
z 7 1

University of California

LAWRENCE RADIATION LABORATORY

Livermore, California

ARTIFICIAL INTELLIGENCE GROUP REPORT N0.3

NOVEMBER 89 1963

Game Trees, m&n Minimaxing, and the m&n Alpha Beta Procedure

By

James R. Slagle

TWIT [IN !WM 	 .01
• ri 6.

4 it al= d 	 1,1 .;•:-.• ces
tr .4.c.ij

JS Cs

DOC=2::

1

ABSTRACT

The author describes what he calls the m&n alpha beta

procedure, specifies a LISP computer program for carry-

ing out the procedure and proposes an experiment with it.

The proposed experiment may help in eventually obtaining

"intelligent" computer programs which can make good

decisions based on looking ahead on the "tree" of future

possibilities.

4
4

2

1. 	Overview

1.1 Nature of the m&n Alpha Beta Procedure

m =

n =

The m&n alpha beta procedure is more efficient than and equivalent

to m&n minimaxing (in the same way as the ordinary alpha beta procedure

is more efficient than and eauivalent to ordinary minimaxing), To obtain

the backed-up value to a game position in which it is the maximizing

player's turn to move, m&n minimaxing backs up the m best (greatest)

values of that position's successors, that is, the positions to which

the maximizing player can moveu Similarly, to obtain the backed-up

value of a position in which it is the minimizing player's turn to move,

m&n minimaxing backs up the values of the n best successors. Thus

ordinary minimaxing is 1&1 minimaxing, and the ordinary alpha beta

procedure is the l&l alpha beta procedure.

1.2 The Proposed Experiment

The game of checkers will be used to compare the performance of

the 2&2 alpha beta procedure with that of the 1E_ (ordinary) alpha beta

procedure. 	Before this comparison is made, a computer program will

"learn" and supply to the 2&2 alpha beta procedure two functions for

backing up the values of the two best successors of any position. To do

this learning, the program is supplied with a large number of typical

checker positions by the experimenter.

2. Purposes of the Proposed Experiment With the 2&2 Alpha Beta Procedure

The proposed experiment may help in eventually obtaining "intelligent"

computer programs which make good decisions based on looking ahead on the

"tree" of future possibilities. Toward this end, the proposed experiment

is directed toward the following, more limited objective. The proposed

experiment may help in obtaining game-playing programs which make good moves

based on looking ahead on the tree of future, possible positions,

The l&l (ordinary) alpha beta procedure is now the best procedure for

selectively searching the tree and for backing up values on the tree. The

proposed experiment studies an advantage and a disadvantage of 1&1 alpha beta

as compared to 2&2 alpha beta, On the one hand, 1E41 alpha beta cuts off its

search more readily than does 2E42 alpha beta, On the other hand, a value

backed up from the value of only the single best successor of a position is

often inferior to a value backed 1110 from the values of the two best successors.

3. Organization of the Report

Section 5., describes 1&1 (ordinary) minimaxing and a weakness

eliminated by the m&n alpha beta procedure. Section 6., describes, mainly

by example, m&n minimaxing. Section 7„ describes, again mainly by example,

the eauivalent but more efficient m&n alpha beta procedure, Appendix B and

Appendix C precisely describe (by LISP[l]computer programs) m&n minimaxing

and the m&n alpha beta procedure respeczively. Ser'tIon 8., describes the

proposed experiment with the 2F42 alpha beta procedure, Appendix A gives

some preliminary definitions needed in Appendix B and Appendix C.

4. Prerequisites

The description of m&n alpha beta is self-contained. However, the

reader who is not already familiar with ordinary minimaxing and alpha beta

is strongly urged to familiarize himself with them. A brief description of

ordinary minimaxing is given in Section 5. A full description of ordinary

minimaxing is given by Samuel [2]. Dec riptions of ordinary minimaxing and

alpha beta are given by Slagle[3].(Everything good in the alpha beta program

presented in [3] should be attributed to Professor John McCarthy;

4

everything bad, to Slagle.) To read the appendixes the reader must be

familiar with the notation of LISP[1], a computer language for manipulating

symbolic expressions.

5. l&l (Ordinary) Minimaxing and a Weakness

The weakness described below of 1&1 minimaxing is shared by the

equivalent l&l (ordinary) alpha beta procedure. Equivalence means that the

move chosen by l&l minimaxing using a given termination criterion is always

the same as the move chosen by the corresponding l&l alpha beta procedure.

The m&n alpha beta procedure is designed to eliminate this weakness. In

addition, this section establishes some terminology and briefly describes

l&l minimaxing.

5.1 Brief Description of l&l Ninimaxing

Assume that the machine has a function, called the evaluation

function, which assigns a numerical value to each game position. For

definiteness, assume that the greater the value of the function, the

better the position tends to be for the machine. For this reason, the

machine is called the maximizing player.

