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Chapter 1 

Introduction 

1.1 Overview 

This research studies an organization and the feasibility of a dynamic table on a par-

allel system. An example of an applicable environment is the Phish system, a network 

of workstations where processors come and leave [2]. When processors become idle, 

i.e. when users do not log on to the terminal, we want to incorporate those processors 

and their memory into our computation. At the same time, when some processors 

want to leave, we need to adjust the table management so that our computation 

works correctly after the processor is released. 

A dynamic parallel table can be applied to the computation that employs a large, 

global table. The correctness of this computation, however, must not depend on 

the persistency of information within the table. The reason is that when the table 

contracts, it may discard some information that the table no longer has space to store. 

The characteristics of storing non-vital but useful information resembles that of cache. 

The larger the cache size is, the faster the computation can run. The dynamic size 

table serves this purpose, so it expands to the largest size possible, given the memory 

available. 

In order to solidify the experiment, I implemented a variable-size transposition 

table for the *Socrates chess program [4] on Cilk, a multithreaded runtime system [1]. 

The *Socrates chess program employs the Cilk runtime system to search the next 

7 



move in a chess game concurrently. It then uses a global table called a transposition 

table to store information of its extensive tree searches. Analogous to a cache, the 

existence of entries in the transposition table is not critical to the correctness of the 

chess program. Nonetheless, the overall computation of the chess program speeds up if 

entries are available [5]. Because maintaining the dynamicity of the table incurs extra 

costs of bookkeeping, copying and reshuffling entry information when processors are 

added and removed, this thesis analyzes the table cost and the associated parameters 

corresponding to the real applications of the *Socrates chess program and the Phish 

system. 

1.2 Dynamic Table versus Static Table 

A dynamic table allows an application program to expand its data structure, i.e. 

a table, momentarily when more memory becomes available. Capturing this extra 

utilization can increase the efficiency of the application program. To understand the 

advantage of a dynamic table over a static one, consider the chess program application 

on the Phish system. 

To construct a fixed-size global transposition table on the Phish system, a mini-

mum number of processors must be available throughout the computation. Out of 40 

to 50 workstations in the Phish system in a typical ten-day period, only five proces-

sors are available at all time'. Using the performance model for the chess application 

from chapter 4, the dynamic size table performs 19.65% better than a static table, as 

shown in the following calculation. 

Let the performance model for a chess application be 

Awork = At x size0.125 . 

A static table would accomplish the work of 847,395 x 50.126  'Ad- 1.04 x 106, while the 

optimal work accomplished by a dynamic table is 1.24 x 106. 2  Therefore, a dynamic 

'The Phish system pattern is given in figure 4-2. 
2The result is referred from chapter 4. 
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table out-performs a static table by almost 20%. 

In general, a dynamic table becomes more useful when the number of available 

processors fluctuates vastly. Thus, the amount of processors guaranteed to be avail-

able at all time is unpredictable or minimal. The static table, therefore, utilizes only 

a small portion of the total memory. 
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Chapter 2 

Avoid thrashing 

A simple strategy to construct a dynamic table is to use all available processors, but 

this method may lead to thrashing. Every time a processor is added or removed from 

the computation, the table adjusts its size and reshuffles all entries to their right 

positions. If the processor addition and removal occur alternatively, the table will 

not expand to a bigger size but will still suffer from the reshuffling and bookkeeping 

costs [6, pp. 367-374]. The thrashing behavior is generally undesirable'. Especially, 

if the reshuffling cost is high, an application program may waste computation cycles 

on the table activities rather than accomplishing its primary work. 

In order to avoid thrashing, I introduce a utilization fraction, p, which has a value 

from 0 to 1. The dynamic table incorporates a portion p of the available processors 

to construct the global table. In general, the table tries to maintain its size within 

the range from px (total number of available processors). This property is reflected 

in the criteria for expansion and contraction of the table. 

When adding many processors causes a substantial deviation from a portion p 

of utilization, the table expands to incorporate fraction p of the number of available 

processors. 

'Thrashing may be acceptable if a long delay separates the processor addition and removal. In 
this case, an application program may achieve enough performance gain from a bigger table before 
it spends another interval resizing the table. 
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Precisely, the expansion occurs when 

Na  <p2  x N t , 

and after the expansion 

Na  =p x Nt 7 

where 

Nt  = the total number of available processors, 

Na  = the number of processors currently used to construct the table (active proces- 

sors). 

