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The Von Neumann bottleneck present in traditional computers has prompted the 
development of various parallel architectures and programming languages. Among 
the latter is Multilisp, a version of Scheme that includes several parallel-task spawn-
ing constructs. 

Muhello, an Othello-playing program written in Multilisp, is used to demon-
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Chapter 1 

Introduction 

1.1 Summary 

The Von Neumann bottleneck present in traditional computers has prompted the 

development of various parallel architectures and programming languages. Among 

the latter is Multilisp, a version of Scheme that includes constructs for explicit 

parallelism. 

This thesis demonstrates several parallel alpha-beta algorithms implemented in 

Multilisp. The game Othello is used as a platform for testing these algorithms. In 

addition, the use of finer-grain parallelism is explored, specifically in static evalua-

tion and move generation. Runtime results generated on Concert, an experimental 

multiprocessor, are then used to draw conclusions about the comparative effective-

ness of the parallel searches, deficiencies and strengths of Multilisp, and criteria for 

parallel hardware designed to support Multilisp. 

1.2 Organization 

The first part of this thesis, Chapter One, will is devoted to a description of Multi-

lisp, a summary of experimental facilities for running applications written in Mul- 

9 
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tilisp, and an outline of the objectives of this thesis. 

Chapter Two introduces the issues involved in programming a computer to play 

two-player games. Examples of typical adversary searches. move generation rou-

tines and static evaluation procedures are demonstrated in Multello, a Multilisp 

program that plays the board game Othello. 

In Chapter Three, I describe various approaches to adding parallelism to the 

game program introduced in Chapter Two, ranging from conservative additions of 

future to the procedures given in Chapter Two to more radical approaches involving 

speculative computation. 

Chapter Four presents the experimental results of running these various game-

playing algorithms on an actual multiprocessor. 

Finally, in Chapter Five, I make some conclusions and give some suggestions for 

future work. 

Included in Appendix A are listings of algorithms for both the basic sequential 

searches and the parallel versions of these searches. Appendix B contains a descrip-

tion of the Multello support routines used in the Multilisp procedures listed in the 

thesis. A complete table of runtime results is listed in Appendix C. Appendix D 

details more fully the special constructs of Multilisp. 

1.3 Multilisp 

1.3.1 Constructs for Parallelism 

Multilisp [14] is an extension of Scheme [1] [18] that features several operators for 

explicitly employing parallelism in programs. 

The principal construct for explicitly employing parallelism in Multilisp is 

(future X) 

in which X is any Lisp expression. The invocation of future will spawn a separate 
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task to evaluate X and also immediately returns a placeholder of type future as the 

value of X. But before then, the placeholder can be passed as an argument or used 

as any other Lisp expression. 

If a process needs to access the value of a future-surrounded expression before 

it has mutated, then the current process is suspended until the value has finished 

mutating. 

The other two principal features of Multilisp are touch and delay. If X is not a 

future, then the expression (touch X) merely returns X. If X is a future, then (touch 

X) will suspend the current computation until X has been determined, and then 

returns X. Strict operators, functions that require the value of an argument upon 

receiving it, implicitly touch their arguments. 

De/ay creates an object of type future that is not evaluated until touched. This 

is useful for delayed evaluation in streams. Delay is actually a variant of future. 1  

1.3.2 Using Futures 

The placement of futures in a program is a non-trivial issue. A naive approach to 

adding parallelism would be to place a future around each expression in a Multilisp 

program. However, the use of future is not without cost. At present, the overhead 

involved in setting up a future is approximately five times that invoked by a Multilisp 

function call. [13] Although the long term may bring architectures that are specially 

designed to run Multilisp or similar languages and thus may feature special hardware 

support for future handling, the cost of setting up a future is unlikely to drop beneath 

the cost of a function call. This, plus the fact that the number of processors available 

is not unlimited, makes Multilisp more suitable for large-grained parallelism than 

fine-grained parallelism. 

Moreover, placement of futures around strict operators [10], i.e. operators that 

need to know the values of its arguments to proceed, would be a waste of time, 

'A more complete description of Multilisp's special constructs is given in Appendix D. 
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since the strict computation will touch the future cell and consequently halt exe-

cution until the cell finishes mutating to the needed value. This would result in 

an essentially sequential evaluation, plus the additional overhead created by using 

future. 

In summary, future's must be placed judiciously to achieve good performance. 

The inclusion of explicit concurrency in Multilisp permits the use of side effects in 

combination with parallelism. This allows possibilities for large-grained parallelism 

not possible in a purely functional language. However, using futures with side effects 

as yet remains an art rather than a science. [13] 

1.3.3 Concert 

Multilisp currently runs on Concert, [15] an experimental multiprocessor consisting 

of thirty-four 68000 microprocessors with local memory and a shared global memory. 

The processors are grouped in several clusters connected by the RingBus, a ring-

shaped segmented bus. 

Concert is not intended to be a prototype for parallel computers but, rather, is 

a testbed for multiprocessor applications. The results of examining multiprocessor 

performance with Concert and multiprocessor applications built upon Multilisp 

can then be used to determine criteria that needs to be addressed in constructing 

a more suitable parallel architecture. Since the purpose of Concert is to provide a 

real platform upon which to examine multiprocessor applications, it is built from 

mostly off-the-shelf parts. 

Each cluster on the RingBus features a RingBus Interface Board (RIB), a por-

tion of global memory, and typically four to eight MC68000 microprocessors, each 

associated with its own local memory. These elements are connected by a high 

speed Multibus. 
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1.4 Objectives 

1.4.1 Evaluating Multilisp 

One obvious result of testing new programs in Multilisp is the opportunity to eval-

uate Multilisp in both its implementation and its design philosophy. Multello can 

be thought of as an addition to the growing library of programs already written in 

Multilisp. 

Among these programs are the Multilisp compiler itself [14J, a quicksort routine[14], 

a semantic net retrieval program[13], a digital circuit simulation[7], a program to 

solve the traveling salesman problem(13], and a program to calculate fibonacci 

numbers [14] . 

In addition to pointing out deficiencies and benefits of Multilisp, writing a vari-

ety of moderate-sized to large applications provides an exercise in learning how to 

program effectively in Multilisp, e.g. the placement of futures, and a more realistic 

assessment of Multilisp not provided by simple benchmarks. 

Thus, the program introduced in this thesis, Multello, will further the twofold 

effect of: 

1. exploring parallel programming styles and algorithms, and also 

2. pointing out the strengths and weaknesses of Multilisp. Deficiencies in the 

current Multilisp implementation can then be corrected in conjunction with 

the development of more advanced multiprocessors. 

1.4.2 Comparing Search Techniques 

Finally, Multello provides an opportunity to compare different approaches to paral-

lelizing searches. This thesis will allow analysis of the performance tradeoffs between 

concurrency and work-minimization. Furthermore, the importance of various parts 

of the game search, such as static evaluation and node generation, on the final 
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searchtime can be found through comparison of search performance with differ-

ent combinations of parallelization of these components. And finally, although the 

search in question is an adversary search, the results of the comparison should have 

implications toward the general problem of parallelizing search. 



Chapter 2 

Game-Playing 

2.1 The Computer as Player 

2.1.1 History 

Computer game-playing dates back to about 1800, when a man named Von Kern-

pelen toured Europe with a chess-playing robot dressed up to look like a Turk. The 

automaton won chess games in both Europe and the United States. Not surpisingly, 

the Turk was really a fake, hiding a human chess player. 

More genuine game-playing computers began to appear in the 1950's, based on 

independent papers by Claude Shannon and Alan Turing, but the first of modern 

chess programs did not appear until Richard Greenblatt developed MacHack in 

1967. Currently, programs with names such as Belle and Cray Blitz have tourna-

ment rankings of over 2300 I . 

'Beginner have rankings of 600-900 and world chess champions typically have a rankings from 
2600 to 2800 

15 
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2.1.2 Concepts 

A computer strategy for two-player games usually involves a game tree of possible 

moves. This enables the computer to "look ahead" beyond its immediate moves 

to its opponent's possible responses and the computer's responses to its opponent's 

responses, and so on. Thus the game tree consists of alternating max and min levels, 

the former on which the computer attempts to maximize its winning opportunities 

and the latter on which the opponent attempts to minimize those opportunities. 

Most interesting games typically involve an enormous number of paths to ac-

count for a complete game', so in practice the search tree is explicitly bounded by 

a specified depth, and a static evaluation is used to appraise the "winningness" of 

the game situation at the terminal node in the form of some numerical value. 

This minmax strategy rests heavily on the validity of the static evaluation. The 

usefulness of assigning a number to describe a game situation is questionable. One 

example is the horizon effect[20], which arises during dynamic situations, such as the 

exchange of pieces in chess. A search terminating in the midst of such an exchange 

will assign a value to a move without taking into account the fact that there is going 

to be a significant change on the next move. A way to combat this problem is to 

use heuristic continuation, which checks for such dynamic situations and extends 

the limit of search as necessary. 

Another enhancement to adversary search is the use of progressive deepening, 

which involves performing static evaluations at each ply of the search tree before ex-

tending the search tree another ply. This technique can be used in order to traverse 

the game tree more selectively and to make better use of time in tournament-like 

situations in which there is a time limit for making moves. Progressive deepening 

is made feasible by the fact that for a tree with a uniform branching factor b, the 

ratio of the number of nodes in the bottom level to the remaining nodes in the tree 

2There are more possible board positions in a fifty-move chess game than there are known atoms 
in the universe! 
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is 

bd (b — 1) 
 	b —1 

bd — 1 
(2.1) 

A fundamental deficiency of the minmax strategy is that it does not take into 

account variations of the maximize/minimize stratagem. For example, an opponent 

may be a. relatively weak player who might follow a line of play that the minmax 

search would rule out. A good strategy then may be to lay traps and try to lure 

the opponent into making some common mistakes. 

