
Sharing of Address Spaces

S. Brobst

Advanced Computer Systems Architecture

Lecture #11

October 8, 1986

CS 893 	 -1- 	 Lecture #11

Consensus: Demand Paging is a Win

• Large virtual address spaces are desirable from a software point of view.

• Makes efficient use of primary memory.

CS 893 	 ... 6).... 	 Lecture #11

Why are Large Virtual Address Spaces Needed?

Because we may need to give a unique name to each object used during a computation.

- Or -

We can't use all names effectively.

Cs 893 	 -3- 	 Lecture #11

Name Requirements of a Process

Obj ect
Namespaces

v

L -
.

V L7 ,
v-

.
Z

,
L/

L/
,

I/

V V
time

If the name space is not large enough to concurrently accomodate all of the objects A,

B, C, D, E then

1. Enlarge the namespace, or

2. The process must rename some objects at the time of phase transition. This
is known as "The Overlay Problem."

A

71.7

CS 893 	 -4- 	 Lecture #11

The Overlay Problem

If sufficent namespace does not exist, then objects must be renamed to make room for

new objects as needed.

Phase I
	

Phase II

=>

Namespace of the Process

CS 893 -5-

Renaming Objects

Lecture #11

1. Data Objects: Double indexing or indirect addressing is needed.

Process Keeps a Map

2. Procedure Objects: Requires a procedure base register, otherwise the usual
problems of static relocation crop up.

Renaming will often result in movement of information in the physical memory. Either

that, or control over the page map is needed.

CS 893 	 -6- 	 Lecture #11

How to Deal with Variable Size Data Objects?

To avoid renaming each time an object increases its size, a large enough namespace is

needed so that it is sparsely occupied by the totality of information.

P\

P\

To avoid renaming in A, a large enough address space should be allocated to D to

accommodate growth in size.

Note: It is acceptable to waste virtual address space as long as we don't waste physical

address space.

CS 893 	 -7- 	 Lecture #11

Sharing of Information

1. Some information cannot be duplicated and thus must be shared.

• Which pages are free?

• A file of airline reservations.

2. Sharing can save storage, as well as unnecessary copying and I/O activity.

• Text editors.

• Compilers.

• Large applications programs.

CS 893 	 -8- 	 Lecture #11

Sharing of Information

Two users -_-_.=_- Two independent address spaces

User-1
	

User-2
Address Space 	 Address Space

1)A

Da

5

A

6

Suppose:

• User-1 and User-2 both want to share subroutine S.

• S needs data which is private to the caller.

CS 893 	 -9- 	 Lecture #11

Sharing of Information

Possible solutions:

1. Create a new namespace S (i.e., a new process) to sexecute S.

• Allocate names for D in the new namespace S.

• Change the address map in going from User-1 to S.

2. Allocate space for S in the namespace of both User-1 and User-2.

• Internal names of S pose a problem if User-1 and User-2 assign S
different locations in their respective address spaces.

• Could provide a procedure base register for S, or

• Can provide a very large address space to the users so that same
address can be assigned to S in both namespaces (sharing by
convention).

CS 893 	 -10- 	 Lecture #11

Segmentation Solution

A segment is an independent linear address space (which can grow to be very large).

Processes address information by generating a segment name and a word address.

Segment S

I word
address

length

CS 893 	 -11- 	 Lecture #11

Segmentation

• Segments are arbitrary objects (procedures, data, etc.)

• Segments have protection rights associated with them (read, write, execute,
etc.)

• Not all segments are of equal length.

• Two segments are indpendent of one another; segment names do not
constitute a linear address space - no arithmetic allowed on segment names.

CS 893 	 -19- 	 Lecture #11

Segmentation

Addresses are interpreted as <segment number, word address> tuples.

•

Segment Table
Word W of

Segment S

• Origin of the segment table is kept in a special register of the processor.

• Both the segment table and the segment reside in main memory.

• References are not allowed to go past the length, L, of a segment.

CS 83 	 -13- 	 Lecture #11

Segmentation

Segments can be shared, yet a protection mechanism is required to provide controlled

access to information.

• Access rights can be stored in the segment table (e.g., read, write, execute).

• Different processes may have different privileges to the same segment.

CS 893 	 -14- 	 Lecture #11

Segmentation

We must have the ability to store the names of shared segments in other segments (e.g.,

shared subroutines, linked data structures).

Question: How permanent should these names be?

Question: What does <s, w> mean when it is found in a segment?

• Segment names must be independent of a user process when stored in a
segment..