In Fig.1, the maximizing player can move from position P to either

position P1 or position P2. We shall say that the successors of the

max-position P are P1 and P2. Similarly, the successors of the .min-

position P1 are Pll and P12. As a convenience to the reader, a hori-

zontal line is drawn on the figures between each min-position and its

successors. The machine uses its termination criterion to determine

not to search below P
11'

P12, P
21,

and P
22
. Using its evaluation,

the machine obtains the values

V11 = 30 v12 = 30 v21 = 29 v22 = 80

for Pl., P
12, P21

and P22' respectively. -'

5

To obtain the backed-up value of 'a min-position, 1E41 minimaxing

backs up the value of the best successor of the min-position. Hence,

l&l minimaxing backs up 30 to P1 and 29 to P2 . Hence, 1E41 minimaxing

would choose to move To position Pi.

Fig. 1. An Example of Ordinary Minimaxing

6

5.2 A Weakness of l&l Minimaxing

Fig. 1 illustrates a weakness of l&l minimaxing. Assume that

the maximizing player looking ahead from position P looks at less

tree below P
1
than the minimizing player looking from P

1
can look at

below P
1
. A similar remark applies to P

2
. This is generally the case

and becomes a near certainty when the number of successors of each

position increases to, say, 10 as in checkers. Therefore, the values

v11 = 30 v12 = 30

should be considered as the average values which will be found by the

minimizing player looking ahead from Pl. A similar remark applies to

29, 80, and P2. If the uncertainty of these values is sufficiently

large, the machine should move to position P2. The reader should

also consider this weakness when l&l minimaxing is backing up to a

position from its successors deep in a tree.

6. m&n Minimaxing

m =

n =

This section describes m&n minimaxing in order to prepare the reader

for the equivalent (but more efficient) m&n alpha beta procedure of the

next section. To obtain the backed-up value of a max-position, m&n mini-

maxing backs up the m best (greatest) values of the successors of the max-

position. To obtain the backed-up value of a min-position, m&n minimaxing

backs up the values of the n best successors of the min-position. Thus,

ordinary minimaxing is l&l minimaxing. Appendix B gives a precise descrip-

tion of m&n minimaxing, embodied in a LISP program.

T

Fig. 2 illustrates 2&2 minimaxing. Fox the sake of simplicity, assume

that the backing up of functions are independent of the depth at which the

backing up takes place, although the m&n minimaxing progrPmc in Appendix B

make no such assumption. Lem the values of the best and second best successors

of a max-position be a2
and c< respectively. In our example, we shall assume

that the backed-up value to a max-position is given by

3-(a
2-

c()
a
2
+ 2

Similarly, if the values of the best and second best successors of a min-

position are b2 and p
respectively, assume that the backed-up value to a

min-position is

3-41 - b2)
b2- 2

In Fig. 2, 2&2 minimaxing first backs up the values 15, 20, and 17 to obtain

the v
233

. The values of the n = 2 best successors of the min-position P233

are b
2 = 15 and 	= 17. Hence, the

backed-up value is

v233= 15 - 2
3 - (17 - 15)= 13

Next, 2&2 minimaxing backs up the values 16, 12, and 13. Since the values

of the m = 2 best successors of the max-position P23 are a2 = 16 and oc= 13,

the backed-up value is

v23 = 16 23 - (16 - 13). 17

Similarly,

3 - (15 - 13)= 11 v
2
= 13 - 2

Hence, the maximizing player moves to position P2.

7-a

Fig. 2. An Example of 2&2 Minimaxing

8

7. The m&n Alpha Beta Procedure

m = 1,2,3,...

n =

This section describes the m&n alpha beta procedures the central idea

of this report. The m&n alpha beta procedure is equivalent to m&n minimaxing,

that is the move chosen by m&n minimaxing with a given termination criterion

is always the same as the move chosen by the corresponding m&n aloha beta

procedure. The m&n alpha beta procedure is more efficient than mean minimaxing,

that is m&n minimaxing with a given termination criterion generally looks at

much more tree than the corresponding m&n alpha beta procedure does. Ordinary

alpha beta is 1241 alpha beta. Appendix C gives a precise description of m&n

alpha beta, embodied in a LISP program with in = 2,3. and n = 2,3,4,...

The cases when either in or n is one are excluded only to obtain a slightly

more efficient program. The general idea of m&n aloha beta is indicated in

the following three examples of increasing interest ahd cczp:.exity.

7.1 A Highest Level m&n Alpha Cutoff

The simplest, although the least interest.nE, r...&n aloha beta cut-

off is illustrated in Fig.3. After obtaining v. = " 	-&n aloha

beta procedure sets o(= 10 at P2. After obtain:ma 	= 5, the d'

procedure finds a highest level alpha cutoff, that is t*-0 procedure

does not bother to look at P22
or P

23 and its successors "-lit looks -

next at P3.

7.2 A 2&2 Beta Cutoff

The 2&2 beta cutoff illustrated in Fig. 4 is a readily anticipated

extension of the kind of cutoff which occurs in 1.'A1 aLoha beta. After

obtaining v
1

= 10, the 2&2 alpha beta procedure sets 0, = :0 at
'2°

9

Fig. 3. A Highest Level m&n Alpha Cutoff

10

Fig. 4.
An Example of 2&2 Beta Cutoff i I

7.2 (continued

After obtaining v
21

= 13 and v
22

= 15, the procedure sets 	=15

at P
23
. After obtaining v

231 = 16, the procedure finds a 2&2 beta

cutoff, that is the procedure next looks at P24 and never looks at

P
232

(and its successors),
P233' and P234 (and its successors).

