
LABORATORY FOR
COMPUTER SCIENCE

MASSACIT! USETTS
INSTITUTE OF
TECHNOLOGY

r wINIMEMINMEMMENIMMIIIIM 	

VIM: An Experimental Multiuser System
Supporting Functional Programming

Computation Structures Group Memo 238
Massachusetts Institute of Technology

Cambridge, MA 02139
9 May 1984

Jack B. Dennis, Joseph E. Stoy
and

Bhaskar Guharoy

To be presented at the International Workshop On High-Level Computer
Architecture at Los Angeles, California, May 23-25, 1984.

545 TFCIINOLOGY SQUARE, CANIIIRIDGE, NIASSACHUSF. ITS 02139

11 	„pi

, 	, 	•iye,
- 4 	• . 	r 	 I- 	 .71 I',

al 4141 to.
,

• I 	II

-

1VvOp* 	Jit11 nO enikiviW Innoinurmit arti 	bAcesnri 	oT
Silt 4-Et '004 	el2h3tith, 40.124

_
.
„

. 	-121.00AVAI4 .710(111,0140110 1014.10a 1(0030411*VW I i

_ 	1 	,
eh., : 	, , 	i 	, .., • ?to,

i.

,• r

4,•!..qo

9,
_1=

1 1-71: 	-17
I 	I-

f

trilt11 MOM?, A M
40 OJT! 0.1./

t 100,1014 io3T

mtetaignittutt Intfiortthoqz3 iiiA :MI
„ sitinumigolq hamitlinfi goihoctqua

.1.

tti Ottk*M (IWO Mitibita Wilt:JAM)

aDirSiti,,1410 IPPI38111 enfowbaltnii4
•RCM? AM 4 abildriv0

toM

Ma 3 tbrotot Alival(t
boa L

qa9 \NOV\ Rneski
a343toe 513Tutimc3

VIM: An Experimental Multi-User System
Supporting Functional Programming

by
Jack B. Dennis, Joseph Stoy

and
Bhaskar Guharoy

Abstract: An experimental, multi-user computing system to support functional

programming is being developed using principles of data flow computer architecture. Users

of VIM will write programs in ViMVAL, an extension of the strongly-typed language VAL to

support streams, recursion, and high-order functions. Program modules are compiled into

function templates which encode data flow graphs as groups of VIM machine instructions.
The design of VIM provides special support for streams using early-completion data

structures and suspensions, and tail recursion is used to avoid unnecessary retention of
activation records. This paper discusses the experimental system in general and explains
the program execution mechanisms of VIM in terms of an example program module.

The ideas discussed in this paper were developed with support from the National Science

Foundation, the U. S. Department of Energy, and the Advanced Research Projects Agency of the U. S.

Department of Defense.

j , 	ill !....

'i i • I 	I 	 - 	i! 	 i 1 	 " 	I I . - 	!!-T-11_ 	 1-- v

. ittlppoorEaptpitilti r+ettimmect bo4rtetttlik wit blew Nt•-otra id iiii,rhttowt*Ojt xj.sittAteloOboytA -

	

,_ .7.,,:...-kr, 	---.1,-- • 	' ~ - -I
• ! 	: r` 	= I 	1 r-,. ii..-.7,!

I., ,,,,
„i-ii,ftn ,,,-,' iri

l' 144. •:, - 	

-, ,
--

	

., -_,,,,,„,,,,-_,_ 	i / 	
• .! II 	1 	- 71 1 i I

_

.,,.

ft-' 	- , i , d u, 	.-. 	T _
...1

1 A ,..,....„.....--
 -lf (1-;f11

1_11 I

mine loot) Itiog
erarnfrialetnilI 	nul Oral cirque

Awl

tat *Wet nnegl .$1 ili161.
br

vOilliftub

' mignita la) mew galtialmft livp.}4111m. ,Isinln*vtalat ro%
AP.11ftliettrailiMuerria011 MA" isetq'miglo 41141) +1,ouptivii*, %VA enteitliogtatA "

ispialeitok-bAtt-Opetilit 	toInetti,Vrw hat. 	 v.0020444 ow* way taori -
10111043 	401.,itteitot cosvoitl 	 bat .o-oiirmor$ A.42046, nfmloot

volOoltioN 	IQ ulsictra witong we $osia Itinme Offr*or 7411104400 Int*mist
ilositztiii,)041.10 !oft.). tilqvinst 	tlt$031 lev3V-Nt Itifbi$4014 	Mitsqb iMiN

