
Sharing Physical Memory

S. Brobst

Advanced Computer Systems Architecture

Lecture #10

October 8, 1986

CS 893 	 -1- 	 Lecture #10

Addressing Mechanisms

Storage: A collection of <name, value> pairs.

Basic Operations:

Read(name) - Return the value associated with a given name.

Write(name, value) - Associate a value with the specified name.

What is the set of names?

What is the set of values?

Compiler Processor Address
Mapping

'FOO' 	 '523' 	 '27654'

CS 893
	

Lecture #10

Addressing Mechanisms

• Programmer given names.

• Compiler generated names.

• Processor generated names.

• Physical names (addresses).

High-level 	 Machine 	 Virtual
Language 	 Language 	 Address

Physical
Address

'2043'

CS 893 	 -3- 	 Lecture #10

Addressing Mechanisms

Names and values have different specifications depending on the level of interpretation.

Level

Name 	 Value

High-Level 	Identifier (typed/untyped) 	- Fixed size objects
Language 	 - Variable size objects

- May contain other objects
- Type or untyped

COMPILER

Machine 	- Linear address space
	

Fixed size bit strings
Language 	- One address space for each

"process"
- Zero-based

PROCESSOR

Virtual 	- Two dimmensional address 	Fixed size bit strings
Address 	- <Page, Offset>

ADDRESS MAPPING

Physical 	- Primary memory address, or Fixed size bit strings
Address 	- Disc address

CS 893 	 -4- 	 Lecture #10

Programming with Absolute Addresses

On early computers...

Programmer Names = Processor Generated Names =- Physical Addresses

CS 893 	 -5- 	 Lecture #10

Static Relocation

• Programs were moved to a static offset in memory to accommodate zero-
based "system code."

• On EDSAC, program was relocated while being input.

• Later programs were relocated after being read into primary memory.

CS 893 	 -6- 	 Lecture #10

Static Relocation

Single, contiguous allocation:

• No change in processor.

• Simple loading program.

CS 893 	 -7- 	 Lecture #10

Static Relocation

Memory and Processor utilization:

• Some memory is always unused.

• CPU idles while I/O is performed.

CS 893 	 -8- 	 Lecture #10

Partitioned Allocation

Better utilization of hardware resources is achieved if we allow CPU and I/O operations

for different jobs to overlap...

"MULTIPROGRAMMING"

• Requires memory to be partitioned among currently "active" jobs.

• Need to protect users from each other.

_

Operating
System

User 1

,

User 2

Partition 1

Partition 2

Address Space of User #1

Waste

Address Space of User #2

Waste

CS 893 	 -9- 	 Lecture #10

Partitioned Allocation

Assign user jobs to separate portions in primary memory.

• Base and bound registers are used for protection.

• Processor updates these registers when switching jobs.

• Protection is not easy to extend to I/O operations.

CS 893 	 -10-- 	 Lecture #10

Partitioned Allocation

Partitions were managed in software:

Size Location Status

4K
16K
220K
220K

68K
84K
304K
524K

In use
Free
In use
Free

• Static partitions.

• Tremendous scope for wastage.

• User may not be able to run if job requires more memory than maximum
partition provides.

CS 893 	 -11- 	 Lecture #10

Partitioned Allocation Using Dynamic Partitions

Dynamic partitions facilitate memory allocation according to the needs of a user.

0. 	S.

User 1

11K

User 2

32K

48K

/ 4

User 3

128K

/

53K

0. 	S.

User 1

11K

User 2

32K

User 4

24K

User 3

128K

User 5

27K

,<7.

/ /

O. 	S.

User 1

11K

/

32

User 4

24K

\
\128 \

User 5

27K

26Kr/// 	//

Users 4, 5

Arrive

Users 2, 3

Leave

Life gets considerably more difficult:

• Scheduling

• Memory management (first fit, best fit, coelescing, fragmentation, ...)

• Operating System becomes quite sophisticated - several 100K bytes of code.

CS 893 	 -12- 	 Lecture #10

Dynamically Relocatable Partitions

Compaction ("burping" the memory) is required to get rid of fragmented memory.

