
Parallel Dynamic Tables

by

Daricha Techopitayakul

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer
Science

and

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

© Daricha Techopitayakul, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

Author

,P

Department of Electrical Engineering and Computer Science
May 26, 1995

Certified by
Charles E. Leiserson

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by 	
Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Thesis

Parallel Dynamic Tables

by

Daaicha Techopitayakul

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 1995, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Computer Science and Engineering

Abstract
This thesis explores issues involving construction and application of a dynamic size ta-
ble on a parallel system, one that grows and shrinks as available memory size changes.
Motivation behind this project lies in a new concept of variable-size memory resource.
Traditionally, memory allocated for a program computation is always fixed at the be-
ginning of runtime. For computation on a parallel or distributed system, however,
the number of available processors and their memory may be dynamic. Processors
may join and leave the computation, as they become idle or later occupied. This
project studies how to utilize all obtainable memory at any instance. It experiments
with a method of integrating available memory dynamically to a data structure ta-
ble, so the table varies its size depending on the memory level. It also examines the
related parameters of expanding and contracting the table that will maximize the use
of memory at any moment while still preserving a feasible cost of the table. The re-
sult shows that with the Phish system's pattern of usage, a high fraction of available
processors of up to 95% — 96% should be utilized because the aggregate number of
available processors normally varies within a limited range. Therefore, even though
the cost of reshuffling table entries is high, reshuffles rarely happen. Same analysis
can be applied to other systems, given their patterns of processor usage. Moreover,
the project suggests an alternative of adjusting the fraction of processor utilization
dynamically during the runtime. The result shows that this algorithm also yields
an optimal performance, while no knowledge of the processor usage pattern or the
calculation of optimal parameters are needed.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Parallel Dynamic Tables

by

Daricha Techopitayakul

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 1995, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Computer Science and Engineering

Abstract
This thesis explores issues involving construction and application of a dynamic size ta-
ble on a parallel system, one that grows and shrinks as available memory size changes.
Motivation behind this project lies in a new concept of variable-size memory resource.
Traditionally, memory allocated for a program computation is always fixed at the be-
ginning of runtime. For computation on a parallel or distributed system, however,
the number of available processors and their memory may be dynamic. Processors
may join and leave the computation, as they become idle or later occupied. This
project studies how to utilize all obtainable memory at any instance. It experiments
with a method of integrating available memory dynamically to a data structure ta-
ble, so the table varies its size depending on the memory level. It also examines the
related parameters of expanding and contracting the table that will maximize the use
of memory at any moment while still preserving a feasible cost of the table. The re-
sult shows that with the Phish system's pattern of usage, a high fraction of available
processors of up to 95% — 96% should be utilized because the aggregate number of
available processors normally varies within a limited range. Therefore, even though
the cost of reshuffling table entries is high, reshuffles rarely happen. Same analysis
can be applied to other systems, given their patterns of processor usage. Moreover,
the project suggests an alternative of adjusting the fraction of processor utilization
dynamically during the runtime. The result shows that this algorithm also yields
an optimal performance, while no knowledge of the processor usage pattern or the
calculation of optimal parameters are needed.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Acknowledgments

I would like to take this opportunity to thank Professor Leiserson for guiding me

through the thesis. His devotion to work and his personality are inspiring. Thanks

for his technical advice and his words of wisdom throughout the year. I am also

grateful to Bradley for helping me debug my code and giving me advice, even at a

very low level. I always wonder if I will ever know that much when I finish my Ph.D.

Thanks to Yuli, Keith, Christ, Bobby, Rob, Howard and Richard for creating such a

friendly and supportive environment to work in.

My deepest gratitude goes to my parents for their understanding and encourage-

ment. If it hadn't been for them, I wouldn't have come this far. Thanks for believing

in me and for giving me the strength. I also want to thank both of my sisters for

their moral support and sharing throughout my difficult times.

Thanks to Jimmy, Paulus, Phoebe, Thomas and Jocelyn for starting off our MIT

lives together. MIT is more enjoyable with their friendship. I also want to thank

William for always helping me out when I needed the most. His understanding is

beyond what friends across cultures could imagine.

I also want to thank my Thai friends at MIT for making MIT more like home.

