
LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

The Tagged Token Dataflow Architecture

Preliminary version for distribution in subject 6.83s
Massachusetts Institute of Technology

8 August 1983

Arvind
David E. Culler

Robert A. lannucci
Vinod Kathail
Keshav Pingali

Robert E. Thomas

This report describes research done at the 1 .aboratory for Computer Science of the
L...., 	Massachusetts Institute of Technology. Funding for this project is provided in part

i

by the Advanced Research Projects Ag.ency of the Department of Defense under
Office of Naval Research contract N00014-75-C-0661 and in part through various
grants from the international Business Machines Corporation.

	 	
545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSE1 	IS 02139

riL da.:‘ 	• 	,R0i 	1 /4-,-)8 4:

)1
1,a

:44 	,

timl

3.-1-J 1-4 i,), 1 I

ol-1.034).):41-)11‘ worimal 90:fitT Irff Gill

1,11p fll r101:11141,1?fiti. 	rtflqp, rfuj
\ftiot'arifiroiT1I-.11IL 	,714„lif lt,:rriff'40)!'14r44

A4ti.1 -1-"1)21I2ih".2,, 	.14:-V:12filliVir--) 141, ';' it 1 `fOrtl; L, 7.,43 to
i 	r Thit; fiz s'obt ft,41r, ;:- -i icirlii :4-i t., i' ,- , -.,Littimivl I ..-;,-,- :,-ctri -7:,.. , , 	1-Aillttf:Iiii 4',- -it..44:37,,,:.!,.-.4;.1

1r':0-1,, lorriT4)11,1',..1f,i. ;4;-• -,TA:pit,ii.-... 	i I.) ,,,,, ,15,1 .,)::,,,gyN ,-,,,:., ,-,;-.; I. 171 ;414...; r ?" ...wit tit
iUr ,,,,i'liii, rik:it.i'fit .-Aidl '1! tit,' i -tit) ,. 	-,',,,,flr ' 7:v,iii(rc- ii, -ph.11,e,

.',.-,--:t.,-tt$1 t 6 ;:, t.,) _arr. to, ,,.,1-,.: IT:4/1 '414 III;

0)1 ,.
ix Liciiii 1 r.,)-:

Abstract

A detailed account of the Tagged Token Dataflow Architecture is presented. In this paper, we
describe the Tagged Token Dataflow Machine being constructed at M.I.T. by the Functional
Languages and Architectures group. The first two sections discuss the nature of tags, and describe
how programs are mapped on the machine. The third section describes the Processing Element and
the instruction set in detail. We conclude with a description of the current status of the project and
our goals for the future.

Key words and phrases: computer architecture, data flow, multiprocessors, resource management

hfrivdi

I btai:Hr 	;Thirilt?iitYr:A w(ifirwAL1 (1,”Ita 	Do.)- 	bicliwth A
140014%110. ,..t4; J1,LW hbLti-Ariiittror) 	 1.141viptl re.:*.fr bvtinT tr?",t1 4tmt.tt,

flit40 	:,64413% tool ivfl Itf r ,iirsex)g atigibroiAA,bp 6.$4404,j)
.ric,:',101113iiii gri::?1,1r019' 51t1 	 ITV*r 	p, qoir =y-iinrtlitArniitkom„ eat;

:-Jfijoiti 0411 lo zwrxi, Playa..? *di ,Flo ttrkeOutkob 4 ttiiw 	 'riorott 	ntifzinititti'zt
.rougill vat -161, 4401 ixt

"trf.011,1St‘fmtc %IMAM ,11C4V111,Yirlith•riT Nek 	:311.1k.4501,,kirImuch, mstfa0 tow *ow to

The Tagged Token Dataflow Architecture

1. Architectural Strategy

The aim of this paper is to give a detailed account of the Tagged Token Dataflow Achitecture
being developed by the Functional Languages and Architectures group at M.I.T. This project
began as an effort to realize the U-interpreter model of execution in a multiprocessor setting:
however, the result is an interesting multiprocessor system, quite independent of the U-interpreter.
The gist of this project has been discussed extensively elsewhere [5, 6, 3], and the reader is
presumed to have a basic understanding of the dataflow approach to parallel computation. For
answers to the question "Why dataflow ?" and other such questions related to the tagged-token
dataflow model of computation. the reader is referred to [6]. In this paper. we focus on the salient
points of the architecture of the machine.

The Tagged Token Dataflow Architecture comprises a number of identical Processing Elements
(PE's) which are connected together by an n-cube network. A high-level view of a PE is shown in
Figure 1-1. It performs five basic functions, as listed below.

1. Waiting-Matching section: Detects when an instruction is enabled. Operations are
restricted to having one or two inputs, thus if a token requires a partner it waits in the
waiting-matching section until its partner arrives. Tokens that do not require partners
bypass this stage.

2. Instruction-Fetch section: Fetches an instruction from program memory. We do not
support virtual memory for the program store.

3. ALU: Executes the instruction. The ALU receives a stream of packets comprising
operations and operands. It may be as powerful as the surrounding subsystems can
support. Currently, it is not pipelined internally.

4. Output section: Generates the result tokens. It produces tokens with data from the ALU
and tags generated from destination instruction pointers and parameters that specify
how programs are mapped in the system.

5. I-Structure storage: Provides storage for data structures. It solves the read-before-write
problem [6].

The PE can be thought of as an asynchronous pipeline in which given enough work, all sections
will computing simutaneously.

Each of the modules in the PE can be internally pipelined. if necessary. It is hoped that such a
system will be scalable upto a large number of PE's - i.e.. show a real increase in processing power
as more PE's are added to the system.

From the view-point of the machine, a dataflow program is a set of code-blocks. A code-block is a

collection of dataflow instructions which results from the compilation of an Id loop or a procedure.
A code-block may have within it instructions that invoke other code-blocks. The machine is

•
I-Structure

Storage

Instruction
Fetch

Output

Prog.

Mem.

0, 	4

Dataflow Processing Elements
in a Hypercu be configuration

Local Path

Waiting-
Matching

A Processing Element

Figure 1-1: A Block Diagram of the Tagged Token Dataflow System

designed to support the dynamic invocation of code-blocks - i.e., it is not necessary to load all
code-blocks into physical memory before beginning the execution of the program. In order to
permit the sharing of code by multiple invocations of a given code block, all tokens are tagged so as
to keep tokens belonging to different instructions and different instantiations of an instruction
separate. The precise nature of this tag will be explained in Section 2.

-3-

2. Tags and Resource Management

A code-block is a directed' graph of instructions resulting from the compilation of a loop or a
procedure. Before a code-block can be activated, it must be loaded into the program memories of
one or more PE's. Once the loading of a code-block has been accomplished, it is activated by
placing tokens on its input arcs. The set of tokens generated by activating a code-block is termed a
code-block activation. Tokens must specify their destination instruction. Once a code-block has
been loaded, the tuple <PE #. address> identifies the destination instruction uniquely. Accordingly.
we \yin require that all tokens carry the <PE#, address> of their destination instructions. Since a
copy of the program graph may be shared by many different activations simultaneously, tokens
must carry sonic additional information so that tokens from different activations are not confused.
This can be done by associating a field called hue with every activation of a code block. By requiring
that all tokens belonging to one code-block activation have the same hue and assigning different
hues to different activations of the same copy of the code-block, we can ensure that tokens .
belonging to different code-block invocations are not confused. Therefore, in addition to a data
value, every token must carry the 3-tuple <PE#, address. hue>. We will refer to this 3-tuple as the
tag of a token.

If' the hue field is very large (say 64 bits), then it is possible to support an arbitrary number of
activations of a copy of a code-block. In that case, hues need not be reused. However, unless
memory need never be reused, the termination of all activations of a copy of a code-block must be
detected. Therefore, there are two options - very large address space and a large hue field, or
limited address space and a restricted hue field. A large physical address space is prohibitively
expensive, while a large virtual address space is complicated and may result in unacceptable delays.
Hence, we have opted to keep the size of the hue field limited, and reuse both physical memory and
hues. A natural view of tags is as points in the 3-dimensional address space shown below. Since
program memory and hues are resources of the machine, it is convenient to think of them as being
allocated for invocations of code-blocks. The management of these resources must be done by an
agent that has a global view of the system resources. An alternative scenario is a group of agents
that communicate with each other to perform allocations.

