
Behavior of the ButterflyTN  Parallel Processor 

in the Presence of Memory Hot Spots 

Robert H. Thomas 

BBN Laboratories Incorporated 
Cambridge, MA 02238 

Abstract 

This paper describes a set of experiments designed to measure the behavior 
of the Butterfly Parallel Processor in the presence of memory "hot spots". 
The experiments were motivated by a paper by Pfister and Norton [3] that 
reported results from simulation studies on multistage switching networks for 
shared memory parallel processors. Their results indicated that, for machines 
with a large number of processors, very slight non—uniformities in memory 
reference patterns can lead to severely degraded performance for the entire 
machine, including processors that avoid referencing the hot memories. The 
results were explained in terms of a phenomenon called "tree saturation" 
where traffic to the hot memories backs up into the switch and interferes 
with other switch traffic. The experiments reported here show that those 
results do not generalize to the Butterfly Parallel Processor. The access time 
for a memory that contains a hot spot is degraded, but the presence of the 
hot spot has little effect on the performance of programs that avoid the hot 
memory. Furthermore, tree saturation does not occur in the Butterfly Switch. 

1. Introduction 

This paper describes a set of experiments that measure the behavior of the 

Butterfly Parallel Processor [2] in the presence of memory "hot spots". The 

experiments were motivated by a paper on memory hot spots by Pfister and Norton [3] 

that presented results of simulation studies of the switching network for RP3, 

research parallel processor being developed at IBM Yorktown Heights. 

The simulation results showed that non—uniformities in memory reference 

patterns, which make certain memories "hot", can have a devastating effect on the 

performance of an entire machine, including processors that avoid referencing the hot 

memories. Pfister and Norton explained their results in terms of a phenomenon called 

"tree saturation", where traffic to the hot memories backs up into the switch and 

interferes with other traffic, including that to non—hot memories. Their results 

indicated that for machines with a large number of processors (>=100) even slight 

non—uniformities in reference patterns can lead to tree saturation and severely 

degraded performance for the entire machine. 

Butterfly is a trademark of Bolt Beranek and Newman Incorporated. 



I 

Pfister and Norton claim generality for their results, stating that they apply to 

all multistage blocking networks. Furthermore, their paper claims that attempts to 

avoid the problem, such as providing multiple paths through the network, do not really 

help. Finally, the results are used to motivate the use of a second, combining switch 

in the RP3 architecture. 

The switching networks studied by Pfister and Norton were multistage shuffle 

exchange switches similar in topology to the switch used in the Butterfly Parallel 

Processor. However, there is one key difference in switch operation: the switches 

studied were "blocking", whereas the Butterfly Switch is not. In a blocking switch, 

when contention for an output port of a switching element occurs, the path from the 

source to that switching element is held until the desired output port can be 

obtained. When contention for an output port occurs in a non—blocking switch, the 

message encountering the contention is rejected (to be retransmitted later) and switch 

resources associated with it (i.e., the path to the point of contention) are released. 

When the message is retransmitted, it again competes with other messages for switch 

resources. 

Thus, like the switches studied by Pfister and Norton, the Butterfly Switch is 

multistage. However, unlike them, it is non—blocking. Because the Butterfly Switch is 

non—blocking, the behavior of a program on a Butterfly system can be expected to be 

less severely affected by non—uniformities in memory reference patterns (caused either 

by the program itself or by other programs on the machine). 

Nonetheless, obvious questions to ask are: how does the Butterfly Parallel 

Processor perform in the presence of memory hot spots? Does it exhibit tree 

saturation? Does the architecture break down in large configuration for programs 

whose memory reference patterns exhibit moderate or even very slight non—

uniformities? 

The experiments described below show that the results presented by Norton and 

Pfister do not generalize to the Butterfly Parallel Processor. The access time for a 

memory that contains a hot spot is degraded, but the effect of switch contention is 

very small, even when severe non—uniformities in memory reference patterns are 

present. The experiments indicate that tree saturation does not occur in the 

Butterfly Switch. 



2 

2. The Butterfly Parallel Processor 

This section presents enough information about the Butterfly Parallel Processor 

to understand the experiments described in this paper. More information about the 

Butterfly machine can be found in [2]. 