My special thanks to Nong Meaw for her care and encouragement. Also, thanks to

my friends at CMU for their friendship and for making CMU my second home in the

US. Last but not least, I want to thank my best friend, Pek, for his technical and

emotional support, and for walking by my side throughout these years.

Contents

1 Introduction 	 7

1.1 Overview 	 7

1.2 Dynamic Table versus Static Table 	8

2 Avoid thrashing 	 10

3 Organization and Cost Measurements 	 12

3.1 Organization 	 12

3.2 Costs of Dynamic Table 	 13

4 Optimal Analysis 	 15

4.1 Chess Performance and Transposition Table Size 	 16

4.2 	Analysis of p and Pattern of Processor Usage 	 18

4.2.1 Random Walk: p and the Reshuffle Rate 	 18

4.2.2 Phish System: p and the Reshuffle Rate 	 18

4.3 Analysis of Optimal p for the Phish System 	 21

4.4 Finding an Optimal p for the Phish System by Simulation 	 23

5 Adaptive Utilization Fraction 	 27

6 Conclusion and Future Work 	 30

6.1 Conclusion 	 30

6.2 Future Work 	 31

Bibliography 	 32

4

List of Figures

4-1 Random Walk: the number of reshuffles as a function of p 	 19

4-2 Phish system pattern of processor usage 	 20

4-3 Phish System: the number of reshuffles as a function of p 	 21

4-4 Net performance difference as a function of p of the Phish System 24

4-5 Random Walk: Work accomplished as a function of p 	 25

4-6 Phish System: Work accomplished as a function of p 	 26

5-1 Work accomplished as a function of window size, using an adaptive p

algorithm 	 28

5

List of Tables

3.1 The costs of a dynamic transposition table for the *Socrates chess

program on CM5 	 14

	

4.1 	Performance of StarTech chess program as a function of transposition

table size 	17

	

4.2 	The net performance difference between successive p of the Phish system 23

6

Chapter 1

Introduction

1.1 Overview

This research studies an organization and the feasibility of a dynamic table on a par-

allel system. An example of an applicable environment is the Phish system, a network

of workstations where processors come and leave [2]. When processors become idle,

i.e. when users do not log on to the terminal, we want to incorporate those processors

and their memory into our computation. At the same time, when some processors

want to leave, we need to adjust the table management so that our computation

works correctly after the processor is released.

A dynamic parallel table can be applied to the computation that employs a large,

global table. The correctness of this computation, however, must not depend on

the persistency of information within the table. The reason is that when the table

contracts, it may discard some information that the table no longer has space to store.

The characteristics of storing non-vital but useful information resembles that of cache.

The larger the cache size is, the faster the computation can run. The dynamic size

table serves this purpose, so it expands to the largest size possible, given the memory

available.

In order to solidify the experiment, I implemented a variable-size transposition

table for the *Socrates chess program [4] on Cilk, a multithreaded runtime system [1].

The *Socrates chess program employs the Cilk runtime system to search the next

7

move in a chess game concurrently. It then uses a global table called a transposition

table to store information of its extensive tree searches. Analogous to a cache, the

existence of entries in the transposition table is not critical to the correctness of the

chess program. Nonetheless, the overall computation of the chess program speeds up if

entries are available [5]. Because maintaining the dynamicity of the table incurs extra

costs of bookkeeping, copying and reshuffling entry information when processors are

added and removed, this thesis analyzes the table cost and the associated parameters

corresponding to the real applications of the *Socrates chess program and the Phish

system.

1.2 Dynamic Table versus Static Table

A dynamic table allows an application program to expand its data structure, i.e.

a table, momentarily when more memory becomes available. Capturing this extra

utilization can increase the efficiency of the application program. To understand the

advantage of a dynamic table over a static one, consider the chess program application

on the Phish system.

To construct a fixed-size global transposition table on the Phish system, a mini-

mum number of processors must be available throughout the computation. Out of 40

to 50 workstations in the Phish system in a typical ten-day period, only five proces-

sors are available at all time'. Using the performance model for the chess application

from chapter 4, the dynamic size table performs 19.65% better than a static table, as

shown in the following calculation.

Let the performance model for a chess application be

Awork = At x size0.125 .

