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Abstract 

Fast Fourier Transforms [1], Batcher sorting [2], Cyclic Reduction [3], and a host of other recursively defined, 
divide and conquer style algorithms can be implemented on massively parallel computers which provide for 
rapid communications between data elements whose indices differ by a power of two. This paper addresses 
the general issue of how two different communication mechanisms one Global, and one Local, can provide for 
hybrid performance that substantially exceeds what either could provide separately. In particular, power of two 
communications schemes are explored for the MP-1 family of massively parallel computers. By using a combination 
of the eight way nearest neighbor, toroidally wrapped grid and the Global Router on an MP-1 1200 series computer 
with 16,384 processors (PEs), the communications requirements for a 16,384 point FFT are shown to require less 
than 2 milliseconds. 

1 Introduction 

The focus of this paper is on the interplay between different communications mechanisms on the same computer 
architecture. In particular, it shows how the Global Router, and the X-Net (eight nearest neighbor communications) 
on the MP-1 can, combined, achieve superior performance in the execution of the communications portion of the 
FFT. However, the concept is not restricted to the MP-1, or even to parallel computers. 

The fundamental metric of interest is the rate at which information can be exchanged between a given pair of 
memory locations in a computer architecture. For most computer architectures, there is only one way to perform this 
exchange. However, the fact of a Global Router, as well as an X-Net on the MP-1, and of gather-scatter hardware in 
addition to Local memory referencing on the Cray, and row-column highways as well as a NEWS grid on the DAP 
[4] provide examples where there are two distinct methods for moving data on one machine. 

In general then we can assume we have two mechanisms for moving data. Let us assume that the performance 
of each of the two mechanisms depends on the data permutation requested. If both mechanisms behaved identically 
under all circumstances, there would be no motivation to include both of them in the architecture. In addition, if 
one mechanism was always superior (faster) than the other, there would he no motivation to build both. 

For now, let us postulate two mechanisms: (1) Global and (2) Local. Where the Local communication mechanism 
is more sensitive to changes in the permutation requested. For now, let us restrict permutations to the kind that 
occur in an FFT. 
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This paper will establish a set of functions associated with the cost of communications associated with the FFT. 
It will show that the functions are not minimized in simply using the Global Router when it is fastest, and the Local 
Router otherwise. A better way will be shown, which takes advantage of the fact that a Global Router takes the same 
amount of time to instantiate a given permutation. In particular, it will show that the Four Step FFT [5] can be 
implemented in parallel, through the use of the Global Router to rearrange the data, so that the least expensive Local 
communications are used more often. The paper shows that the Four Step FFT, which calls for only one Global data 
rearrangement is not necessarily optimal. The assumptions made in the paper to this point are sufficiently broad to 
require specific experiments. The paper then identifies how, and at what performance, power of two communications 
can be performed on the MP-1. In particular, mechanisms using the Global Router and the X-Net are identified. The 
performance of the X-Net depends on how the PEs are enumerated. Three enumerations are examined, and their 
theoretic and actual performances are established. In addition to power of two communications, the rearrangements 
derived from the Four Step FFT are required. The paper identifies what the rearrangements are for each of the 
three enumerations. The paper shows that one of the enumerations (raster scan order) is a poor choice in that it 
requires too many rearrangements. Actual performance numbers are shown for the rearrangements corresponding 
to the other two enumerations. It turns out that both rearrangements cost the same on the Global Router, and the 
cost is low enough to justify their use. The paper concludes that what is called cube embedded order is therefore 
the best choice of how to enumerate the PEs. It also concludes that the strategy of rearranging the data one time in 
the course of the FFT computation is indeed desirable within the context of cube embedded order. 

2 Expected Performance for a Radix 2 FFT 

In the case of the radix-2 FFT, the data permutations involve a sequence of butterfly exchanges, where the span of 
the exchange doubles for each of the stages of the ITT. 

