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1. Introduction

Now that it has become feasible to build large parallel computer architectures it should be possible
to take advantage of paraliclism by applying large numbers of processors to a problem. Unfortunately,
writing programs for parallcl Machines has turned out to be very difficult. In fact, it is not cven clear how
to build paralle! architectures that are uscful for any general class of parallel algorithms or applications.
There are two basic difficultics: 1) expressing the parallelism of a computation, and 2) exploiting that
parallelism on a parallel arcl cturc. Traditional programming languages for serial Machines do not
incorporate any way to cxpress parallclism in a computation. It may be possible to write a compiler that
finds paraliclism in a programs written for serial Machines but this possibility scems limited. A new
methodology that is morce natural for programming parallel Machines is needed. This thesis will develop
a methodology for programming the Connection Machine (CM). a highly parallel computer.  This
methodology is meant to exploit the specific architecture of the Connection Machine and may have only

limited usefulness on other architectures.

The Connection Machine consists of a large collection of simple processors connccied by a
communication network. Each processor has a unique address in the communication network. Each
processor also has a small amount of local memory and a simple ALU for operating on its local memory.
Local memory can store data, including the addresses of other processors. If processorA has the address
of processor-B then processorA can send a message containing a finitc amount of data to processorB
using the communication nctwork. (Sec figure <sending mail>.) Graphs of arbitrary topology can be
built using a processor for each vertex. The processor representing each vertex contains the addresses of
the other processors representing the vertices to which it is connected. These pointers form the arcs of a
directed graph. 1f two processors have cach other's addresses then the arc is bidirectional; this is called a
Connection. The topology of the software graph is independent of the topology of the communication
- network that interconnects the processors.  Since addresses arc data, addresses can be sent in messages.
This is a very important feature of the Connection Machine: the software graph can be manipulated by

passing processor addresses in messages.



Fig. 1. Scnding Mail
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The datum in processor-A is sent to the mailbox in processor-B.  The address of the mailbox
in Processor-B is stored in Processor-A.

The programming methcdology presented in this thesis is fairly simple:  the entirc computation is
represented by a software graph in the Connection Machine and a program that controls the individual

processors in the graph. The Conncction Machine provides two basic forms of parallelism:

1) Each processor can operate on its local memory concurrently with every
other processor.

2) Messages are dclivercd by the communication network in parallel.

Messages sent from any number of vertices along an arc can be delivered concurrently. The graph
abstraction limits the number of cells that can send a given cell a message. Local comniunication within
the graph avoids communication bottlenccks, where one processor receives a large number of messages
at once. The major part of this thesis is concerned with technigues for using this methodology to solve

intcresting problems.



1.1 Thesis Outline

Chapter 2) Concepts

This chapter discuses the important concepts of the architecture of the Connection Machince and
programming the Connection Machine. This chapter should be read.
Chapter 3 Notation

This chapter introduces a notation for programming t'.. Conncection Machince. The main purpose
of this cahpter is to give examples of simple progrms for the Connection Machine. 1t is not particularly
important to understand the details of this chapter.

Chapter 4) N-cube Algorithms

Many algorithms can be performed very quickly using any regular highly interconnected
communication topology. This chapter describes some algorithms that we have found to be uscful and
their implementation using a boolcan N-cube conncction topology. The particular implementation of
thesc algorithms should be transparent to most programmers.

Chapter 5) Trec Algorithms

Binary trecs are an important grahpical abstraction for parallel processing. This chapter describes
algorithms for manipulating binary trees on the Connection Machine.
Chapter 6) Application: GAl

This chapter cxplains how the Connection Machine can be used to explore a search space in
parallcl. GAl, an expert system that analysis DNA molecule structure, is uscd as an cxample.

Chapter 7) Application: Combinators
This chapter describes the implementation of a graph reduction interpreter on the Conncection

Machine. A graph language is introduced that is interpreted by reductions performed on the graph.

Chapter 8) Application: Relational Data Base



-10-

This chapter illustrates an application that takes advantage of the particular connectivity of the

communication network for communication.

Chapter 9) Conclusions

This chapter summarises the ideas of programming the Conncctions Machine.
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2. Concepts

The purposc of this chapter is to present some examples of programming the Connection Machine
which will serve as a framework for the details presented in later chapiers. The first scction describes the
architecture of the Conncction Machine. The sccond section discusses some programming examples,

The third scction outlines scveral applications that could be rur on the Connection Machine.
2.1 The Conner Fyn Machine Architecture

This section outlines the major parts of the Conncction Machinc. A forihcomming paper should

describe the details of the architecture.

The Connection Machine has 3 main parts:

1) 1 million processors, each with a small amount of local memory
2) a communication nctwork that connects the processors
3) a controlling computer

The communication network is a batch packet switching network that delivers messages between
processors. The controlling computer broadcasts a single instruction stream which all of the processors

- execute. Each part will be discussed in detail below.
2.1.1 The Processors

The processors themscelves are very simple: each has about 300 bits of memory and a 1 bit ALU.
There are also 16 1 bit flags which perform special functions. (See figure <CM processor>.) The power of
the the Connection Machine is in the number of processors, not the speed of any single processor.
Processors arc very simple (32 will fit on a chip) so that millions can be fabricated. Each processor has a
uniquc address. A processor can store the address of another processor in its memory. Graph vertices are
represented by processors; an arc between processor A and processor B is represented by processor A

containing the address of processor B.
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The ALU opcrates on 2 bits from the registers and onc of the flags and produces two 1-bit results.
The first result is optionally written back into one of the operand bits. The second is written into a flag.

An instruction specifies:

which two bits from the registers will be operated on

which flag will be opcrated on

which operation the . { U will perform

whether the first result should be written to onc of the operands

which flag to writc the second result to

There arc two special flags: Global and COND.}

These two flags can be read or writtcn normally.
Exccution of the instruction stream is conditionalized on the COND flag. If the COND flag of a
processor is sct that processor is active It is possible to set the COND flag in every processor since once a
proccssor is deactivated it cannot activate itsclf. Special hardware is used to OR every Global flag from
each processor in the machinc and provide the result to the controlling computer.  This mechanism is

used to determinc if any processors are in a particular state.
2.1.2 Communication

Therc are two separatc communication networks on the connection machine. The communication
network is a highly connccted network uscd for global communication. Special hardware is used at each
vertex of this nctwork. The NEW'S network is a 2-d toroidal grid of all the processors. The NEWS
network is used for local communication and is also useful for diagnostics since it is much simpler than

the communication nctwork.

Communication Network

1. The deseription of the COND flag is a somewhat simplified version of actual conditional mechanism implemented on the
Connecticn Machinz. -
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Fig. 2. CM Processor
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Architecture of the Conncction Machine processor. There are 8 32-bit registers, 1 ALU, and 8
flags.

The communication network is a independently addressable batch packet switching network.
Independently addressable means that messages can be independently addressed to-any processor. Baich
means that a set of messages are delivered concurrently in a batch, or a Delivery Cycle. It should be
noted that processors do not compute during a Delivery Cycle. Packer switching mcans that messages
have a fixed size. Messages are delivered by passing them back and forth between nodes, or routers, in
the communication nctwork. A router is a special piece of hardware that routes messages throuéh the
communication network. A single router is connected to some small number of processors. A single

processor is connected to one router.

The communication nctwork acts as 2 mailman: picking up addressed messages from processors
with messages to send, delivering messages to the processors at the indicated addresses.  This is an
important abstraction; we do not wish to deal with the particular topology of the communication

" network when writing programs. It is only important to understand the functionality of the

communication nctwork.
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Fhere are some considerations that must be taken into account thr'l designing the communication
nctwork to fit the above abstraction efficicnty. The network should be homogencous since messages can
potentially be sent from any part of the network. A homogencous network looks the same from any cell
within the network. A cube is a homogencous network because the topology looks the same from every
corner of the cube; a tree is not a homogeneous network. To efficiently route messages around the
network the degree of connectivity should be as high as possible. Generally speaking the higher the
degree of conncctivity of the communication network the high~r the throughput  the network. Of

coursc, there are practical limits to the acérec of connectivity for large numbers of verticies.

In the prototype Connection Machine currently under construction the tpology of the
communication network is a 15 dimensional hypercube (or 15-cube) with a router at each vertex (or
corner). Each router is connected to 32 processors. An N-cube is an N dimensional cube; each vertex of
the cube has a single neighbor in each direction. There are N comers in a boolean N-cube and each
vertex is connected to N other corners, one in each dimension. The distance between two verticies is the
minimum numbecr of arcs traversed to get from onc to the other The maximum distance between verticies
is N; potentially one step in each dimension. Each vertex of an N-cube has a unique N bit address
relative to a single arbitrarly chosen vertex of the N-cube. Each bit (B: nth bit) of the address represents
a dimension (Dn: nth dimension). The ncighbor of cornerX in dimension Dn has the same address as
corncrX except that bit Bn is toggled. The addresses of ncighboring corners only differ by one bit.

Figure <4 dimcnsional N-cube> cxhibits an example of addressing in a 4-cube.

Each processor can only store a small number of messages because each processor has only a small

amount memory. There are two bad efTects of a single cell receiving a large number of messages:

1) Only a small number of them can be stored

2) The router that is connected to that processor becomes very congested
because it has to deal with all of those messages.

A single processor should never receive a large number of messages. A simple way to achicve this is to
limit the number of processors that have the address of a single processor.  1f a processor always has
enough memory to store a message from cvery processor that has its address then there will never be a

problein.
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Fig. 3. 4 Dimensional cube
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NEWS Network

Processors are also connected to one another in a 2-d toroidal grid called the NEWS Network. The
NEWS network is not independantly addressable; data can be sent from processors their neighbors in one
of the 4 dircctions (North, East, West, or South). The NEWS network docs not require special routing
hardware since the sender and recciver are well defined and connected by a wire. The overhcad of
routing is not required so local communication vsing the NEW'S Network is quite fast although it is quite
resticted. The NEWS nctwork is also useful for diagnostics since it is much simpler than the

communication network.
2.1.3 Controlling Computer

The third part of the CM is the controlling computer (or CC). The Connection Machine has a
single instruction stream which is controlied by the CC.  Each processor is connected to the global
instruction bus and interprets the single instruction stream; thus, cach processor is doing exactly the same
thing. At the lowest level a Connection Machine program is onc long stream of instructions. (Scc figure
<instruction stream®) During Delivery Cycles the instruction steam is used to control processors

communicating with their router Progams have the form:  COMPUTATION decliveny-cycle
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COMPUTATION deliveny-cycle etc.

Fig. 4. Instruction Stream
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The single instruction stream of the Connection Machine contols the processors. The
processors can cither be manipulating stored data (processor instructions) or communicating
with the communication network (delivery cycle).

Conditional Execution

1t is useful to have processors do different things, depending on the data contained in the memory.
This is accomplished by each processor conditionally executing the instruction strcam using its special
COND flag. A processor only exccutes the instruction sﬁcam if its COND flag is set. A processor is
de-activated by clearing the COND flag. The CC has the ability to sct all COND flags; effectively
turning all processors on. Morce complex control structures can be built using this simple mechanism.

Consider the following program:

If x>y then JUMP B else JUMP C
<action B> JUMP D

<action C> JUMP D

END

OO
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Fig. 5. Conditional Execution
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This figure illustrates how the single instruction strecam can control 2 different processors
depending on their internal state,

-

This program is sent onc instruction at a time to every processor. The CC does not execute any
jumps because there may be some processors that necd to exccute action B and some processors that necd
to exccute action C. The global-PC is the current instruction being cxecuted in the lincar instruction

stream.

The objective is to have cach cell perform cither action-B or action-C depending on the outcome of
the comparison x). Action-B and action-C can be arbitrarily complex, perhaps even containing
conditionals themselves. Onc method of achiceving this control structure would be to have a local-PC on
each processor. If an active processor interprets a jump instruction it sets its local-PC to the new value
and deactivates itself. After cvery instruction block the CC sends out the value of the global-PC to all
active and inactive processoss. The processor is reactivated when local-PC = global-PC.  Active
Processors continuc 10 exccute instructions until deactivated. Figure <conditional execution> shows an

example of two processors activating and deactivating while running the above program.

The GLOBAL flag
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GL.OBAL flag of every processor. Itis often uscful to know if all processors are in a particular state
(for example, if any processors are active.) The CC can usc this valuc to control a conditional jump
within the program. GI1.OBAL is most often used as the end-test of an itcration. Each processor may
requirc a variable number of iterations through the same code to terminate. Each processor uses the
global bit 1o indicate that the computation has NOT terminated. The CC checks the value of the globally
OR-cd GL.OBALI. flag after cach iteration. If any processor has not terminated (the GLOBAL flag of that

processor is sct) then the C.C would broadcast the body of «... iteration again.
2.1.4 Summary of Connection Machine Architecture

The Conncction Machinc is a very fine grain parallel computer. There are 1 million processors;
each processor has 300 bits of local memory. Communication between processors is accomplished by an
independent communication network which delivers independanly addressed messages. Processors store
the address of other processors in the network forming a software graph. The Conncction Machine is a
single instruction stream computer. This instruction strcam is controlied by a Controlling Computer. To
implement conditional control structurc there arc two special flags: COND which controls conditional
exccution, and GLOBAL, which is globally OR-ed with the GLOBAL. flags of all other processors. The

result of OR-ing GLOBAL flags is used by the Controlling Computer to control the instruction strcam.
2.2 Programming Examples
There are two basic paradigms of computation using graphs on the Connection Machine:

1) Concurrently passing data within the graph perfornming computations in
paralic! on the data.

2) Concurrently modifying the graph by passing addresses.

Here arc two simple cxamples to illustrate the two types of computation.
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Example 1: Passking data in a graph: Constraint Propagation

A combinational logic circuit is represented as a graph in which the logic gates are the vertices. The
wire Connections between the output of gate-] and the input of gate-2 are represented by the processor
that represents gate-] containing the address of the processor that represents gate-2. When the output of
gate-1 changes the new output value is sent to gate-2. The output can be calculated in b(dchh of circuit)

time.

Fig. 6. Constraint Propagation

npuTS
‘a
* ouTRUTY ¢)
¢ (A X B)+(€XD) D
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The logic circuit shown on the lefi is represented by the graph shown on the right. Rectangles
within the processor boxes represent mailboxes for receiving mail.  The Ovals represent
address of other processors.

Consider the more complex circuit in figure <fan out> below. Because the output of any gate can be
the input of any number of other gates and cach processor can only store a finitc number of addresses
(because it has a finitc amount of memory) we nced to introduce two more processors called fan-out
processors that takc onc value in and send it to two other processors. These fan-out processors can be

arranged in a tree so that one output can be the input to an arbitrary number of logic gates.



Fig. 7. Fan Out
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Fan out cells (or splitiers) arc used to connect onc cell to two others. Fan out trecs built of fan
out cells can connect a single cell to an arbitrary number of cells.

The output of such a combinational logic circuit can be computed in time proportional to the
number of levels in the circuit. Values for the inputs are passed to the first level of gates which calculate
the appropriate function of the inputs and pass the results to the sccond level of gates. This is procedure
is iteratcd until the final output is calcultated. The important point in this example is that the
computation is accomplished by local message passing in the graph, which is done in parallel. The
computation performed at each node is also done in parallcl but the time required for this is small

compared to the time required for communication.

Examplc 2: Modifying the network: An algebraic simplifier

An algebraic expression can be represented as a tree.  Simplifications of the expression can be
performed by making local modifications to the trec. Each reducible part of the network can be modified
in paralicl. For this examplec the branches of the tree are the binary operators plus and times {+ *}. A
binary opcrator has a left branch and a right branch. A branch can be a value or another algebraic
expression represented as a tree. Values are either a variable {x} or {1 0}. A root vertex is connected to

the top cf the expression tree. As an examplc, the algebraic expression:
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(* (+ (> x0) (+x0))

is shown in figurc <cxample expression.

