0.1734 1262.88 0.1331

57.18 0.1766 691.14 0.1684
97.22 0.1458 1293.71 0.1967

34.62 0.1946 657.57 0.1322
56.49 0.1510 1241.69 0.1552

35.18 0.1954 666.68 0.1548
57.00 0.1416 1250.68 0.1499

55.80 0.1456 678.84 0.1332
96.29 0.1750 1281.52 0.1727

32 CM_u_ceiling.3_1L
64 CM_u ceiling_3_l L

32 CM uceilingconstant3_3 _ L
64 CM_u_ceiling_constant_3_1L

32 CM u floor 3 1L
64 CM u floor 3 1L

32 CMufloorconstant 3 1L
64 CM u floor constant 3_1L

32 CMu max_3_1L
64 CMu max_3_1L

32 CM u max constant_3_1L
64 CMu maxconstant_3_1L

32 CM umin_3_1L
64 CMu min_3lL

1052.59 0.2070
3627.98 0.4153

1061.46 0.3183
3618.99 0.5305

1022.72 0.3386
3572.24 0.4219

1031.19 0.2058
3563.41 0.5678

17045.68 0.5652
58561.42 0.8057

16914.31 0.6023
58018.00 0.8521

16584.19 0.3993
57645.08 0.4844

16442.17 0.5436
57137.35 0.8451

51.12 0.1784 1028.17 0.1460
91.62 0.1553 1988.70 0.1387

72.79 0.1607 1049.42 0.1587
131.48 0.1661 2028.52 0.2353

51.10 0.1760 1030.49 0.1547
91.62 0.1708 1990.91 0.1633

1059.56 0.4324
3649.09 0.6279

1056.07 0.5561
3625.00 0.8067

1030.35 0.3867
3592.49 0.6023

1026.36 0.5636
3569.79 0.7701

57.89 0.1669
114.14 0.1513

63.72 0.1620
127.54 0.2128

57.98 0.1641
114.21 0.1801

Version 6.1, January 1992

43.78 0.2133
84.49 0.1962

37.83 0.1716
71.00 0.1572

38.60 0.2135
71.62 0.1700

43.78 0.2059
84.54 0.1879

37.21 0.1510
70.30 0.1619

37.77 0.1789
70.87 0.1675

42.94 0.1587
83.66 0.1868

Paris Release Notes 33



Table 1 (cont'd.) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 64-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CMumin.constant3_ 1L
64 CM u minconstant_3_1L

32 CMumod_3_1L
64 CMu mod_3_1L

32 CM u mod constant 3_1L
64 CMu mod constant_3_ 1L

32 CM_u_multiply_3_1L
64 CMu multiply__1L

32 CM_u_multiply_constant_3_1 L
64 CM_u_multiply_constant_3_IL

32 CMuu em_3_ IL
64 CM u rem 3 IL

32 CM u remconstant3_ 1L
64 CM u rem constant 3_1L

32 CMuromund_3_1L
64 CMuround_3_1L

32 CM u round constant_3_1L
64 CM u round constant 3 1L

32 CM u subfiom constant3_ 1L
64 CM u subfrom_constant_3_1L

32 CM_usubtract_3_1L
64 CMusubtract_3_1L

32 CMusubtract borrow_3_1L
64 CMu subtract borrow_3_1L

32 CMusubtract_constant_3_1L
64 CM_usubtract_constant_3_1L

72.81 0.1722
131.46 0.1559

985.42 0.2353
3503.61 0.3277

1002.41 0.2812
3539.69 0.5316

947.02 0.1387
3383.71 02126

125.97 0.2652
181.06 0.1706

1008.56 0.2612
3545.10 0.3141

1029.60 0.3154
3584.43 0.3321

1080.51 02692
3678.70 0.3515

1089.01 0.3296
3669.91 0.4206

55.83 0.1739
96.29 02186

34.62 0.1354
56.48 0.1221

35.16 0.1548
56.97 0.1263

55.83 0.1640

1051.76 0.1715
2030.63 0.2419

16002.43 0.5336
56563.34 0.3471

15924.07 0.4967
56414.62 0.5908

15035.38 02793
54023.11 02518

1350.35 0.3342
2578.46 0.2367

16418.53 0.5173
57357.14 0.5803

16344.65 0.5927
57212.00 0.5441

17507.76 0.5303
59360.63 0.7659

17365.59 0.4953
5884326 0.7684

678.86 0.1576
1281.51 0.1837

657.58 0.1216
1241.70 0.1262

666.65 0.1287
1250.67 0.1175

678.87 0.1545
96.27 0.1579 1281.50 0.1710

63.82 0.1833
127.60 0.2309

993.74 0.4095
3524.53 0.3676

994.74 0.4211
3530.93 0.6087

941.34 02927
3378.56 0.2342

92.00 0.3210
161.30 0.2129

1018.12 0.4283
3569.36 0.4725

1020.22 0.4602
3576.85 0.5699

1088.09 0.4336
3699.46 0.5967

1084.08 0.5295
3676.38 0.6962

42.95
83.66

37.21
70.30

37.77
70.86

42.95

0.1811
0.1989

0.1335
0.1481

0.1577
0.1591

0.1724
83.66 0.1825

Version 6.1, January 1992

34 Paris Release Notes



Pars RlaseNtes 35

Table 2. Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR I VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM c acos _IL
64 CMcacosllL

32 CMcacoshllL
64 CM c acoshllL

32 CM c asin 1 IL
64 CM c asin 1 IL

32 CM c asinhllL
64 CM casinh 1_1L

32 CM c atanllL
64 CMcatanllL

32 CM c atanhllL
64 CMcatanh__IlL

32 CM_c_c_signumllL
64 CM_.c.csignum_l_lL

2768.83 0.3406
161019.49 1.1107

3415.85 0.3472
190312.62 0.7103

2765.18 0.5821
160971.26 0.8022

2680.49 0.3426
160823.54 0.8307

3287.81 0.3542
188234.76 0.8294

2169.44 0.2949
149003.56 0.8326

585.30 0.3007
23179.17 0.5464

35453.80 0.5419
2563761.50 0.8360

43857.03 0.4864
3029783.04 0.8110

35420.24 0.4371
2563090.67 0.7721

34271.76 0.4843
2560953.00 0.8485

42221.16 0.7197
2996351.84 0.7917

27769.79 0.4291
2371410.28 0.8813

8043.03 0.2835
370351.91 0.9375

2340.54 0.4997
160473.67 0.9203

2893.00 0.6351
189643.53 0.8122

2337.88 0.5703
160430.10 0.8000

2263.27 0.5461
160292.64 0.8489

2784.77 0.6139
187559.31 0.8203

1833.34 0.5223
148450.05 0.9123

521.12 0.4149
23158.27 0.6929

32 CM_c_conjugate l_lL
64 CM_c_conjugate_l_lL

8.86 0.1392 44.94 0.1048
8.87 0.1442 44.95 0.1113

32 CMc cos 1 iL
64 CMccosl IL

32 CM c cosh_l_lL
64 CM ccoshllL

32 CM_cexp_l_lL
64 CM_ceexp_l_lL

32 CM cln I lL
64 CM cln I IL

2124.21 0.2604
240566.09 0.9536

1621.27 0.4020
197372.12 0.8373

869.55 02607
170197.41 0.9188

1405.86 0.2818
113498.54 0.7802

26647.00 0.5315
3829925.70 0.8987

22388.35 0.6056
3148424.21 0.8156

12053.99 0.4120
2710575.52 0.8415

18198.23 0.6009
1807944.36 1.0022

1768.56 0.4761
239743.58 0.8905

1449.72 0.5966
196964.10 1.3403

779.67 0.3211
169642.44 1.1029

1198.14 0.5575
113151.76 1.0847

32 CMcnegatel_lL
64 CM_c_negate_l_lL

14.98 0.1667 87.11 0.0978 7.56 0.1230
14.97 0.1636 87.10 0.0879 8.20 0.1274

32 CM_c_reciprocal_l_IL
64 CM_c_reciprocal_l_lL

32 CM c sin 1 IL
64 CM c sin IlL

32 CM c sinhl_ IL
64 CM c sinh 1 IL

32 CM_c_sqrt_l_lL
64 CMc_sqrt_l_lL

32 CM c tan I lL
64 CMc tan llL

294.80 0.2031
15655.23 0.5966

2117.05 0.3166
240554.08 0.8281

1621.16 0.3930
197377.15 0.8876

933.93 0.3587
32125.36 0.6845

4723.73 0.3334
509591.88 0.8881

4002.85 0.3044
250693.34 0.6040

26602.70 0.5980
3829863.26 0.8802

22388.33 0.6032
3148503.55 0.8012

12163.54 0.4489
510883.27 0.8234

59732.57 0.7948
8105743.17 0.8871

26020 0.2784
15666.61 0.5796

1764.80 0.5564
239737.67 1.0967

1449.69 0.6195
196969.05 1.2760

799.06 0.4244
31987.44 0.7269

3955.87 0.6730
507500.29 1.5760

Version 6.1, January 1992

4.17 0.1234
4.59 0.1328

Parls Release Notes 35



Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM c tanh 1 1L
64 CMctanh_1_1L