Another scenario along the same lines is the case where the computer is losing 

the game. In this case, following a line of play specified by the minmax strategem 

would lead to certain defeat. Since the computer has nothing to lose, it would be 

far better to gamble and try to complicate the game for the opponent by making 

risky but potentially winning moves. 

Despite these flaws, the best chess computers today are still the ones that search 

exhaustively and quickly. Belle, for example, uses special hardware to speed up its 

search. 

2.1.3 Othello 

This chapter introduces fundamentals of adversary searches using the game Othello 

as a platform. Portions of an Othello-playing Multilisp program, called Multello, 

are used to demonstrate typical algorithms for computer game-playing. 

Othello is played by two players on an eight-by-eight board. The game begins 

with four pieces on the board. (Figure 2-1). The playing pieces are discs black on 

one side and white on the other. 

The rules of Othello are fairly simple: 3  

1. A move is not legal if it doesn't flip at least one of the opposing player's pieces. 

3For a description of the game Othello and its rules, see Appendix D. 



• • 

CHAPTER 2. GAME-PLAYING 	 18 

Figure 2-1: The opening position of an Othello game 

2. If a player cannot make a legal move, he must pass. 

3. If neither player can make a legal move, the game is over, and the player with 

the most pieces on the board wins. 

To flip an opponent's piece, a player needs to outflank him by blocking the two 

ends of a line of one or more of his opponent's pieces. Once a row of pieces of one 

color has been outflanked, then these pieces are flipped over to display the color of 

the player who did the outflanking. a computer. 

2.2 Adversary Search 

2.2.1 Minimax 

Following is a more formal description of the minimax algorithm: 

To MINIMAX: 

1. If the limit of search has been reached, compute the static value of 

the current position relative to the appropriate player. Report the 
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result. 

2. If the level is a minimizing level, use MINIMAX on the children of 

the current position. Report the minimum of the results. 

3. Otherwise, the level is a maximizing level. Use MINIMAX on the 

children of the current position. Report the maximum of the re-

sults. 

Another form of the minimax algorithm is Knuth's negamax algorithm. [17] 

To NEGAMAX: 

1. If the limit of search has been reached, compute the static value of 

the current position relative to the appropriate player. Report the 

result. 

2. Otherwise, apply NEGAMAX on the children of the current posi-

tion. Report the maximum of the negation of the results. 

The minimax and negamax algorithms can be shown to be equivalent. It is often 

more convenient to use the minimax form for visualization of the search tree and 

to do analysis of the algorighm in negamax form. A minimax procedure is listed 

in Figure 2-2 in negamax form. 5  

The procedure DEPTH-FIRST begins (Line 29) by calling the inner procedure 

MAXIMIZE on the current game, represented by global variable *game*, along 

with the information that the search is at level zero. 

MAXIMIZE first checks if any more moves can be made on the board by either 

player (Line 16). If not, than the game is over and a static evaluation for the end 

of the game is returned (Line 17). 

4 For the remainder of this thesis we will mostly use the terms minimax and negamax 
synonymously. 

5A description of the Multello routines called by the code examples of this chapter is listed in 
Appendix B. 
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1. (define (depth-first bottom) 
"A depth-first minimax search." 

2. (define (maximize game level) 

3. (define (maxi moves best) 
"assumes (car move) is legal move or moves is nil." 

4. (if (no-move? moves) 
5. best 
6. (let* ((move (car moves)) 
7. (new-value 
8. (minus 
9. (choice-value 
10. (maximize (make-child game move) 
11. (addl level)))))) 
12. (if (> (choice-value best) new-value) 
13. (maxi (cdr moves) best) 
14. (maxi (cdr moves) 
15. (make-choice move new-value)))))) 

16. (cond ((game-end? game) 
17. (make-choice (null-square) (end-eval game))) 
18. ((= level bottom) 
19. (make-choice (null-square) (static-eval game))) 
20. (t 
21. (let ((new-moves (legal-moves game))) 
22. (if (no-move? new-moves) 
23. (make-choice (null-square) 
24. (minus (choice-value 
25. (maximize (pass game) 
26. (addl level))))) 
27. (maxi new-moves (make-choice (null-square) 
28. (neg-inf)))))))) 

29. (choice-move (maximize *game* (level-0)))) 

Figure 2-2: Exhaustive minimax search 
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If the end of the game has not arrived, then MAXIMIZE checks whether the 

limit of search has been reached (Line 18). If the bottom of the search tree has 

indeed been reached, then a static evaluation for a mid-game board is returned 

(Line 19). 

If neither of the above conditions are true, then MAXIMIZE proceeds to extend 

the search tree. If the player whose turn it is at this level has no move and therefore 

must pass, then MAXIMIZE simply hands a copy of this board on to the next search 

level (thus this node has one child). 

Otherwise, MAXIMIZE takes the list of legal moves and passes it on to the tail-

recursive procedure MAXI, which iterates through this list, generating a successor 

node for each possible move at this ply, and then applying MAXIMIZE to the 

successor (Lines 10-11). During this loop, MAXI keeps track of the highest valued 

child thus far, and when the loop terminates, returns the move used to create the 

child and the value associated with it (Line 8). 

When the search is complete, the highest-valued move possible at the root node 

*game* is returned (Line 29). 

2.2.2 Alpha-Beta 

As noted before, the minimax algorithm produces an exponentially growing search 

tree. A tree of depth d with a branch factor b will have bd terminal nodes. This 

is a serious problem when players of the game in question normally have several 

options per turn, i.e. the search tree has a high branch factor. One method to 

combat this problem is to cut down the number of game paths explored by alpha-

beta pruning.[201 

Alpha-beta pruning 6  is made possible by the realization that if the player knows 

his opponent can achieve a certain minimum score, than the player cannot possibly 

do better than that score along this search subtree. This allows him to "prune" the 

'Knuth [17] gives a good summary of the this algorithm's history 
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rest of the subtree, that is, ignore it. 

TO MINIMAX with ALPHA-BETA: 

1. If the level is the top level, let a = —co and 0 = oo. 

9. If the limit of search has been reached, compute the static value of 

the current position relative to the appropriate player. Report the 

result. 

3. If the level is a minimizing level, then until all children are examined 

by MINIMAX or a > 0: 

(a) Set 0 to the samller of the given beta values and the smallest 

value so far reported by MINIMAX working on the children. 

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX the current a and 0. 

Report 0. 

4. If the level is a maximizing level, then until all children are exam-

ined with MINIMAX or a > 

(a) Set alpha to the larger of the given alpha values and the biggest 

value so far reported by MINIMAX working on the children. 

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX the current a and 13. 

Report a. 

There is also a "negabeta" version of this algorithm: 

To NEGABETA: 

1. If the level is the top level, let a = —oo and let 0 = oo. 
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2. If the limit of search has been reached, compute the static value of 

the current position relative to the appropriate player. Report the 

result. 

3. Until all children are examined with MINIMAX or a > /3: 

(a) Set a to the larger of the given a values and the maximum 

of the negation of the values so far reported by MINIMAX 

working on the children. 

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX -43 as its a and -a as 

its 0. 

Report a. 

The minimum number of static evaluations needed to discover the best move in 

an optimally arranged search tree is given by the following formula, where s is the 

minimum number of static evaluations, b is the branch factor, and d is the depth of 

the tree: 

for d even 
s = 	 (2.2) 

b(d+i)/2 	b(d-i) _ 1 for d odd 

Note, however, that although the growth of the search tree is slower, it is still 

exponential. 

The alpha-beta 7  procedure (Figure 2-3) only differs from the minimax one 

in the inclusion of the a and /3 parameters accepted by MAXIMIZE and (Lines 

14-15) where there is a check for the a > /3 condition. If this cutoff condition 

is satisfied, MAXIMIZE merely returns (cutoff-choice), a null-move (nil) with the 

highest possible value, oo. This value will be recognized as — (X) by the parent node 

and thus cannot supersede any other move. 

7We shall use "alpha-beta" from now on to refer to the "nega-beta" procedure. 
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1. (define (alpha-beta bottom 
2. &optional (alpha (neg-inf)) (beta (int))) 

"an alpha-beta search" 

3. (define (maximize game level alpha beta) 

4. (define (maxi moves best) 
5. (if (no-move? moves) 
6. best 
7. (let* ((move (car moves)) 
8. (new-value (minus 
9. (choice-value 
10. (maximize (make-child game move) 
11. (addl level) 
12. (minus beta) 
13. (minus (choice-value best))))))) 
14. (cond ((>= new-value beta) 
15. (cutoff-choice)) 
16. (t 
17. (maxi (cdr moves) 
18. (if (> new-value (choice-value best)) 
19. (make-choice move new-value) 
20. best))))))) 

21. (cond ((game-end? game) 
22. (make-choice (null-square) (end-eval game))) 
23. ((= level bottom) 
24. (make-choice (null-square) (static-eval game))) 
25. (t 
26. (let ((new-moves (legal-moves game))) 
27. (if (no-move? new-moves) 
28. (make-choice (null-square) 
29. (minus (choice-value 
30. (maximize (pass game) (addl level) 
31. (minus beta) 
32. (minus alpha))))) 
33. (maxi new-moves (make-choice (null-square) 
34. alpha))))))) 

35. (choice-move (maximize *game* (level-0) alpha beta))) 

Figure 2-3: Alpha-beta search 
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25 3 20 18 18 20 3 25 

3 1 6 8 8 6 1 3 

20 6 14 12 12 14 6 20 

18 8 12 10 10 12 8 18 

18 8 12 10 10 12 S 18 

20 6 14 12 12 14 6 20 

3 	' 1 6 8 8 6 1 3 

25 3 20 18 18 20 3 25 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

Figure 2-4: Values given by Muhello to board positions for, left) mid-game, and 
right) end-game. 