7.3 A 2&2 Alpha Cutoff

Fig. 5 illustrates an interesting, although a somewhat commlicated,

2&2 alpha cutoff. Assume that the following function is used to back

LID to a max-position from its successors, each at depth three. If the

values of the best and second best successors of the max-position are

a2 and c..‹ respectively, the value to be backed up is

a
2
+ 2 3 -

(a2
-

On Fig. 5, after obtaining vl = 10, the 2E42 aloha beta procedure sets

c= 10 at P2. After obtaining v21 = 15 and v22 = 13, the

procedure sets old oc = 10 (thecK of P2 is the old a< of P23) and sets

g= 15 for P23. After obtaining the value v231 = 6 and v232 = 2,

the procedure sets old 0 = 15 and c< = 5 (not merely 2) for P233.

In order to obtain e4 = 5 as the least number which when combined

with v
231

= 6 yields at least 10 for the v23 the procedure solves
'

the following equation for c<:

6 + 2
3- (6 - o<) = 10

After obtaining 2331 = 4'
the procedure finds a 2&2 alpha cutoff,

that is the procedure looks next at P234 and never looks at P2332,

2333, and their successors. To see that looking at these positions

would be a waste of time, first note that v233 .5 4.

II

12

Fig. 5. An Example of 2&2 Alpha Cutoff

13

7.3 (continued)

There are two cases;

Case I. If P
233 is not the second best successor

of P23 , the values of v
2332 and v2333

are irrevelant.

Case II. If P
233

is the second best successor of

P
23

the Program might just as well use

any value less (worse) than
v233. In

fact, as long as the procedure uses a

value v such that

V 4 v233 	4,

a 2&2 alpha cutoff occurs since

v23 < 6 t 23 - (6 - 14) = 8 -

8. The Proposed Experiment With the 2E42 Alpha Beta Procedure

The game of checkers will be used to compare the performance of 2&2

alpha beta with that of 1E41 alpha beta.

Before this comparison is made, a computer program will "learn" and

supply to the 2&2 alpha beta procedure a function for backing up the values

Of the two best successors of any max-position and the function for backing

up the values of the two best successors of any min-position. To do this

learning, the program is supplied by the experimentor with a large number of

tYpical chec• ker positions P
(k)

. For definiteness we assume throughout

Section 8., that the maximum depth to be searched in a game is 8. Firsts

the program uses 1E41 alpha beta with a maximum depth of 8 to compute a backed up

value V(k) for each typical position P(k).

14

Next the program learns how the backed up value for a

position depends on "dmax" for its successors and on the values of the two

best successors of the position. The maximum depth to be searched below a

position is denoted by dmax, a nonnegative integer, e.g., for each successor

of a starting position in a game, dmax is 7. First: the program learns the

function for backing up to a min-position from its successors, each having a

dmax of O. Next, this result is used to learn the function for backing up

to a max-position from its successors, each having a dmax of 1. Next, both

of these results are used to learn the function for backing up a min-position

from its successors, each having a dmax of 2, etc. Finally, the first six

results are used to learn the function for backing up to a min-position from

its successors, each having a dmax of 6.

a. Since dmax = 0 will occur for successors of only min-positions

in a game, use procedure 8.2 below to learn the function for

backing up the values of the two best successors of a min-

position when dmax = 0 for each successor. Use this function

in steps b through g below.

b. Since dmax = 1 will occur for successors of only max-

positions in a game, use procedure 8.1 below to learn the

function for backing up the values of the two best successors

of a max-position when dmax = 1 for each successor. Use this

function in steps c through g below.

ce Since dmax = 2 will occur for successors of only min-positiOns

in a game, use procedure 8.2 below to learn the function for

backing up the values of the two best successors of a min-

position when dmax = 2 for each successor. Use this function

(continued)

G.(continued)

in steps d through g below.

d. 0..

e. 000

i0 000

F;0 	Since dmax = 6 will occur for successors of only min-positions

in a game, use procedure 8.2 below to learn the function for

backing up the values of the two best successors of a min-

position when dmax = 6 for each successor.

8.1 When the Successors Of a Max-position Have a Specified Dmax

For each typical max-position P 	use 28c2 alpha beta to search

to a maximum depth of dmax below each successor of P(i) . Let the

values of the best and second best successors of P(i) be a, and CK
4

respectively. Assume the backing up function is of the form

x - 19.2 -
a
2
+ 2

where y > 0 and x both depend on dmax. This function seems to have

rougnly the right shape. When a
2

= 0< , the maximum amount, namely 2

is added to the ordinary minimax value, namely a2. As a2 -cx increases,

the amount added to the ordinary mimimax value decreases asymptotically

to zero. The following theorem shows that some care must be taken

in the choice of x and y, since v (a
2
) should be an increasing function

16

8.1 (continued)
x - , a

2
- y

Theorem: Let v (a2
) = a + 2

2

where y> 0

The function v (a2) is increasing on 1a2/ a2> o<}

if and only if

y
(2x)

 in 2 	1 	 (2)

To prove this theorem, considerations with the first and

second derivatives of (1) show that v (a2) has no maximum and

only one minimum and that this minimum occurs at

a2 	 '
oe 4. 1- [x + low

2 (y in 2)] 	 (3)

Function v(a
2
) is increasing on {0.2/ a2 >o(} if and only if this -

minimizing a2 < ex.

