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ABSTRACT 

The author describes what he calls the m&n alpha beta 

procedure, specifies a LISP computer program for carry-

ing out the procedure and proposes an experiment with it. 

The proposed experiment may help in eventually obtaining 

"intelligent" computer programs which can make good 

decisions based on looking ahead on the "tree" of future 

possibilities. 
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1. 	Overview 

1.1 Nature of the m&n Alpha Beta Procedure 

m = 

n =  

The m&n alpha beta procedure is more efficient than and equivalent 

to m&n minimaxing (in the same way as the ordinary alpha beta procedure 

is more efficient than and eauivalent to ordinary minimaxing), To obtain 

the backed-up value to a game position in which it is the maximizing 

player's turn to move, m&n minimaxing backs up the m best (greatest) 

values of that position's successors, that is, the positions to which 

the maximizing player can moveu Similarly, to obtain the backed-up 

value of a position in which it is the minimizing player's turn to move, 

m&n minimaxing backs up the values of the n best successors. Thus 

ordinary minimaxing is 1&1 minimaxing, and the ordinary alpha beta 

procedure is the l&l alpha beta procedure. 

1.2 The Proposed Experiment 

The game of checkers will be used to compare the performance of 

the 2&2 alpha beta procedure with that of the 1E_ (ordinary) alpha beta 

procedure. 	Before this comparison is made, a computer program will 

"learn" and supply to the 2&2 alpha beta procedure two functions for 

backing up the values of the two best successors of any position. To do 

this learning, the program is supplied with a large number of typical 

checker positions by the experimenter. 

2. Purposes of the Proposed Experiment With the 2&2 Alpha Beta Procedure 

The proposed experiment may help in eventually obtaining "intelligent" 

computer programs which make good decisions based on looking ahead on the 

"tree" of future possibilities. Toward this end, the proposed experiment 



is directed toward the following, more limited objective. The proposed 

experiment may help in obtaining game-playing programs which make good moves 

based on looking ahead on the tree of future, possible positions, 

The l&l (ordinary) alpha beta procedure is now the best procedure for 

selectively searching the tree and for backing up values on the tree. The 

proposed experiment studies an advantage and a disadvantage of 1&1 alpha beta 

as compared to 2&2 alpha beta, On the one hand, 1E41 alpha beta cuts off its 

search more readily than does 2E42 alpha beta, On the other hand, a value 

backed up from the value of only the single best successor of a position is 

often inferior to a value backed 1110 from the values of the two best successors. 

3. Organization of the Report 

Section 5., describes 1&1 (ordinary) minimaxing and a weakness 

eliminated by the m&n alpha beta procedure. Section 6., describes, mainly 

by example, m&n minimaxing. Section 7„ describes, again mainly by example, 

the eauivalent but more efficient m&n alpha beta procedure, Appendix B and 

Appendix C precisely describe (by LISP[l]computer programs) m&n minimaxing 

and the m&n alpha beta procedure respeczively. Ser'tIon 8., describes the 

proposed experiment with the 2F42 alpha beta procedure, Appendix A gives 

some preliminary definitions needed in Appendix B and Appendix C. 

4. Prerequisites 

The description of m&n alpha beta is self-contained. However, the 

reader who is not already familiar with ordinary minimaxing and alpha beta 

is strongly urged to familiarize himself with them. A brief description of 

ordinary minimaxing is given in Section 5. A full description of ordinary 

minimaxing is given by Samuel [2]. Dec riptions of ordinary minimaxing and 

alpha beta are given by Slagle[3].(Everything good in the alpha beta program 

presented in [3] should be attributed to Professor John McCarthy; 



4 

everything bad, to Slagle.) To read the appendixes the reader must be 

familiar with the notation of LISP[1], a computer language for manipulating 

symbolic expressions. 

5. l&l (Ordinary) Minimaxing and a Weakness 

The weakness described below of 1&1 minimaxing is shared by the 

equivalent l&l (ordinary) alpha beta procedure. Equivalence means that the 

move chosen by l&l minimaxing using a given termination criterion is always 

the same as the move chosen by the corresponding l&l alpha beta procedure. 

The m&n alpha beta procedure is designed to eliminate this weakness. In 

addition, this section establishes some terminology and briefly describes 

l&l minimaxing. 

5.1 Brief Description of l&l Ninimaxing 

Assume that the machine has a function, called the evaluation 

function, which assigns a numerical value to each game position. For 

definiteness, assume that the greater the value of the function, the 

better the position tends to be for the machine. For this reason, the 

machine is called the maximizing player. 

In Fig.1, the maximizing player can move from position P to either 

position P1  or position P2. We shall say that the successors of the 

max-position P are P1  and P2. Similarly, the successors of the .min-

position P1  are Pll  and P12. As a convenience to the reader, a hori-

zontal line is drawn on the figures between each min-position and its 

successors. The machine uses its termination criterion to determine 

not to search below P
11' 

P12, P
21, 

and P
22
. Using its evaluation, 

the machine obtains the values 

V11 = 30 v12 = 30 v21 = 29 v22 = 80 

for Pl., P
12, P21 

and P22' respectively. -' 
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To obtain the backed-up value of 'a min-position, 1E41 minimaxing 

backs up the value of the best successor of the min-position. Hence, 

l&l minimaxing backs up 30 to P1  and 29 to P2 . Hence, 1E41 minimaxing 

would choose to move To position Pi. 