A static table would accomplish the work of 847,395 x 50.126 'Ad- 1.04 x 106, while the

optimal work accomplished by a dynamic table is 1.24 x 106. 2 Therefore, a dynamic

'The Phish system pattern is given in figure 4-2.
2The result is referred from chapter 4.

8

table out-performs a static table by almost 20%.

In general, a dynamic table becomes more useful when the number of available

processors fluctuates vastly. Thus, the amount of processors guaranteed to be avail-

able at all time is unpredictable or minimal. The static table, therefore, utilizes only

a small portion of the total memory.

9

Chapter 2

Avoid thrashing

A simple strategy to construct a dynamic table is to use all available processors, but

this method may lead to thrashing. Every time a processor is added or removed from

the computation, the table adjusts its size and reshuffles all entries to their right

positions. If the processor addition and removal occur alternatively, the table will

not expand to a bigger size but will still suffer from the reshuffling and bookkeeping

costs [6, pp. 367-374]. The thrashing behavior is generally undesirable'. Especially,

if the reshuffling cost is high, an application program may waste computation cycles

on the table activities rather than accomplishing its primary work.

In order to avoid thrashing, I introduce a utilization fraction, p, which has a value

from 0 to 1. The dynamic table incorporates a portion p of the available processors

to construct the global table. In general, the table tries to maintain its size within

the range from px (total number of available processors). This property is reflected

in the criteria for expansion and contraction of the table.

When adding many processors causes a substantial deviation from a portion p

of utilization, the table expands to incorporate fraction p of the number of available

processors.

'Thrashing may be acceptable if a long delay separates the processor addition and removal. In
this case, an application program may achieve enough performance gain from a bigger table before
it spends another interval resizing the table.

10

Precisely, the expansion occurs when

Na <p2 x N t ,

and after the expansion

Na =p x Nt 7

where

Nt = the total number of available processors,

Na = the number of processors currently used to construct the table (active proces-

sors).

As we aim to optimize the use of memory, the table shrinks only when there are

no unused processors and a processor must be removed.

Thus before the contraction, we have

Na = Nt •

After the contraction, we have

Na =px N. .

Notice that there is a hysteresis in the dynamic behavior. If p is less than 1,

the table expands only after a few processor additions, or when Nt increases from

Nalp to Na /p2. Also, the table contracts only after a few processors are removed, or

when Nt decreases from Nail) to Na. Thus, adding and removing a processor does

not lead to table resizing every time. By introducing p and the above criteria for

expansion and contraction, thrashing is avoided due to the lag between the table

expansion/contraction and the processor addition/removal.

11

Chapter 3

Organization and Cost

Measurements

3.1 Organization

A dynamic table is composed of smaller tables distributed on a number of proces-

sors. Each component table has the same fixed sizel (a constant number of entries);

therefore, more processors constitute a bigger aggregate table. Two lists, namely an

unused-processor list and a mapping table, keep track of which processors are available

for the computation.

An unused-processor list contains the processor numbers that are currently avail-

able, but not used in the table.

A mapping table contains information of processors that are currently used to con-

struct the global table. It maps virtual processor numbers, the ones used by

computation, to real processor numbers. Processors in the mapping table are

called active processors.

When a processor is added or removed from the computation, the dynamic table

behaves as follows:

'To simplify the initial design, a table on each processor has a constant size. We may generalize
each component table to be a dynamic table itself, however, by varying its associativity.

12

1. When a processor is added, it is inserted into an unused-processor list, thus

increasing N. If the ratio of Na to Nt becomes too low, and the criterion for

expansion is satisfied, the table grows to size p x Nt , and all entries are reshuffled.

2. When a processor is removed, it is taken out of an unused-processor list if the

processor is inactive2 at the moment. If the processor is active, and there are

some processors in an unused-processor list, the processor entries are copied

into a spare processor before the processor is removed. If there are no spares in

an unused-processor list, the table contracts, and all entries are reshuffled. As

the table becomes smaller, some entries may be discarded if collisions occur.

3.2 	Costs of Dynamic Table

To maintain a dynamic table, several costs are associated with adding and removing

a processor. The following statistics of costs are measured using my implementation

of a dynamic transposition table for the *Socrates Chess program on CM5. The

transposition table varies its size from 0 to 32 processors. Measurements are repeated

for different sizes of a component table (a table on each processor). The following are

results categorized by the type of costs.