Be fore

O. 	S.

User 1

11K

32/K7

User 4

24K

.2E3/Kr

// 	/

User 5

27K

//2610

After

O. 	S.

User 1

11K

User 4

24K

User 5

27K

210K

////.

CS 893 	 -13- 	 Lecture #10

Dynamically Relocatable Partitions

Difficulties in moving a program:

1. Base and bound registers must be updated.

2. Absolute addresses must be changed.

• How do we know which words contain an address?

• 	This is very difficult.

Consensus is to disallow the use of absolute addresses within program. all address

spaces are given the illusion of starting at zero with a base register added in to yield the

actual physical address.

A bsci utc

tkAt!ress -Car X

.c_re +, vc A ckare•)S

lai3is4ce

So a et a 	eii.s ter As
) 0-L

m t.1
m ogY

CS 893 	 -14- 	 Lecture #10

Dynamically Relocatable Partitions

Tra?

ticlincher

Ff2-06R_ArA A-Doeass

PAc

i-oszE X

RQ kof •;. 4-tun (e)

Re‘jiSfe

CS 893 	 -15- 	 Lecture #10

Dynamically Relocatable Partitions

Compact the memory (using relocation techniques) when a big enough slot is not

available for an incoming job.

Unfortunately, compaction time is usually quite substantial.

Can compaction be avoided?

CS 893 	 -16- 	 Lecture #10

Paged Memory Systems

In a paged memory system we relax the contiguous allocation requirement.

• Physical memory is treated as a collection of fixed size chunks called
"pages."

• The user address space is envisioned as a set of contiguous pages, but may
not be stored as such.

• Page table gives a mapping from pages in user address space to pages in
physical memory.

Page Table
of User 1

CS 893 	 -17- 	 Lecture #10

Paged Memory Systems

Physical Memory

Address Space
of User 1

0

1

2

3

Processor generated address is interpreted as a <page, offset> pair:

Page # Offset

Hardware looks up origin of page in page table by using page number as an index into

table.

CS 893 	 -18- 	 Lecture #10

Paged Memory Systems

Paged systems get rid of external fragmentation, but introduce internal fragmentation.

A larger page size results in higher memory wastage due to internal fragmentation.

On the other hand, a small page size requires a larger page table.

10

Address Space
of User 1

5

2
Page
of

Table
User

Address Space
of User 2

5
_ —

12.

Page Tab' Address Space
of User 3 	 of User 3

Page Table
of User 1

0

1K

2K

3K

4K

5K

6K

7K

8K

9K

10K

11K

12K

13K

14K

Operating

System

CS 893 	 -19- 	 Lecture #10

Paged memory Systems

We maintain one page table per user; each containing one entry for each user page.

Physical Memory

In addition, a single page frame table is kept for the whole system to keep track of free

page frames, etc.

User 1
Origin of
Page Table

0. S.

o

Page Table
Area

Pages

CS 893 	 _90_ 	 Lecture #10

Paged Memory Systems

Where should page tables reside?

1. In a special set of registers.

• Expensive to switch users because page table registers must be saved
and loaded.

• Expensive in hardware.

• Used in NDS 940.

2. In main memory.

• Memory reference overhead is 100%.

• 	Should page tables reside in a special area or in just another "page".

• Need two memory management schemes: one for pages and one for
page tables.

CS 893 	 -91- 	 Lecture #10

Demand Paging

Idea is to bring in a page from secondary memory only when it is demanded by the

processor. Why?

• Dynamic relocation, even with paged allocation, requires the whole program
to be loaded in the memory to be executed.

• For effective multiprogramming (without demand paging) each user should
use only a part of ther processor address space (counter-productive for
software development).

• Not all parts of a program are equally useful (e.g., exception handling
routines).

missing

missing

•

Secondary Storage

//z

•

CS 893 	 -92- 	 Lecture #10

Demand Paging

Bring a page into primary memory only when it is (implicitly) demanded by the

processor.

• User is given a "virtual" address space - the illusion of a much larger
address space than he really has.

• Primary memory is like a cache for the drum.