The Butterfly Parallel Processor is composed of processors with memory and a 

multistage switch that interconnects the processors. A Butterfly system can be 

configured with from 1 to 256 processors. One processor and memory are located on 

a single board called a Processor Node. All Butterfly Processor Nodes are identical. 

Collectively, the memory of the Processor Nodes forms the shared memory of the 

machine. All memory is local to some Processor Node; however each processor can 

access any of the memory in the machine, using the Butterfly Switch to make remote 

references. From the point of view of an application program, the only difference 

between references to memory on its local Processor Node and memory on other 

Processor Nodes is that remote references take a little longer to complete. (The 

typical memory referencing instruction takes about 6 microseconds when the data 

referenced is remote and about 2 microseconds when it is local.) The speeds of the 

processors, memories, and switch are balanced to permit the system to work efficiently 

in a wide range of configurations. 

Each Butterfly Processor Node contains a Motorola MC68000 microprocessor (or a 

MC68020 with a MC68881 floating point co—processor), at least 1 MByte of main 

memory, a co—processor called the Processor Node Controller, memory management 

hardware, an I/O bus, and an interface to the Butterfly Switch. I/O connections can 

be made to each Processor Node, making I/O configuration very flexible. 

The Butterfly machine supports a very efficient operation for transferring blocks 

of data from one Processor Node to another. The block transfer operation is 

implemented by Processor Node Controller microcode. Once initiated, a block transfer 

occurs at the full 32 MBit/second bandwidth of a path through the Butterfly Switch. 

3. The Experiments 

Two experiments were conducted to measure the performance of the Butterfly 

Parallel Processor in the presence of hot spots. The objective of the first experiment 

was to time execution of a typical program, first in an environment without any hot 

spots, and then in one where N processors were used to generate a hot spot. A 

matrix multiplication benchmark program [1] was chosen. The objective of the second 

experiment was to determine the effect hot spots have on typical memory references 



3 

by systematically measuring the behavior of the machine under non—uniform memory 

reference patterns. This was done by timing remote read, write, and block transfer 

operations for various memories, first in an environment without any hot spots, and 

then in an environment where N processors were used to generate a hot spot. 

Hot spots were generated in two different ways: 

1. Via. read and write references. N processors were used to make a given 
memory hot by reading and writing the same location in that memory. This 
was accomplished by having each processor execute the tight loop: 

for (i = 0; i < count; i++) 

* hotmemp 	* hotmemp; 

where hotmemp is a pointer (short '1) to a location in the hot memory. 

2. Via block transfer. N processors were used to make a given memory hot by 
using the block transfer operation to copy data from that memory to their 
local memories. This was accomplished by having each processor execute 
the tight loop: 

for (I 	0; i < count; i++) 
Do_bt (hotmemp, locolp, numbytes); 

where Do_bt initiates a block transfer that moves numbytes bytes from the 
location beginning at hotmemp in the hot memory to the location beginning 
at toca/p in the processor's local memory. 

The difference between these two methods is in the duration of the switch messages 

they generate. Simple read and write references use the switch in 2 microsecond 

bursts. Each iteration of the loop generates 3 messages, 2 for the read and 1 for the 

write. Block transfers are broken into 256 byte packets, each of which uses the 

switch in 64 microsecond bursts. Each iteration of the block transfer loop generates 

2 messages for each packet, a short request message and a 64 microsecond response 

message. 

Although all Processor Nodes in a Butterfly system are functionally equivalent, 

there is a distinguished King Node that is special in two ways: it is the node to which 

the console terminal is connected; and it controls the machine while the operating 

system is being booted. Because a terminal handler and window manager run on the 

King Node, it appears about 8:1.-10% slower than the other nodes to application 

programs. To ensure that the measurements were not affected by the processing 

requirements of the terminal handler and window manager, the King Node was avoided 

in both experiments. 