2.3 Details 

2.3.1 Static Evaluation 

One reasonably effective method to judge a board position in Othello is to assign 

to each square on the board a position value (Figure 2-4. For example, the cor-

ner squares would have higher values than any of the other squares since a piece 

occupying a corner square cannot be outflanked. 

The form of the static evaluation can then be given as 

8 8 

s=EE vi  

if square is occupied by player 
= 

—pi,)  if square is occupied by opponent 

where pi,, is the value of the board position denoted by i and j. 

The algorithm for this evaluation is as follows: 

(2.3) 

(2.4) 
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To EVALUATE: 

1. Let s be the sum of the values of the squares occupied by the 

current player. 

9. Subtract from s the values of the squares occupied by opposing 

player. 

3. Report s. 

The evaluation of the end of the game also follows this form, since the winner 

of the end of the game is determined by the number of pieces each player has on 

the board. This evaluation can be done by simply substituting a constant value, 

say one, for each board position. 

Figure 2-5 and Figure 2-6 list the procedures evaluating both mid-game and 

end-of-game boards, respectively. The function EVAL-SQUARE returns the mid-

game value of a square, and FINAL-EVAL-SQUARE returns the end-game value 

of a square, which is always one. Both procedures iterate through all the squares 

on the board, represented by the global variable *SQUARES*, and sum up values 

according to who occupies the square, adding zero if the square is unoccupied, 

adding the square value if it is occupied by the player, and subtracting the value 

if it is occupied by the opponent (This determination is made by EVAL-SQUARE 

and FINAL-EVAL-SQUARE. 

2.3.2 Making a Move 

The procedure to make a move, DO-FLIPS calls the function FLIP1, which will 

flip the appropriate pieces in the specified direction if those pieces are outflanked 

by moving onto SQUARE. DO-FLIPS calls FLIP1 eight times, one in each of the 

possible flipping directions. FLIP1 works by first retrieving the list of squares on 

which pieces can be flipped and then modifying those squares. 
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1. (define (evaluate board color) 
"evaluate board position (with respect to color)" 

2. (define (evall move-list) 

3. (if (null move-list) 
4. 0 
5. (+ (eval-square board (car move-list) color) 
6. (evall (cdr move-list))))) 

7. (evall *squares*)) 

Figure 2-5: Procedure for static evaluation during mid-game. 

1.(define (fevaluate board color) 

"evaluate board position (with respect to color)" 

2. (define (evall move-list) 
3. (if (null move-list) 
4. 0 
5. (+ (final-eval-square board (car move-list) color) 
6. (evall (cdr move-list))))) 

7. (evall *squares*)) 

Figure 2-6: Procedure for static evaluation at end of the game. 
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1. (define (do-flips board square color) 
"Makes move on board. 
Modifies board." 

2. (flipl board square (east) color) 

3. (flipl board square (ne) color) 

4. (flipl board square (north) color) 

5. (flipl board square (nw) color) 

6. (flipl board square (west) color) 
7. (flipl board square (sw) color) 

8. (flipl board square (south) color) 

9. (flipl board square (se) color) 
10 	(put-piece color board square)) 

Figure 2-7: Procedures to make a move. 

At any point during an Othello game, each piece on the board is adjacent to at 

least one other non-empty square, since each move requires placing a piece next to 

at least one other (opposing) piece, and the game begins with a contiguous block 

of pieces in the center of the board. To take advantage of this property, Multello 

maintains a list of the empty squares surrounding this contiguous block in order to 

cut down the number of squares that should be checked for possible moves. Since 

each additional move "expands" this block, this list needs to be udpated each time 

a move is made. 

The procedure that performs this update (Figure 2-8) first removes the square 

just recently occupied by the move from the list, and then checks in each of the 

possible eight flipping directions adjacent to the move just recently made for the 

following conditions: 

1. The square is on the board (Line 3). 

2. The square is empty (Line 4). 

3. The square is not already in the list (Line 5). 
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1. (define (update board move-list square) 
"Update list of empty squares surrounding pieces on board." 

2. (define (add square move-list) 
"Checks if square is real square, empty, and not already 
in list. Then atomically inserts it in list." 

3. (if (and (not (null square)) 
4. (empty? board square) 

5. (not (member square move-list))) 
6. (insert square move-list))) 

7. (let ((new-list 
8. (add (inc-square 
9. (add (inc-square 
10. (add (inc-square 
11. (add (inc-square 
12. (add (inc-square 
13. (add (inc-square 
14. (add (inc-square 
15. (add (inc-square 
16. new-list)) 

square 
square 
square 
square 
square 
square 
square 
square 

(east)) new-list) 
(ne)) new-list) 
(north)) new-list) 
(nw)) new-list) 
(west)) new-list) 
(sw)) new-list) 
(south)) new-list) 
(se)) new-list) 

(remove square (copy move-list)))) 

Figure 2-8: Procedure to update list of potential moves. 

If all of the conditions are satisfied, then the adjacent square is added to the 

list. 

2.3.3 Finding Legal Moves 

The task of finding legal moves is reduced by the maintenance of a list of empty 

squares surrounding the pieces currently on the board. The procedure to find legal 

moves essentially just filters out all members of the list that do not constutute a 

move (Figure 2-9). 

Since a move is legal if and only if it flips at least one of the opposing player's 

pieces, the procedure for checking if a move is legal is similar to the procedure for 
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1. (define (get-moves board moves color) 
"Returns a list of all legal moves (for COLOR) in MOVES." 

2. (cond ((no-move? moves) 
3. (null-square)) 
4. ((flip-possible? board (car moves) color) 
5. (cons (car moves) 
6. (get-moves board (cdr moves) color))) 
7. (t 
8. (get-moves board (cdr moves) color)))) 

Figure 2-9: Procedure to generate list of legal moves. 

actually making a move (Figure 2-10). 

Like the procedure DO-FLIPS, the FLIP-POSSIBLE? function retrieves (using 

FLIP) lists of squares on which pieces can be flipped by this particular move, but 

instead of actually flipping them, it merely returns them. The or predicate (Line 

2) then checks if any of these lists actually contain any squares, in which case this 

square presents a legal move. If all the lists are empty, then no opposing piece can 

be flipped and the square therefore does not present a legal move. 
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1.  (define (flip-possible? board square color) 
"Returns t if move by color is possible on square" 

2.  (or 
3.  (flip board square (east) 	color) 
4.  (flip board square (ne) 	color) 
5.  (flip board square (north) 	color) 
6.  (flip board square (nw) color) 
7.  (flip board square (west) 	color) 
8.  (flip board square (sw) 	color) 
9.  (flip board square (south) 	color) 
10 (flip board square (se) 	color))) 

Figure 2-10: Procedure to check if a move is legal. 



Chapter 3 

Adding Parallelism 

3.1 Search 

3.1.1 Parallel Exhaustive Search 

To reduce search time we might consider processing each node in the search tree in 

parallel. To parallelize the exhaustive search routine, we need to be able to generate 

and evaluate the children of a node concurrently. 

To NEGAMAX: 

1. If the limit of search has been reached, compute the static value of 

the current position relative to the appropriate player. Report the 

result. 

2. Otherwise, apply NEGAMAX on the children of the current posi-

tion in parallel. Report the maximum of the negation of the results. 

This can be done by placing future around the expression in Lines 7-11 (Figure 

??), which evaluates a child of the node currently being processes. 

To be thorough, we wrap a future around the expression in Line 24, which 

evaluates a child in the special case when the player must pass and thus the node 

32 
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at that position has only one child, identical except for the color of the player. 

To ensure that the children of a node can be evaluated concurrently, any ex-

pression that touches one of the child values must be enclosed with future, also. 

Line 13, which compares the value of the most recently evaluated move to the best 

move found so far, is such an operation. We enclose this in future and now we have 

created a parallel exhaustive minimax search by simply adding three futures and 

not altering any of the code (Figure 3-1). 

An alternative to this depth-first search is a breadth-first approach, in which each 

new-value future would be placed on a queue. To achieve maximum concurrency, 

however, we still would extract the highest value from the queue using a future for 

each comparison. Consequently, we would not be saving ourselves the use of any 

invocations of future if we used breadth-first instead of depth-first search. 

This transformation of a depth-first search to a concurrent search merely by 

enclosing two expressions with future demonstrates the suitability of using futures 

for at least some applications. The algorithm is essentially unchanged—we have 

simply pointed out which expressions could benefit by wrapping future around them. 

As for the expected performance of this algorithm, we can expect a fairly large and 

constant burst of parallelism, probably saturating the available number of processors 

on anything other than a shallow search tree. 

3.1.2 Mandatory Work First 

Although we can achieve a fairly large degree of concurrency with the parallel 

exhaustive search, a large search tree may still result in many more tasks at one 

time than the number of processors available. We are still doing a lot of work 

that would not need to be done using alpha-beta pruning. Also, a bonus would 

be to achieve an algorithm that is not too dependent on the number of processors 

available, i.e. we would like an algorithm that performs reasonably well on one 

processor or many. 
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1. (define (parallel-exhaustive bottom) 
"A full concurrent search." 