Fig. 1. An Example of Ordinary Minimaxing 
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5.2 A Weakness of l&l Minimaxing 

Fig. 1 illustrates a weakness of l&l minimaxing. Assume that 

the maximizing player looking ahead from position P looks at less 

tree below P
1 
than the minimizing player looking from P

1 
can look at 

below P
1
. A similar remark applies to P

2
. This is generally the case 

and becomes a near certainty when the number of successors of each 

position increases to, say, 10 as in checkers. Therefore, the values 

v11 = 30 v12 = 30 

should be considered as the average values which will be found by the 

minimizing player looking ahead from Pl. A similar remark applies to 

29, 80, and P2. If the uncertainty of these values is sufficiently 

large, the machine should move to position P2. The reader should 

also consider this weakness when l&l minimaxing is backing up to a 

position from its successors deep in a tree. 

6. m&n Minimaxing 

m =  

n =  

This section describes m&n minimaxing in order to prepare the reader 

for the equivalent (but more efficient) m&n alpha beta procedure of the 

next section. To obtain the backed-up value of a max-position, m&n mini-

maxing backs up the m best (greatest) values of the successors of the max-

position. To obtain the backed-up value of a min-position, m&n minimaxing 

backs up the values of the n best successors of the min-position. Thus, 

ordinary minimaxing is l&l minimaxing. Appendix B gives a precise descrip-

tion of m&n minimaxing, embodied in a LISP program. 
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Fig. 2 illustrates 2&2 minimaxing. Fox the sake of simplicity, assume 

that the backing up of functions are independent of the depth at which the 

backing up takes place, although the m&n minimaxing progrPmc in Appendix B 

make no such assumption. Lem the values of the best and second best successors 

of a max-position be a2 
and c< respectively. In our example, we shall assume 

that the backed-up value to a max-position is given by 

3-(a
2-

c() 
a
2
+ 2 

Similarly, if the values of the best and second best successors of a min-

position are b2 and p 
respectively, assume that the backed-up value to a 

min-position is 

3-41 - b2) 
b2- 2 

In Fig. 2, 2&2 minimaxing first backs up the values 15, 20, and 17 to obtain 

the v
233

. The values of the n = 2 best successors of the min-position P233 

are b
2 = 15 and 	= 17. Hence, the 

backed-up value is 

v233=  15  - 2
3 - (17 - 15)= 13 

Next, 2&2 minimaxing backs up the values 16, 12, and 13. Since the values 

of the m = 2 best successors of the max-position P23  are a2  = 16 and oc= 13, 

the backed-up value is 

v23  = 16 23 - (16 - 13). 17  

Similarly, 

3 - (15 - 13)=  11 v
2 
= 13 - 2 

Hence, the maximizing player moves to position P2. 
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Fig. 2. An Example of 2&2 Minimaxing 
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7. The m&n Alpha Beta Procedure 

m = 1,2,3,... 

n = 

This section describes the m&n alpha beta procedures  the central idea 

of this report. The m&n alpha beta procedure is equivalent to m&n minimaxing, 

that is the move chosen by m&n minimaxing with a given termination criterion 

is always the same as the move chosen by the corresponding m&n aloha beta 

procedure. The m&n alpha beta procedure is more efficient than mean minimaxing, 

that is m&n minimaxing with a given termination criterion generally looks at 

much more tree than the corresponding m&n alpha beta procedure does. Ordinary 

alpha beta is 1241 alpha beta. Appendix C gives a precise description of m&n 

alpha beta, embodied in a LISP program with in = 2,3. and n = 2,3,4,... 

The cases when either in or n is one are excluded only to obtain a slightly 

more efficient program. The general idea of m&n aloha beta is indicated in 

the following three examples of increasing interest ahd cczp:.exity. 

7.1 A Highest Level m&n Alpha Cutoff 

The simplest, although the least interest.nE, r...&n aloha beta cut- 

off is illustrated in Fig.3. After obtaining v. = " 	-&n aloha 

beta procedure sets o( = 10 at P2. After obtain:ma 	= 5, the d' 

procedure finds a highest level alpha cutoff, that is t*-0 procedure 

does not bother to look at P22 
or P

23 and its successors "-lit looks - 

next at P3. 

7.2 A 2&2 Beta Cutoff 

The 2&2 beta cutoff illustrated in Fig. 4 is a readily anticipated 

extension of the kind of cutoff which occurs in 1.'A1 aLoha beta. After 

obtaining v
1 

= 10, the 2&2 alpha beta procedure sets 0,  = :0 at 
'2° 
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Fig. 3. A Highest Level m&n Alpha Cutoff 
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Fig. 4. 
An Example of 2&2 Beta Cutoff i I 



7.2 (continued 

After obtaining v
21 

= 13 and v
22 

= 15, the procedure sets 	=15 

at P
23
. After obtaining v

231 = 16, the procedure finds a 2&2 beta 

cutoff, that is the procedure next looks at P24  and never looks at 

P
232 

(and its successors), 
P233' and  P234 (and its successors). 