1. a bookkeeping cost to update an unused-processor list and a mapping table.

This cost is incurred every time a processor is added or removed. The exper-

imental results show that a bookkeeping cost is relatively small, ranging from

50 to 80 microseconds. It is also independent of a table size and the number of

active processors. This outcome can be expected because the maximum length

of both lists is 32. Therefore, it should not delay the search noticeably.

2. a copy cost. This cost is incurred when a currently active processor (used

in the table) is to be removed, and there is a spare processor on an unused-

processor list. Entries are copied to a spare processor, which then becomes

2A processor is not inactive when it is not a part of the global table.

13

an active processor. The initial processor is subsequently released. The global

table does not change the size during this process. Table 3-1 shows the copy

costs for different sizes of a component table.

3. a reshuffling cost. A reshuffling cost is incurred when the table expands or

contracts. Table 3-1 shows the reshuffling costs for different sizes of a component

table. Note that the reshuffling cost increases substantially, more than double

in most cases, when the number of entries in a component table doubles. The

delay results from the sequential nature of the reshuffling process on the number

of lines in a component table.

Table 3.1: Reshuffling costs and copy costs of the transposition table for the *Socrates
chess program on CM5 as a function of a table size on one processor.

TTSIZE Reshuffling Time (sec) Copy time (sec)
215 0.034124 0.018304
216 0.090800 0.042402
2'7 0.361552 0.132052
218 0.858180 0.299859
219 0.802737 0.359138
220 1.154651 1.074019

TTSIZE = a number of lines in a table on one processor

Experiments, however, show that the reshuffling cost is independent of the num-

ber of active processors. In other words, doubling the number of active proces-

sors does not observably increase the reshuffling time. Because each processor

executes the reshuffling process concurrently, the total reshuffling time remains

constant, provided that the network communication bandwidth is not saturated.

From the statistics, we can conclude that the reshuffling time dominates the cost

of administering a dynamic table. Moreover, the reshuffling time does not change

when the number of active processors increases, while it grows substantially with the

number of entries on one processor. The result suggests that increasing the number

of processors instead of the number of entries on a processor is more advantageous if

a larger dynamic table is desired.

14

Chapter 4

Optimal Analysis

Tuning a parameter p for an optimal result is experimental. A small p ensures that

the table does not expand or contract too frequently. Therefore, the application

program, which employs a dynamic table, can spend most of its time on its primary

computations. On the other hand, a larger p implies a bigger table. If the application

performance depends on the size of the table, the overall efficiency may increase by

trading some reshuffling time for a bigger table.

Different p's can significantly vary the application performance. For instance, the

result in the subsequent sections shows that work accomplished by the chess program

during 9.8 days of the Phish run can be as low as 8.5 x 105 for the worst p and as

high as 1.24 x 106 for the best p. Thus, choosing a sub-optimal p can cause the

performance loss of over 30%.

In order to analyze an optimal p for a system, three kinds of information are

needed: the reshuffling cost of the table, the value of a bigger size table, and the

pattern of processor usage of a system. The higher the reshuffling cost is, the smaller

p should be, as a high p implies frequent reshuffling. The more valuable the table size

is, the higher p should be, as the application gains more by having a bigger table. And

lastly, if processors do not join and leave the computation frequently, a higher p is

beneficial, because reshuffling seldom occurs. The table cost results and analysis are

provided in the previous chapter. The following sections in this chapter will explore

the latter two factors: the value of the table size and the pattern of processor usage.

15

4.1 Chess Performance and Transposition Table

Size

Most chess programs use a transposition table to cache the results of searches on

moves. Hsu argues that increasing the transposition table size by a factor of 256 can

easily improve the performance by a factor of 2 to 5 [3].

If we assume that the performance of the application program is a polynomial

function of the table size, the model thus implies the following equation:

Awork= At x size' .

From Hsu's argument,

W1 = size' ,

W2 = (256 x size)" .

If performance improves by a factor of 2, we have

W2 = 2 x Wi ,

(256 x size)* = 2 x sizes ,

256 x size = 211' x size,

211a — 256,

a = 0.125.

If performance improves by a factor of 5, we have

w2 = 5 x Wi ,

(256 x size)" = 5 x sized ,

16

256 x size = 511" x size,

511a = 256,

a = 0.29.