Pti 	OM lioiritov4 Vtel 'at la ,,tricitetki4644 ibtit titrusotuve

basi **we iv*IsIct katimitsthtoptil 	es4toxh AtAgq MAN ti31009.1 WM01%
-WOW 10osiputk irkTiisto 	tatilA 01001.evetoiOncilmin.re*Pgia4 OtAiiintt ent

1... 	:111

:- rlu 	 i
- .

j :71fIt1.1';

'i

!if; %:::1
7 :1-1 44 4,17!!!'-
.C,!1.,„ 1,. ti

4 . I. ,F

	

,.: 	_-- - 	,,, --,-,- I

	

,_ _ 	t4 7pt,
! Ailii3L1 11 iej

	

. 	1

	

.. 	• i y I ,l_. i
• 	. „

;,,:i . . 	 -,--t,!
Iiittelialiet elitf MOO tiOtglig illivvbsodittemob etwx 1.4044 Aro r4 traitautsiitt ,goitio -$0: .

11.614- -

I !

I I 	s

•
, 	"f n

7

1. Introduction

This paper reports on a project in the Computation Structures Group of the MIT
Laboratory for Computer Science to develop an experimental computer system embodying
concepts of functional programming and data flow computer architecture. The Vim (VAL
Interpretive Machine) is a prototype for a multi-user computer system that supports the
functional programming style [5] for a user community sharing a collection of information
and program modules. This project is the fruition of a research program that has evolved
from concepts of computer system organization presented in [8]. Related efforts toward
practical computer systems supporting functional programming include [4, 17, 23, 6, 3, 16].
The goals for the Vim Project are discussed in 110] and the semantic model on which the
implementation is based is sketched in [11].

We intend that programs to be run on Vim will be expressed, directly or indirectly, in
the high-level functional programming language VimVAL. We believe VimVAL is sufficiently
complete to provide access to all essential features of the computer system. Hence it should
not be necessary for users to depart from expressing information processing applications in
VIM VAL for any requirement of their application, be it a text editor or an airline reservation
system. Thus Vim does not provide any facilities other than those of the VimVAL language for
the manipulation of data bases or for the control of concurrent tasks.

Section 2 of the paper illustrates the VimVAL language through a classical example of
programming with streams-testing two trees for equality of their "fringes". In Section 3,
this example is used to illustrate the program execution mechanisms of Vim - tail recursion
to avoid unnecessary retention of activation records, records with early completion to
implement streams, and suspensions to implement demand-driven generation of stream
elements. Section 4 discusses modules, binding and type checking, and Section 5 reviews
progress and plans of the project.

2. The VimVAL Language

The programming language for the Vim system is VimVAL, an applicative language
which is a revision and extension of the VAL programming language [1,2, 20]. The
extensions include the addition of stream-types, free variables, recursion and mutual
recursion, and treating functions as first-class objects. The requirements for type
declaration have been relaxed as discussed in Section 4.

An example of a program module written in VimVAL is shown in Figure 1. It consists of
a header specifying its interface, several function definitions, and an expression that
constitutes the function body. This module is chosen to illustrate how certain features of
VimVAL are supported by the execution mechanisms of Vim discussed in Section 3. It returns
a record whose fields contain functions that may be used to build trees and to test if their
"fringes" are equal. The definitions of the two functions of particular interest are presented
in Figures 2 and 3. In the following paragraphs we explain the main features of VimVAL.

A module written in VimVAL defines a function that may be invoked from within another
module or by a user command to the system (see Section 4). A module may contain internal
function definitions - these may be invoked only from within the module unless they are

module returns operations;

type operations = record[build, equal: function];
type CharStream = stream[char];
type TreeType = oneof [node: record[left, right: TreeType];

leaf : char];

function EqualFringe((l, 12: TreeType returns boolean)
function EqualStrearn (sl, s2 : Charstream returns boolean)

% The body of function EqualStrearn
°;,, is shown in Figure 2.

endfun

EqualStreatn(Leaves(s1), Leaves(s2))
endfun;

function Leaves(t: TreeType returns CharStream)

% The body of function Leaves
(3'0 is shown in Figure 3.

endfun;

function CreateTree (s :CharS(ream returns TreeType)

endfun;

% The body expression of the module follows.

record [build : Createrree,

equal : EqualFringe]

endmodule;

Figure 1: Text of a program module written in VoAVAL. The bodies of the function definitions are

omitted for simplicity.

incorporated into data structures sent out as module results. The body of a module may use

names that are not defined bound to values by definitions in the module. These free names

must be bound to other modules before the module may be run.

