Am29000/Am29027 bm |

Advanced
Micro
Devices

Floating-Point
Support Strategy

By
Bob Periman

E3K

Am29000/Am29027

Floating-Point
Support for the
Am29K Family

Overview

Am29000
Floating-Point

The Am29000 32-bit microprocessor has advanced architectural features that
provide extremely high throughput for integer computation. With a measured
performance of 42,000 Dhrystones, the Am29000 easily outperforms conven-
tional microprocessors, minicomputers, and super-minis.

In addition to providing outstanding integer performance, the Am29K family
also supports high-speed floating-point computation. Floating-point-intensive
applications, such as graphics, font generation, scientific computing, and sig-
nal processing, can reach new levels of performance.

By choosing among several options for floating-point support, the implemen-
tor can tailor the floating-point performance—and the overall system cost—to
the application. These options are fully supported by Am29K hardware and
software. Moreover, floating-point software written for the Am29000 today can
be transported to future Am29K processors without modification.

The Am28000 instruction set includes fifteen opcodes for floating-point opera-
tions, including addition, subtraction, multiplication, division, comparison, and
format conversion. These opcodes specify arithmetic operations for both
single-precision (32-bit) and double-precision (64-bit) floating-point formats,
and conversions between single-precision, double-precision, and integer rep-
resentations.

The Am29000 floating-point instructions are implemented as traps. When a
floating-point opcode is encountered in the instruction stream, the Am23000
executes the appropriate trap handler routine. Trapping on floating-point
operations allows the implementor to tailor floating-point performance to the
needs of the target system. For applications that require modest floating-point
throughput, the opcodes can trap to software emulation routines; for higher-
performance applications, the trap handler can drive a hardware arithmetic ac-
celerator. For very high performance systems, traps can be dispensed with
entirely, by executing code that communicates with an arithmetic accelerator
directly. Even higher performance can be expected from future Am29K proces-
sors, which will directly execute Am29000 floating-point opcodes.

The Am29K family provides both hardware and software solutions to floating-
point acceleration.

Applications that are computation-intensive will benefit from the Am29027
Arithmetic Accelerator. The Am29027 is a high-speed computation unit that
performs both floating-point and integer calculations, and that canimprove the
arithmetic throughput of an Am29000 system by an order of magnitude or
more. Its features include:

« an arithmetic-logic unit (ALU) that performs a large repertoire of single-
precision and double-precision floating-point and integer operations, in-
cluding addition, subtraction, multiplication, comparison, and format
conversion. Because the ALU uses combinatorial logic, rather than the
multi-cycle serial/parallel logic found in most conventional coprocessors,
it offers very low operation latency. The ALU can be configured in a com-
pletely combinatorial flow-through mode, or can be pipelined, at the user’s
option, to support vector operations.

= an 8-word-by-64-bit register file, for the storage of intermediate results.

= acomplete implementation of the IEEE Standard for Binary Floating-Point
Arithmetic for those operations supported. The implementation includes
unbiased rounding, gradual underflow, and recognition of special data
types, such as Not-a-Number.

« a‘“glueless” interface. The Am29027 connects directly to Am29000 sys-
tem buses; the interface can transfer as much as 64 bits of operand data
from the Am29000 to the Am23027 in a single cycle.

» self-timed operations. Because the Am29027 sequences operations inter-
nally, the Am29000 is free to perform its own operations in paralle! with
accelerator operations. Self-timing also serves as an interlock
mechanism, ensuring the correct handling of data dependencies.

= double-buffered input registers. Each Am29027 input register is preceded
by a temporary holding register, permitting the specification of a new ac-
celerator operation while another operation is in progress.

« extensive exception-handling support. Several options permit the im-
plementor to accommodate anomalous conditions, such as overflow and
underflow. If desired, failed operations can be completely reconstructed
by recovering the state of the accelerator at the time the exception oc-
curred.

Floating-Point Options

Hardware
Floating-Point
Acceleration

lo—la1 Ro-Rai So-Sa1
U
. = % RFO
rﬂ
> Temp | |% moDE | [> RTemP| [> s-Teme | 2!
2 > R | D> s]| [consrants ;
INSTR i
e e e B e T
OPERAND SELECT
64 .84 4.8
o -~
Dsatus| > F | [Drucs |
~n TN ~~
OUTPUT SELECT
32
Am29027 BLOCK DIAGRAM
32
10884A 01
Fo—Fa1

« state save and restore. In flow-through mode, the entire accelerator state
can be saved and restored, thus facilitating task switching and interrupt
handling.

