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Designing logic circuits with Conservative Logic has generally followed 

the same patterns as with normal logic. The nature of Conservative Logic can 

allow one to adapt a different way of representing a circuit which aids in 

the design of the circuit. Since Conservative Logic only has one kind of 

logic gate, the new symbology takes advantage of this by representing the gate 

as a vertical line connecting the inputs. This allows greater compacting of 

a circuit while increasing the clarity of the internal functions. The first 

part of this thesis explains the new symbology. 

The second part of the thesis is the design of a reversible accumulator 

and counter, using the new symbology. 
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REVERSIBLE COMPUTATIONS 

Designing computers out of reversible logic is a fairly recent idea. 

For years, it was considered to be impossible because computation was thought 

of as an irreversible process. 

A computation is reversible if, and only if, given the outputs of the 

computation and the semantics of the computation, the inputs can be determined. 

This implies a bijective mapping of the inputs to the outputs. 

Any computation with a given m input bits and n output bits can be forced 

to be a reversible computation by adding at most n additional bits to the in-

puts and m additional bits to the outputs. A trivial method of doing this 

would be to make the m additional output bits copies of the m inputs. The 

additional n inputs are necessary for the number of inputs to equal the num-

ber of outputs. Now there will be a bijective mapping. 

Computations seem to have varying degrees of irreversibilities. An 

extreme of irreversibility would be a function where all the inputs mapped to 

the same output state. This would require the maximum number of additional 

inputs and outputs to make it reversible. A nearly reversible computation 

would be a divide by 2, using only integers. If truncation were used, any 

even number would map to the same output as the next odd number. To determine 

the input from the output, it would only need additional information as to 

whether the input had been an odd or even number. This could be represented 

by only one additional output bit regardless of the number of input bits. 

Many of the useful computations encountered range between these two degrees 

of irreversibility. Since unnecessary bits are useless to have, any function 

should be designed to have the minimum additional bits necessary. 
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CONSERVATIVE LOGIC 

Conservative Logic is a model for expressing reversible computations. 

It consists of two basic elements; the selector gate and the wire. The 

selector gate is a 3 input, 3 output gate symbolized as shown: 

A 

AB + AC 

AC + AB 

It is shown with the inputs on the left and the outputs on the right as 

Boolean expressions of the inputs. A better visual conception of its function 

is as shown for two values of A. 

A= 1 

I 1 0 1> 

B >---- 

C C )---- 

Any inputs are denoted as a little arrow and the outputs as a straight line. 

The wire is used to connect gates together. All the inputs or outputs of a 

gate that are not inputs or outputs of the whole circuit must be connected to 

a wire. All wires must be connected to a gate or to another wire. The repre-

sentation of a wire is: 

The functions of the wire are to communicate information and also repre-

sent Lithe delays in the circuit. This can be visualized by thinking of tbP 
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triangle as a D flip flop. All the wires of a system are connected to a 

central clock and are triggered synchronously. The D flip flop acts as the 

memory. The physical location of the wire determines the communication 

channel. The time delay of information communicated through one wire will 

be the inverse of the frequency of the clock. Also, the gates are to be 

considered as no time delay. An example of the above concepts are in the 

following figure. 

A 
t> 	 

›- 2 

At a given time step, consider that the signal at A is the same as the 

signal at 3, and likewise with D and E, but B, C, and D are all different 

signals. In the next time step D and E will assume the value of C, and C will 

assume the value of A and B. 

The wire with two triangles is actually two wires that are joined. Two 

are necessary to keep the signals synchronized with the information in the 

third line. Also, the bottom two lines have an input connected to a wire. 

This is to synchronize the inputs to gate 3 because one of the inputs is de-

layed by the wire from 1 to 3. 

An interesting logic model would have to be universal. This is generally 

considered true if the model has an "and gate" and a "negate" function. Con-

servative Logic has these, as can be seen from the following examples. 
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The model gets the name "Conservative" because it also has the property 

of conserving the ratio of different binary states from the inputs to the 

outputs. In other words, the outputs will have the same number of "l's" as 

the inputs. 