The data types of VimVAL fall into two classes- simple types and structure types. The

simple types include the familiar types Integer, real, boolean, character and null. The

structure types include array-types, record-types, distinguished unions, stream-types, and
functions. The definition of a record-type takes the form

type Node = record [left, right : Tree];

Records of type Node have two fields named left and right. A record may be constructed by

the record building operation

record [left:11, right: 12 I

where 11 arid 12 are of type TreeType. Record fields are accessed by record selection, for
instance

Weft

where N is of type Node. A distinguished union type is used where different choices of

representation are appropriate for different cases of a value. The trees used in our example
conform to the type definition

type TreeType = oneof [node: record[/eft, right: TreeType]:
leaf: char]

where the two subtypes are distinguished by the tags node and leaf. A case expression is
used to access values of a oneof type:

tagcase N
tag node: expr1:
tag leaf: expr2:
end tag

The tag of value N determines which of exprl and expr2 are to be evaluated.

A stream is a sequence of values, all of the same type. A stream may be unending, as
in the stream of characters received from a terminal keyboard. The definition

type CharSIream = stream [character]

defines the type CharStream to be stream of characters. The operation

empty[Charstream]

creates an empty stream:The other operations defined for streams are first, rest, and
affix. If S is of type stream [T] and v is a value of type T then first(S) gives the value of the
first element of the stream, rest(S) returns the stream S without its first element, and afflx(v,
S) returns the stream S prefixed by v.

Functions are first-class objects. They may be passed as arguments to and returned
as results from functions, and they may be built into data structures. The body of a function
definition is an expression. Evaluation of an expression yields a single value or a tuple of
values. Forms of an expression include the conditional expression, the tagca se expression
illustrated above, and function invocation. The group of functions defined in a module may
be recursive or mutually recursive. There is no form of expression for writing conventional
iteration, use of recursion being preferred.

Figure 2 shows the definition of the function EqualStream that tests equality of two
streams. Note that once an unequal pair of characters is tested, the remaining elements of
the argument streams are irrelevant to determining the result. The use of demand•driven
computation of stream elements in Vim avoids computation of these unneeded elements.
The function Leaves in Figure 3 converts a tree into the stream of characters found in a
Icft-to-right traversal of the leaves of the tree. It uses the function StreamOILeaves which
descends the leftmost path in the tree f appending to the list c the right-branching subtrees
it encounters on the way. After reaching the leaf at the end of a path, the most recently
added subtree in the continuation list is processed in the same manner.

function EqualStream(st, s2: CharStream returns boolean)

if null(s1) and null(s2) then true
elseif null(s1) or null(s2) then false
elseif first(s 	= first(s2)

then EqualStrearn(rest(s1), rest(s2))
else false
endif

endlun;

Figure 2: Definition of the function EquaISIream.

function Leaves (1: TreeType returns CharStream)

type Continuation = oneof [
end: null,
element: record [next: TreeType, rest: Continuation])

FunctionStreamOlLeaves(1: TreeType, c: Continuation)

returnsCharStrearn)

tagcase t
tag node:

StreamOf Leaves (t.lelt,

make Continuation [element:

record [next: 1.601, rest: c]])

tag leaf:

tagcase c
tag end: affix (t, empty)

tag element:

affix((, Leaves (c.next, c.rest))

endtag
endtag

endfun

StreamOlLeaves(t, make Continuation [end: nil])
endfun

Figure 3: Definition of the function Leaves.

Some beautiful examples of the use of streams and demand-driven computation have
been given by Turner [24].

TAG

(end) 	(element)

(head) (tail)

MAKE RECORD

	4

TAG

(node)

_41
I

SELECT

(left) 	(right)f

SELECT
(next) 	(rest)

(next) 	(rest)
MAKE RECORD

RECORD(2)

rjEi(head)L1

(I) 	(CFI

MAKE•RECORD

(1) 	(C)

MAKF.• RECORD

STREAM TAIL-APPLY RELEASE

SUSR(la it) a 	

1. SET(fsit)

function closure argument record
1

SELECT (s2)

UNDEF7

(s I) (s2)

MAKE RECORD

L F
t

TAIL APFL Y

OR

SELECT(s 1)

UNDE F*7

AND

1
 F

true

• IDENT

link

PE LEASE

Figure 5: Function template for EqualStream. If the first elements of streams s / and s2 are equal,
further stream elements will be demanded by the seicci (tail) instructions. Otherwise the computation
terminates.

