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Abstract 

A detailed account of the Tagged Token Dataflow Architecture is presented. In this paper, we 
describe the Tagged Token Dataflow Machine being constructed at M.I.T. by the Functional 
Languages and Architectures group. The first two sections discuss the nature of tags, and describe 
how programs are mapped on the machine. The third section describes the Processing Element and 
the instruction set in detail. We conclude with a description of the current status of the project and 
our goals for the future. 

Key words and phrases: computer architecture, data flow, multiprocessors, resource management 
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The Tagged Token Dataflow Architecture 

1. Architectural Strategy 

The aim of this paper is to give a detailed account of the Tagged Token Dataflow Achitecture 
being developed by the Functional Languages and Architectures group at M.I.T. This project 
began as an effort to realize the U-interpreter model of execution in a multiprocessor setting: 
however, the result is an interesting multiprocessor system, quite independent of the U-interpreter. 
The gist of this project has been discussed extensively elsewhere [5, 6, 3], and the reader is 
presumed to have a basic understanding of the dataflow approach to parallel computation. For 
answers to the question "Why dataflow ?" and other such questions related to the tagged-token 
dataflow model of computation. the reader is referred to [6]. In this paper. we focus on the salient 
points of the architecture of the machine. 

The Tagged Token Dataflow Architecture comprises a number of identical Processing Elements 
(PE's) which are connected together by an n-cube network. A high-level view of a PE is shown in 
Figure 1-1. It performs five basic functions, as listed below. 

1. Waiting-Matching section: Detects when an instruction is enabled. Operations are 
restricted to having one or two inputs, thus if a token requires a partner it waits in the 
waiting-matching section until its partner arrives. Tokens that do not require partners 
bypass this stage. 

2. Instruction-Fetch section: Fetches an instruction from program memory. We do not 
support virtual memory for the program store. 

3. ALU: Executes the instruction. The ALU receives a stream of packets comprising 
operations and operands. It may be as powerful as the surrounding subsystems can 
support. Currently, it is not pipelined internally. 

4. Output section: Generates the result tokens. It produces tokens with data from the ALU 
and tags generated from destination instruction pointers and parameters that specify 
how programs are mapped in the system. 

5. I-Structure storage: Provides storage for data structures. It solves the read-before-write 
problem [6]. 

The PE can be thought of as an asynchronous pipeline in which given enough work, all sections 
will computing simutaneously. 

Each of the modules in the PE can be internally pipelined. if necessary. It is hoped that such a 
system will be scalable upto a large number of PE's - i.e.. show a real increase in processing power 
as more PE's are added to the system. 

From the view-point of the machine, a dataflow program is a set of code-blocks. A code-block is a 

collection of dataflow instructions which results from the compilation of an Id loop or a procedure. 
A code-block may have within it instructions that invoke other code-blocks. The machine is 
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Figure 1-1: A Block Diagram of the Tagged Token Dataflow System 

designed to support the dynamic invocation of code-blocks - i.e., it is not necessary to load all 
code-blocks into physical memory before beginning the execution of the program. In order to 
permit the sharing of code by multiple invocations of a given code block, all tokens are tagged so as 
to keep tokens belonging to different instructions and different instantiations of an instruction 
separate. The precise nature of this tag will be explained in Section 2. 
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2. Tags and Resource Management 

A code-block is a directed' graph of instructions resulting from the compilation of a loop or a 
procedure. Before a code-block can be activated, it must be loaded into the program memories of 
one or more PE's. Once the loading of a code-block has been accomplished, it is activated by 
placing tokens on its input arcs. The set of tokens generated by activating a code-block is termed a 
code-block activation. Tokens must specify their destination instruction. Once a code-block has 
been loaded, the tuple <PE #. address> identifies the destination instruction uniquely. Accordingly. 
we \yin require that all tokens carry the <PE#, address> of their destination instructions. Since a 
copy of the program graph may be shared by many different activations simultaneously, tokens 
must carry sonic additional information so that tokens from different activations are not confused. 
This can be done by associating a field called hue with every activation of a code block. By requiring 
that all tokens belonging to one code-block activation have the same hue and assigning different 
hues to different activations of the same copy of the code-block, we can ensure that tokens .  
belonging to different code-block invocations are not confused. Therefore, in addition to a data 
value, every token must carry the 3-tuple <PE#, address. hue>. We will refer to this 3-tuple as the 
tag of a token. 

If' the hue field is very large (say 64 bits), then it is possible to support an arbitrary number of 
activations of a copy of a code-block. In that case, hues need not be reused. However, unless 
memory need never be reused, the termination of all activations of a copy of a code-block must be 
detected. Therefore, there are two options - very large address space and a large hue field, or 
limited address space and a restricted hue field. A large physical address space is prohibitively 
expensive, while a large virtual address space is complicated and may result in unacceptable delays. 
Hence, we have opted to keep the size of the hue field limited, and reuse both physical memory and 
hues. A natural view of tags is as points in the 3-dimensional address space shown below. Since 
program memory and hues are resources of the machine, it is convenient to think of them as being 
allocated for invocations of code-blocks. The management of these resources must be done by an 
agent that has a global view of the system resources. An alternative scenario is a group of agents 
that communicate with each other to perform allocations. 

We now address the issue of how tags are generated for result tokens by an activity. In order to 
produce the tag of a result token, the activity must be able to generate the PE#. address and hue of 
the destination activity. Let us first consider the simple case of an activity which wants to send a 
result token to another activity that belongs to the same code-block invocation. Clearly, the hues of 
both the input tokens and the result tokens of this activity must be the same. In order for this 
activity to generate the PE# and address of the destination instruction, it must know how the 
code-block has been mapped in physical memory. This can be achieved by associating some 
mapping information with the code-block. The instruction itself contains the relative address within 
the code-block of the destination instruction. The mapping inforniation together with the relative 
address of the destination instruction is sufficient to generate the PE# and address of the 
destination instruction. Thus, the tag of the result tokens can be generated from information 

1
For the moment this should be considered to be an acyclic graph. Once the notion of operators that directly 

manipulatz the tag is introduced, it will make sense to allow cyclic graphs as long os every cycle.includes one such special 

operator. 
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Figure 2-1: Tags as a 3-dimensional Address Space 

available to the activity. In sections 2.2 and 2.3, we will explain how code-blocks are mapped on the 
machine. This will enable us to specify the precise nature of the mapping information that must be 
associated with each loading of the code-block. 

The other case to be considered is when an activity wants to send a token to an activity which 

belongs to a new invocation of a (possibly different) code-block. This arises when a code-block 

invokes another code-block, or when a code-block is recursive. In such a case, resources must be 

allocated to the new invocation. For example, a copy of the invoked code-block may need to be 

loaded into memory, and a hue allocated for the invocation. Since the allocation of resources 
requires communication with a global agent_ code-block invocation is. in g,enerai, fairly complicated 
and is described in detail in section 2.4. 

