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Kenneth R. Traub 
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MINT stands for Monsoon INTerpreter: it is an emulator of Monsoon, a software imple-
mentation of the Monsoon instruction set architecture. MINT is designed to mimic Monsoon 
exactly: given an initial value for Monsoon's machine state, both MINT and the Monsoon 
hardware will yield the same final state after the same number of instruction cycles. Machine 
state includes the contents of frame store, instruction memory, statistics registers, and token 
queues. MINT is an emulator rather than a simulator, in the sense that it does not model 
internal state of the Monsoon processor that is not considered machine state at the instruction 
set architecture level. For example, MINT does not model the internal pipeline registers of the 
Monsoon processor. 

While MINT can model Monsoon exactly, it also has features which allow it to serve many 
if not all of the roles filled by the old TTDA GITA emulator. In particular, it can gather more 
detailed statistics than can the hardware, as it places no limits on the number of statistics 
registers or on how they are updated. Through appropriate changes to MINT's token queueing 
system, all of the statistics collection modes available in GITA can be obtained, including infinite 
processor mode, finite processor mode, finite latency mode, etc. Moreover, it is possible to 
define "opcodes" for MINT that extend beyond the cabilities of the Monsoon microarchitecture. 
Perhaps the most useful sets of these fictitious opcodes are the TTDA-like manager operations 
get-context, make-I-structure, etc., and split-phase memory transactions which operate in 
a single cycle. By using these fictitious opcodes in compiled code, the statistics gathered by 
MINT will, like their GITA counterparts, not be colored by any concrete implementation of 
resource managers on Monsoon. 

The aim of this paper is to introduce the reader to the MINT program, exploring in detail 
how the program works. In presenting MINT, we will take liberties and gloss over many details, 
but try to get the essential structure and flavor of the program across. Perhaps the greatest 
liberty we will take is in presenting MINT in Id; MINT is actually written Common Lisp, 
with an implementation in C planned. As such, this paper does not document the MINT 
program at the level required by MINT's maintainers. Nevertheless, after reading this paper, 
the reader should understand exactly what MINT's capabilities are, what statistics it is capable 
of collecting, and also have a rough feel for the performance issues. 

1 Kudos 

The first version of MINT was written by Andy Shaw as his Bachelor of Science Thesis. Greg 
Papadopoulos, Ken Traub, and Jonathan Young have all had significant input into the design 
process. As will be discussed in Section 6, part of MINT can be generated by a program called 
MUC, which was written by Derek Chiou. MINT and MUC are currently being revised and 
maintained by Darin DeForest and Mike Beckerle. 
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Figure 1: High-Level Flow of Data in MINT 

MINT has been heavily influenced by the experience with TTDA GITA, which was primarily 
written by Dinarte Morals, Richard Soley, David Culler, and Ken Traub. 

2 Top Level 

At the highest level, MINT is a gigantic loop, where each iteration of the loop emulates the 
processing of one token. The flow of data in this loop is depicted in Figure 1. A token is 
fetched from the token queuing system, the corresponding instruction is fetched from Instruction 
Memory (IM), processed by the main pipeline, yielding zero, one, or two tokens which are 
enqueued back into the queueing system. 

Figure 1 omits some details that we will pick up in later sections. First, it is assumed 
that we are emulating only one PE. The emulation of multiple PE's is discussed in Section 10. 
Second, statistics collection and the associated state is postponed until Section 9. Third, the 
registers feature is omitted, and will be discussed in Section 11. Fourth, Monsoon allows the 
pipeline to read and write instruction memory and the queues, in addition to frame memory. 
Those paths are present in MINT, but omitted from most of the discussion in this paper, for 
clarity. 

There is one significant difference between Figure 1 and Monsoon that is not just an omission 
from this paper: the entire pipeline less the instruction fetch phase is treated as single black 
box. In Monsoon, the pipeline has a total of eight stages, each with well defined interfaces to 
the next. By not modeling the internal stages, MINT is able to operate much faster than would 
a true simulator of Monsoon, and is also able to accomodate fictitious opcodes which would 
not sensibly decompose into stages. The drawback is that MINT cannot properly emulate 
conflicts between tokens occupying different stages of the Monsoon pipeline at the same time. 
Fortunately, such conflicts can arise only in extremely rare and perverse circumstances, so their 
proper emulation is judged not worth the performance and flexibility penalty. 

The top level of MINT is a function which takes an initial state of instruction memory, data 
memory, and the queueing system, and returns an updated data memory and queueing system 
when there are no more tokens to queue. The top level is given in Figure 2. We consider it line 
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def mint im dm qsys = 
%X We loop as long as there is something in the queueing system to do. 
{while something_to_do? qsys do 

'1.7. First, dequeue a token and take apart its tag. 
tok, post_dq_qsys = dequeue qsys; 

Token tag_type tag_value data_type data_value = tok; 

Tag port ip map pe fp = tag_value; 

X% Fetch the instruction. 
inst = instruction_fetch pe im ip; 

'IA Perform the operation, obtaining two output tokens (one or both of 
7.7, which may be empty), and an updated data memory. 
outtokl, outtok2, next dm = pipe inst tok dm; 

En queue the output tokens, yielding an updated queueing system. 
post_tokl_qsys = enqueue outtokl post_dm_qsys; 

post_tok2_qsys = enqueue outtok2 post_tokl_qsys; 

next qsys = post_tok2_qsys; 

finally dm, qsys}; 

Figure 2: The top level of MINT. 

by line below. 

def mint im dm qsys = 

{while something_to_do? qsys do 

finally dm, qsys}; 

As stated earlier, MINT is just a big loop that iterates until there are no tokens to process. 
Hence, it terminates when the queueing system says there is nothing to do. The exact definition 
of the function something_to_do? will have a very important effect on statistics collection, as 
we discuss in Section 9. At the end of the loop the data memory and queueing system will have 
been modified, so we return the new versions to the caller. 

tok, post_dq_qsys = dequeue qsys; 

Dequeueing a token from the queueing system has the side effect of modifying the state of the 
queues. We indicate this by returning a new queueing system post_dq_qsys differing from 
the old queueing system qsys in that the token tok has been removed. (In Id, we can't just 
side-effect qsys! In realistic implementations of MINT, of course, dequeue returns a token and 
side-effects the queueing system.) 
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Token tag_type tag_value data_type data_value = tok; 

Tag port ip map pe fp = tag_value; 

inst = instruction_fetch im ip; 

We take apart the token and further take apart its tag, to get at the ip value we need for the 
instruction fetch. 

outtokl, outtok2, next dm = pipe inst tok dm; 

The function pipe dispatches on the opcode contained in the instruction and executes it, side-
effecting the data memory and yielding up to two tokens to queue. Again, in Id the side-effects 
to data memory are represented by having pipe return a new, modified, data memory. You 
may wonder what happens if fewer than two tokens are to be produced. The answer is that 
outtokl and outtok2 may be a distinguished value NoToken instead of a token. When outtokl 
or outtok2 is a token, it actually carries some additional information with it that tells the 
queueing system how to queue it. Exactly what this information is depends on the queueing 
system: if using a queueing system that emulates Monsoon, for example, this information will 
indicate whether the token is to be recirculated or placed in a token queue; if using a finite-
latency idealized queueing system, this information will indicate how much latency to add. 
These issues are discussed in more detail in Section 9. 

post_tokl_qsys = enqueue outtokl post_dm_qsys; 

post_tok2_qsys = enqueue outtok2 post_tokl_qsys; 

next qsys = post_tok2_qsys; 

The tokens emitted by pipe are enqueued. The function enqueue enqueues a token, returning 
the modified state of the queueing system. Lithe first argument to enqueue is the special value 
NoToken, the value returned is the same as the second argument. The queueing system returned 
after enqueueing the second token becomes the queueing system for the next iteration of the 
main loop. 

The "working parts" of MINT are embodied in the functions instruction_f etch and 
pipe, and in the functions which operate on the queueing system: enqueue, dequeue, and 
something_to_do?. We discuss these in detail in the following sections. First, however, we 
examine in more detail the data structures and their associated types. 

