
Technical

Report
MOTOROLA INC.

Cambridge Research Center

Monsoon Software Interface Specifications

Kenneth R. Trauba, ed.

Michael J. Beckerlea

James E. Hicksb

Gregory M. Papadopoulosb

Andrew Shawb

Jonathan Young'

aMotorola Cambridge Research Center

bMassachusetts Institute of Technology

Motorola Technical Report MCRC-TR-1

January 1990

Also published as MIT Laboratory for Computer Science Computation Structures

Group Memo 296.

This report describes research done at the Motorola, Inc., Cambridge Research Center and the

Laboratory for Computer Science of the Massachusetts Institute of Technology. Funding for the

Laboratory for Computer Science is provided in part by the Advanced Research Projects Agency

of the Department of Defense under Office of Naval Research contract N00014-84-K-0099,

LIMITED RIGHTS LEGEND:

Contract No.: ONR Grant No. N00014-89-J-1988

Contractor: Massachusetts Institute of Technology

Subcontractor: Motorola, Inc.

Limited rights in this Technical Data is not subject to an expiration date.

One Kendall Square, Building 200
Cambridge MA 02139

Motorola and 	are registered
trademarks of Motorola, Inc.

Copyright C) 1989, 1990 Motorola, Inc.

All Rights Reserved

Portions reprinted with permission from the Massachusetts Institute of Technology.

Reproduction without prior written permission of Motorola, Inc., or the Massachusetts

Institute of Technology is prohibited.

Copyright 0 1988, 1989 Massachusetts Institute of Technology

LIMITED RIGHTS LEGEND

Contract No.: ONR Grant No. N00014-89-J-1988

Contractor: Massachusetts Institute of Technology

Subcontractor: Motorola, Inc.
Limited rights in this Technical Data are not subject to an expiration date.

Contents

1 Introduction

	

1.1 	Software Overview: -User's Perspective 	

	

1.2 	Software Architecture 	

	

1.3 	Software Components 	

5

5

7

10

1.3.1 Id Compiler 	 11

1.3.2 Loader 	 11

1.3.3 Execution Manager 	 12

1.3.4 Id Debugger 	 12

1.3.5 Statistics Viewer 	 13

1.3.6 Monsoon Interface Software 	 13

1.3.7 MMI Network Client/Server 	 13

1.3.8 MINT 	 14

1.3.9 Id Run Time System 	 14

1.3.10 Id Mode 	 15

1.3.11 Id World 	 15

1.4 Software Configurations 	 15

1.4.1 Configuration for a Single-PE Monsoon 	 17

1.4.2 Configuration for MINT 	 18

1.4.3 Configurations for a Large Monsoon 	 19

1.5 Monsoon Assembly Language 	 19

1.5.1 MONASM 	 22

1.5.2 MONASN1 Debugger 	 22

1.6 Microcode, Scan Rings, and MIS Internals 	 22

1.6.1 Device Driver 	 24

1.6.2 MMI Hardware Driver (MHD) 	 24

1.6.3 Scan Path Debugger 	 24

1.6.4 Microcode Loader 	 25

1.6.5 Microcode Compiler 	 25

1.6.6 Monsoon Microcode Decompiler (MUD) 	 25

2 The Monsoon Machine Interface 27

2.1 Hardware Data Types 	 28

2.1.1 Types and Sizes of Fields 	 31

2.1.1 Constructors and Selectors 	 33

2.1.3 Parsing Instruction Fields 	 34

2.1.4 Conversion Functions 	 36

2.2 Reading and Writing Memory 	 36

1

2.3

2.4

2.5
2.6

2.2.1 	Reading and Writing Single Words 	
2.2.2 	Block Transfers 	
Token Queues 	

Statistics Registers 	
Machine Control 	
C Interface 	

37

38
40

45
46

50
2.6.1 	Types and Sizes of Fields 	 52
2.6.2 	Constructors and Selectors 	 53
2.6.3 	Reading and Writing Memory 	 55
2.6.4 	Token Queues 	 58
2.6.5 	Statistics Registers 	 62
2.6.6 	Machine Control 	 63

3 Proto-Memory Manager 65
3.1 Spaces, Areas, and Regions 	 66

3.1.1 	Spaces 	 66
3.1.2 	Regions 	 67
3.1.3 	Areas 	 67

3.2 The PMNI Data Structure 	 67
3.3 PNIM Operations 	 70
3.4 Multiple PMMs 	 70
3.5 Numeric Values of Memory Types and Owners 	 71

4 Monsoon Object Code Format 73
4.1 Loader Areas 	 74

4.1.1 	Non-Loader Areas 	 75
4.1.2 	Loader Areas 	 75

4.2 Data Records 	 78
4.2.1 	Headers 	 78
4.2.2 	Contents 	 80

4.2.3 	References 	 81

4.3 Tables 	 84

4.4 Require and Provide Records 	 86

4.5 Record Encodings 	 87

4.6 Restricted Mode 	 90

4.7 Loader Structure 	 91

4.7.1 	Memory Management for Loader Areas 	 91

4.7.2 	Loader Internal Data Structures 	 91

5 Id Object Code Format 93

5.1 Areas 	 94

5.2 Heap Management 	 98

5.2.1 	Basic Heap Operations 	 98

5.2.2 	Layout 	 99

5.3 Representation of Datatypes 	 100

5.3.1 	Immediates versus Aggregates 	 100

5.3.2 	Data Bits 	 101

5.3.3 	Type Bits 	 101

Version 003; January 1990 	 2

5.3.4 Presence Bits 	 103

5.3.5 Aggregates: General Policy 	 104
5.3.6 Representations of Id Datatypes 	 106

5.4 Dynamic Linking I: Literals, Code Blocks, and Identifiers 	 112

5.4.1 	Literals 	 113

5.4.2 Code Block Descriptors 	 115

5.4.3 Identifier Descriptors 	 115

5.4.4 The Code Block and Identifier Tables 	 118

5.4.5 References to Code Blocks and Identifiers 	 118

5.5 Dynamic Linking II: Encoding Into MOC 	 120

5.5.1 	Literals 	 120

5.5.2 Code Blocks 	 124

5.5.3 Summary of Record Names 	 127

5.6 Layout of Static Constants 	 128

5.6.1 PMM Constants 	 128

5.6.2 Area Numbers 	 128

5.6.3 Configuration Parameters 	 129

5.6.4 Dynamic Link Table Pointers 	 129

5.6.5 Manager Entry Points 	 129

5.6.6 Manager Parameters 	 130
5.7 Frame Layout and Calling Conventions 	 130

5.7.1 Frame Layout 	 130

5.7.2 Parameter Passing Conventions 	 131

5.8 Debugging Information 	 131

5.9 Bootstrapping Monsoon 	 132

5.9.1 The Macro-Architecture I Phase 	 133

5.9.2 The Macro-Architecture II Phase 	 133

5.9.3 The Id Phase 	 134

5.10 Numeric Values of IOCF Constants 	 135
5.10.1 I-Structure Presence Bits 	 135

5.10.2 Activation Frame Presence Bits 	 135

5.10.3 Type Bits 	 136

5.10.4 Port Bits 	 136

	

6 Statistics Format 	 137

CIOBL 	 139

7.1 	CIOBL objects 	 140
7.1.1 Variable-Length Objects 	 141

7.1.2 Fixed-Length Objects 	 142

7.2 CIOBL Tokens and Compound Objects 	 143

7.3 Encodings 	 144

7.3.1 Standard Encoding 	 144

7.3.2 Binary Encoding 	 147

7.3.3 Compressed Encoding 	 151

7.4 CIOBL Functions (Common Lisp) 	 156

7.4.1 General CIOBL Stream Functions 	 156

7.4.2 Reading and Writing Fixed-Length Objects 	 157

3 	 Version 003; January 1990

7.4.3 Reading and Writing Variable Length Objects 	 158

7.4.4 Level II Functions 	 159
7.4.5 Level III Functions 	 161

7.5 CIOBL Functions (C) 	 162
7.5.1 General CIOBL Stream Functions 	 162

7.5.2 Reading and Writing Fixed-Length Objects 	 164

7.5.3 Reading and Writing Variable-Length Objects 	 166

7.6 Estimating the Length of CIOBL Files 	 167

7.7 Character Codes 	 169

Version 003; January 1990
	

4

Chapter 1

Introduction

This document is intended for those who are developing and/or maintaining the software sup-

port for Monsoon in all of its incarnations, software and hardware. It defines all of the major

interfaces between software components.

This is a work in progress. Nevertheless, the current version should be relatively stable; for

the next few months, updates to this document will be made in the form of addenda, rather

than by producing newer versions of the entire document. The material in Chapters 1, 2, 3, 4, 6,

and 7 are not likely to change significantly in the future. Chapter 5 on IOCF is less stable, and

will probably change as more experience is gained with compiling for Monsoon, with resource

management, and with debugging of Id programs. Some of the machine control aspects of the

MMI (Section 2.5) may also change in the future.

The current version is dated January. 1990, and every page should bear the legend "Version

003, January, 1990." If it is much past January, 1990, you should check to see if any addenda

are available, or if the entire document has been revised.1

Throughout, square brackets are used to indicate things that definately need revision before

this document is final. The lack of square brackets is not to be construed as an indication that

something is not subject to change.

Editorial control of this document rests with the Motorola Cambridge Research Center.

Contact the editor if you want to make changes.

1.1 Software Overview: User's Perspective

The purpose of the Monsoon software system is to provide a development environment for

experimenting with the Monsoon architecture and the programming languages in which Mon-

soon programs are written. The software system must be flexible enough to accomodate a

variety of language/execution vehicles for performing such experiments, and provide a level of

functionality at least as good as the present TTDA Id World.

For the time being, the only language for programming Monsoon is Id, so the different

ways an experimenter can use the development system can be classified as different ways of

executing an Id program. (Monsoon Assembly Language is discussed in Section 1.5.) The ways

of executing Id include:

1. Compiling Monsoon object code from Id and executing on a single-processor Monsoon

hardware configuration.

1 If your copy says "master draft" at the bottom of any page, then you have an internal copy which may be

out of date or simply erroneous in places. You should try to obtain a released copy, with all current addenda.

5

2. Compiling Monsoon object code from Id and executing on a multiple-processor Monsoon

hardware configuration.

3. Compiling Monsoon object code from Id and executing on a software emulation of the

Monsoon architecture.

4. Compiling Id into abstract Explicit Token Store (ETS) code and executing it on a special

ETS interpreter.

5. Compiling Id directly into machine code for an existing von Neumann uniprocessor.

These possibilities have different advantages for different users. For users only interested in

experimenting with the Id programming language, (1) and (2) offer the fastest execution vehicle,

while (5) is a close substitute in case the user does not have access to Monsoon hardware. For

users who want to study the parallel behavior of Id and dataflow architectures, (1) and (2)

again are the fastest vehicles, but (3) and (4) have the advantages of offering a wider variety

of statistics collection modes (as well as not requiring access to Monsoon hardware). For users

who want to study the detailed behavior of Monsoon or who are debugging problems with the

hardware, (3) is the logical choice.

This document will primarily focus on execution methods (1), (2), and (3). These three

methods require essentially the same software support; indeed, (1) is just a special case of (2),

and (3) is the same as (1) but with the processor hardware replaced by a software emulator

program. At the time of this writing it is not clear whether the ETS interpreter in (4) will be a

separate program from the emulator in (3). Method (5), compiling Id directly for von Neumann

uniprocessors, is a totally separate project with its own set of software issues.

Hereafter, the term "Monsoon" will refer to both the hardware and the software emulator,

unless otherwise specified.

Given that we are speaking of execution methods (1), (2), and (3), a user of the software

system at any given time is performing one of the following activities, each of which involves

one or more component programs of the software system (described in detail in the sections

which follow):

• Preparing or revising an Id program. Programs: GNU Emacs running Id Mode.

• Compiling an Id program into Monsoon object code. Programs: Id Compiler.

• Loading a compiled program into Monsoon's memory. Programs: Monsoon Loader.

• Executing the program and possibly gathering statistics about its run-time behavior.

Programs: Execution Manager, Id Run Time System, and either the Monsoon Interface

Software (if running on Monsoon hardware) or MINT (the emulator).

• Debugging an Id program; i.e., examining the state of Monsoon's memory after execution

halts due to an error or otherwise. Programs: Id Debugger.

• Reviewing and analyzing the run-time statistics collected during execution. Programs:

Statistics Viewer.

The user may switch from one activity to another by explicity invoking the appropriate

program. A more productive environment, however, is provided by the "Id World" program,

which integrates the above components into a unified X-window framework. This gives the

Version 003; January 1990 	 6

illusion of a Lisp Machine like development system while avoiding the software complexity that

would result if it really were a single large program.

Rationale: Organizing the software system as a collection of small programs is a
departure from the TTDA Id World system, in which all activities save editing and
compilation were handled by the GITA program. The main advantage of the new struc-
ture is obviously one of simplicity: each of the pieces has a small and well-defined task,
and more importantly, they are constrained to interact only through well-documented
interfaces. It also means that the user can still use the entire system, albeit not as
conveniently, if he does not have the window support required by Id World, or if he
wants to perform a large number of experiments in "batch" mode.

1.2 Software Architecture

The previous section described the user's activities in interacting with the Monsoon software

system and mentioned the components of the software system associated with each activity.

Figure 1.1 shows the overall architecture of the software system. A brief description of the

function of each component follows.

Id Compiler The Id Compiler compiles an Id program into executable code for Monsoon. As

the compiler supports separate compilation of the Id procedures comprising a complete

program, it in general requires as input information about previously compiled procedures,

and produces as output information for the benefit of subsequent compilations. This is

indicated as "separate compilation information" in Figure 1.1.

Loader The Loader loads compiler output into Monsoon's memory, performing relocation and

dynamic linking as necessary.

Execution Manager The Execution Manager supervises the execution of an Id program on

Monsoon. It initiates the execution of a top-level Id procedure with user-supplied argu-

ments, and reports the result to the user when it finishes. It also handles I/O requests

from the running Id program, and optionally gathers statistics during execution. Note

that the Execution Manager plays only a supervisory role during execution; it does not

participate in the computation being performed.

Id Debugger The Id Debugger allows the user to examine and modify the state of Monsoon

after an Id program terminates, whether because of normal termination or because an

error occu red. In the latter case, the user may make modifications and then have the Ex-

ecution Manager resume execution. (See also the description of the MONASM Debugger,

in Section 1.5, which may also be useful to experts in debugging Id programs.)

Statistics Viewer The Statistics Viewer processes raw data collected by the Execution Man-

ager during execution of an Id program. It allows the user to peruse the data on a graphics

terminal, and also produces Postscript files for later hardcopy.

Monsoon Interface Software This software provides the link between the Loader, Execution

Manager, and Id Debugger and the actual Monsoon hardware. It converts requests to

read and write Monsoon memory into actual VMEbus transactions.

7 	 Version 003; January 1990

41I-00- Stream or File Interface

<=> Software Procedural Interface

Physical Interface

Flow of Data Under
Program Controlled Redirection

Id Source Code

Separate Gompaation Info

Id Compiler

Front End

Middle End

Back End

(

(

(

Parse)

Tree.

Program
Graphs

— — —

Monsoon)

Graphs

User Interaction

UNIX

Shell

or

Id World

Separate CompsTation Info

Monsoon Otrject Code Format

User Interaction

User Interaction

User Interaction
Id

Debugger

Execution

Manager
File

System

Loader

Monsoon Machine Interface

Monsoon

Interface

Software

Statistics Format

User a.
Statistics 1nteractionr

Viewer 	Display

4

	LummEMIII

Monsoon

Hardware

	Lm••=1..M11,

MINT

Postscript

Figure 1.1: Monsoon Software Architecture

Version 003; January 1990 	 8

MINT The Monsoon INTerpreter provides a "plug-compatible" software emulation of the

Monsoon hardware. Not only is it useful for users who do not actually have access to

Monsoon hardware, but also it allows a richer set of statistics gathering modes.

Id Run Time System (Not shown in Figure 1.1.) The Id Run Time System, which runs

on Monsoon itself, provides memory management and I/O support to an executing Id

program. In particular, the Run Time System is the collection of primitives for managing

activation frames, heap storage, and I/O, used by the Id compiler in compiling constructs

of the Id programming language. In this sense, the Run Time System may be considered

part of the user's Id program, a sort of system library.

Id Mode (Not shown in Figure 1.1.) Id Mode is a set of enhancements to GNU Emacs to

assist in the preparation of Id programs. Among other features, it includes an indenter

for Id.

Id World While it is possible to use the system by invoking the programs above through the

Unix shell, Id World provides a more user-friendly interface. It uses the X-window system

to present a unified Id development environment, giving the illusion to the user that the

components of the Monsoon software system are a single program.

These components interact through the following six interfaces:

Monsoon Machine Interface (MMI) The MMI provides the path by which programs run-

ning on the front-end examine and manipulate Monsoon's machine state at the macro-

architecture level. It is a set of procedural abstractions, providing calls for reading and

writing Monsoon's data, instruction, and token queue memories, as well as for manipulat-

ing statistics registers and controlling execution. This same interface is used to access the

state of the software emulation of M.., :isoon, MINT. This permits the Loader, Id Debugger,

and Execution Manager to be shared between Monsoon and MINT.

Currently this interface is just defined as a set of procedural abstractions. There are plans

to define a network protocol as well. so that programs on either side of the interface would

not have to be compiled together. This would have the added benefits that programs on

either side of the interface could be written in different programming languages, and it

would simplify the organization of systems with more than one front-end processor (any

system with more than four PE's).

The MMI is defined in Chapter 2.

Monsoon Object Code Format (MOC) This is the file format for input to the Loader.

It is a general purpose format for loading any kind of data into Monsoon, and includes

features which support dynamic relocation and linking. MOC itself has no knowledge of

any particular programming language, and so can serve as the target for any compiler for

Monsoon. MOC format is expressed in terms of CIOBL, and is defined in Chapter 4.

Id Object Code Format Programs compiled by the Id Compiler have a particular structure

of which the Id Debugger and to some extent the Execution Manager must be aware.

This includes the conventions for representing Id objects and for encoding source locators

and identifier names into object modules. Id Object Code Format is expressed in terms

of MOC, and is defined in Chapter 5.

9 	 Version 003; January 1990

Statistics Format This is the file format for recording raw data collected by the Execution

Manager during execution of a program on Monsoon. Statistics Format is expressed in

terms of CIOBL, and is defined in Chapter 6.

CIOBL The Common Input/Output Base Language is a method for encoding objects such

as numbers, character strings, symbols, etc., into files. It provides different encoding

methods suitable for different purposes; e.g., a character-based encoding for transmission

over electronic mail vs. a binary encoding for maximum space efficiency. The MOC and

Statistics formats are defined in terms of CIOBL, which is defined in Chapter 7. That

chapter also defines a standard library of procedures for the convenience of programs

which read or write CIOBL files.