This model also deals with the method of fanout. Since only one wire may 

be attached to a given output of a gate, it would seem to prevent fanout. 

The example of the "negate" also makes a copy of the input, so this can be 

used for fanout. This gives a precise way of notating fanout. It is also 

necessary because the traditional method of fanout, with just a branching of 

wires, would run into problems running in reverse, if two different signals 

ran into the same branch. 
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THE NEW SYMBOLOGY FOR CONSERVATIVE LOGIC 

The new symbology has several advantages over the old symbology. The 

most obvious advantage is in the geometrical layout of the circuit in two 

dimensions. The advantages will become clear after a discussion of the 

symbology. 

Since Conservative Logic has only one kind of gate, it is not necessary 

to use a two dimensional figure to distinguish between gates, as is necessary 

in conventional logic. The gate now becomes just a straight line intersecting 

the three lines it needs for inputs. Since the inputs of the gate can be 

thought of as a controller and two lines to be controlled, the inputs fall 

into two classes. To reTzesent the different classes will be an open circle 

at the intersection of the controller and a closed circle at the intersection 

of other inputs. Since the two inputs are distinguished by circles at the 

intersections, it naturally leads to the ability to cross a wire but assume 

there is no connection if there is no circle at the intersection. The new 

symbol is as shown: 

The B and C were not affected and the D was passed through since it was 

the controller. The A and the E were affected just as would be expected. 

Since a gate can be extended over a wire, it is never necessary to move 

a wire to a gate, just move the gate to the wire. This makes it possible to 

have all the wires stay as straight lines all the way through the circuit. 
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The procedure for using the new symbology is as follows: 

1. Given n inputs, draw n wires from the beginning of the circuit to 

the end. 

2. Overlay the necessary gates on the wires. 

Example: 

Notice the delays have been left out. Without delays, it is easy to 

see the de7-enden2ies of the gates on their inputs. In other words, the inputs 

to a gate must be calculated before the gate needs them. 

An easy way to put in the time dependencies is as follows. Put as many 

of the gates to the left as possible with this one restriction; no more than 

one gate can intersect a line in this group. Now draw a vertical line through 

the whole circuit directly to the right of the group. Wherever this line 

intersects the signal lines, that will be interpreted as a time delay. This 

is the equivalent of the triangle on the wire. Now repeat the process with 

the remaining gates. This is shown in Figure 1. 

This method will assure that all the signals arrive at the gates in a 

synchronous fashion and that the outputs are synchronous. This also assures 

that the proper number of wires will be inserted between all the gates and 

this will also compute the results in the shortest time for the given config-

uration of gates. 

So far, this model will only work for inputs that arrive at the same 

time. Any inputs that come at a later time can come in straight to a gate. 
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Any output that leaves before the end of the circuit will pass through a 

time delay before it leaves. For uniformity, show all inputs coming in 

from the top and outputs coming out from the bottom. 

A 	 	 E 

B >-- 

C ›- 

F 

          

          

A > 	 

         

         

B> 	 

        

        

        

       

       

          

          

This method makes it fairly easy to stack circuits as in Figure 2 on 

the following page. 
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Figure 2. 	Interconnections 
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The one necessary exception to the inputs entering from the top will be 

a feedback loop. Consider the following example of a feedback loop: 

1 0 0 

0 

A 

B) 	 1 

0 1 

The time delays of the loop are all shown to the right of the gate and 

the path going backwards has no time delays. 
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ADVANTAGES OF THE NEW SYMBOLOGY 

The advantage of the layout should be fairly ovbious now. Since it 

is now easier to layout the circuit, this also allows more of the time in de-

sign to be spent on the actual logic functions. This layout also helps to 

see two types of dependencies of the gates. A gate is always dependent on 

any gates that must compute a value that will affect one of the inputs to the 

original gate Also, if two gates need the same output of some gate, there 

is now a time dependency. If both gates need it for an input other than a 

controller, a copy must be made before either can use it. If one of the gates 

is using it for a controller and it is important for this gate to be calculated 

sooner at the expense of the other gate, then it should use the value and then 

pass it to the next gate. Since this helps to see these dependencies, then it 

helps when changing the circuit because immediately, all things affected by 

the change can be predicted. 

