
A Lazy SECD Machine

by

Arthur F. Lent

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1990

C) Arthur F. Lent, 1990

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author 	
Department of Electrical Engineering and Computer Science

January 24, 1990

Certified by 	
Albert R. Meyer

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by 	
Leonard A. Gould

Chairman, Departmental Committee on Undergraduate Theses

A Lazy SECD Machine

by

Arthur F. Lent

Submitted to the Department of Electrical Engineering and Computer Science
on January 24, 1990, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Computer Science and Engineering

Abstract

In many cases, when an operational semantics is defined for a functional language the

definition is in the form of an abstract set of rewrite rules which specify how, at a high level,

complex expressions can be transformed into simpler ones. These rewrite rules, however, are

not practical for forming the basis of an interpreter for these languages. The SECD machine

approach [2] provides a more easily- and efficiently- implementable operational semantics.

This paper describes a SECD formalization for call-by-name functional languages with any

(suitable) set of constants. As an example of the generality of the model, we give an SECD

implementation of the simply-typed aritmetic language PCF [4].

Thesis Supervisor: Albert R. Meyer
Title: Professor of Computer Science and Engineering

2

Contents

1 Introduction

2 Definitions 	 6

2.1 	Terms in A-calculus . . 	 6

2.2 Other notational convenien 	 7

2.3 Closures and Environments 	8

2.4 The Language Defined, Constants, and Constapply 	9

2.5 Stacks, Controlstrings, and SEC state 	12

3 The SEC Machine 	 13

3.1 The Transition Function 	and Eva! 	14

3.2 eval 	 17

3.3 Result 	 18

4 Equivalence of eval and PCF 	 24

4.1 Preliminaries: The Langu 	PCF 	 24

4.2 The Actual Proof 	 25

5 Open problems 	 28

Acknowledgments 	 29

4

3

Chapter 1

Introduction

Landin [2] introduced the SECD machine as a formal model for interpreting functional

languages. The historical importance of Landin's definition lies in the level of abstraction—

the SECD model makes explicit the control structure of evaluation at a low level, while still

leaving irrelevant, machine-dependent, details unspecified. Several others have presented

SECD machines since Landin, most notably Plotkin [3] and Henderson [1].

As originally presented, the SECD machine interprets functional code in a call-by-value

manner. In call-by-value, all arguments to functions are evaluated exactly once, at func-

tion application. There are two advantages to call-by-value over call-by-name (in which

arguments are evaluated when they are used). First, in the presence of side effects (which

most practical languages allow to some extent), it is easier to reason about call-by-value

than call-by-name. Second, there is a notion that the representation of evaluated objects

is generally more compact than that of unevaluated objects, resulting in improved space

efficiency for call-by-value. Since the SECD machine has been primarily used to suggest

an implementation strategy for functional languages, and since most languages are call-by-

value, it is only natural that the primary work done with SECD machines has been for

call-by-value languages.

Call-by-value does extra work if a function never uses its argument. In a call-by-name

interpretation, arguments are evaluated only if they are used. Although efficiency may

be important, the most significant distinction can be discovered when the evaluation of

an argument Al either does not halt, or results in an error. Consider a function FOO

4

which does not use its argument. Now suppose we apply FOO to Al. In a call-by-name

implementation, FOO applied to Al can still evaluate to a value, whereas in a call-by-value

implementation it will not. So the keyi difference between these two schemes is that all side-

effect-free functional programs that terminate with a value in the call-by-value framework

will also terminate with an equivalent value in the call-by-name framework, but not vice

versa.

This thesis presents a call-by-name analog to the SECD machine of Plotkin [3]. In addi-

tion, we show that the operational behavior of the machine presented (with an appropriate

selection of constants) corresponds with the operational definition of PCF via rewrite rules

[4]. Both definitions are useful in understanding the operational behavior or a language.

The rewrite rules are typically easier for a person to reason about; however, it is not at all

clear how to build an interpreter based upon a set of rewrite rules. On the other hand, it

is quite easy to build an interpreter based upon a SECD machine description, but quite

difficult to reason directly about the description. Consequently, it is useful to provide both

a description of a language via the SECD model and via rewrite rules, and then to prove

that reasoning in one system appropriately mirrors reasoning in the other.

5

Chapter 2

Definitions

These definitions are very similar to those presented by Plotkin [3].

2.1 Terms in A-calculus

The set of A-calculus terms is determined by a set of variables x, y, z, . . and a set of

constants a, b,..., is defined inductively by:

• Any variable is a term.

• Any constant is a term.

• If x is a variable and M is a term then (AxM) is a term.

• If M and N are terms, so is (MN).

A term of the form (AxM) is an abstraction; one of the form (MN) is a combination.

A term is a value if it is a constant or an abstraction. We establish the convention that

M = N means that M and N are identical terms.

In general the set of variables will be infinite, although the set of constants need not be.