Proto-Memory Manager (PMM) The PMM is a data structure which provides the most

primitive level of memory mangagement for the Monsoon system. Its primary role is

to allow the resources provided by a particular configuration of Monsoon to be divided

among the programs which compete for them, which include the Loader and Id Run Time

System. The PMM is the primary way that such programs are insulated from changes in

machine configuration. The 131‘,1M is described in Chapter 3.

The current design of the Monsoon software system uses the Monsoon hardware as an

attached, special-purpose processor to a front-end processor, which is a standard von Neumann

CPU running Unix. In this scenario, the Monsoon processor is only active when actually

running an Id program. At other times, the Monsoon processor is halted, and other programs

running on the front-end are editing user code, compiling it, loading it. into Monsoon through

the hardware scan path, or examining Monsoon's machine state for debugging. For the purposes

of this document and for the first implementation of the software, the reader should assume

that the only software which runs on the Monsoon hardware is a user's Id program and the Id

Run Time System which supports it.

Rationale: This is not unlike the relationship between the Lisp Machine and the GITA
program in the old TTDA Id World system. Ultimately, one would hope for a com-

pletely self-sufficient Monsoon system, where software supporting program development

including the compiler would run on Monsoon itself. A front-end processor, if it existed

at all, would only serve to processes I/O transactions. It is felt, however, that it is

premature to move to such a configuration—more experience is needed just running
programs on Monsoon, and language features to support systems programming are still

in their infancy. There are middle grounds between the two extremes; for example, the

Monsoon processor could be running a rudimentary operating system rather than being

halted when not executing a user's Id program. From this configuration, the Loader,

Execution Manager, and Id Debugger, could be migrated onto Monsoon. At that point,
Monsoon can stand alone for the purpose of running programs, and the Compiler a.nd

Statistics Viewer can ultimately be written in Id and run on Monsoon. The software

architecture was intentionally designed to facilitate exactly this evolutionary path.

1.3 Software Components

This section describes each of the components of the software system to support Id. Some

additional components for supporting Monsoon Assembly Language (MONASM) are described

in Section 1.5. Also, the Monsoon Interface Software (MIS) component is described in more

detail in Section 1.6.

Version 003; January 1990 	 10

1.3.1 Id Compiler

Function Compiles an Id program into object code for Monsoon.

Inputs (1) One or more top-level procedures or declarations written in the Id programming

language. (2) Separate compilation information about other procedures not currently

being compiled (see "Discussion," below).

Outputs (1) Monsoon object code in MOC format, conforming to conventions established by

Id Object Code Format. (2) Separate compilation and assumption information for use by

subsequent invocations of the compiler (see "Discussion," below). (3) Error messages in

a human readable form but parseable by a program invoking the compiler (e.g., so that

a text editor can locate where errors in a previous compilation occured).

Interaction None, although error messages may be directed to the terminal.

Relevant Specifications Id Language, NIonsoon instruction set, Id Run Time System pro-

gram interface, MOC, Id Object Code Format. [To be defined: separate compilation

information specification, error message format.]

Other Features Has options for controlling whether optimization takes place, and also for

selecting between the instruction set executable by the hardware and an extended in-

struction set for gathering idealized statistics from MINT (see "Discussion," below).

Discussion The compiler supports separate compilation; i.e., not all procedures comprising a

program need be compiled at once. When compiling a procedure, however, the compiler

may need information about other procedures to which it refers, such as the number

of arguments, type information, etc. This is called "separate compilation information."

Separate compilation information produced by the compiler includes not only information

for use by subsequent compilations, but also a record of what assumptions were made

about prior compilations, so that consistency can be verified before running the compiled

program.

Normally, requests to allocate heap memory or frame storage are compiled as calls to the

Id Run Time System. For the purposes of gathering idealized statistics from MINT, it is

useful to compile these requests as fictitious opcodes, so that statistics can be gathered

which are not influenced by Run Time System implementation.

1.3.2 Loader

Function The Loader takes an object code file and loads it into Monsoon's memory.

Inputs Object code file in MOC format.

Outputs Manipulates Monsoon machine state through MMI.

Interaction None.

Relevant Specifications MOC, PMM, MMI.

Other Features Has an option which checks that there are no unresolved dynamic links for

a given set of modules, informing the invoking program if there are.

11 	 Version 003; January 1990

Discussion MOC modules are for the most part relocatable and dynamically linked, so it is

up to the loader to manage areas of memory into which it loads object modules. The

loader will have a private data structure to keep track of these areas, and also to record

unresolved dynamic links. This data structure may be kept in an area of Monsoon memory

or perhaps off-line, but in either case should be a PMM area accessed via the MMI so

that it may be migrated onto Monsoon at a later time.

1.3.3 Execution Manager

Function Initiates and supervises the actual execution of a program on Monsoon.

Inputs Command-line parameters indicating which procedure to invoke and what arguments
to pass.

Outputs Result from executed program, run-time statistics.

Interaction Services I/O requests from the executing Monsoon program.

Relevant Interfaces MM!, Id Object Code Format, Statistics Format.

Other Features Offers a selection of statistics gathering modes.

Discussion During execution, the Execution Manager is in the following loop:

1. Run Monsoon until activity ceases.

2. Read statistics registers, transfer to profiles being collected.

3. Advance the abscissa (timestep) of profiles being collected.

4. Zero statistics registers.

5. Prepare Monsoon for next timestep.

6. Go to Step 1.

The meaning of "until activity ceases" depends on the configuration of Monsoon's queue-

ing system. If Monsoon is configured to enqueue and dequeue from the same queue,

activity will cease only when the program is finished, so that a "timestep" corresponds

to a complete execution of the program. On the other hand, if configured to enqueue

into one queue but dequeue from another, activity will cease after only a portion of the

program has executed. "Prepare Monsoon for next timestep" in this case means exchange

the queues, and the profiles will be an approximation to the idealized parallelism profiles

collected by TTDA GITA. MINT will provide more complex queueing systems offering a

variety of statistics modes. See the MINT White Paper2 for more details.

I/O requests take place during Step (1) above.

1.3.4 Id Debugger

Function Allows the user to interactively examine and modify the state of Monsoon after a

Monsoon program has terminated, either due to normal termination or due to an error.

It presents the state in a manner as closely tied to the Id source code of the Monsoon

program as possible.

21<. R. Traub, "MINT White Paper," Motorola Cambridge Research Center Technical Report MCRC-TR-2,

October, 1989.

Version 003; January 1990 	 12

Inputs None.

Outputs Manipulates Monsoon machine state through MMI.

Interaction User dialog for examining and modifying machine state.

Relevant Interfaces MMI, Id Object Code Format, Id Run Time System program interface.

Discussion The debugger requires the compiler to include in object code information such as

variable names, etc.

1.3.5 Statistics Viewer

Function Analyzes, displays, and facilitates manipulation of run-time statistics gathered by

the Execution Manager.

Inputs Run-time statistics in Statistics Format.

Outputs (1) Postscript for hardcopying statistics. (2) Edited statistics files.

Interact ion Interactive display and analysis of statistics through X-window graphics protocol.

Relevant Interfaces Statistics Format, Postscript, X-window System.

Discussion Should allow scrolling through large statistics, comparison and scaling of differ-

ent statistics from same run or from different runs, editing of descriptive information

accompanying statistics, perhaps some specific kinds of high-level analysis (e.g., speedup
curves).

1.3.6 Monsoon Interface Software

Function Implements the MMI interface to the Monsoon hardware.

Inputs MMI function calls.

Outputs VMEbus transactions to control Monsoon hardware components.

Interaction None.

Relevant Interfaces MMI, Monsoon hardware interface.

Discussion The Monsoon Interface Software actually consists of several subcomponents; see

Section 1.6 for more details.

1.3.7 MMI Network Client/Server

Function Extends the connection between the user and Monsoon sides of the MMI interface

across the network, by converting MMI calls into remote procedure calls.

Discussion In its simplest form, the MMI is simply a set of library procedures linked individ-

ually with the Loader, Execution Manager, and Id Debugger. Each procedure controls

some aspect of the Monsoon hardware, typically reading or writing some portion of ma-

chine state. In this view, there are really two version of the MMI: one which is part of

the Monsoon Interface Software, and another which is part of the MINT program.

13 	 Version 003; January 1990

A more flexible version of the MMI uses the network as an "extension cord" between

the caller of MMI procedures and the callee. In this case, the Loader, Execution Man-

ager, and Id Debugger are each linked with an MMI Client program, and the Monsoon

Interface Software and MINT are each linked with an MMI Server program. The MMI

Client provides implementations of the MMI functions which make remote procedure calls,

while the MMI server receives remote procedure calls from the network and makes the

corresponding MMI calls.

See Section 1.4 for a discussion of the various configurations.

1.3.8 MINT

Function Provides a "plug-compatible" software emulation of the Monsoon hardware.

Inputs MMI function calls.

Outputs None.

Interaction Optional indication of activity (i.e., print a dot every 1000 tokens).

Relevant Interfaces MMI, Monsoon instruction set.

Other Features Provides not only the hardware's instruction set, but also additional, ficti-

tious opcodes for gathering idealized statistics. Potentially supports a larger address space

and greater number of statistics registers than hardware. Supports a variety of queueing

systems, some which model the hardware, others suitable for gathering idealized statistics.

Discussion Most of the code emulating the ALU is machine generated from microcode and/or

ETS specifications; see Section 1.6.

1.3.9 Id Run Time System

Function Runs on Monsoon to provide heap and other resource management support to an

executing Id program.

Inputs None.

Outputs None.

Interaction None.

Relevant Interfaces Id Object Code Format, Id Run Time System program interface.

Discussion The first version of the Run Time System will provide "system calls" for allo-

cating and deallocating activation frames, for allocating and deallocating heap storage,

and to perform some form of I/O. Its duties will eventually grow to encompass auto-

matic reclamation of at least a part of the heap (i.e., garbage collection) as well as more

sophisticated I/O, as research in these areas progresses. As it is responsible for man-

aging activation frames, it may also eventually include parallelism controls such as load

balancing or throttling.

Version 003; January 1990 	 14

1.3.10 Id Mode

Function A Major Mode for the GNU Emacs editor for editing Id source code.

Inputs None.

Outputs None.

Interaction Through GNU Emacs.

Relevant Interfaces Id language, GNU internal interfaces.

1.3.11 Id World

Function Integrates all other software system components into a coherent, integrated Id de-

velopment environment.

Inputs None.

Outputs None.

Interaction Provides a window-based framework including panes for editing, running, viewing

statistics, etc.

Relevant Interfaces X-window system, command-level interfaces of Id Compiler, Loader,

Execution Manager, Id Debugger, Statistics Viewer, and GNU Emacs.

Discussion In addition to simply invoking the other software components, Id World must

do some bookkeeping to give the illusion of an integrated environment. For example, if

the user directs Emacs to compile a single Id procedure, Id World should supply the Id

Compiler not only with the procedure to be compiled, but also the appropriate separate

compilation information based on the history of what procedures have already been loaded

into Monsoon.

One possible design option is to use GNU Emacs as a substrate for building Id World. It

would be good to provide a version which works in the absence of X-window support, but

which is not terribly inconvenient to use because of it.

1.4 Software Configurations

The previous sections on software architecture described the pieces of the Monsoon software

system, the interfaces through which they interact, and the overall flow of data between them as

depicted in Figure 1.1. This section examines how the pieces are assembled to form a complete

working environment for particular configurations of the Monsoon development environment.

That is, this section focuses on how different software components are linked together to form

executable programs, and how those programs are run in one or more processes on one or more

hosts to form a complete working environment. The various components are building blocks,

and the way in which they are assembled will differ depending on whether one is building an

environment for using the emulator interactively, for using the emulator in batch mode, for

using a single-processor Monsoon, for using a multi-processor Monsoon, for using a Monsoon

located at a remote location, etc. The keys to this flexibility are the interfaces through which

15 	 Version 003; January 1990

Loader
Loader

MMI Call.

^'Sve

(a) 	 (b)

Figure 1.2: Depiction of (a) A Software Component; (b) A Complete Program

the components interact: procedural interfaces between components combined at link time, and

file, network, and command-line interfaces between components executing as separate processes.

This section will not present an exhaustive listing of all possible combinations of components,

but rather will illustrate the principles involved with a few examples. The point here is not

to explain the function of each component as in Sections 1.1 and 1.3, or to illustrate the flow

of data between them as in Section 1.2. Rather, the goal is to show which components are

combined to form a complete executable program, and how these programs are configured at

an operating system level to comprise a complete system. Most of the variation in configurations

is centered around the programs found in the lower right quadrant of Figure 1.1—the programs

which actually manipulate the state of Monsoon. The illustrations in this section will for the

most part omit the more "off line" programs such as the Compiler and the Statistics Viewer,

and may not include all paths of data flow, particularly user interaction.

A graphic convention illustrated in Figure 1.2 shows how software components are com-

bined into executable programs. Part (a) of the figure is the graphic for a particular software

component, the loader. Each curved surface of the graphic is meant to indicate a particular

procedural interface, that is, a path to another software component through subroutine calls.

In the case of the loader, the wavy surface at the bottom indicates calls made by the loader to

read and write Monsoon's memory, those calls being a part of the Monsoon Machine Interface

(MMI), documented in Chapter 2. The notched surface at the top indicates calls to the top-level

procedure of the loader, the only call in this interface being the call load(...) which directs

the loader to load data from some file or stream. The component in part (a) of the figure is not

a program which can be run on its own; for example, if it makes a call to an MMI procedure

there is no definition of that procedure to respond to the call.

Figure 1.2b shows how the loader component is used as the core of a complete loader

program, by linking it with other components that mesh with the loader's interfaces. In this

case, the loader is shown linked with two other components. The Monsoon Interface Software

(MIS) provides an implementation of MMI calls which manipulates Monsoon hardware through

the V.MEbus. The small component on top of the loader is a simple command-line interpreter,

which takes a command line provided by the Unix Shell (via argc and argv) and converts it

into a call to the top-level loader procedure load. The conglomeration of these components,

then, is a complete Unix program which loads a program indicated on the command line onto

the Monsoon hardware attached to the local host.
Complete programs will appear as rectangles, as shown in Figure 1.2b. There are several

things that can be inferred about any group of components forming a rectangle:

• It is complete: there are no subroutines without callers or subroutine calls to undefined

procedures, with the exception of a single "main" procedure and 0/S calls.

Version 003; January 1990 	 16

MIS

J

Execute(...)

MM! Calls

Debug-)

Dbg
lii1411 Calls

MIS

Load()

Loader
MM! Calla

MIS

Unix Shell or Id World

Ezec(Ur' ,crnd-line-arga) 	Exec(...) 	 NEzec(...)

	VMEbue Monsoon

Figure 1.3: Configuration for a Single-PE Monsoon

• Any interaction with other rectangles is through the operating system, typically in the

form of I/O.

• The components within the rectangle interact through well-defined procedural interfaces,

each depicted by some interior boundary. The components are combined through the

implementation language's linking mechanism.

• Because of the previous point, it is highly desirable for all components within a rectangle

to be written in the same programming language. On the other hand, little difficulty

results if different rectangles are written in different languages.

• The lifetimes of all components within a rectangle are tied together, but different rect-

angles may have different lifetimes. This is important when the programs represented by

the rectangles have state.

The main purpose of this section, then, is to illustrate the relationships between the software

components as they relate to the above four points.

1.4.1 Configuration for a Single-PE Monsoon

The most straightforward configuration of the Monsoon software system is that supporting a

single Monsoon processor on the local host, illustrated in Figure 1.3. Whenever Monsoon is

being manipulated, there are three separate entities involved:

1. The Monsoon processor itself, which is accessible via the VMEbus.

2. A shell or other top-level program for invoking programs which manipulate Monsoon.

3. Three programs invoked by the shell at different times, each of which manipulates the

machine state of Monsoon. These programs embody the Loader, Execution Manager, and

Debugger.

17 	 Version 003; January 1990

••„Exec() Exec(1dr') c md-line- ar 9s) 	Ezec(...)

Unix Shell or Id World

Loader

/vEvII

Client

Dbg

\\1%, MM I Calls

MMI

Client

Loader 	Dbg

Www\CV

(b)

Execute(...)

MMI Calls MMI Calls

MMI

Client

MIvil

Server
MMI Calls

(c)

(a)

Figure 1.4: Configurations for MINT

MINT

Id World

The lines drawn between various rectangles loosely indicate 0/S-level interaction between them.

The dashed lines between the shell and the three other programs are meant to suggest that the

latter programs are invoked, at different times, as subprocesses of the shell. The curved lines

joining the programs to the VMEbus indicate operaing system calls for VMEbus I/O.

It should be noted that the shell or Id World program also invokes the Id Compiler, Statistics

Viewer, and other 0/S utilities at various times, but these are omitted from the diagram since

they don't involve Monsoon.

One key feature of this configuration is that the processor state of Monsoon persists even as

the Loader, Execution Manager, and Debugger come and go. Thus, after the loader is invoked

and terminates, the Id Code it loaded into Monsoon is still around when the Execution Manager

is invoked to run it.

1.4.2 Configuration for MINT

The software configuration for running MINT is very similar to that for a single-PE Monsoon,

as shown in Figure 1.4a. The noteworthy aspect is that MMI calls are extended through the

network by the MMI Client and Server components. This allows MINT to run in a separate

process from the Loader, Execution Manager, and Debugger, so that its state is maintained

across invocations of the latter three programs. Normally, the MINT process would be on the

same host as the other programs, so the "network" link does not really go across any physical

Version 003; January 1990 	 18

network hardware. Rather, it is a software commmunication path provided by the operating

system (e.g., a pair of Unix "sockets").

Notice that the use of the MMI Client/Server is not limited to MINT. Indeed, the com-

ponent labeled "MINT" in Figure 1.4a could be replaced by the Monsoon Interface Software,

which would access the Monsoon Hardware via the VMEbus. This configuration is actually

preferable to that described in the previous section, for two reasons. First, it shares the same

Loader, Execution Manger, and Debugger programs with MINT (because in both cases the

inner components are linked with the MMI Client, rather than with the MIS for the hardware

and the Client for the emulator). Second, it allows the Monsoon hardware to be located on a

different host. While the latter feature was not so important for MINT, it is for the hardware

as every host may not have a Monsoon board. See also the next section for why the network

link is useful.

Of course, it is not necessary to use the MMI Client/Server with MINT; MINT can be

linked directly with the other components, as shown in Figure 1.4b. The disadvantage of this

configuration is that it is one big program, which for all practical purposes requires that all the

components be written in the same programming language (inter-language working is possible,

of course, but is extremely awkward given that the two languages we are interested in are Lisp

and C). There is, however, a situation in which a variant of this configuration is useful. If an

experimenter wants to run a big simulation in "batch" mode on a supercomputer such as a

Cray, a configuration consisting of MINT, the Loader, the Execution Manager, and a trivial

command interpreter can be prepared as shown in Figure 1.4c. The command interpreter reads

a series of "load" commands followed by one or more "execute" commands, the net effect being

to read some compiled code into MINT and produce simulation results (statistics).

