Vision of a Teraflop

Meiko Computing Surface 2.0

MPP vs Traditional Supercomputer

- At Least 10× Cost/Performance
 - Traditional Vector Now\$2500 / MFLOPMPP Now\$1000 / MFLOPCS 2.0 Now\$250 / MFLOP
- Outperforms Best Vector Supercomputer

Traditional Vector Now	16 D.P. GFLOPS
CS 2.0 Now	200 D.P. GFLOPS
CS 2.1 (1993)	500 D.P. GFLOPS

12

meko

What is the CS 2.0?

- Significant Step to Practical Teraflop
- Distributed Memory MIMD massively parallel computer
- Scalable Architecture
 - compute/memory bandwidth
 communication bandwidth

 - network bandwidth
 - · low cost I/O
- Fault Tolerant Architecture

meko

Performance of First Release Machine

- Scalable to 1024 Nodes (200 d.p. GFLOPS)
- Node
 - 400 MFLOPS (single precision)
 200 MFLOPS (double precision)

 - 100 MIPS
- Comms Channel
 - 100 MBytes/sec bidirectional
- **Bisectional Network Bandwidth**
 - 32 nodes 3.2 GBytes/sec
 - · 256 nodes 25.6 GBytes/sec
 - · 1024 nodes 102.4 GBytes/sec

More Power is Better

z.

1	Compute (∝area)	4	
4	Comms (∝ perimeter)	8	
1:4	Compute : Comms	1:2	
	Memory Usage		
80%	Data	95%	
20%	Program	5%	

Viking Superscalar SPARC Performance

- 50 MHz clock
- 150 MIPS
- 50 MFLOPS
- 80 SPECmarks
- 20 KByte instruction cache
- 16 KByte data cache
- 1 MByte second level cache

©1992 nodes

MK403 (Memory System Design)

MK403 (Memory System Design)

meiko Network Plane #Nodes 1001Q • 64 processors 10000 0008. 6392 • 3 switch layers 80004 80008 80008 80008 : Bisectional 000000. 100000. 200000. bandwidth $= \frac{1}{2} \times 64 \times 100$ 000000 000000 000000 000000 = 3.2 GB/secANDIA North 8992 8992 8992 100201 100201

#Layers

©1992

network

- 16 processors
- 2 switch layers
- ∴ Bisectional bandwidth
 - $= \frac{1}{2} \times 16 \times 100$
 - = 800 MB/sec

Elan Operation

mei<0

Fault Tolerance

All memory has error detection and correction

All communications are CRC error checked, errors corrected by re-transmission or re-route

Network supports multiple routes

"n+1" redundancy with "hot spares" on line

Live removal and insertion of independently powered and cooled modules

Application Software

Uni-processor Math Library

- BLAS 1, 2, 3
- FFT
- NAG, IMSL, SAS

Parallel Math Library

- Dense Matrix solvers (both in and out of core)
- Interactive Sparse Matrix solvers
- 2 and 3 Dimensional FFT's

Explicit Parallel Libraries

CS-Tools, common to all generations of Computing Surface

- parallel application generator
- communications libraries
- performance analysis tools
- parallel debugger

Portable libraries

- PARMACS (Argonne Lab.)
- PVM (Oak Ridge Lab.)
- other vendor specific libraries

Compiler Technology

State of art optimizing C and FORTRAN for SPARC nodes

Vectorizing FORTRAN and C for Vector Nodes

High Performance Fortran for Vector and Scalar nodes

Software Technology

Every Node runs Solaris from SunSoft

- conforms to SPARC ABI
- conforms to SVR4, X/Open, POSIX

Multi-user, Multi-domain operating modes

Support for multiple parallel programming paradigms

- distributed multi-processing
- explicit parallel programming
- data parallel programming

Machine I/O

File I/O

- distributed parallel filesystem
- RAID sub-systems

Network I/O (scalable)

- Ethernet
- FDDI
- HIPPI

Bus Interfaces

- SBus
- VME (by bridge)

Elite Network Switch

Proprietary ASIC, 8 x 8 crosspoint switch

Hardware Broadcast

Fair arbitration of routing contention

Route checking of transaction CRC

Multi-stage

- packet switched network with wormhole routing

Multi-plane

- network redundancy

- improved bi-sectional bandwidth

Network Considerations

1. Congestion caused by concurrent communications between processors

2. Scalable Bi-sectional bandwidth

3. Fault tolerance

Elan Communication Processor

Proprietary ASIC, RISC CPU core, uCoded DMA engine

Packetized network transactions

- hardware context checking
- deterministic or random network routing

Byte wide bi-directional links

- 1.26 Gbit/sec line rate
- 100 Mbyte/sec bi-directional data rate

User process latency

- < 10uS between any two nodes in 1024 node machine
- operating system protection in hardware

Communications Considerations

- 1. Time to move data from processor A to B
 - latency
 - bandwidth
- 2. Anywhere to Anywhere connectivity
 - supports arbitrary and variable communication topologies
 - hardware broadcast
- 3. Communications Models
 - message passing
 - shared memory
- 4. Fault tolerance

Processing Nodes

Heterogeneous Architecture

- rapidly track high performance commodity CPU's
- provides better fit to different classes of application
- avoids proprietary CPU R&D burden

Industry standard Operating System

- Solaris 2.0 from SunSoft
- provides ABI for sequential applications

Design at optimum price performance point

Key attributes of MPP

- Node performance
- Communications channels
- Internal Network bandwidth
- I/O bandwidth

As you increase the number of nodes the bandwidth to communicate must increase proportionately.