A useful optimization in this case is to treat the case of self-recursive code-blocks in a special 
manner. Such code blocks arise from the compilation of Id loops and self-recursive procedures. 
Invocations of such code-blocks can be divided into external invocations (Le.. when some other 
code block invokes it) and internal invocations (i.e., when it invokes itself). Each internal invocation 
will result in the allocation of a new hue for that invocation-  . To lower the amount of 
communication with the resource manager. it is possible to allocate a bunch of hues to each external 
invocation. A simple approach is to divide hue into two fields - color and initiation-number. Each 
external invocation of the code-block is given a color, and can use the full rune of the initiation-

number field For internal invocations. Allocation of the block of Lags among the internal invocations 

is done by special operators that manipulate hue directly. By making such code-biocks cyclic with 

-Of course. we may run out of hues. in which case a new copy of the code block will 'nave to be loaded elsewhere in the 
machine 
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one such special operator in each cycle, the generation of tags for internal invocations can be done 

without communication with the resource manager. Of course. since the block of hues allocated to 

each external invocation of such a code-block is finite, it. is possible to run out of hues. In such a 

case, there must, once again, be in communication with the resource manager. 

3. Nlapping of Activities 

Clearly, to exploit parallelism it must be possible to distribute activities over the various PE's, and 

this distribution must be in concert with the structure of the program to be effective. Code-block 

invocations are the obvious unit of distribution. In this section we consider how the activities are 

distributed over the PE's. 

3.1. Multiple PE's co-operating in a code-block invocation 
• The activities belonging to a code-block invocation are distributed over many PE's by spilitting 

and distributing the code. However, to generate tags automatically, given a small set of mapping 

parameters. we place constraints on how the program memory may be allocated. 

Constraint 1: A code-block will be loaded across a set of one or more consecutively addressed PE, using the same 

region of program memory in each PE and a single Hue throughout. 

With this constraint, allocation for a code-block invocation reduces to assigning a rectangular 

window across a sequence of PE. It will support as many simultaneous activations as there are 

Hues. If a code-block is split into in parts of length / and loaded onto m PE consecutively then a 

new tag can be generated with the four parameters in. /. PE base, Base-local-address, as indicated in 
Figure 3-1. 

Suppose an activity with Hue H must send a result to an instruction at S. The tag for the result 

token is given by: 

PE, 	 = PEbase 4- LS/1J 
INSTRUCTIONADDRESS 	 = Base-Local-Address 4- S mod 1 
HUE 	 = H 

The port and number of tokens for enabling are copied from the instruction. 

This is successful with respect to generating tags, but it complicates resource management.. Such a 

window would be expensive to locate, and would tend to fragment memory. We must further 

restrict the usage of resources to make this approach tractable. 

Constraint 2: The collection of PE in the system are divided into a set of disjoint Physical Domains (PD), each 

Domain being a set of consecutively addressed PE (see Figure 3-2). This division will not change during the 

execution of a program. 

A couple of implementation details should be noted at this point. We restrict Ito be a power of 2 

to simplify the calculation of mod and floor functions. Also, the hardware is much simpler if we 

assume the instruction under consideration is present in the local PE. Hence the code for an 

instruction must not be split across two PE. We solve this problem at the compiler level: the 

compiler chooses the largest in allowed for each code-block and assures that no instruction is split 
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Figure 3-2: Physical Domains 

when the code is divided into this many blocks. This in is a power of two, so any smaller power of 
two will work as well. 

This approach is not the only solution to the problem. Another approach is to provide a 
relocation register for every code-block loaded onto a PE. This allows the block of memory used 
for a code-block to differ from PE to PE. However, one must either find a strip of relocation 
registers so the register index will be the same in each PE or include the code-block name in the tag 
and perform an associative match to Find the relocation register. In either case, an extra level of 
indirection is required and the allocation problem is not significantly easier. 
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3.2. Distributing internal invocations 

As discussed in Section 2 the generations of tags for internal invocations3  of a code-block can be 

accomplished using special operators that manipulate hue field of the tags. Thus, it also makes 

sense to distribute initiations of a code-block automatically using certain mapping parameters. To 

make this idea tractable, we replace constraint 1 by a new constraint. 

Constraint 1': Each Domain is divided into a set of disjoint Physical Subdomains (PSD). each subdomain being a set 

of' consecutively addressed PE. This subdivision is specified along with each window of code, so it may be different 

For different code-blocks in a given domain. A copy of the code-block is loaded into each subdomain as in Figure 3-1, 

where m is the width of the subdomain. The same COLOR is used throughout the domain for a given invocation. 

Distributing initiations of a code-block must be approached with some care, however, because 

communication cost can outweigh the gain offered by parallel execution. Our studies [2] show that 

distributing initiations in blocks substantially reduces communication costs in many cases; data is 

often shared across ,a small number of initiations, usually one. To support this kind of distribution 

an additional parameter can be associated with an external invocation of a code-block so that 

initiations can be distributed in blocks. 

One method of distributing initiations amongst subdomains is supported by the hardware using 
the following scheme (see Figure 3-3). The first activation, initiation 0. is assigned to the first 
subdomain of the domain. Given some mapping constant k, the jth  initiation is executed on the 

subdomain whose offset from the low end of the domain is given by 

<PSD—offset> = L j /kJ mod <#PSD/PD) 

In other words, the first k consecutive initiations are executed in the first subdomain, the next k 

initiation are executed on the second subdomain. and so on. If there are more initiations than 
k*(number of subdomains) then the assignment wraps around. 

A method for distributing unused initiation numbers is provided for general recursion, but is not 

discussed here. 

3.3. Code-Block Invocation 

The Tagged Token Dataflow Architecture offers a completely general invocation mechanism, 

utilizing 1-structures and the System Manager. It allows for any degree of strictness or non-

strictness in passing arguments and in returning results. It allows mismatch in the number of 

arguments (or results) expected and the number actually transferred. By suitably configuring the 

graph, the compiler builds a calling sequence appropriate to the semantics of the high level 

languages. The general nature of the invocation process is presented below; the specifics of the 

calling sequence are presented in Appendix A. 

Recall that a distinguished System Manager is created when the system is started and resides at 

some fixed location. It maintains the state of all system resources: program memory, code-block 

registers. colors. and 1-structure storage. 	An external invocation of a code-block requires 

communication with this manager. 