The regular structure of the circuit also hints at a possible implemen-

ta-Aon as an integrated circuit almost directly from the drawing. 

The use of a simple structure for the gate and the regular structure of 

the entire circuit also hints nicely at a convenient representation on a-CRT 

for uses of debugging. It might be possible to implement it such that when-

ever a gate was added, the computer could instantly add the affects in 

Boolean Algebra form on the screen. 

In using selector gates it is often useful to think of the gate in 

terms of specific sets of inputs, which will result in a close similarity 

with normal logic as in Figure 3. 

11 



QR 
	

XOR 

A 

A+ B 

A+ B 

A 

B 

A G B 

Figure 3. 	Specific Gates 

AND 

A 

0 

FAN OUT AND/OR 

AB 

A+ B 

12 



THE ACCUMULATOR 

A block diagram for an accumulator is as follows, where S=A+B: 

Since the input B is a function of the outputs where B=S-A, all the inputs 

can be determined from the outputs, therefore, this figure represents a 

reversible circuit. To be designed out of the selector gate, it must also 

conserve the number of "1" inputs. As it stands, this figure does not conserve 

bits. Consider the case where A=1111 and B=0001. There will be five "l's" 

input to the circuit. The sum of A and B will be 5=0000 mod 32. The outputs 

will only include one "1". 

To correc7, this problem, include as an input the negation of A and as an 

output the negation of S. Using the above example, there will now be five "l's" 

in the inputs and five "l's" in the outputs. The resulting block diagram is: 

A 

It is not obvious how to design this circuit with a selector logic gate. 

One method is based on the proof of the following theorem: 

Theorem 1: For any combinatorial function F(X1,X2,...Xn), where it is 

true that X1 can be expressed as a function of F(X1,X2,...Xn) 

and the variables X2,X3,...Xn, the following circuit can be 

constructed. 
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	 F(X1,X2,...Xn) 
	I P(X1,X2,...Xn) 
	 X2 
	i X3 

• 

Xn 

X1 
X2 

X1 
X2 

Xn > 	 
1 	> 	 
0 > 	

	 Xn 
	4 F(X1,X2,...Xn) 

F(X1,X2,...Xn) 

X1 

X2 

X3 

Xn 

F( ) 

) 

F( ) F( 	) 

P( ) P( 	) > 
X2 > X2 
X3 X3 > 

Xn Xn > 

1 4 X1 > 

0 > 

X1 
5ra > 
X2 > 
X3 > 

Xn > 

1 > 
0 > 

X1 	 
R1 	 
X2 	 

	

X3 > 	 

• 

	

Xn > 	 

Proof: 	 The first step of the proof will require Theorem #3 from 

Bill Silver's paper "Conservative Logic" which states, "The 

following circuit can be constructed for any Boolean function 

F". 

Using this theorem, the following two circuits may be 

constructed: 
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X1 
X1 

X2 	 
X3 	 

Xn > 	 

1 	> 	

0 

Since the selector gate is reversible, and only combinator-

ial circuits are being considered, the mirror inverse of the 

second circuit will result in the following: 

F( ) F( 	) 

F( P( 	) 

X2 X2 4  

X3 > X3 

Xn > Xn 
X1 ) 1 

X1  0 > 

Using the above circuits it is now possible to construct 

the final configuration as follows: 

Applying this construction to the accumulator results in the following 

configuration: 
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The first block will be an adder. The second block will be a subtractor, 

where A=S-B. This subtractor can be implemented with an adder. Using two's 

complement notation, the subtraction S-B can be performed by negating the sum 

of B and the negation of S. 