2. (define (maximize game level) 

3. (define (maxi moves best) 
4. (if (no-move? moves) 
5. best 
6. (let* ((move (car moves)) 
7. (new-value (future 
8. (minus 
9. (choice-value 
10. (maximize (make-child game move) 
11. (addl level))))))) 
12. (maxi (cdr moves) 
13. (future (if (> new-value (choice-value best)) 
14. (make-choice move new-value) 
15. best)))))) 

16. (cond ((game-end? game) 
17. (make-choice (null-square) (end-eval game))) 
18. ((= level bottom) 
19. (make-choice (null-square) (static-eval game)) 
20. (t 
21. (let ((moves (legal-moves game))) 
22. (if (no-move? moves) 
23. (make-choice (null-square) 
24. (future (minus 
25. (choice-value 
26. (maximize (pass game) 
27. (add1 level)))))) 
28. (mail moves (make-choice (null-square) (neg-inf))))))) 
29.  
30. (choice-move (maximize *game* (level-0)))) 

Figure 3-1: Exhaustive search with futures added. 
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By this criterion, we would like to have an algorithm that performs at least 

as well as alpha-beta, and the parallel exhaustive search performs no better than 

the sequential exhaustive minmax search on one processor. The natural choice to 

reducing work is to add concurrency to the alpha-beta procedure. 

Adding parallelism to the alpha-beta routine is not as straightforward, however, 

as parallelizing an exhaustive search, since the decision of whether to cut off a search 

path depends on the results of previously evaluated search paths. So the alpha-beta 

algorithm as presented in Chapter Two contains an inherent sequentiality. 

A conservative approach to parallelizing the alpha-beta procedure would be to 

process in parallel all nodes that would definitely be needed during the search, even 

in the case of maximum cutoff. In other words, we can evaluate all branches that 

would not be cut off under any circumstances in parallel, and then process the 

remaining branches sequentially, checking for cutoff. 

To implement this, we must find a general method for determining which nodes 

need to be processed before we start checking for cutoff. We can make the following 

two claims: 

Theorem 1 When the negabeta is applied to node v, if 0 = co then v will not be 

cut off 

Proof: The condition for cutoff of node v is a > 0. The value of never changes 

and the condition a = co will never occur, because for every node w that is not 

a terminal node, a = —oo or a is the negation of the value returned by applying 

negabeta to a child of w. For a terminal node x, a = s, where s is the static 

evaluation of w and —oo < s < oo. Thus, for every node w, alpha co. 

Theorem 2 If negabeta is being applied to node v of a search tree, then at least 

one child of v will be evaluated before v can be cutoff 

Proof: Like Theorem One, the second theorem can be shown to be true by 

examining the condition for cutoff, a > 0. If node v were to be cutoff before 
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evaluating any of its children, then that would mean initially a > 0. Then —3 > 

—a. However, if this were true, then the parent node of v would have reached its 

cutoff condition and would not have applied the alpha-beta procedure to v. Thus, 

by contradiction, Theorem Two is proven true. 

We can make one further claim: 

Theorem 3 If, while negabeta is operating on node v, < oo, then v can be cutoff 

after the evaluation of any child. 

Proof: Once again, the condition for cutoff is a > 0. c = —oo or a = s where s is 

a static value. We define a static value to be any number s such that —oo < 8 < Do. 

Thus, for any /3 = c, c < co, we can envision an s, such that s = s + 1. 

To summarize, if negabeta is being applied to node v, two conditions exist: 

1. 0 = oo, in which case node v cannot be cutoff, and 

2. 0 < oo, in which case node v can be cutoff after one child of v has been 

evaluated, but only after one child has been evaluated. 

We can combine the parallel exhaustive search and the alpha-beta algorithm to 

take advantage of these properties: 

MANDATORY WORK FIRST: 

1. If the level is the top level, let a = —oo and let 0 oo. 

2. If the limit of search has been reached, compute the stative value 

of the current position relative to the appropriate player. Report 

the result. 

3. If 0 = oo then apply MANDATORY WORK FIRST to all children 

in parallel. Report the highest value. 

4. Otherwise, until all children are examined with MANDATORY 

WORK FIRST or a > 
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(a) Set a to the larger of the given a values and the maximum 

of the negation of the values so far reported by MINIMAX 

working on the children. 

(b) Use MINIMAX on the next child of the current position, hand-

ing this new application of MINIMAX —0 as its a and —a as 

its 3. 

The modified Muhello procedure (Figure 3-2) exploits these conditions for cutoff 

by including a check for the impossible-cutoff condition, 0 = oo, in the alpha-beta 

routine of Figure 2-3. If 3 = oo, we want to process all the children concurrently in 

the manner of our parallel exhaustive search. If 0 < oo then we will go in sequence 

checking for cutoff before processing each child in the manner of our sequential 

alpha-beta algorithm. Note that we must place the check after Lines ?? rather 

than before so we can take advantage of Lemma 1. 

This approach maximizes cutoff and consequently minimizes the total compu-

tational work. Aside from the relatively small overhead generated by checking for 

the impossible-cutoff condition and creating the appropriate futures, the total work 

should be the same as that in the sequential alpha-beta algorithm. Thus, we should 

expect performance at least somewhat better than the sequential alpha-beta algo-

rithm. 

From this method of parallelizing alpha-beta search, we can expect a large burst 

of parallel activity in the earlier stages of the search, when a portion of the search 

tree can be done in parallel, with a fairly steep drop down to a few processors as 

the remaining branches are generated and checked for cutoff. 

3.1.3 Speculative Search 

Thus far, we have presented two extreme approaches in parallelizing adversary 

searches. The parallel exhaustive search of Figure 3-1 attempts to maximally utilize 
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1. (define (work-first bottom 
2. &optional (alpha (neg-inf)) (beta (inf))) 

3. (define (maximize game level alpha beta) 

4. (define (maxl moves best) 
5. (if (no-move? moves) 
6. best 
7. (let ((move (car moves)) 
8. (new-value (future (minus 
9. (choice-value 
10. (maximize (make-child game move) (addl level) 
11. (future (minus beta)) 
12. (future (minus (choice-value best))))))))) 
13. (cond ((= beta (inf)) 
14. (maxi (cdr moves) 
15. (future 
16. (if (> new-value (choice-value best)) 
17. (make-choice move new-value) 
18. best)))) 
19. ((>= new-value beta) 
20. (cutoff-choice)) 
21. (t 
22. (maxi (cdr moves) 
23. (if (> new-value (choice-value best)) 
24. (make-choice move new-value) 
25. best))))))) 
26. (cond ((game-end? game) 
27. (make-choice (null-square) (end-eval game))) 
28. ((= level bottom) 
29. (make-choice (null-square) (static-eval game))) 
30. (t 
31. (let ((new-moves (legal-moves game))) 
32. (if (no-move? new-moves) 
33. (make-choice (null-square) 
34. (future (minus (choice-value 
35. (maximize (pass game) (addl level) 
36. (future (minus beta)) 
37. (future (minus alpha))))))) 
38. (maxi new-moves 
39. (make-choice (null-square) alpha)))))) 

40. (choice-move (maximize *game* (level-0) alpha beta))) 

Figure 3-2: mandatory-work first procedure 
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processors at the expense of doing redundant work, since it does no pruning. The 

mandatory work first algorithm of Figure 3-2 takes the opposite tack and initially 

does in parallel only the work that must be done in any case, and then processes 

the rest of the search tree in sequence to maximize cutoff, thereby minimizing total 

computational work done. 

A compromise between these two tactics might bring about better performance. 

Perhaps an alpha-beta search combined with a more aggressive use of parallelism 

could result in more efficient use of processors without doing such redundant work to 

extend the final search time. Such an approach would expand as many branches as 

there are available processors and, any time an alpha-beta cutoff condition occurs, 

terminate any processes that are deemed irrelevant by the cutoff. This spawning of 

tasks that may not be needed is called speculative computation. 

Thus, we want to have something like the full search algorithm, in which we set 

up a future for every child, except that we want the option of terminating these 

tasks if any one of them results in cutoff of this node. 

To SPECULATE: 

1. If the level is the top level, let a = —oo and let 0 = oo. 

2. If the limit of search has been reached, compute the static value of 

the current position relative to the appropriate player. Report the 

result. 

3. Apply SPECULATE to all children in parallel, passing them —0 

as their a and —a as their 0. 

(a) Each time a child returns a value, set a to the larger of the 

current value and the negation of the value returned by the 

child. 

(b) If a > 13 terminate the remaining tasks. 

Report a. 
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The only way for tasks to communicate with each other in Multilisp is through 

shared memory. The information to be shared includes the alpha-beta window and 

the best move chosen so far (the value corresponding to the best move is contained 

in the alpha-beta window). To enable sharing of this information, the parent task 

must pass the shared data structure to its children. Figure 3-3 lists some operations 

on such a data structure. 1  

This algorithm requires some explicit mechanism for terminating a task. How-

ever, there is no such kill mechanism existing in the current implementation of 

Multilisp. There is an available determine primitive that determines a future, but 

it can only be used on an undetermined future, and we cannot guarantee at any 

moment in time whether a future has just recently been determined. 

Conveniently, the alpha-beta cutoff condition provides a way to signal a task to 

terminate. By requiring a task has to continually check whether it its node is cutoff, 

we can send a kill message by setting its alpha-beta window to a cutoff condition. 

Consequently, we construct a pseudo-kill operator that sets a <— oo (Figure 3-4). 2  

Our pseudo-kill mechanism would be to have each node check for its own cutoff 

as well as its children. In either case of cutoff, then the process can merely signal, via 

shared data structures, to its spawned tasks that they are no longer required. This 

can be done by altering the alpha-beta window so it is cut off. Thus the children, 

in turn, when they execute, will notice there are cutoff and then will signal to their 

children to terminate. And thus we have a recursive kill construct, which will resolve 

a future and kill its task and all its recursively spawned tasks. 

Another consideration is the possible effect of updating shared data. It is possi-

ble that one child may check the value of its alpha-beta window, decide that it has 

a better value, and then update the window. In the meantime, however, another 

parallel task may have decided to update the same window and done so between the 

'Macros are used in Multello extensively to achieve reasonable search times. 
2 1th-cc is a Scheme construct that allows mutually recursive definitions. 
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1. (defmacro make-window (choice beta) 
"Creates a shared alpha-beta window (choice is alpha 

consed with best move found so far." 

