

5 - 1067

A REPRESENTATION AND SOME MECHANISMS
FOR A PROBLEM SOLVING CHESS PROGRAM *

By
Hans J. Berliner

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pa. 15213

May, 1975.

PROJECT MAC DOCUMENT ROOM

DEPARTMENT
of

COMPUTER SCIENCE

AT, FORCE OFFICE OF- SCIFMTIFIC t,ESEARCil (AFSC)

N01.1Cri OF . 7 -V1 I111. 	",7T,

11ii3 	t;:!;.cr, 	 is

• 1)' 	 4fi2 (71)).

D. 	 .

Technical in .:Orinaiien Officer

Carnegie-Mellon University

Approved for public release;
distribution unlimited.

,•4 Plk.O
hO V.CT

Ikeaditig
B.00-rn

43-113

I. INTRODUCTION

A REPRESENTATION AND SOME MECHANISMS
FOR A PROBLEM SOLVING CHESS PROGRAM *

By
Hans J. Berliner

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pa. 15213

May, 1975.

Nov 6 1975

This paper is a condensation of a recent Ph. D. dissertation,
[Berliner, 1974]. We describe a program, CAPS-II, and present both its form and
some of the results obtained in testing it. The rationale which led us to the
design of this program may be found in [Berliner, 1973]. Of necessity, we must omit
much of the philosophy behind the program, many of the implementation details, and
multiple examples of how it operates. However, we treat in detail what we feel are
the major accomplishments of the work.

The domain of the work is chess tactics, and the emphasis is on recognizing
situations and dealing with. them explicitly. As such, we will be discussing
1) Recognition predicates, 2) Methods of stating specific problems so that their
solution is easier than the general problems that include them, and 3) Ways that
results of dynamic analysis (tree search) can be made available throughout a search
tree for various purposes.

II. THE RECOGNITION MACHINERY

We first discuss our representation of chess, as it is necessary to understand
the remainder of the program. We represent a position as a vector of 1040 words
of information. Positions in the Variation being currently analyzed are represented
as 1040 word segments in a stack which allows analysis to a depth of 20 ply. Within
the vector representing a single position there is a hierarchy of complexity of
i n for m at ion.

The most primitive elements in this hierarchy of information are the pseudo-
legal moves which define the possible transitions from position to position that
could be allowable under the rules of chess. Upon this structure is erected the
notion of a bearing relationship. This is a relationship of a piece to a square, and in
our usage tells under what conditions the piece could pseudo-legally move to that
square. The basic bearing relations used in this program are defined below.

DIR(PC,SQ) - A piece, PC, bears DIR on square SQ if, were SQ occupied by a king of the
opposite color as PC, this king would be in check by PC.

Presented at the 2nd Computer Chess Conference, Oxford, England, March 1975. This
work was supported by the Advanced Research Projects Agency of the Office of the
Secretary of Defence (Contract F44620-73-C-0074) and is monitored by the Air Force
Office of Scientific Research.

PARTLY OVERPROTECTED -The piece is safe against a set of single attack types,
but not safe against the complementary set (i.e. a knight which is attacked by a
rook and defended by a king and queen is safe against attacks by queen and king, but
not against attacks by any lesser piece).

OTHRU(PC,SQ) - A piece, PC, bears OTHRU on square SQ if PC would be bearing DIR
on square SQ, if it were not for another (intervening) piece of the same color as
PC which has a DIR relation on SQ.

ETHRU(PC,SQ) - A piece, PC, bears ETHRU on square SQ if PC would be bearing DIR
on square SQ, if it were not for one (intervening) piece of the opposite color which
has a DIR relation to SQ.

DSC(PC,SQ) - A piece, PC, bears DSC on square SQ if PC would be bearing DIR on

square SQ, if it were not for a piece of its own color, which is NOT bearing DIR on

SQ.

OBJ(PC,SQ) - A piece, PC, bears OBJ on square SQ if PC would be bearing DIR on
square SQ, if it were not for a piece of the opposite color, that is NOT bearing
DIR 	on SQ. 	Intuitively, this corresponds to a pin ray by the bearing piece
through the intervening piece (subject of the pin) and looking for an object to pin it
to further down the line.

BLOK(PC1,PC2) - A piece, PC1, has a BLOK relation to a sliding piece, PC2, if, were all
other pieces removed from the board, PC2 would then bear DIR on PC1.

BEH(PC,PWN) - A piece, PC, has the relation BEH to a pawn, PWN, if it is a rook or a

queen and is behind PWN (as it would advance), and bears DIR, or OTHRO, or ETHRU
on the square on which PWN is located.

These relations are sufficient to be able to determine whether a piece can:
1) Participate in a capture with or without an intervening piece participating, 2) Be a
pinner of an opposing piece, 3) Be the source of a discovered attack if one of its
own pieces were to clear the line, 4) Be in the path of a sliding piece if all intervening
pieces were removed, and 5) Help or retard the advance of a pawn.

Once the above information has been gathered, the program embarks on a
square by square analysis of the board. By using the above relational
information it is able to decide which pieces affect the struggle on a certain square.
For occupied squares, the safety of each piece is analyzed to be in one of five
mutually exclusive categories. These are:

COMPLETELY EN PRISE - The full value of the piece on this square is subject to loss
on the opponent's next move.

PARTLY EN PRISE - Only part of the value of the piece on this square may be
captured with gain, but not the full value of the piece will be lost (i.e. a rook attacked
by a bishop and defended a pawn).

BARELY DEFENDED - No capture with gain is possible now, but attacking this square
with any one more unit of force will make this piece at least partly en prise.

COMPLETELY OVERPROTECTED - The piece is safe against any further single attack
by a piece of equal or greater value (i.e. a pawn which is attacked by one pawn and
defended by two pawns).

In the process of making these calculations, the action of pieces of both sides is
invoked. Pieces are invoked in reverse order of value, the program also being able to
avoid the use of pieces that are known to be pinned, until no more effective piece is
available. The computation determines within excellent accuracy limits what the
outcome of the struggle on a square will be. 	During this computation, pieces
that are invoked in the safety analysis are assigned functions. By a function we
mean a triple (PC, DUTY, SQ). A piece, PC, is said to have duty, DUTY, on square, SQ,
if it was invoked for the purpose, DUTY, during the analysis of square, SQ. Typical
duties are attacking, defending, over-protecting, and pinning, although blocking
and supporting duties also exist in contexts which are discussed later.