We now address the issue of how tags are generated for result tokens by an activity. In order to
produce the tag of a result token, the activity must be able to generate the PE#. address and hue of
the destination activity. Let us first consider the simple case of an activity which wants to send a
result token to another activity that belongs to the same code-block invocation. Clearly, the hues of
both the input tokens and the result tokens of this activity must be the same. In order for this
activity to generate the PE# and address of the destination instruction, it must know how the
code-block has been mapped in physical memory. This can be achieved by associating some
mapping information with the code-block. The instruction itself contains the relative address within
the code-block of the destination instruction. The mapping inforniation together with the relative
address of the destination instruction is sufficient to generate the PE# and address of the
destination instruction. Thus, the tag of the result tokens can be generated from information

1
For the moment this should be considered to be an acyclic graph. Once the notion of operators that directly

manipulatz the tag is introduced, it will make sense to allow cyclic graphs as long os every cycle.includes one such special

operator.

Physical

Resource

Plane

Instruction

Address

-4-

Figure 2-1: Tags as a 3-dimensional Address Space

available to the activity. In sections 2.2 and 2.3, we will explain how code-blocks are mapped on the
machine. This will enable us to specify the precise nature of the mapping information that must be
associated with each loading of the code-block.

The other case to be considered is when an activity wants to send a token to an activity which

belongs to a new invocation of a (possibly different) code-block. This arises when a code-block

invokes another code-block, or when a code-block is recursive. In such a case, resources must be

allocated to the new invocation. For example, a copy of the invoked code-block may need to be

loaded into memory, and a hue allocated for the invocation. Since the allocation of resources
requires communication with a global agent_ code-block invocation is. in g,enerai, fairly complicated
and is described in detail in section 2.4.

A useful optimization in this case is to treat the case of self-recursive code-blocks in a special
manner. Such code blocks arise from the compilation of Id loops and self-recursive procedures.
Invocations of such code-blocks can be divided into external invocations (Le.. when some other
code block invokes it) and internal invocations (i.e., when it invokes itself). Each internal invocation
will result in the allocation of a new hue for that invocation- . To lower the amount of
communication with the resource manager. it is possible to allocate a bunch of hues to each external
invocation. A simple approach is to divide hue into two fields - color and initiation-number. Each
external invocation of the code-block is given a color, and can use the full rune of the initiation-

number field For internal invocations. Allocation of the block of Lags among the internal invocations

is done by special operators that manipulate hue directly. By making such code-biocks cyclic with

-Of course. we may run out of hues. in which case a new copy of the code block will 'nave to be loaded elsewhere in the
machine

-5-

one such special operator in each cycle, the generation of tags for internal invocations can be done

without communication with the resource manager. Of course. since the block of hues allocated to

each external invocation of such a code-block is finite, it. is possible to run out of hues. In such a

case, there must, once again, be in communication with the resource manager.

3. Nlapping of Activities

Clearly, to exploit parallelism it must be possible to distribute activities over the various PE's, and

this distribution must be in concert with the structure of the program to be effective. Code-block

invocations are the obvious unit of distribution. In this section we consider how the activities are

distributed over the PE's.

3.1. Multiple PE's co-operating in a code-block invocation
• The activities belonging to a code-block invocation are distributed over many PE's by spilitting

and distributing the code. However, to generate tags automatically, given a small set of mapping

parameters. we place constraints on how the program memory may be allocated.

Constraint 1: A code-block will be loaded across a set of one or more consecutively addressed PE, using the same

region of program memory in each PE and a single Hue throughout.

With this constraint, allocation for a code-block invocation reduces to assigning a rectangular

window across a sequence of PE. It will support as many simultaneous activations as there are

Hues. If a code-block is split into in parts of length / and loaded onto m PE consecutively then a

new tag can be generated with the four parameters in. /. PE base, Base-local-address, as indicated in
Figure 3-1.

Suppose an activity with Hue H must send a result to an instruction at S. The tag for the result

token is given by:

PE, 	 = PEbase 4- LS/1J
INSTRUCTIONADDRESS 	 = Base-Local-Address 4- S mod 1
HUE 	 = H

The port and number of tokens for enabling are copied from the instruction.

This is successful with respect to generating tags, but it complicates resource management.. Such a

window would be expensive to locate, and would tend to fragment memory. We must further

restrict the usage of resources to make this approach tractable.

Constraint 2: The collection of PE in the system are divided into a set of disjoint Physical Domains (PD), each

Domain being a set of consecutively addressed PE (see Figure 3-2). This division will not change during the

execution of a program.

A couple of implementation details should be noted at this point. We restrict Ito be a power of 2

to simplify the calculation of mod and floor functions. Also, the hardware is much simpler if we

assume the instruction under consideration is present in the local PE. Hence the code for an

instruction must not be split across two PE. We solve this problem at the compiler level: the

compiler chooses the largest in allowed for each code-block and assures that no instruction is split

2 24
.111•=m,

PE offset

21-1

24
— 2 -1

(m-1)1

Address
offset

ml-1

•••••• 2
31

24
— 2 -1

PE: (0) (i) 	(1 + 1) 	(i + 2)

PE base

+ 3)

— A code block "window"

32
— 2 -1

(255)

-6-

0

Base
Local
Address

Figure 3-1: Destination Virtual Address Mapping

0 1 	2 3 4 5 6 7 • • •

,X X X X'X X X X X X X XiX X X X;X X;X X •••

Figure 3-2: Physical Domains

when the code is divided into this many blocks. This in is a power of two, so any smaller power of
two will work as well.

This approach is not the only solution to the problem. Another approach is to provide a
relocation register for every code-block loaded onto a PE. This allows the block of memory used
for a code-block to differ from PE to PE. However, one must either find a strip of relocation
registers so the register index will be the same in each PE or include the code-block name in the tag
and perform an associative match to Find the relocation register. In either case, an extra level of
indirection is required and the allocation problem is not significantly easier.

-7-

3.2. Distributing internal invocations

As discussed in Section 2 the generations of tags for internal invocations3 of a code-block can be

accomplished using special operators that manipulate hue field of the tags. Thus, it also makes

sense to distribute initiations of a code-block automatically using certain mapping parameters. To

make this idea tractable, we replace constraint 1 by a new constraint.

Constraint 1': Each Domain is divided into a set of disjoint Physical Subdomains (PSD). each subdomain being a set

of' consecutively addressed PE. This subdivision is specified along with each window of code, so it may be different

For different code-blocks in a given domain. A copy of the code-block is loaded into each subdomain as in Figure 3-1,

where m is the width of the subdomain. The same COLOR is used throughout the domain for a given invocation.

Distributing initiations of a code-block must be approached with some care, however, because

communication cost can outweigh the gain offered by parallel execution. Our studies [2] show that

distributing initiations in blocks substantially reduces communication costs in many cases; data is

often shared across ,a small number of initiations, usually one. To support this kind of distribution

an additional parameter can be associated with an external invocation of a code-block so that

initiations can be distributed in blocks.

One method of distributing initiations amongst subdomains is supported by the hardware using
the following scheme (see Figure 3-3). The first activation, initiation 0. is assigned to the first
subdomain of the domain. Given some mapping constant k, the jth initiation is executed on the

subdomain whose offset from the low end of the domain is given by

<PSD—offset> = L j /kJ mod <#PSD/PD)

In other words, the first k consecutive initiations are executed in the first subdomain, the next k

initiation are executed on the second subdomain. and so on. If there are more initiations than
k*(number of subdomains) then the assignment wraps around.

A method for distributing unused initiation numbers is provided for general recursion, but is not

discussed here.

3.3. Code-Block Invocation

The Tagged Token Dataflow Architecture offers a completely general invocation mechanism,

utilizing 1-structures and the System Manager. It allows for any degree of strictness or non-

strictness in passing arguments and in returning results. It allows mismatch in the number of

arguments (or results) expected and the number actually transferred. By suitably configuring the

graph, the compiler builds a calling sequence appropriate to the semantics of the high level

languages. The general nature of the invocation process is presented below; the specifics of the

calling sequence are presented in Appendix A.

Recall that a distinguished System Manager is created when the system is started and resides at

some fixed location. It maintains the state of all system resources: program memory, code-block

registers. colors. and 1-structure storage. 	An external invocation of a code-block requires

communication with this manager.

3Henceforth, initiation of a code-block will be used synonymously with internal invocation of a code-block.