S-B= S + B 

Using two back to back adders the circuit will be as follows: 

The design is now simplified to the design of an adder. The adder can 

be divided into sub-modules for the sum of each bit. 

A.= i-th bit of A. 
1 
B. = i-th bit of B. 

C. = carry into sum of i-th bits. 

Ci+1= carry out of i-th bits. 

	

S. 	= sum of A.,B.,C.. 

	

1 	 1 1 1 
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The Boolean algebra functions for C
i+1 

and S. can be calculated from 
1 

their truth table. 

	

A. 	B. 	C. 	S. 	C. 

	

1 	1 	1 	1 1+1 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
1 
0 
1 
0 
0 
1  

0 
0 
0 
1 
0 
1 
1 
1 

	

S. 	=A. ®B 	®C 

	

1 	i 	i 

	

+ AC. 	. 	. + BC 

	

C. 	=AB. 	. 
1+1. 	 3. 

The final design of the adder has been optimized for speed. The con-

straint on an adder for time is the delay due to propagation of the carrys. 

Therefore, the time necessary for the carry to be propagated through one bit 

must be a minimal value. The optimal delay would be one time delay to pro-

pagate one bit. 
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Several iterations of the design of the adder resulted in acheiving a 

much more optimal circuit. 

On the first attempt, it became obvious that designing straight from 

the Boolean Algebra doesn't always lead to an optimal circuit. To calculate 

C
1+1 

requires the following circuit if the straight forward implementation 

is used. 

C. 
1 

C. 
1 

T 

A > 
AB 

2-1 

AB 

A+B C(A+B ABC.+ AB A+B> 

0) .C(A+B 
.(A+B) 

1> 0 

C. 
1+1 

If the expression is rearranged to an equivalent algebra expression, it 

becomes obvious how a quicker implementation can be found. By quick, it 

only requires the one delay hoped for. 

C. 	= A.B.C. + (A. + BAC. 
1+1 	1 ] 1 	1 	1 1 

	f  C. 1 

A 	 A 

AB   ABC. + C.(A+B) 

A+B 

18 



The first approach assumed a need for the carry to propagate with its 

complement. This was done with a "Fanout" gate after the carry had been 

calculated as shown. 

1 	> 	  

0 > 	  

o. i+1 c1+1 
Unfortunately this results in two delays per bit for the carry to propagate. 

Two methods are discussed for solving this problem. 

The first method was to only propagate the carry. Since the complement 

is not there the inputs and the outputs must be checked to be bit conserving. 

1 
A

•  
• A 
IA ' 
1 	B 

1 S >- 

0 	)- I 

C
i+1 

Except for the carry in and the carry out all the other inputs balance with 

the outputs for the total number of ones. The carry in doesn't balance with 

the carry out. An easy way to conserve the bits would be to output the car-

ry in and to also input the carry out. This is accomplished by outputting 

the carry in back to the previous bit adder after it is no longer needed. 

This will also accomplish the necessary input of the carry out as shown. 
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When the carry out comes back to the circuit it feeds into a mirror 

image of the gates used to calculate it. This will eliminate it. The carry 

in is used to calculate the carry out and then to eliminate it. For the 

propagation of the carry back up the circuit to be only one delay the carry 

in must be output as soon as the carry out is eliminated. In between these 

uses the carry in will be used to calculate the sum bit. This is easy since 

it only requires the carry in to control one gate. All these points are 

shown in Fig. 4 

The fatal drawback of this design is the total time delay required for 

the circuit to finish. The propagating of the carry back up must wait until 

the carry propagates all the way down. Thus there is still a delay of two 

per bit. An interesting point about the delays is that the sum is finished 

being calculated after the carry has propagated down. So there exists a 

possibility for the sum to be used after only one delay per bit. The addi-

tional delays are only necessary to clean up the garbage. 
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Figure 4. 	Trial Adder 
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The second method is to calculate the complement of the carry out inde-

pendent of the carry in using the complement of the carry in. This way the 

carry out and its complement will be calculated in parallel. The complement 

of the carry out must also be calculated in one time delay. This can be 

done as shown: 

Since the carry's are accompanied by their complements the bits will be con-

served. Therefore there will be no need to input or output anything else. 