7.3 A 2&2 Alpha Cutoff 

Fig. 5 illustrates an interesting, although a somewhat commlicated, 

2&2 alpha cutoff. Assume that the following function is used to back 

LID to a max-position from its successors, each at depth three. If the 

values of the best and second best successors of the max-position are 

a2 and c..‹ respectively, the value to be backed up is 

a
2 
+ 2 3 - 

(a2 
- 

On Fig. 5, after obtaining vl  = 10, the 2E42 aloha beta procedure sets 

c= 10 at P2. After obtaining v21  = 15 and v22  = 13, the 

procedure sets old oc = 10 (thecK of P2 is the old a< of P23) and sets 

g= 15 for P23. After obtaining the value v231  = 6 and v232  = 2, 

the procedure sets old 0 = 15 and c< = 5 (not merely 2) for P233. 

In order to obtain e4 = 5 as the least number which when combined 

with v
231 

= 6 yields at least 10 for the v23  the procedure solves 
' 

the following equation for c<: 

6 + 2
3- (6 - o< ) = 10 

After obtaining 2331 = 4' 
the procedure finds a 2&2 alpha cutoff, 

that is the procedure looks next at P234  and never looks at P2332, 

2333, and their successors. To see that looking at these positions 

would be a waste of time, first note that v233  .5 4. 

II 
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Fig. 5. An Example of 2&2 Alpha Cutoff 
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7.3 (continued) 

There are two cases; 

Case I. If P
233 is not the second best successor 

of P23  , the values of v
2332 and  v2333 

are irrevelant. 

Case II. If P
233 

is the second best successor of 

P
23 

the Program might just as well use 

any value less (worse) than 
v233.  In 

fact, as long as the procedure uses a 

value v such that 

V 4 v233 	4, 

a 2&2 alpha cutoff occurs since 

v23 < 6 t 23  - (6  - 14)  = 8 - 

8. The Proposed Experiment With the 2E42 Alpha Beta Procedure 

The game of checkers will be used to compare the performance of 2&2 

alpha beta with that of 1E41 alpha beta. 

Before this comparison is made, a computer program will "learn" and 

supply to the 2&2 alpha beta procedure a function for backing up the values 

Of the two best successors of any max-position and the function for backing 

up the values of the two best successors of any min-position. To do this 

learning, the program is supplied by the experimentor with a large number of 

tYpical chec• ker positions P
(k)

. For definiteness we assume throughout 

Section 8., that the maximum depth to be searched in a game is 8. Firsts  

the program uses 1E41 alpha beta with a maximum depth of 8 to compute a backed up 

value V(k)  for each typical position P(k). 
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Next the program learns how the backed up value for a 

position depends on "dmax" for its successors and on the values of the two 

best successors of the position. The maximum depth to be searched below a 

position is denoted by dmax, a nonnegative integer, e.g., for each successor 

of a starting position in a game, dmax is 7. First: the program learns the 

function for backing up to a min-position from its successors, each having a 

dmax of O. Next, this result is used to learn the function for backing up 

to a max-position from its successors, each having a dmax of 1. Next, both 

of these results are used to learn the function for backing up a min-position 

from its successors, each having a dmax of 2, etc. Finally, the first six 

results are used to learn the function for backing up to a min-position from 

its successors, each having a dmax of 6. 

a. Since dmax = 0 will occur for successors of only min-positions 

in a game, use procedure 8.2 below to learn the function for 

backing up the values of the two best successors of a min-

position when dmax = 0 for each successor. Use this function 

in steps b through g below. 

b. Since dmax = 1 will occur for successors of only max- 

positions in a game, use procedure 8.1 below to learn the 

function for backing up the values of the two best successors 

of a max-position when dmax = 1 for each successor. Use this 

function in steps c through g below. 

ce Since dmax = 2 will occur for successors of only min-positiOns 

in a game, use procedure 8.2 below to learn the function for 

backing up the values of the two best successors of a min-

position when dmax = 2 for each successor. Use this function 



(continued) 

G.(continued) 

in steps d through g below. 

d.  0.. 

e.  000 

i0 000 

F;0 	Since dmax = 6 will occur for successors of only min-positions 

in a game, use procedure 8.2 below to learn the function for 

backing up the values of the two best successors of a min-

position when dmax = 6 for each successor. 

8.1 When the Successors Of a Max-position Have a Specified Dmax 

For each typical max-position P 	use 28c2 alpha beta to search 

to a maximum depth of dmax below each successor of P(i) . Let the 

values of the best and second best successors of P(i)  be a, and CK 
4 

respectively. Assume the backing up function is of the form 

x - 19.2 - 
a
2 
+ 2 

where y > 0 and x both depend on dmax. This function seems to have 

rougnly the right shape. When a
2 

= 0< , the maximum amount, namely 2 

is added to the ordinary minimax value, namely a2. As a2  -cx increases, 

the amount added to the ordinary mimimax value decreases asymptotically 

to zero. The following theorem shows that some care must be taken 

in the choice of x and y, since v (a
2
) should be an increasing function 
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8.1 (continued) 
x - , a

2 
- y 

Theorem: Let v (a2
) = a + 2 

2 

where y> 0 

The function v (a2) is increasing on 1a2/ a2> o<} 

if and only if 

y 
(2x) 

 in 2 	1 	 (2) 

To prove this theorem, considerations with the first and 

second derivatives of (1) show that v (a2) has no maximum and 

only one minimum and that this minimum occurs at 

a2 	 ' 
oe 4. 1- [x  + low

2  (y in 2)] 	 (3) 

Function v(a
2
) is increasing on {0.2/ a2  >o(} if and only if this - 

minimizing a2  < ex. 