The experiments were run on a 128 processor Butterfly system. When the 

experiments were run, 16 processors had been temporarily removed to configure 



4 

several smaller systems, leaving 112 processors in the system. Since the King Node 

was not used, 111 processors were available for the experiments. The switch for this 

system has 4 columns (stages) of 4—input 4—output switching elements, and is 

configured to contain 2 paths between each pair of Processor Nodes. 

4. Experiment #1: Matrix Multiplication 

The matrix multiplication program was timed in a number of environments: 

1. Without any hot spots. 

2. With a hot spot generated by read and write references, using only cool.  
memories for the matrices. That is, both the hot memory and the memories 
of processors used to generate the hot spot were avoided. 

3. With a hot spot generated by read and write references, using both the hot 
memory and the cool memories for the matrices. 

4. With a hot spot generated by block transfers, using only cool memories for 
the matrices. As in (2) above, both the hot memory and the memories of 
processors used to generate the hot spot were avoided. 

5. With a hot spot generated by block transfers, using both the hot memory 
and the cool memories for the matrices. 

Data 

For runs involving a hot spot, 100 processors were used to generate the hot 

spot. This left 11 processors with cool memories. 

All runs used square matrices of size 192x192. This size was chosen because: 

1. The run time for the matrix multiplication is long enough to give statistically 
interesting results, and short enough to run a series of experiments. 

2. The matrix multiplication benchmark is written in a way that makes analysis 
of the results simpler when the matrix dimensions are multiples of 6 (see 
below). 

The data obtained by timing the matrix multiplication benchmark on successively 

larger processor configurations for each set of experimental conditions is shown in 

Table 1. 

Discussion 

When the matrix multiplication program avoids the hot memory, the presence of 

the hot spot has negligible impact on the program's performance: there is less than 

1% increase in execution time. When the program uses the hot memory, the impact 



D 

Matrix Size = 192x192 

	

Time 	(seconds) 

	

Number 	processors. 

1 2 4 8 11 

No hot memory 	 65.73 32.73 16.37 8.22 

Hot memory — 100 processors doing 

simple 	read/write 	references 

Avoid hot memory 	 66.02 32.97 16.67 8.47 6.27 

(11 	cool 	memories) 

Use hot memory 	 67.55 33.72 17.10 8.67 6.39 

(11 	cool 	memories + 	1 	hot 	memory) 

Hot memory — 100 processors doing 

768 byte 	block 	transfers 
Avoid hot memory 	 66.07 33.13 16.62 8.50 6.25 

(11 	cool 	memories) 

Use hot memory 	 92.01 46.51 23.42 12.05 8.90 

(11 	cool 	memories + 	1 	hot 	memory) 

Table 1: Data from matrix multiplication benchmark program. 

depends upon the way the hot spot is generated. There is a small increase in run 

time when the hot spot is generated by read and write references (2.76% in the single 

processor case) and a substantial increase when the hot spot is generated by block 

transfers (40% in the single processor case). Since block transfer operations keep the 

memory busy longer than single read and write references, this result is not 

surprising. 

Switches for larger Butterfly machines are typically configured with alternate 

paths to make the machine resilient to failures in switching elements (which almost 

never occur) and to reduce contention within the switch. For example, as mentioned 

in Section 3, the switch for the 128 processor machine used in these experiments has 

one alternate path (for a total of two paths) between each pair of nodes. The data 

presented above was collected with the alternate switch paths enabled. Measurements 

were also made to determine the sensitivity of the timing data to alternate paths by 

repeating the experiment with the alternate paths disabled. 

Use of alternate paths within the switch makes a small difference. When the hot 

spot is generated by read and write references and the hot memory is used, the 

program runs about 1% slower when the alternate paths are disabled. When the hot 

spot is generated by block transfers and the hot memory is used, the program runs 

about 2 1/2% slower when the alternate paths are disabled. 



6 

The following is an analysis of the program's behavior when running on a single 

processor in the presence of a hot spot generated by block transfers. It shows that 

the increase in execution time is due almost entirely to the increase in time required 

to access data in the hot memory. 

The matrix multiplication program uses the block transfer operation to 
make local copies of matrix rows and columns before accessing the individual 
elements to multiply and add. 