3 Data Structures and Functions 

3.1 Tokens and Token Queues 

A token has four components: tag type, tag value, data type, and data value. The type 
components are each just unsigned integers. The value components are of type data, defined 
below. 

type tok = Token N data N data; 

As mentioned in the previous section, the pipe function needs to return a value that is either 
a token or an indication of no token. This is called an output token. 

type output_tok = NoToken I YesToken tok enqueueing_command; 
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The second component of the YesToken disjunct, as mentioned previously, is an indication of 
how to enqueue the token, whose meaning depends on the queueing system in use. 

The functions which operate on the token queue, all discussed earlier, have the following 
signatures. 

typeof enqueue 	 = output_tok -> queueing_system -> queueing_system; 

typeof dequeue 	 = queueing_system -> (tok, queueing_system); 

typeof something_to_do? = queueing_system -> B; 

3.2 Data 

The data on which the Monsoon hardware operates are 64 bit words. At various times, the 
hardware may interpret such a word as an unsigned integer, as a two's complement signed 
integer, as an IEEE double precision floating point number, or as a tag. While we could 
just always represent data as an integer within MINT, for efficiency reasons it is desirable to 
represent data in one of four forms, depending on the context in which it is used: 

type data = Bits N I Integer N I Float N I Tag NNNNN; 

The five components of the Tag disjunct are, from left to right, port, ip, map, pe, and fp. 
It is very important not to be misled by the representation of data as a union type. In the 

hardware, there is no way to tell if a given word of data memory contains an integer, a floating 
point number, or a tag; instead, the hardware interprets the 64 bits as one of these depending 
on what it wants to do with the data. Therefore, in MINT, it is forbidden to do something 
different depending on which disjunct of the union type a given data word is. To do so would be 
to rely on information that is not actually present in Monsoon.' The representation of data as 
a union type is purely an efficiency hack; it allows MINT to avoid repeated parsing of a word 
if, for example, it is read and used as a tag repeatedly. 

Because the internal functions of MINT are not allowed to ask what type of data a given 
data word is, before using a word of data it must use one of the following four functions: 

typeof view_data_as_bits = data -> N; 

def view_data_as_bits d = 

{case d of 

Bits i = 

I Int 	i 	 = integer_to_bits i 

	

I Float x 	 = float_to_bits x 

I Tag port ip map pe fp = tag_to_bits port ip map pe fp}; 

typeof view_data_as_integer = data -> N; 

def view_data_as_integer d = 

{case d of 

	

Bits i 	 = bits_to_integer i 

I Int 	i 	 =i 

	

I Float x 	 = float_to_integer x 

I Tag port ip map pe fp = tag_to_integer port ip map pe fp}; 

10f course, the software running on Monsoon may enforce a convention wherein the type bits associated with 
a data word indicate whether the data word is an integer, float, or tag. Such a convention could not have any 
impact on the internal operation of MINT, but can and would be very useful to a program like a debugger which 
examines the state of MINT's memory after a program has executed. 
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typeof view_data_as_float = data -> N; 

def view_data_as_integer d = 

{case d of 

	

Bits i 	 = bits_to_float i 

I Int 	i 	 = integer_to_float i 

	

I Float x 	 x 

I Tag port ip map pe fp = tag_to_float port ip map pe fp}; 

typeof view_data_as_tag = data -> (N, N, N, N, N); 

def view_data_as_tag d = 

{case d of 

	

Bits i 	 = bits_to_tag i 

I Int 	i 	 = integer_to_tag i 

	

I Float x 	 = float_to_tag x 

I Tag 	port ip map pe fp = port, ip, map, pe, fp}; 

A conversion function like float_to_tag answers the question: if in Monsoon, I stored 
the result of a floating point add in a word of memory, then later fetched it out and used 
it as the left argument to change-tag, what tag would I obtain? Such a question is highly 
machine-dependent, as it depends on the details of the floating point representation, and on 
the encoding of a tag. These conversion functions are the only pieces of code within MINT 
that have knowledge of how integers, floats, and tags are encoded into bits within the Monsoon 
architecture. The conversion functions will never be invoked, however, if a word is always used 
in a consistent way. That is, if every word of data memory written as a float is always read 
as a float, then view_data_as_float will never call the conversion functions x_to_float. In 
particular, a correctly compiled Id program can never cause a call to a conversion function 
within MINT. The detailed machine knowledge that MINT has is thus isolated to these few 
places 

To give a feel for what a conversion function is like, here are two of them, defined for the 
"Rev 2" version of Monsoon: 

VI. Convert an unsigned integer to a 64-bit two's complement signed integer. 
def bits_to_int i = 

if i < 2-63 then 

else 
i - 2-64; 

7.7. Convert a tag to a 64-bit unsigned integer. 
def tag_to_bits port ip map pe fp = 

port * 2-63 + 
ip * 2-32 + 
map * 2-55 + 

pe * 2-22 + 

fp; 
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3.3 Data Memory 

Data memory is simply an array, indexed by PE and FP: 

typesyn dm = 2d_array (N, N, data); 

The three components of a word of data memory, from left to right, are presence bits, type bits, 
and data. Presence and type are simply represented as unsigned integers. 

The contents of data memory may be fetched simply by array subscripting: dm[pe, fp]. 
The Dennis-style d.m_append function "writes" data memory by returning a new data memory 
differing at one location: 

typeof dm_append = dm -> N -> N -> (N, N, data) -> dm; 
def dm_append dm pe fp new_contents = 

{(low_pe, hi_pe), (lo_fp, hi_fp) = 2d_bounds dm; 
in 

-(2d_array ((low_pe, hi_pe), (lo_fp, hi_fp)) 
rp, f] = 

if (p == pe) and (f == fp) then 
new_contents 

else 
dm[p, f] 

II p <- low_pe to hi_pe & f <- low_fp to hi_fp})-; 

Of course, in a real implementation of MINT the cim_append function would just side-effect the 
data memory array. 

3.4 Instruction Memory 

Instruction memory is simply an array of instructions: 

typesyn im = 2d_array inst; 
type inst = Instruction N N N; 

The three components of an Instruction are, from left to right, opcode, fl, and f2. Depend-
ing on the instruction, the fields fl and f2 are interpreted as frame offsets, tag adjustments, 
destinations, or register specifications. The following functions are used when a field is to be 
interpreted as a destination or long r value. 

typeof dest_port = N -> N; 
typeof dest_s 	= N -> N; 
typeof long_r 	= N -> N -> N; 

dest_port extracts the port value from an .11 or f2 field, dest_s extracts the IP offset, and 
long_r combines the fl and f2 values into a single "long" r value. 

4 Instruction Fetch 

The function instruction_fetch fetches the instruction indicated by a token's tag from in-
struction memory. It is, not surprisingly, quite simple: 

typeof instruction_fetch = N -> N -> im -> inst; 
def instruction_fetch pe ip im = 

im[pe, ip]; 
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5 The Pipeline 

The function pipe is where most of the work in MINT goes on. It has the following signature: 

typeof pipe = inst -> tok -> dm -> (output_tok, output_tok, dm); 

As discussed earlier, pipe takes an instruction, and token, and data memory, and returns two 
output tokens and an updated data memory. Each output token, it should be remembered, is 
either an actual token (together with an enqueueing command) or the value NoToken. 