!fr.% 	fur.cZion do:1pr ? 	r2rgument record

SELECT

(1) 	(C)

	
IRELEASE [REAM TAIL APPLY

Figure 4: Function template for StreamOiLeaves. If the given tree is a leaf and the continuation is
not empty (lag = element), the stream is extended by adding a record in which the tail-field is made a
suspension (by the SUSI' instruction). The suspension contains an address a of the STRLAM TAILARRLY

instruction which will be activated by the consumer of the stream.

3. Program Execution in Vim

Vim uses data-driven instruction execution. Hence the function definitions of a VimVAL
program module are represented in Vim by a form of acyclic data flow graph 19, 71 called a
function template, which is stored as an array of instructions. Templates for the two
functions Stream0fLeaves and EqualStream are shown in Figures 4 and 5. These templates

embody the execution mechanisms of VIM discussed below. The nodes of a function
template are instructions drawn as rectangular boxes; these are linked by two kinds of

arcs - value arcs and signal arcs. The value arcs connect from bottoms to tops of instruction

boxes and convey data values. The signal arcs convey signals that perform control functions
such as selecting which arm of a conditional expression should be evaluated. The signal
arcs connect from right sides to left sides of instruction boxes. An exception to this is signals
from a test instruction such as EQUAL for which signal arcs indicating the outcome of the test
stem from the bottom of the box and are labeled T or F.

A variation on the usual firing rule for data flow graphs is possible because of the
special nature of Vim: since iteration is not directly supported and each function application

uses a fresh copy of the function template, the acyclic nature of the data flow graphs

guarantees that at most one value will be associated with each value arc of a template. An
instruction is ready for firing when a value is available from each input value arc, and a
signal has been received on each signal arc. Note that some instructions in a template will
receive values but will never fire because no signal will ever arrive.

During operation of Vim, many function applications will be active simultaneously, and

the machine is free to choose instructions for execution from any active template so long as

the firing rule is observed.

Vim maintains a heap in which all objects that enter into computation for any user are

held. The kinds of objects include function templates, activations (copies of function
templates that support instances of function application), and data structures (record and
array values). In addition, two special kinds of objects are provided - function closures and

early-completion queues-whose purpose is to be explained. Each object has a unique
identifier (uid) which permits its selection from among all objects in the heap. Conceptually,
the heap is a multi-rooted, acyclic, directed graph in which an arc signifies that the target
object is a component of its superior.

A distinctive feature of Vim is the set of mechanisms designed to support aspects of
the VinAVAL language - specifically function application and the use of streams to

communicate between producer and consumer parts of a program. These mechanisms are
discussed below: function application, tail recursion, early-completion records, and

suspensions.

Function Application

Function applications are made by the APPLY instruction, which requires two
operands - a function closure for the function to be applied, and a data structure containing
argument values. The closure contains the uid of the function template and information
defining the binding of any free variables of the function. The APPLY instruction creates an

activation of the function by copying the function template (Figure 6) and sends the

argument structure and a return-link to the template copy. The return-link is the address of
the target instruction, the instruction which is to receive the result of function application. It
consists of the uid of the calling activation and the index of the target instruction in the
function template.

Instructions of the activation are then executed according to the data flow firing rule
until the RETURN instruction is enabled. The effect of the RETURN instruction is to send the
result value to the instruction specified by the return link. A separate RELEASE instruction
returns the storage occupied by the function template to the free storage pool of Vim. This
function is separate from the RETURN instruction because execution of the RETURN

instruction is, as we shall see, not always the last event of an activation.

Each activation requires some memory for its representation in the computer. The
amount of memory required by a program varies dynamically as activations are created and
discarded. The RELEASE instruction is the last instruction to be executed in an activation and
it releases the memory occupied by the activation so that it may be reused.

(a)
	

(b)

(unction
	 return
	argument

closure
	

link
	

structure

target instruction

Figure 6: The APPLY instruction and function invocation. (a) The APPLY instruction, ready to fire, and
its target instruction. (b) Activation of F, ready to send result value y to the target instruction and
release storage.