32 CMf asinhl_lL
64 CM f asinh 1 1L

32 CM.f atan_l_lL
64 CMf atan 1 IL

32 CMf atanhllL
64 CM fatanh 1 1L

32 CMf cos _llL
64 CMf cosl_ 1LL

32 CM_f cosh_l_lL
64 CM fcoshllL

32 CMf exp_l_lL
64 CMfexp_l_lL

32 CM_fxp2_1_1L
64 CMfexp2 1_1L

32 CM f_f ceilingl_lL
64 CM f f ceilingl L

32 CM f floor_l 1L
64 CM f floor llL

32 CM f froundl_lL
64 CM f round_ 1 1L

1561.03 0.3227
205250.77 0.7277

870.77 0.4397
52596.21 0.7560

654.38 0.4A627
60087.59 0.8162

918.37 0.4315
48073.81 0.5563

245.31 0.1461
53138.19 0.6204

718.84 0.5185
63815.84 0.4961

277.29 0.3253
57098.01 0.6971

275.90 0.2037
54550.32 0.6173

459.86 0.3872
1751.24 0.4211

462.57 0.4544
1753.54 0.4516

586.13 0.3392
1209.87 0.3670

21094.78 0.5074
3272700.17 0.7728

11890.77 0.4710
837031.42 0.7624

7684.14 0.6120
957729.06 0.6795

11552.87 0.5989
763753.07 0.8495

3615.21 0.1630
850185.79 0.8707

8512.74 0.6244
1014551.38 0.8194

3728.90 0.1924
912913.29 0.5866

3727.48 0.1998
872269.39 0.5925

6307.59 0.5386
25802.81 0.5070

6105.71 0.3201
25541.40 0.6001

9230.84 0.3183
19523.22 0.7997

1373.41 0.4696
204765.15 0.7675

770.32 0.6004
52399.03 0.8019

519.10 0.6124
59936.24 0.9608

764.78 0.5972
47839.13 0.7801

229.20 0.1633
53147.72 0.7282

573.53 0.4990
63538.70 0.7800

242.92 0.2796
57082.05 0.7636

242.54 0.2343
54539.32 0.7050

408.32 0.4190
1657.68 0.5324

401.31 0.4488
1640.57 0.5419

576.36 0.6056
1218.11 0.5306

32 CM_ f signum_l _lL
64 CM_ff_ signum _l_lL

32 CMfln I _llL

32 CMf .loglOIIL
64 CMfloglO_1_L

32 CM_flog2_1_iL
64 CM_f log2_1_1L

27.83 0.2110 335.07 0.1732
41.28 0.1322 562.41 0.1789

305.56 0.1828
40533.99 0.8760

306.55 0.2313
40533.52 0.7751

297.18 0.1682
37979.73 0.5974

4550.47 0.2492
645663.45 0.8589

4550.50 0.2176
645663.41 0.8269

4434.85 0.2224
605013.25 0.7785

22.45 0.1742
36.94 0.1547

288.15 0.2906
40409.82 1.1006

288.35 0.2893
40409.64 1.0454

280.67 0.2240
37865.10 1.0138

32 CM_f negate l_lL
64 CM_f negate_ 1L

9.65 0.1632 28.31 0.1542
9.64 0.1754 28.31 0.1389

32 CM fsin I 1L
64 CM fsin I lL

32 CM_f.sinh IL
64 CMfsinhll

242.48 0.1331
54212.47 0.5415

789.09 0.5545
63905.66 0.6647

3644.19 0.1433
866918.05 0.6241

9176.18 0.3773
1015544.22 0.7283

229.36 0.1454
54197.28 0.7293

621.37 0.5432
63608.15 0.7782

Version 6.1, January 1992

3.53 0.1464
4.08 0.1552

36 Paris Release Notes



Pari ReeaseNots 3

Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_f sqrt_l_lL
64 CM_fsqrtl_lL

32 CMf tan llL
64 CMftan I lL

32 CMf tanhl_lL
64 CMf anh 1 _llL

193.67 0.2420
7382.55 0.4741

286.67 0.1376
49194.44 0.6339

708.65 0.3714
69117.64 0.9515

3015.25 0.2834
118004.78 0.8237

4350.81 0.3704
784391.50 0.7361

9037.02 0.3858
1099212.75 0.8116

189.61 0.2638
7377.31 0.7338

273.54 0.2793
49081.59 0.7600

596.81 0.5554
68829.25 0.7967

32 CM_lognotll
64 CM_lognot _IlL

32 CM_lognot_always_l_L
64 CMlognotalways_l_lL

32 CM s abs I 1L
64 CMs abs I 1L

20.82 0.1391 241.23 0.0879
33.12 0.1207 449.01 0.1382

20.82 0.1534 241.22 0.1117
33.12 0.1109 449.00 0.1085

49.99 0.1265
85.60 0.1250

709.91 0.2054
1282.79 0.7009

32 CM_s_isqrt_l_lL
64 CM.s_isqrt_l_lL

673.05 0.3370
2200.19 0.4102

10668.68 0.3129
35106.04 0.5520

668.16 0.5039
2195.89 0.5306

32 CM-snegate_l_lL
64 CM_s_negate_l_lL

32 CM_u_isqrt_l_lL
64 CM_u_isqrt_l_l

27.48 0.1676 344.69 0.1373
44.89 0.1222 629.85 0.1422

690.00 0.2652
2226.01 0.4459

10946.88 0.4025
35526.89 0.8580

22.90 0.1643
40.98 0.1573

685.46 0.3826
2222.09 0.7178

32 CMunegate IL
64 CM_u_negate_l_lL

32 CMcacos_2_1L
64 CMcacos_2_ L

32 CMcacosh_2_ L
64 CM c acosh 2 lL

32 CM c add 2 1L
64 CMc add_2_lL

32 CM_c_add_always_2_1L
64 CM_c_add_always_2_lL

32 CMcasin_2_lL
64 CM c asin 2 lL

32 CMc asinh_2_lL
64 CMcuasinh_2_lL

32 CM c atan 2 lL
64 CM c atan 2 lL

32 CMcatanh_2_lL
64 CMcatanh_2_1L

27.57 0.1703 346.40 0.1533
44.99 0.1096 630.89 0.1686

2798.23 0.3734
161040.90 0.8746

3461.48 0.5907
190267.95 0.6560

91.08 0.1387
1901.23 0.5162

89.86 0.1508
1900.85 0.4044

2800.25 0.3460
161003.19 0.8417

2709.96 0.3095
160844.76 0.7608

3323.67 0.5401
188184.49 0.8654

2203.73 0.3394
148982.99 0.9636

35453.75 0.5378
2563761.52 0.7879

43857.03 0.5391
3029783.17 0.8265

1079.30 0.1761
30730.15 0.4495

913.13 0.2687
30732.62 0.5984

35679.78 0.4564
2563604.85 0.8310

34271.36 0.5317
2560953.02 0.8082

42221.21 0.6703
2996351.85 0.8275

27769.84 0.4590
2371410.18 0.8474

22.98 0.1856
41.05 0.1562

2346.42 0.4970
160479.03 0.8498

2902.11 0.6781
189632.37 0.8106

72.75 0.1853
1916.18 0.4726

64.36 0.2573
1916.28 0.5314

2357.92 0.5805
160462.36 0.8310

2269.15 0.5483
160297.96 0.8047

2791.95 0.6517
187546.75 0.8377

1840.18 0.5492
148444.90 0.9386

Version 6.1, January 1992

16.33 0.1285
29.54 0.1302

16.33 0.1215
29.54 0.1151

45.71 0.1680
81.76 0.4453

37Paris Release Notes



38 PrisRelese ote

Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

CM_c_c_signum_2_1L
CM_cc_signum_2_1L

628.10 0.2528
23288.13 0.6188

9022.13 0.4114
372263.91 0.8246

578.71 0.3807
23275.45 0.7407

32 CM_c_conjugate_2_1L
64 CM conjugat_..2lL

50A.46 0.1606 835.84 0.1785
86.10 0.1941 1588.94 0.1500

32 CM c cos 2 1L
64 CM c cos 2 1L

32 CMccosh_2_1L
64 CMc.cosh_2_1L

32 CM c divide 2 1L
64 CM c divide 2 1L

32 CM cdivide always 2_1L
64 CM c divide always_2_1L

32 CMcdivinto 2_1L
64 CMcdivinto_2_1L

32 CM _cdivintoalways..2_1L
64 CM c divinto always 2 1L

32 CM c_exp_2_1L
64 CM_cexp_2_1L

32 CM c f cis 2 1L
64 CM c fcis 2 1L

32 CM c In 2 1L
64 CMcln2 I 1L

32 CM_c_multiply_2_1L
64 CM c_multiply_.2_1L

32 CM c multiply_always_2_1L
64 CM_c_multiply_always_2_1L

2093.34 0.2869
240774.56 0.7141

1623.18 0.3330
197726.15 0.8185

513.22 02315
28011.99 0.6157

584.90 0.1767
27887.96 0.5138

513.21 0.2177
27983.65 0.3764

584.90 0.1739
27858.78 0.6209

869.85 0.2560
169983.43 0.7296

484.38 0.1531
107669.46 0.6866

1411.87 0.2651
113563.83 0.6799

233.71 0.1757
12350.28 0.4590

265.72 0.1859
12269.87 0.3900

26219.83 0.5524
3828157.48 0.7647

22388.08 0.5651
3148424.37 0.8196

6908.64 0.3460
447732.51 0.7687

7102.84 0.3974
445981.82 0.9210

6908.61 0.3703
447732.59 0.8249

7102.71 0.4392
445981.92 0.8924

12128.32 0.3943
2710765.49 0.8028

7329.98 0.2198
1717217.06 0.9521

18198.31 0.5722
1807944.54 0.9733

3099.05 02119
197383.57 0.6855

2778.76 0.4918
195824.32 0.7596

1740.73 0.4897
239706.53 1.2025

1450.10 0.5600
197052.61 1.3392

450.34 0.3446
27993.62 0.7046

475.45 0.3613
27879.38 0.9445

450.34 0.3474
27986.54 0.6681

475.45 0.3668
27872.08 0.9361

783.42 0.3559
169598.17 0.8382

464.36 0.2340
107426.53 0.9992

1199.37 0.5433
113168.10 1.0317

202.93 0.2626
12341.88 0.7129

194.20 0.3191
12248.20 0.7032

32 CM_c_negate_2_1L
64 CMc_negate_2_1L

32 CM_c_reciprocal_2_1L
64 CM_creciprocal_2_1L

32 CM c sin 2 1L
64 CMc sin2 I1L

32 CM c sinh 2 IL
64 CM c sinh 2 1L

32 CM csqrt_2_IL
64 CM csqrt_2_IL

51.07 0.1378 834.53 0.1986
86.75 0.1402 1587.45 0.1293

393.68 02113
15778.53 0.4320

2086.03 0.3328
240765.70 0.7583

1623.19 0.3735
197728.84 0.8767

933.52 0.3544
32103.35 0.6212

5672.57 0.3640
252584.84 0.5178

26175.61 0.4305
3828102.51 1.0132

22388.22 0.6872
3148503.31 0.7976

12163.71 0.4948
511069.77 0.8473

52.15 0.1739
96.54 0.2200

363.78 0.2969
15785.75 0.5426

1736.93 0.5061
239703.21 1.3954

1450.11 0.6110
197056.95 1.3646

798.98 0.4369
31990.54 0.7136

Version 6.1, January 1992

32
64

52.08 0.1788
96.40 0.1687

Paris Release Notes38



r Re Ne

Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM c subfrom_2_IL
64 CMcsubfrom_2_lL