Fig. 8. Examplc Expression

Graphié repi_c;cnwﬁon of the expression: (¢ (+ (*x0) (+x 0)) 1)

Reductions can be carried out by using the following rules:

(+ x 0) => x
(+ 10) »>1
(+00) >0
(*x0) =0
(*10) =0
(*00)=>0
(*11) 1
(®* x1) =>x

To reduce, cach operator and value scnds a message (o its parent telling the parent its type. The
parent (which is an operator or the ROOT) then dccides if a reduction is possible. If a reduction is
possible then the parent sends the reduced expression (onc of its branches in this casc) to its parent, which
replaces its branch with the new value and sends its address to  the new branch to complete the
Conncction (that is, make it bidirectional). For simiplicity assume that reductions arc done in cycles: all

opcrators that can bhe reduced are reduced in a cycle. When once cycle is complete another cycle begins



until no further reductions can be performed.
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The program for the opcrator Zimes {*} might look like this:

Send cmessage-type: TYPE, value: °*> to perent;
When «<message-type: TYPE received from both children> do
BEGIN
If <my left child or my right child is 0> then become a 0;
else If <my left child and my right child are 1> then become 2 1:
else If <my left child is a 1> then
send <message-type: REPLACE, value right-child> to parent
else If <my right child is a 1> then
send <message-type: REPLACE, valre left-child> to parent:
END
When message-type: ..ZPLACE received from left child> do
BEGIN
Set left child to be the velue of the message
Send <message-type: UPDATE-PARENT, value: self> to left child
END
When message-type: REPLACE received from right child> do
BEGIN
Set right child to be the value of the message
Send <message-type: UPDATE-PARENT, value: self> to right child
END
When message-type: UPDATE-PARENT received do
BEGIN
Set parent to be the value of the message
END

If these rules are applied to the example expression 4 reductions are performed in 2 reduction
cycles; 3 during the first, and 1 during the second. This transformation is illustrated in the figure <Two

Reduction Cycles>.

Fig. 9. Two Reduction Cycles

Two reduction cycles arc applicd to the graph on the Ieft. Three operations are reduced on
the first cycle; onc operation is reduced on the second cycle.
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There is a synchronization problem with this scheme. Consider the expression:

(+ (+x0)0)
The program given above will fail because 2 reductions are operating on the same part of the network at
during the same reduction cycle. (See the figure <Incorrect Reductiond.) The problem is that more than

one reduction can overlap the same vertices in the graph; this is a fundamental problem for many graph

ma: ipulation computations.

Fig. 10. Incorrect Reduction

Examplc of an error using the simple reduction algorithm.

To avoid this synchronization problem allow the value of a reduction to be the value of a reduction. If a
branch determines that it can reduce then it checks to see if the branch with which it will replace itself
(onc of its children) is also reducing. 1f so then the parent branch must wait until it receivas the value of
its reducing child before it can send the new value to its parent. Notice that there is some synchronization

required to perform the reductions so that the tree remains consistent. Consider the following algorithm:



step 1: branches decide if they can perform a reduction and  which branch to replace (local)
check if replacement branch is also reducing: if so then wait until new valuc is attained before
sending replacement valuc up the tree.

ONLY GO ON TO STEP 2 WHEN EVERYONE 1S DONE WITH STEP 1

step 2: send new valucs up the trec waiting when necessary.

Fig. 11. Correct Reduction

The new reduction algorithm produccs the correct reduction.

The resulting code would be:
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STEP 1:

set wait-for-right-child false
set wait-for-left-chilg false
set replace-left-child false
set replace-right-child) false

Leaf Nodes:
Send <message-type: TYPE, value: *> to parent;

Branch Nodes:
When <message-type: TYPE> is received from both children Co
BEGIN .
If <my left rhild or my rigini child is 0> then become a8 leaf node;
else If <my left child and my right child are 1> then become 8 1 leaf node;
else If <ny left child is a 1> ‘hen
set replace-with-right-child true;
else If «my right child is & 1> then
set replace-with-left-child true:
If <replace-with-left-child or replace-with-right-child> then
send <message-type: chiid-reducing> to parent;
END
When <message-type: child-reducing> received from left-child do
1f replace-with-left-child then set wait-for-left-chilc true;
When <message-type: child-reducing> received from right-child do
1f replace-with-right-child then set wait-for-right-child true;

STEP 2:

If replace-with-right-child and (not wait-for-right-child) then
send <message-type: REPLACE, value right-child> to parent;

If replace-with-left-child and (not wait-for-left-child) then
send <message-type: REPLACE, value left-child> to parent;

LOOP-UNTIL <no messages are sent in the network>
BEGIN
When <message-type: REPLACE> received from left-child DO
IF wait-for-left-child THEN
Send <message-type: UPDATE-PARENT, value: self> to left-child
ELSE
BEGIN
Set left-child to value of message;
Send <message-type: UPDATE-PARENT, value: self> to left-child
END
When <message-type: REPLACE> received from right child DO
IF wait-for-right-child then
send <message-type: REPLACE, value: value of message> to parent;
ELSE
BEGIN
Set right-child to value of message;
Send <message-type: UPDATE-PARENT, value: self> to right-child
END
When message-type: UPDATE-PARENT received do
BEGIN
Set parent to be the value of the message
END
END

This program, written in the notation introduced in the next chapter, will appear in an appendix.
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2.3 Applications

The Connection Machine was originally designed to process semantic networks. [Hillis81] The
architecture is genceral enough to be uscful, though perhaps not optimal, for a larger class of applications.
Onc goa! of this thesis is to begin to define this Jarger class of applications. The next section discusses
semantic nctworks. The following scction classifics several types of applications ~at could be effici ntly

implementec - the Conncction ilachine such as digital circuit simulation and data flow computations.
2.3.1 Semantic Networks

A semantic network1 is a directed graph in which the vertices arc nodes and arcs are rclations
between nodes. Consider the example in figure <scmantic network>. This structurc states that Apple-3 is
a Apple; an Apple is a Fruit; and Fruit tastes sweet. Apple-3 will inherit the fact that it tastes sweet. The
semantic network will be represented on the Connection Machine as a software structure by representing
nodes as processors. Scmantic Networks allow a node to have an arbitrarily large number of relations.
Unfortunately, CM processors only have a small amount of memory and cannot store the address of all
the processors they arc liked to by a relation. The same method that was uscd in the circuit example to
solve the problem of mulﬁplc outputs can be used to deal with multiple relations in a semantic network.
A node will become the root of two binary trees, the fan-in and fan-out trees. The branches of the fan-in
and fan-out trec hold links to the fan-in and fan-out trees of related nodes. The leaves of these two trees
are called LINK nodes. Each LINK in a fan-out tree will also be in the fan-in trec of the node to which
the relation points. Link nodes store the type of relation. There are four types of processors in this

scheme:

1. This thesis will only deal with a simple model of semantic neiworks. See "What's in a Link™ by Woods, "NFTL." by Fahlman,
and “Epistemology Status of Semantic Networks” by Brachman for more information on semantic nciworks.
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1) Nodcs; represent the nodes of the network.
2) fan-in cclls; onc branch in a binary trec which stores links TO a node.

3) fan-out cclls; onc branch of a binary tree which stores links TO other
nodes.

4) Links; connect two nodes via the fan-out tree of onc to the fan-in tree of the
other. :

For example, there are many kinds of fruit; therefore, there will be many nodes related to the Fruit node.
An cxample semantic network is shown in figure <semantic networkd. Figurec <CM Graph of Semantic

Network> shows how this part of a semantic network would be represented on the CM.

Fig. 12. Semantic Network

PRUIT

19=-4 TASTES

19=A
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APPLE-288

Apple-259 is a Apple. Appleis a Fruit. Fruit tastes Sweet.

Therc arc several operations that are important to perform quickly on large semantic networks that
are very slow on serial Machines, and could be efficiently implemented on a paralic! machine. Here are

two cxamples:



Fig. 13. CM Graph of Semantic Network
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Graphical rcpresentation of a2 semantic network using fan-in and fan-out trees to hold
multiplc relations.

Example 1: Simple Queries

This class of problems involves a simple search of the graph. Propcrty inheritance is such a
problem. Given the semantic network above a user might ask the question "Docs Apple-259 taste
sweet?". APPLE-259 does not have an explicit TASTE relation; it inherits it from APPLE which inherits
it from FRUIT. APPLE-259 could inherit this relation from more than one sources. A serial computer
would have to scarch each possibility sequentially. The Connection Machine cxplores cach possibility in

parallel.

How fast is the Conncction Machinc versus a scrial computer? For a simple calculation, model a
query as a simple tree search on a balanced binary trec with N leaves. Communication amoung
processors on CM is roughly 100 times slower than memory access on a serial computer. For simple data
operations involving no communication, processing on CM is just as fast as a serial Machine. The scrial |
Machinc will have to traverse the entire tree which will take (2N)*(communication time + processing
time) where N is the number of leaves in the tree. The CM can perform a parallcl breadth first search
will will take (log N)*(J00*communication time + processing time). The CM is a factor of 2N/(log N)

faster in processing time because cach level of the tree can be processed in parallel. The more significant



comparison is the communication time. Since communication on the CM is slower than memory accesses

on a serial Machine N must be rather large (N > 500) for CM to be significantly faster.

Example 2: Adding Ncw Relations

Another important operation is adding new relations to the semantic network in parallcl. In the
example below part of a family tree is represented using only the father-of link. The goal i< to add a
paternal-grand-father relai” sn wherever possible in the fi.- “y trece.  New structure must be added for
every instance of paternal-grar.d-father. It is relatively casy to add a signal relation but there may be
thousands to add throughout the network. The Conncction Machine can add the new relations in

parallcl.

Fig. 14. Adding New Relations
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The grandfather relation is added to a father's father.
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2.3.2 Classes of Applications

There arc several classes of applications that could potentially take advantage of the parallel
archilccturé of the Conncction Machine. Some of theses classes that have been identified will be

discusscd below.,

Scinantic Networks: Scmantic network operations use the CM to concurrently manipulate a large
data structure. The semantic network operations discussed above use the paralicl communication abilitics
of the conncction machinc to traverse the entire graph in parallel. The ability to modify the network by
passing addresscs in parallel is also useful. Operations such as set intersection that could take advantatge
of associative memory can takc advantage of paraliel processing. In fact, without the communication

nctwork the Conncction Machine is just a hairy associative memory.

Constraint Propagation: The CM can also be used to process constraint networks. The constraint
network is represented as a software graph. Values are propagated in parallel along the arcs of the
nctwork. The digital gate example given carlier in this chapter is an example of a constrant propogation
nctwork. Another potentially uscful application of constraint propocation is switch level simulation of
VLSI circuits. Current VLSI chips can contain as many as 500,000 clements. Simulating large systems is
very expensive orn scrial machines becausc only one element can be considered at a time. The Connection
Machine can propagate signals through the network in paralicl. Systolic Algorithms: A systolic array
performs a parallel opereration by passing data through a network of connected processors. Each
processor performs some simple opceration on the data as it is passed through. Systolic arrays rely on
regular grids of interconnected processors to process data. The algorithm is tied to the topology of the
communication network. An example of NxN array multiplication in O(N) time using a hexagonally
mesh connected network is given in [Mcad and Conway80 pg 276-280). The Connection Machine can
simulate a systolic array by eithcr 1) projecting the interConnection topology of the systolic array onto
thc CM communication topology, or 2) building a software structure that modcls the topology of the
systolic array. In either case the Connection Machine can simulate the systolic array within a constant
factor of spced. The Conncection Machine could be used as an cfficient simulation tool for systolic array
designers. If the application did not warrant the cost of building special purpose hardware (the systolic

array) the Connection Machine would still be much faster than a scrial computer.
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Generate and Test: Generate and test is a method for exploring a search space; points in the search
space arc gencrated and tested for success. Generate and test applications can take advantage of the
Connection Machine by generating the scarch space in parallel and testing gcneratcd'possibilitics in
parallel. The scarch spacc is often a tree which can be generated breadth first one Jevel at a time. Testing
of gencrated structures is also done in parallel. The implementation of GAL, an expert system that infers

the structure of DNA molecules, will be examined in a letter chapter.

Graph Reduction Fvaluation: Computations can be represented as graphs. An opcrater is a branch
of the graph and its operands are the children of the branch. Evaluation is done by reducing the graph by
replacing an application of an opcrater to its operands with the result. The algebraic simplifier that was
described carlier in the imroduction is a simple example of this. Turner [?] describes an implementation
of SKI combinators which translates lambda calculus cxpressions into a graph which can be evaluated by
performing simple local reductions on the graph. The implementation of SKI combinators on the
Connection Machinc will be discussed in a latter chapter. In graph reduction evaluation the data and the
program arc represented as data structures in the Connection Machine. The CM instruction stream acts

as the interpreter for the program represented as a software structure.

Data Flow: Data flow languages represent a program as a fixed graph. Evaluation is performed by

passing streams of messages through the graph. For example: the procedure

(defun foo (x y z) (®* (- x y) (+ z x)))

can be represented as a graph shown in figure {data flow].

Exploiting the communication network topology: Even though the underlying philosophy of the
Conncction Machine is to use the communication network abstractly, any regular topology can be
exploited. For example, highly connected topologics can be used as sorting Machines [Kung]. A sorting
Machine can remove duplicate clements in a set by sorting all of the elements and eliminating all but one
of each clement type. This is the Projection operation in the Relational Algebra described in [Date]. A

latter chapter will examinc using the CM for processing Relational Data Bases.

At a Jower lever of abstrcaction there arc certain operations which are useful for manipulating
graph structures which can be accomplished mush more cfficiently by using the underlying topology of

the network. For example: locating free cells to build new structure. Opcrations that rely on the
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Fig. 15. Data Flow
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Data Flow graph of (dcfun foo (x y z) (* (- x y) (+ 2 x)))

communication topology can be formulated as atomic operations; the programmer is not concerned with
the particular implementation. If the underlying topology changes only the atomic operations need be

reimplemented. It is uscful to form hybrid systems in this way.



3. Notation: MP

This chapter describes a simple notation for writing programs for the Connection Machine. It is
included for the interested reader; it is not necessary understanding the rest of the thesis. A more abstract

language for programmimg the Connection Machinc is described in [Bawden83].

The MP language - .1 assembly language for the CM. MP Expressions are easily reduced into the
machinc instructions of the single instruction strcam which all processor interpret. The major features of

MP are named variables, expression evaluation, conditionals, and special features for handling mail.

3.1 Variables

MP has a type system similar to PASCAL. Because there are only a small number of bits availible
to each processor the number of bits allocated for cach variable is limited. 1t is possible do declare types

as sets or as scalars. Here is an cxample:

:::Type declarations

DCL-SET-TYPE bit: {0 1)

DCL-SCALAR-TYPE random-set: {0 .. 17)

DCL-SET-TYPE another-random-set: {red yellow orange green)
DCL-SCALAR-TYPE register: {0 .. 2e32-1)

;;.variable declarations
VAR foo: bit
VAR bar: another-random-set

Variables can be assigned and tested for equality. Scalars can be compared to other scalars using
greater-than and less-than. The results of tests can only be used in conditionals which will be described

next. Here is an example:

(if (= bar ‘red)
(progn
(set foo 0)
(set bar ‘blue))
(toggle foo))
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3.2 Conditionals

(if <conditional> <then-clause> <else-clause>)

IF has the same semantics (for a single processor) as IF in any scrial language. IF offers a nice
abstraction for handling conditional exccution using the single instruction stream. An IF expression
cxpands to code that * 115 on the approy.. atc processors (depending on the value of the conditional) to
cvaluate the appropriatc  iuscs of the expre. -ion. Expressions can be grouped together to form a clause

by (progn <expi> ... <expN>). Consider this example.

;first level conditional
(if (= bar ’'red)
;first level then
(progn
(set foo 0)
:second level conditional
(if (> number 3)
;second level then-clause
{set foo 1)))
first level else
(toggle foo))

Assumc all processors are interpreting the instruction steam. All processors perform the test (= bar
'red). Thosc processors for which the result is true cxccute the <then-clause); the rest evaluate the
<else-clausc>. While cvaluating the first clause there is another condiubnal. Only those processors that -
are evaluating the first level <then-clausc> will evaluate the second conditional. Only those processors
for which both the first level conditional and second level conditional are true will evaluate the second
Jevel conditional. Notice that at each level of conditional a subset of the previously active processors will
become active to evaluate the next level of the conditional. This is called subset sclection. For a graﬁhical

interpretation of what is happening see figure [graphic-int).
3.3 NEWS communication

Values can be passed along the 2 dimensional toroidal NEWS communication network.