We establish the following naming conventions which will be used throughout:

• Lowercase letters (at the end of the alphabet) x, y, z—always are variables.

• Lowercase letters (at the beginning of the alphabet) a, b,c—always are constants.

6

• Capital letters (in the middle of the alphabet) L, M, N—always are terms.

The free variables of M, FV(M), is defined inductively by:

FV(x) = {x}; FV((MN)) = FV(M)u FV(N); FV((AxM))= FV(M)\{x}.

The bound variables of M, BV(M) is defined similarly.

A term is closed if FV(M) = 0, otherwise it is open. The substitution prefix is defined

by:

[M lx]x = M; [M x]y = y (if x y);

[M lx](NN I) = ([M x]N)1 QM 141%11);
P

[M1x](AxN)= (AxN); [M x](AyN) = Az[M 1440., (if x y);

where z is a "fresh" variable not appearing in M or N.

2.2 Other notational conveniences

The a-equivalence relation, 	of is defined inductively by:

• x=c,x and a=c,a.

• If M=„M' and N=N' then (MN)=,,(M'N').

• If M=,[xly]Mi, where either x = y or x FV(M') then (AxM)=,,(AyM').

It captures the notion of syntactic equality of terms up to the renaming of bound variables.

The symbol nil will be used for the empty sequence and : for concatenation. X* is the

set of sequences of members of a set X.

Given sets X and Y, (X 2-3, Y) is the set of partial functions from X to Y. If f E (X 21

Y), Dorn(f) is its domain, that is,

Dom(f) = {x E X I [x,y] El, for some y E

Expressions using partial functions are defined if the functions are defined at their given

arguments. They are equal (.) if they are both undefined, or are both defined and have

the same value. They are alpha equivalent (=) under similar conditions.

[M lx]a = a;

Given a relation —+, '4 is its 7/ th power (n > 	± its transitive closure, and 	its

reflexive, transitive closure.

2.3 Closures and Environments

We do not consider the operation of syntactically substituting terms for several occurrences

of a variable a primitive operation. Through the use of closures and environments, however,

we can implement substitution "symbolically", using pointer manipulations rather than

really doing the syntactic manipulation. We now define closures, environments and their

depths inductively by:

1. 0 denotes the empty environment, and has depth 0.

2. If xi,— ,x, are distinct variables and C/i(i = 1...n) are closures whose maximum

depth is d, then {[xi, 	= 1... n} is an environment of depth d+ 1.

3. If E is an environment with depth d, and M is a term such that FV(M) C Dam(E),

then [M, E] is a closure of depth d.

E {C1 x} is the unique environment E' such that Ei(y) = E(y), if y 	x and Ei(x) =

Cl(C1 E Closures). A closure [M, E] is a value closure if M is a value term (note: in this

framework we do not consider a variable to be a value.

The function Real: Closure 	Terms is defined inductively by:

Real([M, E]) = [Real(E(xi))Ix1] . . .[Real(E(x„))1x„]M,

where

FV(M) ={x 1,..., xn } •

This yields the term "represented" by a closure. So, in summary, if M is a term such that

(M) = {x}, and Cl is a closure representing N we can represent [N x]M by the closure

[M, 0{Cl/x}].

8

2.4 The Language Defined, Constants, and Constapply

We will use our SECD machine to specify an evaluation function Eval: Programs if. Pro-

grams. When fully specified, Eval provides an operational method of giving meaning to all

of the terms in a programming language. Part of the specification of Eval is given relative

to an interpretation of the constants. The function

constapply: Constants x Closed Values 	Closed Terms.

gives this interpretation. We wish some operators to work on A-abstractions, so we do not

choose constapply in: (Constants x Constants) 	Closed Values as Plotkin does.

Unfortunately, since constapply ranges over A-terms, our machine may be in a state

where it has a representation for a perfectly good A-term for constapply. but it has stored

it in the form of a closure. Consequently, we need a Constapply for the machine which is

determined to within =„by constapply.'

Constapply: Constants x Value Closures ±-> Closures,

where Constapply must obey the restriction:

Real(Constapply(a, C1)).constapply(a, Real(C1))

To remain in the SECD spirit, Conrtapply should be chosen in such a way as to be

implementable using a bounded number of pointer manipulations based upon looking a

bounded depth into its arguments.

We stated that we were defining a machine that was call-by-name, yet in this setup

arguments to constant operators are always evaluated, hence constant applications are

call-by-value. Because some constant applications must be call-by-value (such as +1),

we claim that this is a reasonable decision. The only alternative is to partition the set of

constants into a group of "non-strict" constants which never have their arguments evaluated,

and a group of "strict" constants which always have their arguments evaluated. In fact,

	 it

it would be a fairly straightforward odification to the machine to allow both strict and

'Note the distinction between constapply and Constapply. The function constapplyis that used at the
level of rewrite rules, whereas the function Constapply will be used for the SECD machine defined in the
next chapter.