Partitioning all pieces into categories which show how readily they are
attackable, allows a further computation: noting which pieces can be usefully
attacked by each class of enemy piece. For instance, it is now possible to determine
the set of all pieces that can be usefully attacked by a White queen. This
information is in turn used to determine squares where multiple attacks by a certain
piece can take place. Other status information has also been gathered about individual
pieces. Those that are pinned or considered low in mobility are considered to be
worthwhile single targets. Squares where worthwhile attacks can take place are also
noted. From the above, it is possible to list the set of all "attacking" moves for each
side. The safety of each attacking move is then determined in the same way as was
done for the safety of pieces, and functions are assigned which deal with the
execution of the threatened attack and the defence against it. In this way a
picture is built up of all the duties of every piece on the board, and this makes it
possible to later ascend still further up the ladder of abstraction to find those moves
which perturb the existing fabric of the position (as defined by the functions) in
interesting ways.

Assigned functions are saved in a cross-referenced format that makes it easy
to determine which functions a particular piece has, and what the set of all functions
on a particular square are. Squares that contain en prise pieces are saved in a
vector called BEST whi,:h keeps track of the threats against material by each side. In
computing the above information, CAPS-II begins to put an interpretation on what is
going on on the board.

III. GOAL STATES

Goal states play a major role in directing the activity of CAPS-II. They
constitute a scheme for partitioning the moves that may be looked at at each
node. A goal state defines intuitively a condition and explicitly a set of moves that
are appropriate to the problem as perceived by the program. Only these moves may
be searched as long as this goal state is in charge. This produces the desired
economy of nct having to search all moves or all "attractive" moves, but only those
that are deemed pertinent to the problem at hand. This produces a significant

reduction in the branching factor of the over-all search. A node is always in one
and only one of the following goal states.

AGGRESSIVE - This state consists of discovering and proposing moves that
1) Produce double attacks, 2) Cause attacks on low mobility pieces, 3) Produce
discovered attacks, and 4) Vacate a square that another piece would like to occupy.

PREVENTIVE DEFENCE - This state is invoked when the side on move finds itself
significantly ahead of expectation in material. The state then generates moves
which attempt to consolidate the material plus by defending against any apparent
threats.

NOMINAL DEFENCE - This state is invoked only when the position is deemed worth
defending and no previously tried goal state has produced a good move, nor has
a clear enemy threat been noticed in the process. This state defends against
apparent threats in the hope that this will satisfy the needs of this node.

DYNAMIC DEFENCE - This state is actuated when a search has backed up to a node
with an unsatisfactory value, and the last move tried at this node was blameless. In
this case the CAUSALITY FACILITY (see Section VII) is invoked and this state is a
part of its operation and is discussed in that context later in this paper.

STRATEGY - This state is invoked only at depths which are specified at the start of
the game (and has always been equal to 1 thus far). 	The strategy implemented here
is to call the legal move generator of TECH [Gillogly, 1972], which does a positional
sort on the legal moves. These are then tried in the given order, with the proviso
that moves that were already searched are not searched again. Since this in effect
means opening up the search completely, STRATEGY is invoked only at the root of the
tree in the current program. This is a very primitive way of looking at strategy.
However, the module is completely independent of everything else, and could be
replaced incrementally by more sophisticated procedures. Within the present
framework, it allows the program to play complete games by making a move
selection agency available in situations where no tactical move is preferred.

KING IN CHECK - When the king is in check, this state is invoked directly, since the
set of legal moves is usually small and can be sorted effectively based upon
knowlege of the safety of squares for the pieces.

How the program passes from one goal state to another is discussed in
Section VIII.

IV. MOVE GENERATION

In CAPS-II move generation is very dependent on the recognition
machinery. Move generation is done under control of a Goal State, which decides
the type of move we should be looking for. The following simple move
generators are then used to try to find moves that match the description of the
dasired set of moves.

OCCUPY(SQ) - is a move generator which generates all pseudo-legal moves to
square SQ for the side on move. One of the uses of OCCUPY is in generating
captures.

MOVEAWAY(SQ) - is a move generator which generates all pseudo-legal moves for
the piece on square SQ. It is useful in defence considerations and for
generating discovery moves.

INTERPOSE(SQ1,SQ2) - SQ1 and SQ2 define a straight line with SQ1 being the
name of the square on which an attacker resides and 502 being the square on
which a target resides. INTERPOSE finds all intervening squares, and then
repeatedly calls on OCCUPY to provide the complete set of interposing moves.
Before doing this, INTERPOSE first finds the value of the attacker, and sets a global
constant which lets OCCUPY know that moves that counter-attack the attacker along
the specified line are to get special heuristic credit.

MOVTOCON(SQ) - generates the set of all pseudo-legal moves which bring a piece
of the moving side which at present does not have DIR control on square SQ, into a
position where it does; i.e. brings a new piece to bear on SQ.

V. MOVE EVALUATION

Moves are then evaluated by the procedure EVALUATE. Our information
environment is detailed enough to allow detecting and scoring a proposed tactical
move in the environment of the old position, rather than by setting up the new
position. 	This results in a definite saving in computing time. Further, the
assignment of functions results in binding certain pieces to certain important duties
on the chess board. 	These duties are considered to be essential if the existing
stability of the current position is to be maintained. Therefore, when a move
results in perturbing these functions, it is possible to gauge the effect of such a
disturbance. Detecting perturbation effects involves noticing whether a piece is
moving en prise, whether any piece that is set to capture another is committed to
other important duties, and whether a moving piece clears or blocks any important
squares.

To understand perturbation of a position, it is important to be aware of the
various types of moves that can occur and how their merits can be determined. For
instance, many programs that use forward pruning of legal moves include all moves
that are checks or captures, even if they involve loss of material, just on the chance
that some other factors exist which may make such a move successful. Those "other
factors" would, however, have to be discovered at the exponential cost of tree
searching. The present program can, because of its refined analytical methods,
rule out many checks and captures as completely worthless. This would occur, for
instance, when a capture will result in loss of material without causing
commensurate "disturbing effects" on the position. 	The ability to
optimistically gauge such disturbing effects and thus dismiss certain "sacrificial" moves
as having absolutely no sacrificial merit, is one of the things that our evaluation
procedure is be able to deal with effectively.

tVALUATE looks for the main perturbing effects that can occur. il ,ese are
known in the chess literature as: 	1) Guard destruction, 2) Piece overloading,
3) Decoying, 4) Line Blocking, 5) Unblocking, and 6) Desperados. We discuss each
briefly.