Combining (4) and (3) leads to (2).

We now resume our description of how the program learns

the function for backing LID the values of the two best successors

of a max-position. For each typical max-position P(i) the program

(4)

uses 2&2 alpha beta to search to a maximum depth of dmax below

each successor of P(i). Assuming that the backing-up function

is of the form

a
2

+ 2 x - [a2 - o<] y 	
(5)

where y> 0 and x both depend on dnax, the program obtains a

collection of data,

(1)

17

8.1 (continued)

The program uses some standard approximation technique to find

values of x and y which yield a good fit to this data. For this

dmax, the program uses this x and this y in (5) for its backing

up function.

8.2 When the Successors of a Min-position Have a Specified Dmax

For each typical min-position P(j), use 2&2 alpha beta to

search to a maximum depth of dmax below each successor of P(i).

It the value of the best and second best successor of P(J) be

b
2

and g respectively. Assume that the backing-up function is of

the form

b
2

- 2 r - [(3 - b2j s 	
(6)

-where s > 0 and r both depend on dmax. The program obtains a

collection of data,

V(j)= b2(J) - 2 r 	
(7)

b2

The program uses some standard approximation technique to find

values of r and s which yield a good fit to this data. For this

amax, the program uses this r and this s in (6) for its backing-up

function.

18

Appendix A

TERMINOLOGY AND SOME PRELIMINARY LISP PROGRAMS

Appendix A is intended to prepare the reader, already familiar with

LISP [1], for Appendix B and Appendix C. By definition, a final segment

of a list (s 	s2'... st) is either NIL or (sk' sk + 1) 	st). A

program which directly uses another program is called a supernrogram of

that program.

ditto[s;n]

Arguments:

s is any S-expression

n is any nonnegative integer

Value:

a list of n occurrences of s

Example:

ditto[(A 	B);21=((A 0 B),(A 0 B))

Superprograms:

sta in both Appendix B and Appendix C

Status:

debugged

Definition:

ditto[s;n]=

cond kerop [n] 	NIL;

T-4 cons[s;ditto[s;n-l]]]

19

insert[s1;e1;p]

Arguments:

sl is a sorted list

el is an element to be inserted into
norted list

p a two-argument predicate defining thn
ordering

Value:

the sorted list with the element correv:ti
47 inserted

Example:

insert[(2,6,7)04;LESSP]=(2,4 96,7)

Superprograms:

minvl and maxvl in both Appendix B aaq Ayr-endix C

Status:

debugged

Definition:

insert[s1;e1;p]=

condEnull(s1)--->list(el];

p(e1;car(sl]]-=cons(e1;s1 :;

T-->cons(car[sl];insert[clz.' - .
; , e-;Pli]

1

20

value [p]

Argument:

p is a game position, including whose turn it is to move

Value:

the value (not backed up) of the position

Example:

value[P1]l0 in Fig.6

Superprograms:

minv and maxv in both Appendix B and Appendix C

Status:

proposed

Definition:

value[p]=c1f1[pl+c2f2(p)+c3f3(p]

where cc2' and c3 are real(weights) and where f f2'and f
3

are

real-valued 	functions (features) of the position, for example

fI might be the piece advantage of black in checkers.

The above is only one of many possible definitions of the function,

value.

21

succ[p] (successors)

Argument:

p is the position

Value:

the successors of p t that is a list of all the positions to which

the player whose turn it is can move

Example:

succ(P2331=4(P2331,P2332 9P2333) in Fig.2

Superprograms:

minv and maxv in both Appendix B and Appendix C

Status:

proposed

Definition:

depends on the particular game and its representation

succip] (successors)

Argument;

p is the position

Value:

the successors of p, that is a list of all the positions to which

the player whose turn it is can move

Example:

succ[P233]=(P2331,P2332,P2333) in F1g.2

Superprograms;

minv and maxv in both Appendix B and Appendix C

Status:

proposed

Definition:

depends on the particular game and its representation

21

11 1

- • 1,.T.f.-"MCY-TrIVE''."'
410V.'!me-

22

Appendix B

PROGRAMS FOR m&n MINIMING

sta[p;m;n;dmax] (start)

Arguments

p is the starting position, assumed to be a max-position

m=1,293,... is the number of values to be backed up to obtain the

value of a max-position

n=1,2,3,..v is the number of values to be backed up to obtain the

value of each min-position

dmax is the maximum depth to be searched below p

ValueI

the successor of p which is calculated to be best

Example;

sta[P;2;2;4]=P2 in Fig.2

SuperprogrPrisg

none given since sta is the top level metn minimaxing program

Status:

illustrative example to prepare the reader for the mtcn alpha beta

programs of Appendix C

Definition

sta[pim;n;dmax].=

sta4 [p ; ditto [-04 im] ;ditto (c)o;n] ;dmax]

23

sta4(p;initima;initinb; dmmt 1 (start with 4 arguments)

Arguments:

p is the starting position

initima is the initial list of the m best values on the list ma.