Tail Recursion

In many cases the value returned by a function f is computed directly by a recursive
application of 1, as shown in Figure 7. In this situation the result to be returned by the caller
is exactly that returned by the callee, and reactivation of the caller is unnecessary. Vim has a
special instruction TAIL-APPLY that implements this. It acts like APPLY but has an extra
operand, a return-link which it passes to the function template instead of generating a new
cne.

return 	function
link 	closure

argument
structure

conditional
expression

false trurs„,j

RETURN

TAIL APPLY

RELEASE

Figure 7: Function template for tail-recursive evaluation of a function. Note that each activation
terminates and releases storage, whether it returns a result or invokes itself recursively.

Early Completion Structures

In computations involving data structures, concurrency is increased if a data structure
can be made available for access before all component values have been computed. If
operations are required to receive all operands before their application, as is usual for the
execution of data flow programs, this concurrency of creating and accessing a data
structure is not possible.

In VIM a facility is provided called early-completion structures to permit structures to
be created before the values of all the components are available. Here we will use early-
completion records (EC-records) to explain the Vim implementation because these records
will be used below in our implementation of streams. The mechanism is illustrated in Figure
8. An instruction RECORD(n) creates a record of n elements, each initialized with a special
element called an early-completion queue, abbreviated ECQ. An ECQ holds a set of
addresses to which the value of the record field must be sent once available. Whenever the
field is filled in by a SET instruction, the ECQ is replaced with its value which is also sent to all
instructions with addresses in the queue. If a SELECT instruction attempts to access the field
while it is an ECO, the address of the SELECT instruction is entered in the queue.

The early-completion mechanism makes it possible to allow function applications to
begin execution before the values of all their arguments have been computed. This is done
by packaging the function's arguments into an EC-record. Similarly, the result values, if
more than one, may be returned as an EC-record so each may be available to the caller

- without waiting for all results to be evaluated.

The Implementation of Streams

An attraction of using streams is that the producer and consumer of a stream can
operate concurrently. In our example of testing the fringes of two trees, the consumer
EqualFringe may begin processing pairs of stream elements as soon as the first pair has

(b)

ECO

s2

RECOALX I) So

sET(')

a

SELECT(/) Si

(a)

	44 SELECT(1) I

Figure 8: Use of the early-completion mechanism for a record field. (a) Typical coding. (b)
Transitions of an EC-record. The RECORD and SELECT instructions are activated by signals s

0'
s1' and

s
2
; x is the value that activates the SET instruction; and a and /3 are the addresses of the SELECT

instructions.

been produced by two activations of Leaves. Meanwhile the producers may continue
execution to generate further stream elements. To achieve this effect, a stream in Vim is
represented by a chain of EC-records:

stream[T] = record[head: T, tail: stream[T]J

The head field holds a stream element and the tail field holds the remainder. A function that
produces a stream passes to the consumer function an EC-record with an ECQ as its tail
component and continues to generate the next record in the chain which it puts in place of
the ECQ. The consumer proceeds down the chain of records, waiting whenever it encounters
an [CO until a value is supplied.

This data-driven scheme permits the producer to get ahead of the consumer by an
unbounded distance, using storage for the portion of the stream that has been produced but
not consumed. Even worse, in the case of EqualFringe, once an unequal pair of stream
elements is encountered, the remainders of the streams are irrelevant, but nothing stops
their production.

In Vim such wasteful computation is avoided by processing streams in a
demand-driven manner: An element of the stream is computed only if the consumer
demands its value. Demand-driven evaluation is also known as lazy evaluation [12] or
delayed evaluation.

Demand-driven evaluation of streams in Vim is implemented using a special record
element called a suspension. A suspension contains the address a of the instruction of the
stream producer which would trigger computation of the next element of the stream. When
the consumer tries to access the next element using a SELECT instruction at address fl, it will
find a suspension. Then Vim performs two actions:

(a)

head

(b)

fail head

- The suspension is replaced by an ECQ containing the address /3 of the
instruction that triggered the demand.

_
- A signal is sent to the instruction at address a. This triggers computation of the
rest of the stream. A record shell is created with the next stream element as its
head component, and a new suspension as its tail component.

The sequence of events is illustrated in Figure 9.