Guard destruction occurs when a piece that has a defensive function is
captured. Piece overloading occurs when a move is made that requires the
exercise of a defensive function by a piece which has another defensive function to
fulfill, and cannot fulfill it from the new square. Decoying occurs when a piece has a
defensive function, but the exercise of it will bring the piece to a new square. The
defending piece is "decoyed" to this new square, the only necessary condition being
that the cost of decoying the piece not be greater than the value of the piece itself.
Of course, the ultimate success of the decoy depends on whether it can be
successfully attacked at its new location. Line blocking occurs when the action line
of an enemy piece with a function is blocked. This can result in either the severing of
a defensive tie, or the blocking of an attacking move. Likewise, unblocking occurs
when the moving piece makes possible a future attack by one of own pieces either
on the square in question or by travelling across the square. Desperados are the
sacrificing of men that are already attacked, because an enemy piece of similar
value is also attacked and can be expected to be captured immediately after the
sacrificed piece is captured. All but the last of these effects depend directly on
recognizing the functional bindings that are involved. It should be noted how easy it is
to describe the perturbing effects, given the notion of functions, while without this
it would be rather difficult.

EVALUATE scores the effect of a proposed move on an existing position.
The resulting score is an integer, which represents an optimistic view of what the
proposed move could accomplish. To facilitate this process, any move which is
proposed gets a quantitative recommendation frem the agency which proposes
it. The amount of the recommendation is a function only of the effect that the
move could have (according to the proposing agency) if it were successful. How much
of this value is actually given to the move depends on EVALUATE.

EVALUATE first examines the safety of the new square for the moving piece.
If the piece cannot be captured without loss on the destination square, then
it gets credit for whatever value its recommending agency gave it. However, if
it can be captured advantageously, the following procedure is performed: Each
opposing piece that has been assigned a defensive function on that square has its
function list examined to see what other functions it has. The following quantities
are then computed:

DEFENSIVE OVERLOAD = Maximum (across all squares on which this piece has
defensive functions] (The number of material units defended on this square + the
value of enemy threats associated with this square).

DECOY VALUE = Maximum value (any opposing piece that has a defensive function on
this square).

DISTRACT VALUE = Maximum (across all opposing pieces that have a defensive

In order to prevent oscillations in the value of EXPCT, a very conservative
view of position evaluation must be taken. This means that wherever there is
doubt about what the terminal value of a position is, the value closest to EXPCT
must be chosen. The reason for this is that when the search at a node is terminated
as described above, this is almost invariably a non-quiescent value. If such a value
should survive all the way to the root of the tree, then this will become the new
EXPCT for the next tree search. So if the estimate at the terminated node
exceeds that which can in reality be achieved from the root node position, the
program could well be in a state on the next search in which it cannot fulfill the
new EXPCT. This would then result in EXPCT being reset to a lower value, and
oscillation could result from this. 	Therefore, whenever an estimate is made
for backing-up purposes, it should be conservative with respect to EXPCT. 	This
means that if a value is significantly greater than EXPCT then only the pessimistic
value of this position may be backed up. Likewise, if a value is significantly below
EXPCT, the optimistic value of the position must be backed up. Clearly, if the new
estimate does not remain significantly different from EXPCT then the conditions for
node termination have not been met.

VII. THE CAUSALITY FACILITY

Whenever the search backs up to a node with an unsatisfactory value, the
CAUSALITY FACILITY is invoked. The CAUSALITY FACILITY allows determining
whether a set of consequences can be definitely dissociated from the last move
tried at a node. Only the detection of this condition allows fixing the blame for a set
of consequences on something that existed before the search came to this node. Once
it is known that the node has inherited a problem, the necessary mechanisms can
be set in motion for trying to solve it. Causality is established by comparing a
description of a set of consequences (the Refutation Description) with a description of
a move. The CAUSALITY FACILITY then decides whether the consequences could have
in any way been made possible by the move made. We first describe the data used by
the CAUSALITY FACILITY. Then we take up how the CAUSALITY FACILITY gathers this
data and uses it for comparisons and decision making.

A. The Refutation Description

During the backup process, whenever a result is acceptable to Alpha-Beta,
the following data are collected at that node for use by the CAUSALITY FACILITY.
These data 	constitute the Refutation Description. While the simple notation of
specifying an origin square and a destination square is enough to describe a move or
to play out a game, this is not enough to describe a sequence of move without having
recourse to updating. For the task we are about to describe, we need a description
that is rich enough so that properties of a move can be understood without having
recourse to updating the board. To do this, we need to know not only the squares of
origin and destination, but also the name of the moving piece (since the origin square
could at some other time be occupied by a different piece), and the squares which had
to be unoccupied in order for the move to be made. These things are essential to a
description that can examine a sequence of moves without actually going through the
process of setting up the position after each move in the sequence.

function on this square] (Value of any en prise piece on which this defensive piece

has an attacking function).

REDEEMING VALUE 	Maximum (DEFENSIVE OVERLOAD, DECOY VALUE/2, DISTRACT

VALUE! 2).

The Redeeming Value is the evaluation for moves that apparently "don't
work", while the evaluation of moves that appear to work is the sum of their
recommendation from the proposing agency and the beneficial side effects that they

cause.

If a move is selected for searching, two evaluations are developed for the
corresponding node in the tree. They are the nominal value which counts the material
on the board and gives credit to each side for all their material threats as
cataloged in BEST, and the pessimistic value (from the point of view of the side
that is to move) which counts the material on the board and then adds in only the
side-which-just-moved's best capture threat.

VI. TREE CONTROL

The basic tree search used by CAPS-II is a depth first, mini-maxed search
with Alpha-Beta pruning. This has been supplemented by algorithms which make
risk decisions. During the tree search the basic emphasis is on: I) Trying to find
properties of the current node which allow termination of the search at that point,
2) Making deductions about the current goal state which may lead to abandoning the
state or the node, and 3) Forward pruning of proposed moves which fail to have

certain necessary properties, in order to limit the number of descendants of any

parent node.

CAPS-II uses the following level of aspiration scheme. Two limits of aspiration
(Alpha and Beta) are needed in order for each side to know what is the maximum it
can hope to achieve at any point in the tree search. An expectation (EXPCT) is
needed, that is the best estimate of the value of the position at the root of the tree.
Around EXPCT, a margin (MARC) is defined. If a value, differs from EXPCT by more than
MARC, we say it DIFFERS SIGNIFICANTLY from EXPCT. If such a value is ever backed
up to the root of the tree, EXPCT is changed to that value, and the search is

redone.

Alpha and Beta are set initially at plus and minus infinity. The value of
MARC is set permanently at 687. of the value of a pawn. EXPCT is provided on
input of a position and retained from one tree search to the next as the minimaxed
value of the last tree search. If a value that is greater than EXPCT plus MARG is ever
backed up to the root of the tree, the following Occurs: EXPCT is set to the value that
has just been backed up. The new Alpha-Beta limits become plus infinity and
EXPCT minus a very small quantity. The search is repeated unless the value
returned is sufficiently high to guarantee a completely winning position for the side
making the gain. 	An algebraically opposite aciustrnent is made if the value

returned to the root of the tree is EXPCT minus MARC.