Loop iteration number

Carried in the <Tag> as the

<Initiation-number>

-8-

4

PE

	

0 	0 	 k 	0 1

	

1 	1
• • 	1 	• 	im
• • 	 • 	•
• • 	 • 	•

	

i k-1 	k-1 	i 2k-1 	k-1
- 	i

V
1 	2k k I 	3k k 	1

• • • •
• • • •
• • • •

1 	3k-1 2k-1 i 	4k-1 2k-1
i

i 	i + 1 	i + 2 i + 3 •

Physical Domain

Physical Subdomain

PE
oase

Figure 3-3: Iterations

Upon receiving the invocation request, the System Manager determines which is the best domain
of the set of domains that have sufficient resources available to support the activation. Program
memory, code-block registers and colors are allocated for the activation. The System Manager also
illocates two l-structures: one for arguments and one tbr results. The manager must now make a
number of requests to change the local states of each of the PE in the domain: it must request each
PE to update its base and map registers, it must transfer blocks of code to various PE's (if the
code-block is not already loaded), and it must request certain regions of I-structure storage to be
initialized. While it waits for the acknowledgment of these tasks. the System Manager proceeds
with other invocation requests. Once the initialization process is complete. the two [-structure
descriptors are sent into the newly initiated (called) activation and into the (calling) activation that
requested the invocation. The calling activation may store arguments and issue requests for results
at its discretion: this communication link is totally asynchronous. The called activation immediately
issues requests for arguments. Once enough requests are satisfied, it begins whatever operation it is
to perform, eventually storing results. The scenario is depicted in Figure 3-4.

An important point to note is neither the hardware, nor the manager can determine when these
various resources (program memory, colors, and l-structure storage) may be recycled. The onus of

Calling Activation

Called Activation

-9-

System Manager

Figure 3-4: Scenario for Code-block Invocation

determining when resources can be deallocated is on the compiler. Thus, not just any graph is to be
run on the machine. The graphs must be well behaved enough so that they are self cleaning. Also,
the compiler must detect when resources (e.g.. color. [-structure) are no longer needed, and add
instructions to release resources at appropriate points in the graph The graphs generated from Id by
the compiler developed by the Functional Languages and Architectures group have these
properties.

The tag generation mechanism requires a fairly small number of parameters and yet offers two
degrees of freedom in distributing the work involved in a code-block activation: spreading a code-
block over a number of PE allows the parallelism within a code-block to be exploited, distributing

-10-

activations over a set of groups of PE allows the parallelism offered by concurrent activations to be
exploited, and in the case of internal activations, without intervention of the resource management
system.

To summarize this section, consider the various level of token confinement presented here. All
tokens generated during a particular activation (i.e., iteration) of a code-block are confined to a
physical subdomain. When tokens enter a new activation (i.e.. D or R operations), they may cross
into a new subdomain. Tokens destined for a manger (or for an I-structure controller) are not
restricted by the domain structure. .An invocation request causes the system manager to initiate a
code-block activation in a potentially distant domain: only parameters and results need to cross
from the domain of the caller to that of the called code-block activation. As it will be seen shortly,
i-store provides a convenient intermediary.

3.4. 1-Structure address mapping
Heretofore, the discussion has centered on the portion of the architecture concerning activities,

data structure storage has only been alluded to. We feel this subsystem is crucial the machines
performance. Some facility must be provided for storing large data structures, while pointers to
them are carried on the token [7]. It is also essential that the hardware provide a means of sharing
data without constraining parallelism: this amounts to providing the low level synchronization
required to solve the read-before-write problem on a per element basis. The I-structure storage
provides both these facilities in the Tagged Token Dataflow Architecture.

I-structure storage forms a self-sufficient subsystem. for the storage of data structures. Any PE
may send a request to any I-store controller: in this sense the I-store memories form a uniform
address space. Addressing facilities are provided that closely resemble the automatic mapping of
initiations. This allows I-structure elements to be kept close to the activities that use the elements,

.when the program has a clearly discernible structure. The addressing facilities are discussed below.

0
1
•

:
d-1

d

a
•
•

2d-1

2d

fo
•
•

3d-1

3d

•
•
•

4d-1

d=m

4do

•
•

Fl-q

PE

Figure 3-5: I-Structure Address Mapping

The compiler views an L-structure as an array of . N elements. The index values for accessing
elements of an [-structure of N words range over 0 to N-1. When an I-structure is created, as shown
in Figure 3-5. a rectangular window of addresses in the physical address space is allocated to it
Given the constants d and n, the offset of an index value j from the upper left corner of the window
can be calculated as follows.

-11-

<PE-offset> = Lj/dJ modn
<Actziress-offset> = L Lj/dJ/nJ*d (i MOd

= Lj/d*nJ*d (jmodn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Iogn
	

logd

Figure 3-6: Address Mapping Example

If we assume that d and n are powers of 2, the above calculations are quite trivial as the following
example illustrates. Let j be a 16 bit number. d.21°gd where logcl =6 and n = 2logn where logn =- 3.
Refer to Figure 3-6. Then,

<PE-offset> = number given by bits 8 through 6
<Aactress-offset> = number given by bits 15 through 9 and 5 through 0

The translation of an index into a physical address is done by the ALU when it executes the
Form-Address instruction. The Form-Address instruction requires a descriptor for the 1-structure
in addition to the index value; the descriptor must contain the following information:

1. The physical address of the upper left hand corner of the window (i.e.,
(<P E 	> , < Base -Local.--ozttiress>)).

2. The values of constants n and d.

It is not required that an I-structure mapping be identical to that of the mapping of initiations
d does not have to be equal to any k. and n does not have to be equal to the size of any physical

domain). The addressing facility allows locality to be exploited when data structures and initiations
interact in a fairly simple manner; this is the case with most numerical programming.

1-structures have another vital role in the Tagged Token Architecture; each I-structure is a small
address space. independent of tags. This allows them to be used to interface disjoint tag spaces; the
utility of this arises in invoking a new code-block (see Section 3.3)

4. Processing Element

In this section the implementation of thc Processing Element is discussed in detail, except the
1-structure memory controller which is discussed later. The PE has 8 asynchronously functioning
subsystems; these are connected by finite size buffers and communicate with each other using a
send-acknowledge protocol. A block diagram of the PE is shown in Figure 4-1. The important
differences from Figure 1-1 are the introduction of an input stage and output stage to interface with
the network and a special service processor. The special service processor. marked PE control, has

-12-

access to the memory of all subsystems via a common bus, and is used for Input/Output,
diagnostics and special memory functions.

The tokens entering a PE can be divided into the following three groups:

1. Tokens corresponding to values in dataflow graphs: These are associated with the usual
notion of tokens (i.e., tokens that move about on the arcs of the dataflow graph). We
will refer to these tokens as d= 0 type tokens.

2. I-store tokens: Tokens in this class do not enable instructions; rather, they carry with
them the necessary I-store operation codes. We will refer to these tokens as d=1 type
tokens. A d = 1 type of token is always generated as a consequence of executing an
instruction in the ALU.

3. Tokens for PE control and diagnostic purposes: These types of tokens are similar to
d=1 type tokens except they carry commands for the PE control subsystem including
entry to managers. Tokens of this type will be referred to as d= 2 type tokens.

Each type of token has a different format and follows a different path inside the PE.

4.1. Program representation
An instruction specifies an opcode, constant operands (if any) and the information about the

destination instructions needed to construct the output tokens. An operator may require as many as
three operands, but in the case of ternary operators, one operand is required to be a constant. One
of the operands can be stored in the instruction itself if it is a constant for all possible executions of
the instruction. For example, the increment-by-1 operator can be implemented using a + and a
constant 1. Also, a constant area can be associated with a given code-block invocation; this allows
operands which remain constant during a loop invocation to be treated as constants rather that
circulated. An example of such an operand is the upper bound in the loop predicate of a FOR loop.
Also, 1-structure descriptors are invariably constant throughout a loop invocation. However, the
instruction format does not allow more than one constant to be stored in any instruction. To
increase flexibility in arranging inputs for an operator a 2 bit disposition field is associated with each
of the 2 possible input values and the constant value. The disposition field specifies if the
corresponding value is to become the l, 2nd or the -rd operand or ignored entirely. Ignoring a
constant means that there is no constant operand. Ignoring an input token means it serves only as a
trigger for the activity. The general format for instructions is given below where the number to the
right of a field name specifies the number of bits needed to represent that field.