Thus, from Hsu's argument, doubling the size of the table increase the performance

by a factor of 20-125 = 1.09 to 20.29 = 1.223. Hsu's prediction matches perfectly with

Kuszmaul's [5] experimental results of StarTech serial implementation. Table 4-1

shows performance of Kuszmaul's serial implementation of StarTech as a function

of transposition table size, and its performance increase factor when the table size

doubles.

Table 4.1: Performance of Kuszmaul's best serial implementation of StarTech as a
function of transposition table size, and its performance increase factor when the
table size doubles.

Transposition
Table Entries

Time
(seconds)

Performance
Increase Factor

216 13506.36
217 12670.01 1.066
218 10925.46 1.160
219 9605.36 1.137
220 8040.08 1.195
221 7138.08 1.126
222 5799.31 1.231

From the agreement of Hsu's prediction and Kuszmaul's experimental results, we

can conclude that, in general, chess performance increases by 9% to 22% when the

table size doubles. Moreover, if we use the performance model of Awork = At x size'',

the choice of a for the chess application should be 0.125 to 0.29.

17

4.2 	Analysis of p and Pattern of Processor Usage

Given the reshuffling cost, an optimal utilization fraction p also depends on the pat-

tern of processor usage. If processors do not join and leave the computation frequently,

a higher p improves the overall performance because the table is bigger, and reshuf-

fles rarely occur. In contrast, if the the number of available processors swings up and

down dramatically and frequently, it is not efficient to use a large portion of avail-

able processors, or a large p, because a considerable amount of time would be spent

expanding and contracting the table.

4.2.1 Random Walk: p and the Reshuffle Rate

To gain an initial understanding of the relationship between p and a pattern of proces-

sor usage, first assume that processors come and go in the same manner as a random

walk. The next occurrence is equally likely to be a processor addition or a processor

removal. Figure 4-1 shows the number of reshuffles as a function of p, given a random

walk model.

Given a random walk model, the number of available processors is likely to vary

within a small range because successive additions without a removal or successive

removals without an addition is improbable. Therefore, reshuffles rarely happen ex-

cept when p is extremely high. A random walk model suggests that if a pattern of

processor joining and leaving resembles a random walk, a high p is beneficial.

4.2.2 Phish System: p and the Reshuffle Rate

In order to predict how well a dynamic size table fits the Phish system, first we can

analyze the pattern of processor joining and leaving of the Phish system, which is

shown in figure 4-2. Notice that the total number of processors in the Phish system

fluctuates around twice a day when most users login in the morning and log out at

night.

Stimulating the Phish pattern, figure 4-3 shows the number of reshuffles that occur

as a function of p, if a dynamic size table is implemented on the Phish system. Note

18

n
um

be
r o

f r
e

sh
uf

fle
s

Figure 4-1: Graph displays a number of reshuffles as a function of p, given a random
walk pattern of a processor addition and removal, a total of 100 times. The graph
suggests that a high p is beneficial for a random walk pattern because the table does
not bear the reshuffling cost until p gets extremely high.

Plot of reshuffle times as a function of p, given a random walk pattern
100

90

80

70

60

50

40

30

20

10

0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9
p (utilization fraction)

19

Figure 4-2: Graph displays the number of active processors in the Phish system during
9.8 days of Phish. There are a total of 45-50 machines in the Phish system.

Plot of the number of active processors in the Phish system during 9.8 days

1 	2 	3 	4 	5 	6 	7 	8 	9 	10
time (day)

20

that the pattern of reshuffle times of the Phish system is close to that of a random

walk. Because the number of processors in the Phish system tends to stay around the

average, except shifting only twice a day, the table can incorporate a high portion of

p into constructing the table without many reshuffles.

Figure 4-3: Graph displays a number of reshuffles as a function of p, given the Phish
pattern of processor usage during 9.8 days. Similar to the random walk, the graph
suggests that the Phish system also benefits from a high p, as the number of reshuffles
is not significant until p gets extremely high.

Plot of reshuffle times as a function of p during 9.8 days of Phish
18000

16000

14000

w 12000
a)

i 10000
a)
"
"6
1- 8000

E c
6000

4000

2000

0
0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7

p (utilization fraction)

4.3 Analysis of Optimal p for the Phish System

Having the information about the costs of a dynamic size table, the value of a trans-

position table size and a system's pattern of processor joining and leaving the com-

putation, we can calculate an optimal p for the Phish system.