Traditional floating-point coprocessors offer operation times in the
microsecond range. The high-speed combinatorial logic of the Am29027
produces results in less than a quarter of a microsecond for most basic arith-
metic operations.The Am29027 has two primary modes of operation: flow-
through mode, in which the ALU is completely combinatorial, and pipeline

Table 1: Am29027 Flow-through Mode Performance

Operation t:'n:
floating-point addition (single ordouble-precision) 240
floating-point multiplication (single or double-precision) 240
floating-point multiplication-accumulation (A*B+C) (single or double-precision) 360
NRegEr Dl (BB 32D T . . v s e aa s b A e e w Sk e A e el 240
Note: Times for register-to-register operations within the Am29027, clock frequency = 25MHz.
10884A 02

mode, in which the ALU is divided into two or more pipeline stages.Flow-

through mode performance for the Am29027 is summarized in table 1.

In pipeline mode, a new operation -of any type- may be started every 120 ns.

Pipeline mode is particularly useful for performing vector and matrix opera-

tions, such as those found in graphics and scientific applications. For example,

the Am29027 can multiply a 4-by-4 matrix by a 4-by-1 matrix—a compound

operation requiring 16 multiplications and 12 additions—in 3.6 us.

For applications with more modest computation requirements, the Am29000 Floating-Point

can emulate floating-point operations in software. Owing to its ability to per-
form a wide variety of single-cycle integer operations—such as addition, sub-
traction, shifting, and masking—the Am29000 is ideally suited for efficient
floating-point emulation.To assist designers who choose to implement float-
ing-point in software, AMD offers a complete package of emulation routines.
This package provides |IEEE-compatible emulation for all Am29000 floating-
point instructions, and can be easily integrated with application software that
is developed on Am29K compilers and assemblers.Am29000 floating-point
emulation performance is summarized in table 2.

Emulation

Table 2: Software Emulation Performance

time
ration

single-precision:
e [e L i i s s e M S SRS S S 4.8
T o ey AR R 8.7
L s e T MR LA S L G e S R T 59
double-precision:
PO DOCRHCISURRIIEIIAN . o n o v s e G BTt b o antlB & 575 w5 E A e 6.7
T T T I Y e A ST S R e R e P e e 11.9
T g T s e el i s e e S S R G A R T 29.3
Note: Clock frequency = 25MHz.

10884A 03

Software Support for
Floating-Point

Compilers

Assemblers

Floating-Point
Libraries

Trap Handlers

Both the hardware acceleration and software emulation options for floating-
point arithmetic are fully supported by Am29K family software, including com-
pilers, assemblers, floating-point libraries, and trap handlers.

AMD and third-party vendors offer C, FORTRAN, and Pascal compilers that
support floating-point operations. The user has the option of producing com-
piled code containing Am29000 floating-point opcodes that trap to the ap-
propriate handler, or generating in-line code that communicates with the
Am29027 directly.

AM29K assemblers fully support access to the Am29027. A special set of ac-
celerator macros allows the programmer to easily specify transactions be-
tween the Am29000 and Am29027, and to specify and execute all Am29027
instructions.

AMD provides an optimized floating-point library that supports the following
special math functions:

= absolute value

» field extraction

= square root, remainder

= ceiling and floor

« trigonometric (e.g., sin, cos, tan)

« logarithms, exponentials

The library functions can be called from C, FORTRAN, or Pascal source code.
The library is available in two versions—one containing Am29000 floating-
point opcodes that trap to the appropriate handler, and one containing in-line
code that communicates directly with the Am29027.

AMD provides two software options for applications requiring floating-point
trap handlers. For systems that contain a hardware floating-point accelerator,
AMD provides trap handlers that transparently dispatch floating-point instruc-

tions to the Am29027. For systems that do not have an Am29027, AMD offers
trap handlers that emulate all Am29000 floating-point instructions in software.

Although the implementoris free to tailor floating-point performance to applica-
tion requirements, most Am29000 floating-point systems will fall into three
general categories.

Systems that do not contain an Am29027 can perform floating-point opera-
tions by trapping to the appropriate software emulation routine whenever an
Am29000 floating-point opcode is encountered in the instruction stream. This
option has the advantages of low cost, good performance, and binary and
source code compatibility with systems containing an Am29027 accelerator;
it is also fully supported by AMD and third-party software tools. Executable
code is prepared by:

« compiling source code with an Am29K compiler configured to issue
Am28000 floating-point opcodes

« linking the resultant object code with the version of the floating point math
library containing floating-point opcodes (in systems using shared
libraries, this link is performed at run-time).

Trap routines that perform software emulation of floating-point operations are
installed by the operating system at boot-up. In systems for which all instruc-
tion memory is ROM, these software emulation routines become part of the
ROM image. Because the binary code produced during the compile and link
process is unaware of trap handler internals, it can be transported between
systems that have an Am29027 and those that do not.