32 CM_c subfrom_always_2_1L
64 CM c_subfrom_always_2_1L

32 CMcsubtract2_IL
64 CMc subtact 2_1L

32 CM_c_subtract_always_2_1L
64 CM_ c sub talways_2_ L

32 CM c tan 2 IL
64 CM c tn2 IL

32 CMctanh_2_lL
64 CM ctanh_2_1L

32 CM_fexp2_2_1L
64 CM_f exp2_2_1L

32 CM f f ceiling2I1L
64 CM f f ceiling_2IL

32 CM f floor_2_lL
64 CMf f floor_2 1L

32 CMf f round_2_1L
64 CM f f round 2 1L

103.63 0.1775
1916.44 0.3425

99A5 0.1472
1914.69 0.2593

90.98 0.1629
1905.85 0.2583

89.87 0.1504
1905.42 0.6441

4700.06 0.3280
509984.65 0.8049

1563.13 0.3745
205514.35 0.7925

275.67 0.2426
54753.58 0.6007

532.73 03150
1806.09 0.3926

536.71 0.3843
1710.77 0.5368

613.10 0.4479
1254.32 0.3568

1169.89 0.1561
3085820 0.6124

967.66 0.2494
30833.13 0.7408

1079.21 0.1277
30809.66 0.5221

913.08 0.2657
30808.26 0.3448

59299.64 0.5258
8103992.71 0.9323

21094.67 0.5248
3272700.22 0.8612

3727.49 0.2063
872269.54 0.5831

6590.33 0.3170
26118.53 0.5381

6665.75 0.3979
26149.54 0.4992

9652.40 0.5444
20321.89 0.7593

79.93 02636
1926.31 0.5829

69.11 0.1961
1924.71 0.5829

72.72 0.1577
1921.04 0.4599

64.36 02533
1920.86 0.3964

3929.11 0.5570
507511.56 1.6119

1373.83 0.4720
204831.05 0.8121

242.53 0.2629
54590.14 0.6906

436.61 0.5348
1676.85 0.5592

437.95 0.5026
1652.94 0.5701

604.97 0.6039
1266.94 0.5382

32 CM f_f signum_2_IL
64 CM_f f signum_2_1L

27.92 0.1682 342.09 0.2202
41.30 0.1824 569.42 0.1456

32 CM-f ln 2 1L
64 CMf ln2 _IL

32 CMfloglO_2_1L
64 CM_f 1oglO_2_IL

32 CMflog2_2_lL
64 CM_f log22_1L

305.58 0.1841
40575.91 0.8174

306.55 0.2444
40575.55 0.6492

297.26 0.2751
38023.70 0.8010

4738.74 02248
645663.43 0.8052

4738.70 0.2691
645663.43 0.8032

4622.26 0.3228
605013.42 0.8103

296.37 0.2498
40420.25 1.0471

296.56 0.2682
40420.15 1.0380

288.89 0.2854
37876.10 1.0461

32 CMf max_2_1L
64 CMf max _2_ 1L

5121 0.0887 710.33 0.1348
163.20 0.1611 3240.50 0.1671

32 CM f min_2_1L
64 CMf min_2_1L

32 CMf mod_2_lL
64 CMf mod_2_lL

32 CM_f multiply_2_1L
64 CM_f multiply_2_1L

50.74 0.1047
163.21 0.1699

1835.99 0.2964
10002.99 0.5261

42.59 0.0944
2515.25 0.1567

703.14 0.1603
3238.36 0.2437

26677.89 0.4573
158144.61 0.8218

472.29 0.1198
40192.65 0.4191

44.42 0.1842
192.86 0.2626

1701.99 0.5232
9919.44 0.6732

32.44 0.1373
2513.09 0.2946

Version 6.1, January 1992

22.73 0.1821
37.27 0.1733

44.87 0.1551
192.96 0.1762

Paris Release Notes 39



Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(f,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM f multiply always_2_1L
64 CM f multiply_always_2_1L

32 CM f negate_2_1L
64 CMfnegate_2_IL

41.87 0.0869
2515.37 0.1589

386.89 0.1142
40193.30 0.2705

27.98 0.1423 418.83 0.1998
44.98 0.1272 795.36 0.1358

28.09 0.1258
2513.16 0.2460

25.54 0.1714
48.80 0.1702

32 CM frem_2 1L
64 CMf rem_2_1L

32 CM fsin 2 1L
64 CM fsin2 1L

32 CM-f sinh 2 1L
64 CM f sinh 2 1L

32 CM_f sqrt_2_IL
64 CM_f sqrt_2_1L

32 CM f subfrom 2_ 1L
64 CM f subfrom 2_1L

1623.41 0.2541
8812.59 0.3581

242.48 0.1844
54279.40 0.5972

788.86 0.4799
63955.63 0.9940

193.69 0.2135
7382.58 0.4583

24471.17 0.8090
140237.65 0.5520

3718.08 0.2402
867101.83 0.6492

9267.66 0.5720
1015731.09 0.8508

3015.18 0.2573
118004.95 0.8173

48.06 0.1721 546.33 0.2062
991.53 0.3013 15987.27 0.3528

1550.31 0.5654
8785.88 0.4415

233.99 0.1910
54222.68 0.6843

624.91 0.4390
63629.36 0.9212

189.62 0.2217
7377.29 0.7384

37.23 0.2032
997.58 0.4039

32 CM f subfrom_always_2_ 1L
64 CM_f subfromalways_2_ 1L

47.08 0.1920
991.51 0.3476

459.26 0.1925
15989.43 0.3519

32 CM f subtract2_1L
64 CM f subtract 2 lL

32 CM f subtract_always_2_1L
64 CMfsubtractalways2_L

32 CM f tan2 _1L
64 CM ftan2 1L

32 CMf tanh_2_1L

32 CMsisqrt_ 2_IL
64 CM_s_isqrt_2_1L

46.87 0.0989 540.96 0.1108
954.51 0.2401 15406.38 0.4624

4633 0.0862
954.44 0.2865

286.64 0.1912
49236.78 0.8199

708.28 03461

673.04 0.2993
2200.20 0.5057

458.03 0.2334
15405.80 0.2920

4425.43 0.2416
784573.98 0.8519

9127.93 0.3837

10668.70 0.3614
35105.97 0.5954

36.73 0.1243
961.05 03901

32.54 0.1657
961.00 0.2969

278.19 0.2558
49100.90 0.7954

600.22 0.3716

668.16 0.4999
2195.89 0.5622

32 CM s max 2 1L
64 CM smax_2 lL

32 CM s max constant_2_IL
64 CM smaxconstant_2_1L

32 CMsmin_2_1L
64 CMsmin_2_1L

32 CM s min _constant_2_1L
64 CMsmin_constant_2_1L

32 CMsmod_2_1L
64 CMsmod_2_1L

45.27 0.1782 821.97 0.1174
81.06 0.1285 1574.87 02276

66.96 0.2084 843.41 0.1952
120.70 0.2151 1614.84 0.3527

45.35 0.1835 819.67 0.1948
80.98 0.1492 1572.71 0.1429

67.01 0.2420
120.60 0.2077

1079.45 0.2800
3698.54 0.3992

841.13 0.2216
1612.65 0.3887

17603.03 0.3599
59577.67 0.6300

47.96 0.1635
94.31 0.1632

56.12 0.2281
107.65 0.3259

47.90 0.1635
94.19 0.1325

56.01 0.2236
107.52 0.3344

1096.10 0.3487
3717.50 0.5453

Version 6.1, January 1992

32.76 0.2314
997.66 0.4291

Paris Release Notes40



Pa Rat

Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size 'Name VPR I VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM s mod constant 2 1L
64 CM s mod constant 2 1L

32 CM s_multiply_2_1LL
64 CM_s multiply.._2_L

32 CM s_multiplyconstant_2_ L
64 CM_s_multiply constant_2_ L

1096.43 0.2754
4499.92 0.5043

1079.36 0.1515
3631.22 0.2108

204.20 0.2694
280.42 0.2581

17531.03 0.4077
59438.41 0.6861

17151.85 0.6038
57983.57 0.3302

2704.25 0.5425
4313.05 0.7148

1096.23 0.5514
3912.64 0.6032

1073.60 0.4673
3626.09 0.2651

177.27 0.3669
274.36 0.5540

32 CM_s_negate_2_1L
64 CMsnegate_21L

32 CMsrem_2_1L
64 CMsrmn_2_1L

32 CM s rem constant 2 1L
64 CM s rem constant 2 1L

32 CMsround_2_1L
64 CMs round_2_1L

32 CMsround constant_2_1L
64 CMsround_constant_2_1L

27.37 0.2182 437.10 0.0919
44.91 0.1727 813.43 0.1106

1044.46 0.2960
3632.29 0.5318

1061.47 0.3174
4422.38 0.6323

1234.65 0.4651
4795.66 0.3324

1240.13 0.4417
4779.10 0.5892

16959.80 0.8681
58350.02 0.5077

16874.25 0.7137
58200.08 0.7086

2000428 0.3175
63950.56 0.4782

19796.60 1.4553
63375.07 0.9727

26.33 0.1815
49.58 0.1525

1056.91 0.7615
3643.35 0.5252

1056.42 0.5891
3835.30 0.7107

1247.23 0.4480
4196.75 0.4658

1238.29 1.0953
4166.06 0.8602

32 CMsssignum_2_1L
64 CM_ss_signum_2_IL

32 CM s subfrom 2_1L
64 CMssubfrom 2_1L

32 CMs subffomconstant_2_1L
64 CMs subfrom constant2_ 1L

32 CM s subtract 2 1L
64 CMssubtract_2 1L

32 CMssubtractborrow_2_1L
64 CM ssubtract_borrow_2_1L

32 CM s subtract constant 2 1L
64 CM s subtractconstant 2 1L

32 CM_swap_.21L
64 CM_swap_2_1L

32 CM_swap_always2_1L
64 CM swap_always_2_lL

32 CMtranspose32_2_1L
64 CMtranspose32_2_1L

32 CMu add_2_1L
64 CM-u add_2 IL

40.49 0.1201 557.37 0.1868
71.36 0.1798 1047.07 0.3057

34.43 0.2055 596.88 0.1555
56.92 0.1398 1105.95 0.1406

57.19 0.2244 618.66 0.2596
96.92 0.2045 1146.05 0.4041

36.00 0.1571
67.19 0.2508

35.00 0.1674
66.34 0.1399

42.98 0.2672
79.78 0.3512

28.64 0.2191 460.50 0.1471 27.68 0.2105
46.12 0.1351 837.07 0.1912 51.00 0.1672

29.18 0.2028 469.66 0.1659
46.67 0.1178 845.77 0.2040

28.24 0.1757
51.55 0.1740

34.97 0.2198 452.93 0.1869 29.82 0.2249
64.76 0.2214 854.81 0.2701 56.73 0.2237

39.24 0.1504
70.20 0.1405

685.91 0.1499
1326.72 0.1747

33.57 0.1855 534.24 0.1665
59.46 0.1376 1046.26 0.1587

2227 0.1541 255.29 0.1246
35.80 0.1238 487.40 0.2731

40.38 0.1556
80.00 0.1723

32.37 0.1608
64.15 0.1488

17.30 0.1637
32.04 0.2235

28.03 0.2291 446.67 0.1167 26.92 0.1551
45.53 0.1357 823.18 0.1098 50.20 0.1805

Version 6.1, January 1992

Paris Release Notes 41



Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_uadd carry_2_1L
64 CM_u_addcarry_2_IL