<Header>
<Opcode> (8)
<Token-l-disposition> (2)
<Token-2-disposition> (2)
<Constant-disposition> (2)
<Constant-source> (1)
<Destination-list-flag> (1)

<Constant-specification>
<Data-type>

<Data-length> (4)
<Data-class> (4)

Prog,
Const,
Dest 4.1

Instruction

Fetch

I
iStr li

Er:I
4___sirWC1

Control Control
d = 2

d=01
nt = 1

4

d=1

—T-- 4/

Deferred
Fl l
Tag

nr-%

V

Pp
int= ul

Tag

T

; C

#1 1

7
i

0
V
f

Ptr

PE # to
Routing
Address

Figure 4-1: A Block Diagram of the PE

	/4--•

1

—1

—;--i —;--
Routing
Translation

4,
Build Output
Token
---1 	

--;--

i
Out

-13-

In
Local path

d=?

ALU

-14-

<Data-value> 	 (0-120)
<Dest.ination>

<Number-of-tokens-to-enable-instruction> 	 (1)
<Destination-instruction-port-number> 	 (1)
<Destination-virtual-address> (16)
<Destination-list-flag> 	(1)

Number-of-tokens-to-enable-instruction specifies whether the destination operator expects one or
two tokens. The <Destination> item may be repeated as often as required, with all but the last

Destination-list-flag set to 1. The last <Destination> item must have its Destination-list-flag set to 0.

In the case where <Constant-Source> is 1 (Le.. the constant is stored in the constant area) the
<constant-specitication> is replaced by a two byte pointer, giving the relative address in the constant
area of the actual constant.

As an illustration consider the < operator in a typical FOR loop. The machine instruction .
corresponding to < is given below:

<Opcode> 	<
<Token-l-disposition> 	01
<Token-2-disposition> = 00
<Constant-disposition> = 10
<Constant-source> = 1
<Destination-list-flag> = 1

<Constant-specification>

<Constant-value> = 2
<Destination>

"Token-1 is the 1st operand"
"There is no token-2"
"Constant is the 2nd operand"
"is constant area"
"There are destinations"
"An offset in the
constant area"
"offset is 2"

The instruction specifies that the first token is to become the first operand, and that the second
operand is a constant (disposition 00 means that the corresponding argument is to be ignored).
Furthermore, the constant is to be found in the constant area; this is specified by a constant-source
field of 1; 0 indicates that the constant is stored in the instruction itself. The constant specification
then says that the constant is stored at offset 2 in the constant area. A constant area is allocated at

the time of a loop invocation, but the slots in the constant area are assigned by the compiler.

The SWITCH instruction deserves special treatment. Due to its very nature, two possible
destination lists must be kept (one for the TRUE branch, and one for the FALSE branch). The
TRUE list begins immediately after the <Data-Value> and is terminated by a zero <Destination-list-

flag>. The FALSE list follows the TRUE list, and the relative address of the start of the FALSE list
is given by the two byte offset in the <constant-specification> fieid. If the <Constant-disposition> is
0, there is no FALSE desiination list.

4.2. Processing of standard activities
This section describes the execution of standard Operators such as arithmetic operators. It also

serves to introduce the salient features of the sections of the PE. T'nis type of operator produces
tokens which correspond to the values in the data flow graph (d=0 type tokens). The format of the

type 0 token is given below:

-15-

<Token-type> 	= 	0 (2)
<PE-number> (8)
<Tag>

<Color> (4)
<Instruction-address> (24)
<Initiation-number> (8)

<Number-of-tokens-to-enable-instruction>
	

(1)
<Port-number> 	 (1)
<Data>

<Data-type>
<Data-length> 	 (4)
<Data-class> 	 (4)

<Data-value> 	 (0-120)

Most of the field names are self evident. The Number-of-tokens-to-enable-instructions field

allows for bypassing the waiting-matching section if the token is destined for a monadic operator or

if its partner is a constant stored in the program memory. The port indicates whether the token is

the first or the second operand for an operator. Recall, the color allows tokens from two different

activations of a loop or procedure to be separated. The data values in the Tagged Token machine

carry the type and length information with them. The data value may be 0 to 15 bytes long

excluding one byte used for type and length information.

4.2.1. Waiting-matching section
When a d = 0 type token enters a PE, it follows the path indicated by d = 0 (see Figure 4-1). Any

token which needs a partner is passed to the waiting-matching section where its tag is associatively
matched against the tags of the tokens already stored in the waiting-matching section. If a match is
not found then the token is placed in the associative store. It may happen that there is no room for

the token in the associative store in which case the token is stored in the overflow memory of the

waiting-matching section. Management of overflow storage is an inherently slow process because,

as long as the overflow storage has tokens, an incoming token that does not find its partner in the

associative store must be sequentially matched against all the tokens in the overflow storage.

Refusing the incoming token is not an option because that is guaranteed to deadlock the machine
because token pairs can leave the waiting-matching section only when a new token arrives. Since an

overflow in the waiting-matching section may cause severe performance degradation, the

probability of overflow must be minimized by building a sufficiently large associative store. It

should be noted that crowding in the waiting-matching section depends on both hardware and

software considerations. The greater the time difference between the production of two tokens for

an activity, the larger the associative store will have to be. Program decomposition and scheduling

of activities have direct bearing on the time difference between the generation of two tokens for an

activity.

4.2.2. Instruction fetch section
The Instruction fetch section has four responsibilities: fetch the instruction indicated by the

INSTRUCTION-ADDRESS portion of the tag, determine the location of the destination list, fetch any

constant operand, and align operands as per their disposition.

Fetching the current instruction is straightforward since the INSTRUCTION-ADDRESS field gives

the absolute address in the program memory. However, in order to locate the constant area

pointers, the base address of the code-block must also be determined. Also, the Build output token

-16-

section requires this information to translate relative addresses into physical addresses. To this end,
the instruction fetch section includes a sequence of register pairs of the form <code-base-address,
map-register-number>. These are kept packed contiguously and ordered by code-base-address. An
associative < comparison is made between each code-base-address and the INSTRUCTION-ADDRESS
value, the lowest register with a successful comparison specifies the base address and map register
number (map registers are discussed below) for the code-block activation this activity is part of.

If a constant area is required by the code-block, a list of constant area pointers is stored at
addresses immediately preceding the code-base-address. They are indexed by COLOR with the
lowest address corresponding to color 0. Each pointer is a 24 bit address giving the base address of
the constant area for the particular activation. The constant-specification is added to this constant
area base address to get the first byte of the constant. Figure 4-2 depicts the relationship of base
registers, map registers and program memory.

Once the constants are fetched, the operands are aligned and combined with the opcode to be
sent on to the ALU. The map register index and the destination list pointer is forwarded to the
Build output token section.

4.2.3. ALU
Fhe ALU section basically receives operation packets and performs the operation on the

accompanying operands. However, the set of operations is quite large and some of the operations
are quite sophisticated. For example. I-structure operations involve an address translation in 1-
structure address space analogous to that performed on destination addresses. A complete
description of the ALU operations is given in the Instruction Set Definition [4]. The operations that
generate other than standard tokens are discussed in Sections 4.3, 4.5.

4.2.4. Build output token section
For each destination in the instruction, the build-token section generates an output token. The

data value to be included in the token is provided by the ALU. Computation of the output token's
PE number, physical instruction address. and initiation number is as explained in Section 3. The
mapping parameters required for tat generation are kept in map registers local to the build-token
section. The map register index provided by the Instruction-fetch section specifies which set of
mapping parameters to use. Each map register is a table containing:

<Domain-Base-PE> (8)

<Code-Base-Addr> (24)

<code-per-PE> (24)
<Initiations-per-PE> (8)
<color-continuation-flags> (16)
<Subdomain-Base-PE> (8)
<SubDomain-Size> (8)
<Last-SubDomain-flag> (1)

The <color-continuation-flags> is a bit-list indexed by color. It allows for pre-allocation of colors,
etTectively extending the iNITIATION-NUMBER field as discussed in Section 4.4

The Build output token section reads the destination list from program memory and computes the
new destination address based on the incoming tag and the information in the map register. A
token is formed in this way for each destination and sent to the output section.

Code-Base-Address

Code-Per-PE

Subdomain-Base-PE

Domain-Base-PE

Subdomain-Size

Color-Coot-Flags

I
! 	

• 	. 	•

Iterations-per-SD

-17-

Base Register 	 Program Memory

Code-Base-Addtess

Map Register

•

Map Register

Constant Area

-

Constant Area

Painters

Instructions

Figure 4-2: Code Block Registers and Constant Areas

4.2.5. Output section
The output section translates the PE# field into a network address and routes the token into the

communications network. The communications network is a packet switched network, of a robust
topology. The use of routing tables and very general routers allows the exact network topology to
be modified easily. The nature of the translation to routing addresses is discussed by .Arvind and
lannucci [6]. The design of the basic network element is described by Iannucci [9].