The variable here is the width of the butterfly (d). Associated with this variable are three functions: G, C, and 
L. G is the cost (in normalized time units) to perform a communication over the Global Router. L is the function 
which gives the cost of performing a given communication using the Local communication mechanism. C is the total 
communications cost involved in performing an FFT. 

By definition, we are assuming G is independent of d: 

G(d) = 1 

As such, the theoretical cost of communications for a radix 2 FFT of 2' points, using a Global communication 
mechanism is: 

rn-1 

C(M) = 12 G(25 ) = in 

Let us assume that the Local communication mechanism is linearly dependent upon the width of the butterfly 
(d). 

L(d) -= kd 

This suggests the cost using only a Local communication mechanism is: 



- 1 
C(m) = 	L(23 ) = k(2rn — 1) 

s =0 

We can assume k is less than 1, since otherwise the Global mechanism would always out perform the Local 
mechanism. As such, the naive optimization is to use the Global Router when it is fastest, and use the Local 
mechanism otherwise. 

In this case, the cost would be: 

rn- 

C(m) = E L(2,) + 	G(2s) = (2 — k) (m. — p) 
3=0 	 S=P+I 

(For simplicity above, we assume 1/k = P.) 

2.1 Rearranging to Optimize Communications 

In the case of the ITT, however, there is another option. We know that as the computation proceeds, d = 1, 2, 4, 8 
etc.... But we also know we can rearrange the data after some number of stages so that the ensuing stage has d = 1 
again, followed again by 2, 4, etc. 

This rearrangement method is know as the Four Step FFT [5]. The particular rearrangement necessary has been 
called the generalized transpose, generalized perfect shuffle, or generalized gather scatter, depending on how you 
characterize it. If the FFT has m stages (and m is even), and the rearrangement is performed after m/2 stages, then 
it is best viewed as a transpose. If the rearrangement is performed after only one stage, then it is best viewed as a 
perfect shuffle. Another way of viewing the rearrangement is as introducing a mixed radix to the FFT. 

This introduces a new question: How much does it cost to perform this rearrangement of the data? For the sake 
of simplicity, we will first assume that the Global mechanism supports a rearrangement in 1 unit of time (that is, 
G(rearrange) = 1). 

If we perform, essentially, a Four Step FFT, rearranging after m/2 stages (with the implicit assumption that p is 
less than ni/2), then the optimal algorithm appears to have a cost of: 

m/2 
C(m) = 2 E L(23)  + G = 2k(2m12+1  — 1) 1 

3.o 

2.2 Multiple Rearrangements 

Let's plug in some slightly different, but entirely plausible, numbers for G and L: 
Let 

G(d) = 4 

and 

L(d) = d 

(Assume G is 4 for rearranging as well.) 



In addition, let us suppose we wish to perform a 64-point FFT, with one datum on each of 64 PEs. If we proceed 
with the Local communications only, the cost will be: 

L(1) + L(2) + L(4) + L(8) + L(16)-1- L(32) = 63. 

The cost using a naive hybrid of Local and Global communications would be: 

L(1) + L(2) + G(4) + 0(8) + G(16) + G(32) = 19 

The cost using one rearrangement (of cost = 4) after the third stage would be: 

L(1) + L(2) + L(4) + G(rearrange) + L(1) + L(2) + L(4) = 18 

But if we were to perform TWO rearrangements, one after the second, and one after the fourth stages, we would 
get cost: 

L(1) + L(2) + G(rearrange) + L(1) + L(2) + G(rearrange) + L(1) + L(2) = 17 

Of course, the rearrangements in this last method are different from the one in the method that had only one 
rearrangement in it. This diminishes all the more the certainty of our expectations about which method is best. 

2.3 So, What DO We Expect? 

We expect that using a rearrangement to merge Local and Global communications will provide a benefit to the 
communications cost of radix two FFTs. Critical to the utility of the rearrangement method will be the relative 
cost of Local and Global communications. The next section of this paper proceeds to identify (as best we can) 
the fastest ways to perform power of two communications on the MP-1, as well as how best to perform the needed 
rearrangements that seem to hold so much promise. 