The function pipe as usually implemented within MINT simply uses the opcode of the 
instruction as an index into an opcode array, each element of which is a function that performs 
a specific opcode. 

typeof pipe_function_table = vector (N -> N -> N -> 

N -> 

N -> N -> N -> N -> N -> 

N -> data -> dm -> 

(output_tok, output_tok, dm)); 

def pipe inst tok dm = 

-(7.7. First, take apart the instruction, the token, and its tag. 
Instruction opcode fl f2 = inst; 
Token tag_type tag_value data_type data_value = tok; 
Tag port ip map pe fp = tag_value; 

7. 41. Get the appropriate function from the opcode table... 
pipe_function = pipe_function_table[opcode]; 

in 

Y.% ... and run it. 
pipe_function opcode fl f2 

tag_type port ip map pe fp 

data_type data_value 

dm 

We've shown the destructuring of the instruction and the incoming token here in pipe, 
which passes the components as arguments to the functions stored in the opcode table. Of 
course, it is fairly arbitrary whether this destructuring takes place here, in the top level mint 
function, or down in each of the pipe functions themselves. We show the destructuring in pipe 
mainly for expository reasons: it keeps both the top level mint function and the opcode table 
functions free from clutter. The actual code of MINT takes a different approach, for maximum 
efficiency. 

We illustrate some typical opcode table functions in the next few sections. 

5.1 Example Pipe Function: Negate 

The following code is the pipe function for a unary floating point negate instruction, with one 
(explicit) destination, which we interpret one line at a time. 

def pipe_function_float_negate_l_dest 

opcode fl f2 tag_type port ip map pe fp data_type data_value dm = 
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The arguments are as described in the definition of pipe. 

result_value = Float (0.0 - view_data_as_float data_value); 

Before negating the value on the arriving token, it must be converted to a float if necessary. 
Note that view_data_as_float is simply an identity if the incoming token had a floating point 
number, which we expect always to be the case. If it was something else, then it gets converted 
according to the architecture-specific rules, and we get a strange result (though one which 
matches exactly what the hardware would have done). The constructor Float converts the 
result into type data, so that it can become part of the result token. 

tagl = Tag (dest_port f1) (ip + dest_s fl) map pe fp; 

The tag for the token to be emitted is formed by taking the incoming token's map, pe, and fp 
fields, the destination's port, and by adding the destination's IP offset to the incoming token's 
ip. For a unary instruction with a single destination, the fl field of the instruction is used as 
the destination. 

tokl = Token tag_type tagl data_type result_value; 

The result token is constructed using the destination tag and result value constructed earlier. 
The type of the tag is that of the incoming token, as is the result type. 

outtokl = YesToken1 tok1 [How to queue]; 

We form an "output token" from the token above. We omit showing what value is used as the 
enqueueing command, deferring such issues until Section 8. 

in outtokl, NoToken, dm}; 

One of the "tokens" returned is the NoToken indicator since this instruction only produces one 
token. The data memory is returned unmodified. 

5.2 Example Pipe Function: Plus 

The pipe function for plus is considerably more complex, because of the matching operation. 
Here is the code for a plus instruction with one explicit destination: 
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def pipe_function_plus_2_dest 

opcode fi f2 tag_type port ip map pe fp data_type data_value dm 

{ea = EA_relative f2 fp; 

old_presence, temp_type, temp_value, new_dm = 

WM_binary pe ea data_type data_value dm; 

in 

{case old_presence of 

Y.% Frame slot is empty. 
0 = NoToken, NoToken, new_dm 

%Y. Frame slot is non-empty. 
1 1 = 

{result_value = 

Float (view_data_as_float data_value + 

view_data_as_float temp_value); 

outtokl, outtok2 = 

form_one_token_explicit 

data_type result_value tag_type fl ip map pe fp; 

in 

outtokl, outtok2, new_dm}II; 

Because this instruction is more complex than negate, we've used some subroutines. The 
function EA_relative computes the effective address relative to the current frame pointer. 

def EA_relative r fp = 

fp + r; 

The function WM_binary does all the frame operations to implement the standard binary 
wait/match operation. The values temp_type and temp_value it returns are the value extracted 
from frame memory if a match occured, otherwise they are irrelevant. It also returns the old 
value of the presence bits as well as an updated data memory. 

def WM_binary pe ea data_type data_value dm = 

{presence, temp_type, temp_value = cimEpe, ea] ; 
new_dm = 

{case presence of 

IA Presence = 0 means empty. 
0 = dm_append dm pe ea (1, data_type, data_value) 

7, Presence = 1 means full. 
I 1 = dm_append din pe ea (0, temp_type, temp_value)} 

in 
presence, temp_type, temp_value, new_dm} ; 

For simplicity, we've not shown what happens of the presence bits are other than "empty" or 
"full"; these cases would all generate some sort of exception token. Note that in the case where 
a match occured, the presence is reset to zero but the type and data fields are left as is. This 
is to reflect what actually takes place in Monsoon. 

The function form_one_token_explicit forms the output tokens. It's simply a wrapping 
up of what we did in the code form negate: 
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def form_one_token_explicit 

data_type result_value tag_type dest ip map pe fp = 

{tokl = FT_explicit_dest data_type result_value tag_type dest ip map pe fp; 

outtokl = YesToken1 tokl [How to queue]; 
in 
outtokl, NoToken}; 

def FT_explicit_dest data_type data_value tag_type dest ip map pe fp = 

{tagl = Tag (dest_port dest) (ip + dest_s dest) map pe fp; 

tokl = Token tag_type tagl data_type data_value; 

in 

toklI; 

5.3 Example Pipe Function: Minus 

Minus is implemented exactly like plus, with one additional detail. Because plus is associative, 
there was no need to distinguish whether the left or right token arrived first. In minus, this is 
necessary. To obtain the code for minus the following line in plus: 

result_value = 

Float (view_data_as_float data_value + view_data_as_float temp_value); 

is replaced by the following two lines: 

a_value, b_value = flip data_value temp_value port; 

result_value = 

Float (view_data_as_float a_value - view_data_as_float b_value); 

where the function flip is defined as: 

typeof flip = data -> data -> N -> (data, data); 

def flip data_value temp_value port = 

{case port of 

0 = data_value, temp_value 

I 1 = temp_value, data_value}; 

5.4 Example Pipe Function: Plus with two destinations 

A plus instruction with two destinations issues a token to the explicit destination, and also to 
the left port of the instruction whose ip is one greater than the ip of the plus instruction itself. 

The following line in the one-destination plus: 

outtokl, outtok2 = 

form_one_token_explicit data_type result_value tag_type fl ip map pe fp; 

is replaced by the line 

outtoki, outtok2 = 

form_two_tokens_one_explicit data_type result_value tag_type fl ip map pe fp; 

whereform_two_tokens_one_explicit is defined as: 
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def form_two_tokens_one_explicit 
data_type result_value tag_type dest ip map pe fp = 

{tokl = FT_explicit_dest data_type result_value tag_type dest ip map pe fp; 
tok2 = FT_implicit_dest data_type result_value tag_type ip map pe fp; 
outtokl = YesToken tok1 [How to queue]; 
outtok2 = YesToken tok2 [How to queue]; 
in 

outtokl, outtok21; 

The new function FT_implicit_dest is defined as: 

def FT_implicit_dest data_type data_value tag_type ip map pe fp = 
{tagl = Tag 0 (ip + 1) map pe fp; 
tok1 = Token tag_type tagl data_type data_value; 
in 

tokl}; 

6 More on Pipe Functions: Order from Chaos 

MINT takes a very general view of what an opcode can do: it can perform arbitrary updates 
to data memory, and produce up to two tokens. Obviously, if one is to write a sensible set of 
pipe functions there must be more of an underlying discipline. It would be both tedious and 
error-prone to manually write 1024 individual functions, each of which did quite similar things. 

For that reason, it is expected that the pipe functions will be derived from specifications, 
where the specifications are given in a language that restricts the functionality of an opcode. 
Typically, such a language will allow opcodes to be derived through the orthogonal combination 
of an effective address operation, a wait/match operation, a computational operation, and a 
token forming operation. One such specification language is the actual microcode for the 
Monsoon processor. Another is the abstract ETS instruction set definition language. 