2. '(cons ,choice ,beta)) 

3. (defmacro window-choice (window) 
"Returns alpha and best move of alpha-beta window." 

4. '(car ,window)) 

5. (defmacro window-alpha (window) 
"Returns alpha of alpha-beta window." 

6. ((cdar ,window)) 

7. (defmacro window-beta (window) 
"Returns beta of alpha-beta window." 

8. ((cdr ,window)) 

9. (defmacro set-alpha (window value) 
"Atomically sets alpha of alpha-beta window to value. 
Returns old alpha." 

10. '(scdr (car ,window) ,value)) 

11. (defmacro set-beta (window value) 
"Atomically sets beta of alpha-beta window to value. 
Returns old beta." 

12. c(scdr ,window ,value)) 

13. (defmacro set-choice (window choice) 
"Atomically sets alpha and best move of alpha-beta window 
to choice. Returns old alpha and best move." 

14. '(scar ,window ,choice)) 

15. (defmacro cutoff? (window) 

"Returns t if alpha is greater than or equal to beta." 
16. ((>=. (cdar ,window) (cdr ,window))) 

Figure 3-3: Operations on shared alpha-beta window for speculative search 
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1. (define (kill window) 
"Signals to tasks that update this window to kill themselves. 
Does this by setting cutoff condition, alpha >= beta." 

2. (set-choice window (cutoff-choice)) 
3. (set-beta window (neg-inf))) 

Figure 3-4: An ad hoc task-killing mechanism for speculative search 

1. (defmacro maximize-members (game list level window) 
"Spawns parallel tasks to evaluate the 
children of a node." 

2. ((mapcar (lambda (move) 
3. (future (maximize (make-child ,game ,move) 
4. ,level ,window ,move)) 
5. ,list)) 

Figure 3-5: The expression that spawns off speculative tasks to evaluate a node's 
children. 
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1. (define (update-choice window value move) 
"Atomically updates window." 

2. (letrec ((old-choice (delay (set-choice window new-choice))) 
3. (new-choice (delay 
4. (if (> value (choice-value old-choice)) 
5. (make-choice move value) 
6. old-choice)))) 
7. (touch old-choice) 
8. (touch new-choice))) 

Figure 3-6: Procedure for atomically updating a shared alpha-beta window. 

time the former child examined the window and the time it changed it. While this 

is a general problem in coordinating actions on shared data, in this case the result 

may be an inaccurate coupling of the best move found so far, and its associated 

value. Another problem may be that the best move found so far, plus its associ-

ated value, get erased by the more tardy child. This case, in addition to possibly 

resulting in a wrongly chosen move, could reduce chances for cutoff. 

Once the parallel tasks for evaluating the children of a node are set up (Line 

34), it is not sufficient for the procedure to loop around and wait for a cutoff to 

happen or for all the children to become determine. Since the scheduling of tasks is 

indeterminate, if the futures are not touched, there is no guarantee that the futures 

will terminate as long as the parent task does not touch them. It is conceivable 

that all of the processors could be usurped by similar processes, all waiting for their 

children to to terminate or cause a cutoff condition, neither of which will happen 

as long as they are no processors available to process them. 

Consequently, it is necessary to add some guarantee that the procedure will 

terminate, by explicitly touching each future to make sure they eventually resolve 

resolve (Line 8 and Line 36). We can formalize this by saying that for a program to 

be correct, each future must be touched, either implicitly through a strict operator, 
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or explicitly by touch. The resulting procedure is shown in Figure 3-7. 

Note that in the procedure of Figure 3-7, a node updates the alpha-beta window 

of its parents after all its children have run to completion; in other words, one update 

is made, and it is the correct one. An alternative is to increase cutoff possibilities 

by updating the parent's alpha-beta values after each change in the node's own 

alpha-beta values. 

To SPECULATE with more frequent communication: 

1. If the level is the top level, let a = —oo and let /3 = co. 

2. If the limit of search has been reached, compute the stative value of the current 

position relative to the appropriate player. Report the result. 

3. Apply SPECULATE to all children in parallel, passing them —0 as their a 

and —a as their 0. 

(a) Each time a child returns a value, set a to the larger of the current value 

and the negation of the value returned by the child. Report a but do 

not quit. 

(b) If a > 0 terminate the remaining tasks and quit. 

Figure 3-8 shows a variation of the listing in Figure 3-7 that does an update 

after each child has been touched, thereby increasing cutoff possibilities for other 

nodes at the expense of doing more work. 

It is not clear which version would result in better performance; ideally we would 

like a system in which comparisons and updates are triggered only by updates from 

child nodes. Such a mechanism may be more feasible in a message-passing model of 

computation [2]. Differences in performance between the procedures in Figure 3-7 

and Figure 3-8 may indicate the extent of the overhead caused by locking of data 

during the updates as compared to the importance of increasing cutoff possibilities. 

Note that the two variations presented thus far are only two of many possibilities; 
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1. (define (work-more bottom 
2 	 &optional (alpha (neg-inf)) (beta (inf))) 

3 	(define (maximize game level window this-move) 

4. (define (maxi children new-window) 
5. (cond ((cutoff? window) 
6. (kill new-window)) 
7. ((null children) 
8. (update-choice window 
9. (minus (window-alpha new-window)) this-move)) 
10. (t 
11. (touch (car children)) 
12. (maxi (cdr children) new-window)))) 

14. (cond ((game-end? game) 
15. (update-choice window (end-eval game) this-move)) 
16. ((= level bottom) 
17. (update-choice window (static-eval game) this-move) 
18. (t 
19. (let ((new-moves (legal-moves game)) 
20. (new-window (make-window 
21. (make-choice (null-square) 
22. (minus (window-beta window))) 
23. (minus (window-alpha window))))) 
24. (cond ((no-move? new-moves) 
25. (maximize game (addl level) new-window) 
26. (update-choice window 
27. (minus (window-alpha new-window)) this-move)) 
28. (t 
29. (maxi (maximize-members game new-moves 
30. (addl level) new-window) 
31. new-window)))))) 
32. (let* ((root-window 
33. (make-window (make-choice (null-square) alpha) beta)) 
34. (moves (legal-moves *game*)) 
35. (children (maximize-members *game* moves (level-1) 
36. root-window))) 
37. (touch-members children) 
38. (choice-move (window-choice root-window)))) 

Figure 3-7: A speculative alpha-beta search. 
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1. (define (work-morel bottom 
2. &optional (alpha (neg-inf)) (beta (inf))) 

3. (define (maximize game level window this-move) 

4. (define (maxi children new-window) 
5. (cond ((cutoff? window) 
6. (kill new-window)) 
7. ((not (null children)) 
8. (touch (car children)) 
9. (update-choice window 
10. (minus (window-alpha new-window)) 
11. this-move)) 
12. (maxi (cdr children)))) 

13. (cond ((game-end? game)) 
14. (update-choice window (end-eval game) this-move)) 
15. ((= level bottom) 
16. (update-choice window (static-eval game) this-move) 
17. (t 
18. (let ((new-moves (legal-moves game)) 
19. (new-window (make-window 
20. (make-choice (null-square) 
21. (minus (window-beta window))) 
22. (minus (window-alpha window))))) 
23. (cond ((no-move? new-moves) 
24. (maximize game (addl level) new-window) 
25. (update-choice window 
26. (minus (window-alpha new-window)) this-move)) 
27. (t 
28. (maxl (maximize-members game new-moves 
29. (addl level) new-window) 
30. new-window)))))) 
31. (let* ((root-window 
32. (make-window (make-choice (null-square) alpha) beta)) 
33. (moves (legal-moves *game*)) 
34. (children (maximize-members *game* moves (level-1) 
35. root-window))) 
36. (touch-members children) 
37. (choice-move (window-choice root-window)))) 

Figure 3-8: Tree-splitting using more frequent updating 
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we could have a task update its window twice for every child, or once for every 

other child, and so on. 

Now, we run into another implementation decision. In addition to varying the 

frequency of communication between tasks, we might want to specify how these 

tasks are scheduled. As it now stands, the invocation of future places the current 

task on the task queue and begins execution of the newly-created task. 

Thus, in our new alpha-beta procedure, the evaluation of the children of the node 

have priority over the loop that checks for cutoff. This may not be so undesirable 

except in the case that the cutoff-checking loop is placed on the task queue. Then 

there is no possible cutoff and consequent saving of work. 

On the other hand, if we had more control over the scheduling of tasks, we could 

ensure that the cutoff-checking loop has higher priority than its children. And then 

we might want to specify that some of the children have higher priority than others, 

ensuring that some of the children are evaluated first and return relatively soon, 

increasing cutoff possibilities for the other children. Discovering that a node is 

cutoff would be a moot point if most of the subtrees had already been evaluated 

(Figure 3-9). The processor time would have been better spent on other separate 

branches. 

So, in general, we might want to give tasks higher in the search tree a higher 

• scheduling priority, and we might want to give the children of a node an increasing 

or decreasing left-to-right priority. In other words, we would like to be able to create 

an explicit priority ordering, with perhaps tasks to be killed at zero and mandatory 

tasks given a priority of infinity, or vica versa. 

Unfortunately, Multilisp provides no such explicit task scheduling. We can, 

however, explore in a limited fashion the effects of different scheduling semantics 

using a version of future called dfuture. 3  This construct is equivalent to future 

with the exception that dfuture causes the newly-created task to placed on the idle 

see Appendix D for a description of Multilisp expressions. 
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Figure 3-9: An example of very suboptimal sheduling 

1. (defmacro dmaximize-members (game list level window) 
"An alternative to MAXIMIZE-MEMBERS." 