(get <NEWS-FLAG> <source-var> <destination-var>)
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Fig. 16. Graphical Interpretation of IF
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:first level conditional
(if (= bar 'red)
;first level then
{progn
(set foo 0)
:second level conditional
(if (> number 3)
:second level then-clause
(set foo 1)))
first level else
(toggle foo))

All processors {A B C D E F} are initially interpreting the instruction stream. The first
conditional (= bar red) is true for {A B C D}. Those processors remain active. The first level
<then-clasuc) is evaluated. The second conditional (> number 3) is true for the subset {C D}
of {A BCD}. {C D} remain active. The sccond level <then-clauscd is cvalued. Afier the
first level <then-clause> has completed evaluation the subsct {A B C D} are deactivated and
the subsct {E F} are activated. The first level <else-clausc) is evaluted. All processors are
reactived.

The effect of this command is to set <destination-vard in a ccll to the value of {source-var) in the
cell neighboring it in the dircction indicated by <NEWS-flag>. Valid dircctions are {N E W S}

concspondi;\g tv North, South, East, and West.
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3.4 Example: Conway's Life

Conway’s Lifc is a popular animqlcd graphics demonstration. The state next state of a pixel is
determined by the state of its 8 ncighbors. Pixcls have 2 states: ON and OFF. If 3 ncighbors are ON
then the next state of that pixel is ON. If there are fewer than 2 or more than 3 neighbors that arc ON

then the next state of that pixel is OFF. Otherwise, the state of that pixel remains unchanged.

Conway's Life:
VAR count: {0 .. 8}
VAR temp, state: {0 1}

siiinitialization
(set count 0)

;:.for each neighbor get it's state and conditionally increment count
:i:(get <NEWS-flag> <source-var> <destination-var>)
:::Diagonal neighbors require 2 steps (ex: get NW neighbor by going
;i:west, then north)

(get N state temp)

(if (= temp 1) (increment count))

(get E state temp)

(if (= temp 1) (increment count))

(get W state temp)

(if (= temp 1) (increment count))

(get S state temp)

(if (= temp 1) (increment count))

(get N state temp)

(get W temp temp)

(if (= temp 1) (increment count))

(get N state temp)

(get £ temp temp)

(if (= temp 1) (increment count))

(get S state temp)

(get W temp temp)

(if (= temp 1) (increment count))

(get S state temp)

(get E temp temp)

(if (= temp 1) (increment count))

;::conditionally update
(if (= count 3)
(set state 1)
(if (not (= count 2))
(set state 0)))

This program cxpands into about 100 micro instructions.
3.5 Mail

There arc several types and variables for handling mail and pointers. A Pointer is a composite data

type that contains the address of another processor and a mailbox within that processor.

DCL-TYPE MBX (LEFT-CHILD RIGHT-CHILD PARENT})
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DCL-TYPE ADDRESS (0 .. 2e20-1)
:::Pointers sre composite data types
DCL-TYPE POINTER composite (MBX ADDRESS)

(get-mtx <pointer> «<var>)
(pet-address <pointer> <var>)
(set-ntx <poiner> <vars>)
{(set-acdress <pointer> var>)

Fig. 17. Pointer Type
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The command set-mbx scts the mbx part of the pointer to the value of <vard. The command
get-mbx sets the variable <var> to the value of the mbx part of the pointer. The commands get-address

and sct-address arc analogous.

For every symbol <(quux) declared to be a MBX a boolean (quux>mail is also declared. This
boolcan is set by the communication network when a message is delivered to that mail box. In the
example codc above there would be three boolcans (LEFT-CHILD-MAIL RIGHT-CHILD-MAIL
PARFENT-MAIL) declared.

Sending mail is done by invoking a Grand Delivery Cycle. This is done using the command:

(send (varl var2 var3 vard) pointer)

‘When a message arrives in a MBX the boolean Cquux>-mail is sct indicating that mail has arrived in that
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MBX. A MBX is abstract buffer that holds the parts of the message. Data is extracied from the mailbox
by the command:
(get-msg ambx> <index>)

Get-msg will get the indicated message. 1t is used cither as the value of an assignment or as the argument

10 a predicate.

Therce is another important abstraction that .; used for sending messages. S *he time it takes i
executc a CM program is usually dominated by communication time it is uscful to share GDCs.

(set-up-send (varl .. varN) pointer)
Sci-up-send will mark the ccll and move the values of the variables into an output buffer where they will
be sent. Only onc message can be sent to a pointer in this way since there is only one output buffer per
pointer. Buffcred messages arc all sent at once by send-buffered-messages.

(send-buffered-messages)

Send-buffered-messages sends all buffered messages.
3.6 Iteration

The iteration branching mechanism is implemented by branching conditionaly on the GLOBAL

flag. This is the only way to look at the result of ORing all GLOBAL flags together in MP.

(while <global-exp>
Body)

<global-exp> is an expression that is computed at all active cells, the result of which is put in the

GLOBAL flag. The body is exccuted until <global-exp> is false for all active cells.
3.7 Example: Tree Addition

To show how these commands arc used herc is a simple program that computes the sum of values

stored in the leaves of a binary tree,
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DCL-TYPE MBX {LEFT-CHILD RIGHT-CHILD PARENT)
OCL NODE-TYPE (fan-in leaf TOP}

OCL LEFT-CHILD POINTER

DCL RIGHT-CHILD POINTER

DCL PARENT POINTER

DCL ACCUM NUMBER

(define fan-in-add
siiinitialize accum
{(if (= NODE-TYPE ‘'fan-in)
(set accum 0))
s:.:leaves send to parent
(if (= NODE-TYPE 'leaf)
(send accum parent))
;iiiteration loop
(while (or (= left-child-mail true)
(= right-child-mail true)) iwhile there is mail
(if (= NODE-TYPE 'TOP)
{progn
(if (= Yeft-child-mail true)
(add sccum (get-msg left-child-mbx 1)))
(if (= NODE-TYPE 'fan-in)
(progn
;;.200 mail from left-child to accum
(if (= left-child-mail true)
(add accum (get-msg left-child-mbx 1))) ;accum <- accum + (gm 1c 1)
;::a0d mail from right-child to accum
© (if (= right-child-mail true)
(add accum (get-msg right-child-mbx 1)))
;::5et up send to parent
(if {(or left-child-mail right-child-mail)
(set-up-send (accum) parent))
(set left-child-mail false)
(set right-child-mail false)))
;i:**other code for other processors®®
(send-buffered-messages))
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Fig. 18. Adding Leaves of a Tree
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4. Algorithms for N-cubes

This chapter prescnts several uscful algorithms for a paralicl computer that has a boolcan N-cube
communication topology. Thesc algorithms perform operations that would be incfficient to implement at
the level of abstraction where the programmer docs not care about the topology of communication
network of the specific machine he is programming. A programmer would view these algorithms as
primitive operations; like CONS in LISP. Hopcfully, these algorithms could be adapted to ruﬁ ctuciently

on any parallel machinc with a highly interconnecied communication network.

Fxample 1: A programmer would like to writc a CM program in which cells in
a data structure build more structure in parallel. This requires that new free
cells be Jocated to form the new structure. )t turns out to be very efficient to
do a global computation that calculates the address of a free cell for each cell
that wants to cons.

Example 2: There are two scts called A and B. The goal is to form a new set C
that is the cartesian product of sets A and B. A primitive is supplied for
performing this computation. Primitives are also supplicd to access elements
from a set onc at a time.

The general idea of many of the algorithms in this chapter is to acomplish the computation by a
regular patern of passing mcssages. This tends to utilize the communication much more cfficiently than a
random pater of passing messages. For example, a delivery cycle where the distance between the sender
and recipient is only one step in the N-cube would be much faster than if the distance between sender

and recipient was 2 or more.
4.1 Mapping Notation

Many algorithms in this scction operate on the absolute address of a ccll. In a boolcan n-cube the
corners arc defined by an n bit address. Lach corner has n ncighbors, onc in cach dimension. Each bit in
_the address corresponds to one dimension. The address of a cell’s neighbor in the Mth direction is that
cell's address (SELF) with the Mth bit toggled. 1 use a special notation for dealing with scts of addresses
and mappings between sets.  x represents cither al ora 0. The mapping between two sets (ex: x1 sends

a message to x0) is defined by cach member of the first set mapping to and address in the second set such
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that for each dimcnsion:

1) if there is an x in the Mth position in the first st and an x in the Mth
position in the second sct, addresses in the first set with either a 0 or 1 in the
Mth position would map to the address in the second set with the same value
(x1->x0: 11 maps to 10, and 0] maps to 00).

2) if there is an x in the Mth position in the first sct and a 1 (or 0) in the Mth
position in the second set, addresses in the first sct with cither a 0 or 1 in the
Mth position would map to the address in the sccond set with 1 (or 0) in the
Mih position (x1 -> 00: 01 maps to 00, and 01 maps to 00).

Example: 1xxx send message to 01xx. 1xxx defines a sct of 23 cells. O1xx defines a set of 22 cells. Each

cell of the second set will receive a message from 2 cells in the first set:

1000, 1100 -> 0100
1001, 1101 -> 0101
1010, 1110 -> 0110
1011, 1111 -> 0111

This notation is useful for describing scts and message passing patterns.
4.2 Dimension Projection

Dimension projection is a way of imposing a spanning trec onto a boolean n-cube using the arcs
between corners of the cube as arcs between branches of the trec. These trees are called calculated trees
because the parents and children of a branch arc calculated as a function of the address of the branch.
The advantage of calculated trees is that tree operations can be accomplished very quickly because arcs
between branches are real communication paths. The calculated trees of Dimension Projection span all

processors in the n-cube.
4.2.1 Folding Tree

One calculated spanning tree is called the Folding Tree. Fach cell in a boolcan n-cube has n bits of
address. In the folding tree the address of a ccll’s parent is calculated by toggling the first non-zero bit in
that cclls address. The number of leading zerocs in a processor's address defines the level and number of
children of that processor. 'This definition produces a tree that has a non-uniform branching factor. All

children are nearest neighbors in the boolean n-cube. Therefore cach child is in a different dimension.



The children of 0001xxx would be:
{1001xxx 0303xxx 0011xxx}

If dimensions arc handled onc at a time cach branch will receive a maximum one message from its child
in that particular dimension. Figure <Folding Dimension Projection> shows a folding tree imposed on a

3-cube.

Fig. 19. Folding Dimension Projection

The Folding Tree spanning a 3-cube. Step 1: 1xx -> Oxx: Step 2: 01x -> 00x; Step 3: 001 ->
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Calculated trees are often used for collecting data from the branches and leaves. Example: Fach
processor stores a number in a variable calied ACCUM. The goal is to compute the sum of every
ACCUM. The sum is computed by sending data up the tree from the leaves to the higher branches of the
tree. The root of a folding tree imposed on an N-cube will have N children. If dimensions arc handled
onc at a time cach branch can reccive a maximum of one message. When a processor receives a message
it adds thai . sluc to ACCUM. lierate through all dimensions starting from the dimension corresponding
to the most sig.iificant bit (most significant dimension).  Each successive iteration deals with the the next
most significant dimension. The computation is complete in N iterations. This calculated tree is called
the folding tree because on the first iteration half of the cells send a message to the other half: on each
successive-iteration half of the cells that just received messages send a message to the other half of the
cells that just received messages. The final effect is that the cell with address 0000... will contain the sum
of every ACCUM.

ACTIVE:=TRUE

Iterate: DIM = Start with most significant bit of address.
on each iteration assign DIM to next most
significant bit.

+::STEP 1:

IF ACTIVEsTRUE and NTH-BIT(SELF) = 1 then
Send ACCUM to Toggle(SELF DIM)
ACTIVE:=FALSE

. +::STEP 2: after mail is delivered

IF message is received THEN
ACCUM:= ACCUM + <datum just received>

4.2.2 Binary tree

It is oftcn uscful to impose a binary tree on the N-cube. One advantage is that information can be
pipclined up the tree because cach branch only has two children. It is impossible to imposc a binary tree
on a N-cube using only ncarest ncighbors. This section describes an algorithm for calculating parents
such that the distance from a branch to one of its children is 1 edge of the N-cube and the distance to the

other is 2 edges of the N-cube.

The parent of a cell is calculated by toggling the first non-zero bit in its own address and setting the
next Jeast significant bit to 1. Successive levels of the tree, starting from the leaves (1xxx) to the root

(0001) look Tike this:
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1xxx => 0lixx
0i1xx => 001x
003x -> 0001

Figure <Binary Dimension Projection> shows a binary trec imposcd on a 3-cube.

Fig. 20. Binary Dimension Projection

100 101 111 110

This figure shows a binary tree projected onto a 3-cube. Step 1: Ixx -> 01x: Step 2: 01x -> 001,



4.3 Enumeration

Enumeration, the assignment of unique number from 0 to M-1 to M marked cells, is the basis of

many important algorithms. Abstractly, cnumcration can be viewed as ordering a disjoint set of cells.

1

Enumcration is donc by a process called subcube induction.” Subcube induction works by

combining two b-cuber with certain prop-itics into one (b+1)-cubc that also maintains these propertics.

N

Cells that are to be cnurr - -ted are marked. Assume that cach b-cube has the following two propertics:

Every clement knows how many marked cclls arc in this b-cube (call this
NUMBER-MARKED)

Marked cells are enumerated uniquely from 0 1o ¥UMBER-MARKED - 1.
(call this ID)

Assume that therc is a one-to-one mapping between eleinents in two b-cubes.

The goal is to combine two b-cubes into one (b+1)-cubec maintaining the properties described
above. Each element in both b-cubes send their NUMBER-MARKED to the congruent element in the
other b-cube. Each element reccives a message from the congruent clement in the other cube (call it
OTHER-NUMBER-MARKED).  Each element sets NUMBER-MARKED to the sum of |
NUMBER-MARKED and OTHER-NUMBER-MARKED. NUMBER-MARKED is now the total
number of marked cells in both b-cubes. Within only onc of the b-cubes all marked cells set ID to the
sum of OTHER-NUMBER-MARKED and ID. Marked cells are now uniqucly enumerated from 0 to
NUMBER-MARKED - 1. Both propertics are maintained in the (b+])-cu5e. Figuré <enumeration>

shows two 2-cubes combined into one 3-cube.

Now we shall show how this process of combining two enumcrated b-cubes to form a (b+ 1)-cube
can be applied to cnumerating an N-cube. Initially there are 2N 0-cubes. A O-cube is Jjust a single cell. In
a O-cube if the cell is marked then NUMBER-MARKED is 1 and 1D is 0; if the cell is not marked
NUMBER-MARKED 0 and ID is undcfined. 0-cubcs arc paired and combined into aN-1 1-cubes.

1-cubes are paired and combined into N2 2-cubes. This process is iterated until there is 1 N-cube.

1. Invented by Alar Bawden in the context of the Conncction Machine.
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Fig. 21. Enumcration

7

Two enumcrated 2-cubes combine to form one enumerated 3-cube.

When this is done all marked cells will be uniquely cnumerated. This requires N itcrations of pairing and
combining.

A single combination will run very quickly if the mapping between the two combining cubes is
along communication lines. Obscrve that a set of B bits of thc address bits defines a B-cube that is

embedded in the N-cube assuming the remainder of the bits are fixed. For example, in an 7-cube:

xxx0000
xxx1000

defines 2 3-cubes embedded in the 7-cube. There is one-to-onc mapping along arcs of the 7-cube
between the two 3-cubes (this should be fairly obvious). To perform the enumeration on an 7-cube
would requirc 8 itcrations of pairing and combination. Communication will be between the cells as
paired below. Thc lcading Xs represent the b-cubes; the trailing Xs represent the number of b-cubes

being combined. There will be 2°128 messages sent cach iteration.