RPCS - is a bit-vector which has bits representing names of pieces. The name bit of
the piece that moved to produce this node is set in this vector.

RSQS - Is a bit-vector with bits representing squares on the board. The bit
corresponding to the destination square of the move that produced this node is set
in RSQS.

RPATH - is a bit-vector with bits representing squares on the board. The bit for any
square across which a sliding piece moved in making the made move is set in RPATH.
If the move was a non-capture pawn move, then all squares over which it passed
including the destination also have bits set for them.

RTGTS - is a bit-vector with bits representing names of targets. A comparison is
made of BEST for this node with BEST one ply previously. Any squares which
are now named as containing material targets, but were not mentioned in the
previous BEST, have bits set for the name of the piece on this square to indicate that
this threat was created by the last move.

TGTSQS - is a bit-vector with bits representing squares on the board. For any
RTGTS detected as above, bits are set in TGTSQS for the corresponding squares.

TPATH - is a bit-vector with bits representing squares on the board. For any
TGTSQS detected as above, if a piece that has an ATTACKING function on this square
is a sliding piece, then all the intervening squares have bits set for them in TPATH.

Once this information is generated, it is accumulated during the backing-up
process of the tree search. This is done by forming the union of the current
description and the previously existing description whenever a node's value is
accepted. Thus when returning to a node, a complete description of all that each
side has accomplished in the immediate sub-tree and how, is available. If the results
of the last move tried at this node were not satisfactory, the CAUSALITY
FACILITY consults the Refutation Description in order to decide what can be done
about it.

B. The Rationale for the CAUSALITY FACILITY

To understand the value of having a rich representation for this, consider
what is possible without it. For instance, assume a sequence of moves resulted in a
loss of material. Best current practice woulo be to remember the first move of the
backed-up variation as the "killer", and then try it first on every move that is
served up from here on in the generate and test mode. If the representation was
richer and we could get a complete description of all moves in the backed-up
variation, then it would be possible to determine the sequence of moves that
produced this result. We would then be limited to doing things about this
sequence only. This would include such things as suggestions to move or defend
any captured piece, capture or pin any capturer, or block the path of any moving
piece. However,such a scheme is incomplete since it does not deal with threats that
were adequately met.

10

The present program has a much more complete understanding of a set of
consequences. The set of data that the program abstracts from a position and sends
back up the tree was discussed earlier. This includes a knowledge of all squares
critical to the transPortation of pieces that moved, squares on which pieces
became targets, and squares over which threats passed. It also includes the names
of all pieces that moved or became targets.

When returning to a node, the CAUSALITY FACILITY correlates this
description with changes that occurred in the data structure as a result of the move
tried at this node. This includes noticing changes in control of critical squares by the
losing side, changes in threats as noted in BEST, and whether any unblocking of
critical paths occurred as a result of the last move. Making comparisons of these
quantities with the Refutation Description makes it possible to decide whether this
move could be to blame for what happened. Whenever this is not the case, the
search for a direct method of preventing what happened can begin. 	For instance,
assume a knight was lost as a result of a double attack which also involved the king.
Then moving the king away, or blocking the threat path to the king are validated as
goals for meeting the threat, as well as doing things about the knight and trying
to capture the attacking piece or guard the squares on which attacks occurred. The
first two goals of this set wouid not show up in the principal variation, since the
major threat is usually avoided. Thus, the present method gets directly at the
whole set of consequences, not merely those which were executed in the principal
variation.

The CAUSALITY FACILITY, does very well at generating defences to deep
threats, as is demonstrated in Section IX. As a consequence, it is not necessary to
make a priori decisions about the goodness of certain moves for "defensive
purposes". Rather, it is possible to wait to see if a defensive problem occurs and then
generate the moves that do something about this description. 	While this is a major
advance in the state of the art, it is still considerably short of human performance.
First, there are situations in which many defensive moves 	suggested, and the
program is unable to assign accurate enough values to these moves to prevent a
certain amount of hit-or-miss searching. Second, the problem of indirect defences is
not treated at all. An indirect defence occurs when a threat is met by playing a move
that would allow the execution of a desirable move sequence ONLY if the opponent
tried to realize his threat. This is quite different from a counter-attack, since the
indirect defence is intended to produce its result only when the opponent persists in
his attack. A typical indirect defence would involve preparing to move a piece through
a square that would be vacated in the process of attempting to execute the
threat. The method for detecting indirect defences is to make a null move and then
execute the opponent's detected threat, sequence. 	In the final position, the
indirect defender now tries to find two moves in succession which would produce
a favorable result. One of these moves would then have to be substituted for the null
move in order to make the indirect defence work. 	However, implementing schemes
such as this is beyond the scope of the effort reported herein.

VIII. Goal State Transitions

The way the program progresses from goal state to goal state, once having

11

When
Stack PREVENTIVE

DEFENCE
STATE

AGGRESSIVE
STATE

Return To
Node

Decisions
(>> , <)

NOTEI
>) means
Significantly
Greater

Return to
Node

Decisions

Not
Cause

Return To
Node

Decisions
(>> 	<)

Add Counter
Causal

Moves To
St :6k

Last
Move In
Prin.

Back-up
Value 2

EXPC

NOMINAL
DEFENCE
STATE

START

KING IN
CHECK
STATE

King In
Check

MAT
>> EXPCT

Pess.
Eval. >>
EXPCT

When
Stack
Empt

4ominal
Eval. 2

EXPCT

Ellg. For
St rater

STRATEGY
STATE

Return To
Node

Decisions

(2:

Back-up
Value >>

EXPCT

Optim l ic
Eval. 2
EXPCT

Stack
Empty

Return to Node Decisions (REL1, REL2)

Causality Facility

Compare •
0.,Move W4th

Generate
Counter-
Causal
Moves

Causal
Reordering
Of Moves
nn StArk

Refutation
Descriptiort

L_

Backup

Back-up
Value REL1

EXPCT

Get
Next

Move Frp
Stack

FIGURE 1 	- Goal State Transition Diagram

•

12 	
13

reached a given node, is shown in Figure 1. The goal state at each active node in the
tree is remembered in the representation of the node. This means that goal states
do not change because of departure and return to a node, but only because of overt
decisions made in the course of problem solving at the node. Similarly, the move
stack at each node is available for inspection until the node is finally quitted. Thus,
any move examined in one goal state will not be tried again if suggested by another.