-18-

4.3. I-structure instructions: operators that produce d = 1 tokens
The various operations on 1-structures produce d = 1 type of tokens which arc sent to an 1-store

controller. Consider the operator 1-store which takes an 1-structure memory address and a value as
arguments and stores the value at the specified address. Because an 1-structure will usually be
distributed over several PE, the address where the value is to be stored may not be in the memory
space of the PE on which the I-store instruction is being executed. Let us assume that the address
where the value is to be stored is in the address space of the P PE. It should be noted that a PE
does not have direct access to the I-structure memory of the other PE. To complete the I-store
instruction, the PE executing the I-store has to send an explicit request to the th PE. Tokens
carrying such requests are called system-generated tokens, and have three different formats
depending on the nature of the request. The three types of formats correspond to the following
three cases:

1. No value or acknowledgment is returned.

2. A d = 0 token carrying the result value is produced. For example the I-fetch
instruction requires that a value be returned.

3. A d = 2 token is produced to inform a manager (managers are discussed in Section 4.5)
that the request has been completed.

The formats and functions of the three types of system-generated tokens are explained below.

1-store tokens that don't produce any other token: Such a token is generated when, for example,
an ALU executes an 1-store instruction.

<Token-Type> =1 (2)
<PE-number> (8)
<Chain> 	=0 (1)
<Decode> (4)

<I-structure-address> (24)
<Data> (8-72)

The chain field indicates that this token will not cause the generation of another token and the
opcode specifies the type of the request.

1-store tokens that cause generation of a type 0 token: Such a token is generated when, for
example, an ALU executes an 1-Fetch instruction The result of fetch has to be forwarded to a
destination activity.

<Token-Type> =1 (2)
<PE-number> (8)
<Chain> 	=1 (1)
<Decode> (4)

<Destination>
<new-Token-type> =0 (2)
<new-PE-number> (8)
<new-Tag> (36)
<new-Number-of-tokens-to-enable-instruction> (1)

<new-Port-number> (1)

<I-structure-address> (24)

-19-

<Data> 	 (8-72)

The information contained in the destination field is copied into the various fields of the newly

generated token.

I-store tokens that cause generation of a type 2 token: Many instructions such as reset I-structure

must generate a token for a manager so that the system can ascertain that :he instruction has been

completed (e.g.. the 1-structure has been reset).

<Token-type> 	= 	1 (2)
<PE-number> (8)
<Chain> 	= 	1 (1)
<Opcode> (4)

<Destination>
<new-Token-type> 	2 (2)
<new-PE-number> (8)
<new-Chain> 	=0 (1)
<new-Opcode> 	= 	sentry (4)
<Manager-address> (24)

<I-structure-address> (24)
<Data> (8-72)

The new d = 2 type token is passed to the manager specified by the manager-address a receipt
identifying the acknowledgment

When a d=1 type token enters a PE, it is forwarded to the I-structure controller which is
responsible for reading, writing and managing the I-structure storage.

The 1-structure controller is especially suited for a multiprocessor environment in which the

synchronization involved in producing and consuming data structures must be efficient and fine-

grained. We associate with each memory cell in the I-store special flags (called presence bits) which

indicate the memory cells status - written or unwritten. This offers the ability to solve the read-

before-write race problem as follows: assume that a memory module has just received a request to

read a particular memory location and to forward the contents to instruction x. The memory

module interrogates the presence bits associated with that location. If the bits indicate that the cell

has already been written into, the contents are retrieved and forwarded to instruction x. If the bits

indicate that the location is empty. the memory module puts the read request aside, and marks the

empty location to indicate that a read request is outstanding.4

When a write request for that location arrives at a later time, the memory module notices the

pending read request. and forwards the newly-arrived datum to instruction x (as well as writing it

into memory and setting the presence bits accordingly). Note that the memory module must

maintain a list of deferred read requests (see Figure 4-3) as there may be more than one read of a

particular address before the corresponding write. We call this type of memory 1-Structure Storage.

The issues involved with building such a memory, and the design for an I-Structure memory

controller are discussed extensively in [8].

1The idea of associating a status hit with each memory cell is not new - the Denelcor HP multiprocessor [10] uses this
idea m synchronize cooperating parallel processes \vhich share registers and/or memory cells. Unsatisfiable requests

resul Lin a busy-waiting condition - Le.. there is no such thing as a deferred readlist

Tag C
rag B

Deferred
Read Requests

n rn:

data
A

1 	

data

-20-

Presence Bits (P = Present, A = Absent, W = Waiting)

Data or Deferred Read Pointer

Data Storage

Possible execution sequence
producing 7his structure:

• Attempt to READ(n + 2) for instruction A

WRITE(n + m)

' Attempt to READ(n +3) for instruction C

• WRITE(n)

• Attempt to READ(n + 2) for instruction B

' READ(n)

Figure 4-3: I-Structure Storage

4.4. Operators that distribute initiations
In Section 3.2 the need for operators that manipulate portions of the tag was discussed: these are

the D and R operators in the Taped Token Dataflow Architecture Details are presented here for
the D operator. The D operator increments the INITIATION field of the tag. This automatically
distributes work based on the [napping parameters in the build-token section. It should be noted
that the INITIATION-NUMBER field is of finite size (8 bits) and hence may overflow during the
execution of the D operator. Overflowing of initiation number field is handled by allocating a new
color. For some loop expressions the number of iterations, and hence the number of colors it will
need during the execution can be predetermined. In such cases, rather than a single color, a group
of colors can be allocated. When such a code-block is invoked, color continuation flags are set up in
the map register for the activation. In case the INITIATION-NUMBER field overflows, the color
continuation flag is used to determine if the next color can safely be used. However, if all
color/initiation values for the code-block have been exhausted then the system manager must be
informed to get a new color. This essentially involves invoking the loop in a tail-recursive fashion.

Implementing this is somewhat complicated. The D operator maintains two destination lists--one

5. 	D operator corresponds closely to the D operator in the U-interpreter.

-21-

which specifies the normal destinations, and one which specifies the operators to be used in case
color/initiation values have been exhausted. The compiler is responsible for generating the code to
call the manager and the code to transmit the values coming from D operators to the appropriate
places. The algorithm to compute the new tag is given below.

I. Calculate the PE-offset within some physical subdornain and the physical-instruction-
address as explained in Section 3.1.

2. Compute the new initiation number by adding 1 to the old initiation number. If
<initiation number> mod k # 0, the new PE number is computed using the PE-offset
from step 1 and the subdomain-base-PE from the map register.

3. If <initiation number> mod k = 0 and this is not the last physical subdomain. the new
PE number will be computed by adding the PE-offset from step 1 to the number of the
first PE of the next physical subdomain (i.e.. the new PE number is (Subdornain-base-
PE + Subdomain-Size + PE-offset) The value of k (initiations per PE) is subtracted
from the initiation number in the result token.

4. If <initiation number> mod k = 0 and this is the last physical subdomain, the new PE
number will be computed by adding the PE-offset (from step 1) to Domain-base-PE.
No adjusu-nent of the initiation number is necessary.

5. If in any case, the initiation number should overflow (in the result token), a new color
must be allocated. The color location corresponding to the current color is examined to
determine the value of the color-continuation-flag. If the color-continuation-flag is
TRUE. the next (sequential) color is used in the output token (i.e., new color = old
color + 1), and the initiation number is set to zero.

If the color-continuation-flag is FALSE (indicating that all color/initiation values for
this code block have been exhausted), the incoming value (without changing the
initiation-number field) is sent to the destinations specified in the second destination
list. This will result in a new invocation.

4.5. Implementation of managers
Many functional languages provide some means for resource management within the applicative

context. In the dataflow language, Id. managers have this role. They are Id programs which can be
"called" like a procedure from several different places or unrelated Id code blocks. However,
unlike a procedure, all "calls" to a manager are non-deterrninistically merged together and affect
the same manager body. It is more correct to think of a manager as an object which is used non-
deterministically by several users. The interconnection of the operators involved in a Manager
"call", U, U-1. Entry, and Exit is shown in Figure 4-4. The Entry operator non-deterministically
merges all incoming requests and produces an input stream for the main body of the manager. It
also passes the "return activity names" on the incoming tokens to the Exit operator so that the Exit
operator can form the result token with the appropriate activity name. It should be noted that an
execution of the Entry operator requires no matching of tokens but is sensitive to the history of the
operator (i.e. it must know how many other tokens have passed through it to generate a correct

m (manager
object)

a (argument)

USE

MANAGER OBJECT

-22-

Figure 4-4: Using a Manager

activity name).