Oxxxxxx xOxxxxx xx0xxxx xxx0Oxxx xxxx0Oxx xxxxx0x xxxxxx0

Txxxxxx  xIxxxxx xx1xxxx xxxIxxx xxxxlxx xxaxxxIx xxxxxxl
128 64 32 16 8 4 2

0-cubes 131-cubes 2-cubes 3-cubes 4-cubes 5-cubes ©E-cubes
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4.4 Consing

Dynamically building structurc in parallel is an improtant capability of the Connection Machine.
Cells, being viewed as active processes, must be able to "cons” free cells quickly and in paralicl. Problem
Statement:

There are two sets: A sct of marked cells want to find the address of a free cell and a set of

marked free cells. Assume that the set of free ~-lls is larger than . - set of cells that wants to

cons. Thr goalis “ave cach cell that wantsto co.: :ceive a unique ac dress of a free cell.
Historically this has been

onc of the more interesting problems that the CM group has tried to solve.

The algorithm prescnted here consists of two parts:

1) Uniquely enumecrate cells that want to cons. then cnumerate free cells. The
time requircd for this operation is roughly 20 delivery cycles per ecnumeration.
Enumcration was described in the last section.

2) Usc the ID (enumeration number) of the cells in both scts as the address of
an intermediate cell.  Cells in both sets send a return address to this
intermediate ccll. Intermediate cells will have to have 2 mailboxes free to
handle these two messages. Intermediate cells send the return address of the
frec ccll TO the return address of the cell that wants to cons. When complete
each cell that wants to cons has the address of a unique free cell. This takes 2
delivery cycles. Sec figure <consing>.

Therc are two refinements which can be made to this algorithm.
First, the intermediate cells should be sprcad throughout the
communication network as much as possible because
messages coming into intermediate cells will be serialized.
This is casily avoided by having one intermediate cell per
chip. If morc arc required then there could be 2 intermediate cells per
chip, etc. The second refinement is to enumeratc all free cells
initially creating a kind of a frec list. After a consing cycle
the total number of consed cells is known globally (becausc of the
enumcration of the cells that want to cons). All free cells

decrement this number from their 1D number. ‘This is analogous
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Fig. 22. Consing
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to the concept of a free list. The difference is that

it is accessced in parallel by address arithmetic.

It is often uscful to allocate morc than one free cell at a time.
Marked cells may want the address of some independent number of free cells.
Some might want to cons 3, others 7, etc.
Call this number DELTA.
Goal: Enumerate the
cells that want to cons so that the next cnumerated cell from a
given enumerated cell will be ID+DELTA.

For example:

cell A: Cdelta=3 id=0
cell B: delta=1 id=3
cell C: delta=5 id=4
cell D: cdelta=2 id=9

Once this is donc cclls that want to cons will point to the first cell in a block of DELTA intermcdiate
cells. Free cclls can be collected by accessing the contiguously addressed intermediate cells. Sec figure

<consing blocks>. This is casily accomplished by modifying the initial conditions of the enumcration



Fig. 23. Consing Blocks of Free Cells

SA N=3 190 8C: =g 1d=¢

algorithm. Using the cnumeration algorithm presented in the last section just count yourself DELTA

times when setting up the 0-cubes. NUMBER-MARKED = DELTA initially for the 0-cubces.

4.4.1 Frec List Consing

Another modification of this algorithm would be to dircectly calculate the address of free cells instead of
using intermediate cells. This can be done by organizing frec cells into a lincarly contiguous region. A
method for doing this is described in the scction on grey code transformations.  The address of the first
free cell is a globally known number: NEW. Enumecration is done as usual. Instcad of going through the
intermediate cells the address of a free cell is directly calculated. When the consing is complcic NEW is

incremented by the total number of cons cells allocated in the consing cycle. This is the next frec cell in

the list.

Definc the list to be a lincar ordering of all cells in the machinc which wraps around from the end
to the beginning. Non-free cells arc located between a pointer called OLD and NEW. If Non-free cells
can be reclaimed from the cells directly ahcad of OLD then NEW can wrap around allocating new cells
until it rcaches OLD without ever having to perform garbage collection. If NEW ever hits OL.1) then

garbage collection is required.



Fig. 24. Free List Consing
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Gargabe collection for this scheme requires that active structure that is distributed through the
lincar array be compacted to a contiguous region at the beginning of the linear array. The rest of the

linear array will be free cells and frec list consing can continue. This opcration is accomplished in three

steps:

1) Enumerate cclls that are part of active structure. Active cells are numbered
from 0 to M. Each cell's ID will be its new address at the beginning of the
lincar array.

2) Pointers within the active structurc must be updated with the new
addresses. Since each cell knows its new address this opcration is easy.

3) Oncc address have been updated each ccll moves to its new address.
Moving data to a cell that is itself moving data to another cell is no problem if
there is a small amount of temporary storage available at each processor. New
data just replaces the old data.

The time required to do Garbage collection is indcpendent of the amount of data to be moved and
Jogarithmicly proportional to the sizc of the N-cube (cnumeration) if onc assumes that dclivery cycle time
is constant. Enumcration takes 20 delivery cycles which is logarithmicly proportional to size of the

N-cube. Updating conncctions (bidirectional pointcrs) can be done in constant time becausce each cell
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can only have a small number of connections. Moving cells requires time proportional to the amount of

data contained in cach ccll.
4.5 Grey code transformations

This section describes how to find a Hamiltonian path] through an N-cube, or a subcube of the
N-cube. The N bits can be subdivided into S sets (Si bits in cach) which will define an S dimensional
space with 251 ¢lements in cach dimension. For example, the 20 bits in the address of cach processor in
the 20-cube could be divided into 3 scts: S1 S2 S3. S1 would be 6 bits; S2 would be 6 bits; and S3 would
be the remaining 8 bits. This would define a 2652658 3-dimensional space embedded within the

N-cube. Sce figure <3-d spacc projected onto N-cubed.

Fig. 25. 3-d space projected onto N-cube

(1104 ] e BITS | | [ 1 104 ] -> (A
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The address spacc of thc machine is divided into 3 scctions which define a 64x64x256 3
dimcnsional space.

1. Visit every member is sct exactly once.



A Grey coding is a numbering where the binary representation of cach number is only different
from its predecessor by 1 bit. Such a numbering will define a Hamiltonian path through an N-cube. An
algorithm is presented for converting boolcan numbers to grey coded numbers and converting grey coded

numbers to boolcan numbers.

(defun number-to-grey (number)
(do ((1 bits-in-pointer (1- {))
(result number))
({= i 0) result)
(if (= (nth-bit i humber) 1)
(setg result (toggle-bit (1- i) result)))))

(defun grey-to-number (number)
(do ({i bits-in-pointer (1- 1))
(result number)
{(first-1-p nil))
((= 1 -1) result)
(cond (first-1-p
(cond ((= 1 (nth-bit (1+ i) result))
(setq result (toggle-bit i result)))))
((not first-1-p)
{cond ((= (nth-bit i number) 1)
(setq first-1-p t)))))))
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Example: B5-cube

N N base 2 Grey Coded N
] 00000 00000
1 00001 00001
2 00010 00011
3 00011 00010
4 00100 00110
$ 00101 00111
6 0C110 00101
7 0c111 00100
8 01000 01100
9 01001 01101
10 01010 01111
11 01011 01110
12 01100 01010
13 01101 01011
14 01110 01001
15 01111 01000
16 1000 11000
17 10001 11001
18 10010 11011
19 10011 11010
20 10100 11110
21 10101 11111
22 10110 11101
23 10111 11100
24 11000 10100
25 11001 10101
26 11010 10111
27 11011 10110
28 11100 10010
28 11101 10011
30 11110 310001
31 11111 10000

4.6 Projection of a tree onto a linear sequence

This scction describes projecting a tree onto a lincar sequence, This operation is useful for
accessing lincar scquences of cells in log time instcad of lincar time. For example: There are 100 linear
blocks of 1000 cells cach. A unique datum in the first ccll of each block is to be copied to every element
of the respective lincar blocks. It would be advantageous if a tree could be supcrimposed on the lincar

blocks.

This turns out to be very easy by combining the idcas of dimension projection and grey coding.
The first step is to define the position of cach cell in the block relative to the first cell by the folding trec
dimension projection algorithm. Once this is done the either dimension projection algorithm can be used
by using the position of the cell in the block as its address offsct by the address of the first cell in the

block.



The goal is 1o have cach cell in the block know its position in the block (from which it can calculate
the address of the first cell). The block is a set of contiguous cells ordered by a grey code numbering.
The first cell knows the number of cells in the block. We will number the cells in the block by using the
folding tree dimension projection algorithm to calculate children. The calculation of cach child is done
by using the offsct from the first clement as the address and then grey code adding the address of the first
clement.  This is best illustrated by example shown in figure <lincar projectiond. In this example there is
a 5 clement block starting at address 011, 2 in grey code numbering. The first child of 011 calculated
using the folding tree dimension projection algorithm  (the rule is 000 -> 001) would be 010 (011 grey +
001 = 010.0r 2 + 1 = 3). During the sccond step 000 (index:000) and 010 (index:001) would calculate
children using the rule 00x -> 01x. The child of 000 is 110 (011 grey+ 011 = 110,0r 2 + 2 = 4). The
child of 010 is 111 (011 grey+ 010 = 111,0r2 + 3 = §). The next stcp uses rule Oxx -> 1xx. The child

of 000 would be 101. All other cells calculate children that are outside of the block.

A B (]

0 000

1 001

2 011 0 000
3 010 1 001
4 110 2 010
5 111 3 o011
6 101 4 100
7 100

A=index

B=address, sequence is defined by grey code numbering
Csblock offset
Dstree folding dimension projection address (same as C)

Folding Tree Rule (use E)
1xx -> Oxx
0ix -> 00x
001 -> 000

4.7 Cartesian Product

The Cartesian Product calculation can be done by using the ideas of enumeration and lincar
projection. Given two scts A and B the cartesian product of these two sets is the set of pairs of each
possible combinations of 1 clement from A and 1 element from B.  The cartesian product will have

|A]*|B] clements.
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Fig. 26. Lincar Projection
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Step 1: Enumerate set A and set B.
Step 2: Each element of A is sent to ID*B. (ID is the enumeration)

Step 3: Each element from A in the linear block replicates itself B times
into the next B elements from where it started. This is done by
linear projection.

Step 4: Each element of B is sent to ID. This takes one delivery cycle.

Step 5: Each of these elements replicates
itself A times. Each successive element is offset by |[B].

Step 1 takes 2*logN PDC for 2 enumeration. Step 2 takes 1 GDC. Step 3 takes 2*log|B} PDC. Step 4
takes 1 GDC. Step 5 takes log|A| GDC. Obviously it is better to call the smaller sct A because replication

docs not follow a nice pattern.
4.8 Sifting

Even though locality is not important in our modcl of the Conncection Machine it is the case that
cells that arc closer together can communicate faster than cells that are scparated by large distances.
Sifting is a global algorithm for moving cclls around the communication network in such a way that cells
arc closcr together. Pointers TO a cell must be updated when that ccll moves. An optimization makes it

possible to move several times before updating pointers.
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Fig. 27. Cartesian Product
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STEP

The basic idea is to pair processors and compare the pointers stored by the cells on those two
processors.  If trading positions is mutually beneficial then the cells trade places. Pairing is done by
choosing a dimension and comparing processors along that dimension arc. When cells trade places the
processors remember when (what iteration) the trade took place. Several iterations can be made without
updating pointers TO the moving cells. After several iterations cach cell sends a message to the processor
where the cell it pointed to used to live. This message then traces the trail left by the cell. When the cell
is found then a message containing the new address is sent back to the origin of the message. The

procedure would be donc for cach pointer TO a cell.

An example is shown in figure <Sifo. Cell X p_oints to ccll A which lives in processor 1. Cell A
moves from processor 1 through 2 and 3 to processor 6. Cell X sends a message to processor 1 which
knows that the cell that used to live there moved to processor 2 on the first iteration of the SIFT. The trail
is followed to processor 2 which knows that the cell that lived there after the first iteration moved to
processor 3. The trail is eventually followed to processor 6 where cell A now lives. A message is sent back

to X with the ncw address.
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Fig. 28. Sift

4.9 Arbitration

Given a set of active cells Arbitration selects a single element. This is useful for accessing elements

in a set one at a time.

Step 1: A1l cells in the set are activated.

Step 2: Iterste through all bits of the address.
For each bit: If there are any active cells whose address
§s a 1 in this particular dimension then those cells stay
activated and all others are deactivated. Existence of active
cells is determined by using the GLCBAL bit. 1In the case
where al1 cells are turned off just back up one step.

When this algorithm is complete the element of the sct with the highest address is active. This
computation requires O(N) I-cycles. An example is shown below. Initially all cells arc active. The goal is

to deactivatc all but one.

Step0 Stepl Step2 Stepd Stepd Stepd
01101

10011 10011

11001 11001 11001 11001

11011 31011 131011 11031 11011 11011
10111 10111



4.10 Sorting; no, not again

Using the CM as a sorting machine can be very uscful. For example, to remove duplicate elements
from a set: Sort the sct and only keep first of duplicate elements. Sorting on highly connected networks

has been described in [K ung]] will not be described here.
4.11 Macro C~' >

Abstractiy, it would be desirable if cells were not strictly limited to be contained on a single

2 should only loosely be defined by processor size. Cells

processor. To statc it another way, granularity
will still have to be fairly small to run cfficiently on the machinc but cells should scale up gracefully.
Large cells can be made from smaller cells by connccting them together to form a conglomerate structure.
Unfortunatcly this requires that large cells communicate by using delivery cycles which is fairly
inefficient. It would be better if large cells be contained in contiguous memory so that communication
would be done over real communication paths. NEWS flags arc used to group cells together to form
macro cells. A macro ccll lives on 2 or more contiguous processors. NEWS communication can be used
because communication is well defined and the overhead of general message passing is not needed.
Macro cells arc casily grouped into 2 dimensional arcas. Mail to the cell could be delivered to any of the

processors that comprise the cell. Abstractly, mailboxes could be located on any of the processors in the

cell. This should all be transparent to the programmer.

1. Kung vses a paralle! version of a Batcher merge sort
2. Granularity i thc amount of memory required for a cell.
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Fig. 29. Macro Cells

Single cclls are grouped together to from larger Macro cells.
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5. Algorithms for Binary Trees

This chapter deals with algorithms for manipulating binary trees as data structures on the CM.
Treces are a uscful structurc for parallel machines because they relate a root to N Ieaves through JogN
levels using N-1 branches.  Many interesting things can be donc by using regular message passing

patierns within trees.

There arc two types of trees discussed in this thesis:

Calculated trees: The address of the parent and two children of a branch are a
function of the address of the branch.  Notc that the topology of a calculated
binary tree cannot change. Calculated trees are usually projected onto some
other topology so that it can be treated as a tree. An example of a calculated
binary tree is the spanning binary tree used in Dimension Projection described
in Chapter "N-cube Algorithms”,

Explicit trees: The address of the parent and children of a branch are stored
explicitly by the branch. The advantage of explicit trees is that they can be
manipulated quite easily.

Algorithms described in this chapter that treat a binary tree as static structure can be used on either
calculated or explicit trees. For example, the collection algorithm can be run on either a calculated tree or
an explicit trec. Algorithms that modify the structure of the trec (eg. tree balancing) can only be used on
explicit trecs because the structure of a calculated tree can’t be changed without modifying the function

that calculates the addresses of parents and children.
5.1 Passing data in trees

The most basic opcration on a tree is passing data between the root and the leaves. Sending data
from the root to the leaves is called broadcasting because a single datum is send from the root to many
Jeaves. Scnding data from the leaves is called scrialization becausc many data from the leaves are sent to

the root which reccives them serially.
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5.1.1 Serialization

Problem Statement: Each of a subsct of the leaves of a binary trec contains 2 datum. The goal is to
take the data out of the tree at the oot one at a time to form a serial stream.  This is to be accomplished
by sending the data through the branches of the tree towards the root. Note that the cells that make up
the tree (the fan ccells) have a fixed amount of memory to buffer data. Assumc each cell has enough
memory to buffer one mess..ze (excluding memory used fc.l :cceiving mail). 1r a cell is buffering a

message we will say that it is full. it it is not buffering a message we will say that it is empiy.