As we aim to optimize the use of memory, the table shrinks only when there are 

no unused processors and a processor must be removed. 

Thus before the contraction, we have 

Na  = Nt  • 

After the contraction, we have 

Na  =px N. . 

Notice that there is a hysteresis in the dynamic behavior. If p is less than 1, 

the table expands only after a few processor additions, or when Nt  increases from 

Nalp to Na /p2. Also, the table contracts only after a few processors are removed, or 

when Nt  decreases from Nail) to Na. Thus, adding and removing a processor does 

not lead to table resizing every time. By introducing p and the above criteria for 

expansion and contraction, thrashing is avoided due to the lag between the table 

expansion/contraction and the processor addition/removal. 

11 



Chapter 3 

Organization and Cost 

Measurements 

3.1 Organization 

A dynamic table is composed of smaller tables distributed on a number of proces-

sors. Each component table has the same fixed sizel (a constant number of entries); 

therefore, more processors constitute a bigger aggregate table. Two lists, namely an 

unused-processor list and a mapping table, keep track of which processors are available 

for the computation. 

An unused-processor list contains the processor numbers that are currently avail-

able, but not used in the table. 

A mapping table contains information of processors that are currently used to con-

struct the global table. It maps virtual processor numbers, the ones used by 

computation, to real processor numbers. Processors in the mapping table are 

called active processors. 

When a processor is added or removed from the computation, the dynamic table 

behaves as follows: 

'To simplify the initial design, a table on each processor has a constant size. We may generalize 
each component table to be a dynamic table itself, however, by varying its associativity. 
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1. When a processor is added, it is inserted into an unused-processor list, thus 

increasing N. If the ratio of Na to Nt  becomes too low, and the criterion for 

expansion is satisfied, the table grows to size p x Nt , and all entries are reshuffled. 

2. When a processor is removed, it is taken out of an unused-processor list if the 

processor is inactive2  at the moment. If the processor is active, and there are 

some processors in an unused-processor list, the processor entries are copied 

into a spare processor before the processor is removed. If there are no spares in 

an unused-processor list, the table contracts, and all entries are reshuffled. As 

the table becomes smaller, some entries may be discarded if collisions occur. 

3.2 	Costs of Dynamic Table 

To maintain a dynamic table, several costs are associated with adding and removing 

a processor. The following statistics of costs are measured using my implementation 

of a dynamic transposition table for the *Socrates Chess program on CM5. The 

transposition table varies its size from 0 to 32 processors. Measurements are repeated 

for different sizes of a component table (a table on each processor). The following are 

results categorized by the type of costs. 

1. a bookkeeping cost to update an unused-processor list and a mapping table. 

This cost is incurred every time a processor is added or removed. The exper-

imental results show that a bookkeeping cost is relatively small, ranging from 

50 to 80 microseconds. It is also independent of a table size and the number of 

active processors. This outcome can be expected because the maximum length 

of both lists is 32. Therefore, it should not delay the search noticeably. 

2. a copy cost. This cost is incurred when a currently active processor (used 

in the table) is to be removed, and there is a spare processor on an unused-

processor list. Entries are copied to a spare processor, which then becomes 

2A processor is not inactive when it is not a part of the global table. 
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an active processor. The initial processor is subsequently released. The global 

table does not change the size during this process. Table 3-1 shows the copy 

costs for different sizes of a component table. 

3. a reshuffling cost. A reshuffling cost is incurred when the table expands or 

contracts. Table 3-1 shows the reshuffling costs for different sizes of a component 

table. Note that the reshuffling cost increases substantially, more than double 

in most cases, when the number of entries in a component table doubles. The 

delay results from the sequential nature of the reshuffling process on the number 

of lines in a component table. 

Table 3.1: Reshuffling costs and copy costs of the transposition table for the *Socrates 
chess program on CM5 as a function of a table size on one processor. 

TTSIZE Reshuffling Time (sec) Copy time (sec) 
215 0.034124 0.018304 
216  0.090800 0.042402 
2'7  0.361552 0.132052 
218 0.858180 0.299859 
219  0.802737 0.359138 
220  1.154651 1.074019 

TTSIZE = a number of lines in a table on one processor 

Experiments, however, show that the reshuffling cost is independent of the num-

ber of active processors. In other words, doubling the number of active proces-

sors does not observably increase the reshuffling time. Because each processor 

executes the reshuffling process concurrently, the total reshuffling time remains 

constant, provided that the network communication bandwidth is not saturated. 