32 CM u addconstant_2_1L
64 CMu addconstant_2_1L

32 CM_u_add flags._2_1L
64 CMuaddflags 2_1L

28.60 0.2110 455.61 0.1508
46.07 0.1307 832.13 0.1211

34.29 0.2427 441.73 0.2371
64.01 0.1562 843.60 0.1694

28.03 0.2353 446.67 0.1188
45.52 0.1512 823.18 0.1059

32 CM_u ceilinL21L
64 CM_u_ceilinL_2 1L

32 CM_u_ceilinconstant_2_1L
64 CM_u_ceiling_constant_2_1L

32 CMufloor_2_1L
64 CMu floor_2 lL

32 CM_u_floor_constant_2_1L
64 CM u floor constant_2_1L

1052.60 0.2070
4398.67 0.2387

1060.60 0.3120
4384.30 0.4880

1022.80 0.2894
4343.09 0.3136

1030.62 0.3455
4328.34 0.5057

17045.47 0.5057
58560.97 0.8254

16908.04 0.5815
58015.50 0.6433

16583.87 0.3090
57644.81 0.5310

16436.36 0.6548
57134.85 0.7667

1063.10 0.4118
3844.74 0.6789

1057.98 0.5192
3816.14 0.6412

1033.92 0.3143
3788.06 0.4673

1028.37 0.5598
3760.86 0.6660

32 CM_u_fromgraycode_2_I L
64 CM u_fromgraycode_2_ L

26.04 0.2116 417.18 0.1516
43.50 0.1832 793.82 0.2456

32 CM_u_isqrt_2_IL
64 CM_u_isqrt_2_1L

32 CMu max_2_IL
64 CMumax_2_1L

689.97 0.2774
2226.08 0.4778

10946.85 0.3907
35526.62 0.7415

45.12 0.1865 819.52 0.2065
80.95 0.1385 1572.65 0.1527

685.45 0.3552
2222.06 0.6795

47.83 0.1596
94.18 0.1384

32 CM u max constant 2 1L
64 CMumax constant_2_1L

f 32 CMumin_2_1L
64 CM u min2l L

32 CM_u_minconstant_2_1L
64 CM u min constant 2 1L

66.93 0.2097
120.56 0.2135

841.01 0.2304
1612.56 0.4114

45.13 0.1970 817.18 0.1364
80.95 0.1439 1570.29 0.1489

66.95 0.2058 838.71 0.1775
120.57 02078 1610.22 0.4256

32 CMumod_2_1L
64 CMumod_2_1L

32 CM_u_mod_constant_2_1L
64 CM_umod constant 2 1L

32 CM u_multiply_2_1L
64 CM_u_multiply_2_1L

32 CM_u_ multiply_constant_2_ L
64 CM_u_multiply_constant_2_1L

985.42 0.2463
3521.60 0.7624

1002.46 0.3421
4310.91 0.4997

947.05 0.1474
3383.70 0.2269

147.02 0.2968
222.29 0.2247

16002.47 0.4983
56563.36 0.3338

15923.86 0.4942
56413.29 0.8817

15035.44 0.2908
54023.13 0.2600

1775.40 0.3947
3379.97 0.3606

997.26 0.4450
3531.94 0.4455

997.10 0.4971
3723.67 0.7354

941.37 0.2622
3378.55 0.2462

119.35 0.3774
216.09 0.3170

32 CMu_negate_2_1L
64 CM u_negate_2_1L

27.52 0.2539 437.80 0.1390
44.99 0.1802 814.11 0.1048

27.49 0.1793
50.75 0.1274

29.12 0.2419
56.02 0.2172

26.92 0.1554
50.20 0.1790

25.04 0.1775
48.31 0.1912

55.99 0.2216
107.50 0.3339

47.74 0.1541
94.07 0.1548

55.88 0.2024
107.40 0.3744

26.40 0.1907
49.64 0.1400

Version 6.1, January 1992

42 Paris Release Notes



ParS RleseNoes4

Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CMurem_2_1L
64 CMurem_2_1L

32 CMuremconstant2_ 1L
64 CMuremconstant_2_1L

32 CM u round 2 1L
64 CMuround_2_1L

32 CMuroundconstant_2_1L
64 CM u round constant2_ 1L

985.43 0.2504
3521.63 0.7108

1002.40 0.3377
4310.93 0.4853

1080.59 0.2967
4472.68 0.2929

1088.52 0.3912
4111.13 0.6560

16002.56 0.5282
56563.34 0.3449

15923.84 0.4868
56413.21 0.8583

17507.49 0.4346
59360.52 0.9056

17360.49 0.5286
58830.46 1.9684

997.27 0.4318
3531.94 0.4272

997.08 0.4806
3723.68 0.7758

1091.56 0.4247
3900.72 0.7305

1086.06 0.5586
3786.11 1.9257

32 CM u subfrom 2L
64 CM u subfrom 2 1L

32 CM.usubfrom constant_2_ L
64 CMusubfromconstant_2_1L

32 CM-u-subtract_2 1L
64 CMusubtract 2_1L

32 CMusubtract borrow2_ 1L
64 CM u subtract borrow 2 1L

32 CMusubtract constant_2_1L
64 CMusubtract_constant_2 1L

32 CM u to gray_code2_ 1L
64 CMutograycode_2_1L

32 CMcadd_3_lL
64 CM c add 3 1L

32 CM_c_add always_3_1L
64 CM_c_add always_3_1L

32 CM cdivide 3 1L
64 CMcdivide_3 1L

32 CM c divide always_3_lL
64 CM c divide always 3 1L

32 CM_c_multiply_3_1L
64 CM_c_multiply_3_1L

32 CM_c_multiply_always3_1LL
64 CM_c_multiply_always_3_1L

32 CMcsubtract_3_1L
64 CMcsubtract_3_1L

32 CM_c_subtract_always_3_1L
64 CM_c_subtract_always_3_1L

34.22 0.1425 584.68 0.1367
56.51 0.1275 1094.69 0.2271

55.84 0.2345 606.02 0.2095
96.11 02009 1134.52 0.3449

28.02 0.1382 446.66 0.1316
45.53 0.1070 823.18 0.1245

28.60 0.2107 455.62 0.1538
46.07 0.1168 832.13 0.1254

34.32 0.2325 441.76 0.2259
64.01 0.1639 843.59 0.1569

52.07 0.0892 865.28 0.4050
92.50 0.1257 1699.08 0.2299

92.91 0.1694
2007.24 0.2761

90.94 0.1270
2007.51 0.3553

481.91 0.1443
27903.69 0.3501

554.46 0.1913
27779.73 0.5337

192.61 0.1834
12251.02 0.4784

261.06 0.1735
12177.44 0.3475

92.92 0.1698
2002.80 0.3003

90.94 0.1446
2002.74 0.4277

1090.21 0.2244
32321.77 0.9263

915.45 0.2062
32322.70 0.8366

6283.31 0.2860
446503.71 0.7929

6478.40 0.3136
444752.99 1.1549

2305.51 0.2712
195837.50 0.7768

2466.64 0.2821
194668.06 1.2191

1090.18 02427
32331.70 0.5215

915.47 0.2035
32332.35 0.6326

34.42 0.1487
65.71 0.2108

42.07 0.2250
79.02 0.3076

26.92 0.1601
50.20 0.1164

27.48 0.1760
50.75 0.1212

29.12 02358
56.02 02026

51.58 0.2270
103.16 0.1743

73.68 0.2465
2017.11 0.6889

64.69 02317
2017.38 0.6207

412.74 0.2600
27908.83 0.6392

438.08 0.2972
27794.63 1.1103

154.97 0.2184
12244.44 0.7253

177.87 0.2466
12171.10 1.1092

73.68 02563
2016.71 0.4652

64.69 02345
2016.75 0.5532

Version 6.1, January 1992

Paris Release Notes 43



Table 2 (cont'd) Timings of Paris V6.1 Arithmetic nstructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM f add 3 IL
64 CM fadd_3_1L

32 CM f add_always_3_1L
64 CM_f addalways_3_1L

32 CM f atan2 3 1L
64 CM f atan2 3 L

32 CMf divide_3_1L
64 CM f divide_3_1L

32 CM f divide always_3_1L
64 CM fdivide always 31L

32 CMf max_3 1L
64 CMf max 3 1L

32 CMf min_3 1L
64 CMf min_3 1L

32 CMf mod_3 1L
64 CM f mod 3 1L

32 CM_f multiply_3_1L
64 CM_f multiply_3_1L

32 CM f multiplyalways_3_1L
64 CMf muitiply_always_3_1L

32 CM frem 3 1L
64 CMf rem 3 1L

32 CMf subtract_3_1L
64 CMf subtract_3_1L

32 CM f subtractalways_3_1L
64 CM f subtract_always.3_1L

48.89 0.1676
990.59 0.2402

47.90 0.1459
990.87 0.2759

769.41 0.5260
59420.89 0.7650

141.82 0.2476
4821.75 0.1726

95.32 0.1631
4821.59 0.1995

74.90 0.1431
234.55 0.1700

74.43 0.1825'
234.54 0.2054

1787.12 0.2649
10034.32 0.5713

44.60 0.1663
2553.69 0.1923

43.45 0.1695
2554.09 0.1841

1620.48 0.2508
8851.69 0.3131

48.91 0.1691
991.54 0.2329

47.89 0.1696
991.45 0.2518

546.71 0.1680
16161.29 0.8143

459.26 0.2019
16163.06 0.7129

9049.29 0.4131
946444.34 0.8650

2243.19 0.2201
77327.01 0.3265

1403.35 0.2129
77328.79 0.2838

1127.77 0.1627
4658.44 0.1722

1120.62 0.1628
4656.13 0.2057

26725.88 0.4389
159097.28 0.7982

478.10 0.1234
40968.89 0.5249

388.10 0.1475
40977.74 1.4530

24518.97 0.5508
140897.19 0.7319

546.75 0.1914
16167.38 0.3241

459.27 0.2147
16167.53 0.4237

37.41 0.1779
1005.42 0.6124

32.94 0.2273
1005.61 0.5849

610.38 0.5406
59241.05 0.7575

140.81 0.2637
4830.26 0.2615

89.43 0.2096
4830.30 0.2543

70.58 0.1909
277.49 0.1791

70.13 0.2274
277.38 0.2657

1699.05 0.5066
9969.64 0.6442

33.13 0.1469
2559.19 0.4299

28.48 0.1645
2559.66 1.2762

1552.94 0.5701
8822.84 0.6169

37.42 0.1896
1006.01 0.2905

32.94 0.2454
1006.01 0.3714

32 CM_logand_3_1L
64 CM logand_3_1L

32 CMlogand_always_3_1L
64 CMlogand_always_3_1L

32 CM_logandconstalways_3_1L
64 CMlogandconstalways_3_1L

32 CM logand_constant_3_1L
64 CM_logand_constant_3_1L

32 CM_logandcl_3_1L
64 CM_logandcl_3_1L

32.22 0.2379 623.37 0.1445
53.99 0.1170 1207.50 0.3085

26.27 0.1441 477.32 0.1251
43.26 0.1207 929.01 0.1394

47.69 0.2149 498.36 0.1814
84.04 0.2824 968.36 0.3023

53.29 0.2330 644.57 0.2243
93.36 0.2403 1246.84 0.3398

32.18 0.1908 623.37 0.1464
53.98 0.1208 1207.44 0.2626

36.82 0.1886
70.35 0.2203

29.02 0.1462
54.61 0.1326

34.79 0.2106
68.18 0.2904

42.53 0.2400
83.58 0.2976

36.82 0.1759
70.35 0.2082

Version 6.1, January 1992

44 Paris Release Notes



ParsB Reesetes 45

Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_logandcl_always_3_L 26.26 0.1484
64 CM_logandcl_always_3_lL 43.27 0.1312

