
Exploiting Parallelism in Game-Playing Programs

by

Philip H. Chu

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1988

@ Philip H. Chu, 1988

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electrical Efigineering and Computer Science

May 16, 1988

Certified by //•
Robeit H. Halstead, Jr.

Associate Professor, Laboratory of Computer Science
Thesis Supervisor

Accepted by 	
Leonard A. Gould

Chairman, EECS Departmental Committee

9

Exploiting Parallelism in Game-Playing Programs

by

Philip H. Chu

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 1988, in partial fulfillment of the

requirements for the degree of
Bachelor of Science

Abstract

The Von Neumann bottleneck present in traditional computers has prompted the
development of various parallel architectures and programming languages. Among
the latter is Multilisp, a version of Scheme that includes several parallel-task spawn-
ing constructs.

Muhello, an Othello-playing program written in Multilisp, is used to demon-
strate several parallel alpha-beta algorithms. Subsequently, attempts at finer grain
parallelization are made. Runtime results are generated on Concert, an experimen-
tal multiprocessor. Conclusions about Multilisp, Concert, and the effectiveness of
the parallel searches tested are then drawn.

Thesis Supervisor: Robert H. Halstead, Jr.
Title: Associate Professor, Laboratory of Computer Science

Contents

1 Introduction 	 9

1.1 Summary 	 9

1.2 Organization 	 9

1.3 Multilisp 	 10

1.3.1 Constructs for Parallelism 	 10

1.3.2 Using Futures 	 11

1.3.3 Concert 	 12

1.4 Objectives 	 13

1.4.1 Evaluating Multilisp 	 13

1.4.2 Comparing Search Techniques 	 13

2 Game-Playing 	 15

2.1 The Computer as Player 	 15

2.1.1 History 	 15

2.1.2 Concepts 	 16

2.1.3 Othello 	 17

2.2 Adversary Search 	 18

2.2.1 Minimax 	 18

2.2.2 Alpha-Beta 	 21

2.3 Details 	 25

2.3.1 Static Evaluation 	 25

3

CONTENTS 	 4

2.3.2 Making a Move 	 26

2.3.3 Finding Legal Moves 	 29

3 Adding Parallelism 	 32

3.1 Search 	 32

3.1.1 Parallel Exhaustive Search 	 32

3.1.2 Mandatory Work First 	 33

3.1.3 Speculative Search 	 37

3.1.4 Parallel-Aspiration Search 	 50

3.2 Finer Grain Parallelism 	 52

3.2.1 Static Evaluation 	 59

3.2.2 Flipping Pieces 	 55

3.2.3 Move Generation 	 56

4 Results 	 60

4.1 Gathering Data 	 GO

4.1.1 A Test Case 	 60

4.1.2 Parallelism Profiles 	 60

4.1.3 Sequential Search 	 61

4.1.4 Parallel Exhaustive Search 	 62

4.1.5 Using Mandatory Work-First 	 64

4.1.6 Speculative Search 	 66

4.1.7 Using Parallel-Aspiration Search 	 69

5 Concluding Remarks 	 73

5.1 Conclusions 	 73

5.1.1 Parallel Search 	 73

5.1.2 Multilisp 	 74

5.2 Future Work 	 75

5.9.1 Enhancing Multilisp 	 75

CONTENTS
	

5

5.2.2 More on Searching 	 76

List of Figures

2-1 The opening position of an Othello game 	 18

9_9 Exhaustive minimax search 	 20

9-3 Alpha-beta search 	 24

2-4 Values given oy Multello to board positions for, left) mid-game, and

right) end-game. 	 25

2-5 Procedure for static evaluation during mid-game 	 27

2-6 Procedure for static evaluation at end of the game 	 97

2-7 Procedures to make a move 	 98

2-8 Procedure to update list of potential moves 	 29

2-9 	Procedure to generate list of legal moves. 	 30

2-10 Procedure to check if a move is legal 	 31

3-1 Exhaustive search with futures added 	 34

3-2 mandatory-work first procedure 	 38

3-3 Operations on shared alpha-beta window for speculative search . . 	41

3-4 An ad hoc task-killing mechanism for speculative search 	 42

3-5 	The expression that spawns off speculative tasks to evaluate a node's

children 	 42

3-6 Procedure for atomically updating a shared alpha-beta window. . 	43

3-7 A speculative alpha-beta search. 	 45

3-8 Tree-splitting using more frequent updating 	 46

3-9 An example of very suboptimal sheduling 	 48

6

LIST OF FIGURES 	 7

3-10 Using dfuture in "speculative" search 	 48

3-11 parallel aspiration 	 50

3-12 A parallel static evaluation procedure 	 53

3-1.3 A parallel static evaluation procedure for end of game 	 54

3-14 Parallel version of move procedure 	 56

3-15 Parallel updating of the border 	 57

3-16 parallel move generation 	 57

3-17 parallel move verification procedrue 	 59

4-1 A parallelism profile for a three-ply depth-first search 	 61

4-2 Parallelism profile for parallel-exhaustive search on a four-ply search

	

tree 63

4-3 Profile of the Mandatory-Work-First procedure 	 65

4-4 Speculative Search 	 67

4-5 Speculative Search with more cutoff checks 	 68

4-6 Speculative Search using Dfuture 	 70

4-7 Parallel-aspiration search using fifteen alpha-beta partitions 	 71

List of Tables

4.1 Comparison of exhaustive minmax and alpha-beta search times.. 62

4.2 Statistics for parallel exhaustive search 	 62

4.3 Statistics for mandatory work first search 	 65

4.4 Results from speculative search 	 66

4.5 Results from speculative search with multiple updates per node. 67

4.6 Statistics on performance of the parallel aspiration search 	 70

8

Chapter 1

Introduction

1.1 Summary

The Von Neumann bottleneck present in traditional computers has prompted the

development of various parallel architectures and programming languages. Among

the latter is Multilisp, a version of Scheme that includes constructs for explicit

parallelism.

This thesis demonstrates several parallel alpha-beta algorithms implemented in

Multilisp. The game Othello is used as a platform for testing these algorithms. In

addition, the use of finer-grain parallelism is explored, specifically in static evalua-

tion and move generation. Runtime results generated on Concert, an experimental

multiprocessor, are then used to draw conclusions about the comparative effective-

ness of the parallel searches, deficiencies and strengths of Multilisp, and criteria for

parallel hardware designed to support Multilisp.

1.2 Organization

The first part of this thesis, Chapter One, will is devoted to a description of Multi-

lisp, a summary of experimental facilities for running applications written in Mul-

9

CHAPTER 1. INTRODUCTION 	 10

tilisp, and an outline of the objectives of this thesis.

Chapter Two introduces the issues involved in programming a computer to play

two-player games. Examples of typical adversary searches. move generation rou-

tines and static evaluation procedures are demonstrated in Multello, a Multilisp

program that plays the board game Othello.

In Chapter Three, I describe various approaches to adding parallelism to the

game program introduced in Chapter Two, ranging from conservative additions of

future to the procedures given in Chapter Two to more radical approaches involving

speculative computation.

Chapter Four presents the experimental results of running these various game-

playing algorithms on an actual multiprocessor.

Finally, in Chapter Five, I make some conclusions and give some suggestions for

future work.

Included in Appendix A are listings of algorithms for both the basic sequential

searches and the parallel versions of these searches. Appendix B contains a descrip-

tion of the Multello support routines used in the Multilisp procedures listed in the

thesis. A complete table of runtime results is listed in Appendix C. Appendix D

details more fully the special constructs of Multilisp.

1.3 Multilisp

1.3.1 Constructs for Parallelism

Multilisp [14] is an extension of Scheme [1] [18] that features several operators for

explicitly employing parallelism in programs.

The principal construct for explicitly employing parallelism in Multilisp is

(future X)

in which X is any Lisp expression. The invocation of future will spawn a separate

CHAPTER 1. INTRODUCTION 	 11

task to evaluate X and also immediately returns a placeholder of type future as the

value of X. But before then, the placeholder can be passed as an argument or used

as any other Lisp expression.

If a process needs to access the value of a future-surrounded expression before

it has mutated, then the current process is suspended until the value has finished

mutating.

The other two principal features of Multilisp are touch and delay. If X is not a

future, then the expression (touch X) merely returns X. If X is a future, then (touch

X) will suspend the current computation until X has been determined, and then

returns X. Strict operators, functions that require the value of an argument upon

receiving it, implicitly touch their arguments.

De/ay creates an object of type future that is not evaluated until touched. This

is useful for delayed evaluation in streams. Delay is actually a variant of future. 1

1.3.2 Using Futures

The placement of futures in a program is a non-trivial issue. A naive approach to

adding parallelism would be to place a future around each expression in a Multilisp

program. However, the use of future is not without cost. At present, the overhead

involved in setting up a future is approximately five times that invoked by a Multilisp

function call. [13] Although the long term may bring architectures that are specially

designed to run Multilisp or similar languages and thus may feature special hardware

support for future handling, the cost of setting up a future is unlikely to drop beneath

the cost of a function call. This, plus the fact that the number of processors available

is not unlimited, makes Multilisp more suitable for large-grained parallelism than

fine-grained parallelism.

Moreover, placement of futures around strict operators [10], i.e. operators that

need to know the values of its arguments to proceed, would be a waste of time,

'A more complete description of Multilisp's special constructs is given in Appendix D.

CHAPTER 1. INTRODUCTION 	 12

since the strict computation will touch the future cell and consequently halt exe-

cution until the cell finishes mutating to the needed value. This would result in

an essentially sequential evaluation, plus the additional overhead created by using

future.

In summary, future's must be placed judiciously to achieve good performance.

The inclusion of explicit concurrency in Multilisp permits the use of side effects in

combination with parallelism. This allows possibilities for large-grained parallelism

not possible in a purely functional language. However, using futures with side effects

as yet remains an art rather than a science. [13]

1.3.3 Concert

Multilisp currently runs on Concert, [15] an experimental multiprocessor consisting

of thirty-four 68000 microprocessors with local memory and a shared global memory.

The processors are grouped in several clusters connected by the RingBus, a ring-

shaped segmented bus.

Concert is not intended to be a prototype for parallel computers but, rather, is

a testbed for multiprocessor applications. The results of examining multiprocessor

performance with Concert and multiprocessor applications built upon Multilisp

can then be used to determine criteria that needs to be addressed in constructing

a more suitable parallel architecture. Since the purpose of Concert is to provide a

real platform upon which to examine multiprocessor applications, it is built from

mostly off-the-shelf parts.

Each cluster on the RingBus features a RingBus Interface Board (RIB), a por-

tion of global memory, and typically four to eight MC68000 microprocessors, each

associated with its own local memory. These elements are connected by a high

speed Multibus.

CHAPTER 1. INTRODUCTION 	 13

1.4 Objectives

1.4.1 Evaluating Multilisp

One obvious result of testing new programs in Multilisp is the opportunity to eval-

uate Multilisp in both its implementation and its design philosophy. Multello can

be thought of as an addition to the growing library of programs already written in

Multilisp.