Fig. 30. Scrialization
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M = pumber of leaves
log M = depth of tree
K = number of leaves containing data

This operation runs in O(M) time on a serial machine because it has to traverse the cntire tree to identify
lcaves that contain data. This opcration can be done in O(max[log M, N]) on the CM. Although there is
no dramatic dccreasc in running time betwecn running this operation on the CM and a serial machine, it

is useful to scc how this operation is performed with decentralized control on the CM. This section



outlincs an algorithm for tree serialization and some useful extensions.

Algorithr for linear serialization:
Initially leaves with dats are marked.
Repeat steps 1 through 3 until there are no data is left in the tree.

Step 1: Each full cell (either leaf cells or fan-in cells) sf-“s the datum it
is buffering to its pare:n .

Step 2: Each cell cell in the tree ce.. receive 0, 1, or 2
messages. Every cell always has enough room to receive a
message from each of its children.
If the cell received no messages it does nothing.
1f the cell received 1 message and it is empty then the new datum
is put in the buffer. If a empty cell
receives 2 messages it puts one in the buffer.
If a2 cell put 2 new message in its
puffer it sends a8 “confirm” message to the child that sent §t.

Step 3: Each cel) that receives a confirm message sets itself to the
empty state.

VAR value: number

VAR datur-present: {yes no}

VAR confirm: {yes no)

VAR right-child-mail, left-child-mail: {yes no}

VAR right-child, left-child, parent: connection ;;:also declares mbx
VAR right-mail, left-mail, parent-mail: {yes no)}

VAR right-mbx, left-mbx, parent-mbx: MBX

VAR aux: pointer

VAR cell-type: {node fan leaf}

ii;assume leaves of the tree are marked (= datum-present yes)
{until (mnot (global (eq DATUM-PRESENT ‘yes)))
: 3 STEPL
:: :DATUM-PRESENT at the root means data at the root
(if (and (eg cell-type ‘node)
(eq DATUM-PRESENT ‘yes))
(progn
;:.d0 whatever you want with the value
(set DATUM-PRESENT 'no)))
(if (and (or (eq cell-type 'fan)
(eq cell-type 'leaf))
(eq DATUM-PRESENT ‘yes))
(seng vealue parent))
;1 :STEP2
(if (and (= left-mail °‘yes)
(= datum-present °'no))
(progn
(set value left-mbx)
(set datum-present ‘yes)
(set aux Left)
(set confirm 'yes))
(if (and (= right-mail ‘'yes)
(= datum-present °'no))
{progn
(set value right-mbx)
(set datum-present ‘yes) -
(set aux Right)
(set confirm 'yes))))
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(set Veft-mail ‘no)
(set right-mail ‘no)
;::4f a datum was taken, confirm to the sender
(if (eq confirm ‘yes)
(send NULL aux))
(set confirm °no)
s ::STEPY
(if (= parent-mail ‘yes)
(set datum-present ‘no))
{set parent-mail 'no))

Assuring that the trec is balanced this algorithm runs in time O(d + n) where n is the siumber of
data 10 be serialized and d is the number of levels in the trec. 1t takes C(d) time for the first data to reach

the root. It then takes O(n) to extract the n data.

PROOF: 1 shall prove that n data contained in a sct of n connected sct of branches including the root can
be extracted in O(n). In a connected sct of branches containing the root the parent of each branch is also
in the set. Assume that the data can be moved into such a sct in O(d) time. Each fan-in ccll in a tree is
the root of a "cannonical binary subtree™. A canonical binary subtree is a root cell with two children (left
and right). Each canonical binary subtrec is in the start position. <sce figure: trec states> We will try to
prove that if the root of any subtree is empty for more than 2 "cycles” (steps 1 through 3 twice) then
therc are no data in the either of its children or their children. Assume this is the case for the leaves of
the canonical binary subtree. We will try to prove it for the root of the subtree. From the start position
all possible transitions from the start state to the cnd state arc drawn in figurc b. There is no way to
change states in such a way that the root is empty for more than 2 cycles. (Assume this for the leaves of
the canonical subtrec.) By induction a single datum can be extracted from the root of each canonical

subtree 2 cycles after the last datum was extracted until the canonical subtree is cmpty. This is also the

casc for the root of the tree.

Fairness

Instcad of serializing a singlc datum from cach Icaf say an infinite stream of data is being fed in at
each Icaf. We would like our algorithm to have the property that data from each leaf will eventually get
to the root. The previous algorithm fails in this requirement becausc it always chooses data from the left
branch. Faimness can be accomplished by cach fan-in ccll remembering which branch it chose the last

time it had to choosc between a datum from Iefi-child and a datum from right child. The next time the



Fig. 31. tht States

fan-in cell has a choice it will take the datum from the other child. This mechanism works because a
datum can ncver be blocked indefinitely. If it is blocked once it will be selected on the next opportunity

to move up the tree.

Sorting

A uscful extension to serialization is extracting the data in sorted order. This is accomplished in 2
steps: 1) Data are initially sorted into a heap: 2) The choice between the data from the two children at
cach branch of the tree is bascd on a comparison. Assume thal the comparison operation is greater-than

and we want to form a stream from smallcst to largest.
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N=Number of dats
D=Depth of tree

Step 1:
Divide the fan-in cells into two sets -
(odd anc even) based on their depth in the tree. The root is even (level 0).

STEP 2: Forming & Heap
Apply the following steps to the tree wuntil no date are exchanged:

Step 2-1-even: A1 odd cells send datun to the even cell above.

Step 2-2-even: Even cells take the minimum
of the the 0é a from their children and the
datum they are vuffering. If the smallest datum is
from & child, the old datum is replaced
by the smallest datum in the buffer. The old
gatum is sent to the child that sent the
smallest datum.

Step 2-3-even: 0dd cells that received data replace the old datum
{now buffered above) with the new datum.

Step 2-4-pdd: A1l even cells send datum to the odd cell above.

Step 2-5-0dd: 0dd cells take the minimum of the the data from
their children and the datum they are buffering. If the
snmallest datum is from a child, the old datum is replaced
by the smallest datum in the buffer. The old
datum is sent to the child that sent the smallest datum.

Step 2-5-odd: Even cells that received data replace the old datum (now
buffered above) with the new datum.

It takes O(D) to form the heap.
STEP 3: Removing Data
Once the data are in a heap the next step is take them out in sorted order.
This is done by taking on element out of the top of the tree after
running steps 2-1-even through 2-6-odd.
Notice that after an iteration empty cells, or “"bubbles”, will always
be on an even level. This is important because
2 adjacent bubbies will allow a datum to go up to the next level of

the tree without being compared to the datum being stored at its sibling.
This algorithm runs in O(N) time.

This algorithm is significantly faster than heap sort on a serial machine because the heap necd not
be totally reset afier removing an clement from the top. Running time on a serial machine is O(N * D)

versus O(N + D) on CM.
5.1.2 Broadcasting

Sending a datum from the root to the leaves is called Broadcasting. A single datum can be

replicated 2! times in O(D) time. Algorithm:

Step 1: If you receive mail from Parent send it to Left-Child and Right-Child.



Fig. 32. Scrialization Sorting

Fig. 33. Broadcasting




-69-

5.2 Adding Leaves

It is important that trecs be balunced because the efficiency of many algorithms is proportional to

the depth of the tree.

Definition of & Balanced Tree: A tree where the number of leaves
below the left side of a branch is within 1 of the number of leaves
below the right side of the branch,

It is uscful if tree r ~difications maintain a balancc :ree. This section ‘cscribes an algorithm for adding

single clemient to a balarzed tree resulting in a balanced trcc.1

The address of the new leaf starts at the root of the tree. This addroess is passed down the branches
of the trec until it reaches the fringe wherc it is added to the tree by adding a new branch. To maintain a
balanced trec each branch remembers which branch the last new element was sent down. The next new
element is sent down the other branch. Since new clements alternate between the left and right side of

each branch is obvious that this maintains a balanced tree. Sec figure <Adding I.eaves.

Fig. 34. Adding Leaves
¢ ﬂa 0 0
| @ ® OO
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1. This algorithm is described in [1illis] and [Browning).
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8.3 Deleting Elements

The algorithm given in this section deletes a subset of leaves from a binary trec. The resulting tree

in not necessarily balanced. Sce figure <Dclcting 1.caves).

Step 1: Deleteo leaves send an “empty”™ message to Parent.

T .ate Step 2 until no messages are sent:

S.n 2:

I1f a fan cel) receives ant "empty™ message from one

of its sides (left or right) anc has not received an “.inpty" message
form the other side it sends 8 “"replace” message with the address
of the other side.

1f 8 fan cell receives an "empty” message from one side

and has received and “"empty” message from the other side then
that branch sends an "empty” message to Parent.

If a fan cell receives a "replace” message from one its sides

it will replace that side with the address contained in the
message.

Step 3: Each fan cell sends its address to each side that has been replaced.
The cells that receive these messages replace Parent with the new address.
This makes the 1inks between branches bidirectional.

Fig. 35. Delcting Leaves
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8.4 Collection

The goal of collection is to create a new tree from the subsct of the leaves of another tree called the
master trec. The resulting tree is not necessarily balanced. This algorithm is particularly uscful for
collecting a trec of marked cells that are not connected in any way by using the spanning binary tree

introduced in Chapter "N-cube Algorithms™.

As in all paralic] }xlgorimms. we would like to distribute the computation as much as possible and
kecp the total amount of communication low. The goal is to form subtrecs in the lcaves of the master trec
and pass them up the branches of the master trec merging them together. The formation of the new tree
with N clements will require N-1 new cons cells. 1t would be convenient if these new cells could be
consed at the same time because it more cfficient to cons many cells at once. A trec with a single element
is created from the new cell. The left side of this trec leaf of the master tree that created the new cell; the
right sidc is null. Two of these trees can be merged together to form a tree whose left side is a tree that
contains the left sides of the original tree and whosc right side is null. This trec can be merged with others

of this form. See figure <collectionD.

Fig. 36. Collection

W
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STEP1: form subtrees at the leaves that want to be collected
Each 1eaf that wants to cons gets & new
cel) (see cons alg in n-cube section).
It is only necesssry to form a uni-directional
tree while merging. The uni-girectional
tree can be made into 8 bidirectional tree in
one step when the main iteration
collection step is complete. At the end of this step each leaf points to the
root of a canonical subtree.

STEP2: dterste:merge trees -~ .. send result to parent.
This mer can be done in . DCs. The nice thing about this step is that the
merging can be done concurrently with passing the subtrees
up the master tree.

5.5 Copying

Copying a trce or a graph can be casily donc in constant time (assuming a constant number of
connections per cell) once the structure is marked so the parts know they arc copying themselves. First,
each cell makes a copy of itsclf. Each cell then passes the address of the new cell to all cells it is connected
to. Thesc cells pass the address to the copics of themsclves so the new graph will have the same

interconcctivity as the original network. Sece figure <copying>.

Fig. 37. Copying
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Step 1: mark the tree (or network)
Step 2: Each cell that is coping Conses a copy of ftself.
Step 3: Send address-of new cell to 2811 cell you are connected to.

Step 4: Send received agdress to new cells and form new graph structure.
5.6 Enumeration

Enumecration is useful for establishing priority and calculating hashing functions. Thce algorithm
presented this will enumcrate the leaves of a tree in O(1)) time where D is the depih of the trec. Sce

figure <ecnumeration>.

Fig. 38. Enumcration

STEP1: Each branch counts the leaves to below in on its left side and
its right side. These numbers are left-children and right-children.

STEP2: The root of the tree sends the number O to its left side and

the number left-children to its right side. Semantically this means

the left subtree numbers its Teaves from 0 to left-children - 1 and the
right subtree numbers its leaves from left-children to left-children +
right-children. Each branch receives a number N from Parent. The
branch sends N to its left side and N + left-children to its right side.
The number that the leaf receives will be its enumeration.
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§.7 Balance

It is often casy to build unbalanced trees. but most algorithms work much faster if trecs arc
balanced. The algorithm presented in this section uses the binary tree projected on the boolean N-cube
as a template for the balanced tree. The leaves of the tree that is to be balanced calculate where they fit

into the tree and send their address to the appro - “atc branch which =il be the new Parent.

The first step is to enumerate the N leaves of the tree 0 to N-1. The root also broadcasts the total
number of lcaves to each leaf. Assume that cells 1 through N-1 arc to be used for the templatc of the tree.
We will usc a slight modification of the algorithm for projecting a binary trce onto an N-cube to calculate
parent of cach cell. Here is the algorithm repeated:

1xxx => 0lxx => 001x => 0001

left is most significant
To make the this algorithm work for a linear sequence of address reverse the low order M-1 bits on the
Mth level of the tree. Sce figure <Balanced trec>. The bits to be reversed are in parenthesis. Each leaf
calculates the address of its new Parent by reversing the low order M-1 bits (depending on its level) and

applying the algorithm for calculating its Parent given above. Call this number New-Parent

Fig. 39. Trce Balancing
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The root of the tree will cons N-1 new cells which will be the branches of the balanced tree. The
new cells are in a lincar block of addresses from Q to Q+ N-1. The new cells calculate their parent within
this lincar block using the algorithm above. The address Q is broadcast to all leaves of the tree. The

actual address of the new parent will be Q + New-Parent.

Figure CTrec Balance Exampled shows an example of balancing a tree with § leaves. The first step
is to enumeratc the leaves of the irec from St0 9 (N + 0104). .2 root of the tree co.ises 4 now cells in a
linear block that will be used as fan cclls. The first cell is at address Q. This address is broadcast to the
unbalanced trec so that cach ccll can calculate the address of its parent. Each cell in the lincar block also

calculates its parent.

Fig. 40. Trec Balance Example

URBALANCED TREE

LINEAR BLOCK
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6. Application: GA1 on the connection machine

GAl'l is an expert system which infers the structurc of DNA molecules from data about their
segmentation by enzymes. Genetisists use GA implemented on a scrial computer. Unfortunately, the
practical scale of problems that can be solved by GAl on a serial computer is limited by computational
complexity (rather than memory limitations). GA1 explores a scarch space of possible solutions. This
chapter examines the feasibility of impleme:. ing GAl on the Connection  chine by explorin; this

scarch spacc ip paraliel.

Because genetisists want to find all solutions, GA] uscs an exhaustive generator to propose all
possible structures which are then tested for correctness. This approach is somctimes called
generate-and-test.  Since the solution space is very large (ic )>108 for small problems) GA1l relies on
early pruning to reduce the number of structurcs that arc considered. The space is generated
incrementally by filling in partial descriptions of the DNA structures. The gencrator defines the search
space by incrementally building up partial descriptions. The partial descriptions form a tree where cach
successive level is a more complete description. The leaves of the tree arc complete descriptions. Each
partial description represents a class in the solution space, or, a branch in the generation tree where the
leaves of the class arc represented by the common branch. When a partial description is pruned, the
entirc class it represents is also pruned. The key point is that there is enough information so that partial
descriptions can be eliminated with incomplete description. As the trec is gencrated level by level
"pruning rules” are uscd to climinate impossible branches of the tree thercfore saving the cost of
gencrating the pruncd branch’s offspring. The use of pruning rules drastically reduces the solutions

spacc that needs to be searched.

1. [Stchk]
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6.1 Generate and Test Three Letter Words

For example, let the scarch space be the sct of 3 letter "words”. The generator builds up partial
descriptions by placing letters one at a time into a template which has 3 slots for 3 letters. For cach of the
3 slots there arc 26 possibilities. one for cach letter of the alphabet. The branching factor of the tree is 26
and the tree has 26 lcaves. All of the leaves need not be generated though.  If it is known that there are
no 3 letter ~-ords where the first two letters are the same and not vowels then branches of ' trec that

match "**_" can be pruned. This simple prunc will save 262 leaves from being generated.

Fig. 41. Word Gencration Example

The factored search space for complex problems is still too large for feasible computation. There

are two major parts of the computation:

1) time required to generate new branches;
2) time required to run pruning rules on a generated partial description.