Referring to table 3-1, in order to simplify the model, I will assume that the

0.8
	

0.9
	

1

21

reshuffling cost is 1 second', and it dominates other costs2 . Then, consider the Phish

pattern, which generates a relationship of the reshuffle times and p in figure 4-3. A

derivative analysis of these statistics yields an optimal p for the Phish system.

Extracted from figure 4-3, the following data is based on 847395 seconds (or 9.8

days) of Phish run.

p the number of reshuffles

0.89 1504

0.90 1787

An example of one step of calculation is as follows:

For p = 0.89, the dynamic table reshuffles every 815703945 = 563.43 seconds. There-

fore, a performance efficiency, compared to when dynamic table is not present, is

563.43-1 = 0.998225, given that the reshuffle time is 1 second. 563.43

Applying the same calculation to p = 0.90, the dynamic table reshuffles every

81743975 = 474.20 seconds, therefore, has performance efficiency of 47447.42.°2-0 1 = 0.99789.

Notice that efficiency decreases as p gets bigger because the table reshuffles more

often.

Therefore, the performance loss of going from p = 0.89 to p = 0.90 is a factor of

0.998225
0.99789 = 1'000335. In short, due to more frequent reshuffling, we lose a factor of

1.000335 by raising p from 0.89 to 0.90.

From Hsu's prediction and the performance model of chess application: Awork =

At x sizes, where a = 0.125 to 0.29. Going from p = 0.89 to p = 0.90, the table size

increases by a factor of -ell = 1.011236. Thus, performance gain from a bigger table

is 0.0112360.125 = 1.001398 to 0.0112360.29 = 1.003248. In short, owing to a bigger

table, performance increases by a factor of 1.001398 to 1.003248 by raising p from

0.89 to 0.90.

'This assumption is rather optimistic, as table 3-1 costs are measured on CM5, while the real
Phish system uses ethernet. As the Phish system will move to an ATM switch soon, however, the
above estimation will become more practical. Above all, the same kind of analysis can be applied
to new cost values if a more accurate optimal p is needed for such system.

21 also reanalyze by incorporating the copy cost into calculation and still reach the same optimal
p. The copy cost barely effects the overall performance because only two of the processors are busy
during the copying process. Moreover, when p is high enough, processor removals frequently leads
to table contractions, thus reshuffling, instead of copying.

22

Therefore, by going from p = 0.89 to p = 0.90, the net performance gain is a
fact„ n

-
e 1.001398

 = 1' 001063 to 1.003248
 = 1' 002913. Thus, we still gain by raising p -' 	1.000335 	 1.000335

from 0.89 to 0.90 because the net performance gain is greater than 1.

Repeating the same calculation for p from 0 to 1, I find that p = 0.95 to 0.96 is

optimal for the Phish system pattern of usage. Table 4-2 shows the relevant part of

the calculation. Full results are displayed in graph in figure 4-4.

Table 4.2: The net performance difference moving one step from the preceding p to
each p. The low and high gain factors are calculated if the performance increases by
a factor of 2 and 5 successively when the table size grows 256 times. The number of
reshuffles during 9.8 days of Phish is provided as a function of p.

p the number
of resuffles

the net performance difference
using Hsu's low factor (2)

the net performance difference
using Hsu's high factor (5)

0.86 934 1.001358 1.003295
0.87 1120 1.001226 1.003141
0.88 1252 1.001273 1.003166
0.89 1504 1.001115 1.002986
0.90 1787 1.001063 1.002913
0.91 2120 1.000988 1.002817
0.92 2504 1.000912 1.002721
0.93 3084 1.000665 1.002454
0.94 3745 1.000554 1.002324
0.95 4818 1.000050 1.001800
0.96 6169 0.999704 1.001436
0.97 8989 0.997940 0.999650
0.98 12741 0.996802 0.998493
0.99 16734 0.996480 0.998153
1.00 16734 1.001257 1.002921

4.4 Finding an Optimal p for the Phish System

by Simulation

An optimal p can also be found experimentally by simulating a dynamic table behavior

through a pattern of processor usage and accumulating work that would have been

23

If 256 x size increases the performance by a factor of 2

Figure 4-4: Graph displays the net performance difference between successive p of
the Phish system. Both low and high gain factors are provided.