Given the results of those efforts, we provide comparisons of the different strategies shown above. We also show 
how these results prove useful in any algorithm that requires power of two communications. 

3 Power of Two Communications on the MP-1 

3.1 Introduction 

This section will analyze the performance capabilities of the MasPar MP-1 parallel computer, in the realm of power 
of two communications. Since there are two fundamental mechanisms for performing these communications, we will 
examine each in turn. 

3.2 The MP-1 

The MasPar family of massively parallel systems uses a SIMD computational approach (single instruction, multiple 
data). High performance results from the replication of simple data PEs (from 1,024 to over 16,334 PEs in a scalable 
array) — each with its own dedicated data memory. The PEs do not fetch instructions from their own memories. 
Instead, an array control unit decodes instructions from the front end of the system. When a data intensive operation 



occurs, the array control unit broadcasts the instruction to the whole array of PEs, which execute the single instruction 
simultaneously, perhaps for multiple thousands of data points. 

The MP-1 also provides for two interprocessor communications mechanisms. One is an eight way nearest neighbor 
toroidally wrapped grid, known as the X-Net. The other is the Global Router, which is implemented in silicon as a 
sequence of three crossbar connection channels. 

3.3 Power of Two Communications Using the MP-1 Global Router 

Simulations of the MP-1 Router chip provided us with the expectation that any 'constant offset' communication 
pattern would have optimal performance. By 'constant offset' communication we mean that for all PEs, each PE pi  
could communicate with PE pi+k , where k is independent of i. Power of two communications are a subset of this 
kind of communication. The simulations indicated that each such communication would require 135 microseconds 
to complete, for all PEs. 

We performed actual timings, using a 4096 PE MP 1200, using calls to MPL, MasPar's C-like parallel language. 
The communication cost did indeed turn out to be independent of which power of two was being performed. That 
cost turned out to be 160 microseconds per communication. We expect that overhead costs of using MPL, as opposed 
to using MPAS (MasPar assembly language) accounted for the difference between expected and actual results. 

3.3.1 Better Routing Through Microcode 

By addressing some of the microscopic details of the MP-1 architecture, we have discovered how to substantially 
improve Global Router performance for power of two communications. We discuss these options here briefly, but we 
did not actually implement any of them, and they are not used in any ensuing analysis. 

Each PE chip on the MP-1 has 32 PEs. Two wires leading from each chip pass into the Global Router. This 
associates 16 PEs with each Global Router wire. The way a message is transmitted using the Global Router is that 
each group of 16 PEs (each cluster) identifies a PE that will be transmitting or receiving data, and connects, through 
the Global Router, to the cluster containing the PE that will be transmitted to or received from. The transmission 
or reception is performed, and the connection is terminated. This process repeats a minimum of 16 times (one for 
each PE in a cluster). Because of the nature of power of two communications, it turns out that each PE in a given 
cluster wants to transmit or receive data from a PE in the same cluster. This means that we need only open the 
connection once, transmit or receive 16 times, and then close the connection. 

The cost of opening and closing a connection is comparable to the cost of the actual data transmission. As such, 
we expect as much as a factor of two improvement in performance. 

Another improvement can be garnered by transmitting AND receiving data once a connection is established, thus 
completing both halves of a butterfly exchange with the cost of half as many connection openings and closings. 

3.4 Power of Two Communications Using the X-Net 

Each PE is connected to its eight nearest neighbors on a two-dimensional rectilinear grid, with toroidal wrap. By 
numbering the PEs in 'raster scan order', we can see how power of two communications occur in a fashion more 
efficient than hypothesized by our original function L. 