2. c(mapcar (lambda (move) 
3. (dfuture (maximize (make-child ,game ,move) 
4. ,level ,window ,move))) 
5. ,list)) 

Figure 3-10: Using dfu.ture in "speculative" search. 

task queue, while the current task continues executing. The appropriately modified 

version of maximize-members is shown in Figure 3-10. Another possible variation 

is to use &future, which provides for FIFO task queueing. 

From our speculative search algorithm, we should expect fairly large utilization 

of processors similar to that achieved in the parallel exhaustive search. However, the 

use of cutoff should decrease the total work involved, so a total computation time 

less than the mandatory work first algorithm should be possible. Factors that might 

hinder such a result include overhead introduced by the ad hoc kill construct (tasks 

may not be garbage-collected properly), overhead from the data locking introduced 
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by the atomicity requirements of checking and updating shared data, and ineffecient 

scheduling of tasks. 
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1. (define *aspire-search* alpha-beta) 

2. (define *aspire-num* 33) 

3. (define (aspiration game bottom 
4. &optional (search *aspire-search*) 

5. (number *aspire-num*)) 
"An alpha-beta search." 

6. (let ((window (/ (- (inf) (neg-inf)) number))) 

7. (define (aspire alpha best) 
8. (if (>= (+ alpha window) (inf)) 

9. best 

10. (aspire (+ alpha window) 
11. (future 

12 	 (or 

13. (search game bottom alpha (+ alpha window)) 

14. best))))) 

15. (aspire (neg-inf) (null-square))) ) 

Figure 3-11: parallel aspiration 

3.1.4 Parallel-Aspiration Search 

A strikingly different approach suggested by Baudet [6] is to divide the initial 

alpha-beta window, [—oo, oo] into smaller windows and run several full alpha-beta 

searches, each on a different processor, with these smaller windows. The search that 

returns a move with the highest value is the correct one. Such a parallel aspiration 

search is shown in Figure 3-11. 

Since each processor is running one full alpha-beta search with a window smaller 

than the original, each of these searches should take less time than the original 

search would have. The attractiveness of this proposal lies in the fact that no 

communication is necessary between the narrow-window alpha-beta searches, so no 

time will be lost to locking of data, and since little data is shared bewteen processes 
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(and even this is rarely accessed during the duration of the search) there should be 

less time lost to bus contention, especially if good advantage is made of locality of 

data. 

Baudet [6] experienced more than k-fold speedup with k processors, for k < 3. 

He concludes from this that the alpha-beta algorithm is not optimal. His results 

show no significant gain in decreased computation time for k > 5. 

Possible variations of this algorithm include using some communication between 

processes, say a flag, to signal tasks to stop if the best move has already been found, 

or to further alter their alpha-beta windows.Another possibility is to combine this 

method with other parallel versions of alpha-beta search, e.g. mandatory work first 

or one of the speculative approaches. 

A drawback to this method of parallelizing alpha-beta search is its dependence on 

the knowledge of the number of processors available. Moreover, at least in Multilisp, 

this method requires explicit allocation of tasks to processors to efficiently utilizize 

the available processors. If k processors are available, using less than k processors 

will not fully take advantage of potential parallelism. Using more than k processors 

will cause at least one processor to execute more than one full alpha-beta search. 
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3.2 Finer Grain Parallelism 

3.2.1 Static Evaluation 

In addition to parallelizing the actual search algorithm, we can perhaps exploit 

parallelism at a finer level. Static evaluation, one of the more time-consuming 

operations of the search, is a good candidate for such further concurrency, since 

the Multello evaluation technique involves examination of each square on the game 

board. By the same token, probably most board games could benefit from par-

allelization at the static evaluation level, since most likely a static evaluation will 

involve examination of most, if not all, portions of the game board. 

Looking at the static evaluation procedures EVALUATE and FE VALUATE, we 

can see that simply wrapping a future around the addition operands will not be 

very effective, since the first operand, a call to EVAL-SQUARE, will take little 

time, while the second operand depends on the evaluation of the remainder of the 

board. The problem is that the tree of additions is extremely lopsided. To achieve 

more concuiTency, we would like to see a more balanced tree. We can achieve this 

by using a divide-and-conquer approach, splitting the list *SQUARES* into halves 

and splitting those halves into halves, and so on. The result is a balanced binary 

tree six deep, instead of the sixty-four ply tree created in the sequential version. 

The static evaluation for Multello in both continuing and end-of-game positions 

involves summing the values of each square on the game board. Thus, we can 

parallelize this by wrapping a future around each operand of the addition operation.4  

In this example, the future is actually encloses the body of the tail-recursive loop, 

so the procedure returns a value, albeit undetermined, very quickly. 

A possible refinement of this binary tree form of parallelization would be to stop 

using futures at a certain depth, say, when the board has been broken down to 

divisions of four squares. At this point, the cost of using a future begins to rival 

'This is equivalent to using poll,. See Appendix B. 
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1. (define (evaluate board color) 
"A parallel static evaluation." 

2. (define (eval squares) 
"This sums up the values of all squares on the board 
using divide and conquer." 

3. (future 
4. (cond ((null squares) 
5. 0) 
6. ((square? squares) 
7. (eval-square board squares color)) 
8. (t 

9. (let ((right (nthcdr 
10. (round (/ (length squares) 2)) squares)) 
11. (left (ldiff right squares))) 
12. (+ (eval left) 
13. (eval right))))))) 

14. (eval *squares*)) 

Figure 3-12: A parallel static evaluation procedure 
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1. (define (final-eval board color) 
'`A parallel static evaluation." 

2. (define (eval squares) 
"This sums up the values of all squares on the board 
using divide and conquer." 

3. (future 
4. (cond ((null squares) 
5. 0) 
6. ((square? squares) 
7. (final-eval-square board squares color)) 
8. (t 
9. (let ((right (nthcdr 
10. (round (/ (length squares) 2)) squares)) 
11. (left (ldiff right squares))) 
12. (+ (eval left) 
13. (eval right))))))) 

14. (eval *squares*)) 

Figure 3-13: A parallel static evaluation procedure for end of game. 
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the cost of sequentially evaluation the subdivisions. 

3.2.2 Flipping Pieces 

Another area in which parallelism may be exploited is in the the routines that 

actually perform a move. Games such as chess or tic-tac-toe which involve only 

simple changes to the game board probably cannot employ much concurrency, but 

games in which moves more drastically alter the board promise opportunities for 

more significant parallelism. 

As we can see from the sequential implementation of the move generation al-

gorithm in Multello, making a move involves changing the board in up to eight 

possible directions, each of which does not affect the other. Thus, it seems we can 

proceed with the eight flipping calls concurrently and then summarize the results 

at the end of the eight tries. 

Once again, we must take care in setting up the separate parts of the move 

enaction in parallel tasks, for this is a side-effecting operation. Although it does 

not matter what order the differently directed flip operations are done, it is crucial 

that they be done before any other operations that depend on the state of the game 

board. 

For example, if we call the flip procedure and then perform a static evaluation 

on the board before all the flips have completed, then an erroneous static value 

will result. Worse yet, if a copy of the current board is made, say in generating a 

successor position during a look-ahead search, before the flips have completed, then 

we will have created a non-possible game board, and the search will be worthless. 

Consequently, if we create a future for each component of a move, then we must 

touch each of these futures at some point to guarantee that the move has been 

completed. 

Figure 3-14 shows the DO-FLIPS procedure modified to process the eight parts 

of the flipping procedure, plus the actual placement of the new piece, concurrently. 
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1. (define (fdo-flips board square color) 
"Parallel version of do-flips." 

(flip1 board 
(flipl board 
(flipl board 
(flipl board 
(flipl board 
(flipl board 
(flipl board 
(flipl board 
(put-piece 
futures))) 

2. (let ((futures (list 
3. (future 
4. (future 
5. (future 
6. (future 
7. (future 
8. (future 
9. (future 
10 	 (future 
11 	 (future 
12 	(touch-members 

square (east) color)) 
square (ne) color)) 
square (north) color)) 
square (nw) color)) 
square (west) color)) 
square (sw) color)) 
square (south) color)) 
square (se) color)) 

color board square))))) 

Figure 3-14: Parallel version of move procedure 

The futures created are combined into a list and a list version of touch is used to 

guarantee the completion of the move on exit from the procedure. 

The same idea can be used to parallelize the procedure that updates the list of 

possibly legal moves after a move has been done. Like the flipping done during a 

move, all eight directions along the board must be checked, only in this case to see 

if it is empty and thus can be added to the list representing the perimeter of empty 

squares on the board. The resulting procedure is shown in Figure 3-15. 

3.2.3 Move Generation 

In addition to parallelizing the the enactment of moves on the game board, we can 

also parallelize the operation of generating the list of possible moves on a given 

turn. The parallelized filtering procedure is shown in Figure 3-16. 

In generating the children of a node, it is usually necessary to filter out many 

of the possible moves as illegal. Even in Muhello, which narrows down the list of 

possible moves to the perimeter surrounding the contiguous form of pieces on the 



(copy move-list))) 

square 
square 
square 
square 
square 
square 
square 
square 

(east)) new-list)) 
(ne)) new-list)) 
(north)) new-list)) 
(nw)) new-list)) 
(west)) new-list)) 
(sw)) new-list)) 
(south)) new-list)) 
(se)) new-list))))) 
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1. (define (fupdate board move-list square) 
"Parallel version of update." 

2. (define (add square move-list) 
3.  
4. (if (and (not (null square)) 
5. (empty? board square) 
6. (not (member square move-list))) 
7. (insert square move-list))) 

8. (let* ((new-list (remove square 
9. (futures (list 
10. (future (add (inc-square 
11. (future (add (inc-square 
12. (future (add (inc-square 
13. (future (add (inc-square 
14. (future (add (inc-square 
15. (future (add (inc-square 
16. (future (add (inc-square 
17. (future (add (inc-square 
18. (touch-members futures) 
19. new-list)) 

Figure 3-15: Parallel updating of the border. 