To multiply matrices of size 192x192, 36864 dot products must be computed. 
The program is written to compute dot products in groups of 36. This 
involves 12 block transfer operations to obtain 6 rows and 6 columns. Thus, 
12 block transfers yield 36 results, each result requiring 1/3 block transfer. 
Therefore, the program performs 12288 block transfer operations. 

Twelve memories were used to hold the matrices, one of which was hot. 
Therefore, 1/12 of the block transfers can be expected to be delayed due to 
the hot spot. The block transfer delay from a hot memory was measured 
separately by timing a 768 byte block transfer from a cool memory, and then 
timing it again when the memory was made hot by 100 processors doing block 
transfers from it: 

Time to block transfer 768 bytes 
(microseconds) 

No hot memory 	 322.18 

Hot memory 
	

25885.81 
100 processors doing 
768 byte block transfers. 

Therefore, the additional time for the matrix multiplication program to 
perform block transfers from the hot memory should be about: 

(1/12) * 12888 * (25885.81-322.18) = 26.18 seconds 

The measured increase in the execution time for the matrix multiplication 
program for a single processor was 

92.01 — 65.73 = 26.28 seconds 

Thus, the performance degradation resulting from the hot memory is due almost 

entirely to contention at that memory. The effect of switch contention on program 

performance is negligible, even with severely non—uniform memory reference patterns. 

Note that communication (accessing remote memory) accounts for about 6%1  of 

the execution time of the matrix multiplication program. Our experience with the 

Butterfly Parallel Processor is that communication typically accounts for 4%-10% of 

the execution time for an application. Because a relatively small part of total 

1= 100% * (12288 blk xfers * 322.18 microsec/blk xfer) / (66.02 sec). 



program execution time is due to communication, remote memory reference times must 

be severely degraded before memory hot spots can have a signficant effect on overall 

program performance. The purpose of the second experiment was to measure the 

effect memory hot spots have on remote memory references as opposed to overall 

program performance. 

5. Experiment #2: Remote References 

The second experiment timed references made from a given processor node to 

memory on every other processor node. Four types of references were timed: 

1. Single word (4 byte) read references; 

t — • p; 

where t is a variable in local memory and p is a pointer (int *) to the word 
to be read. 

2. Single word (4 byte) write references; 

• p= t; 

where t is a variable in local memory and p is a pointer (int *) to the word 
to be written. 

3. Block transfer of data from the remote memory, 

Do_bt (remotep, localp, numbytes) 

where remotep is a pointer to a block of data on a remote node to be 
copied, tocalp is a pointer to an area in local memory, and numbytes is the 
number of bytes to be copied to local memory. 

4. Block transfer of data to the remote memory; 

Do_bt (locolp, remotep, numbytes) 

where localp is a pointer to a block of data in local memory to be copied, 
remotep is a pointer to an area on a remote node, and numbytes is the 
number of bytes to be copied from local to remote memory. 

The measurements for a given reference type were made by timing a tight loop that 

included the memory reference: 

Start_timer; 

for (i = 0; i < loopcount: i++) 
Make_reference; 

Stop_timer; 

In addition, the empty loop was timed to measure loop overhead: 



8 

Start_timer; 

for (i •. 0; i < loopcount: i++) ; 
Stop_timer; 

Data 

Runs that involved hot spots used 100 processors to generate the hot spot. 

Therefore, in those runs there was 1 (remote) hot memory, 10 (remote) cool memories, 

1 (local) cool memory, and 99 (remote) memories for processors generating the hot 

spot. 

The timing data in Table 2 shows average times for one iteration of the memory 

referencing loop for the various memory reference types under the conditions 

indicated. For the first set of data, which was collected without any hot spots, the 

"remote" reference times were computed by averaging the loop times measured for 

each of the 110 remote memories and dividing by loopcount. Data from the hot 

memory measurements was treated similarly. For example, the "hot memory" reference 

times were computed by dividing the measured times through the reference loop by 

loopcount; and the "cool memory" reference times were computed by averaging the loop 

times for the 10 cool memories and dividing by loopcount. Loopcount for this data was 

10000. The loop overheads for each of the conditions were measured as described 

above, and factored out of the data. That is, the times presented exclude the 

measured loop overheads. 