Now the problem lies in eliminating the garbage and the carry in. Since the 

carry out doesn't come back it is not possible to use a simple mirror image 

as before. The same trick that is used to eliminate the A's in the whole 

circuit can be used to get rid of the garbage. The first garbage to destroy 

is the garbage generated by the gates calculating the carry outs. The mid-

dle outputs of these gates are the garbage and one is the inverse of the 

other as shown. 

C. 
1 

Ci  

ABC. + ö.(Ä + B) = X 
1 	1 

A. + C.(A-  + 1-3) 
1 	1 

C
. 

2? 



The trick is to generate the garbage again by calculating the carry 

out again. Now the three garbage outputs can be fed into an inverted fan-

out. This eliminates two of the garbage bits as shown. Now the last bit of 

garbage can be fed into a mirror of how it was created which will eliminate 

it. 

0 

A + 3 >-0-- 

A + 3 > 	• 

- 

e . 	c 1+1 i+1 

Now the carry in must be eliminated. Before it can be eliminated it must be 

used to calculate the sum bit. This can be done the same as before. Now 

the carry in could be eliminated by solving for it with the sum bit and A 

and B. Then use an inverted fanout as before. This would result in the fol-

lowing: 
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B. 1 

B. 
1 

1 

Ai > 	 	 Ai  

	1 0 

The unusual function required for the sum allows a savings on the method 

just described. Since the concern is to eliminate the carry in and its com-

plement and calculate the sum bit, if the XOR of A and B is used to control 

the carry in and its complement, that would calculate the sum and get rid of 

the carry in at the same time. 

A.O.) B. 	 A.0 B. 
1_ 

	

C. 	 S. 

	

1 	 1 

C. 

	

1 	 1 
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0 >--- 

11 

The final configuration of the one-bit adder is Figure 5. To complete 

the circuit, Figure 6 shows the inverse of the adder necessary to eliminate 

the input A. The inverse adder's inputs have been permutated so that it can 

be connected directly to the first adder as follows, where 5 means from Fig-

ure 5 and 6 means from Figure 6. 

c. 	 c. 

1111 	11.11 

C
1+11+1 	

C
i+1i+1 

Between the two adders must be a fixed time delay corresponding to the 

delay of the carry propagating down the number and back up to that point. 

To clarify why these delays are needed, Figure 7 shows the connections for a 

4-bit accumulator. In Figure 7 the time lines are not meant to show any de-

lay between the stages. They are to show the delays necessary between the 

adders at any particular bit. 
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Figure 6. 	Final Inverse One-Bit Adder 
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Figure 7. 	4-bit Accumulator 
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THE COUNTER 

A counter can be thought of as a simplified accumulator where the num-

ber being added is always "1". To use the accumulator as a counter would 

only require replacing B by 1t111.  Since this is a constant the circuit can 

be simplified. Using the same construction methods as for the accumulator 

it is only necessary to modify the adder circuit. 

A 

       

B 

1 )-

0 

  

to 

   

      

            

Since B in binary is "00000001", the first bit Bo  will be replaced by a 

"1", and all other bits will be replaced by a "0". Figures 8 and 9 show the 

results of the simplifications for the adder and the inverse adder. The 

circuit for the first bit is Figure 10. A 4-bit counter would have the same 

structure as the 4-bit accumulator so its diagram would look like Figure 7 

without the B inputs and outputs. 
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Figure 8. 	1-bit Counter (First Half) 
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Figure 9. 	1-bit Counter (Second Half) 
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Figure 10. 	First Bit of Counter 
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