Among these programs are the Multilisp compiler itself [14J, a quicksort routine[14],

a semantic net retrieval program[13], a digital circuit simulation[7], a program to

solve the traveling salesman problem(13], and a program to calculate fibonacci

numbers [14] .

In addition to pointing out deficiencies and benefits of Multilisp, writing a vari-

ety of moderate-sized to large applications provides an exercise in learning how to

program effectively in Multilisp, e.g. the placement of futures, and a more realistic

assessment of Multilisp not provided by simple benchmarks.

Thus, the program introduced in this thesis, Multello, will further the twofold

effect of:

1. exploring parallel programming styles and algorithms, and also

2. pointing out the strengths and weaknesses of Multilisp. Deficiencies in the

current Multilisp implementation can then be corrected in conjunction with

the development of more advanced multiprocessors.

1.4.2 Comparing Search Techniques

Finally, Multello provides an opportunity to compare different approaches to paral-

lelizing searches. This thesis will allow analysis of the performance tradeoffs between

concurrency and work-minimization. Furthermore, the importance of various parts

of the game search, such as static evaluation and node generation, on the final

CHAPTER 1. INTRODUCTION 	 14

searchtime can be found through comparison of search performance with differ-

ent combinations of parallelization of these components. And finally, although the

search in question is an adversary search, the results of the comparison should have

implications toward the general problem of parallelizing search.

Chapter 2

Game-Playing

2.1 The Computer as Player

2.1.1 History

Computer game-playing dates back to about 1800, when a man named Von Kern-

pelen toured Europe with a chess-playing robot dressed up to look like a Turk. The

automaton won chess games in both Europe and the United States. Not surpisingly,

the Turk was really a fake, hiding a human chess player.

More genuine game-playing computers began to appear in the 1950's, based on

independent papers by Claude Shannon and Alan Turing, but the first of modern

chess programs did not appear until Richard Greenblatt developed MacHack in

1967. Currently, programs with names such as Belle and Cray Blitz have tourna-

ment rankings of over 2300 I .

'Beginner have rankings of 600-900 and world chess champions typically have a rankings from
2600 to 2800

15

CHAPTER 2. GAME-PLAYING 	 16

2.1.2 Concepts

A computer strategy for two-player games usually involves a game tree of possible

moves. This enables the computer to "look ahead" beyond its immediate moves

to its opponent's possible responses and the computer's responses to its opponent's

responses, and so on. Thus the game tree consists of alternating max and min levels,

the former on which the computer attempts to maximize its winning opportunities

and the latter on which the opponent attempts to minimize those opportunities.

Most interesting games typically involve an enormous number of paths to ac-

count for a complete game', so in practice the search tree is explicitly bounded by

a specified depth, and a static evaluation is used to appraise the "winningness" of

the game situation at the terminal node in the form of some numerical value.

This minmax strategy rests heavily on the validity of the static evaluation. The

usefulness of assigning a number to describe a game situation is questionable. One

example is the horizon effect[20], which arises during dynamic situations, such as the

exchange of pieces in chess. A search terminating in the midst of such an exchange

will assign a value to a move without taking into account the fact that there is going

to be a significant change on the next move. A way to combat this problem is to

use heuristic continuation, which checks for such dynamic situations and extends

the limit of search as necessary.

Another enhancement to adversary search is the use of progressive deepening,

which involves performing static evaluations at each ply of the search tree before ex-

tending the search tree another ply. This technique can be used in order to traverse

the game tree more selectively and to make better use of time in tournament-like

situations in which there is a time limit for making moves. Progressive deepening

is made feasible by the fact that for a tree with a uniform branching factor b, the

ratio of the number of nodes in the bottom level to the remaining nodes in the tree

2There are more possible board positions in a fifty-move chess game than there are known atoms
in the universe!

CHAPTER 2. GAME-PLAYING 	 17

is

bd (b — 1)
 	b —1

bd — 1
(2.1)

A fundamental deficiency of the minmax strategy is that it does not take into

account variations of the maximize/minimize stratagem. For example, an opponent

may be a. relatively weak player who might follow a line of play that the minmax

search would rule out. A good strategy then may be to lay traps and try to lure

the opponent into making some common mistakes.

Another scenario along the same lines is the case where the computer is losing

the game. In this case, following a line of play specified by the minmax strategem

would lead to certain defeat. Since the computer has nothing to lose, it would be

far better to gamble and try to complicate the game for the opponent by making

risky but potentially winning moves.

Despite these flaws, the best chess computers today are still the ones that search

exhaustively and quickly. Belle, for example, uses special hardware to speed up its

search.

2.1.3 Othello

This chapter introduces fundamentals of adversary searches using the game Othello

as a platform. Portions of an Othello-playing Multilisp program, called Multello,

are used to demonstrate typical algorithms for computer game-playing.

Othello is played by two players on an eight-by-eight board. The game begins

with four pieces on the board. (Figure 2-1). The playing pieces are discs black on

one side and white on the other.

The rules of Othello are fairly simple: 3

1. A move is not legal if it doesn't flip at least one of the opposing player's pieces.

3For a description of the game Othello and its rules, see Appendix D.

• •

CHAPTER 2. GAME-PLAYING 	 18

Figure 2-1: The opening position of an Othello game

2. If a player cannot make a legal move, he must pass.

3. If neither player can make a legal move, the game is over, and the player with

the most pieces on the board wins.

To flip an opponent's piece, a player needs to outflank him by blocking the two

ends of a line of one or more of his opponent's pieces. Once a row of pieces of one

color has been outflanked, then these pieces are flipped over to display the color of

the player who did the outflanking. a computer.

2.2 Adversary Search

2.2.1 Minimax

Following is a more formal description of the minimax algorithm:

To MINIMAX:

1. If the limit of search has been reached, compute the static value of

the current position relative to the appropriate player. Report the

CHAPTER 2. GAME-PLAYING 	 19

result.

2. If the level is a minimizing level, use MINIMAX on the children of

the current position. Report the minimum of the results.

3. Otherwise, the level is a maximizing level. Use MINIMAX on the

children of the current position. Report the maximum of the re-

sults.

Another form of the minimax algorithm is Knuth's negamax algorithm. [17]

To NEGAMAX:

1. If the limit of search has been reached, compute the static value of

the current position relative to the appropriate player. Report the

result.

2. Otherwise, apply NEGAMAX on the children of the current posi-

tion. Report the maximum of the negation of the results.

The minimax and negamax algorithms can be shown to be equivalent. It is often

more convenient to use the minimax form for visualization of the search tree and

to do analysis of the algorighm in negamax form. A minimax procedure is listed

in Figure 2-2 in negamax form. 5

The procedure DEPTH-FIRST begins (Line 29) by calling the inner procedure

MAXIMIZE on the current game, represented by global variable *game*, along

with the information that the search is at level zero.

MAXIMIZE first checks if any more moves can be made on the board by either

player (Line 16). If not, than the game is over and a static evaluation for the end

of the game is returned (Line 17).

4 For the remainder of this thesis we will mostly use the terms minimax and negamax
synonymously.

5A description of the Multello routines called by the code examples of this chapter is listed in
Appendix B.

CHAPTER 2. GAME-PLAYING 	 20

1. (define (depth-first bottom)
"A depth-first minimax search."

2. (define (maximize game level)

3. (define (maxi moves best)
"assumes (car move) is legal move or moves is nil."

4. (if (no-move? moves)
5. best
6. (let* ((move (car moves))
7. (new-value
8. (minus
9. (choice-value
10. (maximize (make-child game move)
11. (addl level))))))
12. (if (> (choice-value best) new-value)
13. (maxi (cdr moves) best)
14. (maxi (cdr moves)
15. (make-choice move new-value))))))

16. (cond ((game-end? game)
17. (make-choice (null-square) (end-eval game)))
18. ((= level bottom)
19. (make-choice (null-square) (static-eval game)))
20. (t
21. (let ((new-moves (legal-moves game)))
22. (if (no-move? new-moves)
23. (make-choice (null-square)
24. (minus (choice-value
25. (maximize (pass game)
26. (addl level)))))
27. (maxi new-moves (make-choice (null-square)
28. (neg-inf))))))))

29. (choice-move (maximize *game* (level-0))))

Figure 2-2: Exhaustive minimax search

CHAPTER 2. GAME-PLAYING 	 21

If the end of the game has not arrived, then MAXIMIZE checks whether the

limit of search has been reached (Line 18). If the bottom of the search tree has

indeed been reached, then a static evaluation for a mid-game board is returned

(Line 19).

If neither of the above conditions are true, then MAXIMIZE proceeds to extend

the search tree. If the player whose turn it is at this level has no move and therefore

must pass, then MAXIMIZE simply hands a copy of this board on to the next search

level (thus this node has one child).

Otherwise, MAXIMIZE takes the list of legal moves and passes it on to the tail-

recursive procedure MAXI, which iterates through this list, generating a successor

node for each possible move at this ply, and then applying MAXIMIZE to the

successor (Lines 10-11). During this loop, MAXI keeps track of the highest valued

child thus far, and when the loop terminates, returns the move used to create the

child and the value associated with it (Line 8).

When the search is complete, the highest-valued move possible at the root node

game is returned (Line 29).

2.2.2 Alpha-Beta

As noted before, the minimax algorithm produces an exponentially growing search

tree. A tree of depth d with a branch factor b will have bd terminal nodes. This

is a serious problem when players of the game in question normally have several

options per turn, i.e. the search tree has a high branch factor. One method to

combat this problem is to cut down the number of game paths explored by alpha-

beta pruning.[201

Alpha-beta pruning 6 is made possible by the realization that if the player knows

his opponent can achieve a certain minimum score, than the player cannot possibly

do better than that score along this search subtree. This allows him to "prune" the

'Knuth [17] gives a good summary of the this algorithm's history

CHAPTER 2. GAME-PLAYING 	 22

rest of the subtree, that is, ignore it.

TO MINIMAX with ALPHA-BETA:

1. If the level is the top level, let a = —co and 0 = oo.

9. If the limit of search has been reached, compute the static value of

the current position relative to the appropriate player. Report the

result.

3. If the level is a minimizing level, then until all children are examined

by MINIMAX or a > 0:

(a) Set 0 to the samller of the given beta values and the smallest

value so far reported by MINIMAX working on the children.

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX the current a and 0.

Report 0.

4. If the level is a maximizing level, then until all children are exam-

ined with MINIMAX or a >

(a) Set alpha to the larger of the given alpha values and the biggest

value so far reported by MINIMAX working on the children.

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX the current a and 13.

Report a.

There is also a "negabeta" version of this algorithm:

To NEGABETA:

1. If the level is the top level, let a = —oo and let 0 = oo.

CHAPTER 2. GAME-PLAYING 	 93

2. If the limit of search has been reached, compute the static value of

the current position relative to the appropriate player. Report the

result.