From the statistics, we can conclude that the reshuffling time dominates the cost 

of administering a dynamic table. Moreover, the reshuffling time does not change 

when the number of active processors increases, while it grows substantially with the 

number of entries on one processor. The result suggests that increasing the number 

of processors instead of the number of entries on a processor is more advantageous if 

a larger dynamic table is desired. 
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Chapter 4 

Optimal Analysis 

Tuning a parameter p for an optimal result is experimental. A small p ensures that 

the table does not expand or contract too frequently. Therefore, the application 

program, which employs a dynamic table, can spend most of its time on its primary 

computations. On the other hand, a larger p implies a bigger table. If the application 

performance depends on the size of the table, the overall efficiency may increase by 

trading some reshuffling time for a bigger table. 

Different p's can significantly vary the application performance. For instance, the 

result in the subsequent sections shows that work accomplished by the chess program 

during 9.8 days of the Phish run can be as low as 8.5 x 105  for the worst p and as 

high as 1.24 x 106  for the best p. Thus, choosing a sub-optimal p can cause the 

performance loss of over 30%. 

In order to analyze an optimal p for a system, three kinds of information are 

needed: the reshuffling cost of the table, the value of a bigger size table, and the 

pattern of processor usage of a system. The higher the reshuffling cost is, the smaller 

p should be, as a high p implies frequent reshuffling. The more valuable the table size 

is, the higher p should be, as the application gains more by having a bigger table. And 

lastly, if processors do not join and leave the computation frequently, a higher p is 

beneficial, because reshuffling seldom occurs. The table cost results and analysis are 

provided in the previous chapter. The following sections in this chapter will explore 

the latter two factors: the value of the table size and the pattern of processor usage. 
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4.1 Chess Performance and Transposition Table 

Size 

Most chess programs use a transposition table to cache the results of searches on 

moves. Hsu argues that increasing the transposition table size by a factor of 256 can 

easily improve the performance by a factor of 2 to 5 [3]. 

If we assume that the performance of the application program is a polynomial 

function of the table size, the model thus implies the following equation: 

Awork= At x size' . 

From Hsu's argument, 

W1  = size' , 

W2 = (256 x size)" . 

If performance improves by a factor of 2, we have 

W2 = 2 x Wi  , 

(256 x size)* = 2 x sizes , 

256 x size = 211' x size, 

211a — 256, 

a = 0.125. 

If performance improves by a factor of 5, we have 

w2 = 5 x Wi  , 

(256 x size)" = 5 x sized , 
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256 x size = 511" x size, 

511a = 256, 

a = 0.29. 

Thus, from Hsu's argument, doubling the size of the table increase the performance 

by a factor of 20-125  = 1.09 to 20.29  = 1.223. Hsu's prediction matches perfectly with 

Kuszmaul's [5] experimental results of StarTech serial implementation. Table 4-1 

shows performance of Kuszmaul's serial implementation of StarTech as a function 

of transposition table size, and its performance increase factor when the table size 

doubles. 

Table 4.1: Performance of Kuszmaul's best serial implementation of StarTech as a 
function of transposition table size, and its performance increase factor when the 
table size doubles. 

Transposition 
Table Entries 

Time 
(seconds) 

Performance 
Increase Factor 

216 13506.36 
217  12670.01 1.066 
218  10925.46 1.160 
219  9605.36 1.137 
220  8040.08 1.195 
221 7138.08 1.126 
222  5799.31 1.231 

From the agreement of Hsu's prediction and Kuszmaul's experimental results, we 

can conclude that, in general, chess performance increases by 9% to 22% when the 

table size doubles. Moreover, if we use the performance model of Awork = At x size'', 

the choice of a for the chess application should be 0.125 to 0.29. 
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4.2 	Analysis of p and Pattern of Processor Usage 

Given the reshuffling cost, an optimal utilization fraction p also depends on the pat-

tern of processor usage. If processors do not join and leave the computation frequently, 

a higher p improves the overall performance because the table is bigger, and reshuf-

fles rarely occur. In contrast, if the the number of available processors swings up and 

down dramatically and frequently, it is not efficient to use a large portion of avail-

able processors, or a large p, because a considerable amount of time would be spent 

expanding and contracting the table. 