9

non-strict constant operators, resulting in minor changes in the definition of Eval and in

the proofs of Lemmas 2 and 3. Our restriction to strict constant operators does not limit

the constructs definable in any given language. One can see this by considering the kinds of

constant operators that need to be strict. In every case there is a simple alternative which

operates in the desired way. Consider the following examples:

1. An operator that ignored its first argument and then did M. But this is definable by

(AxM) (for an x FV(M)).

2. An operator that might or might not evaluate its first argument depending on its later

arguments. But this is definable by something of the form M1 = (Ax(Ay((My)x)))-

An expression such as ((MI M2)M3) will reduce to something of the form M'M2 where

M' = (MM3). Based upon the value of M3, M can construct a)-term that either

might use M2 (a term of the form (AxM"), where x is free in Al") or one that will

definitely not use M2, where x is not free in M". Since our language is call-by-name

this will work even if the evaluation of M2 does not terminate (M2 diverges).

More complex operators can be constructed analogously. For more details examine the

implementation of D in the following example.

Example 1. Consider what the constants and constapply would be for PCF proper—we

will basically ignore issues of type-checking and assume all programs are type correct. We

will, however, assign types to all of our constants in the language. Our base (ground) types

are o (for boolean values) and t (for natural number values). Our higher types are of the

form (a—*r), where a and 7 are types and (a—.7) represents an appropriate subset of the

functions form objects of type a to objects of type T.

The constants, together with their types are:

tt : o,

if: o,

(o 	t —0 t),

D, :(o- 0 	0-' 0),

: ((a 	a) (one for each a),

: t (one for each integer n > 0),

10

(+1): (c 	t)

(-1): (t 	t)

(Z) :(L—+o)

The partial function constapply is defined as follows:

3,(c7 ground) constappl (,,,ti)

constapply((Da , ff)

(+1) 	constapply((+1), kin)

(-1) 	constapply((—1), km+1)

Z 	 constapply(Z, ko)

constapplY(Z, km+i)

Y, 	 constapply(Y,,V)

=

.

(AxaAyax)

(Ax'Ayay)

= km+i > 0)

= km (m ?: 0)

= tt

= if
= (V(Y,V)) V is a value

1

r

An acceptable definition of Const pply that fits with both the restriction that

Real(Constapply(a, C1))=„constapply(a, Real(CL))

and the restriction that it be "easily implementable" is as follows:

D,(a ground) Constapply(D, , [tt, E])

Constapply((Da, ff)

= [(AxcrAycz),0]

[(AeAycry),0]

(+1) 	Constapply((+1), [km , E]) 	= [km+i , 0] 	(m 0)

(-1) 	Constapply((-1), [km+i, 	= [km , 0] 	(m 0)

Constapply(Z, [ko , E]) 	= [tt, 0]

Constapply(Z, [km+i , ED 	= [ff, 0]

Y„ 	 Constapply(Ya , [V, E]) = [(V(Y,V)),E] ([V,E] is a value

closure)

Note that Da occurs in a curried form rather than that originally presented for PCF

by Plotkin [4]. It is an easy task, however, to show that this does not alter the language

defined. A proof that this selection of Constants and constapply together define an Eval

11

and eval such that Eval(M) = eval(M) = PCF(M) 2 for all programs 3 M appears at the

end of the paper in Chapter 4.

2.5 Stacks, Controlstrings, and SEC state

Controlstrings = (Terms U {ap,ct})*, where ap it Terms, and Stacks = Closures*.

The function FV is extended to Controlstrings by:

FV (ap) = 0; FV(Ci, • • • ,Cn) = U7-1 	(C1) (n ?_ 0).

A state Q of the SEC machine is a triple [5, E, C] with S a Stack, E an environment

and C a controlstring such that FV(C) C Dom(E).

2We write PCF(M) to denote the evaluation function defined with respect to the rewrite rules for PCF.
It is written as Evalz by Plotkin.

3A closed term of gound type is called a program.

12

Chapter 3

The SEC Machine

Landin, Plotkin and Henderson all presented call-by-value SECD machines. As the name

implies the all used a stack, environment, a controlstring, and a dump. In this thesis we

have given technical definitions of stacks, environments and controlstrings. We have not,

however, defined dumps. This is unnecessary for us, as it turns out that in the call-by-name

case the dump is unnecessary—thus an "SEC" machine results. Before we give the full

definition of the automaton we discuss how the stack, environment, and dump are used:

Stack The stack is used to store intermediate results during evaluation.

Environment The environment is the environment in which the top item on the control-

string is being evaluated.

Controlstring The controlstring contains whatever instructions are needed in order to

complete the evaluation. The priHriary branch in deciding which rule to apply is based

upon the top item on the controlstring.

The primary method of operation of the SEC machine is as follows:

[S, E , M : C} 	1 : S , , C]

for all stacks S, environments E such that FV(M) C Dornain(E), and controlstrings C.