Ordinarily, initima is a list with m members, each

member being -ea

initinb is the initial list of the n best values on the list nb.

Ordinarily, each member of initinb is abol

dmax is the maximum depth to be searched below p

Value:

The best successor of p

Example:

sta4[P;(- 	-00) ;(0q9 900) ;4]=P2

Superprogram:

sta ordinarily. However, sta4 can be used as a top level program

Status:

illustrative

Definition:

st a4 [p ;initima;initinb dmax]= st al suc c [p] ;- c*;NOSUCC • dmax-1]

•

ii ;

24

stalLf;alpha;best;dmax] (starting list)

Arguments:

R is some final segment (initially the entire list) of the list

of successors of the starting position

alpha (initially -09) is the value of the best successor encountered

before the final segment

best (initially NOSUCC) is the best successor encountered

before the final segment

dmax is the maximum depth to be searched below each successor

Free Variables:

initima and initinb are bound by sta4

Value:

the best successor to the starting position

Example:

stal[(P1,P2,P3);-oolNOSUCC;3]=P2 in Fig. 2

Superprogram:

sta4

Status:

illustrative

Definition:

stal[e;alpha;best;dmax]=

prog[u]

condiaull;[X] return[best]]

setq[u;minv[car[2]]]

return[cond[alpha: u—istal[cdr[g];u;car(R];dmax]

T-stal[cdr[24alpha,best;dmax]]]]

25

minv[p] (value of a min-position)

Argument:

p is a min-position

Free Variables:

initima and initinb are bound by sta4

dmax is the maximum depth to be searched below p

Value:

the (generally backed-up)value of p

Example:

minv[P2]=11 in Fig. 2

Superprograms:

stal and mavl

Status:

illustrative

Definition:

minv[p]=

cond[final[p. dmax]-*value[p];

T4minvl[succ[p];initinb: dmax-l]]

;

t -71147-7'-̀

1 I SZ:

; 	-

25

minv[p] (value of a mm -position)

Argument:

p is a min-position

Free Variables:

initima and initinb are bound by sta4

&max is the maximum depth to be searched below p

Value:

the (generally backed-up)value of p

Example:

minv[P2]=11 in Fig. 2

Superprograms:

stal and mavl

Status:

illustrative

Definition:

minv[p]=

cond[final[p. dmax]-*value[p];

Tminvl[succ[p];initinb: dmax-1]]

26

minvl[R;nb,dmax] (min-position value backed up from the list of its

successors)

Arguments:

2is some final segment (initially the entire list) of the list

of successors

rib (initially initinb) is a list containing the values of the

n best successors of the min-position

dmax is the maximum depth to be searched below each successor

Free Variables

initima and intininb are bound by sta4

Value:

min-position value obtained by backing up the values of the n

best successors of the min-position

Example:

minvl[(P21,P22,P23);(00,00);2]=11 in Fig. 2

Superprogram:

minv

Status:

illustrative

Definition:

minvl[g;nb;dmax]=

cond[null[9]--->bunb[nb,dmax];

T-->minvl[cdr(2],cdr(inserttnb;maxv(car[2]];GREATERP]hdm*ax]]

.01111116, 	.

27

maxv[p] (value of a max-position)

Argument:

p is the max-position

Free Variables:

initimaand initinb are bound by sta4

dmax is the maximum depth to be searched below p

Value:

value of the max-position

Example:

maxv[P23]=17 in Fig. 2

Superprogram:

minvl

Status:

illustrative

Definition:

maxv[p]=

cond[finaJ[p;dmax]-value[p];

T-i>maxvl[succ[p];initima;ftax-1]]

'

.28

maxv1[1;ma;dmax](value of a max-position as backed 1113 from the list

of its successors)

Arguments:

2 is some final segment of (initially the entire list)the list

of successors of the max-position

ma(initially initima) is the list of values of the m best successors

considered before the final segment

dmax is the maximum depth to be searched below each successor

Free Variables:

initima and initinb are bound by sta4

Value:

value of the max-position Obtained by backing up the values of

the m best successors of the max-position

Example:

maxv1[(P231,P232,P233);(-c0,-09);1)=17 in Fig. 2

Superprogram:

maxv

Status:

illustrative

Definition:

maxv1(epa;dmax)=

cond[null[Q]—>buma[ma;dmax];

T -->maxv1E cdr [2] ;cdr(insert (ma;minv(car[2)) ;LESSP omax

29

final[p;dmax]

Arguments:

p is a position

dmax is the maximum depth to be searched below the position

Free Variables:

possibly some, for example the executive program may bind dmin

Value of the Predicate:

T if and only if no search is to be made below p

Example:

final[P1]=T in Fig. 2

Superprograms:

minv and maxv

Status:

illustrative

Definition:

final[p;dmax]=zerom[dmax]

The above simple definition is one of many possible definitions,

A more complicated definition might use the free variable dmin,

as mentioned above.