In the Tagged Token Dataflow Architecture, we have decided to use storage to implement
manager objects. A manager object is represented by a 32 bit physical address (Le., an 8 bit PE
address and a 24 bit local memory address): a block of storage starting at that address is allocated to
the manager object (see Figure 4-5). The table .ha. n slots, where n is the maximum number of
concurrent users of the manager allowed by the implementation. A slot in the table has a flag to
indicate if the slot is in use and space to store a return activity name. A counter j is also associated

in
; use Return Activity Name

-23-

with each manager object: the value of this counter is used as the initiation field for the Lags on the

tokens that enter the manager. The rest of the tag for tokens entering the manager is specified when

the manager is created and stored in the manager object table.

MOBJ address

used to compute i

<PE # ,<Color,Address>,nt,port> Manager activity name

n entries

.Y.

Figure 4-5: Table Associated with a Manager Object

An instruction called use (which implements abstract operator U) is provided to communicate

with the manager. The following d = 2 type token is generated when an ALU executes the use

instruction:

<Token-type> 	2
<PE-number>

<Chain> = 1

<Opcode> = "entry

"8 higher order bits of the
32 bit Manager Object address"
"Contains a return activity
name"

<Destination>. 	 "The return activity name"

<new-Token-type> = 0
<new-PE-number>
<new-Tag>
<new-Number-of-tokens-to-enable-instruction>
<new-port-number>

<I-structure-address> 	 "24 lower order bits of the
Manager Object address"

<Data> 	 78-72 bits of any input
data for the manager"

The token is routed to the PE-control section of the destination PE where the following steps are

-24-

taken:

1. If (j mod n) slot is empty, the tag for the result value (Le. <Destination> field on the
input token) is stored in the slot and a new token with data from the input token and a
tag constructed by using the j value and the information in the table6 is produced. The j
counter is incremented by 1.

2. If (j mod n) slot is not empty, then the input token is prevented from entering the
manager. Such a token can be put aside and retrieved later or just circulated back in the
communication system.

The Exit operator generates a d = 0 type token which undoes the action of the entry. Suppose
the initiation number field of the tag on the token that causes exit to be executed is i. The effect of
the exit is then to mark the slot number (i mod n) as not-in-use and form a token whose tag is the
tag stored in the slot. Some requests to a manager don't expect a result back, in which case no
return activity name is included in the token generated by the use instruction. Accordingly the
Entry operator does not store anything in the slot (though it marks the slot to be in-use) and the
Exit operator does not produce an output token.

5. Current Status of the Machine

An evaluation of the architecture proposed in this paper is impossible without the construction of
a prototype, and the engineering problems of constructing a novel and large multiprocessor
machine can not be exaggerated. As discussed in [6], we have decided on two "soft"
implementations before considering a direct VLSI implementation. 	Two 64 processor
implementations are in various stages of development: a simulated machine on IBM 4341, and an
emulated machine on 64 Symbolics 3600 (Lisp) machines. Both implementations will accept the
code generated by the Id compiler, and model each subsystem of the PE and the communication
system explicitly. The simulator will also accept data dependent timing specifications for each
subsection while the emulator will "fake" the internal pipelining of PE's and the communication
system by the scheduling of tasks where a task will represent one subsystem of the PE. A primitive
version of the emulated machine comprising 8 PE's should be operational in 1984 while the full
machine is not expected to be available until late 1985.

A specification of each subsystem and the overall simulation program has been written in Pascal.
To conduct architectural experiments on the simulator, we are developing a variety of resource
managers for I-structure storage, and allocation and deallocation of PE's and colors. The simulation
work is being done in cooperation with IBM Research (Yorktown) and we describe its near term
goals and very preliminary results briefly.

It should be easy to see that the proposed PE design can indeed sustain one instruction execution
per cycle (Le.. pipeline beat) provided there is sufficient parallelism in the application program.
Preliminary analysis of several large scientific codes show that parallelism in applications will not be

6The first location in the table contains the color allocated to the manager and the address of the first. instruction in the
manager body

-25-

the bottle-neck [1]. The kind of parallelism needed to support one instruction execution per cycle
in our machine is much more pervasive than the kind of specialized homogeneous parallelism (Le.,
vector operations) needed to support t_hat rate in machines like Cray-1. However, dataflow machine
rate is not directly comparable to instruction rate of von Neumann machines because datallow
machine language programs appear to have 3 to 4 times as many instructions as a conventional
sequential machine'. A major factor in the profusion of instructions on a dattfflow machine is
instructions executed to compute the addresses for store and fetch operations. Index registers and
address generation hardware in vector machines eliminates most of these instructions. It should be
obvious that even a von Neumann machine will execute a very large number of additional
instructions if index registers are not provided. Though we have several ideas about solving this
problem, no specific proposal has been incorporated so far. The procedure call mechanism also
introduces a lot of instructions but most of these can be eliminated by restricting the generality of
parameter passing convention.

It is instructive to consider the execution of a totally sequential code-block on one PE. If each
subsection takes one unit of time to process a token then the n instructions will execute in 4*n time
units. In general, a proeram with the same functionality as this code-block will take much less time
on a sequential computer (built out of the same technology) because sequential computers can
overlap execution of instructions even in totally sequential code. However, execution of two such
code-blocks may not take substantially longer on one PE while it will take twice as long on a
sequential processor. Hence evaluation of our architecture must take into account both the internal
architecture of our PE and the "small grain" parallelism present in code-blocks. -

An important parameter to be determined is the size of the Waiting-Matching section and the
factors that affect crowding in it. Scheduling (i.e., mapping) of activities. I-structure storage maps,
and the relative speed of PE and communication system all affect the number of tokens that wait for
their partners in the Waiting-Matching section. However, the qualitative effect of any of these
parameters (simply by analysis) has eluded us. Once the resource managers have been
implemented, we plan to study these interactions on the simulator. It remains to be seen how much
analysis of a program by the compiler is required for its efficient mapping.

Though not as crucial as the size of the Waiting-Matching section. the size of tags and the size of
the deferred read section in I-store controller is also of concern. As noted earlier, factors such as
scheduling affect these parameters. Besides the issue of size, scheduling will affect the number of
fetches that will get deferred in the I-store. Every read that has to be deferred in some sense slows
down the machine.

Questions about the scalability and ultimate performance of the Tagged-Token Dataflow
machine cannot be answered until some of these inter-relationships have been understood.

'We are indebted to Dr Ekanadham and Dr Bruer of IBM for this observation.

-26-

Appendix A. Instruction graph for Code-Block Invocation

There are three logical phases in the invocation process: allocating resources and establishing the
called code-block, initiating activity in the called code-block, and finally expecting results from that
invocation. The compiler generates triggers to initiate the various phases.

1. A trigger Ta initiates the first phase. It causes a request to be sent to the System
Manager. The called code-block is technically activated when it receives the argument
and result descriptors. However, in order to cater to specific semantics of a procedure
call in a language and to reduce the load on the Waiting-Matching section,8 it must
successfully fetch a specific argument (Tb) before any other activities may be enabled; it
essentially sleeps until the calling activation triggers it into action.

2. Once the descriptors are received from the manager the calling code-block begins
storing arguments. When it has stored enough arguments, it stores a distinguished
argument Tb' This is the trigger the called code-block is waiting on; it initiates activity
in the called code-block.

3. The calling code-block waits for a specific result (Tr) before it starts result fetches in
earnest. The role of the trigger Tr is similar to the role of the trigger Tb.

Triggers Ta,Tb, and Tr need not be different from one of the values being passed or returned.
Since the manager may take some time in loading the code into the memory of PE, it may be
advantageous to generate Ti ahead of time. Depending on how Tb is generated. a strict or nonstrict
call mechanism can be implemented; for example, generating Tb when all the values to be passed to
the called code-bock have been written in the I-structure will result in a strict call mechanism.

The architecture supports constant areas allocated on a per color basis. The intent is that Id loops
have constant areas, while Id procedures do not. The critical issue is that the arguments to be stored
in the constant area must in fact be stored before the code-block is put into activity (i.e., before Tb is
generated). The Id compiler divides loop constants into two categories: essential constants (those it
can determine will be necessarily used in the execution of the loop) and nonessential constants (all
others). Essential constants are stored in the constant area; the others are circulated.