The point is that the term represented by Cl is the result of evaluating the term represented

by [M, E]. This notion of evaluation will be made precise by the definition of eval in section

3.2. The main result of this chapter will be to prove the following theorem:

13

Theorem 1. For all closed terms M there is a value closure Cl such that:

[nil, nil, N] 	E, nil]

iff eval(Real[M, 0]) exists, moreover, Real(C/).,eval(Real[M, 0]).

3.1 The Transition Function = and Eva!

The transition function 	in States 	States, is defined by:

(1) [S, E,a : C] 	 = 	[[a,0] : S , E , C]

(2) [S , E, x : C] 	 = 	[S , , M : C]

where E(x) [M, E']

(3) [S,E,AxM : C] 	 [[AxM,E] : S,E,C]

(4) [[(AxM), 	: Cl: S, E,ap : C] 	[S, E' {C11 x}, Al : C]

(5) [[a 	: [V, El : 5, E, ct : C] 	[S, , 	: C]

(where Constapply(a, [V, El) = {M',

(and V is a value)

(6) [[a, 	: [N, 	: 5, E, ap : C] 	[5, E", N : a : ct :

(where N is not a value)

(7) [S, E,(M N) : C] 	 = [[N , E] : S , E , M : ap : C]

We now justify each of the rules:

1. A constant should evaluate to itself, so it is put on the top of the stack in an appro-

priate closure.

2. A variable x in environment E should evaluate to whatever E(x) evaluates to. Install

E(x) and let it evaluate.

3. A A-abstraction evaluates to itself, but, since its body might have free variables we

need to keep the same environment.

4. The object we are in the process of evaluating was a combination. Since this is

call-by-name, the argument was placed on the stack unevaluated. The operator has

evaluated to a A-abstraction. Perform the appropriate 0-reduction using environments

and closures to do the substitution.

14

5. The object we are in the process of evaluating was a combination. The operator has

evaluated to a constant. Since c nstant applications are call-by-value, we also need to

evaluate its argument—which 14s already been done. We use Constapply to do the

application, then we need to ev uate the result.

6. The object we are in the process of evaluating was a combination. The operator has

evaluated to a constant. Since constant applications are call-by-value, we need to

evaluate the argument before we can use Constapply.

7. In order to evaluate an application in the call-by-name framework, evaluate the op-

erator, leaving the argument unevaluated. After the operator is evaluated, if it is a

A-abstraction, do a 0-reduction without evaluating the argument. If the operator is

a constant, evaluate the argument, use Constapply, then evaluate that result.

si
We will use Load to initialize th SECD machine to evaluate a closed term, and use

Unload to extract the result from a "halted" SECD state. They are defined as follows:

Load(M) = [ni/, 0, M]

Unload([C1, E, nil]) = Real(C1)

We can now define the automaton's evaluation function by:

Eval(M) = N if Load(M) 4, IQ, and N = Unload(Q) for some state Q.

Now that we have defined our automaton, it is important to show that it really has the

properties which we were looking for in a model. We wanted each step to be realizable by

a bounded number of pointer manipulations, based upon looking a constant depth into the

expression being evaluated.

The parse tree can be constructed in such a way that any subterm can be fully rep-

resented by a pointer to a node in the tree. All decisions for our machine (which rule to

apply, what is the value of Constapply) can be based upon examining the parse tree with a

small, constant number of pointer manipulations. We now consider the "boundedness" of

the actions of the machine.

1. Copying of terms is done by sharing objects that were created at the beginning of

program execution (small, constant number of operations).

15

2. Copying of environments is done by sharing objects that were created during execution

(single operation).

3. Modifying environments is done by appending a pair (the variable name, paired with

the closure to which it is being bound) on the front of the environment to be modified,

and providing a pointer to the new environment with the added pair in front (small,

constant number of operations).

4. Variables may be looked up via a sequential search through the environment, but the

maximum number of variables in an environment is a syntactic property, detectable by

the parser. (It is the maximum nesting depth of a term in the program—the number

of syntactically enclosing)'s).

It is easy to see that the first three of the preceding statements are true. The fourth,

however, requires additional justification. In particular, it is necessary to examine the

claim that the maximum number of variables in an environment is dependent only on the

structure of the term initially loaded into the machine, and is independent of the number

of steps needed to evaluate M. The key observation is that a subterm Ni of M = (N1 N2)

will always be evaluated with respect to the environment in which M was first encountered

(di_,2 to rule 7). Why? We can have 3 cases:

1. N1 is the subterm, trivial from rule 7.

2. N2 is the subterm, then a closure [N2, E] is created—where E is the environment in

which (N1 N2) resides.

There is now no way to evaluate N outside of E unless Constapply does some syntactic

rearranging in its arguments that "buries" terms inside A's (e.g. turn N into (AxN)M).