30

buma[ma;dmax](back up ma)

Arguments:

ma is the list of values of the m best successors of a max-position

dmax is the maximum depth to be searched below each successor

Value:

the backed-up value of the max-position

Example:

buma[(13916);1]=17 in Fig. 2

Superprogram:

maxvl

Status:

illustrative

Definition:

buma(ma;dmax1=a2+ 2
3 - (a2 - al)

where in = 29 a1 = carima], and a2 = cadr[ma]

The above is one of many possible definitions.

31

bunb[nb;dmaxEback up nb)

Arguments:

nb is the ordered list of the values of the n best successors of

a min-position

dmax is the maximum depth to be searched below each successor

Value:

the backed-up value of the min-position

Example:

bunb[(1543);2]=11 in Fig. 2

Superprogram:

minvl

Status:

illustrative

Definition:
3 - (b - b

2
)

bunb[nb;dmax]=b2

where n = 2
'

b
1
= car[nb]9 and b2 = cadr[nb]

32

AppendiX C

PROGRAMS FOR THE m&n ALPHA BETA PROCEDURE

in =

n =

The cases when either in. or n is one are excluded only to obtain a

slightly more efficient program.

sta[p;m;n;dmax] (start)

Arguments:

p is the starting position, assumed to be a max-position

in is the effective number of values to be backed up to obtain

the value of each max-position

n is the effective number of values to be backed LID to obtain the

value of each min-position

dmax is the maximum depth to be searched below the starting position

Value:

the successor calculated to be best

Example:

sta[P;2;2;5]=P1 in Fig. 6

Superprograms:

none given since sta is the top level m&In alpha beta program

Status:

proposed

tefinition:

sta[p;m;n;dmax]=staL4p;dittol- Oc;111 	1];ditto[o.o;n 	1];dmax]

33

15

Let a2 = car[a]
3 - (a2- 00

The backing up function is bualo< ;a;dmaxi=a2 + 2

3- 4/ - b2) The backing up function is bub(,b,dmax] =b2 - 2

Fig. 6. An Example of 2&2 Alpha Beta.

Let b2 = car[b]

34

stalt[p;initia,initib,dmax] (start with 4 arguments)

Arguments:

p is the starting position

initia is the initial value of each list a

Ordinarily each member of initia is -cm

initib is the initial value of each list b

Ordinarily each member of initib is c)o

dmax is the maximum depth to be searched below p

Value:

the successor calculated to be best

Example:

stah[P;(-00;(a0);5]=P1 in Fig. 6.

Superprogram:

sta ordinarily, although sta4 can be used as a top level program

Status:

proposed

Definition:

staiqp;initia;initib;dmax]r=stal[succ[p];-09 pOSUCC;dmax-l]

35

stal[2;alpha;best;dmax] (starting list)

Arguments:

9 is some final segment (initially the entire list) of the list of

successors of the starting position

alpha (initially —0) is the value of the best successor before

the final segment

best (initially NOSUCC) is the best successor before the final

segment

dmax is the maximum depth to be searched below each successor of

the starting position

Variables:

initia and initib are bound by sta4

the best successor of the starting position

le:

sta1((P1,P2,P3);— 00;NOSUCC;4]=P1 in Fig. 6

qrogramt

sta4

proposed

tion:

stal(R ;alpha;best ;dmax)

proe[u];

cond[null()--N,returntbest)]

setq(u;minv[car(.2]; 00)1

return [cond(alpha u -5,stal(cdr(;u; car(y ;dmax) ;
T—stal(cdr] ;alpha;best ;dmax)]

36

minv(p;oldbeta] (value of a min-position)

Arguments:

p is the min-position

oldbeta is the beta of the predecessor of the min-position

Free Variables:

initia and initib are bound by sta4

alpha is bound by stal,maxv19and maxv13. See also minvl and minv13

dmax is the maximum depth to be searched below the min-position

Value:

the (generally backed up)value of p

Example:

minv[P233;15].r.4 in Fig. 6

Superprograms:

stal lmaxv19and maxv13

Status:

proposed

Definition:

minv[p;oldbetal=

condifinallp;alpha;oldbeta;dmax14value[ph

T.-->minvl[succ[p];00;initib;dmax-1]

37

minv1[2 ;beta;b;dmax] (min-position value as backed up from the list of

its successors

Arguments

is some final segment (initially the entire list) of the list of

successors of the min-position

beta is the spme as car[b], that is the value of the (n - 1)
th

best

successor considered before the final segment

b (initially initib) is the list of values of the n 	I best

successors considered before the final segment

dmax is the maximum depth to be searched below each successor

Free Variables:

initia and initib are bound by stali

alpha When alpha the value of some member of R, an m&n alpha

cutoff occurs. See also the binding functions stal, maxvl,

and maxv13.