	

(c) 	 (d)

7 	 it

	

I 	I 	 1 	I

	

head 	tail 	 I I

	

I 	.

t

I

I

	

I

 I 	 1 	 I
head 	fail 	head 	fail

(3 	 (15

producer 	 consumer

Figure 9: Demand-driven generation of stream elements. (a) Stream element; the producer is
awaiting a demand. (b) The consumer demands the next stream element. (c) The producer generates
one stream element and suspends itself. (d) The consumer abandons the previous element and
demands another.

Figure 10 shows how tail recursion can be used to advantage in functions that
produce streams. Typically, a stream producer defines its result using an affix operator as
in the following code outline:

function F(8: T returns stream[T])
let v = H(a) ; x =
in affix(v, F(x))
endlet

endfun ;

In this outline v, the next stream element, is defined by function H, and the remaining stream
elements are computed by a recursive application of F. By usual convention, this is not tail
recursion because the affix operator is applied to the result returned by F. Nevertheless the
advantage of tail recursion can be reaped by using an Ec-record as the result returned by F

,and letting the recursive activation of F perform the affix operation by filling in the tail

component. The coding for this scheme is shown in Figure 10. Instructions in function
template Fl fill in the EC-record passed to it as a data-link, and from a new EC-record to pass
on to a recursive activation of itself. The function template for F simply creates an EC-record
which it both returns and passes as the data-link of the initial activation of Fl.

The implementation shown for StreamOlLeaves in Figure 4 is a slight elaboration of

IDENT

RETURN

(a) function template F

return link closure argument

SELECT(F1)

	• nccon or 2)

F-1 STREW TAIL•APPLY

function closure

F

-41 RECORD(2)

data link

F1
i4 	f
STREW TAIL APPLY

argument

(b) (unction template F

Figure 10: Function templates for tail-recursive implementation of a stream producer.

this code to implement demand-driven operation using suspensions.

4. Modules and the User Shell

Users will communicate with Vim by giving commands to be executed by a group of
modules collectively called the Shell. We anticipate that these modules will be programmed
in VinAVAL.

The functions of the Shell include maintaining a directory of named data structures
and program modules for each user, and providing the interface through which users create
program modules, compile them, bind them into executable programs, and request the
performance of computation.

To compile a program module the user will type

Define (M, Translate (P))

This defines the value of M to be the result of invoking the VitAVAL compiler to translate P.

The free names of a module must be bound to other modules before the module may
be run. If I is a free name of P, the user may define a version P1 in which I is bound to
module F by giving the command

Define (P1, Bind (P, f, F))

• If R has no free names, it may be executed by typing

Define (y = R (x1, 	, rrn))

where the arguments xi, ... , xm are literal values or names of objects, and the result will
become the value of directory name y. More specifically, the user might type

let tl = Tree .build (Si);
t2 = Tree . build (s2);

in 	Tree .EqualFringe (11, 12) endlet

to test if the fringes of the trees described by strings sl and s2 are the same. This assumes
that the result of evaluating the module of Figure 1 is named Tree in the user's directory.

The design of VimVAL permits full type checking to be done by the compiler and the
Bind command. The programmer may declare the types of arguments and results of
modules and functions, as shown in the example. The VimVAL compiler will perform as much
checking as it can, reporting conflicts to the user. The Bind command will perform the
additional checking required to validate the use of free names. Once all free names are
bound it is not possible for type errors to occur during module execution.

We plan to employ type inference as developed by Milner [21] in connection with ML
(the metalanguage of Edinburgh LCF [13]), and allow most type specifications to be
optionally omitted by the programmer [19]. The Vim type-checker will make such type
assignments as it can determine and complain if any types remain unknown in a fully bound
module. The type-checking module of the Vim Shell will facilitate its task by maintaining a
global type list of all types used at the interfaces of modules. In this way, hierarchical
composition of program parts is supported with a guarantee of type-correct execution once
module binding is completed.

Not requiring that all types be determined at compilation opens the possibility that a
module may be bound in two or more contexts, each yielding a different resolution of the
types associated with the variable (usually a function variable) being bound. This introduces
a useful form of polymorphism of modules and functions. For example, a Sort module might
specify only that its two arguments be an array of values of an unspecified type named Item,
and a predicate on pairs of values of type Item. The Sort module could then be used both to
sort arrays of integers and arrays of character strings. The envisioned type-checker
supports this by insisting only that separate and consistent type assignments be determined
for each context in which a module is bound.