Typical System
Configurations

System 1
Software
Emulation

HARDWARE SOFTWARE

SOURCE MATH LIBRARY
CODE (F.P. OPCODES)

COMPILE
F.P. OPCODES

Am29000

F.P. TRAP HANDLERS

(SW EMULATION)

[RUN-TIME IMAGE]

OPERATING SYSTEM
KERNEL

:

SYSTEM 1: SOFTWARE FLOATING-POINT EMULATION

10884A 04

System 2
Hardware
Acceleration,
Trapped Operation

Systems that have an Am29027 can perform floating-point operations by trap-
ping to the appropriate Am29027 driver routine whenever an Am29000 float-
ing-point opcode is encountered in the instruction stream. This option has the
advantages of moderate cost, very good performance, and binary and source
code compatibility with systems that do not contain an Am29027; it is also fully
supported by AMD and third-party software tools.Executable code is prepared
by:

« compiling source code with an Am29K compiler configured to issue
Am23000 floating-point opcodes

+ linking the resultant object code with the version of the floating-point math
library containing floating-point opcodes (in systems using shared
libraries, this link is performed at run-time).

Trap routines that dispatch floating-point operations to the Am29027 are in-
stalled by the operating system at boot-up. In systems for which all instruction
memory is ROM, these Am29027 driver routines become part of the ROM
image.

Because the binary code produced during the compile and link process is un-
aware of trap handler internals, it can be transported between systems that
have an Am29027 and those that do not.

HARDWARE

Am29000

Am29027

SYSTEM 2: HARDWARE FLOATING-POINT EMULATION,

SOFTWARE
SOURCE MATH LIBRARY F.P. TRAP HANDLERS
CODE (F.P.OPCODES) (Am29027 DRIVERS)

COMPILE
(F.P. OPCODES;

OPERATING SYSTEM
RUN-TIME IMAGE KERNEL

TRAPPED OPERATION

10884A 05

Systems requiring the very highest floating-point throughput can perform float-
ing-point operations by executing in-line code that drives the Am29027 direct-
ly. Using such code not only eliminates trap overhead, but also makes the best
use of Am29027 resources. This option has the advantages of moderate cost,
excellent performance, and source code compatibility with systems that do not
contain an Am29027; itis also fully supported by AMD and third-party software
toois. Executable code is prepared by:

« compiling source code with an Am29K compiler configured to issue in-line
code that communicates with the Am29027 directly

= linking the resultant object code with the version of the floating-point math
library containing in-line floating-point code that communicates with the
Am29027 directly (in systems using shared libraries, this link is performed
at run-time).

This approach does not require trap handlers.

System 3
Hardware
Acceleration,
In-Line Code

HARDWARE SOFTWARE

SOURCE MATH LIBRARY
CODE (IN-LINE CODE)

COMPILE
(IN-LINE CODE)

Am29000

Am29027

[RUN-TIME IMAGE] (

OPERATING SYSTEM
KERNEL

SYSTEM 3: HARDWARE FLOATING-POINT EMULATION,

IN-LINE CODE

Future Compatibility

The Am29K floating-point strategy is designed to support not only today’s
needs, but tomorrow’s. Software developed for any of the three system con-
figurations previously described can be transported to future Am29K proces-
sors.

Software developers using Am29000 floating-point trapped operation (sys-
tems 1 and 2) will be able to transport either binary or source code to future
Am29K Family systems; developers who choose to generate in-line code for
the Am29027 (system 3) will be able to transport source code. Regardless of
the option chosen, code transported to future processors will run at significant-
ly higher speeds.

7 SYSTEM 3: Hardware f.p. acceleration, in-line code

Hardware Software
Am29000 | | [Compiled Code (in-line) |
Am29027 | || Math Library (in-line) |

SYSTEM 2: Hardware {.p. acceleration, trapped operation o

o

PERFORMANCE

Hardware Software

[compiled Code | ST
Am29000 - i

[Math Library | . SYSTEMS
Am29027 | | ™ Am29027 Drivers |

SYSTEM 1: Software f.p. emulation -

Hardware Software S

[CompiledCode |
Am29000 | | | Math Library | ‘==-’ .

Software Emulation _
Trap Handlers S
10884A 07

SOFTWARE MIGRATION PATHS FOR THE Am29K FAMILY

4y u. . Jnlﬂ'.ﬂ""-'l |"'“—"‘.l :
o - o Ly Ry \-(F'-
ca s B R TN LT o
o ST % B T .L-*!ﬂ“"“"
|-|-|rbﬁm!"'-"|"4"" e

suniit e 7 15 .
o ks .‘.. it)

1:“1TP‘ |‘i| ,q...rmrf 4,."‘
st J-.E"; T ,'Hur
-',_'H FII"' "'_llu‘“ ‘T‘n'n

m,”% .7.

o
-ﬁ'r J-yuu"l‘

Lmemm.m ﬂﬁmw
i
mﬁsﬁﬂ % M ,’,,i,.'...