There are two basic approaches to deriving actual pipe functions from such specifications, 
the interpreted approach and the compiled approach. In the interpreted approach, there is only 
one piece of code for all pipe operations, but that piece of code does different things based on 
the opcode. A hypothetical example of this approach might begin as follows: 

def pipe_function_generic_interpreted 
opcode fl f2 tag_type port ip map pe fp data_type data_value dm = 

{ea_op, wm_op, comp_op, ft_op = decode_opcode opcode; 
ea = ea_op f2 fp; 
old_presence, temp_type, temp_value, new_dm = 

wm_op pe ea data_type data_value dm; 
—}; 

The interpreted approach is easy to implement, but will not be terribly fast. 
The compiled approach takes the specifications and actually generates code for the pipe 

functions, in whatever language MINT is written. That is, the MINT program will consist 
largely of code generated by another program. There is already a program called MUC which 
does just this, taking Monsoon microcode as the input specifications. It would be even easier 
to create a similar program for a more abstract specification langauge, such as ETS. 
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7 More on Pipe Functions: Fictitious Opcodes 

The general view that MINT takes of what an opcode can do means that it is possible to write 
opcodes that could not actually be implemented in hardware. This is not important if you are 
using MINT to help diagnose a hardware problem, but can be very useful if you are using MINT 
to study the parallelism in an Id program. There are certain operations which may take many 
Monsoon instructions to perform, but would have been performed and accounted as a single 
instruction in TTDA GITA. These fall into two categories: split-phase memory transactions, 
and manager operations. Split-phase memory operations always take two instructions on the 
Monsoon hardware. Manager operations such as get-context and make-i-structure can 
take hundreds, and may be serialized due to locks on system data structures. Because they 
take more instructions, the paralellism profiles gathered will be skewed relative to those that 
would have been obtained from TTDA GITA, which accounts for these operations as a single 
instruction. 

But by suitable hand-crafting of pipe instructions, it is easy to create opcodes for MINT 
which do a complete split-phase transaction or manager operation in a single instruction cycle. 
The resulting system will no longer model the behavior of the hardware, but will generate statis-
tics that are not biased by particular manager implementations and other details. Furthermore, 
MINT will run somewhat faster since it will be interpreting fewer dataflow instructions. 

As an example, we consider the split-phase i-f etch instruction. The instructions as they 
would be executed on Monsoon have the following definition in MINT. For simplicity, we have 
assumed that only one deferred read is possible. 

def pipe_i_fetch_lst_phase 

opcode fl f2 tag_type port ip map pe fp data_type data_value dm 

{ea = EA_relative f2 fp; 

old_presence, temp_type, temp_value, new_dm = 

WM_binary pe ea data_type data_value dm; 

in 

{case old_presence of 

0 = NoToken, NoToken, new_dm 

1 1 = 

{.1,7, First, add the offset to the 1-structure pointer to get 
Y.% a pointer to the location to be fetched. 
a_value, b_value = flip data_value temp_value port; 

isd_port, isd_ip, isd_map, isd_pe, isd_fp = view_data_as_tag a_value 

offset = view_data_as_integer b_value; 

isa_pe, isa_fp = pointer_increment isd_map isd_pe isd_fp offset; 

%Y. Create the tag for the fetch request token. 
tagl = Tag isd_port I_Fetch_IP isd_map isa_pe isa_fp; 

VI, Create the return address, to be sent in the data part. 
dest = fl; 

return_tag = Tag (dest_port dest) (ip + dest_s dest) map pe fp; 

'1, 11, Send the fetch request token. 
tokl = Token I_Req_Tag_Type tagl tag_type return_tag; 
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outtok1 = YesToken tokl [How to queue]; 

in 

outtokl, NoToken, new_dmIII; 

def pipe_i_fetch_2nd_phase 

opcode f1 f2 tag_type port ip map pe fp data_type data_value dm = 

{element_presence, element_type, element_value = dm[pe, fp]; 

in 

{case element_presence of 

%% Empty, no deferred read: store the return address and enter deferred state. 
0= 
{new_dm = dm_append dm pe fp (2, data_type, data_value) ; 

in 

NoToken, NoToken, new_dm} 

%% Full: send back the data to the return address. 
1 1 = 

{tokl = Token data_type data_value element_type element_value; 

outtokl = YesToken tokl 1; 

in 

outtokl, NoToken, dm} 

%Y. Already has a deferred: error. 
1 2 = 

III; 

It is possible to implement i-fetch in a single opcode, omitting the fetch request token. 

def pipe_fictitious_i_fetch 

opcode fl f2 tag_type port ip map pe fp data_type data_value dm = 

{ea = EA_relative_short_r f2 fp; 

old_presence, temp_type, temp_value, new_dm = 

WM_binary ea data_type data_value dm; 

in 

{case old_presence of 

0 = NoToken, NoToken, new_dm 

1 1 = 

{a_value, b_value = flip data_value temp_value port; 

isd_map, isd_pe, isd_fp = view_data_as_tag a_value; 

offset = view_data_as_integer b_value; 

element_pe, element_fp = 

pointer_increment isd_map isd_pe isd_fp offset; 

element_presence, element_type, element_value = new_dm[pe, element_fp]; 

{case element_presence of 

%% Empty, no deferred read: store the return address and enter deferred state. 
0= 

{return_tag = Tag (dest_port fl) (dest_s f1) map pe fp; 

newer_dm = 
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dm_append new_dm element_pe element_fp (2, tag_type, return_tag); 

in 

NoToken, NoToken, newer_dmI 

Y.% Full: send the data. 
1 1 = 

{outtokl, outtok2 = 

form_one_token_explicit 

element_type element_value tag_type fl ip map pe fp; 

in 

outtokl, outtok2, new_dm1; 

7.Y. Already has a deferred: error. 
I 2= 

This function could not be accomplished in the Monsoon hardware, since it can access two 
different locations in data memory. 

8 Queueing Systems 

The queueing system records tokens emitted by the pipe, for later processing. The definition 
of the queueing system controls the relationship between when a token is emitted and when it 
later processed relative to other tokens that were emitted. It also controls the termination of 
MINT's top level loop. 

The definition of the queueing system can have a profound impact on the order in which 
instructions are executed. If no statistics are being collected, and if the register feature is not 
being used, and if the program is determinstic (i.e., compiled from the deterministic subset of 
Id), then instruction ordering will have no impact on the final answer computed by MINT. If 
statistics are collected, then the queueing system directly affects what the statistical data is 
actually obtained, for the queueing system will control what operations are executed as part of 
what timestep. These issues are explored in the section on statistics, Section 9. If the register 
feature is being used, then the queueing system must take care in dispatching tokens which are 
part of a sequential thread, so that thread's register state is preserved. These issues are tackled 
in Section 11. 

In this section, we just present some simple queueing systems to give the reader a feel for 
the various possibilities. More queueing systems will be presented when we turn to statistics 
and registers. A queueing system is defined by saying exactly what the queueing_system type 
is, and by giving definitions for the functions enqueue, dequeue, and something_to_do?. 

One thing all queueing systems will have in common is the behavior of enqueue when given 
the NoToken value. All definitions of enqueue will have the following form: 

def enqueue outtok qsys = 
{case outtok of 

NoToken = qsys 
I (YesToken tok how_to_queue) = [Do something else.]}; 
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8.1 Simple LIFO Queueing System 

The simplest possible queueing system is a single LIFO queue. The queueing system is just an 
array of tokens, together with an integer giving the index of the next available location in the 
array. As the queue fills up the index grows more positive, and the queue is empty when the 
index returns to zero. The "how to enqueue" information is ignored. 

typesyn queueing_system = (vector tok), N; 

def enqueue outtok qsys = 

{case outtok of 

NoToken = 

qsys}; 

I (YesToken tok how_to_queue) = 

{qarray, next_empty = qsys; 

new_qsys = (append qarray next_empty tok), next_empty + 1; 

in 
new_qsys}; 

def dequeue qsys = 

{(qarray, next_empty) = qsys; 

tok = qarray[next_empty - 1]; 

new_qsys = qarray, next_empty - 1; 

in 

tok, new_qsys}; 

def something_to_do? qsys = 

{qarray, next_empty = qsys; 

in 

next_empty > 0}; 

This could easily be changed to support a FIFO queue. 

