
1

6.891, Theory of Computing Machinery, Lecture 4, February 19, 1986. Lecturer: Charles

Leiserson. Scribe: Bradley C. Kuszmaul.

Divide and Conquer Layout Strategies

Today we are going to discuss 'divide and conquer' layout strategies. To get started, we will

consider the layout of a complete binary tree.

There are several ways to layout complete binary trees. The most obvious layout is not the

best. Figure 1 shows a 'naive' layout of a complete binary tree. The layout is 0(n) wide, and

0(log n) tall, giving an aera of 0(n log n). A much better layout is the H-tree layout, which is

shown in Figure 2. The H-tree layout has area 0(n), which is optimal since there are 0(n) vertices

in the tree.

Figure 1: A naive 0(n log n) binary tree layout.

One question that comes to mind is 'why is the H-tree layout more efficient?' There are several

answers. The first answer is 'the area is smaller', but that does not tell us much. Two issues that

seem to be more illustrative of what is going on are:

Aspect ratio: We note that the aspect ratio of the H-tree layout is more balanced. Asymptotically,

6.891, Theory of Computing Machinery, Lecture 4, Feb 19, 1986 	 2

i•I
HH

•	

Figure 2: The H-tree layout with area 0(n).

the naive layout becomes very long compared to its length, while the H-tree stays square.

We can look at what happens to the wire length.

Wire length: The wire lengths grow differently in the two layouts. In the naive layout, the wire

lengths double every time we move one jump closer to the root of the tree. In the H-tree

layout, the wire lengths double only every other jump.

It turns out that the way the wire length grows is very important. To understand this, we will

look at several recurrence relations and see how the different growth rates affect the solutions to

the relations.

With the naive layout, we have a recurrence relation as follows

A(n) = 2A(1.n/2i) -h 0(n) 	 (1)

which has a solution of 0(n log n). This recurrence relation arises from the fact that there are two

subtrees of size n/2, each of which has area Ann/2.1), plus we need 0(n) more wire to connect

the top roots of the two subtrees with another node (since the roots of the subtrees are distance

0(n) apart).

Area = A(n)

Area = A(n/4)

HH
S(n/4)

6.891, Theory of Computing Machinery, Lecture 4, Feb 19, 1986 	 3

Extra Slices
(In Rectangles) -4

Each Slice With

Area SQRT(A(n/4))

S(n)

Figure 3: How to derive the recurence relation for the area of an H-tree.

The H-tree layout, on the other hand, has the following recurrence relation.

A(n) = 4A(Ln/4) + 4VA(Ln/4j) +1 	 (2)

This relation is derived as shown in Figure 3. Note that the H-tree in Figure 3 has been divided

into four large pieces with a small slice between them. The first term in Equation 2 accounts

for the area of the four large pieces, each of which contains n/4 of the nodes of the H-tree. The

second term, 4VA(1.71/4i), accounts for the four slices between the four small squares, and the

extra constant value, 1, accounts for the very small square in the center of the layout.

Equation 2 looks very difficult to solve, but if we substitute S(n) = VA(n) into Equation 2,

we get

S2 (n) = 4S2([n/4i) ± 4S(Ln/4) 	1, 	 (3)

6.891, Theory of Computing Machinery, Lecture 4, Feb 19, 1986 	 5

./•• 	••••

Figure 4: An example of a separator on G.

1. No edge connects A to C,

2. IBI < c An), and

IAI 	ICI 5. (1 — ce)n.

Figure 4 shows an example of a graph partioned into a vertex separator. Note that 1BI is 0(f(n))

and that the sizes of A and C are 'reasonably' equally balanced.

Definition 1 defines a vertex separator. A related question is to find edge separators, i.e. to find

some set of edges which are the only connections between A and C, where A and C are reasonably

equally balanced and the number of edges is 0(1(n)). It is pretty clear that for edges of bounded

degree, an f(n) vertex separator gives an f(n) edge separtor (just take the incident edges to B.

There can not be too many of them), and the reverse is true (take the vertices which are incident

to the edges forming the partition). Therefore, an f (n) vertex separator is the same as an f (n)

edge separator for graphs of bounded degree. A star graph (see Figure 5) is an example where the

two kinds of separators are very different. It takes 0(1) vertices to cut the graph into equal parts,

but 0(n) edges.

Lipton and Tarjon showed that

• planar graphs have a \ Ft separator theorem, and

An n/2 edge separator

6.891, Theory of Computing Machinery, Lecture 4, Feb 19, 1986 	 6

•

-

it

A 1-vertex separator

Figure 5: Edge separators are different from vertex separators for star graphs.