1. (define (get-moves board moves color) 
"Returns a list of all possible moves with color in MOVES." 

2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  

(future 
(cond ((no-move? moves) 

(null-square)) 
((flip-possible? board (car moves) color) 
(cons (car moves) 

(get-moves board (cdr moves) color))) 
(t 
(fget-moves board (cdr moves) color))))) 

Figure 3-16: parallel move generation 
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board, each member of the list has to be checked if it is a valid move first before it 

is used to generate a child. 

Checking the legality of a move is trivial in games like tic-tac-toe or Go. For 

these games, verifying the legality of a move involves merely a check to we whether 

the spot to be moved upon is empty.5  

Othello and chess, on the other hand, provide more opportunity for parallel 

activity in verification of move legality. In chess, one criterion for a move to be 

legal involves making sure that the move does not place the current player's king 

in check. This would, in effect, involve a full search of the possible moves for the 

opposing player to determine if he could capture the king. 

Othello, to a much lesser extent, provides possibilities for parallelizing move-

legality verification in the same manner that we added parallelism to the move-

generation procedure. Instead of flipping pieces when possible in eight different 

directions, here we merely check if a flip is possible in each of the eight directions 

and return true if any of them do (Figure ??). Like the move-generation procedure, 

we can do these eight checks concurrently, although or is strict, so we must first 

accumulate the future'ed lists in a list and then iterate through it until a non-null list 

is found. The overhead incurred by this might not justify the attempt to parallelize 

this procedure. 

5 Actually, in Go, a check also must be made to ensure that the current move does not exactly 
reverse the effect of a previous move. 
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1. (define (fflip-possible? board square color) 
"Parallel version of flip-possible?. ) 

2. (define (or-members list) 
3. (cond ((null list) 
4. nil 
5. ((not (null (car list))) 
6. t) 
7. ((or-members (cdr list)))))) 

8. (let ((or-list 
9. (list 
10. (flip board square 
11. (flip board square 
12. (flip board square 
13. (flip board square 
14. (flip board square 
15. (flip board square 
16. (flip board square 
17. (flip board square 
18. (or-members or-list))) 

(east) color) 
(ne) color) 
(north) color) 
(nw) color) 
(west) color) 
(sw) color) 

(south) color) 
(se) color)))) 

Figure 3-17: parallel move verification procedrue 
? ? 



Chapter 4 

Results 

4.1 Gathering Data 

4.1.1 A Test Case 

We use as a test case the opening position of an Othello game (Figure 2-1). From 

the symmetry of this position, we can expect a fairly large number of alpha-beta 

pruning opportunities in a search tree of moderate to large depth. 

Also, the small number of pieces on the board results in an initially low branch 

factor. The opening position allows four possible moves, so the root node will have 

four children. The branch factor overall should grow as the search tree gets deeper 

into the game and evaluates positions with more pieces on the board. 

4.1.2 Parallelism Profiles 

Several different forms of data are desired in analyzing a test run. These include the 

number of processors actively running tasks at any one time, overhead created from 

the invocation of future, time lost to bus and memory contention, and, of course, 

final computation time. This data can be analyzed in the form of a parallelism 

profile. An example of such a timeline is shown in (Figure 4-1) The profile is a graph 

60 
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Figure 4-1: A parallelism profile for a three-ply depth-first search. 

of number of processors in use vs. time. The area filled in black is the total "real" 

computation time. The gray-filled area is processor time spent on the overhead 

required by the handling of futures. Time lost to locking of data is represented by 

the most sparsely-filled area, and idle processor time is the remaining black area. 

4.1.3 Sequential Search 

The presence of alpha-beta cutoff is noticeable starting at ply three (Figure 4.1). 

The savings in search due to the cutoff is not as much as we might expect, possi-

bly because the static evaluations are relatively quick compared to the process of 

generating successor nodes, which entails generating legal moves and making these 

moves on copies of a board. 

The two searches perform similarly shallow searches, but on four-ply and deeper 

searches the alpha-beta cutoffs make a dramatic difference. However, despite the 
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search two-ply three-ply four-ply 
depth-first 19.67s 77.45s 250.98s 
alpha-beta 19.55s 64.78s 225.78s 

Table 4.1: Comparison of exhaustive minmax and alpha-beta search times. 

level 1 level 2 level 3 level 4 
final time 7.98s 15.02s 34.72s 133.57s 
idle time 92.1% 82.1% 45.2% 15.5% 
compute time 7.8% 17.8% 54.3% 83.7% 
future time 0.1% 0.1% 0.4% 0.6% 
overhead time 0.0% 0.0% 0.1% 0.2% 

Table 4.2: Statistics for parallel exhaustive search 

large savings resulting from alpha-beta, the exponential growth of both algorithms 

is apparent. 

4.1.4 Parallel Exhaustive Search 

The parallel exhaustive search in contrast does quite well time-wise. (Figure 4.2) 

Extra work incurred by the overhead of using futures and data locking is close to 

negligible. The full search makes fairly efficient use of available processors. (Figure 

4-2) As the search grows deeper, the utilization grows more efficient, its parallelism 

profile begins to resemble a rectangle. 

The staircase-like effect on the left portion of the graph probably corresponds 

to the different search levels, at each level of the search tree the tasks created to 

evaluate the children of that level's nodes pile up. Supporting this conjecture is the 

fact that each "step" is higher than the previous, and the first step consists of a 

four-processor rise, corresponding to the number of children at ply one. 

The horizontal span of these steps probably represent the time taken to filter 

out the list of legal moves from which the children nodes are made. The noticable 

width of these steps relative suggest that time-saving opportunities might lie in 

parallelizing the GET-MOVES procedure. 
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Figure 4-2: Parallelism profile for parallel-exhaustive search on a four-ply search 
tree. 
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Of interesting note is the apparent "tail" of the graph in Figure 4-2, where, 

as the computation nears its end, the graph begins to drop and then rises again, 

briefly, before tapering off, again. This might signify the presence of a number of 

tasks that could not be processed before certain computations, prohibited by the 

saturation of the processors, occurred. 

For example, one might envision a search of a five-ply game tree in which the 

processors are saturated by a number of static evaluations while some tasks to 

process nodes on ply four are waiting in the task queue. Once some of the processors 

are freed, there is some delay while the newly activated ply four tasks compute their 

lists of legal moves from which they generate their successor nodes. This delay, plus 

the subsequent activation of the successor nodes could account for such a dip in the 

graph, although the accumulated tasks in question may not be the ones cited in 

this scenario. 

Once again, the parallelization of the legal-moves function holds some prospect 

of shortening such delays between the activation of a node's and the spawning of 

its children tasks. Another way to avoid this bottleneck might lie in the provision 

of more control over the scheduling of tasks. 

4.1.5 Using Mandatory Work-First 

As expected, the mandatory work first procedure does better than its sequential 

alpha-beta counterpart. The reduced computational load in this parallel alpha-beta 

search, however, does not enable it to achieve search times as good as the parallel 

exhaustive search. (Figure 4.3) 

The profile of the mandatory work first algorithm applied to a five-ply game 

tree (Figure 4-3) shows a large burst of parallelism near the beginning of the search 

which rapidly tapers off to one processor. This burst grows increasingly sharper 

and narrower relative to the entire search graph as the search grows deeper. 

These results show the parallel exhuastive search to be far superior to the manda- 
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level 1 level 2 level 3 level 4 
final time 7.88s 27.62s 116.32s 460.5s 
idle time 92.1% 92.5% 91.8% 92.8% 
compute time 7.8% 7.4% 8.1% 7.1% 
future time 0.1% 0.1% 0.1% 0.0% 
overhead time 0.0% 0.0% 0.0% 0.0% 

Table 4.3: Statistics for mandatory work first search 

Figure 4-3: Profile of the Mandatory-Work-First procedure 
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search two-ply three-ply four-ply five-ply 
final time 6.48s 14.73s 34.28s 129.38s 
idle time 90.8% 79.8% 42.9% 12.0% 
compute time 9.1% 20.0% 56.5% 87.1% 
future overhead 0.1% 0.2% 0.5% 0.7% 
other 0.0% 0.0% 0.1% 0.2% 

Table 4.4: Results from speculative search 

tory work first search, at least on machines such as Concert featuring a large number 

of processors. It is likely that the mandatory work-first search would fare better 

relative to the parallel exhaustive search on a machine with only a few, say three to 

five processors. And perhaps on extremely deep searches the mandatory work first 

procedure would catch up to the full parallel search by dint of its lesser total com-

putational work, since at some point the parallel full search saturates the available 

processes and tasks start piling up on the task queue. 

It is interesting to note that the percentage of the total processor time (busy 

and idle) used to do "real" computing is fairly constant. 

4.1.6 Speculative Search 

The speculative search, WORK-MORE, first introduced in Chapter Three (Figure 

3-7) gives somewhat disappointing results. It appears not to do significantly better 

than the parallel exhaustive search. The overhead from futures and memory con-

tention is markedly higher than in the parallel-exhaustive search and the mandatory 

work-first search, but not to a troubling degree. 