8.2 Monsoon Queueing System 

(This section is rather long, and may be omitted if the reader does not care to see the details 
of how the Monsoon queueing system is emulated.) 

The Monsoon queueing system precisely emulates the scheduling of instructions on the 
Monsoon hardware, and as such is useful in debugging of both hardware and system software. 
There are two queues, called the system queue and the user queue. Each token can be enqueued 
onto either the front or back of either the system or user queue. In addition, a token can be 
"recirculated," so that it takes priority over the tokens at the front of both queues. To accurately 
model the token processing order in Monsoon, the queueing system must account for the latency 
of the Monsoon pipeline. That is, a token that is enqueued should not be dequeued for at least 
eight cycles. This compensates for the fact that the entire pipeline is simulated by MINT in 
one cycle. 

The enqueueing command contained in an output token passed to enqueue can be one of 
five values: 
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Recirculate The token should be recirculated; that is, always processed exactly eight cycles 
later. 

Push_Syst em The token should be pushed onto the front of the system queue; that is, enqueued 
on the system queue in LIFO mode. 

Enqueue_System The token should be enqueued onto the back of the system queue; that is, 
enqueued on the system queue in FIFO mode. 

Push_User Analogous to Push_System, but for the user queue. 

Enqueue_User Analogous to Enqueue_System, but for the user queue. 

As in the hardware, if an instruction produces two tokens both specifiying Recirculate, one 
is lost 

The data structure for this queueing system is an 11-tuple, whose components are as follows: 

sys_array System queue token array. 

sys_head Index into sys_array of next empty slot for FIFO enqueueing. After enqueueing, 
sys_head is incremented. 

sys_tail Index into sys_array of next full slot for dequeueing; also one greater than next 
empty slot for LIFO enqueueing. After dequeueing, sys_tail is incremented; before 
LIFO enqueueing, sys_tail is decremented. 

sys_count Number of tokens in system queue. 

user_array Like sys_array, but for the user queue. 

user_head Like sys_head, but for the user queue. 

user_tail Like sys_tail, but for the user queue. 

user_count Like sys_count, but for the user queue. 

pipe_array Eight-element token array for simulating the pipeline latency. 

pipe_index Index into pipe_array of next token to process. 

recirc_buffer Holds a token enqueued in Recirculate mode after the call to enqueue but 
before the next call to dequeue; or is the value NoToken if no token was enqueued in 
recirculate mode. 

In Id: 

typesyn queueing_system = vector tok, N, N, N, 
vector tok, N, N, N, 
vector tok, N, outtok 

You might expect that the tokens emitted by pipe would be entered into the eight-stage 
delay line, and that tokens emerging from the delay line would be subject to enqueueing or 
recirculation. As a practical matter, the program is simpler if the tokens enter the queue first, 
and go through the delay line after being dequeued. The reader should convince himself that 
the two schemes are entirely equivalent. 
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When a token is enqueued, it is either entered into the user or system queue, or placed 
into a one-token recirculate buffer, according to the enqueueing command. When a token is 
dequeued, it is taken from the head of the delay line, the delay line is shifted, and a new token 
entered into the delay line. The token entered into the delay line is, in order of decending 
priority, from the recirulate buffer, the system queue, or the user queue. If no token is available 
from any of these sources, a "bubble" token is entered into the delay line. Rather than actually 
shift the contents of pipe_array, a pointer into it is advanced modulo eight. 

For simplicity, the code given below does not attempt to deal with overflow of the token 
queue (which should cause the processor to halt). 

Enqueueing: 

def enqueue outtok qsys = 

{case outtok of 

NoToken = qsys 

1 (YesToken tok how2q) = 

{case how2q of 

Recirculate 	= store_into_recirc_buffer outtok qsys 

I Push_System 	= push_system_queue tok qsys 

I Enqueue_System = enqueue_system_queue tok qsys 

1 Push_User 	= push_user_queue tok qsys 

1 Enqueue_User = enqueue_user_queue tok qsys}}; 

def store_into_recirc_buffer 

outtok 

(sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, outtok; 

def push_system_queue 

tok 

(sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

{next_sys_tail = mod (sys_tail - 1) Token_Queue_Size; 

in 

(append sys_array next_sys_tail tok), 

sys_head, 

next_sys_tail, 

sys_count + 1, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer}; 

def enqueue_system 

tok 

(sys_array, sys_head, sys_tail, sys_count, 
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user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

(append sys_array sys_head tok), 

mod (sys_head + 1) Token_Queue_Size, 

sys_tail, 

sys_count + 1, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer; 

def push_user 

tok 

(sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

{next_user_tail = mod (user_tail - 1) Token_Queue_Size; 

in 

sys_array, sys_head, sys_tail, sys_count, 

(append user_array next_user_tail tok), 

user_head, 

next_user_tail, 

user_count + 1, 

pipe_array, pipe_index, recirc_buffer}; 

def enqueue_user 

tok 

(sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

sys_array, sys_head, sys_tail, sys_count, 

(append user_array user_head tok), 

mod (user_head + 1) Token_Queue_Size, 

user_tail, 

user_count + 1, 

pipe_array, pipe_index, recirc_buffer; 

Deq ueueing: 

def dequeue qsys = 

{tok = current_pipe_token qsys; 

in 

if (get_recirc_buffer qsys)"=NoToken then 

tok, pop_recirc_buffer_to_pipe qsys 

else if (sys_queue_has_token qsys) then 

tok, pop_sys_queue_to_pipe qsys 

else if (user_queue_has_token qsys) then 

tok, pop_user_queue_to_pipe qsys 

else 

tok, pop_nothing_to_pipe qsys}; 
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def get_recirc_buffer (sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

recirc_buffer; 

def sys_queue_has_token (sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

sys_count > 0; 

def user_queue_has_token (sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

user_count > 0; 

def pop_recirc_buffer_to_pipe (sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

{YesToken tok _ = recirc_buffer; 

in 

sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

append pipe_array pipe_index tok, 

mod (pipe_index + 1) 8, 

NoToken}; 

def pop_sys_queue_to_pipe (sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

{tok = sys_array[sys_tail]; 

in 

sys_array, sys_head, mod (sys_tail+1) Token_Queue_Size, sys_count-1, 

user_array, user_head, user_tail, user_count, 

append pipe_array pipe_index tok, 

mod (pipe_index + 1) 8, 

NoTokenl; 

def pop_user_queue_to_pipe (sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

{tok = user_array[user_tail]; 

in 

sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, mod (user_tail+1) Token_Queue_Size, user_count-1, 

append pipe_array pipe_index tok, 

mod (pipe_index + 1) 8, 
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NoToken} ; 

def pop_nothing_to_pipe (sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer) = 

{tok = The_Bubble_Token; 

in 

sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

append pipe_array pipe_index tok, 

mod (pipe_index + 1) 8, 

NoToken}; 

To verify that there is nothing to do, we must make sure that both queues are empty, that 
there are only bubbles in the delay line, and there is no token in the recirculate buffer. 

def something_to_do? qsys = 

{sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer = 

qsys; 

in 

(sys_count > 0) or 

(user_count > 0) or 

(pipe_array_not_empty? qsys) or 

(recirc_buffer -= NoToken)}; 

def pipe_array_not_empty? qsys = 

{sys_array, sys_head, sys_tail, sys_count, 

user_array, user_head, user_tail, user_count, 

pipe_array, pipe_index, recirc_buffer = 

qsys; 

not_empty? = false; 

in 

{for i <- 0 to 7 do 

next not_empty? = not_empty? or (pipe_array Li] -= The_Bubble_Token) 
finally empty?}}; 

9 Statistics 

Statistics are collected in MINT in much the same way that they are in Monsoon. MINT has 
a bank of statistics registers, an array of numbers. Each opcode may modify these statistics 
registers as it pleases, typically by incrementing one or more of them. For example, all floating 
point arithmetic opcodes may increment register 7 in the event that they actually perform 
arithmetic, thus collecting statistics on the number of floating point operations. 