The time complexity of the scrial version is proportional to the total number of nodes that arc generated

and cvaluated. Gencrating and evaluating the trec in parallel would be more efficient. Pruning rules can
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still be uscd when scarching the tree in parallel to prune impossible partial descriptions so memory
requiremcnts for the parallel machine versus the serial machine would be within a constant factor. The
timc complexity of a paralle]l approach is proportior.al to the depth of the tree times the log of the
branching factor assuming there arc always cnough processors available to store the partial descriptions
of the trec. Since the scarch tree produced by the GAl generator tends to be bushy (high branching

factor) the parallel solution is theoretically faster.

Tne space complexity of the serial approach depends on the scarch strategy. 1f a breadth first
scarch is used where the levels of the trec are gencrated onc level at a time the space complexity of the
scrial approach for cach level of the gcncraled scarch spacc will bc proportional the valid partial
descriptions at that level. Since the parallcl approach is essentially a parallel breadth first search the space
complexity of the parallcl approach at cach level of the generated scarch space is also proportional to the

number of valid partial descriptions at that level.

G = time to generate 1 new partial description
£ = evaluation time

L = Tevels in the tree

N = branching factor

T = total cells generated after pruning
Serisl: GET

Parallel: (EL)(GlogN)

For GAl:

T >> LlogN

6>E

L =10 -> 30

N =10 ->» 50

T = 10°°3 -> 10°*8
6.2 Description of Segmentation Problems: segments and sites

The goal is to infer the structure of a circular DNA molecule from experimental data,

The structure of a DNA moleculc is defined as an ordered set of enzyme recognition sites on the
circular strand. Each solution is a sequence of scgments scparated by sites that is consistent with the
experimental data. Scgments are measured in arbitrary units. For example: figure <Circular DNA

strand>. depicts a circular DNA molccule with 6 sites and 6 scgments
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Fig. 42. Circular DNA strand

78 SAE

Simplc example of a circular DNA strand cut by three enzymes.

6.2.1 Experimental Data

An enzyme recognition site is a point where a particular enzyme cuts the circular DNA strand. The
BAM cnzyme would cut the ring into two picces at the places labcled BAM. Using the enzyme BAM to
cut the segment would result in 2 segments with size 2.35 and 1.65. Experiments are carried out using
one or more enzymes to cut the strand at all of the recognition sites cut by those enzymes. The size of the
resulting segments can then be measured. For the purposes of this discussion assumec that the data is

error free.
6.2.2 A Template for the Solution

A template is a data structurc with slots for each sitc and scgment of the physical structure. Once
the template is defined the sites and segments for filling it in must be determined. The generator
produces descriptions by placing thesc sites and segments into the template. Abstractly the problem can

be viewed as a slotted table top and a sct of blocks that fit into the slots.
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Fig. 43. Bam Cuts

SAm

The first goal in calculating the template is to determine the numbcr of sites and segments in the
circular structurc. This is done by counting the scgments in all of the 1-enzyme digests. The number of
segments resulting from 1-cnzyme digests detcrmine the number of that particular enzyme recognition
site in the solution. For example: The 1-cnzyme digest using Bam resulted in 2 segments; therefore we
know there arc 2 Bam recognition sites. The sum of the individual sites is the total number of sites. The

number of segments is cqual to the number of sites.

The next step is to find the set of segments that will be used to fill the template. The size of the
segmean'bcmccn the sites can be detcrmined from the 2-cnzyme digests. All 2-enzyme digests will
include all of the segments between 2 sites. There are (N(N-1))/2 2-enzyme digests for N enzymes. All

segments betw ccn any two adjacent sites will be produced by onc of these digests.

In the examplc problem 6 digests would be performed. The table below contains the segment sizes

produced by using the indicatcd enzymc or enzymcs.
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Fig. 44. Blocks and Slots

@ SEGMENTS: .18 1.0 1.2 .27 1.87 .95 .18 1.6 1.4 .75 .25

i S!TES: BAM BAMECO ECO HIND HIND

i-enzyme digests:

Hind 111: 3.82 .18
Bam: 2.35 1.65
Eco RI: 3.0 1.0

2-enzyme digests:

Hind 111 & Bam: 2.35 1.2 .27 .18
Hing IIT & Eco RI: 1.87 1.0 .95 .18
Bam & Eco RI: 1.6 1.4 .75 .25

The segments sizes for filling in the template arc a subsct of the segments in the 2-enzyme digests with

some duplicates. In the example problem that set would be:

{.18 1.0 1.2 .27 1.87 .85 .18 1.6 1.4 .75 .25)

The goal is to take this information and induce the structure of the DNA molecule.

6.3 Generate and test

The strategy for finding solutions is the same for the parallel and scrial approach: generating a
scarch trec and pruning losers. The considerations for making the scarch fast vary considerably. This

scction is a discussion of the generate and test strategy independent of the target machine.
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6.3.1 The Generator

The generator is a procedure that produces the offspring of a branch in the scarch tree. A branch of
the search trec is a partial description of a final structure. A partial description is a template and a set of
sites and scgments, somc placed in the template, some unplaced. For the GA1 problem the template is a
sequence of aliernating slots for sites and segments. At level N of the tree the generator gencrates the
data strurture for new offspring of cach partial description at level N-1. The generat~: then copics the
data of the parent to offspring and plaécs onc of the unplaced sites or scgments (segment if level is even,
sitc if level is odd) at each of the new partial descriptions. The branching factor at cach levél is the
number of unplaced sites or scgments. Figurc <examplc gencration> shows a branch (a partial
description) of a template with 3 sites and 3 segments. One site and one segment are placed. The

gencration places an unplaced site. There are two unplaced sites so the branching factor will be 2

Fig. 45. Example Generation

A /
| UNPLACED SITES: A
UNPLACED SEGMENTS: 2 4
A
&— NEXTSITE
' |
UNPLACED SITES: AB .
UNPLACED SEGMENTS: 2 ¢
A

UNPLACED SITES: B
UNPLACED SEGMENTS: 2 4

Afier the new partial descriptions have been constructed  the pruning rules are applied to them,

pruning inconsistent descriptions.
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6.3.2 Pruning rules

Once partial descriptions arc gencrated they are evaluated to determinc if they are consistent with
the experimental data. This section will discuss 2 pruning rules and used ‘to eliminate inconsistent

structure. For the complete sct of pruning rules sce appendix <pruning rules).

Rule P10: 1If a _.gment is about to be placec which would increase
.he mass of the .urrent structure to be greater than the expected

* molecular weight and there are more sites to be placed, then this
branch of the generation may be pruned.

In the previous example: It is known that the total size of the molecule is 7. Segments 4, 3, and 2
are placed in the three segment slots the total size would be 9. This branch may be pruned because the

summation of placed scgments is larger that the known size of th: molecule.

Definition P13: Allowable inter-site segments. For recognition sites

E1 ano E2, & segment is said to be allowable between E1 and E2 when

it appears in the appropriate digests. Specifically, if E1 is distinct
from E2, the segment must appear in the 2-enzyme complete digest involving
E1 eno E2. Otherwise it must appear in the 2-enzyme complete digest for Eil.

Rule P14: If & site E1 is sbout to be placed and there is another site E2
preceding it in the description (and there is no site equal to E1 or E2
between them) and the sum of the intermediate segments is not an allowable
segment for E1 anc E2, then this branch of the generation may be pruned.

Using the data in example <example gencerationd: asite A is placed, then segment 1 is placed, then a
site A is placed. The segmcent 1 does not appear in the J-cnzyme digest using enzyme A. This branch

may be pruned because a segment of size 1 cannot be the only segment between two A sites.
6.3.3 Canonicalization rules

In the systematic generation of descriptions multiple partial descriptions arc generated that represent the
same physical structure corresponding to reflections and rotations. Generating these redundant
descriptions is wasteful and unnecessary. Canonicalization rules prune reficction and rotated descriptions
early in the gencration. These rules arc applied at the same time as pruning rules. See appendix

<pruning rules> for a list of thesc rules for circular structures.



Fig. 46. Fquivelent Structures
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6.3.4 Generator Loop

The processes of exploring the search trec is by expanding onc level of the tree and then pruning
inconsistent partial descriptions. The scarch is complete when the template of cach leaf of the tree is full

(ic. a site is in every site slot and a scgment is in every scgment slot.)

Generator Loop:
1) alternately place site or segnent in all sctive partial descriptions
until template is full. (place a segment first)

2) apply pruning rules to illuminate inconsistent partial descriptions
6.4 Implementation Considerations for Serial and Paralle]l Search

The paralicl and serial approaches differ in their use of time and memory. The running time of the
serial approach is bounded by the numbcr of nodes that have to be generated (and therefore evaluated)

before pruning. ‘The number of potential final descriptions (lcaves of the scarch trec) is:
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N = tota] segments to be placed

M = gegrents siots in template

E = pumser of enzyme slots in template

T1 = for each enzyme 1, Ti is the number of sites of that type

(N1/7(N=B) 1) (EL/PI(T41))(17(M+E)

For the exsmple problem with 6 sites and 6 segments this number is:
Ne 1l

Me§

£=6

T1 = 2 ;eco

T2 =.2 ;bam
T3 =« 2 :hind 111

(s11751)(617212121)(1/12) = 2 494 BOD

The number of branches of the search tree is proportional to the number of leaves. Most branches

arc pruned early in the scarch so only a small fraction of the scarch tree is ever generated.

The running time of the serial scarch is limited by the number of partial descriptions gencrated;
memory is not a primary consideration. Thercfore being able to prune the tree as early as possible is the
primary consideration for the serial approach. This implies that the pruning rules should be as effective

as possible at weeding out losers early.

On CM. the trec is generated in parallel. Pruning rules are necessary because there is not enough
storagc to store the whole tree. The primary cost on CM is proportional to the communication costs of
generating a new levels of the search tree which is proportional to the branching factor. Because of this

limitation the storage space for representing a partial result should be as small as possible.

6.5 GA1 on the connection machine

The goal of the parallel implementation is to scarch the tree in paralicl. Each partial description is
stored at an individual CM cell. Generation, pruning, and placement can be done in paralicl. The key
factors in this application arc the simple processors of CM and high communication costs. The SIMD
processors require the template to be set up in such a way that a pruning rule be executed in parallel at
each cell in the machinc. A similar constraint applics to segment and site placement. The most important
consideration is being ablc to gencrate new partial description cfficiently because of the high
communication costs. The amount of storage required for cach partial description should be as small as

possible to reducc the time needed to copy that data to new partial descriptions.
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6.5.1 Tcmplate Structure

The partial description require a site-stack and a scgment-stack to place new sites and scgments.
Unplaced-site-stack and unplaced-segment-stack arc uscd to store unplaced sites and segments. When

placing a site, a site is taken out of the unplaced-site-stack and placed on top of the site-stack.
6.5.2 Generator on CM

Given a partial description with N sites or scgments to place will gencrate N new partial descriptions ech
with a different site or segment placed. This is accomplished by finding N free cells and enumerating
them 0 to N-1 (call it 1). copying the data to all the new cells, and then placing onc of sites or segments as

function of 1. The limiting step is copying the data to the N new free cells.

Initally a segment is placed in a single partal description, the root of the tree. The generator is

then applicd to all partial descriptions alternatcly placing a site or a segment.

Generator:
1) first place segment in the root

LOOP UNTIL TEMPLATE IS FULL:

Generate new partial descriptions from all unpruned

partial descriptions in the last level. Branching factor
will be the number of unplaced sites or segments (depending
on which is being placed). Call the branching factor N.
Each child is enumerated I from 1 to N.

2) alternately place site or segment

3) if site:

3.1) push the Ith unplaced site on the placed site stack

3) else if segment

3.2) push the Ith unplaced segment on the placed segment stack

A possible variation for site and seginent placement: Instcad of storing all unplaced sites and
segments, this information can be broadcast to all partial descriptions. They would have to calculate
which elements had not been placed. Sclection of an unplaced element would still be a function of 1.
This method has the advantage of decreasing the amount of data that needs to be copied but increases the
amount of processing and broadcasting that needs to be done. The feasibility of this approach depends

on the communication speed and broadcast bandwidth of the machine.
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6.5.3 Pruning rules

Pruning rulcs are exccuted in parallel on every partial structurc. The rules are in the form of an
instruction strcam from the CC. Partial descriptions that arc inconsistent with experimental data are

marked for pruning (ic. they arc forgotten and become free storage.)

After site placement: a site of type X has been placed a) all 1 and 2-digest scgment sizes are sent out.
For cach digest XY, for cach enzyme Y, the summation of segm. ...s since the last Y siie was placed must
be in the data for that digest unicss the summation te the last Y site is greater than the distance to the last

site of type X. Othcrwisc this branch may be pruncd.

After segment placement: a) CC sends out total size. If summation of segments so far is greater

than that size this branch may be pruned.
6.6 Generating New Levels of the Search Tree

The speed of the search at cach level of the tree is limited by the specd at which N new cells can be
found and data copicd to them where N is the branching factor at that level of the tree. The amount of
data used 10 represent a partial state should be kept as small as possible to limit the amount of data that
must be copied. Running the pruning rules and placing sites or segments are relatively fast compared to

generating levels of the tree.

Problem Statement: To generate a new level of the trec each partial description at the fringe must

find N free cells and copy its state to them. The new free cells must be uniquely cnumerated 1to N,

This can be done by using the free list consing algorithm to cons N new cells for each partial
description at the fringe of the tree. The cells are enumerated by projecting a tree onto the lincar
structure in O(LogN) time. Data is copicd from the old partial description into the first (number 1) new

ccll. The data is copied using the same projected tree.

Figure <Expanding a PD> shows how a partial description (call it the old-P1J) would expand into 11
new cells. 11 new cells in a lincar array are consed. The address of the first cell is known by the old-PD.
The arcs show the tree that is imposed on the lincar array. Each arc spans a distance of a power of 2 in the

lincar array. On the first iteration cell-1 sends a message to cell-9. The address is calculated by adding 8
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Fig. 47. Expanding a PD)
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to the address of cell-1. The message contains the enumcration of the sender and the total number of new
cells in that lincar array. On each successive iteration ccll-9 will also send a message to enumerate other
cells. This procedurc is repcated until all cells are enumerated. Note that a cell does not send a message
to a cell that beyond its lincar array. Four iterations arc required to enumerate all cells. Copying data

from old-PD to each new cell uses the same arcs.
6.7 Conclusions

Paralic! Exploration of a search space is a good application for the Connection Machine. The
implementation of GA1 described in this chapter utilizes the Connection Machines ability to allocate cells
in parallcl and test partial description in parallel. The potential gain in speed is proportional to the

number of partial descriptions being considered in paralicl.



7. Application: Combinators

This chapter cxamines a paralicl implementation of Combinator Graph reduction (outlined in
[Tumer?9)) for the connection machine. The first section of this chapter reviews evaluation of
combinatory logic. ‘The sccond section describes how combinator expressions can be represented as a
graph. An implemcentation of a paralicl graph reducing interpreter for combinator expressions on the
conncction nachine will be discussed in the third section. The egal of this chapter is to show he - a graph
representing a computation can be reduced in paralicl on the Connertion Machine. The system for graph
reduction outlined in this chapter is similar to the algebraic reduction program described in that chapter

"Concepts”.
7.1 Introduction to SKI Combinators

This scction defines the translation of LISP lambda expressions to combinator expressions that
contains no bound variables. Evaluation of combinator expressions is the same as LISP: The first
element in an expression is a function which is applied to the rest of the elements. The valuc of the
expression is the result of the functions. All functions return a value. Combinator cxpressions have the

following propertics:

A11 functions in combinator expressions take only one argument.
The translation of functions of multiple arguments tc a function that
only takes 21 argument will be described below.

Three new functions S, K, and I will be introduced that are used
in combinator expressions.

Higher Order Functions

A higher order function takes a function as an argument and rcturns another function. A function
of several arguments can be reduced to a higher order function that takes onc argument. Consider the
expression:

(+ 2 3)

This expression would be translated into the expression:

((plus 2) 3)



The expression (plus 2) returns a function that adds two to its argument. When this function is applied to
3 the result is 5. All functions in combinator expressions will take only onc argument. Consider another
example: —

(if false 6 7) => (((if false) 6) 7) which svalustes to: 7

The interpretation of this is that (if truc) returns a function that takes onc argument. That function is

applicd to 6. The result is a f:nction that takes onc argument. That function is «pplicd to 7. The result is
1.