32 CM_logandcl_const_always_3_lL 47.69 0.1994
64 CM_logandcl_const_always 3_1L 84.05 0.2775

32 CM_logandcl_constant_3_1L
64 CMlogandclconstant_3_1L

32 CM_logandc2_3_1L
64 CM_logandc2_3_1L

32 CM_logandc2_always_3_1L
64 CMJlogandc2_always_3_1L

477.31 0.1324 29.02 0.1532
928.99 0.1371 54.61 0.1321

498.35 0.1601
968.38 0.3173

5326 0.1872 644.55 0.2093
93.31 0.1819 1246.89 0.3774

3220 0.2026 623.37 0.1434
53.99 0.1326 1207.41 02492

26.26 0.1418 477.32 0.1338
43.27 0.1263 929.00 0.1363

32 CM_logandc2_const_always_3_L 47.69 0.2029
64 CM_logandc2_const_always_3_lL 84.01 0.2742

32 CM_logandc2_constant_3_1L
64 CM_logandc2_constant_3_1L

32 CM_logeqv_3_1L
64 CM_logeqv3_1L

32 CMlogeqv_always3_IL
64 CM_logeqv_always_3_1L

32 CM_logeqv_const_always_3_1L
64 CM_logeqv_const always_3_1L

32 CM_logeqvconstant_3_IL
64 CM_logeqv_constant_3_IL

32 CM_logior_3_1L
64 CM_logior_3_1L

32 CM_logior_always_3_1L
64 CM_logior_always_3_lL

32 CM_logior_const_always_3_1L
64 CM_logior_const_always_3_1L

32 CM_logior_constant_3_1L
64 CM_logior_constant3_ 1L

32 CM_lognand_3_1L
64 CM_lognand_3_1L

32 CM_lognand_always_3_1L
64 CM_lognand_always_3_lL

32 CM_lognand_const always_3_IL
64 CM_lognand_const_always_3_lL

498.34 0.1640
968.36 0.3084

5325 0.1963 644.58 0.2207
93.31 0.1821 1246.84 0.3361

32.20 0.1820 623.37 0.1434
53.99 0.1275 1207.37 02537

2625 0.1477 477.33 0.1300
4327 0.1338 929.00 0.1343

47.69 0.1980 498.36 0.1877
84.03 02563 968.38 0.3218

53.26 0.1878 644.59 0.2105
93.29 0.1636 1246.86 0.3630

32.19 0.1997 623.37 0.1396
54.01 0.1493 1207.41 02576

26.25 0.1480 477.32 0.1284
43.27 0.1277 928.99 0.1358

47.68 0.1900 498.35 0.1594
84.05 0.2663 968.37 0.3099

53.28 0.1869 644.58 0.2275
93.29 0.1532 1246.87 0.3574

32.19 0.1844 623.36 0.1441
53.99 0.1313 1207.40 02840

26.27 0.1561 477.34 0.1084
43.26 0.1283 929.01 0.1079

47.69 0.1856
83.79 02473

498.35 0.1802
968.37 0.3053

Version 6.1, January 1992

34.79 0.1945
68.19 0.2924

42.52 0.2062
83.57 0.2945

36.82 0.1753
70.35 0.2076

29.02 0.1509
54.61 0.1285

34.79 0.1945
68.18 0.2845

42.52 02100
83.57 0.2864

36.82 0.1753
70.35 0.2072

29.02 0.1523
54.61 0.1323

34.78 0.1978
68.18 0.2848

42.52 0.2037
83.56 0.2866

36.82 0.1773
70.35 02129

29.02 0.1504
54.61 0.1313

34.78 0.1869
68.19 0.2840

42.52 0.2203
83.56 0.2796

36.82 0.1737
70.35 0.2164

29.02 0.1376
54.61 0.1174

34.79 0.1972
68.12 0.2867

Paris Release Notes 45



Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_lognand_constant_3_1L
64 CMlognand constant_3_1L

32 CM_lognor_3_1L
64 CM_lognor_3_1L

32 CM_lognor_always_3_1L
64 CM_lognor_always_3_lL

32 CM lognor_constalways_3_1L
64 CM_lognor_constalways_3_1L

32 CMlognor_constant_3_L
64 CM_lognor_constant_3_IL

32 CMlogorcl_3_lL
64 CM_logorcl_3_lL

32 CMlogorcl_always_3_1L
64 CM_logorcl_always3_L

32 CM_logorcl_const_always_3_IL
64 CM_logorcl_const_always_3_1L

32 CM_logorcl_constant_3_1L
64 CM_logorclconstant_3_IL

32 CM_logorc2_3_1L
64 CM_logorc2_3_1L

32 CM_logorc2_always_3_1L
64 CM_logorc2_always_3_1L

32 CM_logorc2_const_always_3_IL
64 CM_logorc2_const_always_3_IL

32 CM_logorc2_constant_3_1L
64 CM_logorc2_constant_3_1L

32 CM_logxor_3_1L
64 CM_logxor_3_1L

32 CMlogxor always_3_1L
64 CM_logxor_a1ways_3_1L

32 CM_logxor_constalways_3_1L
64 CM_logxor_const_always_3_1L

32 CM_logxor_constant_3_L
64 CM_logxor_constant_3_1L

32 CMsadd_3_1L
64 CMsadd3_ 1L

53.28 0.1989 644.57 0.2145
93.30 0.1688 1246.86 0.3603

32.19 0.1903 623.36 0.1435
53.99 0.1288 1207.40 0.2699

2625 0.1436 477.32 0.1275
4327 0.1286 929.00 0.1417

47.71 0.2258 498.37 0.1833
84.06 02840 968.37 02818

53.24 0.1884 644.56 0.2015
93.30 0.1629 1246.87 0.3832

32.19 0.1940 623.37 0.1444
54.00 0.1346 1207.38 0.2857

2626 0.1529 477.32 0.1267
4326 0.1213 929.01 0.1302

47.69 0.1984 498.34 0.1614
84.01 0.2715 968.38 0.3094

53.26 0.1740 644.56 0.2115
9331 0.1920 1246.85 0.3494

32.19 0.1858 623.37 0.1467
53.99 0.1278 1207.38 0.2705

26.25 0.1363 477.33 0.1315
43.29 0.1383 929.01 0.1216

47.69 0.1790 49835 0.1642
84.07 0.3206 968.37 0.2930

53.28 0.2142 644.56 0.2133
93.34 0.1917 1246.88 0.3344

32.19 0.1918 623.36 0.1343
53.99 0.1340 1207.39 02688

26.26 0.1517 477.32 0.1302
43.27 0.1243 929.00 0.1304

47.69 0.1952 498.34 0.1570
84.00 0.2455 968.37 0.2977

53.27 0.1939 644.58 0.2162
93.31 0.1844 1246.84 0.3370

35.06 0.1398 669.45 0.1387
56.94 0.1384 1253.46 0.1348

42.52 0.2137
83.57 0.2876

36.82 0.1725
70.35 02130

29.02 0.1486
54.61 0.1356

34.79 02098
68.19 0.2853

42.52 02063
83.56 0.2974

36.82 0.1718
70.35 0.2187

29.02 0.1573
54.61 0.1275

34.78 0.1966
68.18 0.2930

42.52 0.2091
83.57 0.2931

36.82 0.1702
70.35 0.2166

29.02 0.1420
54.62 0.1312

34.79 0.1924
68.19 0.3020

42.52 02153
83.57 0.2894

36.82 0.1711
70.35 0.2117

29.02 0.1536
54.61 0.1300

34.79 0.1945
68.17 02819

42.52 02152
83.57 0.2806

39.75 0.1504
73.26 0.1337

Version 6.1, January 1992

46 Paris Release Notes



Table 2 (cont'd) Timings of Paris V6. 1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR I VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM s add carry_3 1L
64 CM_s add_carry_3_1L

32 CM saddconstant_3_lL
64 CMsaddconstant 3_1L

35.63 0.1406 678.49 0.1549
57.46 0.1344 1262.44 0.1314

56.29 0.1845 690.76 0.2096
96.47 0.1886 1293.15 0.3508

32 CM_s_ceilin3_1L
64 CM_s_ceiling_3_1L

32 CM_sceling_constant_3_1L
64 CM_s_ceilng_constant_3_1L

32 CMsfloor_3_1L
64 CM sfloor_3_1L

32 CMsfloor_constant_3_1L
64 CM s floor constant 3 1L

1191.28 0.3279
4682.71 0.4991

1197.42 0.3915
4268.66 0.5840

1196.02 0.4007
4692.68 0.4579

1202.18 0.3989
4278.12 0.5790

19299.86 0.3209
62594.40 10.6714

19110.95 0.5366
62034.01 0.7704

19365.06 0.6471
62744.06 0.5426

19193.70 0.7156
62192.27 0.7474

1202.27 0.4018
4104.91 8.5385

1195.44 2.2916
3975.71 0.7507

1206.73 3.7578
4114.45 0.5181

1200.51 0.5615
3985.44 0.7525

32 CM s max 3 1L
64 CMsmax_3_1L

32 CM snmax constant3_ IL
64 CMsmaxconstant_3_1L

32 CM s min3_L
64 CM smin_3_1L

32 CM s min constant 3 1L
64 CM smin_constant3_ 1L

51.28 0.1217 1030.54 0.1407
91.78 0.1370 1990.93 0.1548

73.00 0.1800 1051.87 0.2120
131.33 0.2032 2030.73 0.3819

51.31 0.1716 1033.01 0.1720
91.74 0.1526 1993.39 0.1655

72.97 0.1597 1054.25 0.1997
131.35 0.2073 2033.28 0.3563

32 CM s mod_3_lL
64 CMsmod_3_lL

32 CMsmodconstant 3 1L
64 CM s modconstant 3 1L

32 CM s_multiply_3IL
64 CM_smultiply_3_1L

32 CM s multiply-constant_3_1 L
64 CM _smultiply_constant 3_1 L

32 CM srem_3_lL
64 CM srem_3_IL

32 CM s remconstant 3 1L
64 CM s rem constant 3 1L

32 CMsround_3_1L
64 CM sround 3_1L

32 CM sroundconstant 3 1L
64 CM s round constant_3_1L

1079.47 0.2777
4464.04 0.4231

1096.50 0.2779
3762.54 0.4401

1099.93 0.2284
3669.57 0.2114

183.44 0.2177
240.81 0.2054

1067.61 0.3709
4427.79 0.4446

1088.78 0.2996
3730.77 0.4959

1234.61 0.4456
4801.79 0.4568

1240.90 0.3511
4376.68 0.4945

17603.06 0.3178
59577.61 0.5841

17531.00 0.3429
59438.12 0.5368

17481.08 0.2928
58595.31 0.4016

2312.10 0.8556
3546.28 0.4246

17373.42 0.7680
59143.33 0.4885

17296.42 0.4938
58997.11 0.8096

20004.20 0.3574
63950.40 0.4830

19804.68 0.5529
63375.74 0.8085

1094.99 0.3268
3908.88 0.5183

1096.25 0.5345
3728.29 0.5064

1094.16 0.2756
3664.36 0.3526

151.60 0.5419
228.33 0.4315

1080.14 0.6578
3879.55 0.5578

1081.98 0.4507
3700.06 0.6966

1245.88 0.4839
4198.26 0.4798

1238.75 0.5669
4065.51 0.7247

Version 6.1, January 1992

40.30 0.1680
73.81 0.1300

45.51 0.2104
86.54 0.2834

61.00 0.1662
116.53 0.1493

66.85 0.2185
129.83 0.3376

61.14 0.1984
116.64 0.1546

66.97 0.2258
129.95 0.3301

Paris Release Notes 47



*ir P -

Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR 1 VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM s subfromconstant_3_1L
64 CM s subfrom constant_3_1L