Reference times (microseconds) 

No hot memory 

read 	write bt-from 

256 	768 
bytes 	bytes 

bt-to 
256 	768 
bytes 	bytes 

remote 15.41 	7.87 111.38 	317.17 112.00 339.26 

Hot memory - 100 processors 	doing 	simple read/write 	references 

cool memory 16.70 	8.75 112.35 	316.20 113.94 340.19 
hot memory 701.93 	306.80 473.99 	1393.59 276.61 470.09 

Hot memory - 100 processors doing 768 byte block transfers 

cool 	memory 15.95 	9.02 112.88 	315.97 113.26 335.85 
hot memory 17410.04 	153.30 8178.84 	25820.95 254.55 827.14 

Table 2: Data from remote reference experiment. 



9 

Discussion 

When there is a hot memory, references to cool memory are slowed down slightly. 

This is probably due to contention within the switch; switch messages used to 

reference cool memory collide with the switch messages used to make the memory hot. 

When there is a hot memory, simple references to cool memory are slowed down 

about the same amount as block transfer references to cool memory. For example, 

remote reads from a cool memory when the hot spot is generated by read and write 

references are slowed by 1.29 microseconds (16.70 versus 15.41), and 256 byte block 

transfers from a cool remote memory are slowed by .97 microseconds (112.35 versus 

111.38)2. This is not surprising since the slow down is due to the increased time fort  

initiating successful message transmission through the switch, and the increase is 

independent of message size. 

References to the hot memory are substantially slower. For most types of 

references a memory made hot by block transfers is slower than one made hot by read 

and write references. The major exception is that simple writes are slower when the 

memory is made hot by read and write references than when it is made hot by block 

transfers (306.80 versus 153.30). This is due to the buffering strategy in the 

Processor Node switch interface which, in effect, gives preference to simple writes: 

when the memory is hot due to read and write references, the write being timed must 

compete with the writes making the memory hot; whereas when the memory is hot due 

to block transfers, there are no other writes to compete with. 

6. Conclusions 

The principal conclusion to be drawn from these experiments is that the results 

reported by Pfister and Norton do not generalize to the Butterfly Parallel Processor. 

While memory contention has an important effect on program performance in a 

Butterfly system, switch contention does not. 

The matrix multiplication experiment showed that non—uniformities in memory 

reference patterns have very little effect on the behavior of a program that avoids the 

hot memory. When the hot memory is avoided, its presence has virtually no effect on 

a program's performance, even if the non—uniformities are large. 

2
768 byte block transfers were actually measured to be slightly faster (316.20 versus 

317.17). 



10 

If a program uses a hot memory, the performance degradation due to the hot 

memory depends on the extent to which the hot memory is used by the program. That 

is, the program is appreciably slowed only when it references the hot memory. 

Although the memory reference experiment showed slight slow down in references to 

the cool memories, the matrix multiplication experiment showed that the slight slow 

down has negligible impact on overall program performance. 

There is no evidence that the tree saturation phenomenon described by Pfister 

and Norton occurs in the Butterfly Switch. Severe non—uniformities can lead to a 

small increase in contention within the switch, but the saturation effect simply does 

not occur. 

Acknowledgements 

I would like to thank Will Crowther, John Goodhue, and Walter Milliken, who read 

several drafts of this paper and provided helpful suggestions for presenting the 

results of the experiments. The Defense Advanced Research Projects Agency provided 

support for the development of the Butterfly Parallel Processor. 



11 

References 

[1] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, T. Blackadar. 
Performance Measurements on a 128—Node Butterfly Parallel Processor. 
In Proceedings of the 1985 tnternationa/ Conference on Parallel Processing, 

pages 531-540. IEEE Computer Society Press, August, 1985. 

[2] Butterfly Parallel Processor Overview 
BBN Laboratories Incorporated, 1985. 

[3] G.F. Pfister and A. Norton. 
"Hot Spot" Contention and Combining in Multistate Interconnection Networks. 
In Proceedings of the 1985 International Conference on Parallel Processing, 

pages 790-797. IEEE Computer Society Press, August, 1985. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