So for any definition of Constapply, it is important to check that the constant operators

do not cause any problems. In the case of the example given in Section 2.4, Y is the only

operator that may cause a problem. It does not: consider (YV) in environment E (the

closure [(YV), ED. We then get (V(YV)) in environment E, which is V in environment E

and [(YV), E} which is the closure at which we started.

For this scheme, all actions of the machine can be implemented by a constant number

of pointer manipulations—except variable lookup. The scheme proposed is one of many

16

implementation strategies, and is presented mainly to illustrate feasibility. There are many

alternative strategies, some of which could improve the performance of variable lookup at

the expense of other operations.

Henderson [1] uses an alternate approach to the SECD machine. In his model the

original code is "compiled" into SECD "machine" code, so the analysis of the structure

of a term is done only once—even if the term is evaluated several times (although this

provides only marginal benefit over using a good parse tree). In addition, an analysis

can be done at compile time to determine at what offset in the environment the value of

each variable can be found. This presentation, however, serves the purpose of building a

functioning interpreter/compiler for a subset of Lisp. Consequently, Henderson's interest

in the implementation results in a model in which some clarity has been sacrificed for

implementability.

3.2 eval

Our definition of Eval is quite cumbersome and can be very difficult to reason about

formally. We therefore introduce a much more manageable function, eval, which provides

an inductive characterization of our language. In the case of PCF, eval can be thought

of as a recursive characterization of the rewrite rules. We define eval by first defining the

binary relation on closed terms evalr . The relation evalr is defined inductively as follows:

• evalr(c,c) for c a constant.

• evalr(Ax. M,)x. M).

• if evalr(All ,Ax.M) and evalr([N2/x1M,L), then evalr((ili1/s/1),L)

• if evalr(Mi,c), evalr(Ni, N2) and evalr(constapply(c, N2), L), then evair((MiNi), L)

The following two facts about evalr can be proven by induction on its definition:

(a) evalr is the graph of a function.

(b) If evalr(M, N) then N is a value.

17

Thus we can make the following definition of partial function eval:

eval(M) 	the unique V, if any such that evalr(M, V)

Although we have rigorously defined eval above, one can gain additional insight into the

operation of eval by thinking of it in terms of being a function which satisfies the following:

eval(a) = a; eval(ArM) = AxM

eval([Nix]Mi) 	(if eval(M) = AxM1)

eval(constapply(a,N')) (if eval(M) = a and eval(N) = Ni')

In our proofs we will often find it necessary to do an induction on the proof that

evalr (M, V) holds, which we will call induction on the definition of evalr. For convenience

we may also say "M evals to V" to mean evalr(M, V). In addition we will use the following

fact about how eval and evalr "obey" our intuitions about a-equivalence.

Fact 1. If M1 --=M2 then

1. evalr(Mi, NI) implies that there is an N2=c,M2 such that evalr(M3, N2).

2. evalr(Ni , MI) implies that there is an N2=,,M2 such that evalr(N2, M2).

3.3 Result.

The main result of this thesis is to prove that the Eval function of the SEC machine properly

captures the operational semantics of call-by-name. This is done by proving it equivalent to

eval—a general recursive characterization of call-by-name without side effects, abstracted

away from the specific constants in the language. Given the following theorem, proving

the correctness of a given SEC implementation for a specific language becomes merely a

matter of showing that eval, with proper constants and definition of Constapply, captures

the operational semantics of the target language. Chapter 4 presents the proof for the

target language PCF. Proving that the recursive characterization eval correctly captures

the target language is much simpler than directly proving the equivalence with the SEC

machine itself.

The precise statement of our main theorem is as follows:

/

eval(MN) =

18

Theorem 1. Eval.eval.

The proof of this theorem is an itamediate consequence of the following two Lemmas.

The first, Lemma 2, says that if eval(Af)=,N then Eval(M)=---N. The second, Lemma 3

says that if Eval(M)=QN then eval(M)=„N. Hence, given our notion of equality between

partial functions eval(M)=Eval(M). In other words eval(M) is undefined if Eval(M) is

undefined, and eval(M) is defined and has value N if Eval(M) is defined and has value

within = of N.

But, before we can prove these two Lemmas, we need to observe that a variable lookup

in an environment takes a number of steps less than the depth of the environment. This is

formally expressed by the following Fact:

Fact 2. If E has depth d then [S, E ,x : C] 	[5, E', M : C] where d' < d and

Real([M,E1)=-„Real([x, E]) and M is not a variable.

In addition we need a Lemma which demonstrates the correctness of how the SEC

machine uses environments and closures to represent the term that results from the sub-

stitution of the term N for the variable y inside the term M (which we need in order to

capture 0-reduction efficiently).