• The integer name "S" for a particular segment is the same for all user
processes.

CS 893 	 -15- 	 Lecture #11

Segmentation

There are two views of sharing that we can take in the world:

1. Processes share large pieces of information (e.g., files, utility packages).

I segment I > page

2. Processes share small pieces of information (e.g., LISP functions, single
records in a database).

If the names of entities are to be directly understood by the processor, only one of the

above two views can be implemented efficiently.

The first view is much easier to implement than the second.

Examples of 1: Multics, VAX-VMS

Examples of 2: Intel 432, Hydra, Cap, IBM System 38

CS 893 	 -16- 	 Lecture #11

Segmentation

1. Processes have a large enough namespace such that all information
referenced can be assigned unique names in the form of a segment number.

2. Data objects are expandable without requiring a reallocation of namespace.

3. Information referenced by several processes has the same name (segment
number) for all processes that reference it.

4. A protection mechanism operates in the namespace to permit access to
information by a process only in an authorized manner.

CS 893 	 -17- 	 Lecture #11

VAX-VMS Virtual Memory Organization

Each user has two segments:

• Private (not shared)

• System (shared by everyone)

Fine grained sharing of the system segment is done by convention.

CS 893 	 -18- 	 Lecture #11

VAX-VMS Memory Management

• 32-bit virtual address space.

• 232 = 4 Billion bytes

• With 512 bytes per page, the system must support 223 pages in the address
space of each user.

Virtual Address:

23 bit virtual page # 9 bit (byte) offset

Physical Address:

21 bit frame # 9 bit (byte) offset

0

PO (Program) Region

230

P1 (Control) Region

Process Space

(Prvate) 	231

System Region

System Space

Not Used

232

CS 893 	 -19- 	 Lecture #11

VAX-VMS Virtual Memory Organization

•
•

•

-

_

Virtual Address

00 = PO region
01 = P1 region
10 = System region
11 = Not used

User Program

4i

— — — — — — — — — — — — — _

1'
User Stack

Supervisor Stack
_

Executive Stack

Kernel Stack

Process Specific Data

0

230

231.

7

PO (Program) Region

_./

-)

"r P1 (Control) Region

CS 893 	 _90_ 	 Lecture #11

VAX-VMS Virtual Memory Organization

Process Space:

CS 893 	 -21- 	 Lecture #11

VAX-VMS Virtual Memory Organization

Each region has its own page table.

• A page table is described by two registers representing its BASE and
LENGTH.

• There is only one page table for the system space (System Page Table).

• The system page table is resident in main memory.

• There are PO and P1 page tables associated with each user process.

• Page tables for all user areas are stored in the system space.

System Base Register (SBR): A physical address specifying the base of the System Page

Table.

System Length Register: A physical address specifying the length of the System Page

Table.

PO Base Register (POBR): A virtual address specifying the base of the User Page Table.

PO Length Register: A virtual address specifying the length of the User Page Table.

CS 893 	 -29- 	 Lecture #11

VAX-VMS Virtual Memory Organization

Process page tables are in virtual memory and may be swapped out.

• Some memory references will cause multiple page faults (i.e., page table page
is swapped out, and data page is swapped out).

• We never get into trouble because process page table is in the system space,
and the system page table is always kept in main memory (as is the page
fault handler).

	,
'—•••cr

1 I 1
PAGE FRAME NUMBER

l. 	.., 	./

	-1

CS 893 	 -23- 	 Lecture #11

Virtual Address Translation

I

VIRTUAL PAGE NUMBER
	

BYTE IN PAGE

PAGE FRAME NUMBER 	I BYTE IN PAGE

Virtual Address

Page Table Entry

Physical Address

CS 893 	 -24- 	 Lecture #11

VAX-11 Page Table Entry Format

31 30
	

27 26 25
	

21 20
	

0

1 I 1 	
Page Frame #

Valid Bit
	

Modified or
	

Bits for 0.S. Use
"Dirty" bit
	

(only when entry is not valid)

Protection Code

PROTECTION CODE

0000

(kernel)
K

-

(executive)
E

-

(supervisor)
S

-

(user)
U

-

0010 R,W - - -

0011 R - - -

0100 R,W R,W R,W R,W

1110 R,W R R R

1111 R R R R

SUPERVISOR

command languages,
interpreters

EXECUTIVE

record management

KERNEL

scheduling,
memory management,
system services,
I/O

user programs,
utility programs,
compilers, editors,
debuggers, etc.

USER

CS 893 	 -95_ 	 Lecture #11

VAX-VMS Operating System Hierarchy

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