Combining (4) and (3) leads to (2). 

We now resume our description of how the program learns 

the function for backing LID the values of the two best successors 

of a max-position. For each typical max-position P(i) the program 

(4) 

uses 2&2 alpha beta to search to a maximum depth of dmax below 

each successor of P(i). Assuming that the backing-up function 

is of the form 

a
2 

+ 2 x - [a2  - o<] y 	
(5) 

where y> 0 and x both depend on dnax, the program obtains a 

collection of data, 

( 1 ) 
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8.1 (continued) 

The program uses some standard approximation technique to find 

values of x and y which yield a good fit to this data. For this 

dmax, the program uses this x and this y in (5) for its backing 

up function. 

8.2 When the Successors of a Min-position Have a Specified Dmax 

For each typical min-position P(j), use 2&2 alpha beta to 

search to a maximum depth of dmax below each successor of P(i). 

It the value of the best and second best successor of P(J) be 

b
2 

and g respectively. Assume that the backing-up function is of 

the form 

b
2 

- 2 r - [(3 - b2j s 	
(6) 

-where s > 0 and r both depend on dmax. The program obtains a 

collection of data, 

V(j)= b2(J)  - 2 r 	
(7) 

b2 

The program uses some standard approximation technique to find 

values of r and s which yield a good fit to this data. For this 

amax, the program uses this r and this s in (6) for its backing-up 

function. 
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Appendix A 

TERMINOLOGY AND SOME PRELIMINARY LISP PROGRAMS 

Appendix A is intended to prepare the reader, already familiar with 

LISP [1], for Appendix B and Appendix C. By definition, a final segment 

of a list (s 	s2'... st) is either NIL or (sk' sk + 1) 	st). A 

program which directly uses another program is called a supernrogram of 

that program. 

ditto[s;n] 

Arguments: 

s is any S-expression 

n is any nonnegative integer 

Value: 

a list of n occurrences of s 

Example: 

ditto[(A 	B);21=((A 0 B),(A 0 B)) 

Superprograms: 

sta in both Appendix B and Appendix C 

Status: 

debugged 

Definition: 

ditto[s;n]= 

cond kerop [n] 	NIL; 

T-4 cons[s;ditto[s;n-l]] ] 
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insert[s1;e1;p] 

Arguments: 

sl is a sorted list 

el is an element to be inserted into 
norted list 

p a two-argument predicate defining thn  
ordering 

Value: 

the sorted list with the element correv:ti 
47 inserted 

Example: 

insert[(2,6,7)04;LESSP]=(2,4 96,7) 

Superprograms: 

minvl and maxvl in both Appendix B aaq Ayr-endix C 

Status: 

debugged 

Definition: 

insert[s1;e1;p]= 

condEnull(s1)--->list(el]; 

p(e1;car(sl]]-=cons(e1;s1 :;  

T-->cons(car[sl];insert[clz.' - . 
; , e-;Pli ] 
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value [p] 

Argument: 

p is a game position, including whose turn it is to move 

Value: 

the value (not backed up) of the position 

Example: 

value[P1]l0 in Fig.6 

Superprograms: 

minv and maxv in both Appendix B and Appendix C 

Status: 

proposed 

Definition: 

value[p]=c1f1[pl+c2f2(p)+c3f3(p] 

where cc2' and c3 are real(weights) and where f f2'and f
3 

are 

real-valued 	functions (features) of the position, for example 

fI might be the piece advantage of black in checkers. 

The above is only one of many possible definitions of the function, 

value. 
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succ[p] (successors) 

Argument: 

p is the position 

Value: 

the successors of p t  that is a list of all the positions to which 

the player whose turn it is can move 

Example: 

succ(P2331=4(P2331,P2332 9P2333) in Fig.2 

Superprograms: 

minv and maxv in both Appendix B and Appendix C 

Status: 

proposed 

Definition: 

depends on the particular game and its representation 



succip] (successors) 

Argument; 

p is the position 

Value: 

the successors of p, that is a list of all the positions to which 

the player whose turn it is can move 

Example: 

succ[P233]=(P2331,P2332,P2333) in F1g.2 

Superprograms; 

minv and maxv in both Appendix B and Appendix C 

Status: 

proposed 

Definition: 

depends on the particular game and its representation 

21 
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Appendix B 

PROGRAMS FOR m&n MINIMING 

sta[p;m;n;dmax] (start) 

Arguments 

p is the starting position, assumed to be a max-position 

m=1,293,... is the number of values to be backed up to obtain the 

value of a max-position 

n=1,2,3,..v is the number of values to be backed up to obtain the 

value of each min-position 

dmax is the maximum depth to be searched below p 

ValueI 

the successor of p which is calculated to be best 

Example; 

sta[P;2;2;4]=P2 in Fig.2 

SuperprogrPrisg 

none given since sta is the top level metn minimaxing program 

Status: 

illustrative example to prepare the reader for the mtcn alpha beta 

programs of Appendix C 

Definition 

sta[pim;n;dmax].= 

sta4 [p ; ditto [ -04 im] ;ditto (c)o;n] ;dmax] 
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sta4(p;initima;initinb; dmmt 1 (start with 4 arguments) 

Arguments: 

p is the starting position 

initima is the initial list of the m best values on the list ma. 