MINT can gather more detailed statistics than the Monsoon hardware for two reasons: 
MINT has no limit as to the number of registers, and an opcode can make arbitrary modifica-
tions to them (in Monsoon, an opcode is limited to an increment of a single register). 
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The modification to MINT to support statistics is a simple one: the statistics registers are 
simply passed around the top-level loop as another kind of machine state. 

stats argument was added. 
def mint im dm stats qsys = 

{while not (something_to_do? qsys) do 

tok, post_dq_qsys = dequeue qsys; 
Token tag_type tag_value data_type data_value = tok; 
Tag port ip map pe fp = tag_value; 

inst = instruction_fetch im ip; 

stats argument and result to pipe is new. 
outtokl , outtok2, next dm, next stats = pipe inst tok dm stats; 

post_tokl_qsys = enqueue outtokl post_dm_qsys; 
post_tok2_qsys = enqueue outtok2 post_tokl_qsys; 
next qsys = post_tok2_qsys; 

finally dm, qsys, stats}; 

In the program above, only pipe can modify the statistics registers, but it would be a simple 
matter to allow instruction_f etch and the token queue functions to do so as well. The actual 
MINT program has this freedom. 

The sort of statistics collected by the above program are fairly uninteresting: when the 
program finishes you have the final values of the statistics registers, which are grand totals 
of various events. To obtain things like parallelism profiles, it is necessary to partition the 
instructions executed into timesteps. The values of the statistics registers at the end of each 
timestep, when plotted against the timestep, yield profiles. The top level of MINT, then, 
becomes a doubly-nested loop. The inner loop executes tokens until the end of the timestep 
is reached, while the outer loop transfers statistics registers into profiles, and continues until 
there is nothing left to do. 

The partitioning of machine cycles into timesteps is controlled by the queueing system. In 
addition to enqueue and dequeue, there are now three more functions provided by the queueing 
system: 

typeof something_to_do? = queueing_system -> bool; 
typeof timestep_finished? = queueing_system -> bool; 
typeof advance_timestep = queueing_system -> queueing_system; 

As before, something_to_do? returns true if there are any tokens in the queueing system at 
all. Timestep_finished? returns true if there are no more tokens left for the current timestep. 
Advance_timestep prepares a queueing system for the next timestep. 

The inner loop of MINT is the same as above, except that the line 

{while not (something_to_do? qsys) do 

is replaced by the line 

{while not (timestep_finished? qsys) do 
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The outer loop, which gathers the statistics at the end of each timestep and accumulates profiles, 
is a separate program called the execution manager. It looks like this: 

def execution_manager im dm qsys = 

{profiles = 2d_I_array ((0,N_stats-1), (0,Max_timestep-1)); 

timestep = 0; 

in 

YA Main loop: 
{while something_to_do? qsys do 

Y.% Start the next timestep with all zeros in the stats. 
in_stats = make_zeroed_ld_array (0,N_stats-1); 

%A Execute tokens until the timestep ends. 
next dm, post_timestep_qsys, out_stats = mint im dm in_stats qsys; 

Y.% Transfer the statistics to the profiles. 
{for i <- 0 to N_stats-1 do 

profiles [timestep, i] = out_stats[iiI; 

next timestep = timestep + 1; 

'IA Prepare the queueing system for the next timestep. 
next qsys = advance_timestep post_timestep_qsys; 

in 

dm, profiles, qsys}}; 

The profiles generated from a given Monsoon program will obviously depend heavily on the 
queueing system used. The choice of queueing system controls what in TTDA GITA was called 
the "statistics mode." In the next few sections we describe some queueing systems for gathering 
particular kinds of statistics. 

9.1 Grand Total Mode 

The simplest statistics mode is one where the entire program is executed in one timestep. The 
only statistics you get out of this mode are grand totals. 

The code for the Grand Total Mode queueing system is the simple LIFO queueing system 
described in Section 8.1, with the following additional definitions: 

def timestep_finished? qsys = 

something_to_do? qsys; 

def advance_timestep qsys = 

qsys; 

Note that advance_timestep is a no-op, since there will only be one timestep! 
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9.2 Idealized Mode 

In idealized mode, there is a single FIFO queue, and a mark which separates the tokens to 
be consumed during the current timestep, and the tokens enqueued for execution in the next 
timestep. Within a given timestep, only tokens before the mark are consumed, and all tokens 
produced are enqueued after the mark. 

The queueing system data structure is a four tuple, whose components are as follows: 

tok_array An array holding the tokens. 

head The index into tok_array of the next empty slot in which to place a token. 

mark The index into tok_array of the first slot into which new tokens were put during the 
current timestep; the index which is one greater than the index of the last token to process 
in this timestep. 

tail The index into tok_ array of the next token to process. 

The various configurations of head, mark, and tail are illustrated in Figure 3. 
The code for this queueing system is as follows. For simplicity, the issues of wrapping around 

the queue indices are ignored. 

typesyn queueing_system = (vector tok), N, N, N; 

def enqueue outtok qsys = 

{case outtok of 
NoToken = qsys 

I (YesToken tok how_to_queue) = 

{tok_array, head, mark, tail = qsys 
in 
(append tok_array head tok), head + 1, mark, tail}}; 

def dequeue qsys = 

{tok_array, head, mark, tail = qsys; 

tok = tok_array[tail]; 

new_qsys = tok_array, head, mark, tail + 1; 

in 
tok, new_qsysl; 

def timestep_finished? qsys = 

{tok_array, head, mark, tail = qsys; 

in 

tail == mark}; 

def advance_timestep qsys = 

{tok_array, head, mark, tail = qsys; 

in 

tok_array, head, head, tail}; 
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Figure 3: Queue Pointers for the Idealized Mode Queueing System 

def something_to_do? qsys = 
{tok_array, head, mark, tail = qsys; 
in 
tail -= head}; 

9.3 Idealized Finite Processor Mode 

Idealized Finite Processor mode is a variation on idealized mode which limits the number of 
tokens processed in a timestep to a maximum, called N_proc. This is a simple modification to 
the idealized queueing system above: we simply add a count which says how many tokens have 
been processed in the current timestep, and test this to see if the timestep has finished. 

typesyn queueing_system = (vector tok), N, N, N, N; 
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def enqueue outtok qsys = 
{case outtok of 

NoToken = qsys 
I (YesToken tok how_to_queue) = 

{tok_array, head, mark, tail, count = qsys 
in 
(append tok_array head tok), head + 1, mark, tail, count}}; 

def dequeue qsys = 
{tok_array, head, mark, tail, count = qsys; 
tok = tok_array[tail]; 
new_qsys = tok_array, head, mark, tail + 1, count + 1; 
in 
tok, new_qsys}; 

def timestep_finished? qsys = 
{tok_array, head, mark, tail, count = qsys; 
in 
(tail == mark) or (count == N_proc)}; 

def advance_timestep qsys = 
{tok_array, head, mark, tail, count = qsys; 
in 
tok_array, head, head, tail, 0}; 

def something_to_do? qsys = 
{tok_array, head, mark, tail, count = qsys; 
in 
tail -= head}; 

9.4 Idealized Finite Latency Mode 

Idealized Finite Latency mode is like the idealized modes described above, except that each 
token gets to specify a "latency" value 1, 1 > 0, as part of its enqueueing command. A token 
with latency 1 will not be a candidate for execution until at least 1 timesteps after it is enqueued. 

We will only sketch the implementation of finite latency mode. Assume that the maximum 
possible 1 is L. Then the queueing system consists of a main FIFO queue Qo  plus L additional 
queues Q i  through Q L. All tokens are dequeued from Qo. Each token with latency 1 that is 
produced is enqueued into queue Qi. When the timestep is complete, Qi  is emptied into Qo, 
Q2  is emptied into Q i , and so forth. 