The "Return to Node" block at the top of Figure 1 shows the decision
structure that pertains when returning to a node in most goal states. It is invoked
as a sub-routine, with arguments RELI and REL2, by the main transition diagram in the
lower part of Figure 1. REL1 is the relation between the backed-up value and EXPCT
that when true allows exiting the node immediately. Otherwise, the CAUSALITY
FACILITY is invoked. The CAUSALITY FACILITY compares the description of what
is best play below this node (the Refutation Description), with the description of the
move made at the node. Based on this comparison, it makes the decision as to
whether the consequences could have been caused by the present move. In either
case, a list of counter-causal moves is generated. These moves attempt to do
something about the Refutation Description that has been backed up. The exact
methods are described in Section IX.

REL2 specifies a relationship between the backed-up value and EXPCT. This
relates to whether the backed-up value is satisfactory with respect to the aims of
the goal state that the node is currently in. If an unsatisfactory value has been
backed up to this node, and the causal analysis reveals that this could not have been
caused by the last move tried at this node, it means that a problem has been
inherited from higher in the tree. In that case, a transition to a new goal state
occurs. if, on the other hand, the result is not deemed to have been caused by
the last move or if REL2 does not obtain, then the program merely does a
reordering of the untried moves on the move stack, moving those mentioned most
often in the counter-causal list to the top of the untried stack. 	This Causal
Reordering will result in their being tried earlier, but dces not change their value.

Following now the flow chart in the lower part of Figure 1, we see that the
first determination made is whether the king is in check. If so we go to the KING IN
CHECK state in which all legal moves are generated. These are tested in order of
decreasing evaluation. If a value is ever backed up to this node which is significantly
greater than EXPCT, the search backs up. 	if the CAUSALITY FACILITY detects a
consequence which could not have been caused by the last move tried, the state is
changed to DYNAMIC DEFENCE, but the move stack remains intact. If neither of the
above occur, causal reordering of the untried moves takes place.

If the king is not in check and if the side on move is significantly ahead of
EXPCT in material then if the pessimistic evaluation of this node is also significantly
greater than EXPCT the conditions for backing up have been met. If the latter
condition has not been fulfilled, then it means that the opponent still has some
important threats (else the pessimistic evaluation would be better). In this case, the
PREVENTIVE DEFENCE state is entered. Here all moves that move a threatened piece,
capture an attacker, block an attacking line, or defend a threatened piece are
generated. If this set of moves, when submitted to tree searching fails to

maintain the significantly greater than EXPCT advantage or if any dynamic problem
not caused by the tested move is detected then the AGGRESSIVE state is entered.
This means that the attempt at consolidating the gains has failed, and the program
resorts to the more usual method of dealing with a node.

It is possible to get to the AGGRESSIVE state as above, or if the material
significantly ahead of EXPCT test fails initially. This means that we know of no
reasons at the moment why the side on move should not try to make a successful
attacking move. As explained earlier, the AGGRESSIVE state is really a set of move
generating states. The states are arranged so as to generate moves in order of
forcefulness. EVALUATE gives each move a likelihood of success measure. A
sorting routine then arranges the moves according to likelihood of success
within forcefulness. 	This results in generating all moves that have aggressive
potentiai (with the exception of moves that only involve an attack on a
single non-low-mobility man, this feature not having been implemented as yet).

After an AGGRESSIVE move has been selected for tree searching, and the
search has returned to this node, several things can happen. If the program has
found a move that is significantly better than EXPCT, it will back up from this node. If
the backed-up value is not sigrOicantly better than EXPCT, then the CAUSALITY
FACILITY is invoked to do causal analysis and reordering of untried moves. If the
backed-up value is less than EXPCT, and if the consequences could not have been
caused by the last move tried, then the DYNAMIC DEFENCE state is entered.
Otherwise, the program selects the next move from the move stack until it exhausts
the proposed moves in the AGGRESSIVE state. In that case, if the nominal evaluation
of the position is not less than EXPCT, a check is made to see if this node is at a
depth that makes it eligible for STRATEGY. If so, this state is entered. Otherwise,
the node is exited (i.e. BACKUP). If no successful AGGRESSIVE move was found
then if the nominal evaluation of the position were less than EXPCT and the
optimistic evaluation greater or equal to EXPCT, then it means that the opponent must
have a threat. Since the position has the potential to produce a satisfactory
value, the NOMINAL DEFENCE state is entered.

The NOMINAL DEFENCE state is charged with producing defences against
statically recognized threats. It is only invoked when no AGGRESSIVE moves have
succeeded and the position is considered worthwhile. If in any prior processing of
this node, a backed-up threat had been recognized, then this state would be by-
passed in favor of DYNAMIC DEFENCE. This is very logical, since NOMINAL DEFENCE
deals only with statically recognized threats, and one can never be sure that such a
"threat" is really a threat. The move generators of the NOMINAL DEFENCE state
aproduce moves that defend threatened points, move away the pieces on these
squares, capture their attackers and block attacking lines. 	The NOMINAL DEFENCE
state is exited as soon as a move which produces a backed-up value greater or
equal to EXPCT is found. If in the process of testing moves, the CAUSALITY
FACILITY finds a threat that could not have been caused by the last move tested
at this node, then the DYNAMIC DEFENCE state is entered.

The DYNAMIC DEFENCE state is invoked whenever a deep problem has been
detected during back up, which was clearly not made possible by the last move tried.

14

15

The counter-causal moves which are deemed to be the only ones that can do
something about this description, have already been generated by the CAUSALITY
FACILITY. Now all moves on the stack which are not mentioned in the counter-causal
list, or which do not have a counter punch at least equal and opposite to the caused
value (with respect to EXPCT) are deleted. 	The remaining counter-causal moves are
pushed onto the stack in order of evaluation. These moves are now tested until a
value is backed up which is greater or equal to EXPCT. Then if the material plus the
best threat of the side to move are not larger than the backed-up value, the node
is exited. Otherwise, the search continues until all proposed moves have been tried.

In the present program, the STRATEGY state performs the function of parading
all legal moves for testing. It does this only at the root node of the tree (in the
current program), and only when the AGGRESSIVE state has failed to produce
anything worthwhile. The move generator of the STRATEGY state emphasizes the
centralizing and mobilizing effect of each move. It is, in fact, the TECH
[Gillogly, 1972] move generator which is available to this program as a sub-
routine. 	If a value is ever backed up which is significantly greater than EXPCT, the
node is exited. Otherwise, when the move that is now in the principal variation is
proposed, if the current Alpha at the node is greater or equal to EXPCT, the node
is exited. Otherwise, the search continues as long as there are moves to try.

IX. THE CAUSALITY FACILITY AT WORK

A. An Expository Example

Figure 2 shows a position in which Black to play has a defensive task. 	White
is threatening mate in two beginning with 1. Q-K8ch. When CAPS-II is presented
this position, it finds no particularly inviting offensive moves since all •the Black
queen checks are adequately guarded and there are no double attack moves.
It therefore asks the STRATEGY routine for a move and starts out with 1.--P-R7.