3. Until all children are examined with MINIMAX or a > /3:

(a) Set a to the larger of the given a values and the maximum

of the negation of the values so far reported by MINIMAX

working on the children.

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX -43 as its a and -a as

its 0.

Report a.

The minimum number of static evaluations needed to discover the best move in

an optimally arranged search tree is given by the following formula, where s is the

minimum number of static evaluations, b is the branch factor, and d is the depth of

the tree:

for d even
s = 	 (2.2)

b(d+i)/2 	b(d-i) _ 1 for d odd

Note, however, that although the growth of the search tree is slower, it is still

exponential.

The alpha-beta 7 procedure (Figure 2-3) only differs from the minimax one

in the inclusion of the a and /3 parameters accepted by MAXIMIZE and (Lines

14-15) where there is a check for the a > /3 condition. If this cutoff condition

is satisfied, MAXIMIZE merely returns (cutoff-choice), a null-move (nil) with the

highest possible value, oo. This value will be recognized as — (X) by the parent node

and thus cannot supersede any other move.

7We shall use "alpha-beta" from now on to refer to the "nega-beta" procedure.

CHAPTER 2. GAME-PLAYING 	 24

1. (define (alpha-beta bottom
2. &optional (alpha (neg-inf)) (beta (int)))

"an alpha-beta search"

3. (define (maximize game level alpha beta)

4. (define (maxi moves best)
5. (if (no-move? moves)
6. best
7. (let* ((move (car moves))
8. (new-value (minus
9. (choice-value
10. (maximize (make-child game move)
11. (addl level)
12. (minus beta)
13. (minus (choice-value best)))))))
14. (cond ((>= new-value beta)
15. (cutoff-choice))
16. (t
17. (maxi (cdr moves)
18. (if (> new-value (choice-value best))
19. (make-choice move new-value)
20. best)))))))

21. (cond ((game-end? game)
22. (make-choice (null-square) (end-eval game)))
23. ((= level bottom)
24. (make-choice (null-square) (static-eval game)))
25. (t
26. (let ((new-moves (legal-moves game)))
27. (if (no-move? new-moves)
28. (make-choice (null-square)
29. (minus (choice-value
30. (maximize (pass game) (addl level)
31. (minus beta)
32. (minus alpha)))))
33. (maxi new-moves (make-choice (null-square)
34. alpha)))))))

35. (choice-move (maximize *game* (level-0) alpha beta)))

Figure 2-3: Alpha-beta search

CHAPTER 2. GAME-PLAYING
	

95

25 3 20 18 18 20 3 25

3 1 6 8 8 6 1 3

20 6 14 12 12 14 6 20

18 8 12 10 10 12 8 18

18 8 12 10 10 12 S 18

20 6 14 12 12 14 6 20

3 	' 1 6 8 8 6 1 3

25 3 20 18 18 20 3 25

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Figure 2-4: Values given by Muhello to board positions for, left) mid-game, and
right) end-game.

2.3 Details

2.3.1 Static Evaluation

One reasonably effective method to judge a board position in Othello is to assign

to each square on the board a position value (Figure 2-4. For example, the cor-

ner squares would have higher values than any of the other squares since a piece

occupying a corner square cannot be outflanked.

The form of the static evaluation can then be given as

8 8

s=EE vi

if square is occupied by player
=

—pi,) if square is occupied by opponent

where pi,, is the value of the board position denoted by i and j.

The algorithm for this evaluation is as follows:

(2.3)

(2.4)

CHAPTER 2. GAME-PLAYING
	

96

To EVALUATE:

1. Let s be the sum of the values of the squares occupied by the

current player.

9. Subtract from s the values of the squares occupied by opposing

player.

3. Report s.

The evaluation of the end of the game also follows this form, since the winner

of the end of the game is determined by the number of pieces each player has on

the board. This evaluation can be done by simply substituting a constant value,

say one, for each board position.

Figure 2-5 and Figure 2-6 list the procedures evaluating both mid-game and

end-of-game boards, respectively. The function EVAL-SQUARE returns the mid-

game value of a square, and FINAL-EVAL-SQUARE returns the end-game value

of a square, which is always one. Both procedures iterate through all the squares

on the board, represented by the global variable *SQUARES*, and sum up values

according to who occupies the square, adding zero if the square is unoccupied,

adding the square value if it is occupied by the player, and subtracting the value

if it is occupied by the opponent (This determination is made by EVAL-SQUARE

and FINAL-EVAL-SQUARE.

2.3.2 Making a Move

The procedure to make a move, DO-FLIPS calls the function FLIP1, which will

flip the appropriate pieces in the specified direction if those pieces are outflanked

by moving onto SQUARE. DO-FLIPS calls FLIP1 eight times, one in each of the

possible flipping directions. FLIP1 works by first retrieving the list of squares on

which pieces can be flipped and then modifying those squares.

CHAPTER 2. GAME-PLAYING
	

97

1. (define (evaluate board color)
"evaluate board position (with respect to color)"

2. (define (evall move-list)

3. (if (null move-list)
4. 0
5. (+ (eval-square board (car move-list) color)
6. (evall (cdr move-list)))))

7. (evall *squares*))

Figure 2-5: Procedure for static evaluation during mid-game.

1.(define (fevaluate board color)

"evaluate board position (with respect to color)"

2. (define (evall move-list)
3. (if (null move-list)
4. 0
5. (+ (final-eval-square board (car move-list) color)
6. (evall (cdr move-list)))))

7. (evall *squares*))

Figure 2-6: Procedure for static evaluation at end of the game.

CHAPTER 2. GAME-PLAYING 	 28

1. (define (do-flips board square color)
"Makes move on board.
Modifies board."

2. (flipl board square (east) color)

3. (flipl board square (ne) color)

4. (flipl board square (north) color)

5. (flipl board square (nw) color)

6. (flipl board square (west) color)
7. (flipl board square (sw) color)

8. (flipl board square (south) color)

9. (flipl board square (se) color)
10 	(put-piece color board square))

Figure 2-7: Procedures to make a move.

At any point during an Othello game, each piece on the board is adjacent to at

least one other non-empty square, since each move requires placing a piece next to

at least one other (opposing) piece, and the game begins with a contiguous block

of pieces in the center of the board. To take advantage of this property, Multello

maintains a list of the empty squares surrounding this contiguous block in order to

cut down the number of squares that should be checked for possible moves. Since

each additional move "expands" this block, this list needs to be udpated each time

a move is made.

The procedure that performs this update (Figure 2-8) first removes the square

just recently occupied by the move from the list, and then checks in each of the

possible eight flipping directions adjacent to the move just recently made for the

following conditions:

1. The square is on the board (Line 3).

2. The square is empty (Line 4).

3. The square is not already in the list (Line 5).

CHAPTER 2. GAME-PLAYING 	 29

1. (define (update board move-list square)
"Update list of empty squares surrounding pieces on board."

2. (define (add square move-list)
"Checks if square is real square, empty, and not already
in list. Then atomically inserts it in list."

3. (if (and (not (null square))
4. (empty? board square)

5. (not (member square move-list)))
6. (insert square move-list)))

7. (let ((new-list
8. (add (inc-square
9. (add (inc-square
10. (add (inc-square
11. (add (inc-square
12. (add (inc-square
13. (add (inc-square
14. (add (inc-square
15. (add (inc-square
16. new-list))

square
square
square
square
square
square
square
square

(east)) new-list)
(ne)) new-list)
(north)) new-list)
(nw)) new-list)
(west)) new-list)
(sw)) new-list)
(south)) new-list)
(se)) new-list)

(remove square (copy move-list))))

Figure 2-8: Procedure to update list of potential moves.

If all of the conditions are satisfied, then the adjacent square is added to the

list.

2.3.3 Finding Legal Moves

The task of finding legal moves is reduced by the maintenance of a list of empty

squares surrounding the pieces currently on the board. The procedure to find legal

moves essentially just filters out all members of the list that do not constutute a

move (Figure 2-9).

Since a move is legal if and only if it flips at least one of the opposing player's

pieces, the procedure for checking if a move is legal is similar to the procedure for

CHAPTER 2. GAME-PLAYING 	 30

1. (define (get-moves board moves color)
"Returns a list of all legal moves (for COLOR) in MOVES."

2. (cond ((no-move? moves)
3. (null-square))
4. ((flip-possible? board (car moves) color)
5. (cons (car moves)
6. (get-moves board (cdr moves) color)))
7. (t
8. (get-moves board (cdr moves) color))))

Figure 2-9: Procedure to generate list of legal moves.

actually making a move (Figure 2-10).

Like the procedure DO-FLIPS, the FLIP-POSSIBLE? function retrieves (using

FLIP) lists of squares on which pieces can be flipped by this particular move, but

instead of actually flipping them, it merely returns them. The or predicate (Line

2) then checks if any of these lists actually contain any squares, in which case this

square presents a legal move. If all the lists are empty, then no opposing piece can

be flipped and the square therefore does not present a legal move.

CHAPTER 2. GAME-PLAYING 	 31

1. (define (flip-possible? board square color)
"Returns t if move by color is possible on square"

2. (or
3. (flip board square (east) 	color)
4. (flip board square (ne) 	color)
5. (flip board square (north) 	color)
6. (flip board square (nw) color)
7. (flip board square (west) 	color)
8. (flip board square (sw) 	color)
9. (flip board square (south) 	color)
10 (flip board square (se) 	color)))

Figure 2-10: Procedure to check if a move is legal.

Chapter 3

Adding Parallelism

3.1 Search

3.1.1 Parallel Exhaustive Search

To reduce search time we might consider processing each node in the search tree in

parallel. To parallelize the exhaustive search routine, we need to be able to generate

and evaluate the children of a node concurrently.

To NEGAMAX:

1. If the limit of search has been reached, compute the static value of

the current position relative to the appropriate player. Report the

result.

2. Otherwise, apply NEGAMAX on the children of the current posi-

tion in parallel. Report the maximum of the negation of the results.

This can be done by placing future around the expression in Lines 7-11 (Figure

??), which evaluates a child of the node currently being processes.

To be thorough, we wrap a future around the expression in Line 24, which

evaluates a child in the special case when the player must pass and thus the node

32

CHAPTER 3. ADDING PARALLELISM 	 33

at that position has only one child, identical except for the color of the player.

To ensure that the children of a node can be evaluated concurrently, any ex-

pression that touches one of the child values must be enclosed with future, also.

Line 13, which compares the value of the most recently evaluated move to the best

move found so far, is such an operation. We enclose this in future and now we have

created a parallel exhaustive minimax search by simply adding three futures and

not altering any of the code (Figure 3-1).

An alternative to this depth-first search is a breadth-first approach, in which each

new-value future would be placed on a queue. To achieve maximum concurrency,

however, we still would extract the highest value from the queue using a future for

each comparison. Consequently, we would not be saving ourselves the use of any

invocations of future if we used breadth-first instead of depth-first search.