This combines perfectly well with Idealized Finite Processor mode: a limit is placed on the 
number of tokens that may be dequeued from Qo  in one timestep. If there are tokens remaining 
there at the end of the timestep, the tokens transferred from Q i  enter behind them. 
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10 Emulating Multiple Processors 

The "finite processor" modes discussed in the previous section only emulate a system with 
a fixed number of processors in a very crude sense. It is possible, however, to give MINT a 
queueing system which makes it emulate very precisely the behavior of a Monsoon with a given 
number of processors. Essentially, we must provide a set of queues for each processor, along 
with buffers which simulate the latency through the token network. 

The code for MINT that we've already presented makes use of the pe field of tokens, but 
only as part of the indexing into the data memory and instruction memory arrays. Because 
all tokens went into the same token queue regardless of pe field, pe was nothing more than an 
extension of the fp and ip addresses. To emulate multiple processors, the pe field will also 
serve as an index into the queueing system, directing the token to the emulated queues of a 
particular processor. 

The dequeue operation will now dequeue from some processor, chosen by the queueing sys-
tem. Typically, the queueing system will round-robin among the processors, so that successive 
calls to dequeue will get tokens from consecutive processors. If statistics are being collected, 
the notion of when a timestamp ends will have something to do with when all processors have 
been cycled through by dequeue. 

The enqueue operation will need an additional piece of data besides the token to be en-
queued: it needs the PE number of the processor producing that token, or equivalently the pe 
field from the token that was passed to pipe to produce the token being enqueued. This is 
because a different amount of latency may be called for depending on whether the token stays 
on the same pe or goes across the network, or indeed, depending on the exact path the token 
is to follow. 

The modification to the top level of MINT is simple: a pe argument is added to enqueue: 

def mint im dm stats qsys = 
{while not (timestep_finished?) qsys do 

'IA These lines are the same as before. 
tok, post_dq_qsys = dequeue qsys; 
Token tag_type tag_value data_type data_value = tok; 
Tag port ip map pe fp = tag_value; 

post_tokl_qsys = enqueue outtokl pe post_dm_qsys; 
post_tok2_qsys = enqueue outtok2 pe post_tokl_qsys; 
next qsys = post_tok2_qsys; 

finally dm, qsys, stats}; 

The queueing systems for a multiple processor simulation can be quite complex. We will 
illustrate a rather simple one in which each processor has a single FIFO queue, and a timestep 
is defined such that within one timestep each PE may process up to one token. Any tokens 
produced during the execution of one timestep are available in the next timestep; no network 
latency is simulated. The results will be similar to the idealized finite-processor simulation with 
no latency, but with an important difference. In the idealized finite-processor case, if there were 

27 



five tokens ready and the number of processors was at least five, then all five tokens would be 
processed in one timestep. In the multiple processor simulation, the five tokens would all have 
to carry different PE numbers in order for them all to be executed in one timestep. 

The basic idea is to have an array of queues, one per PE. Successive calls to dequeue must 
retrieve a token from successive PE's queues, with a timestep ending when all PE's have been 
polled. In addition to the array of queues, therefore, we need an index that says what PE's 
queue to examine in the next call to dequeue. The type of the queueing system is as follows: 

typesyn queueing_system = (vector (vector tok, N, N, N)), N; 

The first component is the array of queueing systems, indexed 1 through n, and the second 
is the index of the next queue to dequeue from. Each queue is like the idealized queue from 
Section 9.2: it has a token array, a head pointer, a mark, and a tail pointer, with meanings as 
illustrated in Figure 3. 

The reason we need marks in each of the queues is fairly subtle. Suppose that we just 
dequeued a token for PE 4, and it caused tokens to be enqueued for PE 2 and PE 6. Now the 
token for PE 2 is no problem, since we'll not try to dequeue from PE 2 until the next timestep. 
But, as We continue this timestep we'll dequeue from PE 5, then from PE 6. The marks insure 
that we don't inadvertantly process the token in PE 6's queue that was produced in the current 
timestep. 

With that in mind, here is the code for the queueing system. First, the code to enqueue. 
This is straightforward: we just enqueue into the appropriate PE's queue, as indicated by 
the PE field on the token. The enqueue_on_pe routine is just like the enqueue routine from 
Section 9.2. 

def enqueue outtok, qsys = 

{case outtok of 

NoToken = qsys 

I (YesToken tok how_to_queue) = 

really_enqueue tok qsys}; 

def really_enqueue tok qsys = 

{Token tag_type tag_value data_type data_value = tok; 

Tag port ip map pe fp = tag_value; 

qbank, dequeue_ptr = qsys; 

new_qbank = enqueue_on_pe tok pe qbank; 

new_qsys = new_qbank, dequeue_ptr; 

in 

new_qsys}; 

def enqueue_on_pe tok pe bank = 

{tok_array, head, mark, tail = qbank[pe]; 

new_pe_queue = (append tok_array head tok), head + 1, mark, tail; 

in 
append qbank pe new_pe_queue}; 

Dequeueing is slightly more complicated. The second component of the queueing system 
says which PE we are to dequeue from next. But it could be that that PE does not have a token 
ready for the current timestep. What we really want, therefore, is for dequeue to dequeue a 
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token from the queue of the next highest numbered PE that has a token ready. The function 
find_next_active_pe returns the index of the desired PE, or zero if there are no more PE's 
left with tokens. 

def find_next_active_pe qbank from = 

if from > N_pes then 

0 

else 

{tok_array, head, mark, tail = qbank[from] 

in 
if tail == mark then 

find_next_active_pe qbank (from + 1); 

else 

from}; 

Given that, dequeue is straightforward. It is similar to the idealized mode dequeue, except 
that it also advances the index of the next PE to poll. (The definition of timestep_finished? 
will insure that the call to find_next_active_pe within dequeue will never return zero.) 

def dequeue qsys = 

{qbank, dequeue_ptr = qsys; 

pe = find_next_active_pe qbank dequeue_ptr; 

tok, new_qbank = dequeue_from_pe pe qbank; 

new_qsys = new_qbank, (pc + 1); 

in 

tok, new_qsys}; 

def dequeue_from_pe pe qbank = 

{tok_array, head, mark, tail = qbank[dequeue_ptr]; 

tok = tok_array[tail]; 

new_pe_queue = tok_array, head, mark, tail + 1; 

in 
tok, (append qbank pe new_pe_queue)}; 

A timestep is finished if there are no more higher numbered PE's with tokens ready: 

def timestep_finished? qsys = 

{qbank, dequeue_ptr = qsys; 

in 

find_next_active_pe qbank dequeue_ptr == 0}; 

To prepare for the next timestep, we advance the marks in all queues, and reset the PE 
index to one. 
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def advance_timestep qsys = 

{qbank, dequeue_ptr = qsys; 

new_qbank = 

{vector (1,N_pes) 

I 	= {tok_array, head, mark, tail = qbank[i] ; 
in 
tok_array, head, head, tail}; 

II i <- 1 to N_pes}; 
in 
new_qbank, 1}; 

Finally, the program is finished if none of the queues has a token ready. 

def something_to_do? qsys = 

{qbank, dequeue_ptr = qsys; 

in 

find_next_active_pe qbank 1  

The use of find_next_active_pe could be eliminated if we simply dequeued a "bubble" 
token, as in Section 8.2. This would result in more calls to pipe, though it would have the 
advantage of allowing statistics to be collected for idle cycles. 

Notice that within the multiple processor framework, a variety of queueing systems may 
be emulated within each PE. Furthermore, there could be a global set of queues to simulate 
network latency. We could enhance the system given above, for example, by having all inter-PE 
tokens enter a bucket brigade of queues to simulate network latency. Or we could provide both 
user and system queues for each PE, along with a delay line to simulate pipeline latency. Both 
of these enhancements could be combined, too. 