3Henceforth, initiation of a code-block will be used synonymously with internal invocation of a code-block. 
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Figure 3-3: Iterations 

Upon receiving the invocation request, the System Manager determines which is the best domain 
of the set of domains that have sufficient resources available to support the activation. Program 
memory, code-block registers and colors are allocated for the activation. The System Manager also 
illocates two l-structures: one for arguments and one tbr results. The manager must now make a 
number of requests to change the local states of each of the PE in the domain: it must request each 
PE to update its base and map registers, it must transfer blocks of code to various PE's (if the 
code-block is not already loaded), and it must request certain regions of I-structure storage to be 
initialized. While it waits for the acknowledgment of these tasks. the System Manager proceeds 
with other invocation requests. Once the initialization process is complete. the two [-structure 
descriptors are sent into the newly initiated (called) activation and into the (calling) activation that 
requested the invocation. The calling activation may store arguments and issue requests for results 
at its discretion: this communication link is totally asynchronous. The called activation immediately 
issues requests for arguments. Once enough requests are satisfied, it begins whatever operation it is 
to perform, eventually storing results. The scenario is depicted in Figure 3-4. 

An important point to note is neither the hardware, nor the manager can determine when these 
various resources (program memory, colors, and l-structure storage) may be recycled. The onus of 
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Figure 3-4: Scenario for Code-block Invocation 

determining when resources can be deallocated is on the compiler. Thus, not just any graph is to be 
run on the machine. The graphs must be well behaved enough so that they are self cleaning. Also, 
the compiler must detect when resources (e.g.. color. [-structure) are no longer needed, and add 
instructions to release resources at appropriate points in the graph The graphs generated from Id by 
the compiler developed by the Functional Languages and Architectures group have these 
properties. 

The tag generation mechanism requires a fairly small number of parameters and yet offers two 
degrees of freedom in distributing the work involved in a code-block activation: spreading a code-
block over a number of PE allows the parallelism within a code-block to be exploited, distributing 
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activations over a set of groups of PE allows the parallelism offered by concurrent activations to be 
exploited, and in the case of internal activations, without intervention of the resource management 
system. 

To summarize this section, consider the various level of token confinement presented here. All 
tokens generated during a particular activation (i.e., iteration) of a code-block are confined to a 
physical subdomain. When tokens enter a new activation (i.e.. D or R operations), they may cross 
into a new subdomain. Tokens destined for a manger (or for an I-structure controller) are not 
restricted by the domain structure. .An invocation request causes the system manager to initiate a 
code-block activation in a potentially distant domain: only parameters and results need to cross 
from the domain of the caller to that of the called code-block activation. As it will be seen shortly, 
i-store provides a convenient intermediary. 

3.4. 1-Structure address mapping 
Heretofore, the discussion has centered on the portion of the architecture concerning activities, 

data structure storage has only been alluded to. We feel this subsystem is crucial the machines 
performance. Some facility must be provided for storing large data structures, while pointers to 
them are carried on the token [7]. It is also essential that the hardware provide a means of sharing 
data without constraining parallelism: this amounts to providing the low level synchronization 
required to solve the read-before-write problem on a per element basis. The I-structure storage 
provides both these facilities in the Tagged Token Dataflow Architecture. 

I-structure storage forms a self-sufficient subsystem. for the storage of data structures. Any PE 
may send a request to any I-store controller: in this sense the I-store memories form a uniform 
address space. Addressing facilities are provided that closely resemble the automatic mapping of 
initiations. This allows I-structure elements to be kept close to the activities that use the elements, 

.when the program has a clearly discernible structure. The addressing facilities are discussed below. 
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Figure 3-5: I-Structure Address Mapping 

The compiler views an L-structure as an array of . N elements. The index values for accessing 
elements of an [-structure of N words range over 0 to N-1. When an I-structure is created, as shown 
in Figure 3-5. a rectangular window of addresses in the physical address space is allocated to it 
Given the constants d and n, the offset of an index value j from the upper left corner of the window 
can be calculated as follows. 



-11- 

<PE-offset> = Lj/dJ modn 
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Figure 3-6: Address Mapping Example 

If we assume that d and n are powers of 2, the above calculations are quite trivial as the following 
example illustrates. Let j be a 16 bit number. d.21°gd where logcl =6 and n = 2logn where logn =- 3. 
Refer to Figure 3-6. Then, 

<PE-offset> = number given by bits 8 through 6 
<Aactress-offset> = number given by bits 15 through 9 and 5 through 0 

The translation of an index into a physical address is done by the ALU when it executes the 
Form-Address instruction. The Form-Address instruction requires a descriptor for the 1-structure 
in addition to the index value; the descriptor must contain the following information: 

1. The physical address of the upper left hand corner of the window (i.e., 
(<P E 	> , < Base -Local.--ozttiress>)). 

2. The values of constants n and d. 

It is not required that an I-structure mapping be identical to that of the mapping of initiations 
d does not have to be equal to any k. and n does not have to be equal to the size of any physical 

domain). The addressing facility allows locality to be exploited when data structures and initiations 
interact in a fairly simple manner; this is the case with most numerical programming. 

1-structures have another vital role in the Tagged Token Architecture; each I-structure is a small 
address space. independent of tags. This allows them to be used to interface disjoint tag spaces; the 
utility of this arises in invoking a new code-block (see Section 3.3) 

4. Processing Element 

In this section the implementation of thc Processing Element is discussed in detail, except the 
1-structure memory controller which is discussed later. The PE has 8 asynchronously functioning 
subsystems; these are connected by finite size buffers and communicate with each other using a 
send-acknowledge protocol. A block diagram of the PE is shown in Figure 4-1. The important 
differences from Figure 1-1 are the introduction of an input stage and output stage to interface with 
the network and a special service processor. The special service processor. marked PE control, has 
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access to the memory of all subsystems via a common bus, and is used for Input/Output, 
diagnostics and special memory functions. 

The tokens entering a PE can be divided into the following three groups: 

1. Tokens corresponding to values in dataflow graphs: These are associated with the usual 
notion of tokens (i.e., tokens that move about on the arcs of the dataflow graph). We 
will refer to these tokens as d= 0 type tokens. 

2. I-store tokens: Tokens in this class do not enable instructions; rather, they carry with 
them the necessary I-store operation codes. We will refer to these tokens as d=1 type 
tokens. A d = 1 type of token is always generated as a consequence of executing an 
instruction in the ALU. 

3. Tokens for PE control and diagnostic purposes: These types of tokens are similar to 
d=1 type tokens except they carry commands for the PE control subsystem including 
entry to managers. Tokens of this type will be referred to as d= 2 type tokens. 

Each type of token has a different format and follows a different path inside the PE. 