32 CM s subtract 3_1L
64 CM s subtract 3_1L

32 CMs subtract borrow 3 IL
64 CM s subtract borrow 3 1L

32 CM s subtract constant_3_ L
64 CMs subtract constant 3 1L

32 CM u add 3_1L
64 CMu add_3_1L

32 CM_u_add_cany_3_1L
64 CM_u_addcarry_3_IL

32 CMu addconstant_3_1L
64 CMu add constant 3_1L

32 CM_uceiling_3_1L
64 CM_u_ceiling_3_1L

32 CM_uceilinigconstant_3_1L
64 CM_u_ceiling_constant_3_1L

32 CM u floor 3_1L
64 CM u floor_3_1L

32 CM u floor constant_3_1L
64 CMufloor constant_3_1L

57.16 0.1672 691.15 0.1663
96.93 0.1732 1293.52 0.2814

35.05 0.1459 669.44 0.1361
56.93 0.1408 1253.47 0.1403

36.51 0.1583 678.94 0.1945
57.91 0.1882 1262.89 0.1387

57.17 0.1788 691.16 0.1516
96.92 0.1581 1293.52 0.2971

34.63 0.1584 657.58 0.1591
56.49 0.1303 1241.71 0.1257

35.17 0.1492 666.67 0.1372
56.99 0.1405 1250.69 0.1165

55.85 0.1905 678.93 0.1770
96.05 0.2627 1281.46 0.3253

1052.63 0.2002
4411.26 0.2655

1061.57 0.3498
4034.78 0.4613

1022.93 0.2752
4354.71 0.2957

1031.40 0.3654
3978.83 0.4851

17045.43 0.5518
58561.07 0.9166

16914.12 0.6281
58017.40 0.9804

16583.86 0.3336
57644.78 0.5102

16442.29 0.5726
57136.90 0.7995

45.69 0.1851
86.69 0.2482

39.75 0.1579
73.26 0.1367

40.51 0.1962
73.96 0.1507

45.71 0.1852
86.69 0.2473

39.05 0.1630
72.60 0.1313

39.63 0.1711
73.14 0.1364

44.79 0.2094
85.89 0.2883

1062.05 0.4114
3847.91 0.7481

1058.51 0.5472
3728.94 0.7919

1032.75 0.3482
3790.96 0.4470

1028.75 0.5405
3673.66 0.7189

32 CM u max 3 lL
64 CMu max_3 1L

32 CM_u_maxconstant_3_1L
64 CM u max constant 3_1L

32 CMumin3_1L
64 CM umin_3 1L

32 CM umin constant_3_1L
64 CMumin constant_3_1L

51.12 0.1459 1028.20 0.1519
91.60 0.1402 1988.70 0.1481

72.82 0.1820 1049.49 0.1913
131.15 0.2114 2028.55 0.3549

51.11 0.1410 1030.52 0.1404
91.61 0.1423 1990.90 0.1865

72.82 0.1903 1051.83 0.1983
131.16 0.2021 2030.63 0.3851

32 CM umod 3_1L
64 CMumod 3_1L

32 CMumod constant_3_1L
64 CMumod constant 3_1L

32 CM_u_multiply_3_lL
64 CM_umultiply..3_1L

985.43 0.2194
4274.75 0.3882

1002.72 0.4715
3574.21 0.4949

947.05 0.1638
3383.65 0.2164

16002.50 0.4767
56563.34 0.3401

15923.88 0.4987
56413.02 0.8867

15035.44 0.3674
54023.15 0.2742

996.09 0.4091
3720.23 0.3582

997.15 0.5076
3539.48 0.7556

941.37 0.2873
3378.54 0.2421

Version 6.1, January 1992

60.84 0.1653
116.38 0.1413

66.68 0.2275
129.68 0.3213

60.97 0.1657
116.49 0.1692

66.81 0.2183
129.78 0.3337

48 Paris Release Notes



Table 2 (cont'd) Timings of Paris V6.1 Arithmetic Instructions on CM-2 with 32-bit FPA's

Size Name VPR I VPR 16 Ave(1,4,16,32,128)
and Sdev and Sdev and Sdev

32 CM_umultiplyconstant_3_1L 126.02 0.2638 1350.45 0.3243 92.11 0.2972
64 CM_u_multiply_constant_3_IL 181.09 0.1992 2578.51 0.2457 168.12 0.2825

32 CMu rem 3 L 1008.61 0.2577 16418.56 0.5575 1020.45 0.4876
64 CMurem 3_IL 4316.05 0.2663 57357.11 0.5464 3767.86 0.4228

32 CM u rem constant 3 L 1029.58 0.3317 16344.81 0.6207 1022.56 0.5018
64 CM_u rem_constant_3_1L 3618.84 0.5166 57211.39 0.5493 3588.33 0.5715

32 CM u round_3_1L 1080.61 0.2279 17507.43 0.4323 1090.40 0.3690
64 CM u round 3_1L 3719.86 0.3624 59360.56 0.9150 3712.53 0.7610

32 CM uround constant 3_ L 1089.24 0.3716 17365.73 0.4868 1086.52 1.7908
64 CM u round constant 3 1L 3701.34 0.6297 58843.01 0.7061 3684.24 0.6923

32 CM u subfrom constant 3 1L 55.83 0.2108 678.92 0.1689 44.80 0.2007
64 CM_u_subfrom_constant_3_1L 96.06 0.1789 1281.45 0.3199 85.89 0.2619

32 CMusubtract_3_IL 34.64 0.1509 657.58 0.1337 39.05 0.1467
64 CMu_subtract_3_1L 56.49 0.1269 1241.71 0.1272 72.59 0.1355

32 CM _usubtract borrow _3_L 35.18 0.1544 666.67 0.1606 39.63 0.1856
64 CM u subtract_borrow_3_1L 57.02 0.1539 1250.69 0.1646 73.15 0.1492

32 CM u subtract constant 3 1L 55.83 0.2042 678.91 0.1774 44.78 0.2099
64 CM usubtractconstant3_1L 96.04 0.1676 1281.45 0.3222 85.89 0.2751

Version 6.1, January 1992

Paris Release Notes 49



i

IOOIN
I

10"kA

'"ok,



Appendix B

Paris Version 6.1 Change Pages

B.1 What to Do with These Change Pages

Change pages correct and update a manual. The change pages in this packet provide
dictionary entries for Paris instructions that are either new or updated with Version 6.1.

By page number, insert the change pages into your copy of the Paris Reference Manual,
Version 6.0.

Placement of Change Pages

Change Page Add after Replace
Sequence page pages

412a-412d 412

533 - 536d 533 - 536

Version 6.1, January 1992 51



-'



PERM UTED-GET
.* .z*** ..***. :... :.*..:.* ::.:B *.* . *. *.*.* '~. *.* .':':'. ..:':..:' .* .'.*...'*..'. *...:': 

PERMUTED-GET
Each selected processor gets a message from a specified source processor, possibly itself. A
source processor may supply messages even if it is not selected. Messages are all retrieved
from the same memory address within each source processor, and all the source processors
may be in a VP set different from the VP set of the destination processors.

Use this operation for congested communication patterns; otherwise use CM:get-lL.

Formats CM: permuted-get-lL dest, send-address, source, en

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates from which processor a message is retrieved.

source The field ID of the source field.

len The length, in bits, of the dest and source fields. This must be
greater than zero and no greater than .

Overlap The dest and send-address may overlap in any manner. However, it is forbid-
den for the source to overlap with either the send-address or the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] +- source[send-address[k]]

This operation is functionally equivalent to CM:get-lL: For every selected processor Pd, a
message length bits long is sent to Pd from the processor pa whose send-address is in the
field send-address in the memory of processor Pd. The message is taken from the source
field within processor Pa and is stored into the field at location dest within processor Pd.
Although the send-address operand is a field in the VP set of the destination processors,
its value must specify a valid send address for source, which may belong to a different VP
set.

Note that more than one selected processor may request data from the same source processor
Pa, in which case the same data is sent to each of the requesting processors.

CM:send-lL and CM: get-lL behave poorly on a small class of communication patterns known
as congested patterns. In contrast, CM: permuted-send-lL and CM: permuted-get-lL do a bit

412a



P,ERMUTED--GET
. ..' : :.:,::. ;..:N '.B ' : .:.::: , :.; ';:::.;:::B, '.' '::' :'':B':':':::'>-: Ad.> s , *;

of extra work before the main communication step in an attempt to decongest the com-
munication patterns. For congested patterns, the permuted routing functions are usually
considerably faster than their simpler counterparts. Conversely, for patterns that are not
congested, the permuted routing functions are slower. In addition, the permuted routing
functions requitremore memory than their simpler counterparts.

412b



P EMDM U1Ot)EOD

PERMUTED-SEND .i .
' * ,f :- i . : ;.

Sends a message from every selected processor to a specified destinlati pie -or . Each se-
lected processor may specify any processor as the destination, including itself. A destination
processor may receive messages even if it is not selected, and all the destination processors
may be in a VP set different from the VP set of the source processors. Messages are all
delivered to the same address within each receiving processor. If a processor receives more
than one message, then the message data received by that processor will be unpredictable.

Use this operation for congested communication patterns; otherwise use CM:send-lL.

Formats CM:permuted-send-li dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

len The length, in bits, of the dest and source fields. This must be
greater than zero and no greater than .

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The source and send-address may overlap in any manner. However, it is
forbidden for the dest to overlap with either the send-address or the source
field.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted to
the receiving processor, is stored into the dest field regardless of the context-
flag of the receiving processor. The notify bit may be altered in any processor
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k }
if ISkl = 0 then

if notify[k] # CM:*no-field* then notify[k] O0
else if ISlI = 1 then

if notify[k] # CM:*no-field* then notify[k] - 1
dest[k] -- source[choice(Sk)]

else

412c



AvERMtTED1SN D

if notify[k] O CM:*no-field* then notify[k] E 1
dest[k] - (undefined}

where the choice function arbitrarily but deterministically chooses an element
,rl j , S. {., - - fwni ,m ,et. 

This operation is functionally equivalent to CM:send-lL: For every selected processor pa, a
message length bits long is sent from that processor to the processor Pd whose send address
is stored at location send-address in the memory of processor p,. The message is taken
from the source field within processor p, and is stored into the dest field within processor
pd. Note that, although the send-address operand is a field in the current VP set, its value
must specify a valid send address for dest, which may belong to a different VP set.

The CM: permuted-send operation combines multiple incoming messages in an unpredictable
manner. This operation may be used when the programmer can guarantee that no processor
will receive more than one message. 'Using this operation when it is appropriate may speed
mess 'gg 7delVer' The destination area need not be prepared.