Lemma 1. Suppose [AyM,E] and [N, E'] are closures and Real([AyM,E]).,,(AxM') and

Real([N, 	. Then Real([M, E {[N 	y}]).[N' I x]M'

The proof follows from the observation that if AyM.,,Axill' then M=„[ylx]M' hence

[N I y]ilf =,,[N I 411'

We would like to show that eval(M)=N implies Eval(M)=„N. This is proven by

induction on the definition of evalr , with the inductive hypothesis strengthened as follows:

Lemma 2. Suppose [M,E] is a closure and evalr(Real([M,E],M”), then VS,E, C with

FV(C) c Dom(E) and some E" we have:

[S,E,M : C] 	[[M' ,E'} : S , E" ,C]

where [M', El is a closure Real([M',V]).,M".

19

Proof: By induction on the proof that evalr(M", Rea1([M, ED). This proof follows very

closely along the lines presented by Plotkin[3]. There are 4 main cases:

1. M is a constant c. Here Real([M, 	= M = M" = c. Thus evalr(c, c). As

	

[S , E, M : C] 	[[M,0]: S, E,C]

we can take [M' ,E'] = [M ,0] and E" = E.

2. M is an abstraction (Az.N). Here M" = RealaM , 	= Az .N , and thus we have

evalr(Ax.N, Az .N). As

	

[S, E, M : C] 	[[M, E] : S, E, C]

we can take [M' ,E'] = [M, E] and E" = E.

3. M is a variable, call it x. By Fact 2,

	

[S, E , x : C] 	[S, E' , 	:

where M' is not a variable. The proof then breaks down to a case analysis on the

structure of M' exactly like this theorem, except the case of M' is a variable cannot

Occur.

4. M = (M1 M2) is a combination. Then

RealaMi M2 I ED = RealaMi EDRealaM2, ED = N1N2 say.

(a) Suppose evalr(Ni, AxN3). Then to get evalr((Ni N2), M") we must also have

evalr([N2/x]N3,M"). Then by the induction hypothesis 1 there are Edo and

[AC En such that

[S, E , (Mi M2) 	[[M2, E] : S , E, 	: ap : C]

([4, 	[Al2, : S, Ed„ ap :

1 When the induction hypothesis is applied to a SEC machine state Q to yield a state of the form [Cl, E, Cl
and we do not care what E is (e.g. we are about to discard it or use it as E" in proving the induction
hypothesis for the next step, where it may be arbitrary) we will write E as Ed, where I is used to distinguish
environments when the induction hypothesis is applied several times. When we do care about E having
certain properties, it will not be labeled in the form Ed..

20

where Real(1M;,n)=AxN3 and [MI, E'] is a closure. Here MI = 4.111 for

some .% and

Real([M, E {[M2, E]/Y}1)=a[N2/x]N3 (Lemma 1).

Now,

[[M1, Eii [M2, El : S , Ed, , ap : C] = 	[S , 	{[M2, 	: C]

[[M' , E'] : S , Ed2 ,C]

where, by the induction hypothesis, Real([M', E']) is to within a-equivalence of

the value to which Real([M, EI,{[M2, Ell 	evals, Ed 2 is an environment, and

{%'f', El is closure.

(b) If there is no term of the form Ax.N3 such that evalr(Ni, Ax. N3) then there must

be a constant a such that evalr(Ni , a). In addition, there must be an N such

that evaIr(N2,N). Then, by the induction hypothesis (applied to evalr(Ni, a)

and evalr(N2, N)), there are environments E(i = 1,2), Edi and Ed2 and a term

.1% such that

[S, E,(Mi M2) : C] [[M2, E] : S, E, 	: ap : C]

[[a, 	: [M2, E] : S , Ed„ ap : C]

[S, E, M2 : a : 	: C]

[[if,g] : S , Ed2 , a : ct : C]

[[a,(6] : 	: S, Ed2 ,ct :C]

, E",

Then, in order to have evalr((Ni N2), M"), evalr(constapply(a, N), M") must

i hold. Furthermore there i a closure [L, El such that Real([./tl, ED= c,N , and

Constapply(a, [M, ED = [L, E"].

We also know that evalr(Real([M",E1),N`) for some N'. By the induction

hypothesis there are Cl and Ed3 such that

E", M" : C] [C1 : 5,Ed3 ,C]

and Rea1(C1)=,N`. Taking [M', 	= Cl concludes the proof of the lemma.

21

U

In order to prove the last part we need to observe the following property of the SEC

machine:

Property 1. In one transition only the top item of the controlstring may be removed or

altered, i.e., to : C may turn into w' : C or w" : to' : C, but the C must remain intact.

We now show that Eval(M)=,,N implies eval(M) = N by induction on the number of

SEC steps in computing Eval, with the induction hypothesis strengthened as follows:

Lemma 3. For all closures [M, E], stacks 5, and controlstrings C, if there is an S' and E'

such that

[S, E , M : C][.51 , g ,C]

then 5' = Cl: S for some value closure Cl. Moreover there is an Mi=aRea1(C1) such that

evalr(Real[M, E], M').