This transformation of a depth-first search to a concurrent search merely by

enclosing two expressions with future demonstrates the suitability of using futures

for at least some applications. The algorithm is essentially unchanged—we have

simply pointed out which expressions could benefit by wrapping future around them.

As for the expected performance of this algorithm, we can expect a fairly large and

constant burst of parallelism, probably saturating the available number of processors

on anything other than a shallow search tree.

3.1.2 Mandatory Work First

Although we can achieve a fairly large degree of concurrency with the parallel

exhaustive search, a large search tree may still result in many more tasks at one

time than the number of processors available. We are still doing a lot of work

that would not need to be done using alpha-beta pruning. Also, a bonus would

be to achieve an algorithm that is not too dependent on the number of processors

available, i.e. we would like an algorithm that performs reasonably well on one

processor or many.

CHAPTER 3. ADDING PARALLELISM 	 34

1. (define (parallel-exhaustive bottom)
"A full concurrent search."

2. (define (maximize game level)

3. (define (maxi moves best)
4. (if (no-move? moves)
5. best
6. (let* ((move (car moves))
7. (new-value (future
8. (minus
9. (choice-value
10. (maximize (make-child game move)
11. (addl level)))))))
12. (maxi (cdr moves)
13. (future (if (> new-value (choice-value best))
14. (make-choice move new-value)
15. best))))))

16. (cond ((game-end? game)
17. (make-choice (null-square) (end-eval game)))
18. ((= level bottom)
19. (make-choice (null-square) (static-eval game))
20. (t
21. (let ((moves (legal-moves game)))
22. (if (no-move? moves)
23. (make-choice (null-square)
24. (future (minus
25. (choice-value
26. (maximize (pass game)
27. (add1 level))))))
28. (mail moves (make-choice (null-square) (neg-inf)))))))
29.
30. (choice-move (maximize *game* (level-0))))

Figure 3-1: Exhaustive search with futures added.

CHAPTER 3. ADDING PARALLELISM 	 35

By this criterion, we would like to have an algorithm that performs at least

as well as alpha-beta, and the parallel exhaustive search performs no better than

the sequential exhaustive minmax search on one processor. The natural choice to

reducing work is to add concurrency to the alpha-beta procedure.

Adding parallelism to the alpha-beta routine is not as straightforward, however,

as parallelizing an exhaustive search, since the decision of whether to cut off a search

path depends on the results of previously evaluated search paths. So the alpha-beta

algorithm as presented in Chapter Two contains an inherent sequentiality.

A conservative approach to parallelizing the alpha-beta procedure would be to

process in parallel all nodes that would definitely be needed during the search, even

in the case of maximum cutoff. In other words, we can evaluate all branches that

would not be cut off under any circumstances in parallel, and then process the

remaining branches sequentially, checking for cutoff.

To implement this, we must find a general method for determining which nodes

need to be processed before we start checking for cutoff. We can make the following

two claims:

Theorem 1 When the negabeta is applied to node v, if 0 = co then v will not be

cut off

Proof: The condition for cutoff of node v is a > 0. The value of never changes

and the condition a = co will never occur, because for every node w that is not

a terminal node, a = —oo or a is the negation of the value returned by applying

negabeta to a child of w. For a terminal node x, a = s, where s is the static

evaluation of w and —oo < s < oo. Thus, for every node w, alpha co.

Theorem 2 If negabeta is being applied to node v of a search tree, then at least

one child of v will be evaluated before v can be cutoff

Proof: Like Theorem One, the second theorem can be shown to be true by

examining the condition for cutoff, a > 0. If node v were to be cutoff before

CHAPTER 3. ADDING PARALLELISM 	 36

evaluating any of its children, then that would mean initially a > 0. Then —3 >

—a. However, if this were true, then the parent node of v would have reached its

cutoff condition and would not have applied the alpha-beta procedure to v. Thus,

by contradiction, Theorem Two is proven true.

We can make one further claim:

Theorem 3 If, while negabeta is operating on node v, < oo, then v can be cutoff

after the evaluation of any child.

Proof: Once again, the condition for cutoff is a > 0. c = —oo or a = s where s is

a static value. We define a static value to be any number s such that —oo < 8 < Do.

Thus, for any /3 = c, c < co, we can envision an s, such that s = s + 1.

To summarize, if negabeta is being applied to node v, two conditions exist:

1. 0 = oo, in which case node v cannot be cutoff, and

2. 0 < oo, in which case node v can be cutoff after one child of v has been

evaluated, but only after one child has been evaluated.

We can combine the parallel exhaustive search and the alpha-beta algorithm to

take advantage of these properties:

MANDATORY WORK FIRST:

1. If the level is the top level, let a = —oo and let 0 oo.

2. If the limit of search has been reached, compute the stative value

of the current position relative to the appropriate player. Report

the result.

3. If 0 = oo then apply MANDATORY WORK FIRST to all children

in parallel. Report the highest value.

4. Otherwise, until all children are examined with MANDATORY

WORK FIRST or a >

CHAPTER 3. ADDING PARALLELISM 	 37

(a) Set a to the larger of the given a values and the maximum

of the negation of the values so far reported by MINIMAX

working on the children.

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX —0 as its a and —a as

its 3.

The modified Muhello procedure (Figure 3-2) exploits these conditions for cutoff

by including a check for the impossible-cutoff condition, 0 = oo, in the alpha-beta

routine of Figure 2-3. If 3 = oo, we want to process all the children concurrently in

the manner of our parallel exhaustive search. If 0 < oo then we will go in sequence

checking for cutoff before processing each child in the manner of our sequential

alpha-beta algorithm. Note that we must place the check after Lines ?? rather

than before so we can take advantage of Lemma 1.

This approach maximizes cutoff and consequently minimizes the total compu-

tational work. Aside from the relatively small overhead generated by checking for

the impossible-cutoff condition and creating the appropriate futures, the total work

should be the same as that in the sequential alpha-beta algorithm. Thus, we should

expect performance at least somewhat better than the sequential alpha-beta algo-

rithm.

From this method of parallelizing alpha-beta search, we can expect a large burst

of parallel activity in the earlier stages of the search, when a portion of the search

tree can be done in parallel, with a fairly steep drop down to a few processors as

the remaining branches are generated and checked for cutoff.

3.1.3 Speculative Search

Thus far, we have presented two extreme approaches in parallelizing adversary

searches. The parallel exhaustive search of Figure 3-1 attempts to maximally utilize

CHAPTER 3. ADDING PARALLELISM 	 3S

1. (define (work-first bottom
2. &optional (alpha (neg-inf)) (beta (inf)))

3. (define (maximize game level alpha beta)

4. (define (maxl moves best)
5. (if (no-move? moves)
6. best
7. (let ((move (car moves))
8. (new-value (future (minus
9. (choice-value
10. (maximize (make-child game move) (addl level)
11. (future (minus beta))
12. (future (minus (choice-value best)))))))))
13. (cond ((= beta (inf))
14. (maxi (cdr moves)
15. (future
16. (if (> new-value (choice-value best))
17. (make-choice move new-value)
18. best))))
19. ((>= new-value beta)
20. (cutoff-choice))
21. (t
22. (maxi (cdr moves)
23. (if (> new-value (choice-value best))
24. (make-choice move new-value)
25. best)))))))
26. (cond ((game-end? game)
27. (make-choice (null-square) (end-eval game)))
28. ((= level bottom)
29. (make-choice (null-square) (static-eval game)))
30. (t
31. (let ((new-moves (legal-moves game)))
32. (if (no-move? new-moves)
33. (make-choice (null-square)
34. (future (minus (choice-value
35. (maximize (pass game) (addl level)
36. (future (minus beta))
37. (future (minus alpha)))))))
38. (maxi new-moves
39. (make-choice (null-square) alpha))))))

40. (choice-move (maximize *game* (level-0) alpha beta)))

Figure 3-2: mandatory-work first procedure

CHAPTER 3. ADDING PARALLELISM 	 39

processors at the expense of doing redundant work, since it does no pruning. The

mandatory work first algorithm of Figure 3-2 takes the opposite tack and initially

does in parallel only the work that must be done in any case, and then processes

the rest of the search tree in sequence to maximize cutoff, thereby minimizing total

computational work done.

A compromise between these two tactics might bring about better performance.

Perhaps an alpha-beta search combined with a more aggressive use of parallelism

could result in more efficient use of processors without doing such redundant work to

extend the final search time. Such an approach would expand as many branches as

there are available processors and, any time an alpha-beta cutoff condition occurs,

terminate any processes that are deemed irrelevant by the cutoff. This spawning of

tasks that may not be needed is called speculative computation.

Thus, we want to have something like the full search algorithm, in which we set

up a future for every child, except that we want the option of terminating these

tasks if any one of them results in cutoff of this node.

To SPECULATE:

1. If the level is the top level, let a = —oo and let 0 = oo.

2. If the limit of search has been reached, compute the static value of

the current position relative to the appropriate player. Report the

result.

3. Apply SPECULATE to all children in parallel, passing them —0

as their a and —a as their 0.

(a) Each time a child returns a value, set a to the larger of the

current value and the negation of the value returned by the

child.

(b) If a > 13 terminate the remaining tasks.

Report a.

CHAPTER 3. ADDING PARALLELISM 	 40

The only way for tasks to communicate with each other in Multilisp is through

shared memory. The information to be shared includes the alpha-beta window and

the best move chosen so far (the value corresponding to the best move is contained

in the alpha-beta window). To enable sharing of this information, the parent task

must pass the shared data structure to its children. Figure 3-3 lists some operations

on such a data structure. 1

This algorithm requires some explicit mechanism for terminating a task. How-

ever, there is no such kill mechanism existing in the current implementation of

Multilisp. There is an available determine primitive that determines a future, but

it can only be used on an undetermined future, and we cannot guarantee at any

moment in time whether a future has just recently been determined.

Conveniently, the alpha-beta cutoff condition provides a way to signal a task to

terminate. By requiring a task has to continually check whether it its node is cutoff,

we can send a kill message by setting its alpha-beta window to a cutoff condition.

Consequently, we construct a pseudo-kill operator that sets a <— oo (Figure 3-4). 2

Our pseudo-kill mechanism would be to have each node check for its own cutoff

as well as its children. In either case of cutoff, then the process can merely signal, via

shared data structures, to its spawned tasks that they are no longer required. This

can be done by altering the alpha-beta window so it is cut off. Thus the children,

in turn, when they execute, will notice there are cutoff and then will signal to their

children to terminate. And thus we have a recursive kill construct, which will resolve

a future and kill its task and all its recursively spawned tasks.

Another consideration is the possible effect of updating shared data. It is possi-

ble that one child may check the value of its alpha-beta window, decide that it has

a better value, and then update the window. In the meantime, however, another

parallel task may have decided to update the same window and done so between the

'Macros are used in Multello extensively to achieve reasonable search times.
2 1th-cc is a Scheme construct that allows mutually recursive definitions.

CHAPTER 3. ADDING PARALLELISM 	 41

1. (defmacro make-window (choice beta)
"Creates a shared alpha-beta window (choice is alpha

consed with best move found so far."