4.1. Program representation 
An instruction specifies an opcode, constant operands (if any) and the information about the 

destination instructions needed to construct the output tokens. An operator may require as many as 
three operands, but in the case of ternary operators, one operand is required to be a constant. One 
of the operands can be stored in the instruction itself if it is a constant for all possible executions of 
the instruction. For example, the increment-by-1 operator can be implemented using a + and a 
constant 1. Also, a constant area can be associated with a given code-block invocation; this allows 
operands which remain constant during a loop invocation to be treated as constants rather that 
circulated. An example of such an operand is the upper bound in the loop predicate of a FOR loop. 
Also, 1-structure descriptors are invariably constant throughout a loop invocation. However, the 
instruction format does not allow more than one constant to be stored in any instruction. To 
increase flexibility in arranging inputs for an operator a 2 bit disposition field is associated with each 
of the 2 possible input values and the constant value. The disposition field specifies if the 
corresponding value is to become the l, 2nd or the  -rd operand or ignored entirely. Ignoring a 
constant means that there is no constant operand. Ignoring an input token means it serves only as a 
trigger for the activity. The general format for instructions is given below where the number to the 
right of a field name specifies the number of bits needed to represent that field. 

<Header> 
<Opcode> ( 8 ) 
<Token-l-disposition> (2) 
<Token-2-disposition> (2) 
<Constant-disposition> (2) 
<Constant-source> (1) 
<Destination-list-flag> ( 1) 

<Constant-specification> 
<Data-type> 

<Data-length> (4) 
<Data-class> (4) 
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<Data-value> 	 (0-120) 
<Dest.ination> 

<Number-of-tokens-to-enable-instruction> 	 (1) 
<Destination-instruction-port-number> 	 (1) 
<Destination-virtual-address> (16) 
<Destination-list-flag> 	(1) 

Number-of-tokens-to-enable-instruction specifies whether the destination operator expects one or 
two tokens. The <Destination> item may be repeated as often as required, with all but the last 

Destination-list-flag set to 1. The last <Destination> item must have its Destination-list-flag set to 0. 

In the case where <Constant-Source> is 1 (Le.. the constant is stored in the constant area) the 
<constant-specitication> is replaced by a two byte pointer, giving the relative address in the constant 
area of the actual constant. 

As an illustration consider the < operator in a typical FOR loop. The machine instruction . 
corresponding to < is given below: 

<Opcode> 	< 
<Token-l-disposition> 	01 
<Token-2-disposition> = 00 
<Constant-disposition> = 10 
<Constant-source> = 1 
<Destination-list-flag> = 1 

<Constant-specification> 

<Constant-value> = 2 
<Destination> 

"Token-1 is the 1st  operand" 
"There is no token-2" 
"Constant is the 2nd  operand" 
"is constant area" 
"There are destinations" 
"An offset in the 
constant area" 
"offset is 2" 

The instruction specifies that the first token is to become the first operand, and that the second 
operand is a constant (disposition 00 means that the corresponding argument is to be ignored). 
Furthermore, the constant is to be found in the constant area; this is specified by a constant-source 
field of 1; 0 indicates that the constant is stored in the instruction itself. The constant specification 
then says that the constant is stored at offset 2 in the constant area. A constant area is allocated at 

the time of a loop invocation, but the slots in the constant area are assigned by the compiler. 

The SWITCH instruction deserves special treatment. Due to its very nature, two possible 
destination lists must be kept (one for the TRUE branch, and one for the FALSE branch). The 
TRUE list begins immediately after the <Data-Value> and is terminated by a zero <Destination-list-

flag>. The FALSE list follows the TRUE list, and the relative address of the start of the FALSE list 
is given by the two byte offset in the <constant-specification> fieid. If the <Constant-disposition> is 
0, there is no FALSE desiination list. 

4.2. Processing of standard activities 
This section describes the execution of standard Operators such as arithmetic operators. It also 

serves to introduce the salient features of the sections of the PE. T'nis type of operator produces 
tokens which correspond to the values in the data flow graph (d=0 type tokens). The format of the 

type 0 token is given below: 
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<Token-type> 	= 	0 (2) 
<PE-number> (8) 
<Tag> 

<Color> (4) 
<Instruction-address> (24) 
<Initiation-number> (8) 

<Number-of-tokens-to-enable-instruction> 
	

(1) 
<Port-number> 	 (1) 
<Data> 

<Data-type> 
<Data-length> 	 (4) 
<Data-class> 	 (4) 

<Data-value> 	 (0-120) 

Most of the field names are self evident. The Number-of-tokens-to-enable-instructions field 

allows for bypassing the waiting-matching section if the token is destined for a monadic operator or 

if its partner is a constant stored in the program memory. The port indicates whether the token is 

the first or the second operand for an operator. Recall, the color allows tokens from two different 

activations of a loop or procedure to be separated. The data values in the Tagged Token machine 

carry the type and length information with them. The data value may be 0 to 15 bytes long 

excluding one byte used for type and length information. 

4.2.1. Waiting-matching section 
When a d = 0 type token enters a PE, it follows the path indicated by d = 0 (see Figure 4-1). Any 

token which needs a partner is passed to the waiting-matching section where its tag is associatively 
matched against the tags of the tokens already stored in the waiting-matching section. If a match is 
not found then the token is placed in the associative store. It may happen that there is no room for 

the token in the associative store in which case the token is stored in the overflow memory of the 

waiting-matching section. Management of overflow storage is an inherently slow process because, 

as long as the overflow storage has tokens, an incoming token that does not find its partner in the 

associative store must be sequentially matched against all the tokens in the overflow storage. 

Refusing the incoming token is not an option because that is guaranteed to deadlock the machine 
because token pairs can leave the waiting-matching section only when a new token arrives. Since an 

overflow in the waiting-matching section may cause severe performance degradation, the 

probability of overflow must be minimized by building a sufficiently large associative store. It 

should be noted that crowding in the waiting-matching section depends on both hardware and 

software considerations. The greater the time difference between the production of two tokens for 

an activity, the larger the associative store will have to be. Program decomposition and scheduling 

of activities have direct bearing on the time difference between the generation of two tokens for an 

activity. 

4.2.2. Instruction fetch section 
The Instruction fetch section has four responsibilities: fetch the instruction indicated by the 

INSTRUCTION-ADDRESS portion of the tag, determine the location of the destination list, fetch any 

constant operand, and align operands as per their disposition. 

Fetching the current instruction is straightforward since the INSTRUCTION-ADDRESS field gives 

the absolute address in the program memory. However, in order to locate the constant area 

pointers, the base address of the code-block must also be determined. Also, the Build output token 
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section requires this information to translate relative addresses into physical addresses. To this end, 
the instruction fetch section includes a sequence of register pairs of the form <code-base-address, 
map-register-number>. These are kept packed contiguously and ordered by code-base-address. An 
associative < comparison is made between each code-base-address and the INSTRUCTION-ADDRESS 
value, the lowest register with a successful comparison specifies the base address and map register 
number (map registers are discussed below) for the code-block activation this activity is part of. 