1.4.3 Configurations for a Large Monsoon

Finally, Figure 1.5 shows a configuration for a large Monsoon, one with a total of more than

eight PE's and I-structure boards. This many boards requires more than one VMEbus cabinet,

and therefore more than one host processor. Here the network link is essential, as the front-

end software (Loader, etc.) must communicate to several other hosts. The MMI Clients are

initialized to know that the first eight boards are contacted at one network address, the next

eight at another, and so on. Beyond that, all software components are the same.

1.5 Monsoon Assembly Language

Monsoon is a general purpose multiprocessor, and may be programmed in a variety of languages,

not just Id. Of course, for each language to be used on Monsoon there must be a compiler, and

Id is the only high-level language for which we expect to have a compiler in the near future.

On the other hand, we will be defining an assembly language for Monsoon, and an assembler

for that language. Monsoon assembly language is called MONASM.

The software architecture from the MONASM programmer's point of view is pretty much

the same as in Figure 1.1. The only difference is that the Id Compiler is replaced by the Monsoon

Assembler, MONASM, and the Id Debugger is replaced by the MONASM Debugger. All other

components of the software system are identical. Figure 1.6 shows the software architecture

with the MONASM programs added.

The two new components are described below.

19 	 Version 003; January 1990

Ezec(Icirs,cmd-line-arge) r 	Eze^(..) NEzec()

VMEbus— VMEbue_

Loader

MMI

Client

Debu(...)

Dbg
Aim/ coil, MMI Calle

MMI 	 MMI

Client 	 Client

MM! C0111

EtherNet

MMI 	 MMI

Server 	 Server
MMI Calle 	 \j"\./ MMI Calls

MIS 	 MIS

Monsoon 	Monsoon 	Monsoon • Monsoon

Unix Shell or Id World

Monsoon Token Network

Figure 1.5: Configuration for a Large Monsoon

Version 003; January 1990 	 20

Id Compiler

Front End

Middle End

Back End

(Parse)

Rees

(

(

Program)
Graph..

Monsoon)

Graphs

Monsoon

Interface

Software

	LIMMOIMMINIP

Monsoon

Hardware

.0-0. Stream or File Interface

<=> Software Procedural Interface

Phy‘ical Interface

Flow of Data Under
Program Controlled Redirection

File

System

MONASM Source Code

Id Source Code

Separate Comp1atan Info

User Intenution

Separate Compilation Info

MONASNI

Morwoon
Object

Code

Format 	

One

UNIX

Shell

or

Id World

User Interaction

User Iraeraction

User Interaction

Loader

User

Inter. MONASM

Debugger

Id

Debugger

Execution

Manager

7\ 	
/n\ 	 /Th 	

/\

Monsoon Machine Interface

Statistics Format

Statistics

Viewer

User

Interactionr-

Duplay

MINT
Poetscript

Figure 1.6: Monsoon Software Architecture with MONASM

21 	 Version 003; January 1990

1.5.1 MONASM

Function Compiles a MONASM program into object code for Monsoon.

Inputs A file of MONASM code, containing code and data records, as well as top-level loader
directives.

Outputs (1) Monsoon object code in MOC format, not necessarily conforming to Id Object

Code Format. (2) Error messages in a human readable form but parseable by a program

invoking the compiler (e.g., so that a text editor can locate where errors in a previous

compilation occured).

Interaction None, although error messages may be directed to the terminal.

Relevant Specifications MONASM Language, Monsoon instruction set, MOC. [To be de-

fined: error message format.]

Discussion The output of MONASM is MOC, and so is loadable by the same loader that

loads Id Compiler output. MONASM code, however, does not necessarily conform to

the conventions of Id Object Code Format; that is up to the author of each MONASM

program.

1.5.2 MONASM Debugger

Function Allows the user to interactively examine and modify the state of Monsoon after a

Monsoon program has terminated, either due to normal termination or due to an error.

It presents the state in a manner meaningful to a MONASM programmer; that is, it takes

a macro-architecture oriented view of Monsoon's memories and instruction set.

Inputs None.

Outputs Manipulates Monsoon machine state through MMI.

Interaction User dialog for examining and modifying machine state.

Relevant Interfaces MMI.

Discussion This is a very simple debugger, supporting only the basic "peek and poke" oper-

ations in a variety of formats. As such, it may be used as a low-level debugger for any

Monsoon program, not just that produced by MONASM. But because it is so low-level,

it is only likely to be usable by experts.

1.6 Microcode, Scan Rings, and MIS Internals

The box labeled "Monsoon Interface Software" in Figure 1.1 actually has several subcompo-

nents. The interaction with the MMI really involves two subcomponents: the Unix device

driver that actually interfaces to the hardware, and a layer of subroutines that convert MMI

calls into lower-level device driver calls, called the "MMI Hardware Driver," or MHD. These

two layers correspond to two levels of architectural detail: the device driver exposes the entire

micro-architecture, while the MHD only exposes the macro-architecture.

The -MHD is not the only subcomponent of the MIS built on top of the device driver. There

is a microcode loader, which initializes the microcode memories and other configuration registers

Version 003; January 1990 	 22

MM!

Unix I/0

IvaII
Hardware

Driver

Microcode Specificationa

Microcode

Lisp

Monsoon Machine Interface

Code

Compiler

Compaed

MINT

MM! Calls

• -
I 	•

)11H

MUD

C or

ScanPath

Debugger

*••••••".•",..^../

Device Driver

µCode

Loader

	VMEbus 	Monsoon

Figure 1.7: Internal Details of MIS and Related Software

of a freshly powered-up Monsoon. There is also a Scan Path Debugger, for debugging Monsoon

at the micro-architecture level (recall that the MONASM Debugger debugs Monsoon at the

macro-architecture level). The Scan Path Debugger is only likely to be used for diagnosing

hardware faults.

Figure 1.7 illustrates the internal details of MIS; MIS corresponds to the large block in

the lower left, consisting of the Device Driver, the MHD, the Scan Path Debugger, and the

Microcode Loader. Also shown in the figure is MINT, and also two other components related

to microcode. The Microcode Compiler takes a description of microcode and compiles it into

fiat microcode tables that can be loaded into Monsoon. The Monsoon Microcode Decompiler,

or MUD, takes microcode tables and produces the core of an emulator for the instruction set

defined by that microcode. The MINT program, therefore, is mostly written by the MUD

program, not by a human programmer.

The new interfaces shown in Figure 1.7 are as follows.

/dev/monsoon This is the Unix interface to the Device Driver, which is installed into the Unix

kernel. Unix defines the general shape of all device driver interfaces; they are accessed

through the 0/S calls open, close, read, write, and ioctl. The meaning of these calls

when operating upon the Monsoon Device Driver is the definition of this interface, and is

documented elsewhere.

Microcode Specification Language The microcode for Monsoon is expressed in a powerful

microcode description language, based on Common Lisp-style macros. It is documented

elsewhere.

Compiled Microcode Format The output of the Microcode Compiler is basically a file of

23 	 Version 003; January 1990

numbers to be loaded into Monsoon's various microcode memories. The exact format is

documented elsewhere.

A detailed description of the components in Figure 1.7 follows.

1.6.1 Device Driver

Function Provides the lowest-level software interface to the actual hardware of Monsoon.

Essentially, it maps the VME transactions accepted by the hardware into Unix I/O trans-

actions.

Inputs Unix I/O calls (open, close, read, write, and ioct1), with meanings defined by the
/dev/monsoon interface.

Outputs Manipulates Monsoon hardware through the VME bus.

Interaction None.

Relevant Interfaces /dev/monsoon, Unix 0/S internals.

Discussion The device driver must be installed in the Unix kernel.

1.6.2 MMI Hardware Driver (MHD)

Function Converts MMI calls into low-level Device Driver calls.

Inputs N1MI calls.

Outputs Unix calls to the /dev/monsoon driver.

Interaction None.

Relevant Interfaces MMI, /dev/monsoon.

Discussion The 'MHD may have two modes of operation: bootstrap mode and normal mode.

In bootstrap mode the processor is always halted while processing MMI calls, and all

access to machine state is through the scan rings. In normal mode the Monsoon processor

is running a special MMI "operating system," which interacts with the MHD through

the I/O mechanism provided by Monsoon (i.e., VME interrupts and direct VME data

memory access). It is quite likely that the first working version of MHD will not distinguish

between bootstrap and normal mode, effectively always operating in bootstrap mode. See

Section 5.9 for more details of the bootstrap process.

1.6.3 Scan Path Debugger

Function Allows the user to interactively examine and modify the micro-architectural machine

state of Monsoon. This includes access to all of the scan rings, as well as the VME interface

registers and other accessible parts of the hardware.

Inputs None.

Outputs Manipulates Monsoon through the Device Driver.

Interaction User dialog for examining and modifying machine state.

Version 003; January 1990 	 24

Relevant Interfaces /dev/monsoon.

Discussion In addition to an interactive mode, this program should also accept a "script" of

commands to be executed in sequence. This makes it possible to use the program as a

general purpose initialization tool, in addition to an interactive debugger. If this tool can

parse compiled microcode files and load them, then there will be no need for a separate

microcode loader program.

1.6.4 Microcode Loader

Function Loads compiled microcode into the control store of Monsoon.

Inputs Compiled microcode file.

Outputs Manipulates Monsoon through the Device Driver.

Interaction None.

Relevant Interfaces Compiled microcode format, /dev/monsoon.

Discussion This may not actually be a separate program, but rather one of the functions

performed by the Scan Path Debugger.

1.6.5 Microcode Compiler

Function Compiles a description of Monsoon's microcode into actual microcode tables.

Inputs Microcode description language.

Outputs Microcode in compiled microcode format.

Interaction None.

Relevant Interfaces Microcode language, compiled microcode format.

1.6.6 Monsoon Microcode Decompiler (MUD)

Function Takes a template for generating emulation code along with compiled microcode

and generates the core of an efficient emulator for the instruction set expressed by the

microcode.

Inputs Emulation template, compiled microcode.

Outputs C or Lisp code comprising the core of an emulator (MINT).

Interact ion None.

Relevant Interfaces Compiled microcode format, emulation template language, internal in-

terfaces of MINT.

Discussion A more detailed discussion of MUD, the emulation template language, and the

internal interfaces of MINT are described elsewhere.

25 	 Version 003; January 1990

/

Version 003; January 1990 	 26

Chapter 2

The Monsoon Machine Interface

This chapter defines an interface between a Monsoon computer equivalent (the "monsoon side")

and a program which controls a Monsoon computer equivalent (the "user side"). Examples of a

Monsoon computer equivalent are the Monsoon hardware prototype and the Monsoon software

emulator. Examples of a program which controls Monsoon are a loader, a debugger, Id World,

etc. The interface is called the Monsoon Machine Interface, or MMI.

The primary role of this interface is to provide access to and control of Monsoon's machine

state. The view that the MMI takes of machine state is that the entire machine is partitioned

into units called PE's, indexed by an integer. Each PE has a similar set of memory spaces; the

memory spaces on all PE's comprise the Monsoon machine state.

It is important to understand that as far as the MMI is concerned, a "PE" is just a set of

memory spaces to which access is provided. A given MMI PE may actually be a Processing

Element board, but could also be an I-structure board, or an I/O processor, or a software

emulation of a processor, or even a file on Monsoon's host processor. A key role of the MMI,

therefore, is to provide a uniform presentation of these "PE's" to programs on the user side.

The central design principle of the MMI is to achieve a balance: it must be general enough to

accomodate the diversity of what is a PE, while not being so general as to be vacuous.

It is also important to understand that the MMI views Monsoon at the macro-architectural

level, the level of the instruction set architecture. The only machine state accessible through

the MN1I is machine state that is part of the instruction set architecture—the same set of state

that is accessible by a program executing on Monsoon itself. Things like microcode memory

and other hardware registers are not part of the instruction set architecture, are not accessible

to a running Mo;:soon program, and therefore are not accessible through the MMI.

The memory spaces accessed via the MMI are the following:

Data Memory (DM) Each PE has a single data memory space, addressed by consecutive

unsigned integers beginning with zero. Each word has three fields: presence, type, and

data.

Instruction Memory (IM) Each PE has a single instruction memory space, addressed by

consecutive unsigned integers beginning with zero. Each word only has one field (which

usually contains an instruction).

Token Queues Each PE has several token queues, indexed by consecutive unsigned integers

beginning with zero. Each queue consists of a memory and a set of pointers. The memory

is addressed by consecutive unsigned integers beginning with zero, and each word has

four fields: tag-type, tag-data, value-type, and value-data. The type and data fields are

27

of the same size and hold the same sorts of values as do the type and data fields of

data memory. The queue pointers are a group of words, indexed by consecutive unsigned

integers beginning with zero, which hold pointers to queue memory and other per-queue

state.

Statistics Registers Each PE has several statistics registers, indexed by consecutive unsigned

integers beginning with zero. Each register holds a non-negative integer, typically used
to count various events during execution.

Again, the MMI is general enough to accomodate any sort of PE; any given PE may only

provide a subset of the spaces above. Some examples:

• A Processing Element board has a DM, IM, two token queues, and 16 statistics registers.

• An I-structure board has a DM and a token queue (?).

• A software emulation of a processing element may have a large number of queues depend-

ing on the mode of operation (finite latency, etc.).

The interface is designed to accomodate any sort of Monsoon computer equivalent, whether

hardware or software, single-pe or multi-pe. It tries to minimize the impact of changing such

architectural specifications as the number of bits in a word of memory, the size of fields of

tags and instructions, floating point representation, and the like. But because all of these

characteristics are observable by a running Monsoon program, it is not possible to abstract

away from them (see also the discussion in Section 2.2). All of these characteristics should

therefore be considered a part of the specification of this interface, incorporated by reference. All

implementations of both sides of the interface must agree on a single set of these characteristics,

and all must be changed simultaneously. The interface tries to minimize the impact of such

changes by, for example, including facilities for decoding tags into fields, so that many user

programs can be oblivious to the size of those fields.

While characteristics of the architecture are part of the interface, characteristics of the

configuration are not. The distinction is that configuration characteristics could be different

each time the Monsoon system is initialized, or different between different installations of Mon-

soon. Architectural characteristics stay fixed until someone changes the hardware or software

specifications. For example, the following are characteristics of the architecture: the kinds of

memory spaces that are found on a PE, the width of the presence, type, and data fields of data

memory, the width of instruction memory, the ways the hardware parses data and instructions,

etc. These characteristics are built into the MMI, either in the form of compile-time constants

or by the functions the NINE provides. In contrast, the following are characteristics of the

configuration: the number of PE's, the kind of PE (processor, I-structure, etc.) represented

by a given PE number, the size of data memory and instruction memory on a given PE, etc.

These characteristics are not built into the MMI, but are recorded in a data structure built at

system initialization time called the Proto-Memory Manager (see Chapter 3), which is kept at

a conventional place within Monsoon's memories.

2.1 Hardware Data Types

Each word of Monsoon data memory has three logical fields: presence bits, type bits, and

data bits (for Version 2 of the hardware the sizes of these fields are 3 bits, 8 bits, and 64 bits,

Version 003; January 1990 	 28

respectively). While the memory hardware of Monsoon imposes no interpretation on these bits,

the ALIT, and other stages of the pipeline do. Specifically, presence bits of 00 have a special

meaning for the (hypothetical) cache hardware, the instruction fetch unit decodes data and type

bits representing instructions in a particular way, and the ALT.] interprets data bits variously

as IEEE double-precision floating point numbers, tags, etc. Microcode imposes additional

interpretation on the presence and type bits. These interpretations can be fully observable to

a Monsoon program; for example, it is possible to write a Monsoon program which decodes the

bit-level representation of a floating point number. Thus, every implementation of the Monsoon

side of the interface must agree on the bit-level representation of every data type, type code,

and presence code.

A similar situation exists for instruction memory: the hardware usually interprets its con-

tents as instructions, but it is also possible for the ALL' to read a word of instruction memory

and use the contents as an integer.

Because bit-level representations are observable by Monsoon code, it is sufficient to provide

functions which manipulate the three fields of data memory (presence, type, and data) as bit

strings, or integers. Doing so does not violate any abstractions, for the observability property

implies that it is not possible to abstract away from, for example, the representation of floating

point numbers. Nevertheless, programs on the user side of the interface may not find the bit

string representation most convenient in all situations. The MMI therefore defines several ways

of representing the contents of both instruction memory and the data field of data memory.

There are four representations for the data field of data memory:

Bits An unsigned integer, of at most N bits, where N is the size of the data field (currently

64 bits).

Integer A two's complement signed integer, in the range -2N-1 < x < 2N-1 - 1, where N is

the size of the data field (currently 64 bits).

Float A floating point number, with precision and magnitude range at least as great as that

provided by the Monsoon hardware (currently the same as IEEE double precision: base 2,

11 bit excess-1024 exponent, 52 bit mantissa plus hidden bit).

Tag A compound object consisting of the five fields PORT, MAP, IP, PE, and FP, where each

field is an unsigned integer whose maximum magnitude corresponds to the size of these

fields as interpreted by the hardware (currently 1 bit, 7 bits, 24 bits, 10 bits, and 22 bits,

respectively).

Similarly, there are two ways of representing the contents of instruction memory:

Bits An unsigned integer, of at most N bits, where N is the size of an instruction memory

word (currently 32 bits).

Instruction A compound object consisting of the three fields OPCODE, F1, and F2, where each

field is an unsigned integer whose maximum magnitude corresponds to the size of these

fields as interpreted by the hardware (currently 12 bits, 10 bits, and 10 bits, respectively).

It is entirely the responsibility of the user side to choose an appropriate representation

depending on the data that is actually present in the Monsoon memory. Because a user could,

for example, store a word as a float then immediately read it back as a tag, there must be a

29 	 Version 003; January 1990

conversion defined between all pairs of representations that is consistent across implementations

of the Monsoon side. This is consistent with the observability property.

Every implementation of the user side is required to provide the "bits" representation for

both instruction memory and the data field of data memory, and may optionally provide any

or all of the others. For the Common Lisp implementation, all representations are provided,

with the following implementation as Common Lisp objects:

Data Memory Bits A non-negative integer, potentially a bignum.

Integer An integer, potentially a bignum.

Float A double precision floating point number. (This really is specific to the Symbolics and

TI implementations of Common Lisp, where double precision is known to be as precise

and magnitudinous as Monsoon. We should double check Lucid and Allegro. Other

implementations may need something different.)

Tag A struct of five slots, each a non-negative integer.

Instruction Memory Bits A non-negative integer, potentially a bignum.

Instruction A struct of three slots, each a non-negative integer.

Rationale: There was some discussion of whether we should use a tuple of integers for
data memory bits" and "integer" to avoid the possibility of bignums. It seems entirely

possible that the effort expended by a user program to manipulate such a tuple could

exceed the benefit of avoiding bignums. Therefore, we should use potential bignums for

now, and change it later if we can show that there is a superior alternative. Using a

single integer is certainly going to be simpler in terms of software complexity on the

user side.