Plot of net performance factor as a function of p of the Phish System
1.25

1.2

f 256.x. ize increases the.performance,by a .factor. of 5

0.95
0 0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

p (utilization fraction)

24

accomplished. Using the performance model: A work = At x size', where a = 0.125,

0.29, and 1, figure 4-5 and figure 4-6 shows the work accomplished as a function

of p for the random walk pattern and the Phish pattern of processor additions and

removals. For the random walk pattern, an optimal p is 0.97, while for the Phish

system, an optimal p ranges from 0.95 to 1, depending on a. The results agree with

the analytical results found in the previous section.

Figure 4-5: Graph displays the work accomplished by the application program as a
function of p, given a random walk pattern and the performance model of A work =
At x sizes, where a is 0.125, 0.29 and 1.

Plot of work done as a function of p, given a random walk pattern
3

x 105
i 	 1 	1 	I

aloha= 1.0

alpha = 0.29

alpha = 0.125

0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1
p (utilization fraction)

01
o

i
0.1

25

Figure 4-6: Graph displays the work accomplished by the application program as a
function of p, given the Phish system pattern of processor usage and the performance
model of A work = At x size', where a is 0.125, 0.29 and 1.

Plot of work done as a function of p during 9.8 days of Phish
2

x 1 0
7

1.8

0
"4=
0:1

1

.c

.2 0.8
-a.

alpha = 0125
0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9

p (utilization fraction)

0.2

O
o

alpha = 0.29

26

Chapter 5

Adaptive Utilization Fraction

Previous chapters discuss the dynamic behavior of the table and how to derive p

that renders the best performance for an application program. An optimal p can be

calculated from the reshuffling cost, the value of the table size and the pattern of

processor usage of a system. Without any of the information, we cannot derive an

optimal p.

An alternative to achieve a maximum performance is to adjust p dynamically based

on the performance history. The algorithm calculates the total work that would have

been accomplished if p, p2, and 03 were to be a utilization fraction during the past

period, called window. It then uses the best result among the three to be a utilization

fraction during the next window size. Since p is dynamically adjusted every window

size, if the window size is sufficiently small, p will stay close to its optimal value at

all time.

Figure 5-1 shows the result of the adaptive p algorithm on the Phish system.

Regardless of the initial p values, the application performance under the adaptive p

algorithm ranges from 99.6% to 103.1% when compared with the optimal result of a

constant p. Notice that adaptive p algorithm yields the best performance when the

window size is in the middle. When the window size is too small, the table becomes

too sensitive to processor additions and removals and adjusts p too frequently. When

the window size is too big, p approaches the optimal values slowly. Therefore, some

performance is forfeited during the adjustment process.

27

E
1.27

g 1.26 -

0.
0. as
2.1.25 	

c)E 1.24 	

-e 0
1.23

1.22 	
0 1 	2 	3 	4 	5 	6 	7 	8 	9

Work done by a dynamic p

Work o e by a on tant optimal p (0.95)

Figure 5-1: Graph displays the work accomplished as a function of window size, using
an adaptive p algorithm on the Phish system. The performance model is A work =
At x size-125 . An optimal work accomplished, using a constant p algorithm is provided
for comparison. Note that most of the time, an adaptive p algorithm performs better
than a constant p algorithm.

x 108Pi0t of work done as a function of window size, using dynamic p algorithm
1.28 	

window size (second) 	
X 105

28

An adaptive p algorithm has several advantages over a constant p algorithm. First

of all, an adaptive p algorithm requires no prior knowledge of processor usage pattern.

Because performance is evaluated periodically, p automatically adapts to the current

pattern of available memory. Secondly, the table can start with any initial p and

still achieves the optimal results. A sufficient small window size ensures that p is

adjusted frequently enough that it will approach the optimal value quickly. Thirdly,

an adaptive p algorithm is likely to perform better than a constant p algorithm if

the pattern of processor usage varies throughout time. For example, if the available

memory stays constant for a period of time, an adaptive p algorithm will adjust p

to 1 to utilize all the memory. Also, if the number of processors suddenly swings

dramatically in a short time, an adaptive p algorithm will lower the p, thus, reduces

the unnecessary reshuffling costs during that period. Because a constant p algorithm

does not have this flexibility, it will function with the value of p that is best on

average, but may not be the most obtainable.