Primary Memory

User Address
Space

User Page Table 	 /

CS 893 	 Lecture #10

Demand Paging

The ATLAS computer developed by Kilburn, et. al. in the early 1960s was one of the

first machines to make use of demand paging.

User has the illusion of 196 pages in his address space even though at most 32 are in

core memory at a time.

SUBSIDIARY
(-4,as 	2 pages

32 pages 1.4,as

TAPE
4 DRUMS

196 pages

OP ADDRESS

EXTRA CODES
IN
ADDRESS

INTERRUPTS
	

DECODE

MAIN

READ

0.4 Or I frs

c FIXED
16 pages

MAIN

private store

central store
Address Paths —4

CS 893 	 -24- 	 Lecture #10

Hardware Organization of ATLAS

Data Paths

• Pages in private store are not swappable.

• Subsidiary store provided the working space for programs resident in the
fixed store.

CS 893 	 -25- 	 Lecture #10

ATLAS Hardware

• 48-bit machine with 24-bit addresses.

(12-bit page address,
9-bit word address,
2-bit byute address)

• System code and mathematical subroutines are kept in fixed store (ROM)
which is twice as fast as core memory.

• The private store (fixed and subsidiary) is not paged.

• Core Memory Speed = 1.4 its
Drum Rotation Time = 14 ms
Page Transfer Time = 2 ms

• A Page Address Register (PAR) is associated with every page frame in main
memory. A PAR contains:

- Address of page ocupying the frame
- Lockout bit
- Usage information

CS 893 	 _96_ 	 Lecture #10

Demand Paging in ATLAS

1. Page address of an operand is compared against all 32 PARS.

• Match 	Proceed with normal access.

• No Match 	Page fault; state of partially executed instruction is
saved and page is retrieved from drum.

2. A free page frame is always maintained to initiate an input transfer upon
demand.

3. If no more free page frames remain, a page in the main memory has to be
selected and thrown out. (Usage learning program!)

4. To minimize drum latency effect, the first empty page on drum was selected.

5. A "directory" or "page table" is used to keep track of where a page resides
on drum.

CS 893 	 -27- 	 Lecture #10

Demand Paging in ATLAS

1. Support for a "present" bit in each page table entry to indicate whether a
page is in primary or secondary memory.

2. Processor must recognize a "missing page trap" and save the state of each
partially executed instruction while fault is processed.

3. Individual page usage must be recorded to assist page fault handler in
implementing an effective page replacement policy.

1
	

Frame # of page in primary memory

0 	Drum (disk) address of page

process 1
free
process 2
process 1
0. S.
process 3

0:
1:
2:
3:
4:
5:

CS 893
	

Lecture #10

Software Support for Demand Paging

1. One page table is required for each process.

Page Table Entry:

present 	

missing

.. plus additional information in each entry.

2. A primary storage map (page frame table) for the whole system.

One entry for
each page frame.

CS 893 	 -29- 	 Lecture #10

Demand Paging

The most serious problem with demand paging is thrashing (excessive I/O).

The scenario:

1. Page X is thrown out to make space for the demanded page Y.

2. After a few references, page X is needed again ...

The solution: Allocate more memory to the process.

• The "working set" of a process must be kept in the primary memory at all
times.'

• May have to reduce the number of concurrently resident processes to get
enough pages for working sets.

CS 893 	 -30- 	 Lecture #10

Demand Paging

Primary memory acts like a cache for the secondary memory.

Primary Memory

Processor

Cache

•••••

Secondary Memory

Primary Memory

Processor

\

\ /
pv

V 	rte 	 ev

CS 893 	 -31- 	 Lecture #10

Demand Paging

The use of a cache or associative store (TLB) to assist in address translation is essential

to reduce the extra memory references required to access page table entries.

Primary Memory

Associative Store

Processor Generated
Address

page # offset

page # 	location

0
17

Origin of PT

///
Flush cache when context switches?

CS 893 	 -32- 	 Lecture #10

Demand Paging

Demand paging has eliminated the concern about the amount of physical (primary)

memory available to the processor.

• Makes software development much easier.

• Allow multiple users to share primary memory more effectively.

Virtual Address
Space

Physical Address
Space

Mapping

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33