For the C implementation of the MMI, all representations are provided, with the following

Implementation as C objects. The C implementation of the MMI requires the scalar and

int64 libraries of the N1CRC C Language Support package. The terms "integer type" and

"floating point type" are defined in the documentation of the scalar library, while the term

"INT64 type" is defined in the documentation of the int64 library.

Data Memory Bits An unsigned INT64 type.

Integer A signed INT64 type.

Float An opaque floating point type.

Tag A struct of five slots, each an opaque integer type (see Section 2.6 for more details).

Instruction Memory Bits An opaque, unsigned integer type.

Instruction A struct of three slots, each an opaque integer type (see Section 2.6 for more

details).

Sections 2.1.1 through 2.4 define the Common Lisp implementation of the MMI interface.

The C implementation is summarized in Section 2.6; nearly all of the C functions are direct

counterparts of the Common Lisp functions.

Version 003; January 1990 	 30

Compatibility Note: The above description of data formats predates the macro-

architecture specification (The Monsoon Macro-Architecture Reference Manual). The

Macro-Architecture defines six formats instead of four: it does not have the Bits format,
it has a single-precision float format SFloat (the "Float" format is called Dfloat), and

instead of Tag it has Pointer, Continuation, and Request. The MM! provides Bits so that

an MM! User can get at data bits without any interpretation. That SFloat is missing
is indeed an MMI deficiency, which will be corrected in the future if single-precision

floating point numbers ever become important. It is unfortunate that the MM! views
Pointers, Continuations, and Requests all as instances of Tags. The correspondence is
given in the Macro-Architecture Reference Manual, and it is recommended that MMI

users that make heavy use of these types define their own abstractions on top of the

Tag type. A future version of the MMI will undoubtedly have Pointers, Continuations,

and Requests instead of Tags.

All of this is rather unfortunate, but it reflects the ever-growing understanding of what

is Monsoon!

2.1.1 Types and Sizes of Fields

The following constants are provided for code which depends on the current size of various

machine-interpreted data. Also defined are type names for various quantities; many of these

are specialized versions of type integer, which may be useful in generating efficient code.

mini :dxn-bits
	

[Type]

mini :dm-bits-limit
	

[Constant]

The type mini : dm-bits is the return type of functions that return the "bits" representation of

Monsoon data memory contents, as well as the type of arguments which receive that represen-

tation. The value of mini :dm-bits-limit is a non-negative integer that is the upper exclusive

bound on values of type mini :dm-bits; that is, a value of that type is non-negative and strictly

less than the value of mmi :data-bits-limit.

mmi:dm-integer 	 [Type]

mini :most-positive-dm-integer 	 [Constant]

mini :most -negat ive-cim- integer 	 [Constant]

The type mini:din-bits is the return type of functions that return the "integer" representation

of Monsoon data memory contents, as well as the type of arguments which receive that repre-

sentation. Values of that type are greater than or equal to mmi :most-negative-dm-integer

and less than or equal to mini :most-positive-dm-integer.

mmi:cim-float 	 [Type]

mini :most-positive-dm-float 	 [Constant]

mini :most-negative-din-float 	 [Constant]

mini :din-float-epsilon 	 [Constant]

mini :dm-float-negative-epsilon 	 [Constant]

The type mini :din-float is the return type of functions that return the "float" representation of

Monsoon data memory contents, as well as the type of arguments which receive that representa-

tion. The constants are analogous to the Common Lisp constants most-positive-single-float,
most-negative-single-float, single-float-epsilon, and single-float-negative-epsilon,

but describe instead the characteristics of Monsoon data memory floating point numbers, and

31 	 Version 003; January 1990

therefore of the type mmi :cirri-float. See Common Lisp—The Language, page 232, for more

details.

mmi:tag 	 [Type]

mmi:port 	 [Type]

mini :map 	 [Type]

mmi:ip 	 [Type]

mmi:pe 	 [Type]

mmi : fp 	 [Type]

mini 	 [Constant]

mini :map-limit 	 [Constant]

mini : ip -1 imit 	 [Constant]

mini : pe-1. imit 	 [Constant]

mini :fp-limit 	 [Constant]

The type mini :tag is the return type of functions that return the "tag" representation of Mon-

soon data memory contents, as well as the type of arguments which receive that representation.

The types mmi :port, mmi :map, mmi:ip, mmi:pe, and mmi :fp are the types of the values found

in the slots of a MITI : tag. Each constant is the upper exclusive bound on one of those types.

mrni :type 	 [Type]

mmi:type-iimit 	 [Constant]

The type mmi :type is the return type of functions that return the type field of Monsoon data

memory, as well as the type of arguments which receive values for that field. The value of

mmi :type-limit is the upper exclusive bound on the the type mmi: type.

mmi:presence 	 [Type]

mini :presence-limit 	 [Constant]

This type and constant are analogous to mmi :type and mmi :type-limit.

mmi:im-bits
	

[Type]

mini: urn-bits-limit
	

[Constant]

The type mmi:im-bits is the return type of functions that return the "bits" representation

of Monsoon instruction memory contents, as well as the type of arguments which receive that

representation. The constant mini : im-bits-limit is the upper exclusive bound on the type

mini: instruct ion 	 [Type]

mmi:opcode 	 [Type]

mmi:fl [Type]

mmi :f2 	 [Type]

mini :opc ode-1 imit 	 [Constant]

mmi :f 1-limit 	 [Constant]

mmi : f 2-1 imit 	 [Constant]

The type mini: instruction is the return type of functions that return the "instruction" rep-

resentation of Monsoon instruction memory contents, as well as the type of arguments which

receive that representation. The types mini: opcode, mini :f 1, and mini :f2 are the types of the

values found in the slots of a mini: instruction. Each constant is the upper exclusive bound

on one of those types.

Version 003; January 1990 	 32

There are alternative views of the fields of instructions, used when interpreting instruc-

tions in a particular instruction format. The relevant types and limit constants are defined in

Section 2.1.3.

Discussion: The descriptions of these constants are worded as if they are character-

istics of a particular implementation of the Monsoon Machine Interface. In fact, the
values of these constants are determined by the current Monsoon architecture. As the

characteristics of an implementation of the interface are constrained by the architec-

ture, the constants will also describe the interface implementation as well (assuming

the interface is implemented according to the specification!).

Conipatability Note: The wire-wrap prototype of Monsoon has a slightly different

instruction format than Version 2. The wire-wrap can be cast in terms of this interface,

however, by calling the R field Fl, and the combination of the PORT and s fields F2.

The sizes of OPCODE, Fl, and F2 will be different for the wire-wrap prototype: 10 bits,

10 bits, and 12 bits, respectively, as compared to 12, 10, and 10 for Version 2.

There are no constants describing the limits of token queue memory, because these char-

acteristics are determined by data memory characteristics. Specifically, each entry in a token

queue consists of two type/data pairs, each having the same bounds and data types as the type

and data fields of data memory. Statistics registers are discussed in Section 2.4.

2.1.2 Constructors and Selectors

This section outlines functions which manipulate the compound objects representing the Mon-

soon hardware data types "tag" and "instruction."

: t ag 	 [Type]

The type of the object used to pass tags across the IvIMI.

mini :make-tag port map ip pe fp 	 [Function]

Returns a tag with the given fields.

mini :tag-port tag 	 [Function]

mini :tag-map tag 	 [Function]

mrni:tag- ip tag 	 [Function]

mmi:tag-pe tag 	 [Function]

mmi: tag-fp tag 	 [Function]

Returns the appropriate component of tag. Note that these cannot be used with setf; tag

objects are immutable.

Rationale: There are just too many potential problems if there can be multiple pointers

to a given tag °I:, jt-zt and someone bashes one of the slots. Better to do it this way and

worry later if there is some issue of recycling Lisp storage. Remember that a software

emulator of Monsoon is not constrained to use tag objects to represent the tag field of
tokens in its emulated token queues, so long as it does the appropriate conversions in

its implementation of the functions in Section 2.3.

mmi :make-new-tag old-tag &key port map ip pe fp 	 [Macro]

Like calling mini :make-tag where old-tag is used to supply the values of any field for which no

keyword argument is given. Note that if no keyword arguments are given it just copies old-tag.

33 	 Version 003; January 1990

This is a macro rather than a function so that the overhead of using keyword arguments may

be eliminated at compile-time.

mmi :tagp thing 	 [Function]

Returns true if thing is of type mini :tag, otherwise returns false.

mmi:instruction 	 [Type]

The type of the object used to pass instructions across the NIMI.

mini :make-instruction opcode f2 	 [Function]

nisi: instruct ion-opcode instruction 	 [Function]

mrni: instruction-ti instruction 	 [Function]

mini: instruct ion-f2 instruction 	 [Function]

mini :make-new-instruction old-instruction &key opcode f 1 f2 	 [Macro]

mmi: instruct ionp thing 	 [Function]

Entirely analogous to the functions for tags. The same comments about immutability apply.

2.1.3 Parsing Instruction Fields

The Fl and F2 fields of both kinds of instructions are often interpreted as a combination of

an unsigned integer called PORT and a signed integer called s.1 The following constants define

the sizes of these quantities. Note that F 1 and F2 may be of different sizes (although for the

current architecture, they are the same size). On the other hand, the PORT subfields of F l and

F2 always have the same size as the PORT field of a tag.

mmi:s-1 	 [Type]

mmi:s-2 	 [Type]

mmi:most-positive-s-1 	 [Constant]

mmi:most-negative-s-1 	 [Constant]

mmi :most-posit ive-s-2 	 [Constant]

mmi:most-negative-s-2 	 [Constant]

The types mini: s-i and mini: s-2 are the return types of functions returning the s subfields

of an instruction's Fl and r2, respectively, as well as the types of arguments to functions

accepting those subfields. The values of mmi : most-pos itive-s -1 and mini :most-negative-s-

1 are inclusive bounds on the type mini: s-1; the other two constants are analogous, but apply

to mini: s - 2.

There are no special types or constants defined for the PORT subfields of F l and F2, as they

are required to be the same as the types and constants defined for the PORT field of tags.

mini :f 1-port 11 	 [Function]

mmi: f 1-s 11 	 [Function]

mmi :make-f 1 port s 	 [Function]

mmi :f 2-port f2 	 [Function]

mmi: f2-s f2 	 [Function]

1 1n other Monsoon documentation, PORT is simply called P. The term PORT is used consistently throughout
the software interface because P might erroneously suggest a predicate.

Version 003; January 1990 	 34

:make-t2mini 	port s 	 [Functio-1

The functions mini :f 1-port and mini :f 1-s extract the PORT and s quantities, respectively, from

a value taken from the Fl field of an "instruction" struct. The function mmi:make-fl creates

a value suitable for the Fl field of an -instruction" struct from the quantities PORT and S.

The remaining three functions are analogous, but apply to the F2 field.

The Fl and F2 fields can also be interpreted together as a large R value. The following

constants and functions deal with this.

mmi:long-r
	

[Type]

mmi:long-r-limit
	

[Constant]

The type Mhil:LONG-R is the return type of functions returning a long R value from an in-

struction, as well as the types of arguments to functions accepting such a value. The value of

mmi :long-r-limit is the upper exclusive bound on the type mmi :long-r.

mmi:fl-f2-long-r f/ f 	 [Function]

r 	 [Function]

mmi:long-r-f2 r 	 [Functiorz]

The function mmi:fl-f2-long-r converts the values taken from the Fl and F2 fields of an

"instruction" struct into a long a value. The functions mmi:long-r-f1 and mmi:long-r-f2

take a long R value and extract values suitable for the Fl and F2 fields, respectively, of an

"instruction" struct.

mini :instruction-port-1 instruction 	 [Function]

mini :instruction-s-1 instruction 	 [Function]

mini : instruct ion-port-2 instruction 	 [Function]

mini: instruct ion- s -2 instruction 	 [Function]

mini :instruction-long-r instruction 	 [Function]

These functions are provided for convenience and are equivalent to combinations of instruction

selectors and field destructurers, for example:

(mmi:instruction-port-1 	(mmi:f1-port (mmi:instruction-f1 i))

(mmi:instruction-long-r i) -E- (mmi:fl-f2-long-r (mmi:instruction-f1 i)

(mini: instruction-f2 i))

mmi:make-instruction-long-r opcode r 	 [Function]

mini :make-new-instruction-long-r old-instruction &key opcode r 	 [Function]

These functions are also provided for convenience and are equivalent to combinations of in-

struction constructors and field constructors, for example:

(mmi:make-instruction-long-r op r) E (mini :make-instruction op

(mmi:long-r-f1 r)

(mmi:long-r-f2 r))

Finally, the Fl and F2 fields of instructions are sometimes interpreted as the single unsigned

integers R and REG. The following synonyms are provided for those situations:

mini :r
	

[Type]

35 	 Version 003; January 1990

mmi:reg 	 [Type]

mini :r-limit 	 [Constant]

mini :r eg-limit 	 [Constant]

instruct ion-r instruction 	 [Function]

mini: instruction-reg instruction 	 [Function]

mmi :r 	 rami : f
mmi :reg 	 E mmi : f 2
mmi :r-limit 	 Mini :f 1-limit
mmi :reg-limit 	 mmi f2-limit
(mmi : instruct ion-r i) 	(mmi : instruction-f 1 i)

(mmi : instruction-reg i) 	(mmi : instruction-f2 i)

2.1.4 Conversion Functions

These functions convert between different representations of machine data types.

mini :bits-to-integer bits 	 [Function]

mmi :bits-to-float bits 	 [Function]

mmi:bits-to-tag bits 	 [Function]

mini:integer-to-bits integer 	 [Function]

mmi:integer-to-float integer 	 [Function]

integer-to-tag integer 	 [Function]

mini :float-to-bits float 	 [Function]

mini :float-to-integer float 	 [Function]

mini :float-to-tag float 	 [Function]

mini :tag-to-bits tag 	 [Function]

mmi :tag-to-integer tag 	 [Function]

mmi:tag-to-float tag 	 [Function]

Each function converts from one representation of the data field of data memory into another.

mmi :bits-to-instruction 	 [Function]

mini: instruction-to-bits 	 [Function]

Each function converts from one representation of an instruction memory word into another.

2.2 Reading and Writing Memory

Here we provide functions for reading and writing the memory of the Monsoon processor;

namely, "data memory" and "instruction memory."

The functions that read and write data memory take an address argument; the type of this

argument is always mmi : fp. The limit mini :fp-limit is also a limit on this argument. Similarly,

the type of the address argument to the functions that read and write instruction memory is

always mmi: ip, and mmi : ip-limit applies to that argument. This reflects the architectural

constraint that the sizes of data and instruction memory are ultimately limited by the sizes of

the F P and I P fields of a tag. Note that this is an architectural limit, the maximum address

permitted by the design of the hardware and software. It does not reflect how much data

memory any particular PE has; that information is recorded in the Proto-Memory Manager

data structure when the system is initialized (see Chapter 3). The user must consult the PMM

to decide if an address argument actually points to existing memory.

Version 003; January 1990 	 36

2.2.1 Reading and Writing Single Words

The following functions read the data field of data memory:

:read-din-data-as-bits pe address 	 [Function]

mini :read-din-data-as-integer pe address 	 [Function]

mini: read-dm-data-as-float pe address 	 [Function]

mini: read-dm-data-as-tag pe address 	 [Function]

Each returns the contents of the data field at location address in the data memory of PE Pe,

in the indicated representation.

The type field of data memory is read by:

mmi:read-dm-type pe address 	 [Function]

Returns the contents of the type field at location address in the data memory of PE pe, as a

non-negative integer.

And the presence bits of data memory is read by:

mmi :read-cun-presence pc address 	 [Function]

Returns the contents of the presence bits field at location address in the data memory of PE pe,

as a non-negative integer.

mini: write-din-data-as-bits pe address integer 	 [Function]

mmi:write-cim-data-as-integer pe address integer 	 [Function]

mmi:writ e-dm-data-as-float pe address float 	 [Function]

mmi: write-dm-data-as-tag pe address tag 	 [Function]

mini:write-dm-type pe address integer 	 [Function]

mmi: write-dm-presence pe address integer 	 [Function]

Each writes the given field contents in the appropriate field of location address in the data

memory of PE pe. Note that using, for example, mmi:write-dm-data-as-float does not imply

anything about how the Monsoon side of the interface actually stores the data; the hardware

obviously will convert the float argument into bits, while the software emulator may choose to

leave it as a float or to convert it into anything it wishes. The value returned from each of

these functions is eq to the last argument, and each is also available by using setf with the

corresponding =1i:read-dm- function.

mmi :read- im-data- as-b its pe address 	 [Function]

rani :read-im-data-as-instruction pe address 	 [Function]

mrni:write-im-data-as-bits pe address integer 	 [Function]

mini:write-im-data- as-instruction pe address instruction 	 [Function]

These are analgous to the mini : read-dm- and mini : write-dm- functions, except they operate

on instruction memory rather than data memory. Note that instruction memory lacks type and

presence fields (the word "data" is included in the names of these functions for uniformity).

Notice, too, that the integers used with mmi:read-iin-data-as-bits and mini : write-in-data-

as-bits are bounded by mmi: im-bits-limit, which may or may not be the same as mmi :dm-

bits-limit.

Rationale: Instead of having both data memory and instruction memory functions,

one could have a single set of functions together with a convention that interprets certain

37 	 Version 003; January 1990

addresses as data memory and others as instruction memory. The current feeling is that
Monsoon will continue to have separate instruction and data memory, and furthermore
they may have different characteristics (e.g., instruction memory may lack presence
bits), so two sets of functions seems the best choice.

[An issue: do we want "broadcast" versions of the mrai:write-dm- and mmi:write-im-

functions that write the same thing in corresponding addresses on several PE's simultaneously?]

mini :read-dm-dtp- as-bits pe address 	 [Function]

mmi:read-dm-dtp-as-integer pe address 	 [Function]

mini:read-dm-dtp-as-float pe address 	 [Function]

mmi:read-dm-dtp-as-tag pe address 	 [Function]

Each returns three values: the data, type, and presence fields of location address on PE pc.

The first value is returned in the indicated representation. mmi:read-dm-dtp-as-integer, for

example, is equivalent to:

(values (mmi:read-dm-data-as-integer pc address)

(mmi: read-dm-type pe address)

(mmi:read-dm-presence pe address))

mrni:write-dm-dtp-as-bits pe address data type presence 	 [Function]

mmi: writ e- dm-dtp- as- integer pe address data type presence 	 [Function]

mmi:write-dm-dtp-as-float pe address data type presence 	 [Function]

mmi:write-dm-dtp-as-tag pe address data type presence 	 [Function]

Each writes data, type, and presence in the data, type, and presence fields of location address

on PE pe, using the indicated representation to interpret the data argument. Each returns zero

values, mzni:write-dm-dtp-as-integer, for example, is equivalent to:

(progn (mini:write-dm-data-as-integer pe address data)

(rami:write-dm-type pe address type)

(mmi:write-dm-presence pe address presence)

(values))

There are no analogous functions for instruction memory, as instruction memory has no

type or presence bits.