If a constant area is required by the code-block, a list of constant area pointers is stored at 
addresses immediately preceding the code-base-address. They are indexed by COLOR with the 
lowest address corresponding to color 0. Each pointer is a 24 bit address giving the base address of 
the constant area for the particular activation. The constant-specification is added to this constant 
area base address to get the first byte of the constant. Figure 4-2 depicts the relationship of base 
registers, map registers and program memory. 

Once the constants are fetched, the operands are aligned and combined with the opcode to be 
sent on to the ALU. The map register index and the destination list pointer is forwarded to the 
Build output token section. 

4.2.3. ALU 
Fhe ALU section basically receives operation packets and performs the operation on the 

accompanying operands. However, the set of operations is quite large and some of the operations 
are quite sophisticated. For example. I-structure operations involve an address translation in 1-
structure address space analogous to that performed on destination addresses. A complete 
description of the ALU operations is given in the Instruction Set Definition [4]. The operations that 
generate other than standard tokens are discussed in Sections 4.3, 4.5. 

4.2.4. Build output token section 
For each destination in the instruction, the build-token section generates an output token. The 

data value to be included in the token is provided by the ALU. Computation of the output token's 
PE number, physical instruction address. and initiation number is as explained in Section 3. The 
mapping parameters required for tat generation are kept in map registers local to the build-token 
section. The map register index provided by the Instruction-fetch section specifies which set of 
mapping parameters to use. Each map register is a table containing: 

<Domain-Base-PE> (8) 

<Code-Base-Addr> (24) 

<code-per-PE> (24) 
<Initiations-per-PE> (8) 
<color-continuation-flags> (16) 
<Subdomain-Base-PE> (8) 
<SubDomain-Size> ( 8 ) 
<Last-SubDomain-flag> (1) 

The <color-continuation-flags> is a bit-list indexed by color. It allows for pre-allocation of colors, 
etTectively extending the iNITIATION-NUMBER field as discussed in Section 4.4 

The Build output token section reads the destination list from program memory and computes the 
new destination address based on the incoming tag and the information in the map register. A 
token is formed in this way for each destination and sent to the output section. 
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Figure 4-2: Code Block Registers and Constant Areas 

4.2.5. Output section 
The output section translates the PE# field into a network address and routes the token into the 

communications network. The communications network is a packet switched network, of a robust 
topology. The use of routing tables and very general routers allows the exact network topology to 
be modified easily. The nature of the translation to routing addresses is discussed by .Arvind and 
lannucci [6]. The design of the basic network element is described by Iannucci [9]. 
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4.3. I-structure instructions: operators that produce d = 1 tokens 
The various operations on 1-structures produce d = 1 type of tokens which arc sent to an 1-store 

controller. Consider the operator 1-store which takes an 1-structure memory address and a value as 
arguments and stores the value at the specified address. Because an 1-structure will usually be 
distributed over several PE, the address where the value is to be stored may not be in the memory 
space of the PE on which the I-store instruction is being executed. Let us assume that the address 
where the value is to be stored is in the address space of the P PE. It should be noted that a PE 
does not have direct access to the I-structure memory of the other PE. To complete the I-store 
instruction, the PE executing the I-store has to send an explicit request to the th  PE. Tokens 
carrying such requests are called system-generated tokens, and have three different formats 
depending on the nature of the request. The three types of formats correspond to the following 
three cases: 

1. No value or acknowledgment is returned. 

2. A d = 0 token carrying the result value is produced. For example the I-fetch 
instruction requires that a value be returned. 

3. A d = 2 token is produced to inform a manager (managers are discussed in Section 4.5) 
that the request has been completed. 

The formats and functions of the three types of system-generated tokens are explained below. 

1-store tokens that don't produce any other token: Such a token is generated when, for example, 
an ALU executes an 1-store instruction. 

<Token-Type> =1 (2) 
<PE-number> (8) 
<Chain> 	=0 (1)  
<Decode> (4) 

<I-structure-address> (24) 
<Data> (8-72) 

The chain field indicates that this token will not cause the generation of another token and the 
opcode specifies the type of the request. 

1-store tokens that cause generation of a type 0 token: Such a token is generated when, for 
example, an ALU executes an 1-Fetch instruction The result of fetch has to be forwarded to a 
destination activity. 

<Token-Type> =1 (2)  
<PE-number> (8) 
<Chain> 	=1 (1)  
<Decode> (4) 

<Destination> 
<new-Token-type> =0 (2)  
<new-PE-number> (8) 
<new-Tag> (36) 
<new-Number-of-tokens-to-enable-instruction> (1) 

<new-Port-number> (1) 

<I-structure-address> (24) 
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<Data> 	 (8-72) 

The information contained in the destination field is copied into the various fields of the newly 

generated token. 

I-store tokens that cause generation of a type 2 token: Many instructions such as reset I-structure 

must generate a token for a manager so that the system can ascertain that :he instruction has been 

completed (e.g.. the 1-structure has been reset). 

<Token-type> 	= 	1 (2) 
<PE-number> (8) 
<Chain> 	= 	1 (1)  
<Opcode> (4) 

<Destination> 
<new-Token-type> 	2 (2)  
<new-PE-number> (8) 
<new-Chain> 	=0 (1) 
<new-Opcode> 	= 	sentry (4) 
<Manager-address> (24) 

<I-structure-address> (24) 
<Data> (8-72) 

The new d = 2 type token is passed to the manager specified by the manager-address a receipt 
identifying the acknowledgment 

When a d=1 type token enters a PE, it is forwarded to the I-structure controller which is 
responsible for reading, writing and managing the I-structure storage. 

The 1-structure controller is especially suited for a multiprocessor environment in which the 

synchronization involved in producing and consuming data structures must be efficient and fine-

grained. We associate with each memory cell in the I-store special flags (called presence bits) which 

indicate the memory cells status - written or unwritten. This offers the ability to solve the read-

before-write race problem as follows: assume that a memory module has just received a request to 

read a particular memory location and to forward the contents to instruction x. The memory 

module interrogates the presence bits associated with that location. If the bits indicate that the cell 

has already been written into, the contents are retrieved and forwarded to instruction x. If the bits 

indicate that the location is empty. the memory module puts the read request aside, and marks the 

empty location to indicate that a read request is outstanding.4  

When a write request for that location arrives at a later time, the memory module notices the 

pending read request. and forwards the newly-arrived datum to instruction x (as well as writing it 

into memory and setting the presence bits accordingly). Note that the memory module must 

maintain a list of deferred read requests (see Figure 4-3) as there may be more than one read of a 

particular address before the corresponding write. We call this type of memory 1-Structure Storage. 

The issues involved with building such a memory, and the design for an I-Structure memory 

controller are discussed extensively in [8]. 