Figure 2

Black to Play

Play now proceeds 2. Q-K8ch, RxQ, 3. RxRrnate. This result causes the backing
up process to begin, and with it the accumulation of the Refutation Description.
Here, we will only follow the process associated with the White moves, since the

process associated with the Black moves, even though it also goes on, yields no

meaningful results in this case. After the moves 1.--P-R7, 2. Q-K8ch, RxQ,
3. RxRmate, the search begins to back up. When the move 3. RxRmate becomes part
of the local principal variation during the backup process, a description of the
change in environment that it produced is generated. This description consists of
putting the name of the moving rook into RPCS (refutation pieces), putting its
destination into RSQS (refutation squares), and putting the Sc: ares on its path
(K3,K4,K5,K6, and K7) into RPATH. Since the move resulted in a capture, the
name of the captured piece is noted in RTGTS (pieces that became target during the
refutation). The move resulted in a change in the threat picture in so far as the
Black king is now attacked when it wasn't one ply earlier. This fact is incorporated
by noting the square of the threatened piece (the Black king) in TGTSQS, its name
in RTGTS, and putting the path squares (KB8) associated with the threat into
TPATH. The above entries describe the essential points of interest in the current
position and the important changes from the previous one. 	As the new

principal variation continues to survive during backup, this Refutation

Description is backed up too.

The first place where this Refutation Description can be used is ore ply
further up the tree, at the point where Black played 2.--RxR. Here, a causal test is
performed which shows that the move 2.--RxR could have caused the consequences
described in the Refutation Description since it moved to a square mentioned in
RSQS. The exact nature of other tests performed as part of the causal test are
described later in this example. Since the consequences could have been caused by
the last move played, the search at this node continues. But first a set of
counter-causal moves are generated, which could be tried in an effort to avoid the
consequences anyway. However, here they are useless since there was only one
legal move, and that has already been tried.

As backing up continues and the move 2. Q-K8ch becomes part of the new
principal variation, a description of it is generated. This consists of putting the
name of the queen into RPCS, putting K8 into RSQS, and (since the queen did not cross
any squares) putting no path squares into RPATH. The noting of the new threat to
the Black king (as against the lack of this threat one ply previously) causes its
square to go into TGTSQS, its name to go into RTGTS, and the name of the square on
the threat path (K88) goes into TPATH.

When this move is backed up, the union of the new description and the existing
Refutation Description is produced. When the backing up process reaches the point
where Black originally played 1.--P-R7 this description is examined. The following
tests are made by the CAUSALITY FACILITY to determine whether the move 1.--P-
R7 could have brought on the consequences described in the Refutation Description.
First a test is performed to see whether the move resulted in moving onto an RSQS
square. This is not so. Then a check is made to see whether the name of the
moving piece is mentioned in RTGTS (became a later target). This is also not so.
Then a check is made to see whether the move vacated a square mentioned in RPATH

, e •

16

or TPATH (making a refutation move or threat across this square possible). This, too,
is not se. Then each square mentioned in RSQS or TGTSQS is checked in the
representation before and after the move 1.--P-R7 to see if something about the
move caused either fewer of own pieces to bear D1R on such a square, or more of
the opponent's pieces to bear D1R on such a square. We are interested here both
in whether the move resulted in unprotecting such a point, and whether it could
have permitted a new enemy piece to bear on the square. Here this involves only K8
and KN8, and no change in the control of those squares occurred. The final test
involves noting the pin status of all pieces mentioned in RPCS to see if any such piece
was pinned before the made move, and unpinned immediately afterwards. This, too,
is not so. Therefore, the conclusion is reached that 1.--P-R7 could not have caused
the consequences, and these must therefore have been inherited from above.

The counter-causal move generator is now invoked in order to generate those
moves that can directly counter this description. 	The counter-causal move
generator calls MOVTOCON to generate moves which add new DIR bears on all
squares mentioned in RSQS. Here there is only one square (K8) and there is no new
way to defend it. Next it calls OCCUPY with the squares of any piece mentioned in
RPCS, in order to generate moves which caoture pieces involved in the
refutation. These pieces are the White queen and rook, and here neither of them
are capturable. An additional facility which is not yet in the program could impede
the movement of such action pieces by trying to pin them against something of greater
or equal value to the actual consequences in the principal variation. 	Next, OCCUPY
is called with every square mentioned in RPATH and TPATH, to generate moves
which block such paths. This yields Q-K4ch, Q-K5, Q-K6 and R-K81. Then
MOVTOCON is called with the names of squares in TPATH, with the idea that putting
a piece in . position to occupy such a threat path may defend the threat. Here the
only square in TPATH is KB1, and thus the move N-Q2 is generated. Finally, an attempt
is made to rernove targets by calling MOVEAWAY with the name of any square
mentioned in TGTSQS which is occupied by a piece mentioned in RTGTS. This yields
the move K-R1. A check is then made to see if any piece mentioned in RTGTS is a
low mobility piece which is not presently attacked. Here, the Black king qualifies and
KAOVEAWAY is called with the names cf squares that are presently occupied by any
king's own piece and to which the king could otherwise have access. 	However, here
neither the KBP nor the KRP can be moved. Thu:, the counter-causal move
generator ends up with suggesting six moves: O-K4ch, Q-K5, Q-K6, R-KB1, N-Q2,
and K-Rl. After a little tree searching, the p-egram deeicies that the optimum
variation for both sides is: 1.--Q-K5, 2. RxQ, PxR. It does not recognize that Black now
has a winning position (all of White's threats have been met and there is no
effective method of prevent the queening of the Black QRP), but it does find this
only defence very quickly.

17

Figure 3

Black to Play

C;eusality Reordering

An example of how the program uses causality in order to improve its attacking
processes can be seen in Figure 3. Here it is Black to play. After spending some time
on non-productive issues the program finds the perpetual check: 1.--B-R7ch, 2. K-R1,
B-Q3ch, 3. K-Ni with repetition of position. It then raises EXPCT to equality (Black
was down in material in the original position), and looks to see if there is something
better. The next thing tried is 2.e-B-B2ch, 3. K-N1, (here there is no repetition
of position and the functional similarity is not discernable to the program), B-
R7ch and now a repetition is again noted. Next the program backs up one ply and
tries 3.--R-R8ch, 4. KxR, Q-R5ch, 5. Q-R3 and decides this position is not good for
Black. 	It then begins to back up, generating a Refutation Description of all of
White's (the refuting side because there was a cut-off) moves. 	The first point
where something can be done about the description is at the point where Black
played 2.--B-B2ch. Here the Refutation Description is used to generate the set of
counter-causal moves. This set is then matched with the moves already on the move
stack. Any matching move is promoted to a place higher in the move stack. The move
that matches the counter-causal set most frequently is promoted to the highest
place. In this case the Refutation Description mentions the king and queen as RPCS,
and mentions the path of the queen in blocking the check in RPATH. Nothing can
be done about capturing the king or queen, but among the discovered checks with the
bishop that have already been proposed is B-N6ch, which matches a move in the
counter-causal set proposed for the purpose of blocking the queen's path. The
program then tries 2.--B-N6ch, 3. K-RI, B-R7ch and again finds the repetition of
position. Backing up one ply, it tries 3.--R-R8ch, 4.KxR, Q-R5ch, 5. K-R1, Q-R7mate.
This variation is forced and nothing can be done about it so the search is exited and
the progam announces mate in five moves. It should be pointed out that things do
not always work out so favorably when causal reordering is invoked. 	If the initial
idea tried is unworkable, then moves that help a hopeless cause are promoted.
However, by and large, the mechanism helps considerably more than it hinders.