The variation of the speculative search in which a node updates its alpha-beta 

window after resolving each child does a bit better. (Table 4.5) The profile of 

this multiple-update speculative search explains to a certain extent this newfound 

improvement (Figure 4-5). Notice that the search ends rather abruptly with a sheer 

drop in the parallelism graph. This indicates that the search returned a value even 

though some of its processes hand not finished executing. 
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Figure 4-4: Speculative Search 

search two-ply three-ply four-ply five-ply 
final time 6.32s 13.82s 29.62s 107.80s 
idle time 90.9% 80.1% 39.5% 10.9% 
compute time 9.0% 19.7% 60.0% 88.3% 
future overhead 0.2% 0.2% 0.5% 0.7% 

_ other 0.0% 0.0% 0.1% 0.2% 

Table 4.5: Results from speculative search with multiple updates per node. 
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Figure 4-5: Speculative Search with more cutoff checks 
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In addition to the granularity of updating alpha-beta windows, different schedul-

ing semantics seems to have a significant effect on the resulting parallelism profile 

and search time. For example, the use of dfuture instead of future negates the time 

savings achieved by WORK-MORE1. Unlike the latter search procedure DWORK-

MORE] fails to return a value before all portions of the search has been completed 

(Figure ??), as it ends in a more gradual curve representing the tapering off of 

tasks. 

This can be explained by noting that to maximize cutoff, what we need to do 

is not necessarily give priority to processing lower portions of the searc tree, but 

instead we need to give priority to evaluating a minimum . number of search paths, 

the portion evaluated in parallel in the mandatory work first search. 1  

This depth-first priority in fact is probably better provided by future than dfu-

ture, since the use of future in our speculative search gives precedence to the evalu-

ation of the children of a node, albeit in a left to right ordering. What would really 

be desirable is some way to dictate that the search paths necessary for cutoff are 

done first. 

The importance of task scheduling is further demonstrated by a sample trial of 

the speculative search using sfuture. This variation, using an alpha-beta update 

after each child has been touched, featured the same cliff-ending effect as work-

morel, yet still took about as long as the parallel exhaustive search. 

4.1.7 Using Parallel-Aspiration Search 

The use of parallel aspiration search on the test case showed no improvement over 

sequential alpha-beta performance. In fact, increasing the number alpha-beta par-

titions increased the final search time. (Figure 4.6) 

The lack of speedup suggests that the effectiveness of the parallel-aspiration 

1  Although it doesn't really matter which paths we evaluate, as long as we evaluate enough to 
make cutoff of other search paths possible. 
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Figure 4-6: Speculative Search using Dfuture 

windows 1 2 3 10 15 32 
time _ 259.93s 259.35s 251.45s 278.38s 287.00s _ 312.17s 

Table 4.6: Statistics on performance of the parallel aspiration search 
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Figure 4-7: Parallel-aspiration search using fifteen alpha-beta partitions. 

search lies not so much in the number of alpha-beta partitions as the prudent 

choice of the a and fi  parameters. In [6], Baudet presupposes that his window-

selection function, SELECT-NEW-INTERVAL, has some knowledge of the expected 

distribution of the move values to be found, which he argues is not an unreasonable 

assumption in game-playing programs. 

The failure of a naive division of the alpha-beta window among available pro-

cessors can be seen vividly in the profile of Figure 4-7. We know that the longest 

horizontal bar represents the search which actually returns the correct move, since 

all of the other bars terminate sooner, and the aspiration procedure returns as soon 

as it finds the right move. It is interesting to note that the searches on the alpha-

beta windows that do not enclose the correct move do terminate more quickly than 

the search returning the final move, but a good number of them still take much 

longer than the parallel exhaustive search and the speculative searches. 
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The correlation between the addition of more alpha-beta divisions and increased 

computation time has a couple of possible explanations: 

1. Increasing the number of searches that operate on the same global game object 

might dramatically increase delays due to bus contention. 

2. Multiple searches on globally shared data might also increase the number 

of garbage collection operations during the search period. This hypothesis 

is supported by the observation of numerous garbage collection notifications 

during testing of the parallel-aspiration procedures. 

Both possibilities point out aspects of the inner workings of Multilisp that war-

rant improvement, especially if deficiencies in either or both mechanisms leads to 

such performance degradation as evidenced by the parallel-aspiration results. 



Chapter 5 

Concluding Remarks 

5.1 Conclusions 

5.1.1 Parallel Search 

Adding futures to an exhaustive search seems to work fairly efficiently for fairly 

shallow search trees, but at some point, say a depth of three, the computational 

work saturates the available number of processors. 

Still, the parallel exhaustive search is much more effective than the mandatory 

work first approach, due to the relatively small number of nodes that can be pro-

cessed in a search tree without possibility of alpha-beta cutoff. 

The attempt at a compromise solution, a search using speculative computation, 

did not fare much better than the parallel exhaustive search, but did suggest that 

better performance might be achieved if there existed more support for speculative 

computation in Multilisp, particularly in the form of more control over the shedul-

ing of tasks. The slightly better performance of the multiple-update speculative 

approach, procedure work-morel in Figure 3-7, over other variations shows that 

adding computational work in exchange for more cutoff possibilities may be a good 

tradeoff. 

73 
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The results of employing an "aspiration" technique were disappointing. Not only 

did this method fail to result in any speedup, it actually lengthened search time 

in correspondence to the number of partitions that the original alpha-beta window 

was divided into. The lack of speedup suggests that the promise of the aspiration 

technique lies more in the intelligent selection of the alpha-beta windows rather than 

a brute-force division into the available number of processors. Overall, it seems that 

the effectiveness of the aspiration technique presupposes a greater knowledge of the 

distribution of static values and the available number of processors than the other 

search methods. 

In summary, the dramatic decrease in search time evidenced by the parallel-

exhaustive search even on a five-ply game tree demonstrates that the area of com-

puter search is one that can benefit greatly from application on multiprocessor 

architectures. Furthermore, the results from our attempts at speculative search 

indicate that speculative computation may be well suited for this type of problem 

and that support mechanisms for speculative computation should be pursued. 

5.1.2 Multilisp 

The use of a moderately large Multilisp program to explore opportunities for par-

allelism in computer game-playing allows us to distinguish many of the strengths 

and weaknesses of Multilisp. 

The future paradigm turns out to be convenient and useful in parallelizing 

mandatory computation. Adding concurrency to a an exhaustive minmax search 

merely entailed wrapping future around certain key expressions. Likewise, the 

mandatory work first procedure differed from its sequential counterpart mainly by 

a check for the no-cutoff condition. In the latter case, the process of adding futures 

to the code resulted in a greater understanding of the sequential algorithm. 

In addition, the necessity for using shared arrays in Multello (copying a board 

everytime a move is made would be prohibitively time-consuming) vindicates Mul- 
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tilisp's support of explicit parallelism and side effects. 

The most prominent deficiency in Multilisp demonstrated during the course of 

this thesis is the lack of support for speculative computation. Useful would be 

features such as explicit task-killing directives and more programmer control over 

the scheduling of tasks. Also, the results of the parallel aspiration search suggested 

that garbage collection and bus and memory contention could be a problem in some 

cases. 

In the other searches we tried, time lost due to memory locking apparently 

was not a serious problem. Also negligible was the computational overhead due 

to handling of futures was negligible, which is not surprising considering the large 

granularity of searches. It remains to be seen whether the cost of invoking fu-

ture becomes a problem in finer-grain applications, such as parallelizing the static 

evaluation. 

In summary, we have verified that Multilisp works quite well at parallelizing 

large-grained mandatory computation, and as a general-purpose language that sup-

ports both functional programming and side-effecting procedures it is well-suited 

to applications like Muhello that require both for convenient implementation and 

efficient execution. 

5.2 Future Work 

5.2.1 Enhancing Multilisp 

The initial results from Muhello show speculative tasking to be a promising way to 

efficiently utilize multiprocessors for applications like game searches. However, the 

Multilisp procedures demonstrated in this thesis have been hindered by the lack of 

support for speculative computation in Multilisp. 

Among the features needed are: 

• Some way to kill a task after it has been determined that the task is not 
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relevant to its parent computation. 

• Some way to explicitly prioritize speculative tasks so as to give more promising 

tasks, i.e. tasks whose values have a greater probability of being needed, a 

higher scheduling priority. It is unlikely, especially in an application such as 

alpha-beta search, that a compiler or interpreter can determine such priority 

implicitly. 

5.2.2 More on Searching 

This thesis is just an initial attempt to survey possible ways of speeding up game 

searches in a multiprocessor environment. Certainly many of the areas touched 

upon warrant further exploration. 

For example, parallelizing the game search at a much finer level, e.g. the static 

evaluation or the generation of legal moves, could become an important speedup 

factor, especially for searches that do not make very efficient use of available pro-

cessors. The mandatory work first search is one algorithm that might look much 

better compared to the parallel-exhaustive search if more advantage was taken of 

finer-grain parallelism. Furthermore, forms of speculative search might take good 

advantage of this additional parallelism. It seems likely that a speculative search 

combined with efficient task scheduling and a high degree of finer-grain parallelism 

may provide the most optimal game search using the concepts presented in this 

thesis. In any case, finer-grain parallelism should be explored at least to gather 

more information on how effective Multilisp is on these components of the game 

search. 

Another area replete with unanswered questions is the parallel-aspiration search. 

The rather straightforward application of it in Chapter Three proved to be naive, 

suggesting that we should put more effort into exploring the questions of what sort 

of alpha-beta partitioning is needed to achieve a decrease in search time and how a 

procedure can determine these partitions. 
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Also, the parallel aspiration search allows opportunities to mix and match search 

algorithms. For example, instead of calling the sequential alpha-beta search, the 

aspiration loop could call the mandatory work-first search or even one of the spec-

ulative alpha-beta searches. Considering that many of the failed subsearches in the 

aspiration example (Chapter Four) took a small fraction of the total search time, an 

aspiration search combined with a mandatory work first or speculative alpha-beta 

search might result in very efficient processor utilization. 

Another area of interest might be to analyze Baudet's report that using k proces-

sors, for 0 < k < 4, he achieved more than k-fold speedup. It would be informative 

to try to duplicate this result and to explore his conclusion that the alpha-beta 

algorithm is suboptimal. 
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