Consider a hypothetical, non existent machine with 64 PEs numbered as: 



0 1 2 3 4 5 6 7 
8 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 
39 33 34 35 36 37 38 39 
40 41 49  43 44 45 46 47 
48 49 50 51 52 53 54 55 
56 57 58 59 60 61 62 63 

We can see immediately that for the power of two communication a distance of 8, the cost will be the same as for 
communicating a distance of 1. Indeed, if we assume the cost will go up linearly with distance on the two dimensional 
grid, then a 64-point FFT will require communications of costs: 1,2,4,1,2,4. 

We could number the grid in 'quad tree' order (interleave the n/2 most significant bits with the n/2 least significant 
bits of the binary representation of the numbering for raster scan order, and you get quad tree order): 

0 1 4 5 16 17 20 21 
2 3 6 7 18 19 22 23 
8 9 12 13 24 25 28 29 
10 11 14 15 26 27 30 31 
32 33 36 37 48 49 52 53 
34 35 38 39 50 51 54 55 
40 41 44 45 56 57 60 61 
42 43 46 47 58 59 62 63 

In our example, the communications for the FFT then go as 1,1,2,2,4,4 and take on a flavor very similar to that 
of our original function L, except that rather than 

L(d) = kd 

We have (more or less) 

This is justified theoretically, in that the number of data elements within a given distance, d, on a two dimensional 
grid is proportional to d2 , while on a one-dimensional grid the number of elements is proportional to d. This is 
also justified empirically, in that the sequence 1,1,2,2,4,4,... is bounded above by the square root of the sequence 
1,2,4,8,16,32.... 



3.4.1 Using the Diagonals 

There is a way to number the PEs so that power of two communications of the style used in FF"l's is even more 
efficient than using either raster scan or quad tree ordering. The numbering (which we call 'cube embedded ordering') 
takes advantage of the special quality of the MP-1 that allows PEs to communicate with their four nearest diagonal 
neighbors as well as their four nearest neighbors. Here is this numbering for a 64 PE array: 

54 1 5 10 14 25 29 50 
0 4 3 7 24 28 27 31 
452 6 17 21 26 30 41 
43 47 16 20 19 23 40 44 
46 57 61 18 22 33 37 42 
56 60 59 63 32 36 35 39 
53 58 62 9 13 34 38 49 
51 55 8 12 11 15 48 52 

This numbering is based on kernels of three-dimensional cubes embedded in the two-dimensional mesh. The first 
such kernel is the PEs numbered 0 through 7: 

15 
0 4 3 7 

26 

View each PE as a node in a three-dimensional cube, with PEs 0,1,2 and 3 on the front face, and 4,5,6,7 on the 
back face, like so: 

Then just stack the projections of the cubes in a consistent order, such as raster scan or quad tree. We chose 
quad tree, since it is better for the style of power of two communications that occur in sorting. 

The communications cost for a sequence of power of two offsets then is: 1, 1, 1 (along each arc of each embedded 
cube), then 2, 2, 4, 4 ... . 



3.5 Actual Results 

The embedded cube method worked best, just as expected. The following table summarizes the relative costs. The 
first column is the power of two distance communicated, the second column is the measured time to perform the 
corresponding communication using quad tree order, and the third column corresponds to using the embedded cube 
ordering. 

Distance Using Quad 	Using Cube 

16384 180us 178us 
8192 180 86 
4096 80 84 
2048 98 46 
1024 58 52 
512 48 24 

Variances are conjectured to be due to MPL overhead variations. 
Cube embedded ordering has also been compared with quad tree order in an implementation of the Batcher 

sorting algorithm on the MP-1 and found to be more than 12 percent faster [6]. 
We have accumulated enough data now to determine that both the Global Router and the X-Net are useful 

in power of two communications, since the Global Router requires 160us to complete any power of two communi-
cation and the X-Net may require as much as 180us to perform one, while for the vast majority of power of two 
communications potentially needed on an MP-1, the X-Net remains superior. 