29

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Experimental results and data analysis have shown that a dynamic table on a parallel

system is feasible for real applications. Even though there are several costs —namely

a bookkeeping cost, a copy cost and a reshuffling cost — associated with maintaining

the dynamicity of the table, such costs may be acceptable if they do not occur too

often. The tradeoff lies in how much an application program gains from having a

bigger table and how often the costs are incurred, given the pattern of the processor

usage of the system.

Concretely, statistics have shown that if the Phish system communicates at the

same speed as CM5, a chess program running on the Phish system should utilize up

to 95% — 96% of the total processors to store the transposition table. Similar analysis

can be applied to other systems to find an optimal utilization fraction of such systems,

if their pattern of processor usage and the communication delay are known.

The project also suggests an adaptive p algorithm as an alternative to an optimal

constant p analysis. Because the performance is evaluated periodically and p is ad-

justed accordingly, the overall performance of an application is likely to stay within

an optimal range.

30

6.2 Future Work

Since the table costs are experimented on CM5, the gathered statistics are an opti-

mistic view of costs. The Phish system, which currently uses an ethernet for commu-

nication, will require more time to reshuffle and copy entries from one processor to

another. Therefore, should the chess program be ported onto the Phish system and

uses a dynamic size transposition table, a precise measurement of the reshuffling and

copy time on the Phish system will be necessary.

Moreover, my current implementation of the dynamic size table stores a mapping

table on only one processor. Therefore, communication becomes critical, as all nam-

ing resolution between a virtual processor number and a real processor number has to

be consulted with the central mapping table. Further research can explore the con-

sequences and the feasibility of storing a mapping table on all or several processors.

This approach allows processors to be added and removed, and entries to be inserted

and looked up from any processors without communication delay. The reshuffle cost

may also become lower, as the central mapping table no longer exists as a bottleneck.

However, managing the consistency of the mapping tables may be more complicated

and incur some other costs.

Lastly, as an adaptive p algorithm may potentially perform better than a constant

p algorithm, further study can explore this algorithm more deeply. An implementation

of the algorithm will reveal the issues, such as how to choose the window size, which

processor usage pattern suits this algorithm, and the algorithm's complexity and

feasibility on real applications.

31

Bibliography

[1] Robert D. Blumofe, Michael Halberr, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Phil Lisiecki, Keith H. Randall, Andy Shaw, and Yuli Zhou.

Cilk 1.1 Reference Manual. Lab for Computer Science, MIT, 545 Technology

Square, Cambridge, MA 02139, September 1994. Available via anonymous FTP

from theory .1cs .mit .edu in /pub/cilk/manuall.O.ps.Z.

[2] Robert D. Blumofe and David S. Park. Scheduling large-scale parallel com-

putations on networks of workstations. In Proceedings of the Third Interna-

tional Symposium on High-Performance Distributed Computing (HPDC '94),

San Francisco, California, August 1994. Available via anonymous FTP from

theory.lcs.mit.edu in /pub/rdb/hpdc94.ps.Z.

[3] Feng hsiung Hsu. Large Scale Parallelization of Alpha-Beta Search: An algorith-

mic and Architectural Study with Computer Chess. Technical Report CMU-CS-90-

108, Carnegie-Mellon University, Computer Science Department, Carnegie-Mellon

University, Pittsburgh, PA 15213, February 1990.

[4] Christopher F. Joerg and Bradley C. Kuszmaul. Massively parallel chess. In

Third DIMACS Parallel Implementation Challenge Workshop, Rutgers University,

October 1994. Available via anonymous FTP from csg-ftp.lcs.mit.edu in

pub/users/bradley/dimacs94.ps.Z.

[5] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD dissertation, Mas-

sachusetts Institute of Technology, Department of Electrical Engineering and

32

Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,

June 1994.

[6] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson. Introduction to Al-

gorithms. The MIT Press and McGraw-Hill Book Company, The MIT Press

Cambridge, Massachusetts London, England; McGraw-Hill Book Company New

York St. Louis San Francisco Montreal Toronto, eighth printing edition, 1992.

33

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