1The idea of associating a status hit with each memory cell is not new - the Denelcor HP multiprocessor [10] uses this 
idea m synchronize cooperating parallel processes \vhich share registers and/or memory cells. Unsatisfiable requests 

resul Lin a busy-waiting condition - Le.. there is no such thing as a deferred readlist 
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Presence Bits (P = Present, A = Absent, W = Waiting) 

Data or Deferred Read Pointer 

Data Storage 

Possible execution sequence 
producing 7his structure: 

• Attempt to READ(n + 2) for instruction A 

WRITE(n + m) 

' Attempt to READ(n +3) for instruction C 

• WRITE(n) 

• Attempt to READ(n + 2) for instruction B 

' READ(n) 

Figure 4-3: I-Structure Storage 

4.4. Operators that distribute initiations 
In Section 3.2 the need for operators that manipulate portions of the tag was discussed: these are 

the D and R operators in the Taped Token Dataflow Architecture Details are presented here for 
the D operator. The D operator increments the INITIATION field of the tag. This automatically 
distributes work based on the [napping parameters in the build-token section. It should be noted 
that the INITIATION-NUMBER field is of finite size (8 bits) and hence may overflow during the 
execution of the D operator. Overflowing of initiation number field is handled by allocating a new 
color. For some loop expressions the number of iterations, and hence the number of colors it will 
need during the execution can be predetermined. In such cases, rather than a single color, a group 
of colors can be allocated. When such a code-block is invoked, color continuation flags are set up in 
the map register for the activation. In case the INITIATION-NUMBER field overflows, the color 
continuation flag is used to determine if the next color can safely be used. However, if all 
color/initiation values for the code-block have been exhausted then the system manager must be 
informed to get a new color. This essentially involves invoking the loop in a tail-recursive fashion. 

Implementing this is somewhat complicated. The D operator maintains two destination lists--one 

5. 	D operator corresponds closely to the D operator in the U-interpreter. 
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which specifies the normal destinations, and one which specifies the operators to be used in case 
color/initiation values have been exhausted. The compiler is responsible for generating the code to 
call the manager and the code to transmit the values coming from D operators to the appropriate 
places. The algorithm to compute the new tag is given below. 

I. Calculate the PE-offset within some physical subdornain and the physical-instruction-
address as explained in Section 3.1. 

2. Compute the new initiation number by adding 1 to the old initiation number. If 
<initiation number> mod k # 0, the new PE number is computed using the PE-offset 
from step 1 and the subdomain-base-PE from the map register. 

3. If <initiation number> mod k = 0 and this is not the last physical subdomain. the new 
PE number will be computed by adding the PE-offset from step 1 to the number of the 
first PE of the next physical subdomain (i.e.. the new PE number is (Subdornain-base-
PE + Subdomain-Size + PE-offset) The value of k (initiations per PE) is subtracted 
from the initiation number in the result token. 

4. If <initiation number> mod k = 0 and this is the last physical subdomain, the new PE 
number will be computed by adding the PE-offset (from step 1) to Domain-base-PE. 
No adjusu-nent of the initiation number is necessary. 

5. If in any case, the initiation number should overflow (in the result token), a new color 
must be allocated. The color location corresponding to the current color is examined to 
determine the value of the color-continuation-flag. If the color-continuation-flag is 
TRUE. the next (sequential) color is used in the output token (i.e., new color = old 
color + 1), and the initiation number is set to zero. 

If the color-continuation-flag is FALSE (indicating that all color/initiation values for 
this code block have been exhausted), the incoming value (without changing the 
initiation-number field) is sent to the destinations specified in the second destination 
list. This will result in a new invocation. 

4.5. Implementation of managers 
Many functional languages provide some means for resource management within the applicative 

context. In the dataflow language, Id. managers have this role. They are Id programs which can be 
"called" like a procedure from several different places or unrelated Id code blocks. However, 
unlike a procedure, all "calls" to a manager are non-deterrninistically merged together and affect 
the same manager body. It is more correct to think of a manager as an object which is used non-
deterministically by several users. The interconnection of the operators involved in a Manager 
"call", U, U-1. Entry, and Exit is shown in Figure 4-4. The Entry operator non-deterministically 
merges all incoming requests and produces an input stream for the main body of the manager. It 
also passes the "return activity names" on the incoming tokens to the Exit operator so that the Exit 
operator can form the result token with the appropriate activity name. It should be noted that an 
execution of the Entry operator requires no matching of tokens but is sensitive to the history of the 
operator (i.e. it must know how many other tokens have passed through it to generate a correct 
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Figure 4-4: Using a Manager 

activity name). 

In the Tagged Token Dataflow Architecture, we have decided to use storage to implement 
manager objects. A manager object is represented by a 32 bit physical address (Le., an 8 bit PE 
address and a 24 bit local memory address): a block of storage starting at that address is allocated to 
the manager object (see Figure 4-5). The table .ha. n slots, where n is the maximum number of 
concurrent users of the manager allowed by the implementation. A slot in the table has a flag to 
indicate if the slot is in use and space to store a return activity name. A counter j is also associated 
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with each manager object: the value of this counter is used as the initiation field for the Lags on the 

tokens that enter the manager. The rest of the tag for tokens entering the manager is specified when 

the manager is created and stored in the manager object table. 

MOBJ address 

used to compute i 

<PE # ,<Color,Address>,nt,port> Manager activity name 

n entries 

.Y. 

Figure 4-5: Table Associated with a Manager Object 

An instruction called use (which implements abstract operator U) is provided to communicate 

with the manager. The following d = 2 type token is generated when an ALU executes the use 

instruction: 

<Token-type> 	2 
<PE-number> 

<Chain> = 1 

<Opcode> = "entry 

"8 higher order bits of the 
32 bit Manager Object address" 
"Contains a return activity 
name" 

<Destination>. 	 "The return activity name" 

<new-Token-type> = 0 
<new-PE-number> 
<new-Tag> 
<new-Number-of-tokens-to-enable-instruction> 
<new-port-number> 

<I-structure-address> 	 "24 lower order bits of the 
Manager Object address" 

<Data> 	 78-72 bits of any input 
data for the manager" 

The token is routed to the PE-control section of the destination PE where the following steps are 
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taken: 

1. If ( j mod n) slot is empty, the tag for the result value (Le. <Destination> field on the 
input token) is stored in the slot and a new token with data from the input token and a 
tag constructed by using the j value and the information in the table6  is produced. The j 
counter is incremented by 1. 

2. If ( j mod n ) slot is not empty, then the input token is prevented from entering the 
manager. Such a token can be put aside and retrieved later or just circulated back in the 
communication system. 