Perhaps the most sophisticated multiple-processor queueing system is one that accurately 
models the behavior of a real multiple-processor Monsoon configuration, including proper mod-
eling of network latency and blocking effects for Monsoon's shuffle-exchange network. The 
queueing system would have a number queues to simulate the latency through the network, as 
well as a system queue, user queue, and pipeline delay line for each PE. The advance_t imestep 
procedure would be quite complex, as it would advance the network queues, entering any tokens 
emerging from the network into the PE queues, and then enter network-bound tokens produced 
in the previous timestep into the network. Proper modeling of the various priorities of the 
system queue, user queue, and incoming network buffer introduces even more complexity, as 
does proper emulation of blocking due to network buffer overflow. The construction of a fully 
accurate queueing system emulating a multiple-processor Monsoon is a large research project 
in itself. 

The complexity of totally accurate queueing systems is the prime reason why the idealized 
finite-processor, finite-latency systems are so attractive. A good research topic is to thoroughly 
evaluate the situations in which the idealized systems provide useful approximations, and where 
they break down. 

11 Emulating Registers 

Monsoon has a eight sets of registers connected to the processing pipeline; each token entering 
the pipeline can potentially read or write registers in one of these sets, the sets being rotated 
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with every token. If token A produces another token B with a queueing mode of "recirculation," 
then token B will access the same set of registers as did token A, because the pipeline depth is 
also eight. 

To execute code properly when the register feature is used, MINT must: 

1. Include data structures to simulate the registers. 

2. Insure that a token enqueued in "recirculate" mode, when subsequently dequeued, sees 
the same registers as did the token that produced it. 

These two requirements interact: the longer the queueing system waits to process a recirculating 
token, the more storage will be needed for registers. For example, if a queueing system is such 
that when a recirculating token is enqueued it pops out from the very next call to dequeue, 
then only one set of registers is needed. If, on the other hand, a recirculating token is dequeued 
on the eighth call after it was enqueued, eight sets of registers are required, because each of 
those eight tokens might represent a sequential thread. 

The top-level function mint needs to pass around a data structure representing the register 
sets. Furthermore, if a queueing system requires multiple sets of registers, the function dequeue 
must return an additional value indicating which set is to be used for that token. The modified 
version of mint is as follows: 

%'/. registers argument was added. 
def mint im dm stats registers qsys = 

{while not (something_to_do? qsys) do 

register_index result was added. 
tok, register_index, post_dq_qsys = dequeue qsys; 

Token tag_type tag_value data_type data_value = tok; 

Tag port ip map pe fp = tag_value; 

inst = instruction_fetch im ip; 

7.% registers argument and result were added, 
VI. as was register_index argument. 
outtokl , outtok2, next dm, next stats, next registers = 

pipe inst tok dm stats registers register_index; 

post_tokl_qsys = enqueue outtokl post_dm_qsys; 

post_tok2_qsys = enqueue outtok2 post_tokl_qsys; 

next qsys = post_tok2_qsys; 

finally din, qsys, stats}; 

Modifying the Monsoon queueing system from Section 8.2 to handle registers is quite simple. 
The registers argument to pipe is an array of eight register sets, and the register_index re-
sult returned from dequeue is simply the pipe_index value already maintained by the queueing 
system. 

Modifying the idealized mode queueing system to handle registers is quite a bit harder. The 
most appropriate interpretation of sequential thread code in the idealized simulation would be 
to treat recirculating tokens no differently from ordinary tokens: a recirculating token generated 
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in timestep i would be processed in timestep i + 1. The difficulty, of course, is that an arbitrary 
number of recirculating tokens might be produced in any given timestep, requiring an arbitrarily 
large amount of storage for their registers. Assuming the storage management issues could be 
worked out, however, the remaining details are not particulary difficult, and are left as an 
exercise for the reader (hint: every recirculating token generated in a given timestep would 
carry a unique thread number, used as the register index when subsequently dequeued). 

Another possible treatment of register code in the idealized setting is to process all tokens 
belonging to a sequential thread in the same timestep. That is, if a recirculating token is 
produced then it will be immediately dequeued and processed, without advancing the timestep. 
This does not assign terribly meaningful parallelism statistics to thread code; in fact, it does 
exactly the wrong thing since it says that all instructions belonging to a sequential thread can 
go on in parallel! Nevertheless, it is a way to get an approximation of idealized statistics in 
the case where thread code is very infrequent, without encountering the difficulties described in 
the previous paragraph. This treatment of threads, incidentally, is precisely how the Monsoon 
hardware will treat them if the "alternating queues" method of obtaining idealized statistics is 
used. 

The code for this simplified treatment of threads in the idealized setting is given below. 
The queueing system is just like that of Section 9.2, but with an extra component that holds 
the current recirculating token, or NoToken if none was generated. As in the hardware, if an 
instruction tries to produce two recirculating tokens at once, one is lost. 

typesyn qsys = vector tok, N, N, N, outtok; 

def enqueue outtok qsys = 
{case outtok of 

NoToken = qsys 
I (YesToken tok how_to_queue) = 

{tok_array, head, mark, tail, recirc_buf = qsys 
in 
{case how_to_queue of 

Recirc = 
tok_array, head, mark, tail, outtok 

I Normal = 
(append tok_array head tok), head + 1, mark, tail, recirc_buf}}}; 

def dequeue qsys = 
{tok_array, head, mark, tail, recirc_buf = qsys; 
in 
{case recirc_buf of 

YesToken tok _ = 
tok, (tok_array, head, mark, tail, NoToken) 

I NoToken = 
{tok = tok_array[tail]; 
new_qsys = tok_array, head, mark, tail + 1, recirc_buf; 
in 
tok, new_qsys}II; 

def timestep_finished? qsys = 
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{tok_array, head, mark, tail, recirc_buf = qsys; 

in 

(recirc_buf == NoToken) and (tail == mark)}; 

def something_to_do? qsys = 

{tok_array, head, mark, tail, recirc_buf = qsys; 

in 

7.1, Recirculation buffer is always empty when something_to_do? is called. 
tail -= head}; 

def advance_timestep qsys = 
{tok_array, head, mark, tail, recirc_buf = qsys; 

in 
tok_array, mark, head, head, recirc_buf}; 

12 General Observations 

There are several aspects of MINT which make it an attractive research tool. 

• It cleanly separates the computational aspects of the emulation (pipe) from the aspects 
connected with scheduling (the queueing system). The computational side is only con-
cerned with producing output tokens from input tokens, while the scheduling side is only 
concerned with the order in which tokens are processed, and the meaning of a timestep 
for the purposes of statistics gathering. Each side is understandable in isolation. 

• It provides for both precise emulation of the Monsoon architecture, while at the same time 
allowing for more abstract emulation through the use of fictitious opcodes and idealized 
queueing systems. While MINT has knowledge of bit-level representations of data types 
within Monsoon, these are concentrated into a small number of conversion functions. It 
is possible to detect whether a program makes use of these conversion functions, and 
therefore whether it is depending on the bit-level representations. 

• It provides an interface that is compatible with the interface to the Monsoon hardware 
itself, so that programs which manipulate machine state (loader, execution manager, 
debugger) may be shared between the two. 

Of course, MINT has its limitations, too. Among them are the following: 

• If statistics are being gathered, all tokens belonging to one timestep must be processed 
contiguously and the timesteps must be consecutive. That is, MINT must first process 
all tokens belonging to timestep 1, then all tokens for timestep 2, etc. This precludes the 
kind of time-warping that was done in TTDA GITA, to allow tokens to be scheduled in 
an order that resulted in better paging performance of GITA itself. 

• Gathering of statistics must be expressed in terms of manipulating statistics registers, at 
least if the interface to the execution manager is to be preserved. 

• Pipeline conflicts are not properly emulated. Fortunately, these are rare, if they occur at 
all. The interested reader may consult the MINT documentation for a catalog of such 
conflicts. 
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The last two items are not terribly serious. Experience will tell if the first item is serious or 
not. It seems that, in principle, any notion of timestep and statistics can be molded into the 
framework provided by MINT. There is a great advantage in not associating timesteps with 
each token, as it frees the pipe section of MINT from having to compute appropriate timesteps 
for the tokens it, produces. Whether there is a severe performance penalty because of paging 
behavior, though, remains to be seen. 
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