2.2.2 Block Transfers

mini :blt -from-dm-data- as-bits pe start-address end-address to-array &key 	[Function]

:to-start :to-end

mmi:blt-from-dm-data-as-integer pe start-address end-address to-array &key 	[Function]

:to-start :to-end

mini :blt-from-dm-dat a- as-float pe start-address end-address to-array &key 	[Function]

:to-start :to-end

mmi:blt-from-dm-data-as-tag pe start-address end-address to-array &key 	[Function]

:to-start :to-end

mrni:blt-from-cim-type pe start-address end-address to-array &key :to-start 	[Function]

:to-end

Version 003; January 1990 	 38

mmi :blt-from-dm-presence pe start-address end-address to-array &key 	 [Function]

:to-start :to-end

These are block transfer functions: data (or type or presence) fields from consecutive words

of PE pe's memory, from start-address inclusive to end-address exclusive, are written into

consecutive locations of to-array, at indices to-start inclusive to to-end exclusive. The defaults

for to-start and to-end are zero and the length of to-array, respectively. If the ranges do not

delimit sequences of the same length, the smaller range determines how many elements are

transfered; the extra elements at the end of the longer range are not involved in the operation.

The number of elements copied may therefore be expressed as:

(min (- end-address start-address) (- to-start to-end))

The type of elements transfered to to-array corresponds to the type that would be returned

by the corresponding mmi :read-dm- function. Each of these functions returns to-array. [An

issue here: do we want to require that the arrays for the presence and type functions be of type

(unsigned-byte 2) and (unsigned-byte 8)? This may be a non-issue for the Common Lisp

implementation since Common Lisp will do the right thing automatically!]

mini :bit-to-dm-data-as-bits from-array from-start from-end pe to-start &key 	[Function]

to-end

mmi:blt-to-dm-data-as-integer from-array from-start from-end pe to-start 	[Function]

&key to-end

mmi:blt-to-drn-data-as-float front-array from-start from-end pe to-start &key [Function]

to-end

mai:bit-to-dm-data-as-tag from,-:-.-ay from-start from-end pe to-start &key 	[Function]

mrni:blt-to-dm-type from-array from-start from-end pe to-start &key to-end 	[Function]

mrni:blt-to-drn-presence from-array from-start from-end pe to-start &key 	[Function]

to-end

These functions are like the mmi:blt-to-dm- functions, but transfer in the opposite direction:

from the given array to data memory. The default for to-end is the size of Monsoon's data

memory (currently ??). Each of these functions returns from-army.

mmi:blt-from-im-as-bits pe start-address end-address to-array &key :to-start [Function]

:to-end

mmi:blt-from-im-as-instruction pe start-address end-address to-array &key 	[Function]

:to-start :to-end

mrni:blt-to-im-as-bits from-array from-start from-end pe to-start &key to-end [Function]

mmi:blt-to-im-as-instruction from-array from-start from-end pe to-start &key [Function]

to

Like the mini :bit-from-cim- and mud :bit-to-dm- functions, but deal with instruction memory

instead of data memory.

[More experience is needed with the interface before we'll know whether these are ade-

quate block transfer functions. For example, we may want version which deal with subdomain

interleaving.]

39 	 Version 003; January 1990

2.3 Token Queues

Tokens are represented as four values corresponding to the type and data subfields of each of

the tag and value parts of a token. The representation of type subfields is the same as with

mmi :read-dm-type above, and the representation of the tag data subfield is the same as with

mmi:read-cim-data-as-tag. Any of the four representations may be used for the value data

subfield.

The software interface provides for a more general set of queues than the hardware actually

provides. One of the ways the software emulator will be used is to gather idealized profiles,

finite-processor/latency profiles, Maa-style per-codeblock profiles, etc. These are implemented

by using a more elaborate queueing system which may comprise many queues. The software

interface, therefore, provides functions for reading and writing queues selected by a queue

number. The number of queues provided for a given mode of operation depends on which

queueing system is in use at that time.

Note that in this context, the term "queue" is used rather loosely to denote any sort of

data structure the queueing system might use to hold tokens. For example, a software queueing

system for obtaining hardware timings will have an 8-token pipeline for simulating pipeline

latency; this could be made available through the software interface by considering the pipeline

as a small "queue." While each queue might be a data structure of arbitrary objects, when

viewed through the MMI it must appear as a contiguously-addressed array of tokens. No

queueing system is required to provide access to all of its data structures through this interface,

though it is highly recommended to do so.

There is a convention which assigns queue numbers to the actual queues found on the

hardware; both the hardware driver and the software emulator for the hardware must agree on

this convention. The convention is as follows.

Queue Number 0 The system queue.

Queue Number 1 The user queue.

Queue Number 2 (Only present in some emulators, and not in hardware.) An eight element

queue used to emulate pipeline latency.

Queue Number 3 (Only present in some emulators, and not in hardware.) A one element

queue used to hold a token for recirculation.

The first two of these queues each have three pointers, with meaning described later.

The selection of a queueing system also determines how the software interface controls the

execution of the machine (hardware or software). The overall model is that a control program

first selects a queueing system and queueing mode for that system, and then makes one or more

calls to mini : run. The procedure mini :run causes machine execution to proceed up to some

stopping point, where the stopping point depends in part on the queueing system and mode

chosen. At this point the control program might examine statistics registers or other machine

state, and then make further calls to mmi :run. Alternatively, it could then reset the machine,

select a new queueing mode, and begin the process from the beginning. For the software

emulator mmi :run simply transfers control to the emulator program, while for the hardware
mmi :run starts the machine through a hardware interface and waits for the hardware to reach

a stopping point. This actually a simplification of the behavior of mmi:run; Section 2.5 takes

up mini :run and other functions for machine control in greater detail.

Version 003; January 1990 	 40

Argtype Value

mmi:dm -bits

mmi:dm -integer

mmi:dm -float

mini: tag

mmi:port

mmi:map

mmi:ip

mmi:pe

mmi:fp

mmi:type

mini: presence

mmi:im -bits

mini: instruction

mmi:opcode

mmi:f1

mmi:f2

Argument's Lisp Type

mmi:dm -bits

mmi:dm -integer

mmi:dm -float

mini: tag

mmi:port

mmi:map

mmi:ip

mmi:pe

mmi:fp

mmi:type

mini: presence

mmi:im -bits

mini: instruction

mmi:opcode

mmi:f1

mmi:f2

Argtype Va.

mmi:s-1

mmi:s-2

mmi:long-r

mmi:r

mmi:reg

mmi:qn

mmi:qp

mmi:qpn

mmi:statistic-n

mini: statistic-value

:uint32

:sint32

:dflonum

:character

:string

:keyword

Argument's Lisp Type

mmi:s-1

mmi:s-2

mmi:long-r

mmi:r

mmi:reg

mmi:qn

mmi:qp

mmi:qpn

mmi:statistic-n

mini: statistic-value

(integer 0 (232))

(integer —231 (231))

[float in IEEE dp range]

character

string

keyword

Figure 2.1: Queueing Mode Argument Types (Lisp Version)

The Monsoon side of the MMI may provide a number of different queueing systems, and

each such queueing system may provide a number of different operating modes. An example

of a queueing system is the "Monsoon hardware" system, available when the Monsoon side

of the MNII is actual Monsoon hardware, or when it is an emulator designed to mimic the

hardware precisely. The queueing modes available in the Monsoon hardware queueing system

would include -grand total" mode, where mini :run executes a program to completion, "single

step" mode, where each call to mmi :run executes one instruction, "n step" mode, where each

call to mini :run executes n instructions, "breakpoint token" mode, where each call to mini:run

executes instructions until a token matching a given breakpoint value enters the pipeline, and

"approximate idealized" mode, where each call to mmi :run executes tokens in one queue, with

resulting tokens accumulated in another queue. A software emulator will undoubtedly provide

many more queueing systems, for example, an "idealized" queueing system, with modes for

finite processor and finite latency simulations. The modes described in this paragraph are for

illustration only; for more information, consult the documentation of the individual queueing

systems. For a general discussion of queueing systems and statistics collection, see the MINT

White Paper.'

The functions below specify queueing systems and queueing modes by their names, repre-

sented as keywords. In addition, functions referring to queueing modes take a set of arbitrary

parameters, whose interpretation is completely up to the specified queueing system. For ex-

ample, the "n step mode" of the "Monsoon hardware" queueing system described above would

have a parameter to indicate n, the number of instructions to execute. In the functions below,

mode-an3s is a list of parameters that is queueing mode dependent. This may not be an arbi-

trary list: its elements must each be a member of one of the types given in the "Lisp Type"

columns of Figure 2.1. Accompanying mode-args is a list mode-arg-types, which is the same

length as mode-args, and each of whose elements gives the type of the corresponding element

2 K. R. Traub, MINT White Paper, Motorola Cambridge Research Center Technical Report MCRC-TR-2,

October, 1989.

41 	 Version 003; January 1990

of mode-args. The legal values for the elements of mode-arg-types are given in the "Argtype

Value- columns of Figure 2.1.

As an example, the following is a legal call to mini :select-queueing-mode:

(mmi:select-queueing-mode :example '(mmi:ip :string) '(34 "hi"))

while the following call is not:

(mmi:select-queueing-mode :example '(mmi:presence list) '(34 ("hi" "there")))

This call is illegal because 34 is not of type mini :presence (it is too large), and because list

is not a type listed in Figure 2.1.

The documentation of a queueing system must indicate the types and meanings of mode-

args for each available mode. The preferred programming methodology is for the author of

each queueing system to provide some higher-level functions that sit on the MMI, hiding the

encoding of parameters into the mode-arg-types and mode-args lists. For example, the "Monsoon

hardware" system might come with this function:

(defun select-n-step-mode (n)

(mmi: select-queueing-mode :n-step ' (:uint32) (list n)))

Rationale: The M MI is designed so that the User and Monsoon sides may be executing

on different machines; or in different programming languages, possibly with a network
protocol between them. This means that a given type may have a different representa-

tion within the language environment of the User side as compared with the Monsoon

side. Inclusion of type information allows translation to take place, if necessary.

The set of types in Figure 2.1 includes all MNII-defined types, as well as some common
scalar types. More complex types can be passed by flattening them into the types

provided.

mini :select-queueing-system name mode mode-arg-types mode-an3s 	 [Function]

Selects a queueing system named name (a keyword); subsequent interaction with the queues

or the mini :run procedure will use the selected queueing system. The queueing system is reset

to a well-defined initial state (determined by the queueing system selected), and the queueing

system is placed into a mode indicated by mode (a keyword) and mode-args (the interpretation

of these is also determined by the queueing system selected). The restrictions on mode-args and

the encoding of mode-arg-types is as described earlier, mini: select-queueing-system returns t

if name is a supported queueing system and if mode and mode-args are legal for that queueing

system, nil otherwise. In the latter case, the queueing system and mode are unchanged, and

the queueing system is not reset.

The behavior of all the remaining functions in this section is potentially altered after each

call to mmi :select-queueing-system.

mini :select-queueing-mode mode &rest mode-args 	 [Function]

Changes the mode of operation of the current queueing system to be that indicated by mode

and mode-args (the interpretation of these is determined by the current queueing system). The

restrictions on mode-args and the encoding of mode-arg-types is as described earlier. Changing

the mode does not necessarily reset the state of the queueing system; the definition of any

queueing system should indicate how the state changes when the mode is changed. For example,

Version 003; January 1990 	 42

the hardware queueing system might have a queueing mode which causes mini :run to execute

a given number of pipeline steps; changing the mode (to change the number of steps, for

example) should not reset the contents of the queues. This function is implicitly called each

time mmi: select-queueing-system is called. mmi : select-queueing-mode returns t if mode

and mode-args are legal for the current queueing system, nil otherwise. In the latter case, the

queueing mode is unchanged, and the queueing system is not reset.

mini : current-queueing-mode 	 [Function]

Returns four values: the name of the current queueing system, the current queueing mode, and

the mode-arg-types and mode-args lists for the current mode. Thus, the following code

(multiple-value-bind (name mode arg-types args)

(mmi:current-queueing-mode)

(mmi:select-queueing-system name mode arg-types args))

leaves the current queueing mode unchanged, except that the queueing system is reset.

mini: reset-queueing-system 	 [Function]

Resets the current queueing system to a well-defined initial state (determined by the current

queueing system). This function is implicitly called each time mmi:select-queueing-systern

is called. The contents of the queues, as returned by the mud : read-queue- as-x family of

functions, are not necessarily preserved across calls to mmi :reset-queueing-system.

mini:run 	 [Function]

Causes execution of the machine according to the current queueing mode, until a stopping point

determined in part by the current queueing mode is reached. A status value is returned that

indicates, among other things, whether mini :run returned because a queueing system defined

timestep was completed, or for some other reason. See Section 2.5 for more details.

mmi:advance-timestep 	 [Function]

After =1i:run returns a status indicating that a queueing system defined timestep was com-

pleted, this call may be issued to prepare the queueing system for the next timestep. Normally

this is done after statistics registers are read. The exact behavior of mini : advance-timestep

depends on the current queueing system and mode; each queueing system should include as

part of the documentation of each mode what mini: advance-timestep does.

The following types and functions are used to read and write the state of the current

queueing system.

mmi:qn 	 [Type]
mmi:qp 	 [Type]

mmi:qpn 	 [Type]

The type mzni: qn is the type of queue numbers, the unsigned integers that identify which queue

is to be manipulated. The queues of a given PE are always numbered consecutively from

zero. An address of a token in a particular queue is called a queue pointer, of type mmi:qp.

These addresses are used as arguments to functions that read and write tokens in queues, and

always run consecutively from zero. In addition, each queue has associated with it a small

number of queue pointers that keep track of where the head and tail are (for example). These

43 	 Version 003; January 1990

special pointers are indexed by a queue pointer number, of type mmi:qpn; these indexes also

run consecutively from zero.

mmi:qn-limit pe 	 [Function]

mmi:qp-limit pc qn 	 [Function]

nii:qpn-limit pc qn 	 [Function]

These functions allow the size characteristics of the current queueing system to be determined.

Mmi:qn-limit returns the number of queues on PE pe, mmi:qp-limit returns the exclusive

upper bound on the address of queue qn On PE pc, and mmi:qpn-limit returns the number of

special queue pointers associated with queue qn on PE pe. These are all functions, rather than

constants, because they can vary from queueing system to queueing system, and indeed from

PE to PE. Note that mmi:qp-limit does not indicate how many locations within the given

queue actually contain valid tokens; this is determined by the queue pointers associated with

that queue, in a manner that depends on how that queue is defined by the current queueing

system.

mini :read-queue-as-bits pe queue address 	 [Function]

mmi:read-queue-as-integer pe queue address 	 [Function]

mmi :read-queue-as-float pe queue address 	 [Function]

mmi:read-queue-as-tag pc queue address 	 [Function]

Returns the token at address address in the token queue whose index is queue on PE pe's, as four

values. In order, the four values returned are tag-type, tag-data, value-type, and value-data.

Each of the four functions returns the value-data using a different representation.

mini :write-queue-as-bits pe queue address tag-type tag-data value-type 	[Function]

value-data

mrrii :write-queue-as-integer pe queue address tag-type tag-data value-type 	[Function]

value-data

mmi :write-queue-as-float pe queue address tag-type tag-data value-type 	[Function]

value-data

mmi :write-queue-as-tag pc queue address tag-type tag-data value-type value-data [Function]

Writes a token into a token queue. Note that these cannot be accessible through setf, since

four values are required. These functions return no values.

mmi :inject-token-as-bits pe tag-type tag-data value-type value-data 	 [Function]

mmi:inject-token-as-integer pe tag-type tag-data value-type value-data 	[Function]

rami : inject-token-as-float pe tag-type tag-data value-type value-data 	[Function]

mmi:inject-token-as-tag pe tag-type tag-data value-type value-data 	 [Function]

Injects a token into the queueing system for the given PE. The meaning of injecting a token

depends on the queueing system; the documentation of each queueing system should specify this.

For most modes of operation of the 1\1onsoon queueing system, injecting a token enqueues the

token at the end of the system queue. A queueing system may choose to ignore the pe argument,

if its notion of injecting is not parameterized by PE.

Rationale: Four values are preferable to a token structure of four slots because of

the issue of how to represent the value-data subfield; would we need four types of

structure? Also, there is the storage efficiency issue in a software emulator: a token

queue as four arrays is preferable to a single array pointing to four-element structures.

Version 003; January 1990 	 44

For implementations of the interface in langauges which do not allow the return of

multiple values, we'll need separate functions for each token subfield (a total of seven

mmi:read-queue- functions).

The next two functions read and write queue pointers. The meaning of the pointer for a

given queue depends on the type of queue; typically it indicates at what address the next token

is to be enqueued or dequeued. A queue may have several pointers; the pointer argument to

the functions below indicates which one is to be read or written. Common types of queues are

a LIFO queue (stack), which has only one pointer, and a FIFO queue, which has two. More

elaborate kinds of "queues" are accomodated by this interface.

While it is completely up to each queueing system to define the meaning of its queue pointers,

the following conventions are recommended where appropriate:

Queue Pointer 0 (Count) Not actually a pointer, but instead gives the number of active

elements in the queue.

Queue Pointer 1 (Tail) For both FIFO and LIFO queues, points at the next token to be

dequeued; to dequeue, remove the token at Tail and then increment Tail and decrement

Count. For LIFO queues, it points at one greater than the next empty slot where a

token can be enqueued; to enqueue LIFO, decrement Tail and store the token there, then

increment Count.

Queue Pointer 2 (Head) For FIFO queues, points at the next empty slot where a token can

be enqueued; to enqueue FIFO, store the token at Head and then increment Head and

Count.

Queue Pointer 3 (Mark) May be used by some queues as a placeholder, for example to

indicate the last token to be processed as part of a timestep.

mrni :read-queue-pointer pe queue &optional (pointer 0) 	 [Function]

The function mini :read-queue-pointer returns the current pointer for queue number queue

on PE pc.

mini :write-queue-pointer new-value pc queue &optional (pointer 0) 	 [Function]

Changes the value of the queue pointer pointer of queue number queue on PE pe to be new-

value, and returns new-value. Also available by using sett with mini :read-queue-pointer (the

order of arguments is inconsistent with the other "write" functions of this interface because of

the optional argument; the use of setf is strongly encouraged).

2.4 Statistics Registers

Monsoon is equipped with several statistics registers, each of which holds an unsigned integer.

Certain instructions executed by Monsoon affect the contents of these registers, under microcode

control. In addition, a software emulator for Monsoon may have a very large number of them,

and alter their contents in arbitrary ways. Statistics registers are identified by a non-negative

integer.

mmi:statistic-limit pt 	 [Function]

Returns the number of statistics registers on PE pe; any non-negative integer strictly less than

this value is a valid statistic argument to the functions described below.