Ordinarily, initima is a list with m members, each 

member being -ea 

initinb is the initial list of the n best values on the list nb. 

Ordinarily, each member of initinb is abol 

dmax is the maximum depth to be searched below p 

Value: 

The best successor of p 

Example: 

sta4[P;(- 	-00) ;(0q9 900) ;4]=P2 

Superprogram: 

sta ordinarily. However, sta4 can be used as a top level program 

Status: 

illustrative 

Definition: 

st a4 [p ;initima;initinb dmax]= st al suc c [p] ;- c*;NOSUCC • dmax-1] 
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stalLf;alpha;best;dmax] (starting list) 

Arguments: 

R is some final segment (initially the entire list) of the list 

of successors of the starting position 

alpha (initially -09) is the value of the best successor encountered 

before the final segment 

best (initially NOSUCC) is the best successor encountered 

before the final segment 

dmax is the maximum depth to be searched below each successor 

Free Variables: 

initima and initinb are bound by sta4 

Value: 

the best successor to the starting position 

Example: 

stal[(P1,P2,P3);-oolNOSUCC;3]=P2 in Fig. 2 

Superprogram: 

sta4 

Status: 

illustrative 

Definition: 

stal[e;alpha;best;dmax]= 

prog[u] 

condiaull;[X] return[best]] 

setq[u;minv[car[2]]] 

return[cond[alpha: u—istal[cdr[g];u;car(R];dmax] 

T-stal[cdr[24alpha,best;dmax] ]] ] 
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minv[p] (value of a min-position) 

Argument: 

p is a min-position 

Free Variables: 

initima and initinb are bound by sta4 

dmax is the maximum depth to be searched below p 

Value: 

the (generally backed-up)value of p 

Example: 

minv[P2]=11 in Fig. 2 

Superprograms: 

stal and mavl 

Status: 

illustrative 

Definition: 

minv[p]= 

cond[final[p. dmax]-*value[p]; 

T4minvl[succ[p];initinb: dmax-l] ] 

; 



t -71147-7'-̀ 

1 I SZ: 

; 	- 

25 

minv[p] (value of a mm -position) 

Argument: 

p is a min-position 

Free Variables: 

initima and initinb are bound by sta4 

&max is the maximum depth to be searched below p 

Value: 

the (generally backed-up)value of p 

Example: 

minv[P2]=11 in Fig. 2 

Superprograms: 

stal and mavl 

Status: 

illustrative 

Definition: 

minv[p]= 

cond[final[p. dmax ]-*value[p]; 

Tminvl[succ[p];initinb: dmax-1] ] 
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minvl[R;nb,dmax] (min-position value backed up from the list of its 

successors) 

Arguments: 

2is some final segment (initially the entire list) of the list 

of successors 

rib (initially initinb) is a list containing the values of the 

n best successors of the min-position 

dmax is the maximum depth to be searched below each successor 

Free Variables 

initima and intininb are bound by sta4 

Value: 

min-position value obtained by backing up the values of the n 

best successors of the min-position 

Example: 

minvl[(P21,P22,P23);(00,00);2]=11 in Fig. 2 

Superprogram: 

minv 

Status: 

illustrative 

Definition: 

minvl[g;nb;dmax]= 

cond[null[9]--->bunb[nb,dmax]; 

T-->minvl[cdr(2],cdr(inserttnb;maxv(car[2]];GREATERP]hdm*ax]] 



.01111116, 	. 
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maxv[p] (value of a max-position) 

Argument: 

p is the max-position 

Free Variables: 

initimaand initinb are bound by sta4 

dmax is the maximum depth to be searched below p 

Value: 

value of the max-position 

Example: 

maxv[P23]=17 in Fig. 2 

Superprogram: 

minvl 

Status: 

illustrative 

Definition: 

maxv[p]= 

cond[finaJ[p;dmax]-value[p]; 

T-i>maxvl[succ[p];initima;ftax-1] ] 

' 
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maxv1[1;ma;dmax](value of a max-position as backed 1113 from the list 

of its successors) 

Arguments: 

2 is some final segment of (initially the entire list)the list 

of successors of the max-position 

ma(initially initima) is the list of values of the m best successors 

considered before the final segment 

dmax is the maximum depth to be searched below each successor 

Free Variables: 

initima and initinb are bound by sta4 

Value: 

value of the max-position Obtained by backing up the values of 

the m best successors of the max-position 

Example: 

maxv1[(P231,P232,P233);(-c0,-09);1)=17 in Fig. 2 

Superprogram: 

maxv 

Status: 

illustrative 

Definition: 

maxv1(epa;dmax)= 

cond[null[Q]—>buma[ma;dmax]; 

T -->maxv1E cdr [2] ;cdr( insert (ma;minv( car[2) ) ;LESSP omax 
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final[p;dmax] 

Arguments: 

p is a position 

dmax is the maximum depth to be searched below the position 

Free Variables: 

possibly some, for example the executive program may bind dmin 

Value of the Predicate: 

T if and only if no search is to be made below p 

Example: 

final[P1]=T in Fig. 2 

Superprograms: 

minv and maxv 

Status: 

illustrative 

Definition: 

final[p;dmax]=zerom[dmax] 