4.2.1 Random Walk: p and the Reshuffle Rate 

To gain an initial understanding of the relationship between p and a pattern of proces-

sor usage, first assume that processors come and go in the same manner as a random 

walk. The next occurrence is equally likely to be a processor addition or a processor 

removal. Figure 4-1 shows the number of reshuffles as a function of p, given a random 

walk model. 

Given a random walk model, the number of available processors is likely to vary 

within a small range because successive additions without a removal or successive 

removals without an addition is improbable. Therefore, reshuffles rarely happen ex-

cept when p is extremely high. A random walk model suggests that if a pattern of 

processor joining and leaving resembles a random walk, a high p is beneficial. 

4.2.2 Phish System: p and the Reshuffle Rate 

In order to predict how well a dynamic size table fits the Phish system, first we can 

analyze the pattern of processor joining and leaving of the Phish system, which is 

shown in figure 4-2. Notice that the total number of processors in the Phish system 

fluctuates around twice a day when most users login in the morning and log out at 

night. 

Stimulating the Phish pattern, figure 4-3 shows the number of reshuffles that occur 

as a function of p, if a dynamic size table is implemented on the Phish system. Note 
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Figure 4-1: Graph displays a number of reshuffles as a function of p, given a random 
walk pattern of a processor addition and removal, a total of 100 times. The graph 
suggests that a high p is beneficial for a random walk pattern because the table does 
not bear the reshuffling cost until p gets extremely high. 
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Figure 4-2: Graph displays the number of active processors in the Phish system during 
9.8 days of Phish. There are a total of 45-50 machines in the Phish system. 

Plot of the number of active processors in the Phish system during 9.8 days 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 
time (day) 
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that the pattern of reshuffle times of the Phish system is close to that of a random 

walk. Because the number of processors in the Phish system tends to stay around the 

average, except shifting only twice a day, the table can incorporate a high portion of 

p into constructing the table without many reshuffles. 

Figure 4-3: Graph displays a number of reshuffles as a function of p, given the Phish 
pattern of processor usage during 9.8 days. Similar to the random walk, the graph 
suggests that the Phish system also benefits from a high p, as the number of reshuffles 
is not significant until p gets extremely high. 

Plot of reshuffle times as a function of p during 9.8 days of Phish 
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4.3 Analysis of Optimal p for the Phish System 

Having the information about the costs of a dynamic size table, the value of a trans-

position table size and a system's pattern of processor joining and leaving the com-

putation, we can calculate an optimal p for the Phish system. 

Referring to table 3-1, in order to simplify the model, I will assume that the 
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1 
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reshuffling cost is 1 second', and it dominates other costs2 . Then, consider the Phish 

pattern, which generates a relationship of the reshuffle times and p in figure 4-3. A 

derivative analysis of these statistics yields an optimal p for the Phish system. 

Extracted from figure 4-3, the following data is based on 847395 seconds (or 9.8 

days) of Phish run. 

p the number of reshuffles 

0.89 1504 

0.90 1787 

An example of one step of calculation is as follows: 

For p = 0.89, the dynamic table reshuffles every 815703945  = 563.43 seconds. There-

fore, a performance efficiency, compared to when dynamic table is not present, is 

563.43-1  = 0.998225, given that the reshuffle time is 1 second. 563.43 

Applying the same calculation to p = 0.90, the dynamic table reshuffles every 

81743975  = 474.20 seconds, therefore, has performance efficiency of 47447.42.°2-0 1  = 0.99789. 

Notice that efficiency decreases as p gets bigger because the table reshuffles more 

often. 

Therefore, the performance loss of going from p = 0.89 to p = 0.90 is a factor of 

0.998225  
0.99789 = 1'000335. In short, due to more frequent reshuffling, we lose a factor of 

1.000335 by raising p from 0.89 to 0.90. 

From Hsu's prediction and the performance model of chess application: Awork = 

At x sizes, where a = 0.125 to 0.29. Going from p = 0.89 to p = 0.90, the table size 

increases by a factor of -ell = 1.011236. Thus, performance gain from a bigger table 

is 0.0112360.125 = 1.001398 to 0.0112360.29  = 1.003248. In short, owing to a bigger 

table, performance increases by a factor of 1.001398 to 1.003248 by raising p from 

0.89 to 0.90. 