oldbeta is the beta of the predecessor of the min-position

beta = car[b] > lubub[oldbeta;b;dmax]

Value:

min-position value obtained by backing up the values of the n best

successors of the min-position

Example:

minv1[(P21,P22,P23,P24);0Q;(04),3]=9 in Fig. 6.

uperprogram:

minv

Status:

proposed

38

Definition:

minvl [2 ;beta ;b ; dmax] =

prog[[u;newb ;lubub] ;

condlnull(A)] --> return [bub [bet a;b ;dmax]]] ;

setq[u;maxv[car[9] ;alpha]]

cond[u-->return [u] ;

u > beta return (minvl[cdr[l] ;beta ;b ;c1rnax]]]

setq[newb ;insert [c dr [b] ;u ;GREATERF] j;

setql lubub ;lubub [oldbeta ; newb ;cimax]] ;

return(cond [iubub car [newb 	minv13 [c [

min [bet a;lubub] ;

newb] ;

T—>minvl[cdr[2];car[newb];newb;dmax]]]]

39

minv13[R;beta;b] (value of a min-position as backed up from the list of

its successors, with 3 arguments)

Arguments:

9 is some final segment (never the entire list) of the list of

successors of the min-position

n
th

beta is min[b
1 3
.lubub[oldbeta,b;dmax]] where b

1
is the value of the

best successor considered before the final segment

b is the ordered list of values of the n - 1 best successors

considered before the final segment

7',-Pe Variables:

initia and initib are bound by sta4

alpha is bound by stal, maxvl, and maxv13. When alpha?. the value

of some member of the final segment, an m&n alpha cutoff occurs.

dmax is the maximum depth to be searched below each member of.9

Value:

min-position value obtained effectively by backing up the values

of the n best successors of the min-position

Example:

minv13[(P22,P23,P24);00;(15)]=9 in Fig. 6.

Super-program:

minvl

Status:

proposed

1")efinition:

minv13[2;beta;b]=

prog[[u];

cond[null[2]--yreturn[bub[beta;b;dmax]]]

setq[u;maxv[car[q];alpha]];

return[cond[alpha~ u---> u;

car[b]---minv13(cdr[2];min[u;beta];b];

T--yainv13(cdr[2];car[b] ;insert [cdr[b] ;u;GREATERP]]]]]

maxvip,oldalpha] (value of a max-Position)

Arguments:

p is the maximum position

oldalpha is the alpha of the predecessor of the max-position

Free Variables:

initia and initib are bound by stall

beta is bound by minvl and minv13. See also maxvl and maxv13

dmax is the maximum depth to be searched below the max-position

Value:

the (generally backed-up)value of p

Example:

maxv(P23;10]=11 in Fig. 6.

Superprograms:

minvl and minv13

Status:

proposed

Definition:

maxv[p,oldalpha]=

cond[final(p;oldalpha;beta; dmaxl-;ovalue[p];

T-maxv1(succ[p];-00;initia;dmax-1]

maxv1[2 ;alpha,a;dmax] (value of the max-position as backed up from the

list of its successors]

Arguments:

is some final segment (initially the entire list) of the list of

successors of the max-position

alpha is the sane as car[a], that is the value of the (m 1)
th

best successor considered before the final segment

a (initially initia) is the list of values of the in - 1 best

successors considered before the final segment

dmax is the maximum depth to be searched below each successor

Free Variables:

initia and initib are bound by stab

beta is bound by minvl and minv13. When betaathe value of some

member of the final segments an ml4n beta cutoff occurs

oldalpha is the alpha of the predecessor of the max-position

alpha = car[a]<glbua[oldalpha;a;dmax]

Value:

max-position value obtained effectively by backing up the values

of the in best successors of the max-position

Example:

maxv1[(P231,P232,P233)P234);-001,(-w);2]=11 in F1g.6.

Superprogram:

maxv

Status:

proposed

Definition:

maxv1IR ;alpha ;a ; &lax 1 =

prog[Luinewa;groua];

condi.nul1t0]-4return[bua1altha;aidmaxi1]

setq(uolinv(car.9];betall;

:ond(beta u--4returniu] ;

	

U 	a1pha-4re turn maxv1 c] , alpha ; a ; dmax J j j;

setcl(newa;insert[cdr(aku;LESSP]];

seto(g1bua;g1bua[o1daipha;newa;dmax1);

	

return 	glbua. car [neva)--->maxv13 (car [] ;

max[a1pha;g1bua];

newa];

T-4 maxylkdri.i?] ;car[newa] ;neva ; dmax])]

43

maxv13[9;alpha;a] (value of a max-position as tacked up from the list

of its successors, with 3 arguments)