Proof: By induction on t the number of state transitions, and cases according to the

structure of M.

Basis. t = 1. M must be a constant or a A-abstraction. The result holds immediately.

Induction step. t> 1. We have two cases:

1. M = x. Suppose E(x) = [M", El. Then

[S, E, M : C] 	[S, E", M" : C]

[5', E',C]

But 5' = Cl: S by the induction hypothesis. Moreover, there is an kr=oReal(CL)

such that evalr(Real([M", El), M'). But Real([z, E]) = Real([M", E"]), consequently

evalr(Real([M, E]), M').

2. M = (M1 M2). We now have:

[S, E, (M1 1112)] 	[[M2, E]: 5, E, M1 : ap : C]

11 	[Si, E" , ap : C]

l' 	[S' , E' ,C]

22

We know that we must pass through intermediate states of the above forms in order

to reach the desired last state. But we can apply the induction hypothesis to the

second transition, taking Si = [N1,E1] : [M2, E] : 5, where evalr(Real([Mi , E]), M i)

for some M'=Real([Ni,E1]). In order show that S' is of the appropriate form, we

do a case analysis on Al', noting that M' is either an abstraction or a constant.

(a) M' = Ax.Ar. Then we have:

El} 	[M2, E] : S, E' , ap : 	[S, 	{[M2 	: C]

[S' , E' ,C]

Applying the induction hypothesis to the last transition we find that S' = Cl: S,

where there is an M"=Real(C1) such that evalr(RealaNi , E1 {[M2, E]/x}]), Al")•

By an application of Lemma 1, several applications of Fact 1, and the definition

of evalr , we get: there is an M'"=,Real(C/) such that evalr(RealaM, ED, AV")•

(b) M' = c. Then we have:

[[c, 	[M2, El : S, E" ,ap : C] 	[S E, M2 : C : Ci :

[Cr : S, E", c : ct : C]

[[c,0] : Cl' : S, 	,ct : C]

The second intermediate state is justified by the induction hypothesis. Also note

that there is an M"=,,Real(C1') such that evalr(Real([M2 , E]), M"). Finally, let

Constapply(c,CP) = [N,Il so then we have

[[c, 0] : 	: S. " ,ct : C] 	[S, F, N : C]

[C 1" : S, ,C]

where there is an Mm.,Real(CI") such that evalr(Real([N, F]), M'") by the in-

duction hypothesis. Throu several applications of Fact 1, and the requirement

Real(Constapply(a, C0)=0, constapply(a, Real(C1))

we can conclude that there is an M"=„Real(C1") such that

evalr(Real([M, E]), M'"')

23

Chapter 4

Equivalence of eval and PCF

A specification of the set Constants and the function Constapply is given in the example

in Section 2.4. We will demonstrate that Eval(M) = PCF(M) when M is a program of

ground type. This in turn will show that the SEC machine presented will properly evaluate

well-typed programs in PCF (provided they are fully parenthesized, e.g.() ff M N) should

be written as (((pff)M)N)).

4.1 Preliminaries: The Language PCF

Consider the following set of rewrite rules for PCF:

1. 	(a) (Dcytt).c (Axci Ay° x),(D,ff)—.c (ArcAycy) (a. ground)

(b) (ICA1) —°4 (M(YaM))

(c) (AxM)N--oc [N/x]M

(d) (-1-11c,)-4c kni+i(m > 0)

(e) km(772. > 0)

(f) (Zico)— c tt,(Zkm+i)-- c if

2. (a) If M.c M' then (MN)--0,c (M'N)

(b) If 	M' then (aM)-4c (aM') (if a 1c)

Note that these rules use a curried form of j. However, it is a simple task to show that

(((3.7tt)M)N)-4LM and that (((pc,f f)M)N)2,LN).

24

We are not going to show directly that these rewrite rules for PCF are equivalent to

eval. Instead we will work with PCF with a strict Y. We change rules lb and 2b to:

lb' (Y,V)-+c(V(Y,V)) (where V is a Value)

2b' If M.LM' then (aM).c(aM') (even if a = Kr)

It is easy to see that these new rules are equivalent to the old rules in the sense that a

term M diverges in the old rules if it diverges in the new rules. If M does not diverge in

the old rules there must be a term (call it N) to which M reduces that cannot be further

reduced, then in the new rules there must be a term (call it N') to which M reduces that

cannot be further reduced. Furthermore N and N' are observationally equivalentl with

respect to the old rules (and by induction on the structure of N, the new rules).

Consider the claim on the term (YM): If M diverges then (YM) diverges in either

framework. If 	(V a value), then in the old framework we get (V(YM)), in the

new we get (V(YV)) but since M--017 the two are observationally congruent in the old

framework. By an induction on the length of the reduction one can show the desired result.