2. '(cons ,choice ,beta))

3. (defmacro window-choice (window)
"Returns alpha and best move of alpha-beta window."

4. '(car ,window))

5. (defmacro window-alpha (window)
"Returns alpha of alpha-beta window."

6. ((cdar ,window))

7. (defmacro window-beta (window)
"Returns beta of alpha-beta window."

8. ((cdr ,window))

9. (defmacro set-alpha (window value)
"Atomically sets alpha of alpha-beta window to value.
Returns old alpha."

10. '(scdr (car ,window) ,value))

11. (defmacro set-beta (window value)
"Atomically sets beta of alpha-beta window to value.
Returns old beta."

12. c(scdr ,window ,value))

13. (defmacro set-choice (window choice)
"Atomically sets alpha and best move of alpha-beta window
to choice. Returns old alpha and best move."

14. '(scar ,window ,choice))

15. (defmacro cutoff? (window)

"Returns t if alpha is greater than or equal to beta."
16. ((>=. (cdar ,window) (cdr ,window)))

Figure 3-3: Operations on shared alpha-beta window for speculative search

CHAPTER 3. ADDING PARALLELISM 	 42

1. (define (kill window)
"Signals to tasks that update this window to kill themselves.
Does this by setting cutoff condition, alpha >= beta."

2. (set-choice window (cutoff-choice))
3. (set-beta window (neg-inf)))

Figure 3-4: An ad hoc task-killing mechanism for speculative search

1. (defmacro maximize-members (game list level window)
"Spawns parallel tasks to evaluate the
children of a node."

2. ((mapcar (lambda (move)
3. (future (maximize (make-child ,game ,move)
4. ,level ,window ,move))
5. ,list))

Figure 3-5: The expression that spawns off speculative tasks to evaluate a node's
children.

CHAPTER 3. ADDING PARALLELISM 	 43

1. (define (update-choice window value move)
"Atomically updates window."

2. (letrec ((old-choice (delay (set-choice window new-choice)))
3. (new-choice (delay
4. (if (> value (choice-value old-choice))
5. (make-choice move value)
6. old-choice))))
7. (touch old-choice)
8. (touch new-choice)))

Figure 3-6: Procedure for atomically updating a shared alpha-beta window.

time the former child examined the window and the time it changed it. While this

is a general problem in coordinating actions on shared data, in this case the result

may be an inaccurate coupling of the best move found so far, and its associated

value. Another problem may be that the best move found so far, plus its associ-

ated value, get erased by the more tardy child. This case, in addition to possibly

resulting in a wrongly chosen move, could reduce chances for cutoff.

Once the parallel tasks for evaluating the children of a node are set up (Line

34), it is not sufficient for the procedure to loop around and wait for a cutoff to

happen or for all the children to become determine. Since the scheduling of tasks is

indeterminate, if the futures are not touched, there is no guarantee that the futures

will terminate as long as the parent task does not touch them. It is conceivable

that all of the processors could be usurped by similar processes, all waiting for their

children to to terminate or cause a cutoff condition, neither of which will happen

as long as they are no processors available to process them.

Consequently, it is necessary to add some guarantee that the procedure will

terminate, by explicitly touching each future to make sure they eventually resolve

resolve (Line 8 and Line 36). We can formalize this by saying that for a program to

be correct, each future must be touched, either implicitly through a strict operator,

CHAPTER 3. ADDING PARALLELISM 	 44

or explicitly by touch. The resulting procedure is shown in Figure 3-7.

Note that in the procedure of Figure 3-7, a node updates the alpha-beta window

of its parents after all its children have run to completion; in other words, one update

is made, and it is the correct one. An alternative is to increase cutoff possibilities

by updating the parent's alpha-beta values after each change in the node's own

alpha-beta values.

To SPECULATE with more frequent communication:

1. If the level is the top level, let a = —oo and let /3 = co.

2. If the limit of search has been reached, compute the stative value of the current

position relative to the appropriate player. Report the result.

3. Apply SPECULATE to all children in parallel, passing them —0 as their a

and —a as their 0.

(a) Each time a child returns a value, set a to the larger of the current value

and the negation of the value returned by the child. Report a but do

not quit.

(b) If a > 0 terminate the remaining tasks and quit.

Figure 3-8 shows a variation of the listing in Figure 3-7 that does an update

after each child has been touched, thereby increasing cutoff possibilities for other

nodes at the expense of doing more work.

It is not clear which version would result in better performance; ideally we would

like a system in which comparisons and updates are triggered only by updates from

child nodes. Such a mechanism may be more feasible in a message-passing model of

computation [2]. Differences in performance between the procedures in Figure 3-7

and Figure 3-8 may indicate the extent of the overhead caused by locking of data

during the updates as compared to the importance of increasing cutoff possibilities.

Note that the two variations presented thus far are only two of many possibilities;

CHAPTER 3. ADDING PARALLELISM 	 45

1. (define (work-more bottom
2 	 &optional (alpha (neg-inf)) (beta (inf)))

3 	(define (maximize game level window this-move)

4. (define (maxi children new-window)
5. (cond ((cutoff? window)
6. (kill new-window))
7. ((null children)
8. (update-choice window
9. (minus (window-alpha new-window)) this-move))
10. (t
11. (touch (car children))
12. (maxi (cdr children) new-window))))

14. (cond ((game-end? game)
15. (update-choice window (end-eval game) this-move))
16. ((= level bottom)
17. (update-choice window (static-eval game) this-move)
18. (t
19. (let ((new-moves (legal-moves game))
20. (new-window (make-window
21. (make-choice (null-square)
22. (minus (window-beta window)))
23. (minus (window-alpha window)))))
24. (cond ((no-move? new-moves)
25. (maximize game (addl level) new-window)
26. (update-choice window
27. (minus (window-alpha new-window)) this-move))
28. (t
29. (maxi (maximize-members game new-moves
30. (addl level) new-window)
31. new-window))))))
32. (let* ((root-window
33. (make-window (make-choice (null-square) alpha) beta))
34. (moves (legal-moves *game*))
35. (children (maximize-members *game* moves (level-1)
36. root-window)))
37. (touch-members children)
38. (choice-move (window-choice root-window))))

Figure 3-7: A speculative alpha-beta search.

CHAPTER 3. ADDING PARALLELISM 	 46

1. (define (work-morel bottom
2. &optional (alpha (neg-inf)) (beta (inf)))

3. (define (maximize game level window this-move)

4. (define (maxi children new-window)
5. (cond ((cutoff? window)
6. (kill new-window))
7. ((not (null children))
8. (touch (car children))
9. (update-choice window
10. (minus (window-alpha new-window))
11. this-move))
12. (maxi (cdr children))))

13. (cond ((game-end? game))
14. (update-choice window (end-eval game) this-move))
15. ((= level bottom)
16. (update-choice window (static-eval game) this-move)
17. (t
18. (let ((new-moves (legal-moves game))
19. (new-window (make-window
20. (make-choice (null-square)
21. (minus (window-beta window)))
22. (minus (window-alpha window)))))
23. (cond ((no-move? new-moves)
24. (maximize game (addl level) new-window)
25. (update-choice window
26. (minus (window-alpha new-window)) this-move))
27. (t
28. (maxl (maximize-members game new-moves
29. (addl level) new-window)
30. new-window))))))
31. (let* ((root-window
32. (make-window (make-choice (null-square) alpha) beta))
33. (moves (legal-moves *game*))
34. (children (maximize-members *game* moves (level-1)
35. root-window)))
36. (touch-members children)
37. (choice-move (window-choice root-window))))

Figure 3-8: Tree-splitting using more frequent updating

CHAPTER 3. ADDING PARALLELISM 	 47

we could have a task update its window twice for every child, or once for every

other child, and so on.

Now, we run into another implementation decision. In addition to varying the

frequency of communication between tasks, we might want to specify how these

tasks are scheduled. As it now stands, the invocation of future places the current

task on the task queue and begins execution of the newly-created task.

Thus, in our new alpha-beta procedure, the evaluation of the children of the node

have priority over the loop that checks for cutoff. This may not be so undesirable

except in the case that the cutoff-checking loop is placed on the task queue. Then

there is no possible cutoff and consequent saving of work.

On the other hand, if we had more control over the scheduling of tasks, we could

ensure that the cutoff-checking loop has higher priority than its children. And then

we might want to specify that some of the children have higher priority than others,

ensuring that some of the children are evaluated first and return relatively soon,

increasing cutoff possibilities for the other children. Discovering that a node is

cutoff would be a moot point if most of the subtrees had already been evaluated

(Figure 3-9). The processor time would have been better spent on other separate

branches.

So, in general, we might want to give tasks higher in the search tree a higher

• scheduling priority, and we might want to give the children of a node an increasing

or decreasing left-to-right priority. In other words, we would like to be able to create

an explicit priority ordering, with perhaps tasks to be killed at zero and mandatory

tasks given a priority of infinity, or vica versa.

Unfortunately, Multilisp provides no such explicit task scheduling. We can,

however, explore in a limited fashion the effects of different scheduling semantics

using a version of future called dfuture. 3 This construct is equivalent to future

with the exception that dfuture causes the newly-created task to placed on the idle

see Appendix D for a description of Multilisp expressions.

CHAPTER 3. ADDING PARALLELISM 	 48

Figure 3-9: An example of very suboptimal sheduling

1. (defmacro dmaximize-members (game list level window)
"An alternative to MAXIMIZE-MEMBERS."

2. c(mapcar (lambda (move)
3. (dfuture (maximize (make-child ,game ,move)
4. ,level ,window ,move)))
5. ,list))

Figure 3-10: Using dfu.ture in "speculative" search.

task queue, while the current task continues executing. The appropriately modified

version of maximize-members is shown in Figure 3-10. Another possible variation

is to use &future, which provides for FIFO task queueing.

From our speculative search algorithm, we should expect fairly large utilization

of processors similar to that achieved in the parallel exhaustive search. However, the

use of cutoff should decrease the total work involved, so a total computation time

less than the mandatory work first algorithm should be possible. Factors that might

hinder such a result include overhead introduced by the ad hoc kill construct (tasks

may not be garbage-collected properly), overhead from the data locking introduced

CHAPTER 3. ADDING PARALLELISM 	 49

by the atomicity requirements of checking and updating shared data, and ineffecient

scheduling of tasks.

CHAPTER 3. ADDING PARALLELISM 	 50

1. (define *aspire-search* alpha-beta)

2. (define *aspire-num* 33)

3. (define (aspiration game bottom
4. &optional (search *aspire-search*)

5. (number *aspire-num*))
"An alpha-beta search."