Arguments:

is some final segment (never the entire list) of the list of

successors of the max-position

alpha is max[a1;g1bua[oldalpha;aldmax]] where a
l
is the value of the

m
th

best successor considered before the final segment

a is the ordered list of values of the m 1 best successors

considered before the final segment

Free Variables:

initia and initib are bound by sta4

beta is bound by minvl and minv13. When beta the value of some

member of the final segment, an m&n beta cutoff occurs

dmax is the maximum depth to be searched below each member of /

Value:

max-position value obtained effectively by backing up the values of the

in best successors of the max-position

Example:

maxv13[(P232,P233,P234);5 ;(6)]=11 in Fig. 6

Superprogram:

maxvl

Status:

nroposed _

Definition:

maxv13 [2 ; alpha ;a]

prog[[u] ;

c ond[null N j—return[bua [alpha ; a idmax I]]

setaju;minv[carR] ;beta]]

return[cond[beta u-u;

u 6 car[amaxv13[cdr;2];max(u;a1pha];a]

T-÷maxv13 [c I] ; car [a] ; insert [cdr [a] ;u ;LESSP]] ii I

144

final[p;alpha;beta;dmax]

Arriuments:

p is a position

alpha See the description of the superprogram

beta See the description of the superprogram

dmax is the maximum depth to be searched below the position

Free Variables:

possibly some, for example dmin might be bound by some executive

program

Value of the Predicate:

T if and only if no search is to be made below p

Example:

final(P22];10;01o0]=T in Fig.6.

Superprograms:

rainy and maxv

Statusl

proposed

:efinition:

final[p;alpha;beta;dmax]=zerop[dmax]

The above simple definition is one of many possible definitions.

A more complicated definition might.. use the free variable, dmin,

mentioned above.

4 5

bua[alpha;a;dmax] (back up a)

Arguments:

alpha is as in the superprogram and is effectively the value of the

m
th

best successor of the max-position

a is the ordered list of values of the m - 1 best successors of

the max-position

dmax is the maximum depth to be searched below each successor

Value:

the backed-up value of the max-position

Example:

bua[6;(7);2]=11 in Fig 6

Superprograms

maxvl and maxv13

Status:

proposed

Definition:
x -(a2 -c4)y

bua[alpha;a;dmax]=a2 + 2

where m = 2, a2 = car [a], and both y>0 and x depend on dmax

116

glbua[oldalpha;a;dmax] (greatest lower bound for backing up a)

Arguments:

oldalpha is alpha for the predecessor of a max-position

a is the ordered list of values of the m - 1 best successors of

the max-position

dmax is the maximum depth to be searched below each successor

Value:

the least value which, combined with the values on a, yields a

backed-up value of at least oldalpha

Example:

glbua[10;(6);2]=5 in Fig 6.
Superprogram:

maxvl

Status:

proposed

Definition:

glbua[oldalaha;a;dmaxl=

cond[oldalphe a2-* -04.; ,
T-*a

2 + — Llog2
 [oldalpha -a2] -x]] y 	-

The expression to the right of the second arrow is obtained by solving

the following equation for alpha

oldalpha = a2
 + 2 x - (a2 -c)y

The above definition of glbua is one of many possible definitions.

The definition is derived from the definition of bua. For

example, the above definition is derived from the sample

definition given in the description of bua, namely

bua[alpha;a;dmaxl=a2 + 2
x - (a2-c<)Y

47

bub[beta;b;dmax] (back up b)

Arguments:

beta is as in the superprograms and is effectively the value of the

nth best successor of a mm-position

b is the ordered list of values of the n 1 best successors of

the min-position

dmax is the maximum depth to be searched below each successor

Value:

the backed-up value of the min-position

Example:

bub[13;(11);3]=9 in Fig 6.

Superprograms:

minvl and minv13

Status:

proposed

Definition:
r 	- b2)s

bub[beta;b0max]=b2 - 2

where n = 2. Both s>0 and r depend on dmax. b2 = car[b]

The above is one of many possible definitions.

L8

lubub[oldbeta;b;dmax] (least upper bound for backing up b)

Arguments:

oldbeta is beta for the predecessor of a min-position

b is the ordered list of values of the n 1 best successors of

the min-position

Emax is the maximum depth to be searched below each successor

Value

the greatest value which, when combined with the values on b,

yields a backed-up value of at most oldbeta

Example:

lubub[c.o ;(15) ;3]= Dg in Fig 6.
Superprogram:

minvl

Status:

proposed

Definition:

lubub [old.beta;b ; dmax] =

	

cond[oldbeta-N b2-> 	;

1

	

+ --s [r 	log2 [b2 	oldbeta]]]

The expression to the right of the second arrow is obtained by

solving the following equation for beta.

r 	b2)s
oldbeta = b2 - 2

The above definition of lubub is one of many possible definitions.

The definition is derived from the definition of bub. For

example, the above definition is derived from the sample

definition given in the description of bub, namely

r 	- b2)s
bub[beta;b;dmax]= b2 - 2

JS:C3

REFERENCES

JS Cs

1. McCarthy, John, et al, Lisp 1.5 Programmers Manual,

MIT Computation Center and RLE, August 17, 1962.

2. Samuel, Arthur, "Some Studies In Machine Learning Using

the Game of Checkers", IBM Journal of Research and

Development, Vol. III, 3, July, 1959, p. 210-229.

3. Slagle, James, Mathematical Theory of Computation and

Artificial Intelligence (6.539 class notes), MIT, 1963.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53