4 Performing the Data Rearrangement on the MP-1 

So far, we have assumed that G(rearrange) = G(d) which is a constant. In fact, we know this is unlikely. We also 
know that the rearrangement needed when using raster scan order, quad tree order, and cube embedded order will 
be different. In addition, we have not considered what L(rearrange) might be. 

4.1 Rearranging Using Local Communications 

In some contexts, particularly when each PE holds more than one data item, the use of local communications 
mechanisms is appropriate to perform the class of data rearrangements we consider here [7]. If one wishes to perform 
a rearrangement of data, the minimum cost for that rearrangement using the X-Net (or, in general, any Local 
communication mechanism) is the maximum distance any of the data must travel between PEs. 

We do not have the space to consider the rearrangements for each of raster scan, quad tree, and cube embedded 
order, but let us return to the general case of: 

L(d) = kd 

And the specific rearrangement that corresponds to where the data with index number i is exchanged with data 
in index number j, where i and j are represented by n hits, and the first n/2 bits of i are equal to the last n/2 bits 



of j, and vice versa. Thus, the rearrangement occurs after the n/2nd stage of the FFT. In this case, the maximum 
distance (in one dimension) any piece of data must move to complete the rearrangement corresponds to when the 
first n/2 bits of i are all one, and the rest are zero. So the cost of the rearrangement using the Local communication 
mechanism is: 

n-1 	(n/2)-1 

L(rearrange) = E L(2,)- E L(2s ) 
s.(n/2) 	 ..(o 

If we had not done the rearrangement, the cost of all of the remaining power of two communications after the 
n/2nd stage of the FFT would have been: 

n-1 

L(2') 
s=(n/2) 

Having done the rearrangement, the cost of all of the remaining power of two communications after the n/2nd 
stage of the FFT would have been identical to that of the first n/2 stages: 

(n/2)-1 

E L(2') 

Meaning that Lfrearrange) costs exactly what it saves! What L(rearrange) is for arbitrary numberings of the 
PEs, and arbitrary rearrangements, relative to the cost savings, is beyond the scope of this paper. Suffice it to say 
here that for a substantial class of rearrangements, it is only worthwhile to use the Global Router. 

4.2 Rearranging in Raster Scan Order 

Let us return to our 8x8 array. 

0 1 2 3 4 5 6 7 

8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 

56 57 58 59 60 61 62 63 

In computing the FFT, L(1) = 1,L(2) = 2, and L(4) = 4, but now we see that L(8) = 1 again, L(16) = 2, and 
L(32) = 4 (from communicating down the rows of the two-dimensional grid). It may appear that raster scan order 
has the data rearrangement implicitly included. Actually, raster scan order forces us to perform the rearrangement 
early, and twice. After the first two stages of the FFT, we can rearrange each row to be: 



0 4 1 5 2 6 3 7 
8 12 9 13 10 14 11 15 
16 20 17 21 18 22 19 23 
24 23 25 29 26 30 27 31 
32 36 33 37 34 38 35 39 
40 44 41 45 42 46 43 47 
48 52 49 53 50 54 51 55 
56 60 57 61 58 62 59 63 

so that L(4) = 1. We can see that L(8) = 1 still, as are L(16) = 2, and L(32) = 4. So we want to also rearrange 
just before the last stage, so that the overall sequence of communications would be: 

L(1) + L(2) + G(rearrange) + L(1) + L(8) + L(16) + G(rearrange) + L(8) 

Since we need two rearrangements, and we are trying to amortize the costs over half the work for each, it seems 
unlikely that rearranging will be useful based on raster scan order enumeration. 