The Exit operator generates a d = 0 type token which undoes the action of the entry. Suppose 
the initiation number field of the tag on the token that causes exit to be executed is i. The effect of 
the exit is then to mark the slot number (i mod n) as not-in-use and form a token whose tag is the 
tag stored in the slot. Some requests to a manager don't expect a result back, in which case no 
return activity name is included in the token generated by the use instruction. Accordingly the 
Entry operator does not store anything in the slot (though it marks the slot to be in-use) and the 
Exit operator does not produce an output token. 

5. Current Status of the Machine 

An evaluation of the architecture proposed in this paper is impossible without the construction of 
a prototype, and the engineering problems of constructing a novel and large multiprocessor 
machine can not be exaggerated. As discussed in [6], we have decided on two "soft" 
implementations before considering a direct VLSI implementation. 	Two 64 processor 
implementations are in various stages of development: a simulated machine on IBM 4341, and an 
emulated machine on 64 Symbolics 3600 (Lisp) machines. Both implementations will accept the 
code generated by the Id compiler, and model each subsystem of the PE and the communication 
system explicitly. The simulator will also accept data dependent timing specifications for each 
subsection while the emulator will "fake" the internal pipelining of PE's and the communication 
system by the scheduling of tasks where a task will represent one subsystem of the PE. A primitive 
version of the emulated machine comprising 8 PE's should be operational in 1984 while the full 
machine is not expected to be available until late 1985. 

A specification of each subsystem and the overall simulation program has been written in Pascal. 
To conduct architectural experiments on the simulator, we are developing a variety of resource 
managers for I-structure storage, and allocation and deallocation of PE's and colors. The simulation 
work is being done in cooperation with IBM Research (Yorktown) and we describe its near term 
goals and very preliminary results briefly. 

It should be easy to see that the proposed PE design can indeed sustain one instruction execution 
per cycle (Le.. pipeline beat) provided there is sufficient parallelism in the application program. 
Preliminary analysis of several large scientific codes show that parallelism in applications will not be 

6The first location in the table contains the color allocated to the manager and the address of the first. instruction in the 
manager body 
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the bottle-neck [1]. The kind of parallelism needed to support one instruction execution per cycle 
in our machine is much more pervasive than the kind of specialized homogeneous parallelism (Le., 
vector operations) needed to support t_hat rate in machines like Cray-1. However, dataflow machine 
rate is not directly comparable to instruction rate of von Neumann machines because datallow 
machine language programs appear to have 3 to 4 times as many instructions as a conventional 
sequential machine'. A major factor in the profusion of instructions on a dattfflow machine is 
instructions executed to compute the addresses for store and fetch operations. Index registers and 
address generation hardware in vector machines eliminates most of these instructions. It should be 
obvious that even a von Neumann machine will execute a very large number of additional 
instructions if index registers are not provided. Though we have several ideas about solving this 
problem, no specific proposal has been incorporated so far. The procedure call mechanism also 
introduces a lot of instructions but most of these can be eliminated by restricting the generality of 
parameter passing convention. 

It is instructive to consider the execution of a totally sequential code-block on one PE. If each 
subsection takes one unit of time to process a token then the n instructions will execute in 4*n time 
units. In general, a proeram with the same functionality as this code-block will take much less time 
on a sequential computer (built out of the same technology) because sequential computers can 
overlap execution of instructions even in totally sequential code. However, execution of two such 
code-blocks may not take substantially longer on one PE while it will take twice as long on a 
sequential processor. Hence evaluation of our architecture must take into account both the internal 
architecture of our PE and the "small grain" parallelism present in code-blocks. - 

An important parameter to be determined is the size of the Waiting-Matching section and the 
factors that affect crowding in it. Scheduling (i.e., mapping) of activities. I-structure storage maps, 
and the relative speed of PE and communication system all affect the number of tokens that wait for 
their partners in the Waiting-Matching section. However, the qualitative effect of any of these 
parameters (simply by analysis) has eluded us. Once the resource managers have been 
implemented, we plan to study these interactions on the simulator. It remains to be seen how much 
analysis of a program by the compiler is required for its efficient mapping. 

Though not as crucial as the size of the Waiting-Matching section. the size of tags and the size of 
the deferred read section in I-store controller is also of concern. As noted earlier, factors such as 
scheduling affect these parameters. Besides the issue of size, scheduling will affect the number of 
fetches that will get deferred in the I-store. Every read that has to be deferred in some sense slows 
down the machine. 

Questions about the scalability and ultimate performance of the Tagged-Token Dataflow 
machine cannot be answered until some of these inter-relationships have been understood. 

'We are indebted to Dr Ekanadham and Dr Bruer of IBM for this observation. 
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Appendix A. Instruction graph for Code-Block Invocation 

There are three logical phases in the invocation process: allocating resources and establishing the 
called code-block, initiating activity in the called code-block, and finally expecting results from that 
invocation. The compiler generates triggers to initiate the various phases. 

1. A trigger Ta  initiates the first phase. It causes a request to be sent to the System 
Manager. The called code-block is technically activated when it receives the argument 
and result descriptors. However, in order to cater to specific semantics of a procedure 
call in a language and to reduce the load on the Waiting-Matching section,8  it must 
successfully fetch a specific argument (Tb) before any other activities may be enabled; it 
essentially sleeps until the calling activation triggers it into action. 

2. Once the descriptors are received from the manager the calling code-block begins 
storing arguments. When it has stored enough arguments, it stores a distinguished 
argument Tb' This is the trigger the called code-block is waiting on; it initiates activity 
in the called code-block. 

3. The calling code-block waits for a specific result (Tr) before it starts result fetches in 
earnest. The role of the trigger Tr  is similar to the role of the trigger Tb. 

Triggers Ta,Tb, and Tr  need not be different from one of the values being passed or returned. 
Since the manager may take some time in loading the code into the memory of PE, it may be 
advantageous to generate Ti  ahead of time. Depending on how Tb  is generated. a strict or nonstrict 
call mechanism can be implemented; for example, generating Tb  when all the values to be passed to 
the called code-bock have been written in the I-structure will result in a strict call mechanism. 

The architecture supports constant areas allocated on a per color basis. The intent is that Id loops 
have constant areas, while Id procedures do not. The critical issue is that the arguments to be stored 
in the constant area must in fact be stored before the code-block is put into activity (i.e., before Tb  is 
generated). The Id compiler divides loop constants into two categories: essential constants (those it 
can determine will be necessarily used in the execution of the loop) and nonessential constants (all 
others). Essential constants are stored in the constant area; the others are circulated. 

One more piece of information needs to be understood before the actual calling sequence is 
presented. A special data type called smash is provided in the machine to facilitate sending 
information to a manager. The smash type is used to put more than one data value (limited only by 
the size of the token) alongwith their data-length and data-type fields onto one token. A smash type 
is generated by the compress operation which takes two values of any type. The expand operation 
recovers the original values and sends them to their respective destinations; the first value is sent to 
the first destination and the second EO the second destination. 