Translating Lisp expressions: Removing Free Variables

Combinator expression use 3 new functions S, K, and I (known as combinators) defined below:

(((S 1) g) x) => ((f x)(g x))
((x x) y) => X
(1 x) > x

The translation of lambda cxpressions to expressions without variables is defined below:

Goal: Remove the variable x from (lambda (x) <expressions>)
Notation: [x]E means remove the variable x from expression E.

[xJ(E1 E2) => ((S [xJE1) [x]E2)
[x]x e I
[xly > (Ky)
Where y is & ctonstant or 8 variable other than x.

More than one variable can be removed from a cxpression by applying removing variables one at a time

from the expression.

Removing more than one variable:
Goal: Remove the variable x and y from (lambda (x y) <expression>)

[x)([y]E)

An cxample translation is given below:

Example 1:
(defun piusl (x) (plus 1 x))

[x)(plus 1 x)

((S ([x)(plus 1))) [x]x)
((S ((S (X plus))(K 1))) 1)

The atom fact is bound to this expression.

An cxample cvaluation of ((lambda (x) (plus 1 x)) 3) is given below. Only the left most reduction is
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performed on cach linc.

((S ({S (K plus))(K 1))) 1) 3)
(((S (x plus))(K 1)) 3)(1 3))
((x prus)(1 3))((X 1)(1 3)))
(plus (I 3))((K 1)(I 3)))
glﬂus 3)((x 1)(1 3))

(
(
(
(
(
((plus 3) 1)
4

7.2 Representing Expressions as Graphs

Combinator expressions can be represented as graphs. The application of a function to an
argument is represented by as a Application Cell. The car of the application cell is the function; the edr is
the argument. Figure <ski reduction> shows the graphical interpretation of S, K, and I and their

associated reductions. Figure <reduction example> shows an example reduction of ((lambda (x) (plus 1

x)) 3).

The representation of the graph on the conncction machine is strait forward. Arcs in the graph are
represented as connections. Applications cells have two parts:

1) The function

2) the operand
If more than one application cell points to something (cither another application cell or an atom) a fan
tree is used to hold the multiple connections. Figure <S reduction> in the next section shows an example

of a fan trec holding multiple connections.
7.3 Parallel Reductions on the Connection Machine
This section will describe how the functions S, K, and I are reduced in parallel. The method for

reducing other functions such as plus and if will also be discussed.

At any time there may be several reductions that can be done.  The order of reduction docsn’t
make any differcnce because the combinator expression has no side effects. In fact, all possible

reductions at a given time could be donc concurrently.
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Fig. 48. SKI reductions
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Evaluation will be done by performing a scrics of reduction cycles. All possible reductions at the
beginning of the reduction cycle will be done during the reduction cycle. After a reduction cycle new

reductions will be possible. Reduction cycles are performed until there arc no possible reductions left.
At this point the cvaluation is done.



The first step in any reduction is to find all possible reductions. This can be casily done by local
inspection of the graph in parallel. In the following discussion cach application ccll will know which part

of a reduction it is part of. The term "Application Cell” will be abbreviated to AC for brevity.

S Reduction

The S graph reduction is shown in figure <SKI reductiond. An S reduction is composed of 7 graph
nodes: AC1, AC2, AC3, S, f, g, and x. For cach S-AC1 cell the following steps are taken:

Step 1) Create two new S-AC cells: S-AC4 and S-ACS

Step 2) Add a connection from S-AC4 to f

Step 3) Add s connection from S~-AC5 to g

Step 4) Add @ connection from S-AC4 to x and from S-AC5 to x
An S reduction is the only reduction that produces new graph structurc. Two applicaticn cell will be
needed. Each S-ACI cell create two new application cells which arc called S-AC4 and S-ACS. There will
be onc AC4 and one ACS for cvery S-AC1. The new ACs are created by consing which is described in

chapter "N-cube algorithms”.



Fig. 50. Adding Conncctions in Paralicl
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Adding the connections is more difficult. Notice that several S-AC1 cells can point to any single
S-AC2 cell. There may also be scveral S-AC2 cells for each single S-AC3 cell. There may be several
connections to add to a single ccll. Consider step 3: A conncction from each ACS to g must be added.
This operation can be done in parallel by collecting pointers to S-ACS in the fan tree that connccts S-AC1
cells 1o S-AC2 cells. This tree of connections can then be collected in the fan trec from S-AC2 to g.
Figure <Collecting connections in parallcl> shows this process. The final tree of pointers can then be
added to g. Adding pointers from S-AC4 to £ and S-AC4 and S-ACS 10 x are handlcd in the same way.
See figure <collccting pointersd. Algorithms for collection and adding pointers to trecs are given in

chapter <tree algorithms>. Adding cach conncctions in Step 2 and Step 4 is handled in the samc way as
Step 3.
I Reduction

Rcddcing a | expression can be done casily by replacing the entire expression by onc of its parts (x

in this case). Assumc that connections between cells and atoms always go through a fan-in tree.  This
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simplifies a problem when the I-ACl of one reduction is the x of another reduction.] All AC cells that

point to the I expression are held in a fan-tree that points to the I expression (the I-AC1 cell). Call this

tree the fan-in-tree-1-AC1. The I-AC1 cell is connected to a fan-tree that holds the connections to x. Call

this tree the fan-in-trec-x. The I reduction is donc by conncecting the root of the fan-in-tree-]-AC1 to a

leaf of the fan-in-tree-x.

gorithm:

Step 1:

Step 2:

Step 3:

Each I-AC1 cell sends the address of the fan-in-tree-x to the
root of the fan-in-tree-1-AC1. The root of the fan-in-tree-1-AC1
stores the address of the fan-in-tree-x in the connection

that used to point to I-AC1. This is half of the new connection.

Each I-AC1 cell sends the address of the fan-in-tree-1-AC1 to
the leaf of the fan-in-tree-x. The leaf of the fan-in-tree-x
stores the address of the fan-in-tree-1-AC1 in the connection
that used to point to I-AC1. This completes the connection
between the root of the fan-in-tree-I-AC1 and the leaf of

the fan-in-tree-x.

Each 1-AC1 cell deletes its connection to its function and
marks itself as garbage to be reclaimed.

Fig. 51. 1 reduction trees
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1. This problem is analogous to the synchronization problem of the algebraic reduction program described in chapter "Concepts™,



K Reduction

K reduction similar to ] reduction. The reducing K expression is replaced by one of its parts. y in

the casc of a K expression.

Other Reduction

All other redretions replace the . :ducing cxpression with a function of their arguments. For
cxample: ((plus = would replace its2!f with 5. Most expressions require that all arguments be reduced
before that expression can be reduced. It would be difficult to reduce ((plus 2) <expression) since plus is
only defined for numerical arguments. Reducing these expressions is very similar to 1 or K reduction

except that the arguments must be reduced.

One interesting exception is IF. IF only requires the predicatc to be reduced before reducing itself.

(((IF predicate) then-expression) else-expression):

(((IF true) then-expression) else-expression) => then-expression
(((IF false) then-expression) else-expression) =-> else-expression

Oncec the predicatc has been evaluated the expression can be reducced to cither the then-expression or the

elsc-cxpression depending on the value of the predicate. The other expression is thrown away.
7.4 Garbage Collection

During the course of evaluation many cclls and connections will be created and thrown away. It is
possible to throw away entire expressions that will continue to evaluate because they don't know they
have been thrown away. Some of these expression could be infinitely recursive and will never terminate.

Consider the example of factorial.
(defun fact (x) (if (= x 0) 1 (* x (fact (minus n 1)))))
When factorial is called on 0 the both branches of the IF expression are evaluated in parallel. The clause
that will cventually be thrown away will be:
((* 0)(fact -1))
which is infinitcly recursive. Garbage collection is needed to recover parts of the graph that‘ have been

thrown away.
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There arc several different methods that could be used for garbagc collection.

1) Wait until the machine is full., At this point mark all cells
that can be reached from the root of the expression. Deslete

811 other connections. Deletion of multiple pointers from

fan trees is described in chapter <tree algorithms>. A1l good cells
sre saved and a1l other cells are marked as free cells.

2) The connections in the graph are 8 built in reference counting
mechanism. After each reduction cycle find all cells that are
not being pointed to. Mark them as garbage and delete al}l

their connections. Continue this process u~til all structure
that is garbage is collec d. The probler :ith scheme is that

8 GC is rcquired after J reduction cycle.

%, It is possible to collect garbage incrementally by modifying

method 2. 1Instead of finding all garbage by tracing deleted pointers

on every reduction cycle

only trace garbage & fixed distance. This scheme does not guarantee that
811 garbage will be collected because the graph can grow exponentially

in depth, although if this is the case the machine will be filled

rapidly anyway $0 it is probably not & practical problem.

It is not clear which garbage collection scheme is the best in general. This will probably be

determincd empirically.
1.5 Conclusions

The point of this chapter was to show that the Connection Machinc can be used as an interpreter
that concurently evaluates cxpressions represented as a software graph of cclls. It is not clear that the
evaluation of SK1 combinators or any conventional language (ex. LISP) represented as a graph is a good
application for the Connection Machine; although, the idea of paralie] graph reduction may be uscful in

some other context.



8. Application: Relational Data Base

This chapicr discusses the implementation of a relational data base on the connection machine. The
primary goal of this chapter is to show how globai operations using the topology of the communication
network can be used to implement a moderatcly complex system. An implementation of a relational data
basc is discussed using sort, cartesian product, and enumcration. These operations are described in
chapier N-cube algorithms. A brief introdu~t ... to relational <awa bases is given, followed by a
representation scheme on the connection machine. Mgorithrhs for the opcrations Union, Intersection,
Difference, Cartesian Product, Sclect, Projection, and Join are given for the represcntation scheme on the

conncction machine.

The definition of relational data base and the definition of the opcrations are taken from [Codd77).
8.1 Definition of a Relational Data Base

Given a collection of sets Dy, D, ..., Dy, (not necessarily distinct), R is a relation on these n sets if it
is a set of ordered n-tuples <dy, d,, ..., d;> such thatd 1 belongs to Dl' d, belongs to D2. s O belongs to
D,,. Sets Dy, Dy, .., D, are the domains of R. The value n is the degree of R.

The table below i_llustratcs a rclation called PART, of degree 3, defined on domains P# (part
number), PNAME (PART NAME), COLOR (part color), weight (part weight), and CITY (location
where the part is stored). The domain COLOR, for example, is the sct of all valid colors; note that there
may be colors included in this domain that do not actually appear in the PART relation at this particular
time.

Relation: PART
Fields: P# PNAME COLOR WEIGHT cITYy

Pl Nut Red 12 London
P2 Bolt Yellow 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Canm Blue 12 Paris

P6 Cop Red 18 London



8.2 Representing a Relational Data Base on CM

This section describes a represcntation of a relational data base on the conncction machine. This is
not necessarily the best way to implement a relational data base on the connection maching, although it
does have some interesting propertics. The purpose of this representation is to illustrate how global

operations using the topology of the communication network can be uscd to do interesting things.

Each clement of a set (l‘,u) is ascigned a unique ID wit  that set. IDs arc contiguous numbers.
For examplc: if there arc 302 elemcats in a set ther those clements are assigned IDs from 1 to 302. The

number of elements may be larger or smaller than the address space of the machine.

Tuples arc represented as cells. For cach ficld a cell representing a tuple stores an ID relative to
that ficld. Tuples themsclves do not nced to know which bits 1Ds are stored in. That information is
known globally. Tuples are dumb; they are manipulated by the instruction strcam. Tuples also store a

tag which defines which relation it is a member of. A tuple can only be a member of one relation.

Relations have 2 parts. The first part is is a set of tuples defined by the fact that the tuples know
which relation they arc in. The second part is global information that defines how to access data in a

tuples. Each relation has a unique ID so that tuples can be appropriately tagged.

The example below shows how the relation PART cold be represented on the connection machine.

Relstion: PART ID: 259
P# PNAME COLOR cIry

Pi:1 Nut :1 Red :1 London:i
P2:2 Bolt :2 Blue :2 Paris :2
P3:3 Screw:3 Green:3 Rome :3
PA:4 Cam :4 Athens:4
P5:5 Cog :5

P6:6

The part would look like this (tuples are horizontal):
A single cell would contain 1 tuple.

P# PNAME COLOR WEIGHT CITY RELATION

1 1 1 12 1 259
2 2 3 17 2 259
a 3 2 17 3 259
4 3 1 14 1 259
5 4 2 12 2 259
6. 5 1 18 1 259
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8.3 Opcrations on Relational Data Bases

This section defines several high-level operations on relations. A user would manipulate the
relational data base on the connection machine using these operations. The next section shall discuss how

these operation can be implemented.

For the opcrators union, intersection, and difference, the two relations must be of the same degree,
and the h ficld of each relation must be from th~ same domain.
Union

The union of two rclations A and B is the set of all tuples 7 belonging to either A or B (or both).

Relation: A Relation: 8 Relation: A Union B8
Field: NAME Field: NAME  Field: NAME

Interscection

The intersection of two relations A and B is the set of all wples 7 belonging to both A and B.

Relation: A Relation: B Relation: A Intersect B
Field: NAME Field: NAME  Field: NAME

Difference

The difference between two relations A and B (in that order) is the sct of all tuples 7 belonging to A

and not to B.
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Relatfon: A Relstion: B Relation: A Differsnce B
Field: NAME Field: NAME Field: NAME

corccocnsccsne Soses cncnss sevrscea cone

'] b [ ]
b d 14
c [} )
d

Cartesian Product

The cartesian product of two relations A and B is the set of all tuples 7 such that is the

concatenation of a tuple a belonging to A and a tuple b belonging to B.

Relation: A Relation: B Relation: A Cartesian Product B
Field: NAME Field: NAME Field: NAME1 NAME2

ceresscecanne CE Y TN D L R L L L L

aaann nooooOeoeD
SavrsovTgeaveac

Sclection

SELECT is an opcrator for constructing a "horizontal" subset of a rclation-i.c., that subset of tuples
within a relation for which a spccified predicate is satisfied. The predicate is expressed as a boolean
combination of terms, each term being a simple comparison that can be established as true or false for a

given tuple by inspecting that tuple in isolation.

Relation: A Relation: A Select(Weight>20 Color=Red or Blue)
Field: Part Weight Color Field: Part Weight Color

P10 33 Red P10 33 Red

P11 21 Blue P11 21 Blue

P12 17 Red P13 27 Red

P13 27 Red

P14 25 Yellow

P15 16 Blue

Projection
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PROJECT is an operator for constructing a "vertical” subset of a relation-i.c., 2 subset obtaincd by

selecting specificd ficlds and climinating others. (and also ecliminating duplicate tuples within the

auributes sclected). The set of ficlds that are to be climinated is called the projection-domain. See figure

Field: Part Ha1yht Color

{projection exampled.
Relation: A
P10 33
P11 21
P12 17
P13 27
P14 25
P15 16

Join

Relation: A Project(Color)

Field: Color

Yellow

JOIN is an operator that combines two relations over a common sct of fields. The common set of

ficlds is called the join-domain. The result of joining relation A on field X with relation Bon field Y is

the set of all tuples 7 such that ¢ is a concatenation of a tuplc a belonging to A and tuple b belonging to B,

where i:y. This is called Equi-Join because equality is used in the comparison of the join-domain.

Other kinds of joins can be defincd using other comparisons (ex. greater-than, less-than etc.). See figure

<Equi-Joind.