'This assumption is rather optimistic, as table 3-1 costs are measured on CM5, while the real 
Phish system uses ethernet. As the Phish system will move to an ATM switch soon, however, the 
above estimation will become more practical. Above all, the same kind of analysis can be applied 
to new cost values if a more accurate optimal p is needed for such system. 

21 also reanalyze by incorporating the copy cost into calculation and still reach the same optimal 
p. The copy cost barely effects the overall performance because only two of the processors are busy 
during the copying process. Moreover, when p is high enough, processor removals frequently leads 
to table contractions, thus reshuffling, instead of copying. 
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Therefore, by going from p = 0.89 to p = 0.90, the net performance gain is a 
fact„ n  

-
e 1.001398 

 = 1' 001063 to 1.003248 
 = 1' 002913. Thus, we still gain by raising p -' 	1.000335 	 1.000335  

from 0.89 to 0.90 because the net performance gain is greater than 1. 

Repeating the same calculation for p from 0 to 1, I find that p = 0.95 to 0.96 is 

optimal for the Phish system pattern of usage. Table 4-2 shows the relevant part of 

the calculation. Full results are displayed in graph in figure 4-4. 

Table 4.2: The net performance difference moving one step from the preceding p to 
each p. The low and high gain factors are calculated if the performance increases by 
a factor of 2 and 5 successively when the table size grows 256 times. The number of 
reshuffles during 9.8 days of Phish is provided as a function of p. 

p the number 
of resuffles 

the net performance difference 
using Hsu's low factor (2) 

the net performance difference 
using Hsu's high factor (5) 

0.86 934 1.001358 1.003295 
0.87 1120 1.001226 1.003141 
0.88 1252 1.001273 1.003166 
0.89 1504 1.001115 1.002986 
0.90 1787 1.001063 1.002913 
0.91 2120 1.000988 1.002817 
0.92 2504 1.000912 1.002721 
0.93 3084 1.000665 1.002454 
0.94 3745 1.000554 1.002324 
0.95 4818 1.000050 1.001800 
0.96 6169 0.999704 1.001436 
0.97 8989 0.997940 0.999650 
0.98 12741 0.996802 0.998493 
0.99 16734 0.996480 0.998153 
1.00 16734 1.001257 1.002921 

4.4 Finding an Optimal p for the Phish System 

by Simulation 

An optimal p can also be found experimentally by simulating a dynamic table behavior 

through a pattern of processor usage and accumulating work that would have been 
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If 256 x size increases the performance by a factor of 2 

Figure 4-4: Graph displays the net performance difference between successive p of 
the Phish system. Both low and high gain factors are provided. 
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accomplished. Using the performance model: A work = At x size', where a = 0.125, 

0.29, and 1, figure 4-5 and figure 4-6 shows the work accomplished as a function 

of p for the random walk pattern and the Phish pattern of processor additions and 

removals. For the random walk pattern, an optimal p is 0.97, while for the Phish 

system, an optimal p ranges from 0.95 to 1, depending on a. The results agree with 

the analytical results found in the previous section. 

Figure 4-5: Graph displays the work accomplished by the application program as a 
function of p, given a random walk pattern and the performance model of A work = 
At x sizes, where a is 0.125, 0.29 and 1. 

Plot of work done as a function of p, given a random walk pattern 
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Figure 4-6: Graph displays the work accomplished by the application program as a 
function of p, given the Phish system pattern of processor usage and the performance 
model of A work = At x size', where a is 0.125, 0.29 and 1. 

Plot of work done as a function of p during 9.8 days of Phish 
2 

x 1 0
7 

1.8 

0 
"4= 
0:1 

1 

.c 

.2 0.8 
-a. 

alpha = 0125 
0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 

p (utilization fraction) 

0.2 

O
o 

alpha = 0.29 

26 



Chapter 5 

Adaptive Utilization Fraction 

Previous chapters discuss the dynamic behavior of the table and how to derive p 

that renders the best performance for an application program. An optimal p can be 

calculated from the reshuffling cost, the value of the table size and the pattern of 

processor usage of a system. Without any of the information, we cannot derive an 

optimal p. 