'mﬂ T naam = Ul A;:" s AdCiINE aum
iyl == e b 1, Hﬂc}‘tl’ f" mﬂﬂk ,..ILa-J
BRI e ~ane=
*'m'&tﬂ
T S
i M EE) Gl

el
24

W e s RN p e e e [: 3

" N Al ik Loy e | b .

L T Mtﬂdﬂ* ‘;:mun.dww mmh*‘ﬁﬂ#m i
ﬂ e "__ Iﬂﬂ-d W‘Ht g tl-ﬂfl“ -‘-Q-G . o
o d ‘,4_‘ i Jm- W Hi . —L Iw L ‘

- ey il WW” pili G l .
e 1 . Mlﬁ“ 3 ! e o Tl
sl '

. lhgns v
#*.."'WI-V R M"&“ B pLLERE

i e

ADVANCED MICRO DEVICES’ NORTH AMERICAN SALES OFFICES
BENPNIA. -, L7 v ian s
(g.g; 882-9122

242-4400

813) 530-9971
776-2001

796-9310
273-3970

938-000
451-3115
299-0002

457-5400
4) 471-8180
364-8020
878-8111
891-6455
891-6455

439-0470
503) 245-0080

. (215) 398-8008
e 7200 (08} o0z 2500
404) 449-7920 g}‘ 346-7830
312) 773-4422 13 %3’4..?‘?9?
12 ﬁsg}; 206) 455-3600
1 0580

913) 451-3115 sigackia:

ADVANCED MICRO DEVICES’ INTERNATIONAL SALES OFFICES

KOREA, Seoul i Mol 82-2-784-7598
77191 42 e 82-2-784-8014

e 762 37 12 LATIN AMERICA,

............. 61028 e A, el %}mseoo
49-75-10-10 TLX Zi's'imfi‘za' 9554261 AMDFTL
49-75-10-13 NORWAY,

............ 263282 HORK - s smiis e B Pk s A BRI

O i ioe 591959
0511) 736085 y e e
0511) 721254
............ 922850 SINGAPORE TEL
soeo& 41 140 FAX
089) 406490 TLX
""" 0711) 6233 77 SWEDEN, Stockholm TEL
(0711) 625187 FAX ..
............ 721 e
852-5-8654525 TR s 1+ & it 886-2-7122066
X i 886-2-7122017
. 67955AMDAPHX UNITED KINGDOM, =
- I [R o 0925) 828008
! as:na} Tthx """"" % 628524
o e 02) 3498000 London area - 04862) 22121
R it 315286 AN ivaiing 0483) 756196
JAPANW =3 s B LT 8591
""""""""" FAX 462-47-1729
T S il 03) 345-8241
Tﬁ& 03) 342-5196
BN G s e e 06-243-3250
L e 06-243-3253
NORTH AMERICAN REPRESENTATIVES
MICHIGAN
SAI MARKETING CORP (313) 750-1922
DA MARKETINGo0vnun (604) 430-3680 MISSOURI
LORENZ SALES & i nnasis (314) 997-4558
DAVETEK MARKETING (604) 430-3680
VITEL a.eé:momcs (613) 592-0090 NEW MEXICO e ey oy S
R - T T e DESERT STATES (505) 293-8555
VITEL T e, G N 416) 676-9720
Quebec e N ey M G e (315) 437-8343
mvrrEL ELECTRONICS\cocnivas (514) 636-5951 OHIO
iD
INTERMOUNTAIN TECH MKGT (208) 888-6071 DOLFUSS ROOT & 00 «.....cuvunnnen (513) 4336776
ELECTRONIC mxsﬂm NG s DOLFUSS ROOT &COooevvnvn.n. (614) 885-4844
CONSULTANTS, INC. 31 1
IOWA e . S BOOTRGE o insaiin (218) 238-0300
LORENZ SALESccov0icnsainisns 318) 377-4666 ENNSYLVANIA
KAN ‘m; mogfuss WOEECO . (412) 221-4420
R et b e ¢ REMARKETINGccovennvinnnnnnn (801) 595-0631
ELECTRONIC MARKETING
CONSULTANTS, INC.c0canns (317) 253-1668

mmmmmmhmmmmmmmhmmmmam

characteristics. The

characteristics listed in this document are guaranteed by specific tests, guard banding, design and

performance
mmmmmmmmmmmmmmomm.mm
assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson P1., PO. Box 3453, Sunnyvale, CA 94088, USA
‘ TEL: (408) 732-2400 » TWX: 910-339-9280 » TELEX: 34-6306 # TOLL FREE: (800) 538-8450
mmmm&s:m}m—m-(mnm

© 1988 Advanced Micro Devices, Inc.
Printed in U.SA CP-20M-7/88-0

PID NO. 10884A

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