45 	 Version 003; January 1990

mini: statistic-value-limit pe statistic 	 [Function]

Returns the exclusive upper bound on the value of statistic register statistic on PE pe, or nil

if there is no upper bound. (The latter case may arise in a software emulator, for example, if

the value can be a bignum.)

Rationale: These limits are allowed to vary from PE to PE because they are not

essential charcteristics of the architecture; i.e., the values of these limits cannot affect the

behavior of an executing Monsoon program (other than a program specifically designed

to examine the registers, such as a program analysis tool running on Monsoon itself).

In particular, the limits might be different between PE's if the PE number were used

to select between the hardware and a software emulator.

mini : read-statistic pe statistic 	 [Function]

Returns the current value of statistic register statistic on PE pe.

mini :write-statistic pe statistic new-value 	 [Function]

Stores new-value in statistic register statistic on PE pe, and returns new-value. Also available

by using setf with mmi:read-statistic.

mini: clear-statistics pe &optional (from-statistic 0) (to-statistic 	 [Function]

(statistic-limit pe))

Stores zero in each of the statistics registers between from-statistic, inclusive, to to-statistic,

exclusive, on PE pe. Returns no values. Equivalent to the following:

(do ((s from-statistic (+ s 1)))

((>?- s to-statistic) (values))

(mmi : write-statistic pc s 0))

except that mrni : clear-statistics may be more efficient in certain cases (e.g., if a hardware

reset line is available).

2.5 Machine Control

The functions in this section provide control over the execution of Monsoon; they start and

stop execution, and deal with asynchronous events such as interrupts. These functions view

the entire Monsoon as a unit, and are not parameterized by PE.

The basic primitive for machine control is mini : run, which initiates execution of Monsoon,

returning when Monsoon halts. mmi :run returns a value that indicates why Monsoon halted;

this could be due to its executing a halt instruction, or because the queueing system reached the

end of a timestep, or due to an exceptional condition such as a statistic overflow or parity error,

or because of an asynchronous request to halt from the User side of the MMI. In addition, certain

events called interrupts can cause mini : run to return with Monsoon continuing to execute in

the background. The user side may then make MMI calls (from a restricted subset), and then

call mini :run to wait for the next interrupt or halt.

As far as machine control is concerned, at any point in time the MMI is in one of three

states:

Version 003; January 1990 	 46

Background

rrr.:rr. called 	 mmi : run called

Halted 	 Running

mni :run returns 	 rrsi.: run returns

halt status
	

interrupt status

Figure 2.2: MMI State Transition Diagram

Running A call to mini:run has been made, but mrni.:run has not yet returned. When the

MMI is in this state, Monsoon is generally executing code. This is not necessarily the

case, however: just after mini :run is called and just before it returns, it is possible that

Monsoon is not actually executing.

Halted No call to mrni.:run is in progress, and Monsoon is not executing code. This state is

entered when mini:run returns with a halt status value.

Background No call to mini :run is in progress, but Monsoon is potentially executing code.

This state is entered when mini :run returns with an interrupt status value.

Figure 2.2 shows the relationship between these states. It should be emphasized that these

are states of the MMI, not of Monsoon. Monsoon itself may be halted but the MMI is still in

the running state, for example, just after the machine halts but just before mini :run actually

returns to its caller.

The User side of the MMI knows what state the MMI is in based on the value returned from

the last call to mmi :run. When in the halted state, Monsoon is definately not executing code.

When in the background state, Monsoon may or may not be executing code. This is because

Monsoon continues to execute when mini :run returns an interrupt status. It may subsequently

execute a halt instruction or halt for some other reason, before mmi :run is called again. In that

case, the next call to mini:run will return immediately with a halt status value. More generally,

when mmi :run returns an interrupt status, Monsoon continues to execute in the background,

potentially generating a arbitrary number of interrupt events and possibly a halt event. While

the MMI is in the background state, interrupts and halts are queued, and subsequent calls to

mini :run will receive the corresponding status values, one call being needed to get the status

from each of the queued events. In other words, the sequence of values returned from a series

of calls to mini:run does not depend on the real time elapsed between calls.

While interrupts are queued while the MMI is in background mode, it should be noted

that Monsoon program-generated interrupts will often have associated with them some other

information, which the User side of the MMI can obtain by examining data memory. If a fixed

area of data memory is reserved for this purpose, a higher-level protocol must be implemented

to insure that Monsoon does not generate interrupts faster than the User side of the MMI can

process them.

The state of the MMI determines what MMI calls the User side of the MMI is allowed to

make. In the halted state, all MMI calls may be made. In the background state, only calls from

a restricted subset may be made. In the running state, the only legal calls are mmi :force-halt

and mmi :force-interrupt. The set of legal calls in the background state are:

• Calls that do not actually involve the Monsoon side of the MMI interface: all functions

in Sections 2.1.2, 2.1.3, and 2.1.4.

47 	 Version 003; January 1990

• Calls to read and write the data field of data memory: mini: read-dm-data-as-x, mini : write-
dm-data-as-x, mmi:blt-from-dm-data-as-x, and mini : blt -to-dm-data- as-x.

• Calls to read and write the type field of data memory: mini :read-dm-type, mini : write-
din-type, mini :blt-from-dm-type, and 	: bit-to-din-type.

• Calls to inject tokens: mini : inject-token-as-x.

• Machine control: mini :run, mini :force-halt, and mmi :force-interrupt.

Rationale: The calls permitted in background mode reflect the operations that may
be done to the Monsoon hardware while it. is executing. Technically, the hardware

limitations do not preclude the MMI from supporting other operations in the background

state; such operations would be performed on the hardware by halting the hardware,
scanning out all scannable state, using the scan rings to perform the MMI operation,

scanning the original state back in, and restarting Monsoon. This would be transparent

to the User side of the MMI (at least, if the User side program doesn't look at a real time

clock!). We can add this functionality later if we find it desirable; until then, it seems

like a good idea to limit background operations to what can be performed efficiently.

While Monsoon may be executing when the MMI is in the background state, in general the

User side of the MMI may only depend on Monsoon making progress when in the running state.

Suppose the MMI enters the background state as a result of a Monsoon program generated

interrupt. The User side services the interrupt by reading out some information from data

memory, writing some other information back into data memory, and finally injecting a token.

The User side may not depend on the injected token being executed, or even that the executing

program sees the data written in data memory, until the User side makes another call to

mmi :run. Another way of putting this is that when the MMI is in the background state,

Monsoon may be executing infinitely slowly. This restriction is necessary to accomodate the

software configuration where the User side of the MMI is directly linked with MINT (see

Section 1.4.2).

The only calls that can be made when the MMI is in the running state are mini :force-halt

and mini :force-interrupt. Note that when they from the running state, they are nested within

an in-progress call to mmi :run. The only way mmi :force-halt and mmi :force-interrupt

could be called in the running state is if they are called from an asynchronous event handler of

some sort, such as a "control-c" handler. In fact, mud:force-halt and mini :force-interrupt

are allowed to be called in the running state for exactly this purpose. The MMI does not

support user sides that do arbitrary multi-tasking; in particular, when mmi :force-halt and

mmi :force-interrupt are called in the running state, their execution must preempt all other

computation on the user side of the NIMI. This restriction is necessary for correct implementa-

tion of the MMI client protocol on Unix.

mmi : run 	
[Function]

Calling mini:run puts the MMI in the running state, returning when either an interrupt event

is generated, or when Monsoon halts. A status code is returned indicating what event caused

the interrupt or halt. If called from the background state, and interrupt and/or halt events

have occured since the last event returned by mini:run, mini : run returns immediately with the

status code corresponding to the oldest of those events (that is, the first event that happened

after the event returned by the previous call to mmi :run).

Version 003; January 1990
	

48

Mmi :run actually retuins three values: a status code, an integer of type =i :pe pe, and

an integer info. The status code returned from mmi :run is a keyword, indicating either a halt

reason or an interrupt rtason. The values pe and info give additional information for certain

halt and interrupt reasons. The halt reasons are as follows; the MMI is in the halted state after

one of these codes is returned. Unless otherwise specified, the returned values pe and info are

always zero.

:halt-instruction Monsoon executed an explicit halt instruction.

:halt-forced A call to mmi :force-halt was made.

:halt-timestep-finished The queueing system determined that the current timestep has

finished. The circumstances that cause this kind of halt depend on the current queueing

mode; the documentation for each queueing system should indicate what those circum-

stances are for each mode it supports. The info value is an integer giving the reason for

the timestep having finished, for those queueing systems which support this. The docu-

mentation for each queueing system should define the meanings of info values for those

modes that use it.

:halt-machine-idle There are no tokens left to process.

:halt-statistic-overflow A statistic register has overflowed. The offending register will

contain zero. The pe value indicates which PE had the overflow. (If the user wants to

detect which register overflowed, he must have initialized all registers to something other

than zero.)

:halt-queue-full One of the queueing system's queues has overflowed. On the Monsoon

hardware, this halt actually happens when the offending queue has a small number of

empty slots left, so that the token causing the overflow is not lost. Other queueing

systems should define what happens when this halt occurs. The values pe and info give

the PE number and queue number, repsectively, of the queue that overflowed.

:halt-machine-check A hardware fault such as a parity error has occured. The value pe

indicates which PE had the fault; info is a code identifying the kind of fault. For the

hardware, the possible values of info are 1 for a data path parity error and 2 for a presence

bit parity error.

The interrupt reasons are as follows; the IVIMI is in the background state after one of these

codes is returned. Unless otherwise specified, the returned values pe and info are always zero.

:intr-instruction Monsoon executed an explicit interrupt instruction. The value pe indi-

cates which PE caused the interrupt.

:intr-forced A call to mmi :force-interrupt was made.

:intr-input-fifo The input FIFO of the token network interface is full. The network con-

tinues to operate properly; this interrupt is for informational purposes only. The value pe

indicates which PE caused the interrupt.

:intr-output-fifo The output FIFO of the token network interface is full. The network

continues to operate properly; this interrupt is for informational purposes only. The

value pe indicates which PE caused the interrupt.

49 	 Version 003; January 1990

:intr-parc-counter A statistics counter on a network PARC chip has reached half of its
maximum value.

Some implementations of the Monsoon side of the MMI may not use all of these codes; in

particular, a software emulator is unlikely to return :halt-machine-check, intr-input-fifo,

: intr-output-f if o, or :intr-parc-counter.

Execution of mrni :run must not be thrown out of or otherwise terminated prematurely;

mmi :force-halt or mini :force-interrupt may be used to terminate rami:run in an orderly
fashion.

mini :force-halt 	 [Function]

mini :force-interrupt 	 [Function]

A call to mmi:force-halt causes Monsoon to halt immediately. The MMI will eventually

enter the halted state, with mmi:run returning :halt-forced. Exactly when 	i:run re-
turns :halt-forced depends on the state of the MMI when the call to mmi :force-halt was

made. If made in the halted state, then the next call to mmi :run will return immediately with

:halt-forced. If the MMI was in the background state, then there might be pending inter-

rupt and/or halt events; subsequent calls to mini :run will return the codes associated with those

events, but eventually a call will return :halt-forced. If the MMI was in the running state,

then either the in-progress call to mini. :run or some subsequent call will return :halt-forced,

again, depending on whether there were pending interrupt and/or halt events.

In all cases, mmi :force-halt causes the machine to halt as soon as possible, and eventu-

ally :halt-forced will be returned from mrni. : run. Once a call is made to mmi:force-halt,

however, no calls to mini :force-halt or mini force-interrupt should be made until some call

to mini:run returns :halt-forced; the returning of :halt-forced should be considered an ac-

knowledgement of the call to mini : force-halt. After a call to mini: force-halt, other calls to

mmi :force-halt or mmi : force-interrupt may or may not be ignored, until mmi :run returns

:halt-forced.

A call to mmi :force-interrupt does exactly the same thing as a call to mmi :force-halt,

with two differences: execution of Monsoon is not stopped, if it was running, and : intr-forced

is eventually returned from mini: run instead of :halt-forced. Note that mini :force-interrupt

may be called even when the MMI is in the halted state; if it is, the next call to mini :run will

immediately return :intr-forced, the MMI will be in the background state, but Monsoon

will not be executing. As with mmi :force-halt, after calling mmi :force-interrupt no sub-

sequent call to mmi :force-halt or force-interrupt should be made until mmi:run returns

:intr-forced.

2.6 C Interface

The C version of the MMI interface is very similar to the Common Lisp version. Most of the

changes are necessary because of characteristics of the C programming language. All differences

are summarized below:

• MMI functions and types in the C interface are uniformly prefixed with MMI_ or mmi_, as

appropriate; in the Common Lisp interface they are prefixed instead by mini:.

• The limits of various integer quantities are given slightly different names, reflecting dif-

ferent conventions used by C programmers. In the Common Lisp interface, an unsigned

Version 003; January 1990 	 50

quantity X would be described by an upper exclusive bound mmi:X-limit, while in the

C interface it is described by an upper inclusive bound MMI_X_MAX. In both the Com-

mon Lisp and C interfaces, a signed quantity Y is described by upper and lower inclusive

bounds, but while in the Common Lisp interface they are called mmi:most-positive-Y

and mini :most-negative-Y, in the C interface they are called MMI_Y_MAX and MMI_Y_MIN.

Note that in the C interface, limits always have the same type as the quantities they

describe (in the Common Lisp interface, the limit on unsigned quantities falls outside the

type, since it is an exclusive bound).

These remarks apply not only to limits described by compile-time constants, but also to

functions such as mmi_qn_max and mmi_statistic_max.

• In the C interface the limits on type types MMI_DM_BITS and MMI_DM_INTEGER are given

by functions of no arguments, rather than by compile-time constants. This is because

C does not permit compile-time constants of type MMI_DM_BITS or MMI_DM_INTEGER.

• The data structures representing tags and instructions have constructors and selectors

analogous to the Common Lisp interface, but they may also be constructed and selected

using C field name syntax. The C interface has no equivalent to the mmi:make-new-X

functions or the mrai:Xp predicates in the Common Lisp interface.

• In the C interface, the mmi_write_cim_ and mrni_write_im_ functions, as well as mmi_

write_queue_pointer and mmi_write_statistic are all of type VOID. In the Common

Lisp interface, they each return their data argument, so that they may be accessed via

sett. In the C interface, there is no construct comparable to Common Lisp's use of sett

with the read functions.

• The C interface's version of the mini :read-dm-dtp- functions is slightly different because

multiple values can only be returned through pointer arguments.

• The C interface's block transfer functions are slightly different owing to the lack of keyword

arguments in C (a lack that is partially compensated by the ability to pass pointers to

the middle of arrays in C).

• In the C interface, two sets of functions are provided for reading token queues. The

functions in the first set return the four components of a token as four return arguments.

The second set provides separate functions for reading each of the four components of a

token.

• The representation of the mode-am-types and mode-args arguments to the queueing mode

manipulation functions is different.

• The method of encoding the return value from mmi_run is different.

The following sections document the C version of the MMI interface. The MMI is written

in draft proposed ANSI C, as described in C: A Reference Manua/,3 and requires the scalar

and int64 packages from the MCRC C Language Support Libraries. The terms "integer type"

and "floating point type" are defined in the documentation of the scalar library, while the

term "INT64 type" is defined in the documentation of the int64 library.

3S. P. Harbison and G. L. Steele Jr., C: A Reference Manual, Prentice-Hall, Englewood Cliffs NJ, 1987.

51 	 Version 003; January 1990

2.6.1 Types and Sizes of Fields

MMI_DM_BITS
	

[Type]
MMI_DM_BITS mmi_dm_bits_max 0

	
[Function]

The type MMI_DM_BITS is the type used to pass the "bits" representation of data memory words
across the MMI. It is an unsigned INT64 type, as defined in the documentation of the MCRC
C Language Support Library int64. As such, it requires special functions for performing

arithmetic, provided by the int64 library. The function mmi_dm_bits_max returns the greatest
(inclusive) value of an MMI_DM_BITS (this is a function rather than a compile-time constant

because C does not permit the definition of compile-time INT64 constants).

MMI_DM_INTEGER 	 [Type]

MMI_DM_INTEGER mmi_dm_integer_max 	 [Function]

MMI_DM_INTEGER mmi_dm_integer_min () 	 [Function]

The type MMI_DM_INTEGER is the type used to pass the "integer" representation of data mem-

ory words across the MMI. It is a signed 1nt64 type, as defined in the documentation of the

MCRC C Language Support Library int64. As such, it requires special functions for per-

forming arithmetic, provided by the int64 library. The functions mrni_dm_integer_max and
mmi_dm_integer_min return the greatest and least (inclusive) values, respectively, of an MMI_

DM_INTEGER (these are functions rather than compile-time constants because C does not permit

the definition of compile-time int64 constants).

MMI_DM_FLOAT 	 [Type]
MMI_DM_FLOAT MMI_DM_FLOAT_MAX 	 [Constant]

MMI_DM_FLOAT MMI_DM_FLOAT_MIN 	 [Constant]

MMI_DM_FLOAT MMI_DM_FLOAT_EPSILON 	 [Constant]

MMI_DM_FLOAT MMI_DM_FLOAT_NEGATIVE_EPSILON 	 [Constant]

The type MMI_DM_FLOAT is the type used to pass the "integer" representation of data memory

words across the MMI. It is an opaque floating point type, as defined by the scalar package.

The four constants have the same meaning as for the Common Lisp interface.

MMI_TAG 	 [Type]

MMI_PORT 	 [Type]

MMI_MAP 	 [Type]

MMI_IP 	 [Type]

MMI_PE 	 [Type]

MMI_FP 	 [Type]

MMI_PORT MMI_PORT_MAX 	 [Constant]

MMI_MAP MMI_MAP_MAX 	 [Constant]

MMI_IP MMI_IP_MAX 	 [Constant]

MMI_PE MMI_PE_MAX 	 [Constant]

MMI_FP MMI_FP_MAX 	 [Constant]

The type MMI_TAG is the type used to pass the "tag" representation of data memory words

across the MMI. It is a struct of five fields, with constructors and selectors defined in the

next section. The types MMI_PORT, MMI_MAP, MMI_IP, MMI_PE, and MMI_FP are the types of the

values found in the slots of a MMI_TAG. The (inclusive) range of each of these types is zero

through the value of MMI_PORT_MAX, MMI_MAP_MAX, MMI_IP_MAX, MMI_PE_MAX, or MMI_FP_MAX,

Version 003; January 1990 	 52

as appropriate. MMI_PORT and MMI_MAP are opaque, unsigned integer types, as defined by the

scalar package. MMI_IP, MMI_PE, and MMI_FP are opaque, signed integer types; they are signed

types despite the fact that they range only over non-negative integers, to make it easier to use

them in arithmetic expressions involving other signed types.