4.2 The Actual Proof

Theorem 2. For all well-typed, closed terms M with constants in Constants (as specified in

the example in section 2.4) and constapply, also as defined in that example, then M-+M'

(M' a value) if evalr(M, Af")•

But first we need several facts:

Fact 3. --+L is deterministic. That is: if M-4 L M' then AM" M' such that M-M"

Thus if .M>LM", M 3 L M' and m < n then Mtn::+f nLM".

Fact 4. If Mi 1,20cM1 then (MiM2)-1.' c(M;M2) and (aMi)l-I c(aM)

1 In order to define operational equivalence it is first necessary to introduce program contexts. A program
context CH is simply a "closed" term of base type with a "hole." C[2] is simply the term represented by C
with the hole filled by the term T. M and M are said to be operationally equivalent (to each other) if for
any program context CH, PCF(C[M]) and C F (C[N]) are both undefined, or are both defined and equal.

25

Fact 5. If M is a closed value, then (cM)—c constapply(c,M) which is to say that if

constapply(c,M) is defined then (cM) reduces to it, and if constapply(c,M) is not defined

then I3M'

Proof: (MAcM1 eval(M) = 	By induction on n.

Basis. n = 0. M is a constant c, or M is an abstraction (AxN) in either case M = W and

M has value Ail at time 1.

Inductive Step. M is a combination, say (M1M2). For (MiM2)—+M', a value, then it

must be the case thatM1 1-4LMI, where MI is a value. By Fact 4, (MiM2)4c(M1M2).

The proof now breaks down into two cases depending on what kind of value MI is.

1. MI= AxN. Then

(M1/112)24c((AxN)M2)--,caM2/x1Nr-t-1.+1)zW.

By the inductive hypothesis then eval(M1) = AxN and eval([M21 x]N) = M'. Thus:

eval(M1M2) = eval([M2/x1N) =

2. M = c. Then it must be the case that M224LA where A is a value. By Fact 4:

(M1Al2)14.c(cM2)74c(cA)-->c constapplY(c, MI)n-
n1 n2+1)cm,

By the inductive hypothesis:

eval(Mi) = c, eval(M2) = Af;, and eval(constapply(c,M)) = W.

Thus:

eval(MI M2) = eval(constapply(c, MD) =

•

Proof: eval,.(M,M') 	M—*M'). By induction on the definition of evalr

Basis. M = M', and is either a constant or an abstraction. In either case M 	N and

we are done.

26

Inductive Step. Al is neither a constant nor an abstraction so it must be an application,

say (M1M2). In order for evalr((MIM2), M') to hold it must be the case that there is an

Mf such that evalr(Mi ,M0 holds. Then, by the induction hypothesis, 11/1--.111, and then

by rule 2a (M1M2)--(MP/2). The analysis now breaks down into 2 cases based upon M.

1. M = Ax N. In this case we must have evalr([M2 /x1N,M1). But then

M = (M0112) 	(AxN)M2

[M2 I x]N

and by the inductive hypothesis [M2/x]PP-0 4 M' and so

2. MI is a constant. Thus there must be an /1// such that both evalr(M2,M) and

evalr(constapply(M1, MD, M') hold. By the induction hypothesis M2 —M. Hence

by rule 2h' (MP/2)--P*Lt(MIM). Let N = constapply(M{, MD. By fact 5 we know

that (M1 M)—cN. Finally, since N = constaPPlY(MI, M), evalr(N, M') holds; thus

by the induction hypothesis N M' and more importantly, M—M' .

•

27

Chapter 5

Open problems

There is a variant on "true" call-by-name which tries to balance the greater expressiveness

of call-by-name with the efficiency of call-by-value. In call-by-need, the arguments are only

evaluated if they are used, but if they are used their values are "memoized" so that if they are

used again their values are immediately available. Due to the additional bookkeeping needed

to determine whether or not an argument has been evaluated, there is a slight degradation

of performance over call-by-value. For a language without side effects, the semantics of call-

by-name is the same as call-by-need. Consequently, in this limited context, call-by-need

can be considered a particular implementation strategy for call-by-name—a strategy that

is generally more efficient than the straightforward one.

28

Acknowledgements

I would like to thank my advisor, Albert R. Meyer, for giving me a chance and for suggesting

this project, and his many hours discussing this research. I would especially like to thank

Jon Riecke for his excellent feedback, and for being there to help clarify my every confusion.

Both Jon and Albert have been invaluable assets in the production of this Thesis. I would

also like to thank Trevor Jim and Mike Ernst for helpful comments on an earlier draft of

this Thesis, and to additionally thank Trevor for implementing the SEC machine in ML.

Finally, I would like to thank my fiancé, Nicole Skinner, for providing support which has

made this process much easier.

29

Bibliography

[1] Peter Henderson. Functional Programming: Application and Implementation. Prentice

Hall, 1980.

[2] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308-

320, 1963.

[3] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Com-

puter Science, 1:125-159, 1975.

[4] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5:223-257, 1977.

30

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30