• trees have a 1 separator theorem. (Note that trees are not closed under the subgraph relation,

but forests of trees are. In some sense, the business about the subgraph relation is a red

herring.) (This can be proved with a =

The homework due on March 5, 1986 is to show that outerplanar graphs have a 1 separator

theorem, and show that you can produce the separator in linear time.

You may want to refer to a text, such as Harary's book on graph theory.

Definition 2 An outerplanar graph is a planar graph that you can embed into a plane such that

all the vertices are on a single face (i.e. you can 'get to' all the vertices from the outside).

A maximal outerplanar graph is shown in Figure 6. The definition of a maximal outerplanar

graph is an outerplanar graph in which if one more edge is added, the graph would no longer be

outerplanar. In general, maximal outerplanar graphs are triangulations of n-gons.

Note that trees are outerplanar graphs, since you can get to every vertex of the tree from the

outside.

6.891, Theory of Computing Machinery, Lecture 4, Feb 19, 1986 	 7

Figure 6: A maximal outerplanar graph.

Colinear Layouts

A natural 'easier' problem is the problem of colinear layouts.

Definition 3 A layout is colinear if all the vertices of the graph lie on a single line.

We have the following theorem about colinear layouts of binary trees.

Theorem 1 Any binary tree can be laid out in 0(n log n) area as a collinear layout.

Proof: From Lipton and Tarjan we know that we can get a 1 separator theorem with <

If we lay out the graph as shown in Figure 7 with a separating edge between two subpieces, and

the two sub-pieces of the graph each have height less than H((1 — cr)n), then we need at least one

more line of height to connect up the two sub-pieces, giving the following recurence relation:

H(n) <H(3/4n) + 1 	 (6)

which has solution 0(log n). (Here we are using an edge separator, but binary trees are of bounded

degree, so we are ok.)

In general, a f (n) separator theorem, with constants a and c, gives us height

H(n) H((i — a)n) + (n)
	

(7)

6.891, Theory of Computing Machinery, Lecture 4, Feb 19, 1986
Extra Line

8

Base Line

Height 11(3/4 n)

Height 11(:/4 n)

Separating Line
Figure 7: An optimal colinear layout for a binary tree.

which gives

H(n) =

0(ne) 	if (n) = 0 (nt), for some E > 0, then we get tic + (cn)+(c2 nr-i-• •

which is geomeetric and c < 1 implies 0(n()

e(logk+1 n) if (n) = 0(logk n), k > 0, since this forms an arithmetic series

from one up to logk n.

(8)

Note: One can ask what happens for things like log log n and so forth, but we will stop at

logk n.

Equation 7 automatically gives us a bound colinear layouts of planar graphs of 0(n3/2) area

(since n h /2 is the height and n is the width). This is a tight bound for planar graphs, (example

for the bounding box area, a mesh must have 	wires crossing any bisection).

Claim 1 A 'naive' (read 'easy') bound for bounded degree graphs is n2 area, since we can simply

build b large crossbar switches to implement the interconnections, where 6. is the degree of the

graph.

We will show that this bound for trees is existentially tight. (I.e. there is a graph which

requires this bound.) To show that the bound is universally tight is harder. We will show that

6.891, Theory of Computing Machinery, Lecture 4, Feb 19, 1986 	 9

Figure 8: A complete binary tree cut into four subtrees.

there is a tree which takes ign log n) area for a collinear layout. The tree is the complete binary

tree. We will prove the bounding box area meets this requirement, by induction on n = 2k — 1

vertices.

Proof: The inductive hypothesis is that there is a perpendicular to the base line between the

leftmost and rightmost vertices that cuts off at least {k/21 edges or vertices.

The base case involves checking for n = 1 and n = 3.

To do the inductive step, we cut the tree into four subtrees, as shown in Figure 8. Note that

Figure 8 shows the tree, not the layout. (since for example, there is no reason to believe a priori

that the vertices of each of the four subtrees will not be mixed together). Let v be the leftmost

vertex on the baseline (say that v is as shown in Figure 8). Let w be the rightmost vertex in a

different subtree. The other two subtrees are wholly embedded between v and w. Choose one of

the remaining subtrees. By inductive hypothesis, there is a perpendicular, 1, that cuts at least

r(k — 2)/21 edges and vertices. There is a path from v to w that cuts 1, so we must add one

for that line. This gives us the relation H(2k) = 1i (H(2k-2) + 4 ,, i) which proves the bound to be

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