CM: send-lL and CM: get-li behave poorly on a small class of communication patterns known
as congested patterns. In contrast, CM: permuted-send-lL and CM: permuted-get-ll do a bit

':of ext¥1Fr'*k f Wfofie the main- communication step in an attempt to decongest the com-
muiction 'tteirns. ' For congested patterns, the permuted routing functions are usually
considerably faster than their simpler counterparts. Conversely, for patterns that are not
congested,A ie permuted routing functions are slower. In addition, the permuted routing
functiO.n. require more memory than their simpler counterparts.

AI J ''

.l, .:1' i. ; ' ",: :

*·i. ' ..~..: . ... '

412d



Q V1;T:flaEWS
............. w. :.> :..>.: : .: : .:-. .-:.-.-.-... . -:. 2.:'s'.-.

~.~~.~~~ · . ~-C~%~.~.~~~~.. ~.~. .~...-

SEND-TO-NEWS.'
Each processor sends a message to a neighboring processor along--iedffl NEWS axis.

Formats CM:send-to-news-L dest, source, axis, diiecio'n ien '
CM:send-to-news-always-lL dest, source, ais, direcfion, ten ' '

Operands dest The field ID of the destination field. i ::;.'v 'io iI lJI\.

source The field ID of the source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis. ' ': .. .. : . ' -bi. ;mqd) e. f

direction Either: upward or: downwad. .

len The length, in bits, of the;,d#.a, so. fie§l,3; .i . st
be greater than zero and no greater than CM: *maximum-integer-
length*. -· ' .r -w:.. :c'-'I ,;. " C.).n. i-kne ;'; R

t;" 5 , _.. . . .. . ,;f ... .- ..;· .;? Id, .. .r2oIC. .. ft

Overlap The source field must be either. dij.t from,oi4e#,alc -.t;oO e qjfiTWo
bit fields are identical if they have the sameaddeZssand. th$ :sf.th, :,:.

Context This operation is conditional, but whether data is copied depend only on the
context-flag of the originating processor; the data, once transmtted o the
receiving processor, is stored into the field indicated by dest regardless of the
context-flag of the receiving processor.

Note that in the conditional case the storing of data depends only on the
context-flag of the processor sending the data, not on the context-flag of the
processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let g = geometry(current-vp-set)
dest[news-neighbor(g, k, axis, direction)] - source[k]

The source field in each processor is stored into the dest field of that processor's neighbor
along the NEWS axis specified by ais in the direction specified by direction.

If direction is: upward then each processor stores data into the neighbor whose NEWS coor-
dinate is one greater, with the processor whose coordinate is greatest storing data into the
processor whose coordinate is zero.

If direction is :downward then each processor stores data into the neighbor whose NEWS
coordinate is one less, with the processor whose coordinate is zero storing data into the
processor whose coordinate is greatest.

533



. .. . ,.

SENDT-QQUEUE32'' 

,Snds a!mesaefrom every selected processor to a specified destination processor and stores
it there aslf. by aset32i4n a queue. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not seec'ted,'and all the destination processors may be in a vP set different from the vP set

Sof the'B ouri' 'pro'cessors. '

Formats CM:send-to-queue32-lL dest, send-address, source, slen, index-limit

'perans 'dest" ~ The field ID of the queue field. The length of this field must
accommodate 32 bits for the queue.count subfield, plus index-limit

T:i, ~,~in ~:, i 'X 'slen bits for the queue.elements subfield, where index-limit is
the number of queue elements in each processor.

'C~, F:,.r .. std'ds*s d -' The field ID of the send address field. For each processor,
:ii . -; :: '- ., 'i :-·:'; this indicates'tb which:processor a message is sent.

source The ield ID of the source field.

slen The length, in bits, of the source field. This must be greater than
~Tt::.:' ! ji5 i -) z i l ero and no greater than . This is also the length in bits of each

:i t l i I:!-: I;J::'· ': ~:: 'i: .' 'queue element. Values may be either 32, 64, 96, or 128.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for a zero-based index into queue.elements.
The value of this argument must be at least 1 and should never
exceed the number of elements that can be stored in the queue.

Overlap The fields send-address and source may overlap in any manner. No overlap
with the dest field is allowed.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the data, once transmitted to the
receiving processor, is queued in the field indicated by dest regardless of the
context-flag of the receiving processor.

Definftioiv Fo every virtual processor k in the current-vp-set do
-:-; ' I ·'-:" ~lt HS- -S' m I n E current-vp-set A context-flag[m] = I A send-address[m] = k }

let Tk be a sub-set of Sk where Tkl = min(ISkI + queue.count, index-limit)
for i from queue.count to queue.count + ITkI - 1 do

queue.elements[i] - Tk[i] 
queue.count - queue.count-+ ISkI 

Note thatif (Skl + queue.cQunt > index-limit) then there is.some choice in
picking the elements of Tk.

534



The destination field is treated as two subfields: queue.count and queue.elements.
Queue.count is 32 bits long ani ~eordA ep l _Aer eued messages. Queue. elements
stores the enqueued messages; 'i i frmatt'd as a slcewse array (accessed using aref32 and
aset32), and starts at anopffset of 32 its fp! t!1,i ta~, t ,;t-he hs. ti t ata leth
is a multiple of the message length: at least indepijrnit x_.~plee rda.osgib, gtee;.o f i

.- .)i tf; ,~: te -t .. {) / .; . '. .c , i? [) ;.f .
The index-limit argument specifies the maximum number of eleents hat.y nya,0essrs
queue.elements subfield may accumulate. If any proce'ssor receives more m'esses tha~ this
specified number, the queue overflows and messages are lost. If a queue.elements subfield
overflows, the queue.count subfield for ti'at processor nonetheless accurately reflects the
number of messages received. 'om

For any given communication pattern, both the o de r.of inessagequeuentd tesleio n
of messages p reserved or discarded m case of quee overow aredetermistic. at is, the
order and selection of enqueued messages canpbe predictabJy reproduced from one invocation
to the next.

This determinism is especially importanfo , applkitw that scdssJe CM:send-to-
queue32-1L calls to send large data st, teurby, breaskggp ta m up into chunks of length
slen. By holding the send-address arument constant,esuch appligations can send successive

','.~ ,' '"fCt; .I- :, 'a .~ , -. c:;.
chunks of slen bits each to corresponding queues.

. -;., ? , " .' - ' ' t' , '~

To prepare an empty queue for a CM:sendto-quep-1L 'inructio, the queue.count subfield
should be set to zero. From Lisp/Paris, this is dvnesbyeecua!! the following code in the
destination context:

(let ((zeros (allocat e-stack-:d' O 'i i, i .-. ,
(context-hold (allocate-stack-f{[1'd'i))m/' - A' i )):,'....
(cm:move-constant-always zeros 0 32)
(cm:store-context context-hold) ..
(cm: set-context)
(cm:aset32-2L zeros queue zeros 32 32 .)Y. 'i" ,: :m. -,qc; ;ir ex ns '
(cm:load-context context-hold) .;, ; ,. ,

3)><4rt*.- '' ''' ff 'f .; 't ., * f* J· ·

The CM:send-to-queue32-lL operation is conditional on the context of the source field; the
set of queues that will receive message,is i^,dpendent .pth,cuelalve s jziRf 
the queue.count subfield in only those queujes, that aret ,receivms ges, execute the
following code in the source context: , . .*;,:. f- .~J ,~. i

: - . i \: .; , .S...-:;t

(let ((zeros (allocate-stack-field 32I ! 'i:v...
(cm:move-constant-always zeros 0 32)
(c:-sen0adLset32-overwrite-2L' ieue zstd ers z6dos3, 32 

) , .,; ;lt !

535



w *..:.. ,.:..... .. . . :.: . . .. .?..
:Ki~ ~ i:'i~~<:.: ~ ,: ~ ~ ~ : :i!~ ~ ~:~~i:.~.ii :.k:~." :'."~ ~i~::i: ;.:~i:

~
: : :.ii~~~ii ::~~i::~~i!::":".~:~: ~:S : : i :.'.~ ~ '":.:'i (

<
~:!:~:~':~:¢~'.-i :~:. iJ~ ~ ,~-~ ~ ' ~,<i !::'~~i

~
~ i.:."~

After the CM:send-to-queue32 operation, the local count can be retrieved by executing the
following code in the det jtiop , : , E _ m 74 -x

(-v&6i&i i~ffa '(aitodate4tak-fisld 32))' '

(. +e:mo'et'isti&itLalw*ays zi6s' 0,'32)
(cm:aref32-2L coii-'t-leld queui zeros 32 32 1) '

The iWh message can be retrieved from queue.elements by executing the following code in
tl d / tibblio d cintfext: t'i L ' 0 I ;r

%rw· s ;! ;; '~.ih.'J(:' .. ;,;-r iS ;.'t g; -. j" "
. "

- .... ~.] .i ,r

o:s ·c·: Qv trqo :4valyq ndeze4.:3 r3 < ; -

1(. ; r, 4 ,- 4 : a.}-t ied; %(. 2 qm.e e). ind; len 32 queue-size)
)J~jk , . i.t , , . i 

N otehaJ:seueekm.ntsB is ofIfet ronftihet queue field by 32 bits.

4vue,a;is.tPatjhfe numiber of elements of length slen that could be stored in the
queue.elements portion'of the destination field. If this is done, the queues will be partially
filled. However, the correct queue size should always be uised as the index-limit argument
to CM: aref82k2L: *When .reading elemets ftrethe iqueue 6. -

c' .. , ·.u h.. :

9213 at; ( .N .' 3 -' ',' t ... :

1, .. 