5. Project Status and Plans

Vim is presently being implemented on CADR 29, a Lisp machine built by the MIT
Artificial Intelligence Laboratory [18]. Mark I, an initial version of Vim, is a data-driven
interpreter for function templates incorporating the mechanisms we have described [22]. It
is written in Lisp and implements an instruction set carefully designed to support the VimVAL
language.

Present effort concerns efficient implementation of the heap on the two-level physical
memory of the hardware system: semiconductor main memory and disk. Our plan is to treat
the main memory as a cache with respect to the large disk (300 megabytes). A small, fixed-
size unit of address space called a chunk is the unit of memory allocation and the unit of
_information transmitted to and from the disk. Since each of the principal storage structures
(function templates, nested records, arrays, early-completion queues) may-be arbitrarily
large, each is represented by a tree of chunks. The representation has been designed by
Bhaskar Guharoy, who is designing the storage management schemes for Vim [14]. The
reference count method of storage reclamation will be used since directed cycles can never

arise in the heap, and the method promises to have considerable advantage in a system that
supports concurrency and has several levels of physical storage.

Since the usual distinction between active data and files does not exist in WA, a novel
design of data back-up and recovery procedures is required. This is the subject of current
research by Suresh Jagannathan [15].

To be able to ,run programs on VIM, a compiler to translate from VirAVAL into Viki
program graphs is needed. For reasonable efficiency, the compiler must perform several
important optimizing transformations. For example, it must recognize when tail-recursive
implementation of function application can be employed; it must determine when values for
record fields are immediately available so use of the early completion scheme may be
waived. The design of such a compiler has been worked out and its implementation is in
progress based on the existing VAL compiler written in Clu for the DEC 2060. Once the
compiler has been completed and tested, it will be rewritten in VimVAL and installed on Vim.

Eventually the Vim interpreter will be implemented by writing microcode for some
appropriate host machine. We expect that once a compact instruction set has been
designed and implemented, and efficient disk management schemes developed, Vim will
perform competitively with other organizations for shared computer resources. Parallel
processing versions of Vim will follow after positive evaluation of the current project.

References

1. Ackerman, W. B. Data Flow Languages. In AF1PS Conference Proceedings, Volume 48:

Proceedings of the 19 79 National Computer Conference, AFIPS, 1979, pp. 1087-1095.

2. Ackerman, W. B. Dataf low Languages. COMPUTER, 15,2 (Feburary 1982), 15-23.

3. Arvind, and Gostelow, K. P. The U-interpreter. COMPUTER, 15,2 (Feburary 1982),
42-49.

4. Ashcroft, E.A., and Wadge, W.W. Lucid, a Nonprocedural Language with Iteration.
Communications of the ACM 20,7 (July 1977), 519-526.

5. Backus, J. Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs. Communications of the ACM 21, 8 (August 1978),
613-641.

6. Darlington, J., Reeve, M. Alice: A Multi-Processor Reduction Machine for the Parallel
Evaluation of Applicative Languages. Proceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture, Association for Computing
Machinery, October, 1981, pp. 65-76.

7. Davis, A. L., and Keller, R. M. Dataflow Program Graphs. COMPUTER, 15,2 (February
1982), 26-41.

8. Dennis, J. B. Programming Generality, Parallelism and Computer Architecture. In
Information Processing 68, North-Holland Publishing Company, Amsterdam, 1969.

9. Dennis, J. B. First Version of a Data Flow Procedure Language. In Lecture Notes in
Computer Science, Volume 19: Programming Symposium: Proceedings, Colloque sur la
Programmation, B. Robinet, Ed., Springer-Verlag, 1974, pp. 362-376.

10. Dennis, J. B. Data Should Not Change: A Model for a Computer System. Laboratory for
Computer Science, MIT, Cambridge, Mass., July, 1981. Submitted for publication

11. Dennis, J. B. An Operational Semantics for a Language with Early Completion Data
Structures. In Formal Descriptions of Programming Concepts, Springer-Verlag, Berlin,
1981

12. Friedman, D. P., and Wise, D. S. CONS Should Not Evaluate its Arguments. In
Automata, Languages, and Programming, unknown, 1976, pp. 257-284.