Relation: A
Field: Plrt

PIO
P11
Pi2
P13
P14
P15

Weight Color

33
21
17
27
25
16

Red
Blue
Red
Red
Yeliow
Blue

Relation: B
Field: Co1or

Relation: A Join B (over the Color Field)
Weight Color

Field: Part

Red
8lue
Red
Red
Yellow
Blue

Concopt

Ferrari
Sky
Ferrari
Ferrari
Submarine
Sky

Concept

Ferrari
Sky
Submarine
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8.4 Implementation of Operations on the Connection Machiné

This section describes an implementation of the relational data base opcrations described above on
the connection machine. When describing cach operation there arc two cases of interest: 1) the domain
of interest (this could be several ficlds) is larger than the address space of the machine; and 2) the domain
of interest is smaller than the address space of the machine. The address space of the machinc is the

. number of processors that can receive a message. The size of a domain is 2{Pumber of bits that define

the domain)  y¢ ype size of the domain is smaller than the address space of the machinic then each

element of a relation can send a message to the cell with the address that is equal to the bits that define

the domain. This is a very uscful opcration as we shall sce.
8.4.1 Domain size is smaller than address space

This section assumes that the domain size is smaller than the address space of the machine. Tuples

can send mail 1o the address that is specificd by the domain of interest.

Union

A UNION B:

Step 1:

Every tuple in A sends a message (no content) to the processor
specified by the bits of the domain.

Step 2:

Every tupie in B sends a message (no content) to the processor
specified by the bits of the domain.

Step 3:

Any cell that receives s message during Step 1 or Step 2 create
@& new tuple. The value of the domain is the address of the cell.

Intersection

A INTERSECT B:

Step 1 and 2: Same as for UNION

Step 3:

Any cell that receives a message during Step 1 and Step 2 create
8 new tuple. The value of the domain is the address of the cell.

(optional example)
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Fig. 52. Union Example (Address Arithmetic)
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The union of set A and sct B is done by using the entry as an address and sending a message
to that address. If a cell in the machine recieves two messages then the entry that is that
address is a member of the resulting set.

Difference

A DIFFERENCE B:
Step 1 and 2: Seme as for UNION
Step 3:

Any cell that received a message during Step 1 and not during Step 2
creates 8 new tuple. The value of the domain is the address of the cell.

8.4.2 Domain size is larger than the address space

Now assume that the domain is too large to be used as the address of a cell in the machine. An
alternative approach that uscs sorting instead of hashing is presented below. These algorithms will work

on relations with duplicate tuples. The resulting relations will not contain duplicates,

Union

A UNION B

Step 1:
Each tuple in A and B creates » datum that contains the domain as &
value. The low order bit of this datum is 0 if the tuple is from set A
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and 1 41 the tuple is from set B. The eoffect of this is that equa)
an egual data from A will be next to an equal datum from B if one exists.

Step 2:
Sort these data into 8 linear ordered set of processors.

Step 3:

Each processor that has a datum Jooks at the datum stored in

the next processor. If the datum stored st the next processor s equal
to the datum stored at this processor then mark this datum as a duplicate.
A1) processors that contain a datum from either A or B create a new

tuple whose domain is the value of the datum without the lowest order bit.

Fig. 53. UNION example (Sort)
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In this casc cntrics are too large to use as addresses. Sort the entries in sct A and sct B into
another set. If there are two contiguous identical entries then that entry is a member of the
resulting set.

Intersection

Step 1 and 2: Same as for UNION.

Step 3:

Each processor that has a datum from A Tooks at the datum stored in
the next processor. If the datum stored at the next processor is
equadl to the datum stored at this processor and is from B then

then create a new tuple whose domain is the value of the datum without
the lowest order bit.

Difference
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Step 1 and 2: Same as for UNION,

Step 3:

Esch processor that has a datum from A Yooks at the datum stored in
the next processor. 1f the datum stored at the next processor is
not equal to the datum stored st this processor then a new tuple

is created whose domain s the value of the datum without the
lowest order dit.

8.4.3 Cartesian Product, Projection, Join

Ti.~ sizc of the domain is not important for these operations because they do not use address

hashing.

Cartesian Product

This algorithm is described in chapter N-cube algorithms.

Projection

PROJECT A (over some set of fields called the projection-domain)

Step 1:

For each tuple in A create 2 datum that is the data of the
projection-domain. Sort these data intoc a linear ordered set
of processors; one datum to one processor.

Sorting is described in chapter N-cube algorithms.

Step 2:

Once the data have been sorted each processor that contains a datum
sends B copy of the odatum to the next processor in the linear
ordering. If the datum received is equal to the datum stored then
mark the datum stored at this processor as 8 copy.

Step 3:

A1l processors that are storing data not marked as copies create a

new tuple whose domain is the value of the datum. The result of the
projection is the set of all these tuples.

JOIN

A Join B (over the join-domain) can be donc quite easily by forming the cartesian product of the
two relations and doing the join comparison in paralicl at every tuple of resulting relation. If the
comparison is truc then that tuple is a member of the resulting relation. Unfortunately this requires ja| ¢

|B] processors.
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Fig. 54. Projcction Example

Equi-Join (comparison is equality) can be donc more casily than by forming the cartesian product
of both relations. The general idea is that tuples with equal join-domains are grouped together by sorting.
Tuples with equal domains from relation A and B find each other and from a local cartesian product over

the domain. The union of these cartesian products will be the result.

Step 1: :

Each tuple in A and B forms a datum that contains its state.

Data from A is sorted into 8 set of linear contiguous processors.

Data from B is sorted into another set of linear contiguous processors.
Comparisons for sorting are just over the join-field. The result s
that oata with equal join fields are grouped together. Call a set of
gata with equal join-fields an "egqual-set”.

Step 2:

The object of this step is twofold: 1) To exchange the start address of
corresponging equal-sets from A and B and

2) find out how many cells are in each squal-set. fach processor

with the first element of an equal set creates a datum that contains
its sddress, the join-field, and a bit that indicates if it is from set
A or B. These data are sorted into & set of linear contiguous processors
using the join-field for comparisons.

The start address for the equal-set from A will be next to the start
address for the corresponding equai-set from B if it exists. Also,

the number of elements in an equal set from one relation can be
determined by findinp the next processor that contains a datum from

the same relation. The return address allow this information to be
sent back to the first element of each equal set.

Step 3:

The cartesian product of corresponding equal-sets can now be done.
Corresponding equal-sets cons a block of linear contiguous processors.
This block will contain |equal-set from A|*|equal-set from B| processors.
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A1l cartesian products can be done in parallel, ‘Tho UNION of the

resulting certesian products will be the result of the EQUI-JOIN. -

Fig. 85. Equi-Join
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8.5 Conclusions

This chapter discused using the CM as a relational database processor. The use of relations is an
alternate to semantic networks as a method of knowledge representation on the CM. Many of operatiohs
(sorting, enumeration, ¢tc.) requirc that the entirc machine be working because they depend on the
topology of the routing network. A future goal of the CM project will be to make these algorithms fault

toler~nt.
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applications use a combination of synchronization techiniques.

Several applications have been proposed for the Conncction Machine using the graphical
programming mcthodology. These applications include: Semantic Networks, Relational Data Bascs,
Constraint Networks, Graph Reduction Evaluation, and Data Flow Evaluation. The common property
of all these applications is that cach requires a large number of fairly simple computations and irrcgular
communication patterns. The simple processors of the Conncction Machine exccute simple
computations in parallel; the flexibility of the communication  t.ork allows irtcgular and dynamic

communication patterns.
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9. Conclusion

This thesis prescnts a programming methodology that exploits the highly paralicl architecture of the
Connection Machine. Using this methodology a computation is represented as a graph with a processor

at each vericx. Two types of parallclism are exploited on the Conncction Machine:

1) Each processor operatcs on its Iocal‘mcmory in parallel. -

1) Independantly addressed messages are delivered by the communication
nctwork :n parailcl.

The communication network allows parallel communication between conncected vertices of an arbitrary
graph represented on the Connection Machinc as a data structrre.  The communication network is the

featurc that gives the Connection Machine its flexibility.

Threce levels of abstraction for programming in the Connection Machine were introduced:

1) N-cubc Level: Several low level operations quickly executed by taking
advantage of the connection topology of the communication network.

2) Tree Level: Vertices are limited to 3 connections: a parent and two children.

3) Graph Level: Graph can have an arbitrary number of connections to other
vertices in the graph.
Operations implemented at the N-cube and Tree level of abstraction arc supplicd as primitive operations

for programming at the Graph level of abstraction.

Synchronization is the basic difficulty in parallel programming. Several methods of handling
synchronization arc uscd in the algorithms presented in this thesis. At the lowest level the single
instruction stream of the Connection Machinc allows direct control of synchronization. Enumeration by
subcube induction is an examplc of an opcration where it is important that all processors be synchronized
tightly. Programming at this level is efficient but is very tedious. At a higher level of abstraction
synchronization can be achicved by communication protocols between connccted nodes. The
Scrialization algorithm uses this form of synchronization; when a datum is accepted an confirmation

message is sent to the sender. It is not important that every processor be running in lock step. Most
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10. Appendix I Algcbraic reduction example in MP

This appendix describes an MP program for the algebraic reduction computation described in

Concept Primer. "This program gives the code for multiplication; addition would be similar.

VAR NODE-TYPE: {ROOT OPERATOR LEAF INACTIVE}

VAR OPERATOR-TYPE: {® +)}

VAR LEAF-TYPE: {1 0 X)

VAR WAIT-FOR-RIGHT-CHILD: BOOLEAN

VAR WAIT-FOR-LEFT-CHILD: BOOLEAN

VAR REPLACE-LEFT-CHILD: BOOLEAN

VAR REPLACE-RIGHT-CHILD: BOOLEAN

VAR MESSAGE-TYPE: {TYPE, CHILD-REDUCING, REPLACE, UPDATE-PARENT)

1::leaves send type to psrent
(if (= node-type 'leaf)
(send ("TYPE leaf-type) perent))

;.;operator nodes decide what to do
(if (= node-type ‘operator)
(progn
;5:if either branch is & zero
(if (or (and (= left-child-mail true)
(= (get-msg left-child-mbx 2) 0))
(and (= right-child-mail true)
(= (get-msg left-child-mbx 2) 0)))
(progn
(set node-type ‘leaf)
(set 1eaf-type 0)
;i:delete left and right child
(set-up-send ('DELETE-POINTER) left-child)
{set-up-send ('DELETE-POINTER) right-child)))
s::if left and right are 1
(if (and (and (= left-child-mail true)
(= (get-msg left-child-mbx 2) 1))
(and (= right-child-mail true)
(» {(get-msg right-child-mbx 2) 1))}
(progn
(set node-type ‘leaf)
(set leaf-type 1))
;::else if only the left 1s a 1
(if (and (= left-child-mail true)
(= (get-msg left-child-mbx 2) 1))
(progn
(set-up-send ('DELETE-POINTER) left-child)
(set-up-send (°'CHILD-REDUCING) parent)
(set replace-with-left-child true))
;::else if only the right branch is 1
(if (and (= right-child-mail true)
(= (get-msg right-child-mail 2) 1))
(progn
(set-up-send ('DELETE-POINTER) right-child)
(set-up-send (°'CHILD-REDUCING) parent)
(set replace-with-right-child true)))))
;iireset mail )
(set left-chiid-mail false)
(set right-child-mail false)
1::if this branch is to be replaced notify parent
(send-buffered-messages)))
ii:process the DELETE-POINTER message
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(11 (and (= parent-mail true)
(= (get-msg parent-mbx 1) 'DELTE-POINTER))
(PROGN
(set node-type 'INACTIVE)
(set parent-mail false)))
siiProcess the CHILD-REDUCING message
(1f (end (= noce-type ‘operator)
(» Yeft-child-mail 1)
(= (get-msg left-child-mbx 1) °'CHILD-REDUCING)
(» REPLACE-WITH-LEFT-CHILD true))
(progn
(set WAIT-FOR-LEFT-CHILD true)
(set left-child-mail false)))
(if (and (= noce-type ‘'operator)
(= right-child-mail 1)
(= (get-msg right-child-mbx 1) °'CHILD-REDUCING,
(» REPLACE-WITH-right-CHILD true))
(progn
{set WAIT-FOR-RIGHT-CHILD true)
(set right-child-mail false)))
;1 STEP 2: intia) step of reducing the tree
(if (and (= replace-with-right-child true)
(= wait-for-right-child faise))
(set-up-send ('REPLACE Y) 2))
(if (and (= replace-with-left-child true)
(= wait-for-left-child false))
(set-up-send (°'REFLACE X) 1))
(seng-buffered-messages)
iviloop
(while (end (= left-child-mail false)
(= right-child-mail false)
(= z-mail false))
(dispatch-on-type
left-child-mbx
(*REPLACE
(if (= wait-for-left-child true)
{set-up-send ('UPDATE-PARENT SELF) left-child)
(progn
(set left-child (get-msg left-child-mbx 2))
(set-up-send ('UPDATE-PARENT SELF) left-child)))))
(dispatch-on-type
right-child-mbx
( "REPLACE
(if (= wait-for-right-child true)
(set-up~send ('UPDATE-PARENT SELF) right-child)
(progn
(set right-child (get-msg right-child-mbx 2))
(set-up-send ('UPDATE-PARENT SELF) right-child)))))
(dispatch-on-type
parent-mbx
(*UPDATE-PARENT
{set parent (get-msg parent-mbx 2))))
(send-buffered-messages))
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1. Appendix 2: GA1 Pruning Rules

These rules are taken directly from [Stefik].
Canonical Form Rules: These rules prunc reflected and rotated partial structures.

Rule F3. If circular structurcs arc being generated, only the smallest segment in the list of
initial segments should be uscd for the first segment.

Rule F4. 1If circular structures are being gencrated and the second segment is about to be
placcd and there are several segments to be placed and the scgment is the largest of the
remaining segments. then this branch of the gencration can be pruned.

Rule F5. If circular structures arc being gencrated and a segment equ-! to the first segment
is about to be placed and the total mass is less than the molecular weieht (so that at least one
more segment will be placed) and all remaining scgments arc less than the sccond scgment of the
structure, then this branch of the generation may be pruncd.

Rule F6. If circular structures are being generated and a segment equal to the first segment
is about to be placed and the previous scgment is less than the sccond scgment, then this branch
of thc generation may be pruncd.

Pruning rules: These rules prune partial structures that are not consisient with the
experimental data.

Definition P3. Allowable sites for scgments. Recognition sites arc allowable for terminating
a scgment only if the segment appears in the 2-cnzyme complete digests for the corresponding
cnzymes. (If there is only one enzyme in the experiment, then only its sites are allowable.)

Rule P4. If a segment is about to be placed and the previous site is not onc of the
allowable sites for this segment, then this branch of the gencration may be pruned.

Rule PS. If a site is about to be placed and it is not an allowable site for the previous
segmcent, then this branch of the gencration may be pruned.

Definition P6. Required termination sites for segments. If only one enzyme was used in the
experiment. then the site for that enzymc is required for every segment. If two cnzymes were
used. then for each segment which does not appcar in a l-enzyme digest. both enzyme sites are
required. If thrce or more enzymes were used, then for each segment which appears in exactly
onc 2-cnzyme complete digest, the sites for the enzymes involved in that digest are both required.

Rule P7. If a scgment having required sites is about to be placed and the previous site is
not one of them, then this branch of the generation may be prunecd.

Rule P8. If a site is about to be placed and the previous segment has required sites and
this sitc is not onc of them, then this branch of the generation may be pruned.

Rule P9. If a site is about to be placed and the previous segment has two required sites
and the previous sitc is onc of the two required sites but this site is not the other one, then this
branch may be pruncd.

Rule P10. If a scgment is about to be placed which would increase the mass of the current
structure to be greater than the expected molecular weight and there are morc sites to be placed,
then this branch of the generation may be pruncd.

Rule P1]. If circular structures are being generated and the first segment ic unique and
appears in the l-enzymc complete digest for enzyme El, then a recognition site for El can be
placed in front of the first scgment.

Definition P13. Allowable inter-site segments. For recognition sites El1 and E2, a segment is
said 10 be allowable between El and E2 when it appears in the appropriate digests.  Specifically,
if El is distinct from E2, the scgment must appear in the 2-enzyme complete digest involving El
and F2. Otherwisc it must appcar in the 1-enzyme complete digest for El.

Rule P14, If a sitc El is about to be placed and there is another site E2 preceding it in the
structure (and there is no site equal to El or E2 between them) and the sum of the intermediate
scgments in not an allowable scgment for El and E2, then this branch of the generation may be
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pruned.
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