The above simple definition is one of many possible definitions, 

A more complicated definition might use the free variable dmin, 

as mentioned above. 
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buma[ma;dmax](back up ma) 

Arguments: 

ma is the list of values of the m best successors of a max-position 

dmax is the maximum depth to be searched below each successor 

Value: 

the backed-up value of the max-position 

Example: 

buma[(13916);1]=17 in Fig. 2 

Superprogram: 

maxvl 

Status: 

illustrative 

Definition: 

buma(ma;dmax1=a2+ 2 
3 - (a2  - al) 

where in = 29  a1 = carima], and a2 = cadr[ma] 

The above is one of many possible definitions. 
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bunb[nb;dmaxEback up nb) 

Arguments: 

nb is the ordered list of the values of the n best successors of 

a min-position 

dmax is the maximum depth to be searched below each successor 

Value: 

the backed-up value of the min-position 

Example: 

bunb[(1543);2]=11 in Fig. 2 

Superprogram: 

minvl 

Status: 

illustrative 

Definition: 
3 - (b - b

2
) 

bunb[nb;dmax]=b2  

where n = 2
' 

b
1 
= car[nb]9  and b2  = cadr[nb] 
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AppendiX C 

PROGRAMS FOR THE m&n ALPHA BETA PROCEDURE 

in =  

n = 

The cases when either in. or n is one are excluded only to obtain a 

slightly more efficient program. 

sta[p;m;n;dmax] (start) 

Arguments: 

p is the starting position, assumed to be a max-position 

in is the effective number of values to be backed up to obtain 

the value of each max-position 

n is the effective number of values to be backed LID to obtain the 

value of each min-position 

dmax is the maximum depth to be searched below the starting position 

Value: 

the successor calculated to be best 

Example: 

sta[P;2;2;5]=P1 in Fig. 6 

Superprograms: 

none given since sta is the top level m&In alpha beta program 

Status: 

proposed 

tefinition: 

sta[p;m;n;dmax]=staL4p;dittol- Oc;111 	1];ditto[o.o;n 	1];dmax] 
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15 

Let a2  = car[a] 
3 - (a2- 00 

The backing up function is bualo< ;a;dmaxi=a2  + 2 

3-  4/  - b2 )  The backing up function is bub( ,b,dmax] =b2  - 2 

Fig. 6. An Example of 2&2 Alpha Beta. 

Let b2  = car[b] 
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stalt[p;initia,initib,dmax] (start with 4 arguments) 

Arguments: 

p is the starting position 

initia is the initial value of each list a 

Ordinarily each member of initia is -cm 

initib is the initial value of each list b 

Ordinarily each member of initib is c)o 

dmax is the maximum depth to be searched below p 

Value: 

the successor calculated to be best 

Example: 

stah[P;(-00;(a0);5]=P1 in Fig. 6. 

Superprogram: 

sta ordinarily, although sta4 can be used as a top level program 

Status: 

proposed 

Definition: 

staiqp;initia;initib;dmax]r=stal[succ[p];-09 pOSUCC;dmax-l] 
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stal[2;alpha;best;dmax] (starting list) 

Arguments: 

9 is some final segment (initially the entire list) of the list of 

successors of the starting position 

alpha (initially —0) is the value of the best successor before 

the final segment 

best (initially NOSUCC) is the best successor before the final 

segment 

dmax is the maximum depth to be searched below each successor of 

the starting position 

Variables: 

initia and initib are bound by sta4 

the best successor of the starting position 

le: 

sta1((P1,P2,P3);— 00;NOSUCC;4]=P1 in Fig. 6 

qrogramt 

sta4 

proposed 

tion: 

stal(R ;alpha;best ;dmax) 

proe[u]; 

cond[null( )--N,returntbest)] 

setq(u;minv[car(.2]; 00)1 

return [ cond( alpha u -5,stal( cdr( 	;u; car( y ;dmax) ; 
T—stal( cdr 	] ;alpha;best ;dmax ) ] 
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minv(p;oldbeta] (value of a min-position) 

Arguments: 

p is the min-position 

oldbeta is the beta of the predecessor of the min-position 

Free Variables: 

initia and initib are bound by sta4 

alpha is bound by stal,maxv19and maxv13. See also minvl and minv13 

dmax is the maximum depth to be searched below the min-position 

Value: 

the (generally backed up)value of p 

Example: 

minv[P233;15].r.4 in Fig. 6 

Superprograms: 

stal lmaxv19and maxv13 

Status: 

proposed 

Definition: 

minv[p;oldbetal= 

condifinallp;alpha;oldbeta;dmax14value[ph 

T.-->minvl[succ[p];00;initib;dmax-1] 
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minv1[2 ;beta;b;dmax] (min-position value as backed up from the list of 

its successors 

Arguments 

is some final segment (initially the entire list) of the list of 

successors of the min-position 

beta is the spme as car[b], that is the value of the (n - 1)
th 

best 

successor considered before the final segment 

b (initially initib) is the list of values of the n 	I best 

successors considered before the final segment 

dmax is the maximum depth to be searched below each successor 

Free Variables: 

initia and initib are bound by stali 

alpha When alpha the value of some member of R, an m&n alpha 

cutoff occurs. See also the binding functions stal, maxvl, 

and maxv13. 