6. (let ((window (/ (- (inf) (neg-inf)) number)))

7. (define (aspire alpha best)
8. (if (>= (+ alpha window) (inf))

9. best

10. (aspire (+ alpha window)
11. (future

12 	 (or

13. (search game bottom alpha (+ alpha window))

14. best)))))

15. (aspire (neg-inf) (null-square))))

Figure 3-11: parallel aspiration

3.1.4 Parallel-Aspiration Search

A strikingly different approach suggested by Baudet [6] is to divide the initial

alpha-beta window, [—oo, oo] into smaller windows and run several full alpha-beta

searches, each on a different processor, with these smaller windows. The search that

returns a move with the highest value is the correct one. Such a parallel aspiration

search is shown in Figure 3-11.

Since each processor is running one full alpha-beta search with a window smaller

than the original, each of these searches should take less time than the original

search would have. The attractiveness of this proposal lies in the fact that no

communication is necessary between the narrow-window alpha-beta searches, so no

time will be lost to locking of data, and since little data is shared bewteen processes

CHAPTER 3. ADDING PARALLELISM 	 51

(and even this is rarely accessed during the duration of the search) there should be

less time lost to bus contention, especially if good advantage is made of locality of

data.

Baudet [6] experienced more than k-fold speedup with k processors, for k < 3.

He concludes from this that the alpha-beta algorithm is not optimal. His results

show no significant gain in decreased computation time for k > 5.

Possible variations of this algorithm include using some communication between

processes, say a flag, to signal tasks to stop if the best move has already been found,

or to further alter their alpha-beta windows.Another possibility is to combine this

method with other parallel versions of alpha-beta search, e.g. mandatory work first

or one of the speculative approaches.

A drawback to this method of parallelizing alpha-beta search is its dependence on

the knowledge of the number of processors available. Moreover, at least in Multilisp,

this method requires explicit allocation of tasks to processors to efficiently utilizize

the available processors. If k processors are available, using less than k processors

will not fully take advantage of potential parallelism. Using more than k processors

will cause at least one processor to execute more than one full alpha-beta search.

CHAPTER 3. ADDING PARALLELISM 	 52

3.2 Finer Grain Parallelism

3.2.1 Static Evaluation

In addition to parallelizing the actual search algorithm, we can perhaps exploit

parallelism at a finer level. Static evaluation, one of the more time-consuming

operations of the search, is a good candidate for such further concurrency, since

the Multello evaluation technique involves examination of each square on the game

board. By the same token, probably most board games could benefit from par-

allelization at the static evaluation level, since most likely a static evaluation will

involve examination of most, if not all, portions of the game board.

Looking at the static evaluation procedures EVALUATE and FE VALUATE, we

can see that simply wrapping a future around the addition operands will not be

very effective, since the first operand, a call to EVAL-SQUARE, will take little

time, while the second operand depends on the evaluation of the remainder of the

board. The problem is that the tree of additions is extremely lopsided. To achieve

more concuiTency, we would like to see a more balanced tree. We can achieve this

by using a divide-and-conquer approach, splitting the list *SQUARES* into halves

and splitting those halves into halves, and so on. The result is a balanced binary

tree six deep, instead of the sixty-four ply tree created in the sequential version.

The static evaluation for Multello in both continuing and end-of-game positions

involves summing the values of each square on the game board. Thus, we can

parallelize this by wrapping a future around each operand of the addition operation.4

In this example, the future is actually encloses the body of the tail-recursive loop,

so the procedure returns a value, albeit undetermined, very quickly.

A possible refinement of this binary tree form of parallelization would be to stop

using futures at a certain depth, say, when the board has been broken down to

divisions of four squares. At this point, the cost of using a future begins to rival

'This is equivalent to using poll,. See Appendix B.

CHAPTER 3. ADDING PARALLELISM 	 53

1. (define (evaluate board color)
"A parallel static evaluation."

2. (define (eval squares)
"This sums up the values of all squares on the board
using divide and conquer."

3. (future
4. (cond ((null squares)
5. 0)
6. ((square? squares)
7. (eval-square board squares color))
8. (t

9. (let ((right (nthcdr
10. (round (/ (length squares) 2)) squares))
11. (left (ldiff right squares)))
12. (+ (eval left)
13. (eval right)))))))

14. (eval *squares*))

Figure 3-12: A parallel static evaluation procedure

CHAPTER 3. ADDING PARALLELISM 	 54

1. (define (final-eval board color)
'`A parallel static evaluation."

2. (define (eval squares)
"This sums up the values of all squares on the board
using divide and conquer."

3. (future
4. (cond ((null squares)
5. 0)
6. ((square? squares)
7. (final-eval-square board squares color))
8. (t
9. (let ((right (nthcdr
10. (round (/ (length squares) 2)) squares))
11. (left (ldiff right squares)))
12. (+ (eval left)
13. (eval right)))))))

14. (eval *squares*))

Figure 3-13: A parallel static evaluation procedure for end of game.

CHAPTER 3. ADDING PARALLELISM 	 55

the cost of sequentially evaluation the subdivisions.

3.2.2 Flipping Pieces

Another area in which parallelism may be exploited is in the the routines that

actually perform a move. Games such as chess or tic-tac-toe which involve only

simple changes to the game board probably cannot employ much concurrency, but

games in which moves more drastically alter the board promise opportunities for

more significant parallelism.

As we can see from the sequential implementation of the move generation al-

gorithm in Multello, making a move involves changing the board in up to eight

possible directions, each of which does not affect the other. Thus, it seems we can

proceed with the eight flipping calls concurrently and then summarize the results

at the end of the eight tries.

Once again, we must take care in setting up the separate parts of the move

enaction in parallel tasks, for this is a side-effecting operation. Although it does

not matter what order the differently directed flip operations are done, it is crucial

that they be done before any other operations that depend on the state of the game

board.

For example, if we call the flip procedure and then perform a static evaluation

on the board before all the flips have completed, then an erroneous static value

will result. Worse yet, if a copy of the current board is made, say in generating a

successor position during a look-ahead search, before the flips have completed, then

we will have created a non-possible game board, and the search will be worthless.

Consequently, if we create a future for each component of a move, then we must

touch each of these futures at some point to guarantee that the move has been

completed.

Figure 3-14 shows the DO-FLIPS procedure modified to process the eight parts

of the flipping procedure, plus the actual placement of the new piece, concurrently.

CHAPTER 3. ADDING PARALLELISM 	 56

1. (define (fdo-flips board square color)
"Parallel version of do-flips."

(flip1 board
(flipl board
(flipl board
(flipl board
(flipl board
(flipl board
(flipl board
(flipl board
(put-piece
futures)))

2. (let ((futures (list
3. (future
4. (future
5. (future
6. (future
7. (future
8. (future
9. (future
10 	 (future
11 	 (future
12 	(touch-members

square (east) color))
square (ne) color))
square (north) color))
square (nw) color))
square (west) color))
square (sw) color))
square (south) color))
square (se) color))

color board square)))))

Figure 3-14: Parallel version of move procedure

The futures created are combined into a list and a list version of touch is used to

guarantee the completion of the move on exit from the procedure.

The same idea can be used to parallelize the procedure that updates the list of

possibly legal moves after a move has been done. Like the flipping done during a

move, all eight directions along the board must be checked, only in this case to see

if it is empty and thus can be added to the list representing the perimeter of empty

squares on the board. The resulting procedure is shown in Figure 3-15.

3.2.3 Move Generation

In addition to parallelizing the the enactment of moves on the game board, we can

also parallelize the operation of generating the list of possible moves on a given

turn. The parallelized filtering procedure is shown in Figure 3-16.

In generating the children of a node, it is usually necessary to filter out many

of the possible moves as illegal. Even in Muhello, which narrows down the list of

possible moves to the perimeter surrounding the contiguous form of pieces on the

(copy move-list)))

square
square
square
square
square
square
square
square

(east)) new-list))
(ne)) new-list))
(north)) new-list))
(nw)) new-list))
(west)) new-list))
(sw)) new-list))
(south)) new-list))
(se)) new-list)))))

CHAPTER 3. ADDING PARALLELISM 	 57

1. (define (fupdate board move-list square)
"Parallel version of update."

2. (define (add square move-list)
3.
4. (if (and (not (null square))
5. (empty? board square)
6. (not (member square move-list)))
7. (insert square move-list)))

8. (let* ((new-list (remove square
9. (futures (list
10. (future (add (inc-square
11. (future (add (inc-square
12. (future (add (inc-square
13. (future (add (inc-square
14. (future (add (inc-square
15. (future (add (inc-square
16. (future (add (inc-square
17. (future (add (inc-square
18. (touch-members futures)
19. new-list))

Figure 3-15: Parallel updating of the border.

1. (define (get-moves board moves color)
"Returns a list of all possible moves with color in MOVES."

2.
3.
4.
5.
6.
7.
8.
9.

(future
(cond ((no-move? moves)

(null-square))
((flip-possible? board (car moves) color)
(cons (car moves)

(get-moves board (cdr moves) color)))
(t
(fget-moves board (cdr moves) color)))))

Figure 3-16: parallel move generation

CHAPTER 3. ADDING PARALLELISM 	 58

board, each member of the list has to be checked if it is a valid move first before it

is used to generate a child.

Checking the legality of a move is trivial in games like tic-tac-toe or Go. For

these games, verifying the legality of a move involves merely a check to we whether

the spot to be moved upon is empty.5

Othello and chess, on the other hand, provide more opportunity for parallel

activity in verification of move legality. In chess, one criterion for a move to be

legal involves making sure that the move does not place the current player's king

in check. This would, in effect, involve a full search of the possible moves for the

opposing player to determine if he could capture the king.

Othello, to a much lesser extent, provides possibilities for parallelizing move-

legality verification in the same manner that we added parallelism to the move-

generation procedure. Instead of flipping pieces when possible in eight different

directions, here we merely check if a flip is possible in each of the eight directions

and return true if any of them do (Figure ??). Like the move-generation procedure,

we can do these eight checks concurrently, although or is strict, so we must first

accumulate the future'ed lists in a list and then iterate through it until a non-null list

is found. The overhead incurred by this might not justify the attempt to parallelize

this procedure.

5 Actually, in Go, a check also must be made to ensure that the current move does not exactly
reverse the effect of a previous move.

CHAPTER 3. ADDING PARALLELISM 	 59

1. (define (fflip-possible? board square color)
"Parallel version of flip-possible?.)

2. (define (or-members list)
3. (cond ((null list)
4. nil
5. ((not (null (car list)))
6. t)
7. ((or-members (cdr list))))))

8. (let ((or-list
9. (list
10. (flip board square
11. (flip board square
12. (flip board square
13. (flip board square
14. (flip board square
15. (flip board square
16. (flip board square
17. (flip board square
18. (or-members or-list)))

(east) color)
(ne) color)
(north) color)
(nw) color)
(west) color)
(sw) color)

(south) color)
(se) color))))

Figure 3-17: parallel move verification procedrue
? ?

Chapter 4

Results

4.1 Gathering Data

4.1.1 A Test Case

We use as a test case the opening position of an Othello game (Figure 2-1). From

the symmetry of this position, we can expect a fairly large number of alpha-beta

pruning opportunities in a search tree of moderate to large depth.