1 3. Gordon, Michael, Robin Milner, L. Morris, M.Newey, and C.Wadsworth. 	A
Metalanguage for Interactive Proof in LCF. Proceedings of the Fifth ACM Conference on the
Principles of Programming Languages, 1978.

14. Guharoy, B. Memory management in a Dynamic Data Flow Computer System. Master
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, Mass.,
expected August, 1984.

15. Jagannathan, S. . Master Th., Dept. of Electrical Engineering and Computer Science,
MIT, Cambridge, Mass., expected February, 1985.

16. Johnsson, T. 	The G•Machine: An Abstract Machine for Graph Reduction.
Programming Methodology Group, Chalmers University of Technology, Goteborg, Sweden,
1983.

17. Keller, Robert, Gary Lindstrom, and Suhas Patil. A loosely-coupled applicative multi-
processing system. Proc. of the National Computer Conference, ACM (June 1979),
613-622.

18. Knight, T. F., et al. CADR. Memo No. 528, A. I. Laboratory, M. I. T. (March 1981).

19. Kuszmaul, B. Type Inference for VimVal (tentative). Dept. of Electrical Engineering and
Computer Science, MIT, Cambridge, Mass., May, 1984. Bachelor's thesis

20. McGraw, J. R. The VAL Language: Description and Analysis. ACM Transactions on
Programming Languages and Systems 4, 1 (January 1982), 44-82.

21. Milner, R. A theory of type polymorphism in programming. Journal of Computer and
System Sciences 17 (1978), 348-375.

22. Stoy, J. E. VIM--A Dynamic Data! low Implementation of VAL. In preparation.

23. Turner, D. A. 	A New Implementation Technique for Applicative Languages.
Software-Practice and Experience 9 (December 1977), 31-49.

(

24. Turner, D.A. The Semantic Elegance of Applicative Languages. Proceedings of the
1981 Conference on Functional Programming Languages and Computer Architecture,
Association for Computing Machinery, October, 1981, pp. 85-98.

;0_4.41vari

le •

17 tr'i

4,1,' 	,t• •
11
r ai

-
1 -

_
I - 	 •

_ 	IL

.,...:., r 	«-.....

..,o,,1,,)...'..-

i...1.L4 	i
' I- • 	, 	:.. ' 1 '• • 	• '.1 ifIr

e• •thi 	. J'.. 	r 	' 	.i.,:: -i •

• ' ;1.q.. , ‘.1.: -i-...),.. tr.:- 	- i
14,;.,,,,; 	.,... 	l' /1'104 •• 	- 	- 	1:1 . 1 	• ,. ,

; .Orcl. 	- .. 1 I II 	, 	.-' ,ii. I „ I; y 	• 	-.11'.'

1 -i..7alqi
, -.,,,•rir.f, , v.; .• i••' • 	".1 	--r.; p 	. 1- ili, 	' 	r 	1 •

i 	, 	,r • , 	f,,,.-A.-.,. .r • 	- r4; •J-. 	' - 	. " 1, • • 1 	 •I• 	rti-ii. " - , 	''' jAill. 	IL ...r' . 	
h '.. /-- 1 	•-•1'-;'-- -Li ?r-,!-' --"'

	

i',.. ft- 	.,;.••,",-, r.-. 	.1-1. I
r 	'-' •••' II ir 	1- ". 44 - ; •',1-, i.: - -....• 	. 	. *lit.- it.."" 	1 •Ir-/ Ir. ,,,;?,,,, ..., -$ -; ; 	_ •-..,

r ilti. :'::. 	. • -.. -. r,

	

'''l r• 7,, ._.- -. 1, 11,1,....: 	_If. - 	' 1 	' 	r
[C,pit......,,. 	: • .!..',,,i1 	,,,,,., 	,,, c,,, 	,.. 	.

:,-ii -
„..„.,..-

	

. 	,i 	.

	

-. i.„ ,
,...t.-..-... •,-• 	,,_- r I 	''''.".:11)11,„4‘

1t
r r 	- .1,i'll':•-• '1:,.

•,•. 	1: — 1,-. ',1.. Iii-i*'
I. p„..,,,,,,, in ,..,•:i.

... j. Ildi. 't
1,., , ,:',... .^ 1("• - •it,i

0 	:1".:-ri 1 .

,,, f'd'.....'.. 	• ..1'.. -1'

•. • ... 	- 	...,
MI • f

r•11...C.1:' -' IV),

PI

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