oldbeta is the beta of the predecessor of the min-position 

beta = car[b] > lubub[oldbeta;b;dmax] 

Value: 

min-position value obtained by backing up the values of the n best 

successors of the min-position 

Example: 

minv1[(P21,P22,P23,P24);0Q;(04),3]=9 in Fig. 6. 

uperprogram: 

minv 

Status: 

proposed 
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Definition: 

minvl [2 ;beta ;b ; dmax ] = 

prog[ [u;newb ;lubub ] ; 

condlnull(A)  ] --> return [bub [bet a;b ;dmax ] ] ] ; 

setq[u;maxv[car[9] ;alpha]] 

cond[ 	u-->return [u] ; 

u > beta return (minvl[cdr[l ] ;beta ;b ;c1rnax] ] ] 

setq[newb ;insert [ c dr [b ] ;u ;GREATERF ] j; 

setql lubub ;lubub [ oldbeta ; newb ;cimax ] ] ; 

return( cond [ iubub car [ newb 	minv13 [ c [ 

min [bet a;lubub ] ; 

newb ] ; 

T—>minvl[cdr[2];car[newb];newb;dmax] ]] ] 
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minv13[R;beta;b] (value of a min-position as backed up from the list of 

its successors, with 3 arguments) 

Arguments: 

9 is some final segment (never the entire list) of the list of 

successors of the min-position 

n
th 

beta is min[b
1 3 
.lubub[oldbeta,b;dmax]] where b

1
is the value of the  

best successor considered before the final segment 

b is the ordered list of values of the n - 1 best successors 

considered before the final segment 

7',-Pe Variables: 

initia and initib are bound by sta4 

alpha is bound by stal, maxvl, and maxv13. When alpha?. the value 

of some member of the final segment, an m&n alpha cutoff occurs. 

dmax is the maximum depth to be searched below each member of.9 

Value: 

min-position value obtained effectively by backing up the values 

of the n best successors of the min-position 

Example: 

minv13[(P22,P23,P24);00;(15)]=9 in Fig. 6. 

Super-program: 

minvl 

Status: 

proposed 

1")efinition: 

minv13[2;beta;b]= 

prog[[u]; 

cond[null[2]--yreturn[bub[beta;b;dmax]]] 

setq[u;maxv[car[q];alpha]]; 

return[cond[alpha~ u---> u; 

car[b]---minv13(cdr[2];min[u;beta];b]; 

T--yainv13(cdr[2];car[b] ;insert [cdr[b] ;u;GREATERP]] ]] ] 



maxvip,oldalpha] (value of a max-Position) 

Arguments: 

p is the maximum position 

oldalpha is the alpha of the predecessor of the max-position 

Free Variables: 

initia and initib are bound by stall 

beta is bound by minvl and minv13. See also maxvl and maxv13 

dmax is the maximum depth to be searched below the max-position 

Value: 

the (generally backed-up)value of p 

Example: 

maxv(P23;10]=11 in Fig. 6. 

Superprograms: 

minvl and minv13 

Status: 

proposed 

Definition: 

maxv[p,oldalpha]= 

cond[final(p;oldalpha;beta; dmaxl-;ovalue[p]; 

T-maxv1(succ[p];-00;initia;dmax-1] 



maxv1[2 ;alpha,a;dmax] (value of the max-position as backed up from the 

list of its successors] 

Arguments: 

is some final segment (initially the entire list) of the list of 

successors of the max-position 

alpha is the sane as car[a], that is the value of the (m 1)
th 

best successor considered before the final segment 

a (initially initia) is the list of values of the in - 1 best 

successors considered before the final segment 

dmax is the maximum depth to be searched below each successor 

Free Variables: 

initia and initib are bound by stab 

beta is bound by minvl and minv13. When betaathe value of some 

member of the final segments  an ml4n beta cutoff occurs 

oldalpha is the alpha of the predecessor of the max-position 

alpha = car[a]<glbua[oldalpha;a;dmax] 

Value: 

max-position value obtained effectively by backing up the values 

of the in best successors of the max-position 

Example: 

maxv1[(P231,P232,P233)P234);-001,(-w);2]=11 in F1g.6. 

Superprogram: 

maxv 

Status: 

proposed 



Definition: 

maxv1IR ;alpha ;a ; &lax 1 = 

prog[Luinewa;groua]; 

condi.nul1t0]-4return[bua1altha;aidmaxi1] 

setq(uolinv(car.9];betall; 

:ond( beta u--4returniu] ; 

	

U 	a1pha-4re turn maxv1 c 	] , alpha ; a ; dmax J j j; 

setcl(newa;insert[cdr(aku;LESSP]]; 

seto(g1bua;g1bua[o1daipha;newa;dmax1); 

	

return 	glbua. car [neva )--->maxv13 ( car [ ] ; 

max[a1pha;g1bua]; 

newa]; 

T-4 maxylkdri.i? ] ;car[newa] ;neva ; dmax ] )] 



43 

maxv13[9;alpha;a] (value of a max-position as tacked up from the list 

of its successors, with 3 arguments) 