18

X. TESTS ON THE PROGRAM

CAPS-II was tested on many middle-game chess tactics problems from
standard textbooks on chess. We also had it play a few complete games of chess. In
both these modes it ran with a maximum depth of 10 ply. CAPS-I1 did not do too
well in the games, since it has little positional knowledge, and more importantly
the tactics mechanisms that it has are still not complete, causing it to make
occasional blunders which would wipe out whatever good it had achieved earlier.
However, it did quite well on the tactics problems as reported below.

It is interesting to note that the branching factor (average number of
successors to a node) of the trees grown while solving textbook problems is 1.5,
while the branching factor for games is about 3.0. The curve for the expected number
of successors for a node is in the form of an exponential decay in both cases.
Approximately 707. of all nodes have zero or one successor. This compares
extremely well with standard programs which have a branching factor of about 5
to 6. Since the program does as yet not play as well as these nor treat positional
issues, some caution should be exercised in evaluation this fact. However, from
our experience in developing the program, we do feel that branching factors of this
low order can be maintained by continuing the building process in the same vein as
what has been reported herein. The reason that the branching factor is higher for
games than for problems appears to be that the activity in problems is better
focussed. If the program is able to follow this focus it solves the problem in a
reasonably effective manner; if not, it usually does not find too much to waste its
time on. In games, the situation is frequently not so clear, and the program spends
more time in exploring non-productive issues.

CAPS-II was presented with the first 200 problems from Reinfeld's "Win at
Chess" [Reinfeld, 1958], a book that teaches chess tactics by examples. Since these
problems were also presented to the program TECH and a Class "A" player there
were good comparative data available for evaluating CAPS-II's performance. For
all three performers the performance criterion was that the problem had to be
solved in five minutes of (CPU) time to be counted correct, For the programs,
supporting output was required to show that the correct answer was not selected
spuriously. Depth is defined as the depth of the deepest non-capture in any branch
of the principal variation. This definition is being used mainly because of the
structure of TECH, in which all capture sequences are examined as part of the
quiescence process. Thus if a principal variation ends with one or more captures,
these would be included as part of the quiescence analysis, if the search went to
the depth of the previous non-capture move in that variation. This is not an
unreasonable definition of depth, since in most positions there exist sequences of
captures which either do not disturb the status quo or reap the fruits of the previous
moves. Both these situations can be considered to be "self-evident"
extrapolations of the current position; e.g. not related to any additional depth of
search.

19

TABLE I

Depth

1
2

Both Right

1

TECH Only

4

CAPS-11 	Only

a
a

Both Wrong

B

Total

2
10

3 24 7 2 33

4 23 16 1 2 42

5 1 3 13 11 28

6 a 0 11 20 31

7 B 10 15

1 9 10

9 0 6 3 9

10 1 4 5

>10 0 11 11

TOTAL:: 55 31 38 72 1E6

(*) These totals do not sum to 200, because problems on which partial credit

was given are not included.

Table I shows the performance of TECH versus CAPS-I1 on individual problems
as a function of the depth of the principal variation. The interesting thing about this
table is the very pronounced skewing of results as a function of depth. TECH
because of its exhaustive search does not miss any problems of depth 1 or 2. Then as
the amount of work increases, the probability of TECH failing to solve a problem goes
up steadily, until it can no longer solve any problems of depth 6 or greater in the
five minutes allowed. On the other hand, CAPS-1I misses a certain number of
problems, at every depth. The percentage increases slightly as a function of depth,
but the most important point to note is that CAPS-II, because of its approach, is able
to solve some problems at every depth because the exponential explosion does not
hurt it as much as a more conventionally designed program. It is reasonable to assume
that as its perceptual facilities improve, CAPS will continue to increase the
percentage it solves correctly at any depth. The conclusions associated with this
table are probably the single most important ones in this paper.

Depth Total % Right/CAPS-II % Right/CLass "A"

1 3 50 100

2 10 60 90

3 33 73 91

4 42 57 79

5 29 SO 69

31 35 61

7 15 33 67

3 11 13 73

9 10 60 70

10
>10

5
11

20
a

40
18

20

TABLE II

It is interesting to contrast the results of CAPS-II ye, .us TECH with a

comparison of CAPS-II versus the Class "A" player as shown in Table II. Here the Class
"A" human player very clearly excells the program in every category. This is, in
our judgement, indicative of his greater understanding and flexibility of approach.
However, the Class "A" player does not completely dominate CAPS-Irs performance.

TABLE III

Depth 	Both Right 	Class "A" Only 	CAPS-II Only

1 	 1
	

1

2
	

3

3 	 21
	

9
	

3

4 	 20
	

13
	

4

	

8
	

12
13

7 	 2
	

8
	

3

8 	 1
	

6

9 	 5
	

2

10 	 0
	

2

>10 	 0
	

2

This can be seen in Table III which shows the comparative performance of the
two on individual problems. Again the Class "A" player has the far superior
performance. However, the next to last column shows that there were quite a few
instances where CAPS-II was able to solve problems that the Class "A" player did not
solve. This, in any case, serves to encourage us into believing that the basic
approach has considerable potential, and will allow producing ever better programs as
more and more of the details of tactical perception and analysis are built in.

An interesting test which helps to reveal some of CAPS-Irs perceptual
ability was performed on a sequence of 14 positions all of which were short mates.
These positions had been selected because they could be solved rapidly, and the

21

time to solution varied inversely with the playing strength of human players who
had solved them earlier. Using standard settings, CAPS-I1 solved 5 of the 14
positions correctly in 5 seconds or less. This appears to speak highly for CAPS-II's
ability to diagnose and carry out simple attacks on the king. 	This in turn is due to
the perceptual processing that the program engages in, which does a very good job
of noticing powerful attacking moves. On the problem which was the single greatest
discriminator of playing strength, CAPS-II achieved the highest possible rating, a
grandmaster rating, by solving the problem in 5 seconds. Significantly, in solving
this problem, the program made a wrong start on the correct idea, used the
CAUSALITY FACILITY to find the correct implementation of the idea, raised the level
of aspiration as an intermediate gain of a pawn was found, and deepened the
solution to find the mate in three moves (all in five seconds).