Also, the small number of pieces on the board results in an initially low branch

factor. The opening position allows four possible moves, so the root node will have

four children. The branch factor overall should grow as the search tree gets deeper

into the game and evaluates positions with more pieces on the board.

4.1.2 Parallelism Profiles

Several different forms of data are desired in analyzing a test run. These include the

number of processors actively running tasks at any one time, overhead created from

the invocation of future, time lost to bus and memory contention, and, of course,

final computation time. This data can be analyzed in the form of a parallelism

profile. An example of such a timeline is shown in (Figure 4-1) The profile is a graph

60

File VX:loctive,dhchu,Is3, created 4/21,08 '3i20151 for ((FULL -6EAPCA 3))

Thu 29 Apr 3116t3S Lipp—ftchine
	

CL -U6E11 3 	(w 3 ndou)
	

Rims

CHAPTER 4. RESULTS 	 61

Figure 4-1: A parallelism profile for a three-ply depth-first search.

of number of processors in use vs. time. The area filled in black is the total "real"

computation time. The gray-filled area is processor time spent on the overhead

required by the handling of futures. Time lost to locking of data is represented by

the most sparsely-filled area, and idle processor time is the remaining black area.

4.1.3 Sequential Search

The presence of alpha-beta cutoff is noticeable starting at ply three (Figure 4.1).

The savings in search due to the cutoff is not as much as we might expect, possi-

bly because the static evaluations are relatively quick compared to the process of

generating successor nodes, which entails generating legal moves and making these

moves on copies of a board.

The two searches perform similarly shallow searches, but on four-ply and deeper

searches the alpha-beta cutoffs make a dramatic difference. However, despite the

CHAPTER 4. RESULTS 	 62

search two-ply three-ply four-ply
depth-first 19.67s 77.45s 250.98s
alpha-beta 19.55s 64.78s 225.78s

Table 4.1: Comparison of exhaustive minmax and alpha-beta search times.

level 1 level 2 level 3 level 4
final time 7.98s 15.02s 34.72s 133.57s
idle time 92.1% 82.1% 45.2% 15.5%
compute time 7.8% 17.8% 54.3% 83.7%
future time 0.1% 0.1% 0.4% 0.6%
overhead time 0.0% 0.0% 0.1% 0.2%

Table 4.2: Statistics for parallel exhaustive search

large savings resulting from alpha-beta, the exponential growth of both algorithms

is apparent.

4.1.4 Parallel Exhaustive Search

The parallel exhaustive search in contrast does quite well time-wise. (Figure 4.2)

Extra work incurred by the overhead of using futures and data locking is close to

negligible. The full search makes fairly efficient use of available processors. (Figure

4-2) As the search grows deeper, the utilization grows more efficient, its parallelism

profile begins to resemble a rectangle.

The staircase-like effect on the left portion of the graph probably corresponds

to the different search levels, at each level of the search tree the tasks created to

evaluate the children of that level's nodes pile up. Supporting this conjecture is the

fact that each "step" is higher than the previous, and the first step consists of a

four-processor rise, corresponding to the number of children at ply one.

The horizontal span of these steps probably represent the time taken to filter

out the list of legal moves from which the children nodes are made. The noticable

width of these steps relative suggest that time-saving opportunities might lie in

parallelizing the GET-MOVES procedure.

CHAPTER 4. RESULTS 	 63

WC). Wir•ctiverphchu,f54, Greeted 4,29,641 96:1536 For l(FLCL-SEAPCM 9))

Fri 29 Apr ficilea91 	LIITLE.CHU Ct.-USER I 	(,o oSrdo. j .4(WI; f_xix

Figure 4-2: Parallelism profile for parallel-exhaustive search on a four-ply search
tree.

CHAPTER 4. RESULTS 	 64

Of interesting note is the apparent "tail" of the graph in Figure 4-2, where,

as the computation nears its end, the graph begins to drop and then rises again,

briefly, before tapering off, again. This might signify the presence of a number of

tasks that could not be processed before certain computations, prohibited by the

saturation of the processors, occurred.

For example, one might envision a search of a five-ply game tree in which the

processors are saturated by a number of static evaluations while some tasks to

process nodes on ply four are waiting in the task queue. Once some of the processors

are freed, there is some delay while the newly activated ply four tasks compute their

lists of legal moves from which they generate their successor nodes. This delay, plus

the subsequent activation of the successor nodes could account for such a dip in the

graph, although the accumulated tasks in question may not be the ones cited in

this scenario.

Once again, the parallelization of the legal-moves function holds some prospect

of shortening such delays between the activation of a node's and the spawning of

its children tasks. Another way to avoid this bottleneck might lie in the provision

of more control over the scheduling of tasks.

4.1.5 Using Mandatory Work-First

As expected, the mandatory work first procedure does better than its sequential

alpha-beta counterpart. The reduced computational load in this parallel alpha-beta

search, however, does not enable it to achieve search times as good as the parallel

exhaustive search. (Figure 4.3)

The profile of the mandatory work first algorithm applied to a five-ply game

tree (Figure 4-3) shows a large burst of parallelism near the beginning of the search

which rapidly tapers off to one processor. This burst grows increasingly sharper

and narrower relative to the entire search graph as the search grows deeper.

These results show the parallel exhuastive search to be far superior to the manda-

240.00 300.00 360.00 420.00

TAME C1 -USER 	iti— hon 2 May P140246 	LITILE.CHU

rli, vx...cts...p4.ch.,wr-i4, created SA12,09 02t417'27 for ((WOK-FIRS) 4))

32.0

20.0

24.0

t.

CHAPTER 4. RESULTS 	 65

level 1 level 2 level 3 level 4
final time 7.88s 27.62s 116.32s 460.5s
idle time 92.1% 92.5% 91.8% 92.8%
compute time 7.8% 7.4% 8.1% 7.1%
future time 0.1% 0.1% 0.1% 0.0%
overhead time 0.0% 0.0% 0.0% 0.0%

Table 4.3: Statistics for mandatory work first search

Figure 4-3: Profile of the Mandatory-Work-First procedure

CHAPTER 4. RESULTS 	 66

search two-ply three-ply four-ply five-ply
final time 6.48s 14.73s 34.28s 129.38s
idle time 90.8% 79.8% 42.9% 12.0%
compute time 9.1% 20.0% 56.5% 87.1%
future overhead 0.1% 0.2% 0.5% 0.7%
other 0.0% 0.0% 0.1% 0.2%

Table 4.4: Results from speculative search

tory work first search, at least on machines such as Concert featuring a large number

of processors. It is likely that the mandatory work-first search would fare better

relative to the parallel exhaustive search on a machine with only a few, say three to

five processors. And perhaps on extremely deep searches the mandatory work first

procedure would catch up to the full parallel search by dint of its lesser total com-

putational work, since at some point the parallel full search saturates the available

processes and tasks start piling up on the task queue.

It is interesting to note that the percentage of the total processor time (busy

and idle) used to do "real" computing is fairly constant.

4.1.6 Speculative Search

The speculative search, WORK-MORE, first introduced in Chapter Three (Figure

3-7) gives somewhat disappointing results. It appears not to do significantly better

than the parallel exhaustive search. The overhead from futures and memory con-

tention is markedly higher than in the parallel-exhaustive search and the mandatory

work-first search, but not to a troubling degree.

The variation of the speculative search in which a node updates its alpha-beta

window after resolving each child does a bit better. (Table 4.5) The profile of

this multiple-update speculative search explains to a certain extent this newfound

improvement (Figure 4-5). Notice that the search ends rather abruptly with a sheer

drop in the parallelism graph. This indicates that the search returned a value even

though some of its processes hand not finished executing.

CHAPTER 4. RESULTS 	 67

rii. V4:lact4ya,phthui.n-14, created S/94/88 84:35,32 for ((WORK-MORI 4))

Wed 4 May 1,10;96 	LIfflE.CHU
	

CL-USER: 	lmo uindow1

Figure 4-4: Speculative Search

search two-ply three-ply four-ply five-ply
final time 6.32s 13.82s 29.62s 107.80s
idle time 90.9% 80.1% 39.5% 10.9%
compute time 9.0% 19.7% 60.0% 88.3%
future overhead 0.2% 0.2% 0.5% 0.7%

_ other 0.0% 0.0% 0.1% 0.2%

Table 4.5: Results from speculative search with multiple updates per node.

99 (11 15.86 38.88 44.88 4111.611 105.88

Sac 38 Apr 7121:24 	LIT ILE.CHU CL-USEIti 	 mindow 191719:18

82.8,

28.9-

24.9

21.9

CHAPTER 4. RESULTS 	 68

rite 041,41ct1v4,p4chulun4-14. created 44(1,88 10147:54 for (6454X-MOkEl 4))

Figure 4-5: Speculative Search with more cutoff checks

CHAPTER 4. RESULTS 	 69

In addition to the granularity of updating alpha-beta windows, different schedul-

ing semantics seems to have a significant effect on the resulting parallelism profile

and search time. For example, the use of dfuture instead of future negates the time

savings achieved by WORK-MORE1. Unlike the latter search procedure DWORK-

MORE] fails to return a value before all portions of the search has been completed

(Figure ??), as it ends in a more gradual curve representing the tapering off of

tasks.

This can be explained by noting that to maximize cutoff, what we need to do

is not necessarily give priority to processing lower portions of the searc tree, but

instead we need to give priority to evaluating a minimum . number of search paths,

the portion evaluated in parallel in the mandatory work first search. 1

This depth-first priority in fact is probably better provided by future than dfu-

ture, since the use of future in our speculative search gives precedence to the evalu-

ation of the children of a node, albeit in a left to right ordering. What would really

be desirable is some way to dictate that the search paths necessary for cutoff are

done first.

The importance of task scheduling is further demonstrated by a sample trial of

the speculative search using sfuture. This variation, using an alpha-beta update

after each child has been touched, featured the same cliff-ending effect as work-

morel, yet still took about as long as the parallel exhaustive search.

4.1.7 Using Parallel-Aspiration Search

The use of parallel aspiration search on the test case showed no improvement over

sequential alpha-beta performance. In fact, increasing the number alpha-beta par-

titions increased the final search time. (Figure 4.6)

The lack of speedup suggests that the effectiveness of the parallel-aspiration

1 Although it doesn't really matter which paths we evaluate, as long as we evaluate enough to
make cutoff of other search paths possible.

CHAPTER 4. RESULTS 	 70

cit. 1/54.,..0.,06.h.,6.4 /4, C,Ii.ted S,91/88 W15.2,-1or ((NW-nail 41T

Suna nay 9138t05) 	LITILE.CHU
	

CL-USElt

Figure 4-6: Speculative Search using Dfuture

windows 1 2 3 10 15 32
time _ 259.93s 259.35s 251.45s 278.38s 287.00s _ 312.17s

Table 4.6: Statistics on performance of the parallel aspiration search

CHAPTER 4. RESULTS 	 71

riTITURifsett,,sepnchwess-og:TriS. crested 5,615,08 11i11112 For ((63i0ATION 5 ALPHA-BETA 13))

Thu 5 May 3144114
	

LII1LE.CMU
	

CL-WART
	

1.6res

Figure 4-7: Parallel-aspiration search using fifteen alpha-beta partitions.

search lies not so much in the number of alpha-beta partitions as the prudent

choice of the a and fi parameters. In [6], Baudet presupposes that his window-

selection function, SELECT-NEW-INTERVAL, has some knowledge of the expected

distribution of the move values to be found, which he argues is not an unreasonable

assumption in game-playing programs.