One more piece of information needs to be understood before the actual calling sequence is
presented. A special data type called smash is provided in the machine to facilitate sending
information to a manager. The smash type is used to put more than one data value (limited only by
the size of the token) alongwith their data-length and data-type fields onto one token. A smash type
is generated by the compress operation which takes two values of any type. The expand operation
recovers the original values and sends them to their respective destinations; the first value is sent to
the first destination and the second EO the second destination.

31This is an example of one of the factor that influences the load on the Waiting-Matching section.

EXPAND

	1Counter-obiect>

I<AA, RA, Counter-object)

USE
"Invoke and
allocate
AA and RA"

sizes ta

<0, sizes> /
1/
/ /

/
/ /<AA,RA>

/ /
/ /

	 1/
/

••••• ems

EXPAND at

a n •
•
•
->

an

RA •
•
•

•

•

AA <RA> <AA>

STORE
"Arguments"

I-FETCH
"t r?

DETECT
"Completion of
stores'

"Reference-
count of AA"

DECREMENT

\t/
COPY

"essential
constants
and RA"

FETCH

"arguments"

- • 	•
Nif

a

t r

FETCH "Reference-
count of AA"

"Results"

"Reference-
count of RA"

DECREMENT

DETECT
"Completion
of fetches"

DETECT
I.

"Completion of
stores"

STORE

"Results" "Results"

--:
•
•

V

DECREMENT

"Reference-
count of RA"

DETECT
"Code-block

completion"

•

•

From various

operators

USE
"Release
color"

-27-

I-FETCH
“t "

••••

t
b
	 <AA>

(RA)

DETECT
rm 	

"completion
IDENTITY
	

of fetches"

DECREMENT

_
<Release, color>

INVOKING DOMAIN 	
INVOKED DOMAIN

Figure A-1: Graph for a Code-block Invocation

-28-

The steps involved in an invocation of a code-block are as follows (see Figure A-19):

1. The use instruction is executed when the trigger Ta becomes available. It sends the
code-block name, the number of arguments to be passed to the procedure, the number
of results expected, and the destination tag for the following expand instruction to the
manager.

2. The manager establishes the code-block and allocates storage for two I-structures—one
for arguments and one for results. To cater for the mismatch of parameters, sizes
chosen for these 1-structures are the maximum of those dictated by the calling and
called code-blocks. Reference counts of these I-structures are initialized to two as both
the calling and the called code-blocks use them independently. When a code-block no
longer needs an I-structure the reference count will be decremented by one using the
decrement instructionl° . The descriptors of the two 1-structures are sent to the expand
instructions in the calling and the called code-block.

3. The expand instruction in the calling code-block separates descriptors for the argument
I-structure and the result I-structure. The descriptor for the argument I-structure is
passed to the store schema so that values for the arguments as well as trigger Tb can be
stored. Trigger Tb is always stored in the first location of the argument 1-structure. A
read request for Tr is generated by the I-fetch instruction when it receives the descriptor
for the resultarea.

4. The expand instruction in the called procedure also separates descriptors. A read
request to read Tb is generated by the I-fetch instruction. In the case of a loop code-
block, the copy schema initiates the copying of the constants from the I-structure for
arguments into the constant-areas of all the PE. The 1-structure descriptor for the result
area is stored in the first location of the constant-areas. A counter object (an extremely
simplified manager object) with initial value equal to the number of PE's in the domain
is used to detect the completion of copying. On the completion of the copying of
constants, reading of the rest of the arguments is initiated. In the case of a procedure
code-block copying is not necessary. and the 1-structure descriptor for the result area is
passed directly to the store schema (denoted by the thick dashed line in Figure A-1).

5. The called code-block, on the completion of its execution, stores the result values
alongwith Tr into the result area.

6. To release the color it is necessary to detect that no more activities in a code-block
invocation remain to be executed. Detecting that all the results have been produced is
necessary, but it is not sufficient. Certain operators either absorb tokens (eg., switch) or

9The store schema in the figure consists of the appropriate number of form-address-and-store instructions: similarly the
fetch schema consists of the appropriate number of 1-fetch instructions. The detect schema is a binary tree of identity

instructions.

10An I-structure gets deallocated when its reference count goes to zero.

-29-

do not affect the result values directly (e.g., I-store, decrement). The outputs of all such
operators arc coalesced into a single signal. In the case of a loop the signal generated by
the operators in the loop body needs to be circulated so that signals tbr all the iterations
can be merged together. This signal is used to trigger the use instruction which requests
the manager to release the color.

7. When T becomes available, the calling procedure reads the rest of the result values.

-30-

Appendix B. Instruction Set Summary

The resulting instruction set design defines the hardware-recognized data objects and the
operations that may be performed on them. Since we view the machine as being completely self=
sufficient (i.e., all operations from the level of interpreting compiled Id graphs all the way down to
the lowest level 1/0 operations), the instruction set was designed accordingly. This was done with
an eye toward the future - Id self-compilers written in Id, managers performing operating system
like services written in Id, etc.

To support this wide range of functions, several different token types were defined (tokens
corresponding to values in data flow graphs and several flavors of system-generated tokens) as well
as a number of scenarios (we call them paradigms) for token processing. All token processing
begins with executing an instruction form a compiled data flow graph. Based on the instruction
type and the corresponding paradigm, one or more additional tokens may be created which trigger
additional graph instructions. Alternatively, system-generated tokens may be created which effect a
number of implementation-specific operations in the machine.

All of the tokens carry data objects of self-identifying type. Where appropriate. operation codes
are type-independent and will perform the necessary format conversions on both input and output.
There are also the facilities for preventing such conversions, and also instructions for performing
explicit conversions.

The hardware implements low-level primitives for procedure invocation and, address mapping.
These primitives are necessary to efficiently support resource allocation and the partitioning of code
blocks across multiple processing elements. For the most part. these issues are not visible from the
standpoint of compilation. However, since the facilities are partially static, the instruction set also
defines the necessary characteristics of the mapping process so that code generators / loaders will be
able to partition code blocks and to allocate instructions amongst these partitions. A summary of
the instruction set, excerpted from Arvind and lannucci [4], is ziven below.

Token Processing

'aratligui
'araw,in
')arauigm 4:

to<d.o> < .,to <d = r 2>
< = > to (<all= or 2> to <GI =0>)_
< = > (<d = or 2> to <d =2..*Lntry>)

Data Types

;rr\li
s.

11'31r:
ob!

.
Mi). :
rr:

11
ncludes J1 t'p
ncludes -J -P-64.Int

s.tring. U to i bytes in length

.1?)?!.lr'r:h:iracter, 7 bit code
Counter meet
'uiciuues BOol.Char.Cobj,Err.FP-32/64,Int.ISDrT-Fix.ISD-T-Var,ISD-U-Fix.MDef,MObj,Proc,Smash
hiror value

11
Any, Arith. Comp, and Int are pseudo-types.

111

{1}

-31-

nV

Ja-
nt-

• tle1-

nit

nt-1

roe:
Smash:

ar:

e.tsiirin

• oating 	point.
• o;itin?.; 	mkt.

	

ncludes 	(It

	

nteczer. 	bjt.

	

ntetler. 	(
itteiler,
meter. .1
-rim
- MIMI re
- tructure

l

-Structure
-Structure
-mrticture

Manager de
er otyiect

eroce nil: definition
Composite

(14 	aye
-Sint- 6,lti -24.lnt-32

two 	complement
rnt two s complement
pit two s corny
hi 	wo s corn
a(c ress (type('
aC ‘ resS (typed

1

• « rcss (In typed
descriptor type('

eseriptor tvoeu
escriptor titityped
inition

	

I 	• I 	'

01 two or more

32 r :Iresentation

e
e

Eesentallon

ement
1 einem

objects,

e
e
e
c

ements

representation

ot. rixeci
lents ot v.
ements 0
ementso
ements o
elements

representatIon
representation
reprewntation

e.g., <<Int-8>,<MDef>,<Bool>>

!mix. s e)
Rath§ size
uxe 	ma. , size) 	,
lixe 	max. stzePt ."(1
variable size)
of fixed max. size)

Operations (d =0) '
Operation

Arithmetic:
Conversion:

Booleans:-

Bit String Logicals:

111 	Shift:
{1} 	Concatenate: -
Ill 	Adjust-Length:
{ 1 } 	Extract-Type/Value:
{1} 	Construct-Data:
{1} 	Compress:
VI 	Expand:
{1} 	Arithmetic Relationals:

Non-Arithmetic Relationals:

{I} 	Form-Address:
131 	I-Fetch:

{3} 	Form-Address-I-Fetch:

I-Store:

{2} 	Form-Address-I-Store:

{4} 	Allocate:

{4} 	Deallocate:

{3} 	Allocate-Cobj:

{3} 	Deallocate-Cobj:

. • 'yes

FunCtiiin ality

Arithl1 X Arith2 = Arith3
rith .41A rjthi Arith,

• nt-id ' 	 ar
• • 	'I.
• • X :• • 	U(c 1.