Figure 4

White to Play

The most difficult problem that CAPS-II has ever solved is shown in Figure 4.
This is a famous combination stretching a full five moves for each side from the text
position. The program looked at many possibilities, generating a tree of 897 nodes,
but delivered the correct principal variation, letter-perfect as it is in the book. 	An
investigation of the analysis tree showed it also correctly diagnosed all sub-
variations. 	The correct move and essential sub-variations are:

1 . tiNxP ! PxN, 2. #0xKPch, K-Rl , 3. #Q-K7 ! , 0-N1, 4 .14RxPch ! , OxR,
5. #QxRch winning

K-81, 3.#0-06ch, followed by OxR
K-N2, 3.#0-K7ch, followed by OxR.

Both Wrong

0
1
0

2
7
2
3
2
3
8

22

Figure 5

Black to Play

Another fine achievement was the solution of the problem in Figure 5.
This is a famous opening trap, the correct move for Black being 1,-- QxN, because
after 2. BxQ, B-N5ch wins. It took the program 12 CPU seconds and A9 nodes to
discover the inadequacy of 1.-- ?xN (because of 2. QxQch, 	3. BxPch, and 4. BxR)
and then find the correct solution. Most of the credit for this must go to the
CAUSALITY FACILITY which quickly pinpointed the cause of the loss after 1.-- Px3,
and failing to find any meaningful alternatives at greater depth, returned the search
to the top where the correct move was tried next and found to be good.

X. FUTURE CONSIDERATIONS

The following directions appear to be the most appropriate continuations of the
research reported herein, and we are now engaged in developing these.

A. Complete Causality

The CAUSALITY FACILITY as it is presen1ly constituted is only able to dissociate
the blame for a set of consequences from the move made at the root of the sub-tree
for which the consequences were collected. This means in effect that it can cetect a
"threat" that the move in question failed to meet and also did not cause. However, it
is also important to be able to determine whether a move brought on a set of
consequences that would not have been possible otherwise. This is the case of a move
being "bad", and the Refutation Description gives the reason it is bad. To detect this
case the following procedure is required.

When the CAUSALITY FACILITY cannot dissociate a set of consequences from
a move, a null move is executed in place of the suspect move. Then the program tries
to execute the Consequence Description in the sub-tree below this node. If the
Consequence Description can be executed to produce a success value, then the
suspect move was clearly not responsible. If the Consequence Description cannot
be executed or a success value is not achievable, then the suspect move clearly

23

was responsible. The ability to make this decision correctly leads us directly to the
next subject.

B. The Positing of Lemmas

There are certain invariants that tend to exist on the chess board from move
to move. For instance, a certain check with the queen may continue to be bad because
the checking square is adequately guarded. In their static analyses, programs
manage to diagnose a high percentage of such cases correctly. However,
because the static analysis will make some errors or interpret some unclear
situation liberally (as it must), there will be some moves proposed which turn out to
be bad. Further, since the static analysis always works in the same way (e.g. it does
not learn), it will continue to propose these "bad" moves in similar board positions,
and each time such a move is searched it will generate a sub-tree which in retrospect
constitutes wasteful activity.

The first step toward preventing this activity is to detect that a particular
move was in fact bad. This is what the completion of the CAUSALITY FACILITY
offers. Once such a move has been detected, the essential environment in which its
badness was detected must be specified. This consists of knowing the squares,
pieces, and paths specified by the Consequence Description, and where each
mentioned piece is in the position in which the bad move was made. It is now
possible to posit a Lemma -- this being knowledge that a certain move will be bad as
tong as the described environment does not change. With this knowledge, any
proposed move may be looked up in the Lemma file and if it has been previously
cataloged, the program may determine if the current position contains any essential
changes from the Lemma environment which might make the move succeed. It is
important to note that should it be decided to try the move, and should it again
fail, that it would now be possible to generalize the Lemma to include the union of
the two environments, thus making it stronger. In a somewhat similar way, it is
possible to generalize about the movements of a single piece, if more than one Lemma
exists with respect to its moves.

Lest all this seem too beautiful and easy, we should point out that this
implementation of Lemmas leaves out some conditions under which a bad move may
become pod. These conditions pertain to such things as pieces, which are presently
defended and do not show up in the Refutation Description, becoming undefended and
then becoming targets which would interfere with the successful execution of
the refutation. Other possibilities also exist, but this subject is beyond the scope
of the present paper.

C. Themes

It is possible that GOAL STATES are not a stringent enough concept to produce
branching factors on the order of 1.5 or less in ordinary chess positions. The notion
of Lemmas will help achieve this goal, however, further help is possible. When a
move is selected for searching, it is because it was recommended by a Goal Stale
and approved by EVALUATE. Once the searching of the sub-tree below this move
begins in CAPS-II, this information is no longer used. It seems clear, that making

24 Date Dtte

available to its sub-tree the reasons a move was selected c;ir searching, will improve
the utility of continuation moves that are to be searched. For instance, if a move
was selected because it cleared a square for another piece, it seems reasonable that
only moves which follow up on this clearance and otherwise new outstanding moves
should be considered. It is possible for each reason that a move was generated,
and for each redeeming feature that was noticed in EVALUATE, to provide a set
of criteria for follow-up moves. These criteria should then be pushed down the
tree, the union of the current set and Ihe previously existing set being formed each
time a move is selected for searching. While the set of meaningful follow-ups is
an arbitrary notion, which can be expanded as a program matures, it is clear that this
dissemination of information away from the root of a sub-tree will provide helpful
guidance to a goal oriented problem solving mechanism.

REFERENCES

Berliner, H.J. (1973), "Some Neccessary Conditions fer a Master Chess Program"
Proceedings of the 3rd International Joint Conference on Artificial Intelligence, pp.
77-a5, August 1973.

Berliner, H,J. (1974), "Chess as P,eblem Solving: The Development of a Tactics
Analyzer", Ph. D. Dissertation, Computer Science Department, Carnegie-Mellon
University, Pittsburgh, Pa., 1974.

Gillogly, J. J. (1972), "The Technology Chess Program", Artificial
Intelligence, Vol. 3. (1972), 145-163.

Reinfeld, F. (1958), Win at Chess, Dover Books, 1958.

Is

Kcpc •

<tz's

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