19%;911 [![tv. t.:~' .i - " .-r !-9'1 IJ ( ;. w f .Yv ; ' q; ' : ..' : ., ': . ' ...... i' -

· '"..U.!9115 b!.~' !
' f/

4j,,1t' L.:.i.s;',£; ?'f; ', ".* .. X .-; ,:

.. .. r ..) 

ii.. .'c! 2Q52 yc~ aui. ..

c\ s . .. . ' ·

-t s: ·i* t·- ,r r, '· f , . , t 7 ' 1 

(I(~~~~~~~~~~~~~~~~~~~~{. 15 ,;*; i
~~~~~~~~..._,__. .,. . ...__......_ ... .... _..._ .._

: i

I
1:

i

S EN D-TO.9 J : H.

,I . , .. t ·.. .. , f... ..: Z. ,-

SEND-TO-QUEUE A; H i .ni

Sends a message from every selected processor t a si qpcfe4 $teiitioois~it nq4e"
and stores it there, as if by CM:aset32-shared-1L,,j, aqigeue.(. .sprit ,doe t~of
32 physical processors.) Each selected processor may specify any node as the destination,
including its own. A destination node may receive nmessages.g.e fvoj, l)t¢csors
are selected. Messages of length 32, 64, 96, or 12 at:..aesupp:o.Frt. " -l .es :,n-)

Formats

Operands

CM:send-to-queue32-shared-lL dest, node-address, source, slen, index-limit

dest The field ID of the queue field. Must be allp t, a,;ri
block of memory of length 1 + slen/32 x index-limit bits. This
is a compound field consisting of two adjacent slicewise shared
arrays: queue.count ad 'queie.iL eint't' TA, q&i6g;afint aii4
consists of one 32-ibsli;(' lil to ytzPry i r~i$ d to
record the number of messages received by the sprint node. the
queue.elements arrat stores th ie es ecd&%-hOlY$it d- Othis
dicrtionary i asshii e ti f nisdtr i A iis n rtm ;anoe;i ith
vp-ratio 1; however, this constraint is not mandatory.

node-address The field ID of the node address field. For each processor,
this indicates the -addreis of'a ~phhitiiodm'd ; ~Fdet ach: osrte.,'rotes'
sor this specifies the node that receives that processor's message.
A node-address c6naists sblely of the off1ij0it0" S fo a; ddrs
(no P bt s no on- bits. ni he lOnngii o ttli t elll
with machine size. ' . ..,

source The field ID of the sona ce mk ut s of fegh ! 'slg), ::;

slen An unsigned integer immediate operand to be used as the
length of the source field and the length of each message in the
queue.elements array.. Value must be either 32, 64, 96, or 128.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for a zero-based index into queue.elements.
The value of this argument must be at least 1 and should never
exceed the number of elements that can be stored in the queue.

Overlap The fields node-address and source may overlap in any manner. No overlap
with the dest field is allowed.

Context This operation is conditional, but whether a message is sent depends only on
the context flag of the source processor. The message, once transmitted to
the destination node, is queued regardless of any context flag setting in the
processors of the destination node.

536a

Definition For every sprint node k , .. .

let T= .m,E curet-vp-set A ontet-flag[m] = 1 A node - address[m]/2J = k }
let k a sbief k k

-queue.unte , -: .. :

for: irom o- z uo {.. I I;.
queue.elements[i] - Qk[i]

Note that if (ITkIl > indez.4irnSi then-there Aissom choice in pidking the
elements of Tk. . _

This instruction enqueues messages in a slicewise shatedarfyi'afd reco6r&;thi':number of
messages received by each node. -,." ,-b 't'

rc . ~.' ? ;" e '.. /-. :.!:.;17l:.'

A slicewise shared array is consiercdl ~arhd';*s eea ch'paral 2iinid-eC6f he.array
is stored by node rather than by processor. A node constss:f 32:phytsieat:protesors and
all of their associated memory. Consequently, for this instruction, the basic data unit in a
queue is a slice, which includes one physical bit for each of 32 physical processors. Slicewise
shared arrays are accessed by CM:aref32-shared-1L and CM:aset32-shared-1L.

Cnceptuh e [etination At d is treated as a cmpound field cotaiinig two ajajitent
slcewise sliareid arrays: queue.co'intand queue elements. 'TIhe queue.countisubi:eld is'
slicewise shared array of length l''quiii'ue.'e sitleis s a- ficerwite shared; 'a rray%f length
slen/32 x index-limit. These lengths are in units of slices (one bit per physical processor).

The queue.count array records the number of enqueued messages that haiveeih"iffived
by a particular node. The queue.elements array stores the enque :ued:iif ; sages, ' trting at
an offset of one slice (one bit per physic prosor) from ith statt bf'thedesdtiiation field.
The length of the queue.elements array (in slices) is (max-number-of-messages x slen/32),
where ma-number-of-messages is the maiiiiimi umFi er o sa s t'hat 'each qu eue must
be able to store. .. f

The source field provides messages, which must all be of the same length: slen. The only
allowed message lengths are 32, 64, 96, and 128 bits;a(lpas3or4. sic -. : :- . - t:t;;

i~ ' g..IP.ntjemj .a,,'mua ,e,,, r:.fm, mssges t , ,,t: any d:'s queue
may accumulate. If more thaa.i dx-li,i; ; Ypes ue sent any queue, they, ar,.%iscaar ded
- but the queue.co.r.. a r.ist .-ue.;mber of messa- ,ges eeived,
including those discarded. - i

A node-address consists .othie' -:' bits ;of' -aei!d ddress. Ohiw C t cieatf'a node
address is to generate a sena adrs 'anex ct teoff-'ctfii bWits b'spiplg any VP bits
and on-chip bits. (See the code sample below.)

Each node containi't'ip ' :st e; FeIl*f~i tfit ?Ie sequenc f f;fth-c1p' bitdistinguishes
between the two chips. To send a message to the queue of a partiLiLe nod4iitha address
of either chip may be used. The choice may effect performance. To maximize performance,
the two chips should be chosen with roughly equal frequency. If the frequencies cannot, be
predicted, the programmer may wish to set the low bit of the chip address randomly.

536b'

SQEk,,,j._;iQ k5"#",P,3
_ B _ _ _ _ ~~~~~~~s _~R,,:;R, JB,* 6 6.sS>@j~f; i;,

Programming Help .DA .,'v.,; ' .:~T..r ',iDo :'. ,oAini
T:: ,:. . ~.a 3 = t: . . ,?: '-; :. i .'-2.,:~;;:' _tm..; , '~ j....j.iM 8, : '.

To prepare a empt que ora;n- touee L-sl*r -lL trtibi the queue.count
array should be set to zero by executming tli olowing lst,i s tcoe (&r its equvalent in...... ': ~ . ---- %~.'{.!t ~:.~ ~ ~ '.~~V111TP..C/ or Fortan/Paris) in the destination context (whihris to iphysl-set.

· -~ _' ~. 1 i :. ,. ; O'.: ' '.'1.

(let .. ((zeros (CM-:allocatestac-f iet.q¢~.)h, .- ;. t ,i ;a : :,:,;/
(context-hold (CM:allocate-stack-field 1)) -
)

(cm: store-context conte;,'-hdl.d)d
(cm: set-context)

(cm:move-constant-always zeros 0 32)
(cma:set32-shmed-.2.L~.zero. qusv juf:i.rg. 32iam : 1!.. '.l;..ri c e'aisl- ~ 9 X,.

)~~ ~ ~~~~~~~~~~~~~~~~~ .' -'i . ', L.. X 2 ;O[.;8t; 1;;^'&.;4 ^ *s'3;; iP 8- .[, . f .. Oi..i * t J StGx~(\R '..'.-et -l7'b" ',t;4J; ', !' :. ' ,Ji ;tr~ t't,""" ., "
:i· ;~.Y ;,, i,_ ,. ;;'~I:-i:;: m:l,,.-.. q -~lf(, ~e.,~br.'.'r ,i:,iwi .::~E.'.. ,~x i oIi;.r

L ' i , -:r.Z;,t,,, J) :,q 9"i.f[, 8','",..S b ' . . t':

Tqderisthe.node addesses romt. .apnd addresse.s.s th e pa g.mspejs sent to the.... - . . . : t ~J,. ','~ ' L~e ':~ ' i ll~,:~!: ~!Oi l ii 'l~~T--Jl
.

~ '*l~: Ll'~
'

~ ' ":

q e on nt,,IProcero's local .2pde, to. flq IP/ c!. ! r, od[orits'eq [. je;jtg. :
or Fgrtan/Paris)..sp.ud berp;ecuted tint., pIele pkt.sext , ;, o

(wit7 sltack. f ields
,.1, <f - Iaddrec8' 2 . ; 3 .i.,? .rf . - A l...., _, r -, t:'..' .:..! J .- c i ':! ; ':;?"' ,.it ,¥, "5,.~, .'~ lJ':-,t s Ol .i .ll g 1..; '")i[.t~lqtfq ,.r.
(nod.-address. 12) .. t;, size efor a 64K CM2 -

rX SL ~ s * > + rt * \\ t;^ - ;- , - i -. i if tE ̂ jrt;~ ·17; as~ i r tswhZUses IL!i : i -s<. .c·'~i r. =
; ,;Lde.ro, out t;hee .7Laddde-eas j.a~'d .dfa ess fels . ;
(cm:move-constant-always self-address 32)
(cm:move-constant-always node-address 12)
-: ".. :.~ "-' .. '- ... ·.*.: ... ;':' =)~i-" ~,r ~'i. '~;."t .'.' s1.. ;';,'i V(> .',.-9,,.-'":)i'I,s a c'',---l ""9 . 9;,.'-e f ".i''

(cm:my-send-addess.seltf-ddrfiss,) i ,: ,.' : ;. ,,~a:2i
(let* (

-- .' ; (s d - .addr egiIe'sns- '-l ~l(&tge~ iiid .'t tj ni li i ii u [e a-~..~
'' (phys cal-length cm: *phyxk -pc s6seil o . t .; .

'(vrt"ial-lengthi "(- sndLdeg ph'fEal'>l*8feh;I brs, 5f,9 S ir '-
(on-chip-length 4)

, :, o.;-c. ~hip-qf;set, (+ virtual-lengh .- ch i.lenh .h .l
..(off -,.chi p.-.ys$ength-phycalTenhn-1 ength)

.I : J-;: :.; O'-> ;: . I..' ' -r.c, ,r,.,
(cm:move-always node-address

·-:.' (cm:-'ddaffs)t-;OtSiied.id s&.l-. iladd,'se .!~-..chip-oft)je);;.-;..., ,,
.s.'S'i'off ,hip .!egn0h .;' *i' i -' ,-;. - ,bsT af:>-;,,-3'd

.C~-', r it),. ' ? t. .,; .,,..i;'.. : ,'. ' .'i;' ",. . ,',',~~ ... ;...~. ':i t<' 1a ic{'s i .l SS), i"- ~,.. .

... .- , .' .; (,i.. b.-:J)k-]o

530qr{

-SE IND-TO-QJEUE 32-S .. D.
:i:':'::*.::_~ ... ~* *'**~* ~~.:x* : N.; .. .;;

After a CM:eSindto-queue32-sharedL operation, the. queue count for each node can be re-
trieved by all. virtual processors assoiated with the.node. Execute the following Lisp/Paris
code (or its equivalent in. C/ or FoTtan/Paris) in the destinatio. context:

(let ((zeros (CM.: al-locae.e-stack-f ield 32))
. (counit-field CM:allocate-stack-field 32))

)
(cm :mve--constant-al-ways .zeros 0.32)...
(cm-:aref32-thi.ed-2L co-unmftel;ue. e. z .eros .. 2 32 1)

)

.The th message an beretrieved from, the quete.-ekacnts array: by .eeuting the-follwing
Lisp/Pais code (or its equivalent n. C-/ or,.Fortan/Paris) in the destination context:

(I!et. :. (-'ide (CI : allc~atetack-iiede: 32))
:(data-field' (.C~ :.alocate- aack- tiel'dage-length))

^: :(queue.lementa ,e(c.add f .e .ild- .dqu 1)eue 1))
)

.m:(cm :mnve-.-onseant-alwayqi. indexz.i 32)
.. "cm atef32.sheed-2L dataBield quoue..elements index len 32 index-limit.)
)

Note that.the queue.elmelnaara -off.set.. from the queue field-,by one.

The order of message queueing, including which messages are discarded,..is deterministic.
As they arrive.at the node,.nessages are,.enqueued in successive slots of the queue.elements-
array until queue'.element.,is full. Subsequent messages are discarded.

536d