Bill .Nkss,. Bits
Bills X Int-8 = Bits
Bits X Bits = Bits
Bits, X B1ts2= Bitsi mutt
Any = Bits -
Bits X Bits = <Data>
Comp, X Comp2 = Smash
Smash X Bits = <Data>1 	 — V 0, (Data>2 V 0,
Arith1 X Arith2 = Bool

Zmipk>c comzi B7opooi
r‘itY2

1SD X Int = ISA12

IsdA=T,PErchain=1.<d=0,PE2,...>,<*I-Fetch...>>

isdp= Mit,c7ain =1,<d=0,PE2,...>,<*I-Fetch...>>

ft: 1<g1131111-11:FdtStni:S..Rg g?e'.

Isdp= (14t1hIcnc.-91bXciv=1T8c7d/MObj>,<*Allocate...,<...>>> • 1
1bi
<sd9.=?S"Fplric.--(1b, /c19' ior = 	_ bj/MObj>,<*Deallocate...,<...>>> • -1'

IT:23.ki':',g11)!1',1<tg--(7,pE2,...>,<*Allocate-CObj,<MObj,counter>>>

c?.-1 2TEI,chain=1,<d=0,PE21...>,<*Deallocate-CObj,<CObj-addr>>>

121SD and ISA are used generically in these semantic forms. ISA represents the types ISA-T-Fix. ISA-T-Var and

ISA-U-Fix. ISD represents ISD-T-Fix, 1SD-T-Var and ISD-U-Fix.

-32-

{2} 	Decrement-Cobj: 	,

{1} 	D and D.1:
{1} 	R:
{1}
{3} 	Read-Byte:

{3} Write-Byte:

{3} 	Transfer:

{3} 	Input-Block:

{3} 	Output-Block:

{3} 	Exit:

{4} 	Write-Code-Block-Register:

{1} 	Identity:
{1} Switch:
{31 	Set-Supervisor-Mobj:

{2} Use:
ef-}

ci)=1-7 ,11E chain = 0,<*Decrement-CObj,<CObj-addr>>>

C°mPl CprflpL' 	qcni
Compi X Srnash= Comp].
Compi X IhtA Compi

15`23Ri,chain=1,<d=0,PE2,...>,<*Read-Byte,<addr>>

1,<d=0PE2,...>,<Write-Byte,<addr,data>>

redt2i.kin.S1322-i- 1,n<la
24
-0.1E2,...>,<*Transfer,<src,dest,PE,Iength>>>

'<'at;::1.3.kWatn)!11,1<ta8=T,PE2,...),<*Input-Block,<addr,length,device>>
1<rat23.knl..2211>_1.11,1<ta8

>,<*Output-Block,<addr,length,device>>

g-illi)14(1,ribnj--77),<*Exit,<MObj-addr,init-number,Comp>>>

I<V2R111.1dillri5--44Ydblif,a17/Cobj>,<*Write-C-B-Reg,Smash>>
Any = Anyi
Anyi X Bool Anyi V 0

tiatj2X21.117=1,<d=0,PE2,...>,<*Se1.-supervisor-MObj,<MObj>>>

EARE:= rdE=nn§-2M,Sb,11111C>ilabi.Comp>>>

-33-

References

1. Arvind, and R. E. Bryant. Design Considerations for a Partial Differential Equation Machine.
Scientific Computer Information Exchange Meeting, September, 1979, pp. 94-102.

2. Arvind. Decomposing a Program for Multiple Processor System. Proceedings of the 1980
International Conference on Parallel Processing, August, 1980, pp. 7-14.

3. Arvind, and D. E. Culler. Tagged Token Dataflow Architecture. Tech. Rep. 229, Computation
Structures Group, Laboratory for Computer Science, MIT, Cambridge. Mass., July, 1983.

4. Arvind, and R. A. fannucci. Instruction Set definition for a Tagged-token Dataflow Machine.
Tech. Rep. 212-3, Computation Structures Group, Laboratory for Computer Science, MIT,
Cambridge, Mass., February, 1983.

5. Arvind, K. P. Gostelow, and W. Plouffe. An Asynchronous Programming Language and
Computing Machine. Tech. Rep. 114a, Department of Information and Computer Science,
University of California, Irvine, California, December, 1978.

6. Arvind, and R. A. lannucci. A Critique of Multiprocessing von Neumann Style. Proc. of the
10th International Symposium on Computer Architecture, June, 1983.

7. Dennis, J. B. First Version of a Dataflow Procedure Language. Memo 93. Computation
Structures Group, Laboratory for Computer Science, MIT, Cambridge, Mass., November, 1973.
revised MAC TM61, May, 1975

8. Heiler, S. K. An I-Structure Memory Controller. Master Th., Dept. of Electrical Engineering
and Computer Science, MIT. Cambridge, Mass., June, 1983.

9. lannucci. R. A. Packet Communication Switch for a Multiprocessor Computer Architecture
Emulation Facility. Memo 220, Computation Structures Group, Laboratory for Computer Science,
MIT, Cambridge, Mass., October, 1982.

10. Smith, B. J. A Pipelined, Shared Resource MIMD Computer. Proceedings of the 1978
International Conference on Parallel Processing, 1978, pp. 6-8.

A9:01915,1Dvi

Oti 	 [ki)J I' 1 II !ii:j tIPLIM41 p 	Ampftroblemp 	 3 	brilt jltitTIA .1
Anixoyhri wilgr1:141Jirir1I,$tP tvovnik);Ifitai.Dia,

gielibweiro .1trt,e4(8 	31:Rfi,,N 	mow. a 40,04014elit. Aravitt, 4
AtI4qj ,041,iwatiA 	isto iloiroromilficahotonursmi:

nobrJoi9cD 	(4)1 	..itict)vicytA vionrae.1Jd r bi,1004 1,0 	brartA x.7;
041 4411V -$76L.Int.IADC771 rip! 	440131,7,-)161 -"timojeki..41,0TD.vjaspiniz,

tykk.t•higgsT e nit noniartfk 	novel/8(1i .ii.,auftma
T114.4 	uatiqin 	rov.tyJ .10040 tsvw.tv-732 mitockscrtio.) JAcleol

..0sY1ifer 41104.1,01biv -n-^)
btu! hstsilgeol laitorlter 	 no) 	 .01 	,browit,
Azirmilk 	 .1yr„jipt-pa 	, ci4t 	ritki 	 n ;it nme-J

	

' 	1eltikiri5a pftiirst.:410-17-e 	. a i trir_ViLD 	Ale:ilk, 1 	,

24$1 14.' • 7.'17Q- .41 	'Vaal V-$61''' 4'0 li:liafaitYr012 I UM \II 	A 	I 	 b rip . 	i .11

110?..; .orott ot.tr,Twirb-ri 101.1.44,:7 	3.1r , 1.!ilat:17:7,11 	 41S 41

1)074101;10103 	',in*/ qua 	 iaxiffct4. 41)C tilfr1.14 trifl
• axorrivo4 Jt1W) . rtm 	Ilturitir-10;.;) .4 " • berinit-D I:telt/1. Or ti?,

:'71171 v,464 latv7 	h_1•_ pet

Sitittrie'fititn3 IL /Pie:A IP .tir41 	1,4i,rity!
cri Aro. ,:116M..,.1,4-31 hi1MAzt,42,7 143.0(14tto'D bib; '

5111r-0'1FL/1A 1011)411re) IckvEr4grx1.)1444 'keit 	1104 —441'itcrol 	"1:;2e9' 	.F, Intimpla
▪ S 9D for1It4eari:;01,,In bell/ItirAL,1 ,Y$1310 4tpii:21,rne 'r 11' 	 uno•Ni 	i rpd!

I 	, 	,-L!' .'!'LrrfLD r 1

It*)0 wiry 1.0141 .TV:1-,1=I1Jf 	iii&t L re ma? 	L.111.1)11 f\ .1, At 4tirtt4
!21.10/1-1 traiieFtilloOL-frptitinr$411

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38