The failure of a naive division of the alpha-beta window among available pro-

cessors can be seen vividly in the profile of Figure 4-7. We know that the longest

horizontal bar represents the search which actually returns the correct move, since

all of the other bars terminate sooner, and the aspiration procedure returns as soon

as it finds the right move. It is interesting to note that the searches on the alpha-

beta windows that do not enclose the correct move do terminate more quickly than

the search returning the final move, but a good number of them still take much

longer than the parallel exhaustive search and the speculative searches.

CHAPTER 4. RESULTS 	 72

The correlation between the addition of more alpha-beta divisions and increased

computation time has a couple of possible explanations:

1. Increasing the number of searches that operate on the same global game object

might dramatically increase delays due to bus contention.

2. Multiple searches on globally shared data might also increase the number

of garbage collection operations during the search period. This hypothesis

is supported by the observation of numerous garbage collection notifications

during testing of the parallel-aspiration procedures.

Both possibilities point out aspects of the inner workings of Multilisp that war-

rant improvement, especially if deficiencies in either or both mechanisms leads to

such performance degradation as evidenced by the parallel-aspiration results.

Chapter 5

Concluding Remarks

5.1 Conclusions

5.1.1 Parallel Search

Adding futures to an exhaustive search seems to work fairly efficiently for fairly

shallow search trees, but at some point, say a depth of three, the computational

work saturates the available number of processors.

Still, the parallel exhaustive search is much more effective than the mandatory

work first approach, due to the relatively small number of nodes that can be pro-

cessed in a search tree without possibility of alpha-beta cutoff.

The attempt at a compromise solution, a search using speculative computation,

did not fare much better than the parallel exhaustive search, but did suggest that

better performance might be achieved if there existed more support for speculative

computation in Multilisp, particularly in the form of more control over the shedul-

ing of tasks. The slightly better performance of the multiple-update speculative

approach, procedure work-morel in Figure 3-7, over other variations shows that

adding computational work in exchange for more cutoff possibilities may be a good

tradeoff.

73

CHAPTER 5. CONCLUDING REMARKS 	 74

The results of employing an "aspiration" technique were disappointing. Not only

did this method fail to result in any speedup, it actually lengthened search time

in correspondence to the number of partitions that the original alpha-beta window

was divided into. The lack of speedup suggests that the promise of the aspiration

technique lies more in the intelligent selection of the alpha-beta windows rather than

a brute-force division into the available number of processors. Overall, it seems that

the effectiveness of the aspiration technique presupposes a greater knowledge of the

distribution of static values and the available number of processors than the other

search methods.

In summary, the dramatic decrease in search time evidenced by the parallel-

exhaustive search even on a five-ply game tree demonstrates that the area of com-

puter search is one that can benefit greatly from application on multiprocessor

architectures. Furthermore, the results from our attempts at speculative search

indicate that speculative computation may be well suited for this type of problem

and that support mechanisms for speculative computation should be pursued.

5.1.2 Multilisp

The use of a moderately large Multilisp program to explore opportunities for par-

allelism in computer game-playing allows us to distinguish many of the strengths

and weaknesses of Multilisp.

The future paradigm turns out to be convenient and useful in parallelizing

mandatory computation. Adding concurrency to a an exhaustive minmax search

merely entailed wrapping future around certain key expressions. Likewise, the

mandatory work first procedure differed from its sequential counterpart mainly by

a check for the no-cutoff condition. In the latter case, the process of adding futures

to the code resulted in a greater understanding of the sequential algorithm.

In addition, the necessity for using shared arrays in Multello (copying a board

everytime a move is made would be prohibitively time-consuming) vindicates Mul-

CHAPTER 5. CONCLUDING REMARKS 	 75

tilisp's support of explicit parallelism and side effects.

The most prominent deficiency in Multilisp demonstrated during the course of

this thesis is the lack of support for speculative computation. Useful would be

features such as explicit task-killing directives and more programmer control over

the scheduling of tasks. Also, the results of the parallel aspiration search suggested

that garbage collection and bus and memory contention could be a problem in some

cases.

In the other searches we tried, time lost due to memory locking apparently

was not a serious problem. Also negligible was the computational overhead due

to handling of futures was negligible, which is not surprising considering the large

granularity of searches. It remains to be seen whether the cost of invoking fu-

ture becomes a problem in finer-grain applications, such as parallelizing the static

evaluation.

In summary, we have verified that Multilisp works quite well at parallelizing

large-grained mandatory computation, and as a general-purpose language that sup-

ports both functional programming and side-effecting procedures it is well-suited

to applications like Muhello that require both for convenient implementation and

efficient execution.

5.2 Future Work

5.2.1 Enhancing Multilisp

The initial results from Muhello show speculative tasking to be a promising way to

efficiently utilize multiprocessors for applications like game searches. However, the

Multilisp procedures demonstrated in this thesis have been hindered by the lack of

support for speculative computation in Multilisp.

Among the features needed are:

• Some way to kill a task after it has been determined that the task is not

CHAPTER 5. CONCLUDING REMARKS 	 76

relevant to its parent computation.

• Some way to explicitly prioritize speculative tasks so as to give more promising

tasks, i.e. tasks whose values have a greater probability of being needed, a

higher scheduling priority. It is unlikely, especially in an application such as

alpha-beta search, that a compiler or interpreter can determine such priority

implicitly.

5.2.2 More on Searching

This thesis is just an initial attempt to survey possible ways of speeding up game

searches in a multiprocessor environment. Certainly many of the areas touched

upon warrant further exploration.

For example, parallelizing the game search at a much finer level, e.g. the static

evaluation or the generation of legal moves, could become an important speedup

factor, especially for searches that do not make very efficient use of available pro-

cessors. The mandatory work first search is one algorithm that might look much

better compared to the parallel-exhaustive search if more advantage was taken of

finer-grain parallelism. Furthermore, forms of speculative search might take good

advantage of this additional parallelism. It seems likely that a speculative search

combined with efficient task scheduling and a high degree of finer-grain parallelism

may provide the most optimal game search using the concepts presented in this

thesis. In any case, finer-grain parallelism should be explored at least to gather

more information on how effective Multilisp is on these components of the game

search.

Another area replete with unanswered questions is the parallel-aspiration search.

The rather straightforward application of it in Chapter Three proved to be naive,

suggesting that we should put more effort into exploring the questions of what sort

of alpha-beta partitioning is needed to achieve a decrease in search time and how a

procedure can determine these partitions.

CHAPTER 5. CONCLUDING REMARKS 	 77

Also, the parallel aspiration search allows opportunities to mix and match search

algorithms. For example, instead of calling the sequential alpha-beta search, the

aspiration loop could call the mandatory work-first search or even one of the spec-

ulative alpha-beta searches. Considering that many of the failed subsearches in the

aspiration example (Chapter Four) took a small fraction of the total search time, an

aspiration search combined with a mandatory work first or speculative alpha-beta

search might result in very efficient processor utilization.

Another area of interest might be to analyze Baudet's report that using k proces-

sors, for 0 < k < 4, he achieved more than k-fold speedup. It would be informative

to try to duplicate this result and to explore his conclusion that the alpha-beta

algorithm is suboptimal.

Bibliography

[1] Abelson, H. and Sussman, G. J. The Structure and Interpretation of Computer

Programs. MIT Press 1984.

[2] Agha, G. Actors. MIT Press 1987.

[3] Akl, S. G. "The Computational Costs of Parallel Alpha-Beta Search." Queen's

University at Kingston.

[4] Akl, S. G., Barnard, D. T., and Doran, R. J. "Design Analysis and Implemen-

tation of a Parallel Alpha-Beta Algorithm." Department of Computing and

Information Science. Queen's University, Kingston, Ontario, Canada, Techni-

cal Report 80-98. April 1980.

[5] Akl, S. G., and Doran, R. J. "A Comparison of Parallel Implementations of

the Alpha-Beta and Scout Tree Search Algorithm Using the Game of Check-

ers." Department of Computing and Information Science, Queen's University,

Kingston, Ontario, Canada. TR 81-121, April 1981.

[6] Baudet, G. M., "The Design and Analysis of Algorithms for Asynchronous Mul-

tiprocessors." Department of Computer Science. Carnegie-Mellon University,

Pittsburgh. TR CMU-CS-78-116 April 28, 1978.

[7] Bradley, E. and Halstead, R. H. "Simulating Logic Circuits: a Multiprocessor

Application." M.I.T. Laboratory for Computer Science. May 28, 1987.

78

BIBLIOGRAPHY 	 79

[8] Charniak, E. and McDermott, D. Introduction to Artificial Intelligence. Addi-

son Wesley, 1985.

[9] Finkel, R. A. and Fishburn, J. P. "Parallelism in Alpha-Beta Search." Journal

of Artificial Intelligence. Vol. 18, 1982.

[10] Gray, L. "Using Futures in Parallel Computation." S.M. Thesis. Massachusetts

Institute of Technology 1986.

[11] Halstead, R. H., Loaiza, J. R., Ma, M. H. "The Multilisp Manual." M.I.T.

Parallel Processing Group, June 1986.

[12] Halstead, R. H. "Parallel Symbolic Computing." ACM Transactions on Pro-

gramming Languages and Systems Vol. 7, No. 4, October 1985, pp. 501-538.

[13] Halstead, R. H. "An Assessment of Multilisp: Lessons and Experience." In-

ternational Journal of Parallel Programming, December 1986, Plenum Press,

New York.

[14] Halstead, R.. H. "Parallel Computing Using Multilisp." Parallel Computation

and Computers for Artificial Intelligence, J. Kowalik, ed., Kluwer Academic

Publishers, 1987.

[15] Halstead, R. H., Anderson, T. L., Osborne, R. and Sterling, T. L. "Concert:

Design of a Multiprocessor Development System." M.I.T. Parallel Processing

Group 1985.

[16] Hasegawa, Goro with Maxine Brady. How to Win at Othello. Jove Publications,

1977.

[17] Knuth, Donald E., Moore, Ronald W. "An Analysis of Alpha-Beta Pruning."

Computer Science Department, Stanford University. TR August 1974.

BIBLIOGRAPHY 	 80

[18] Rees, J. and Clinger, W. (Eds.) "The Revised Report on the Algorithmic Lan-

guage Scheme."

[19] Steele, Guy. Common Lisp: The Language. Digital Press, 1984.

[20] Winston, Patrick H. Artificial Intelligence. Addison Wesley 1984.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80