Arguments: 

is some final segment (never the entire list) of the list of 

successors of the max-position 

alpha is max[a1;g1bua[oldalpha;aldmax]] where a
l 
is the value of the 

m
th 

best successor considered before the final segment 

a is the ordered list of values of the m 1 best successors 

considered before the final segment 

Free Variables: 

initia and initib are bound by sta4 

beta is bound by minvl and minv13. When beta the value of some 

member of the final segment, an m&n beta cutoff occurs 

dmax is the maximum depth to be searched below each member of / 

Value: 

max-position value obtained effectively by backing up the values of the 

in best successors of the max-position 

Example: 

maxv13[(P232,P233,P234);5 ;( 6) ]=11 in Fig. 6 

Superprogram: 

maxvl 

Status: 

nroposed _ 

Definition: 

maxv13 [2 ; alpha ;a ] 

prog[ [u] ; 

c ond[ null N j—return[bua [ alpha ; a idmax I ] ] 

setaju;minv[carR ] ;beta] ] 

return[cond[beta u-u; 

u 6 car[amaxv13[cdr;2];max(u;a1pha];a] 

T-÷maxv13 [ c I ] ; car [ a] ; insert [ cdr [ a] ;u ;LESSP ] ] ii I 
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final[p;alpha;beta;dmax] 

Arriuments: 

p is a position 

alpha See the description of the superprogram 

beta See the description of the superprogram 

dmax is the maximum depth to be searched below the position 

Free Variables: 

possibly some, for example dmin might be bound by some executive 

program 

Value of the Predicate: 

T if and only if no search is to be made below p 

Example: 

final(P22];10;01o0]=T in Fig.6. 

Superprograms: 

rainy and maxv 

Statusl 

proposed 

:efinition: 

final[p;alpha;beta;dmax]=zerop[dmax] 

The above simple definition is one of many possible definitions. 

A more complicated definition might.. use the free variable, dmin, 

mentioned above. 
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bua[alpha;a;dmax] (back up a) 

Arguments: 

alpha is as in the superprogram and is effectively the value of the 

m
th 

best successor of the max-position 

a is the ordered list of values of the m - 1 best successors of 

the max-position 

dmax is the maximum depth to be searched below each successor 

Value: 

the backed-up value of the max-position 

Example: 

bua[6;(7);2]=11 in Fig 6 

Superprograms 

maxvl and maxv13 

Status: 

proposed 

Definition: 
x -(a2  -c4)y 

bua[alpha;a;dmax]=a2  + 2 

where m = 2, a2  = car [a],  and both y>0 and x depend on dmax 
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glbua[oldalpha;a;dmax] (greatest lower bound for backing up a) 

Arguments: 

oldalpha is alpha for the predecessor of a max-position 

a is the ordered list of values of the m - 1 best successors of 

the max-position 

dmax is the maximum depth to be searched below each successor 

Value: 

the least value which, combined with the values on a, yields a 

backed-up value of at least oldalpha 

Example: 

glbua[10;(6);2]=5 in Fig 6. 
Superprogram: 

maxvl 

Status: 

proposed 

Definition: 

glbua[oldalaha;a;dmaxl= 

cond[oldalphe a2-* -04.; , 
T-*a

2  + — Llog2 
 [oldalpha -a2] -x] ] y 	- 

The expression to the right of the second arrow is obtained by solving 

the following equation for alpha 

oldalpha = a2 
 + 2 x - (a2  -c)y 

The above definition of glbua is one of many possible definitions. 

The definition is derived from the definition of bua. For 

example, the above definition is derived from the sample 

definition given in the description of bua, namely 

bua[alpha;a;dmaxl=a2  + 2 
x - (a2-c<)Y 
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bub[beta;b;dmax] (back up b) 

Arguments: 

beta is as in the superprograms and is effectively the value of the 

nth best successor of a mm-position 

b is the ordered list of values of the n 1 best successors of 

the min-position 

dmax is the maximum depth to be searched below each successor 

Value: 

the backed-up value of the min-position 

Example: 

bub[13;(11);3]=9 in Fig 6. 

Superprograms: 

minvl and minv13 

Status: 

proposed 

Definition: 
r 	- b2)s 

bub[beta;b0max]=b2  - 2 

where n = 2. Both s>0 and r depend on dmax. b2 = car[b] 

The above is one of many possible definitions. 
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lubub[oldbeta;b;dmax] (least upper bound for backing up b) 

Arguments: 

oldbeta is beta for the predecessor of a min-position 

b is the ordered list of values of the n 1 best successors of 

the min-position 

Emax is the maximum depth to be searched below each successor 

Value 

the greatest value which, when combined with the values on b, 

yields a backed-up value of at most oldbeta 

Example: 

lubub[c.o ;(15) ;3]= Dg in Fig 6. 
Superprogram: 

minvl 

Status: 

proposed 

Definition: 

lubub [ old.beta;b ; dmax ] = 

	

cond[oldbeta-N b2-> 	; 

1 

	

+ --s  [r 	log2  [b2 	oldbeta]] ] 

The expression to the right of the second arrow is obtained by 

solving the following equation for beta. 

r 	b2  )s 
oldbeta = b2 - 2 

The above definition of lubub is one of many possible definitions. 

The definition is derived from the definition of bub. For 

example, the above definition is derived from the sample 

definition given in the description of bub, namely 

r 	- b2)s 
bub[beta;b;dmax]= b2  - 2 

JS:C3 
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