4.3 Rearranging in Quad Tree Order 

Quad tree order allows us to combine the two rearrangements needed in raster scan order into one. The rearrangement 
for quad tree order corresponds to what would have been a transpose if we had kept the data in raster scan order 
(that is, the data with index number i is exchanged with data in index number j, where i and j are represented by n 
bits, and the first n/2 bits of i are equal to the last n/2 bits of j, and vice versa.) This means, in our 8x8 example, 
the rearrangement of: 

0 1 4 5 16 17 20 21 0 8 32 40 2 10 34 42 
2 3 6 7 18 19 22 23 16 24 48 56 18 26 50 58 
8 9 12 13 24 25 28 29 1 9 33 41 3 11 35 43 
10 11 14 15 26 27 30 31 is 17 25 49 57 19 27 51 59 
32 33 36 37 48 49 52 53 4 12 36 44 5 13 37 45 
34 35 38 39 50 51 54 55 20 28 52 60 21 29 53 61 
40 41 44 45 56 57 60 61 6 14 38 46 7 15 39 47 
42 43 46 47 58 59 62 63 22 30 54 62 23 31 55 63 

So that the sequence of communications for the corresponding FFT would be: 

L(1) + L(2) + L(4) + G(rearrange) + L(1) + L(2) + L(4) 



4.4 Rearranging in Cube Embedded Order 

The rearrangement for cube embedded order is the same, in spirit, as for quad tree order. That is, once we have 
given each PE its new number, i, then the rearrangement corresponds to exchanging data with the PE numbered j, 
where j and i have the same relationship as above. 

Thus, we can generate the permutation — not that we can say much about it intuitively. In our example, the 
rearrangement of: 

541 5 10 14 25 29 50 548 40 17 49 11 43 22 
0 	4 3 7 24 28 27 31 0 	32 24 56 3 35 27 59 
45 2 6 17 21 26 30 41 45 16 48 10 42 19 51 13 
43 47 16 20 19 23 40 44 is 29 61 2 34 26 58 5 37 
46 57 61 18 22 33 37 42 53 15 47 18 50 12 44 21 
56 60 59 63 32 36 35 39 7 	39 31 63 4 36 28 60 
53 58 62 9 13 34 38 49 46 23 55 9 41 20 52 14 
51 55 8 12 11 15 48 52 30 62 1 33 25 57 6 38 

The communications sequence will be identical for cube embedded order as for quad tree order, but L(2) = 1 
instead of L(2) = 2. 

4.5 Actual Results 

We found that the time for performing both the quad tree and the cube embedded rearrangement were the same: 
385us. From this, we can see that introducing the rearrangement provides the following benefits: 

It takes 744us to perform each communication of a power of two less than or equal to 8,192 when we use quad 
tree addressing. It takes 76us to perform each such communication less than or equal to 128. Thus, if the rearrange 
cost is less than 744 — 2 *76 = 592us then the rearrange method provides an advantage. Since the rearrange cost is 
385us, the improvement is 

(744 — (385 + 2 * 76)) = 207us 

which is a 27 percent improvement. 
It takes 570us to perform each communication of a power of two less than or equal to 8,192 when we use cube 

embedded addressing. It takes 56us to perform each such communication less than or equal to 128. Thus, if the 
rearrange cost is less than 570 — 2*56 = 458us then the rearrange method provides an advantage. Since the rearrange 
cost is 385us, the improvement is 

(570— (385 + 2* 56)) = 73us 

which is a 12.8 percent improvement. 
Thus, the optimal time is 497us to complete all power of two communications for 32-bit data. In a complex, 

single precision FFT of 16,384 data points on 10,384 PEs, 64 bits would need to be transmitted in both directions, 
requiring 2 milliseconds to complete the communications. 



5 Conclusions 

Cube embedded enumeration, optimized with a Router based rearrange, is the best mechanism to perform sequences 
of coirununications that involve power of two offsets in the index of the data. Compared with a naive Global 
Router based implementation, the improvement available is a factor of 4.5. We expect that microcode based routing 
optimizations could improve the rearrange time by as much as a factor of four. This could make interprocessor 
communication time for FFTs, sorting, and other applications insignificant relative to the computation time. 

Most important, we have shown how the combination of a general Global Router and a high speed Local com-
munication mechanism can perform tasks substantially more efficiently than either could alone. 
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