MMI_TYPE 	 [Type]

MMI_TYPE MMI_TYPE_MAX 	 [Constant]

MMI_PRESENCE 	 [Type]
MMI_PRESENCE MMI_PRESENCE_MAX 	 [Constant]

The type MMI_TYPE is the return type of functions that return the type field of Monsoon data

memory, as well as the type of arguments which receive values for that field. MMI_PRESENCE is

analogous. Both MMI_TYPE and MMI_PRESENCE are opaque, unsigned integer types, and their

(inclusive) range is zero through the value of MMI_TYPE_MAX or MMI_PRESENCE_MAX, as appro-

priate.

MMI_IM_BITS
	

[Type]

MMI_IM_BITS MMI_IM_BITS_MAX
	

[Constant]

The type MICE _IM_BITS is the type used to pass the "bits" representation of instruction memory

words acrosss the MMI. It is an opaque, unsigned integer type, with (inclusive) range zero

through the value of MMI_IM_BITS_MAX.

MMI_INSTRUCTION 	 [Type]

MMI_OPCODE 	 [Type]

MMI_F1 	 [Type]

MMI_F2 	 [Type]

MMI_OPCODE MMI_OPCODE_MAX 	 [Constant]

MMI_F1 MMI_Fl_MAX 	 [Constant]

MMI_F2 MMI_F2_MAX 	 [Constant]

The type MMI_INSTRUCTION is the type used to pass the "instruction" representation of instruc-

tion memory words across the MMI. It is a struct of three fields, with constructors and selectors

defined in the next section. The types MMI_OPCODE, MMI_Fl, and MMI_F2 are the types of the

values found in the slots of an MMI_INSTRUCTION. All three of these types are opaque, unsigned

integer types, with (inclusive) range zero through the value of MMI_OPCODE_MAX, MMI_Fl_MAX,

or MMI_F2_MAX, as appropriate.

Additional constructors and selectors for viewing subfields of Fl and F2 are defined in the

next section.

2.6.2 Constructors and Selectors

Tags and instructions are advertised as structs, which are always passed by value to and

from MMI functions. Good style would normally be to use these types immutably. The usual

constructor and selector functions are provided to support this style. Unfortunately, the con-

structor function may entail procedure calling overhead with compilers that do not support

inline function substitution, and there is no way of expressing the constructor as a C macro.

To help alleviate this deficiency, the field names of the MMI_TAG and MMI_INSTRUCTION structs

are advertised, so that they can be initialized with assignment statements on individual fields.

The order of the fields is not advertised, however, so the use of brace-enclosed initializer lists

is not permitted with these types.

53 	 Version 003; January 1990

MMI_TAG mmi_make_tag (MMI_PORT port, MMI_MAP

MMI_PE pe, MMI_FP fp)

MMI_PORT mmi_tag_port (MMI_TAG tag)

MMI_MAP mmi_tag_map (MMI_TAG tag)

MMI_IP mmi_tag_ip (MMI_TAG tag)

MMI_PE mmi_tag_pe (MMI_TAG tag)

MMI_FP mmi_tag_fp (MMI_TAG tag)

map, MMI_IP ip, 	[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

The function mmi_make_tag returns a tag with the given values as components. Note that since

it returns the tag by value, mmi_make_tag does no storage allocation. The function mmi_tag_

port returns the port field of a tag; the other four selectors are analogous.

port
	

[Field Name]

map
	

[Field Name]

ip
	

[Field Name]

pe
	

[Field Name]

fp
	

[Field Name]

Each is the field name of one of the five slots of a MMI_TAG struct, and may be used to fetch

from or assign to a slot of an MMI_TAG. The type of these fields are MMI_PORT, MMI_MAP, MMI_IP,

MMI_PE, and MMI_FP, as appropriate.

MMI_INSTRUCTION mmi_make_instruction (MMI_OPCODE opcode, MMI_Fl fl,

MMI_F2 f2)

MMI_OPCODE mmi_instruction_opcode (MMI_INSTRUCTION instruction)

MMI_F1 mmi_instruction_fl (MMI_INSTRUCTION instruction)

MMI_F2 mmi_instruction_f2 (MMI_INSTRUCTION instruction)

opcode

fl

f2

[Function]

[Macro]

[Macro]

[Macro]

[Field Name]

[Field Name]

[Field Name]

These constructors, selectors, and field names are entirely analogous to those for MMI_TAGs, but

apply to MMI_INSTRUCTIONs.

MMI_S_1
	

[Type]

MMI_S_2
	

[Type]

MMI_S_1 MMI_S_l_MAX
	

[Constant]

MMI_S_1 MMI_S_l_MIN
	

[Constant]

MMI_S_2_MAX
	

[Constant]

MMI_S_2 MMI_S_2_MIN
	

[Constant]

MMI_LONG_R
	

[Type]

MMI_LONG_R MMI_LONG_R_MAX
	

[Constant]

MMI_R
	

[Type]

MMI_REG
	

[Type]

MMI_R MMI_R_MAX
	

[Constant]

MMI_REG MMI_REG_MAX
	

[Constant]

The types MMI_S_1, MMI_S_2, MMI_LONG_R, MMI_R, and MMI_REG are exactly as defined in the

Common Lisp interface: they are various views of the Fl and r2 fields of instructions. MMI_

S_1 and MMI_S_2 are opaque, signed integer types, with inclusive ranges given by the four

constants as shown. MMI_REG is an opaque, unsigned integer type, with inclusive range from

Version 003; January 1990 	 54

zero through the value of MMI_REG_MAX. MMI_LONG_R and MMI_R are opaque, signed integer types,

with inclusive ranges from zero through the value of the appropriate constant. MMI_LONG_R and

MMI_R are signed types, despite their ranging only over non-negative integers, to make it easier

to use them in arithmetic expressions with other signed types.

MMI_PORT mmi_fl_port (MMI_Fl fl) 	 [Function]

MMI_S_1 mmi_fl_s (MMI_Fl f1) 	 [Function]

MMI_F1 mmi_make_f1 (MMI_PORT port, MMI_S_1 s) 	 [Function]

MMI_PORT mmi_f2_port (MMI_F2 f2) 	 [Function]

MMI_S_2 mmi_f2_s (MMI_F2 f2) 	 [Function]

MMI_F2 mmi_make_f2 (MMI_PORT port, MMI_S_2 s) 	 [Function]

MMI_F1 mmi_long_r_f1 (MMI_LONG_R r) 	 [Function]

MMI_F2 mmi_long_r_f2 (MMI_LONG_R r) 	 [Function]

MMI_PORT mmi_instruction_port_l (MMI_INSTRUCTION instruction) 	[Function]

MMI_S_1 mmi_instruction_s_1 (MMI_INSTRUCTION instruction) 	[Function]

MMI_PORT mmi_instruction_port_2 (MMI_INSTRUCTION instruction) 	[Function]

MMI_S_2 mmi_instruction_s_2 (MMI_INSTRUCTION instruction) 	[Function]

MMI_LONG_R mmi_n_f2_1ong_r (MMI_F1 f1, MMI_F2 f2) 	[Function]

MMI_LONG_R mmi_instruction_long_r (MMI_INSTRUCTION instruction) 	[Function]

MMI_INSTRUCTION mmi_make_instruction_long_r (MMI_OPCODE opcode, 	[Function]

MMI_LONG_R r)

MMI_R mmi_instruction_r (MMI_INSTRUCTION instruction) 	[Function]

MMI_REG mmi_instruction_reg (MMI_INSTRUCTION instruction) 	[Function]

These functions for viewing the subfields of the Fl and r2 fields of instructions are exactly as

defined in the Common Lisp interface.

MMI_DM_INTEGER mmi_bits_to_integer (MMI_DM_BITS bits) 	[Function]

MMI_DM_FLOAT mmi_bits_to_float (MMI_DM_BITS bits) 	 [Function]

MMI_TAG mmi_bits_to_tag (MMI_DM_BITS bits) 	 [Function]

MMI_DM_BITS mmi_integer_to_bits (MMI_DM_INTEGER integer) 	[Function]

MMI_DM_FLOAT mmi_integer_to_float (MMI_DM_INTEGER integer) 	[Function]

MMI_TAG mmi_integer_to_tag (MMI_DM_INTEGER integer) 	[Function]

MMI_DM_BITS mmi_float_to_bits (MMI_DM_FLOAT f) 	 [Function]

MMI_DM_INTEGER mmi_float_to_integer (MMI_DM_FLOAT f) 	[Function]

MMI_TAG mmi_float_to_tag (MMI_DM_FLOAT f) 	 [Function]

MMI_DM_BITS mmi_tag_to_bits (MMI_TAG tag) 	 [Function]

MMI_DM_INTEGER mmi_tag_to_integer (MMI_TAG tag) 	 [Function]

MMI_DM_FLOAT mmi_tag_to_float (MMI_TAG tag) 	 [Function]

MMI_INSTRUCTION mmi_bits_to_instruction (MMI_BITS bits) 	[Function]

MMI_IM_BITS mmi_instruction_to_bits (MMI_INSTRUCTION instruction) 	[Function]

These conversion functions are exactly as defined in the Common Lisp interface.

2.6.3 Reading and Writing Memory

The functions for reading and writing memory are for the most part exactly the same as the

corresponding functions in the Common Lisp interface. The "dtp" functions as well as the

block transfer functions have slightly different interfaces, owing to differences between C and

Lisp.

55 	 Version 003; January 1990

MMI_DM_BITS mmi_read_dm_data_as_bits (MMI_PE pe, MMI_FP address) 	[Function]

MMI_DM_INTEGER mmi_read_dm_data_as_integer (MMI_PE pe, 	[Function]

MMI_FP address)

MMI_DM_FLOAT mmi_read_dm_data_as_float (MMI_PE pe, MMI_FP address) 	[Function]

MMI_TAG mmi_read_dm_data_as_tag (MMI_PE pe, MMI_FP address) 	[Function]

MMI_TYPE mmi_read_dm_type (MMI_PE pe, MMI_FP address) 	[Function]

MMI_PRESENCE mmi_read_dm_presence (MMI_PE pe, MMI_FP address) 	[Function]

VOID mmi_write_dm_data_as_bits (MMI_PE pe, MMI_FP address, 	[Function]

MMI_DM_BITS integer)

VOID mmi_write_dm_data_as_integer (MMI_PE pe, MMI_FP address, 	[Function]

MMI_DM_INTEGER integer)

VOID mmi_write_dm_data_as_float (MMI_PE pe, MMI_FP address, 	[Function]

MMI_DM_FLOAT

VOID mmi_write_dm_data_as_tag (MMI_PE pe, MMI_FP address, 	[Function;

MMI_TAG tag)

VOID mmi_write_dm_type (MMI_PE pe, MMI_FP address, MMI_TYPE integer) [Function]

VOID mmi_write_dm_presence (MMI_PE pe, MMI_FP address, 	[Function]

MMI_PRESENCE integer)

MMI_IM_BITS mmi_read_im_data_as_bits (MMI_PE pe, MMI_IP address) 	[Function]

MMI_INSTRUCTION mmi_read_im_data_as_instruction (MMI_PE pe, 	[Function]

MMI_IP address)

VOID mmi_write_im_data_as_bits (MMI_PE pe, MMI_IP address, 	[Function]

MMI_IM_BITS integer)

VOID mmi_write_im_data_as_instruction (MMI_PE pe, MMI_IP address, 	[Function]

MMI_INSTRUCTION instruction)

These functions are exactly as described in the Common Lisp interface.

[Function]

[Function]

[Function]

[Function]

[Function]

VOID mmi_read_dm_dtp_as_bits (MMI_PE pe, MMI_FP address,

return MMI_DM_BITS *data,

return MMI_TYPE *type,

return MMI_PRESENCE *presence)

VOID mmi_read_dm_dtp_as_integer (MMI_PE pe, MMI_FP address,

return MMI_DM_INTEGER *data,

return MMI_TYPE *type,

return MMI_PRESENCE *presence)

VOID mmi_read_dm_dtp_as_float (MMI_PE pe, MMI_FP address,

return MMI_DM_FLOAT *data,

return MMI_TYPE *type,

return MMI_PRESENCE *presence)

VOID mmi_read_dm_dtp_as_tag (MMI_PE pe, MMI_FP address,

return MMI_TAG *data,

return MMI_TYPE *type,

return MMI_PRESENCE *presence)

VOID mmi_write_dm_dtp_as_bits (MMI_PE pe, MMI_FP address,

MMI_DM_BITS data, MMI_TYPE type,

MMI_PRESENCE presence)

Version 003; January 1990 	 56

VOID mmi_write_dm_dtp_as_integer (MMI_PE pe, MMI_FP address, 	[Function]

MMI_DM_INTEGER data, MMI_TYPE type,

MMI_PRESENCE presence)

VOID mmi_write_dm_dtp_as_float (MMI_PE pe, MMI_FP address, 	[Function]

MMI_DM_FLOAT data, MMI_TYPE type,

MMI_PRESENCE presence)

VOID mmi_write_dm_dtp_as_tag (MMI_PE pe, MMI_FP address, 	[Function]

MMI_DM_TAG data, MMI_TYPE type,

MMI_PRESENCE presence)

These functions are exactly as described in the Common Lisp interface. But because C does not

permit multiple return values, the three results returned by the mmi_read_dm_dtp_ functions

are returned by side-effecting the variables pointed to by the last three arguments.

VOID mmi_blt_from_dm_data_as_bits (MMI_PE pe, MMI_FP start_address, 	[Function]

MMI_FP end_address,

MMI_DM_BITS to_arrayE)

VOID mmi_blt_from_dm_data_as_integer (MMI_PE pe, 	 [Function]

MMI_FP start_address,

MMI_FP end_address,

MMI_DM_INTEGER to_array[])

VOID mmi_blt_from_dm_data_as_float (MMI_PE pe, MMI_FP start_address, [Function]

MMI_FP end_address,

MMI_DM_FLOAT to_array[3)

VOID mmi_blt_from_dm_data_as_tag (MMI_PE pe, MMI_FP start_address, 	[Function]

MMI_FP end_address,

MMI_TAG to_array[])

VOID mmi_blt_from_dm_type (MMI_PE pe, MMI_FP start_address, 	[Function]

MMI_FP end_address, MMI_TYPE to_array[])

VOID mmi_blt_from_dm_presence (MMI_PE pe, MMI_FP start_address, 	[Function]

MMI_FP end_address,

MMI_PRESENCE to_array[])

VOID mmi_blt_to_dm_data_as_bits (MMI_DM_BITS from_arrayD, MMI_PE pe, [Function]

MMI_FP start_address,

MMI_FP end_address)

VOID mmi_blt_to_dm_data_as_integer (MMI_DM_INTEGER from_array[], 	[Function]

MMI_PE pe, MMI_FP start_address,

MMI_FP end_address)

VOID mmi_blt_to_dm_data_as_float (MMI_DM_FLOAT from_arrayD, 	[Function]

MMI_PE pe, MMI_FP start_address,

MMI_FP end_address)

VOID mmi_blt_to_dm_data_as_tag (MMI_TAG from_arrayD, MMI_PE pe, 	[Function]

MMI_FP start_address,

MMI_FP end_address)

VOID mmi_blt_to_dm_type (MMI_TYPE from_array[], MMI_PE pe, 	[Function]

MMI_FP start_address, MMI_FP end_address)

VOID mmi_blt_to_dm_presence (MMI_PRESENCE from_array[], MMI_PE pe, 	[Function]

MMI_FP start_address,

MMI_FP end_address)

57 	 Version 003; January 1990

Argument's C Type Argtype Value Argument's C Type
	

Argtype Value

MMI_QMA_DM_BITS

MMI_QMA_DM_INTEGER

MMI_QMA_DM_FLOAT

MMI_QMA_TAG

MMI_QMA_PORT

MMI_QMA_MAP

MMI_QMA_IP

MMI_QMA_PE

MMI_QMA_FP

MMI_QMA_TYPE

MMI_QMA_PRESENCE

MMI_QMA_IM_BITS

MMI_QMA_INSTRUCTION

MMI_QMA_OPCODE

MMI_QMA_Fl

MMI_QMA_F2

MMI_DM_BITS

MMI_DM_INTEGER

MMI_DM_FLOAT

MMI_TAG

MMI_PORT

MMI_MAP

MMI_IP

MMI_PE

MMI_FP

MMI_TYPE

MMI_PRESENCE

MMI_IM_BITS

MMI_INSTRUCTION

MMI_OPCODE

MMI_Fl

MMI_F2

MMI_QMA_S_1

MMI_QMA_S_2

MMI_QMA_LONG_R

MMI_QMA_R

MMI_QMA_REG

MMI_QMA_QN

MMI_QMA_QP

MMI_QMA_QPN

MMI_QMA_STATISTIC_N

MMI_QMA_STATISTIC_VALUE

MMI_QMA_AUINT32

MMI_QMA_ASINT32

MMI_QMA_DFLOAT

MMI_QMA_CHARACTER

MMI_QMA_STRING

MMI_QMA_KEYWORD

MMI_S_1

MMI_S_2

MMI_LONG_R

MMI_R

MMI_REG

MMI_QN

MMI_QP

MMI_QPN

MMI_STATISTIC_N

MMI_STATISTIC_VALUE

auINT32

asINT32

dFLONUM

CHARACTER

STRING

KEYWORD

Figure 2.3: Queueing Mode Argument Types (C Version)

VOID mmi_blt_from_im_as_bits (MMI_PE pe, MMI_IP start_address, 	[Function]

MMI_IP end_address,

MMI_IM_BITS to_array[])

VOID mmi_blt_from_im_as_instruction (MMI_PE pe, MMI_IP start_address, [Function]

MMI_IP end_address,

MMI_INSTRUCTION to_array[])

VOID mmi_blt_to_im_as_bits (MMI_IM_BITS from_array[3, MMI_PE pe, 	[Function]

MMI_IP start_address, MMI_IP end_address)

VOID mmi_blt_to_im_as_instruction (MMI_INSTRUCTION from_array[], 	[Function]

MMI_PE pe, MMI_IP start_address,

MMI_IP end_address)

These block transfer functions are exactly as described in the Common Lisp interface, except

in how the number of words to be transfered is specified. For all functions above, the number

of words transferred is:

end_address - start_address + 1

The words are transferred to or from the given array beginning with element zero, but note

that

mmi_blt_from_dm_data_as_bits(pe, start, end, 8/(a[53));

has the effect of transferring data into a beginning with element five. This capability in C

largely compensates for the simpler interface compared to the Common Lisp block transfer

functions.