31This is an example of one of the factor that influences the load on the Waiting-Matching section. 
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The steps involved in an invocation of a code-block are as follows (see Figure A-19  ): 

1. The use instruction is executed when the trigger Ta  becomes available. It sends the 
code-block name, the number of arguments to be passed to the procedure, the number 
of results expected, and the destination tag for the following expand instruction to the 
manager. 

2. The manager establishes the code-block and allocates storage for two I-structures—one 
for arguments and one for results. To cater for the mismatch of parameters, sizes 
chosen for these 1-structures are the maximum of those dictated by the calling and 
called code-blocks. Reference counts of these I-structures are initialized to two as both 
the calling and the called code-blocks use them independently. When a code-block no 
longer needs an I-structure the reference count will be decremented by one using the 
decrement instructionl°  . The descriptors of the two 1-structures are sent to the expand 
instructions in the calling and the called code-block. 

3. The expand instruction in the calling code-block separates descriptors for the argument 
I-structure and the result I-structure. The descriptor for the argument I-structure is 
passed to the store schema so that values for the arguments as well as trigger Tb  can be 
stored. Trigger Tb  is always stored in the first location of the argument 1-structure. A 
read request for Tr  is generated by the I-fetch instruction when it receives the descriptor 
for the resultarea. 

4. The expand instruction in the called procedure also separates descriptors. A read 
request to read Tb  is generated by the I-fetch instruction. In the case of a loop code-
block, the copy schema initiates the copying of the constants from the I-structure for 
arguments into the constant-areas of all the PE. The 1-structure descriptor for the result 
area is stored in the first location of the constant-areas. A counter object (an extremely 
simplified manager object) with initial value equal to the number of PE's in the domain 
is used to detect the completion of copying. On the completion of the copying of 
constants, reading of the rest of the arguments is initiated. In the case of a procedure 
code-block copying is not necessary. and the 1-structure descriptor for the result area is 
passed directly to the store schema (denoted by the thick dashed line in Figure A-1). 

5. The called code-block, on the completion of its execution, stores the result values 
alongwith Tr  into the result area. 

6. To release the color it is necessary to detect that no more activities in a code-block 
invocation remain to be executed. Detecting that all the results have been produced is 
necessary, but it is not sufficient. Certain operators either absorb tokens (eg., switch) or 

9The store schema in the figure consists of the appropriate number of form-address-and-store instructions: similarly the 
fetch schema consists of the appropriate number of 1-fetch instructions. The detect schema is a binary tree of identity 

instructions. 

10An I-structure gets deallocated when its reference count goes to zero. 
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do not affect the result values directly (e.g., I-store, decrement). The outputs of all such 
operators arc coalesced into a single signal. In the case of a loop the signal generated by 
the operators in the loop body needs to be circulated so that signals tbr all the iterations 
can be merged together. This signal is used to trigger the use instruction which requests 
the manager to release the color. 

7. When T becomes available, the calling procedure reads the rest of the result values. 
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Appendix B. Instruction Set Summary 

The resulting instruction set design defines the hardware-recognized data objects and the 
operations that may be performed on them. Since we view the machine as being completely self= 
sufficient (i.e., all operations from the level of interpreting compiled Id graphs all the way down to 
the lowest level 1/0 operations), the instruction set was designed accordingly. This was done with 
an eye toward the future - Id self-compilers written in Id, managers performing operating system 
like services written in Id, etc. 

To support this wide range of functions, several different token types were defined (tokens 
corresponding to values in data flow graphs and several flavors of system-generated tokens) as well 
as a number of scenarios (we call them paradigms) for token processing. All token processing 
begins with executing an instruction form a compiled data flow graph. Based on the instruction 
type and the corresponding paradigm, one or more additional tokens may be created which trigger 
additional graph instructions. Alternatively, system-generated tokens may be created which effect a 
number of implementation-specific operations in the machine. 

All of the tokens carry data objects of self-identifying type. Where appropriate. operation codes 
are type-independent and will perform the necessary format conversions on both input and output. 
There are also the facilities for preventing such conversions, and also instructions for performing 
explicit conversions. 

The hardware implements low-level primitives for procedure invocation and, address mapping. 
These primitives are necessary to efficiently support resource allocation and the partitioning of code 
blocks across multiple processing elements. For the most part. these issues are not visible from the 
standpoint of compilation. However, since the facilities are partially static, the instruction set also 
defines the necessary characteristics of the mapping process so that code generators / loaders will be 
able to partition code blocks and to allocate instructions amongst these partitions. A summary of 
the instruction set, excerpted from Arvind and lannucci [4], is ziven below. 

Token Processing 
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Any, Arith. Comp, and Int are pseudo-types. 
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Ill 	Adjust-Length: 
{ 1 } 	Extract-Type/Value: 
{1} 	Construct-Data: 
{1} 	Compress: 
VI 	Expand: 
{1} 	Arithmetic Relationals: 

Non-Arithmetic Relationals: 

{I} 	Form-Address: 
131 	I-Fetch: 

{3} 	Form-Address-I-Fetch: 

I-Store: 

{2} 	Form-Address-I-Store: 

{4} 	Allocate: 

{4} 	Deallocate: 

{3} 	Allocate-Cobj: 

{3} 	Deallocate-Cobj: 
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c?.-1 2TEI,chain=1,<d=0,PE21...>,<*Deallocate-CObj,<CObj-addr>>> 

121SD and ISA are used generically in these semantic forms. ISA represents the types ISA-T-Fix. ISA-T-Var and 

ISA-U-Fix. ISD represents ISD-T-Fix, 1SD-T-Var and ISD-U-Fix. 



-32- 

{2} 	Decrement-Cobj: 	, 

{1} 	D and D.1: 
{1} 	R: 
{1} 
{3} 	Read-Byte: 

{3} Write-Byte: 

{3} 	Transfer: 

{3} 	Input-Block: 

{3} 	Output-Block: 

{3} 	Exit: 

{4} 	Write-Code-Block-Register: 

{1} 	Identity: 
{1} Switch: 
{31 	Set-Supervisor-Mobj: 

{2} Use: 
ef-} 

ci)=1-7 ,11E chain = 0,<*Decrement-CObj,<CObj-addr>>> 

C°mPl CprflpL' 	qcni 
Compi  X Srnash= Comp].  
Compi  X IhtA Compi  

15`23Ri,chain=1,<d=0,PE2,...>,<*Read-Byte,<addr>> 

1,<d=0PE2,...>,<Write-Byte,<addr,data>> 

redt2i.kin.S1322-i-  1,n<la
24
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Any = Anyi 
Anyi  X Bool Anyi  V 0 
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EARE:= rdE=nn§-2M,Sb,11111C>ilabi.Comp>>> 
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