An alternative to achieve a maximum performance is to adjust p dynamically based 

on the performance history. The algorithm calculates the total work that would have 

been accomplished if p, p2, and 03 were to be a utilization fraction during the past 

period, called window. It then uses the best result among the three to be a utilization 

fraction during the next window size. Since p is dynamically adjusted every window 

size, if the window size is sufficiently small, p will stay close to its optimal value at 

all time. 

Figure 5-1 shows the result of the adaptive p algorithm on the Phish system. 

Regardless of the initial p values, the application performance under the adaptive p 

algorithm ranges from 99.6% to 103.1% when compared with the optimal result of a 

constant p. Notice that adaptive p algorithm yields the best performance when the 

window size is in the middle. When the window size is too small, the table becomes 

too sensitive to processor additions and removals and adjusts p too frequently. When 

the window size is too big, p approaches the optimal values slowly. Therefore, some 

performance is forfeited during the adjustment process. 
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Figure 5-1: Graph displays the work accomplished as a function of window size, using 
an adaptive p algorithm on the Phish system. The performance model is A work = 
At x size-125 . An optimal work accomplished, using a constant p algorithm is provided 
for comparison. Note that most of the time, an adaptive p algorithm performs better 
than a constant p algorithm. 
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An adaptive p algorithm has several advantages over a constant p algorithm. First 

of all, an adaptive p algorithm requires no prior knowledge of processor usage pattern. 

Because performance is evaluated periodically, p automatically adapts to the current 

pattern of available memory. Secondly, the table can start with any initial p and 

still achieves the optimal results. A sufficient small window size ensures that p is 

adjusted frequently enough that it will approach the optimal value quickly. Thirdly, 

an adaptive p algorithm is likely to perform better than a constant p algorithm if 

the pattern of processor usage varies throughout time. For example, if the available 

memory stays constant for a period of time, an adaptive p algorithm will adjust p 

to 1 to utilize all the memory. Also, if the number of processors suddenly swings 

dramatically in a short time, an adaptive p algorithm will lower the p, thus, reduces 

the unnecessary reshuffling costs during that period. Because a constant p algorithm 

does not have this flexibility, it will function with the value of p that is best on 

average, but may not be the most obtainable. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

Experimental results and data analysis have shown that a dynamic table on a parallel 

system is feasible for real applications. Even though there are several costs —namely 

a bookkeeping cost, a copy cost and a reshuffling cost — associated with maintaining 

the dynamicity of the table, such costs may be acceptable if they do not occur too 

often. The tradeoff lies in how much an application program gains from having a 

bigger table and how often the costs are incurred, given the pattern of the processor 

usage of the system. 

Concretely, statistics have shown that if the Phish system communicates at the 

same speed as CM5, a chess program running on the Phish system should utilize up 

to 95% — 96% of the total processors to store the transposition table. Similar analysis 

can be applied to other systems to find an optimal utilization fraction of such systems, 

if their pattern of processor usage and the communication delay are known. 

The project also suggests an adaptive p algorithm as an alternative to an optimal 

constant p analysis. Because the performance is evaluated periodically and p is ad-

justed accordingly, the overall performance of an application is likely to stay within 

an optimal range. 
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6.2 Future Work 

Since the table costs are experimented on CM5, the gathered statistics are an opti-

mistic view of costs. The Phish system, which currently uses an ethernet for commu-

nication, will require more time to reshuffle and copy entries from one processor to 

another. Therefore, should the chess program be ported onto the Phish system and 

uses a dynamic size transposition table, a precise measurement of the reshuffling and 

copy time on the Phish system will be necessary. 

Moreover, my current implementation of the dynamic size table stores a mapping 

table on only one processor. Therefore, communication becomes critical, as all nam-

ing resolution between a virtual processor number and a real processor number has to 

be consulted with the central mapping table. Further research can explore the con-

sequences and the feasibility of storing a mapping table on all or several processors. 

This approach allows processors to be added and removed, and entries to be inserted 

and looked up from any processors without communication delay. The reshuffle cost 

may also become lower, as the central mapping table no longer exists as a bottleneck. 

However, managing the consistency of the mapping tables may be more complicated 

and incur some other costs. 

Lastly, as an adaptive p algorithm may potentially perform better than a constant 

p algorithm, further study can explore this algorithm more deeply. An implementation 

of the algorithm will reveal the issues, such as how to choose the window size, which 

processor usage pattern suits this algorithm, and the algorithm's complexity and 

feasibility on real applications. 
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