2.6.4 Token Queues

MMI_QMODE_ARGTYPE
	

[Type]

Version 003; January 1990
	

58

MMI_QMODE_ARG 	 [Type]

BOOLEAN mmi_select_queueing_system (KEYWORD name, KEYWORD mode, 	[Function]

asINT32 n_args,
MMI_QMODE_ARGTYPE argtypes[],
MMI_QMODE_ARG mode_args)

BOOLEAN mmi_select_queueing_mode (KEYWORD mode, asINT32 n_args, 	[Function]

MMI_QMODE_ARGTYPE argtypes[],
MMI_QMODE_ARG args)

These functions have the same behavior as in the Common Lisp interface, but the methods

of passing arguments is slightly different. To specify the queueing mode parameters to mmi_
select_queueing_system and nuni_select_queueing_mode, three arguments are passed. n_

args gives the number of arguments, args is an array of the parameters, and argtypes is

an array each of element of which indicates the type of the c,,:-responding parameter. Hence,

the argtypes and args arrays are analogous to the mode-c7- _ - types and mode-args arguments

in the Common Lisp interface. Each element of argtypes is of type MMI_QMODE_ARGTYPE, an

enumeration type whose values are given in the "Argtype Value" columns of Figure 2.3. Each

element of args is a of type MMI_QMODE_ARG, a union of the types given in the "C Type" columns

of Figure 2.3. The union tags of each arm of the MMI_QMODE_ARG type may be found by removing

the MMI_QMA_ prefix from the corresponding MMI_QMODE_ARGTYPE value, and converting to all

lowercase. For example, if argtypes [3] is MMI_QMA_ASINT32, then the corresponding argument

is (args [3]) . asint32, which is of type asINT32. If argtypes [4] is MMI_QMA_DM_BITS, then

the argument is (args [4]) . cim_bits, of type MMI_DM_BITS.
The implementation of mmi_select_queueing_system and mmi_select_queueing_mode is

not permitted to keep pointers to the argtypes and args, so that the caller of these functions

may deallocate these arrays after the calls return.

As in the Common Lisp interface, it is recommended that the author of each queueing

system provide higher-level functions that sit on the MMI, hiding the encoding of parameters

into the argtypes and args arrays. For example, the select-n-step-mode example given in

the documentation of the Common Lisp interface would be rendered in C as follows:

VOID select_n_step_mode (auINT32 n)
KEYWORD mode = name_keyword("N-STEP") ;
MMI_QMODE_ARGTYPE argtypes [1] = {MMI_QMA_AUINT32};

MMI_QMODE_ARG args [1] ;
(args [O]) . auint32 = n;
return(mmi_select_queueing_mode (mode , 1, argtypes args));

While this example shows the argtypes array being contructed each time select_n_step_mode
is called, an alternative implementation could construct this array once and use it each time

select _n_step_mode is called.

VOID mmi_reset_queueing_system () 	 [Function]

This function is the same as in the Common Lisp implementation.

59 	 Version 003; January 1990

asINT32 mrni_current_queueing_mode (asINT32 max_args, 	 [Function]

return KEYWORD *name,
return KEYWORD *mode,

return MMI_QMODE_ARGTYPE argtypes C] ,
return MMI_QMODE_ARG args [3)

This function has the same behavior as in the Common Lisp interface, but the methods of

receiving results is different. It returns the current queueing system name and the current

mode name by storing into the variables pointed to by the name and mode arguments, and

stores the current argtype and args values into the arrays given. The argument max_args

limits the number of values stored: if the actual number of parameters for the current queueing

mode is greater than max_args, then only the first max_args types and arguments will be stored

into argtypes and args. If the actual number of parameters is fewer than max_args, however,

then elements of argtypes and args beyond those parameters will remain unmodified. The

value returned from mmi_current_queueing_mode indicates the actual number of parameters

for the current queueing mode; the number of elements of argtypes and args modified will be

the lesser of this number and max_args. Either of name or mode may be the null pointer to

suppress the returning of those values.

A max_args value of zero may be given in conjunction with null pointers for the remaining

arguments to find out how many parameters the current queueing mode has, in preparation

for a second call to mmi_current_queueing_mode. To illustrate, the following code fragment

leaves the current queueing mode unchanged, except that the queueing system is reset.

asINT32 n_args = mmi_current_queueing_mode(0, NULL, NULL, NULL, NULL);

KEYWORD name;
KEYWORD mode;
MMI_QMODE_ARGTYPES *argtypes =

(MMI_QMODE_ARGTYPES *)malloc(n_args * sizeof (MMI_QMODE_ARGTYPE)) ;

MMI_QMODE_ARGS *args =
(MMI_QMODE_ARGS *)malloc(n_args 	sizeof (MMI_QMODE_ARG));

mmi_current_queueing_mode(n_args , &name, &mode, argtypes, args);

select_current_queueing_mode(narne, mode, n_args, argtypes, args);

MMI_EVENT mmi_run 	 [Function]

VOID mmi_advance_timestep () 	 [Function]

These functions have the same behavior as in the Common Lisp interface, and are described in

Section 2.6.6.

MMI_QN 	 [Type]

MMI_QP 	 [Type]

MMI _QPN 	 [Type]

QN mmi_qn_max (MMI_PE pe) 	 [Function]

QP mmi_qp_max (MMI_PE pe, MMI_QN qn) 	 [Function]

QPN mmi_qpn_max (MMI_PE pe, MMI_QN qn) 	 [Function]

These types and functions are the same as in the Common Lisp interface. All three types

are opaque, signed integer types. They are signed types, despite their ranging only over non-

Version 003; January 1990 	 60

negative integers, to make it easier to use them in arithmetic expressions with other signed

types.

VOID mmi_read_queue_as_bits (MMI_PE pe, MMI_QN qn, MMI_QP address, 	[Function]

return MMI_TYPE *tag_type,

return MMI_TAG *tag_data,

return MMI_TYPE *value_type,

return MMI_DM_BITS *value_data)

VOID mmi_read_queue_as_integer (MMI_PE pe, MMI_QN qn, MMI_QP address, [Function]

return MMI_TYPE *tag_type,

return MMI_TAG *tag_data,

return MMI_TYPE *value_type,

return MMI_DM_INTEGER *value_data)

VOID mmi_read_queue_as_float (MMI_PE pe, MMI_QN qn, MMI_QP address, 	[Function]

return MMI_TYPE *tag_type,

return MMI_TAG *tag_data,

return MMI_TYPE *value_type,

return MMI_DM_FLOAT *value_data)

VOID mmi_read_queue_as_tag (MMI_PE pe, MMI_QN qn, MMI_QP address, 	[Function]

return MMI_TYPE *tag_type,

return MMI_TAG *tag_data,

return MMI_TYPE *value_type,

return MMI_TAG *value_data)

These functions are exactly as described in the Common Lisp interface. But because C does

not permit multiple return values, the four results are returned by side-effecting the variables

pointed to by the last four arguments.

MMI_DM_BITS mmi_read_queue_value_data_as_bits (MMI_PE pe, MMI_QN qn, [Function]

MMI_QP address)

MMI_DM_INTEGER mmi_read_queue_value_data_as_integer (MMI_PE pe, 	[Function]

MMI_QN qn,

MMI_QP address)

MMI_DM_FLOAT mmi_read_queue_value_data_as_float (MMI_PE pe, 	[Function]

MMI_QN qn,

MMI_QP address)

MMI_TAG mmi_read_queue_value_data_as_tag (MMI_PE pe, MMI_QN qn, 	[Function]

MMI_QP address)

MMI_TYPE mmi_read_queue_value_type (MMI_PE pe, MMI_QN qn, 	[Function]

MMI_QP address)

MMI_TAG mmi_read_queue_tag_data (MMI_PE pe, MMI_QN qn, 	[Function]

MMI_QP address)

MMI_TYPE mmi_read_queue_tag_type (MMI_PE pe, MAN qn, 	 [Function]

MMI_QP address)

These are alternative functions for reading token queues that do not return values by side-

effecting arguments. Instead, separate functions are provided for reading each of the four

components of a token.

61 	 Version 003; January 1990

VOID mmi_write_queue_as_bits (MMI_PE pe, MMI_QN qn, MMI_QP address, 	[Function]

MMI_TYPE tag_type, MMI_TAG tag_data,

MMI_TYPE value_type,

MMI_DM_BITS value_data)

VOID mmi_write_queue_as_integer (MMI_PE pe, MMI_QN qn, 	[Function]

MMI_QP address, MMI_TYPE tag_type,

MMI_TAG tag_data,

MMI_TYPE value_type,

MMI_DM_INTEGER value_data)

VOID mmi_write_queue_as_float (MMI_PE pe, MMI_QN qn, MMI_QP address, [Function]

MMI_TYPE tag_type, MMI_TAG tag_data,

MMI_TYPE value_type,

MMI_DM_FLOAT value_data)

VOID mmi_write_queue_as_tag (MMI_PE pe, MMI_QN qn, MMI_QP address, 	[Function]

MMI_TYPE tag_type, MMI_TAG tag_data,

MMI_TYPE value_type, MMI_TAG value_data)

VOID mmi_inject_token_as_bits (MMI_PE pe, MMI_TYPE tag_type, 	[Function]

MMI_TAG tag_data, MMI_TYPE value_type,

MMI_DM_BITS value_data)

VOID mmi_inject_token_as_integer (MMI_PE pe, MMI_TYPE tag_type, 	[Function]

MMI_TAG tag_data,

MMI_TYPE value_type,

MMI_DM_INTEGER value_data)

VOID mmi_inject_token_as_float (MMI_PE pe, MMI_TYPE tag_type, 	[Function]

MMI_TAG tag_data,

MMI_TYPE value_type,

MMI_DM_FLOAT value_data)

VOID mmi_inject_token_as_tag (MMI_PE pe, MMI_TYPE tag_type, 	[Function]

MMI_TAG tag_data, MMI_TYPE value_type,

MMI_TAG value_data)

These functions are exactly as described in the Common Lisp interface.

MMI_QP mmi_read_queue_pointer (MMI_PE pe, MMI_QN qn, MMI_QPN pointer) [Function]

VOID mmi_write_queue_pointer (MMI_QP new_value, MMI_PE pe, MMI_QN qn, [Function]

MMI_QPN pointer)

These functions are exactly as described in the Common Lisp interface.

2.6.5 Statistics Registers

MMI_STATISTIC_N 	 [Type]

MMI_STATISTIC_VALUE 	 [Type]

MMI_STATISTIC_N mmi_statistic_max (MMI_PE pc) 	 [Function]

MMI_STATISTIC_VALUE mmi_statistic_value_max (MMI_PE pe, 	[Function]

MMI_STATISTIC_N statistic)

MMI_STATISTIC_VALUE mmi_read_statistic (MMI_PE pe, 	[Function]

MMI_STATISTIC_N statistic)

Version 003; January 1990 	 62

VOID mmi_write_statistic (MMI_PE pe, MMI_STATISTIC_N statistic, 	[Function]

MMI_STATISTIC_VALUE new_value)

VOID mmi_clear_statistics (MMI_PE pe) 	 [Function]

These types and functions are exactly as described in the Common Lisp interface. MMI_

STATISTIC_N is an opaque, signed integer type. It is signed, despite its ranging only over

non-negative integers, to make it easier to use in arithmetic expressions with other signed

types. MMI_STATISTIC_VALUE is an unsigned INT64 type; arithmetic on values of this type

must be done using the functions provided by the int64 package.

2.6.6 Machine Control

The function rami_run has identical behavior and restrictions as its Common Lisp counterpart.

The only difference is in how it returns its results: rather than returning three values, it returns

a three-component struct by value.

MMI_EVENT 	 [Type]

The return type of mmi_run, describing a halt or interrupt event. It is a three component

struct, whose components are the event type, the PE (when appropriate), and an additional

value (when appropriate). These components correspond to the status code, pe, and info

returned by the Common Lisp function mmi :run.

MMI_EVENT mmi_make_event (MMI_EVENT_TYPE event_type, MMI_PE pe, 	[Function]

asINT32 info)

MMI_EVENT_TYPE mmi_event_event_type (MMI_EVENT event) 	 [Macro]

MMI_PE mmi_event_pe (MMI_EVENT event) 	 [Macro]

asINT32 mmi_event_info (MMI_EVENT event) 	 [Macro]

event_type 	 [Field Name]

pe 	 [Field Name]

info 	 [Field Name]

The function mmi_make_event returns an MMI_EVENT struct with the given values as compo-

nents. The three selector functions each return a component of such a struct. The field names

may also be used to fetch from or assign to an MMI_EVENT.

MMI_EVENT_TYPE 	 [Type]

The type MMI_EVENT_TYPE is an enumeration type, whose members are analogous to the

keywords that can be returned from mmi_run in the Common Lisp interface. The values

that can be returned are: MMI_HALT_INSTRUCTION, MMI_HALT_FORCED, MMI_HALT_TIMESTEP_

FINISHED, MMI_HALT_MACHINE_IDLE, MMI_HALT_STATISTIC_OVERFLOW, MMI_HALT_QUEUE_FULL,

MMI_HALT_MACHINE_CHECK, MMI_INTR_INSTRUCTION, MMI_INTR_FORCED, MMI_INTR_INPUT_FIFO,

MMI_INTR_OUTPUT_FIFO, and MMI_INTR_PARC_COUNTER. They have the same meaning as in the

Common Lisp interface, and imply the same interpretations of the other components of the

MMI_EVENT.

MMI_EVENT mmi_run () 	 [Function]

VOID mmi_force_halt () 	 [Function]

VOID mmi_force_interrupt () 	 [Function]

The functions mrni_run, mmi_force_halt, and mmi_force_interrupt are exactly as in the

Common Lisp interface, with the same restrictions and interrelationships.

63 	 Version 003; January 1990

Version 003; January 1990 	 64

Chapter 3

Proto-Memory Manager

There are several components of the complete Monsoon software system that compete for

Monsoon's memory. For example, the loader needs an area in which to load code, while the

run time system controls space used for activation frames and I-structures. This division of

memory cannot be a permanent part of these programs, as it will change depending on the

machine configuration (not to mention the software configuration!). This chapter defines a

data structure and protocol, called the Proto-Memory Manager (PMM), that allows the initial

set of Monsoon resources to be divvied up dynamically among the various software components

that compete for them. Hence, the PMM serves not only to allocate machine resources to

software components, but also is the chief means the software programs have for determining

the machine configuration.

The simplest possible PMM would be a single pointer to the lowest unused memory location;

then a program (loader, run time system, etc.) could obtain some memory by simply advancing

this pointer by as many words as were needed. Unfortunately, the PMM for Monsoon is a bit

more complex, due in part to the following considerations:

• There are multiple PE's, and hence multiple address spaces.

• Even within a single PE there may be several spaces (e.g.instruction memory and data

memory). Moreover, different spaces may have different characteristics, and may not

be uniformly distributed among PE's (e.g., the spaces found on I-structure boards have

different characteristics than those on PE boards).

• A logical area may be composed of many physical segments. For exarnple, the I-structure

area managed by the run time system is comprised of the memories on all I-structure

boards.

• The segments composing a logical area may be interrelated. For example, the segments

of instruction memory comprising the code area managed by the loader must have syn-

chronized IP addresses.

The Proto-Memory Manager, therefore, is designed to manage multiple segments in multiple

memory spaces.

It is important to understand that the Proto-Memory Manager is not truly a piece of

software. More accurately, it is a data structure which describes the current status of all

memory spaces under its control. A program such as the loader or run time system which

desires a new memory segment obtains it by modifying the contents of this data structure.

65

Another view is that there are several proto-memory allocators, each a part of some other

program such as the loader or run time system. They may run on Monsoon itself or on the

host, but they share a single data structure. Note that the PMM is expected to be used only

at "boot" or system initialization time, so that conflict between the users of the data structure

is not an issue (at least in the present view of the total system). Also for this reason, the PMM

data structure is designed for simplicity, rather than to optimize the performance of allocation
algorithms.

Throughout this chapter, the term "PMM user" is used to denote a program such as the

loader or run time system which obtains or releases resources through the PMM.

3.1 Spaces, Areas, and Regions

There are three entities described by the PMM data structure: spaces, areas, and regions.

A space is a contiguous resource under management by the PMM. A region is a contiguous

subdivision of a space, either allocated to a program or not yet allocated. An area is a collection

of regions allocated to some program, which treats them as a logical unit. The PMM also

associates an area with each space, containing all free regions in that space.

The maximum number of spaces, areas, and regions are each fixed at the time the PMM is

initialized, and thereafter cannot be changed.

Rationale: This restriction allows the PMM data structure to be of fixed size. Note,
however, that the maximum number of spaces, areas, and regions is not wired into any
program. These numbers will likely vary with machine configuration, not to mention as
experience is accumulated.

3.L1 Spaces

A space is a contiguous region of a single kind of memory located on a single processor. Examples

of a space include: the instruction memory of a PE, the portion of the data memory accessible

through absolute-FP addressing, the memory on an I-structure board, etc. More generally, a

space is any resource consisting of elements addressed by consecutive unsigned integers, such

that all elements are accessed through the same mechanism (e.g., all elements are accessed

through read-dm- and write-dm- calls). While spaces cannot span processors or the address

spaces within a processor, the PMM does not impose any restrictions on how address spaces

within one processor are subdivided into PMM spaces; for example, the data memory of PE 3

could be described as a single PMM space, or many (disjoint) PMM spaces. (A potentially

useful example of this would be to divide the data memory of each PE into two PMM spaces:

absolute-FP addressable and not absolute-FP addressable.)

A space is characterized by a type and a pe value; each space described by the PMM has

a unique type/pe pair. The type says what kind of memory or resource the space describes.

Examples might include instruction memory, absolute-FP addressable data memory, host mem-

ory, etc. The pe says which of many such memories or resources the space describes. Typically,

this is a processor number, hence the name "pe."

The type/pe pair determines how a space is accessed through the Monsoon Machine Inter-

face (MMI). The type determines which set of procedures is to be used; e.g., read-dm- and

write-dm- vs. read-im- and write-urn-. Most sets of MMI procedures require a pe argument,

and the pe attribute of a space supplies the appropriate value. (The other argument required

by MMI procedures is, of course, an address, and the description of a PMM space also includes

Version 003; January 1990 	 66

the bounds on the address for the space.) From the most general point of view, then, it is

only by convention that type and pe are interpreted as memory type and processor ID: they

are really just parameters which indicate how to access the space through the MMI.

The type attribute can convey more than just which MMI procedures are applicable. For

example, processor data memory and I-structure board memory will probably both be accessed

via read-din- and write-din- calls, but will carry different type attributes in the PMM so that

the loader and run time system can distinguish them. In general, two spaces will be assigned

the same type attribute if and only if they are interchangable from the point of view of all

programs which use the PMM. The values allowed for type and their meanings, therefore, must

be established by convention and agreed upon by all PMM users.

3.1.2 Regions

A region is simply a contiguously addressed segment drawn from a single space, with the

following characteristics:

• Each location within the addressing limits of a space belongs to exactly one region at any

given time.

• The locations in a given region are either entirely allocated to some PMM user, or entirely

unallocated. That is, a region either belongs to some program, or is part of the free list

of a space.

Allocating a free part of a space to a PMM user involves finding an appropriate free region

for that space and either allocating all of it or splitting it into an allocated region and a new

(smaller) free region. Notice that while the total number of locations managed by the PMM

cannot change (because the number of spaces cannot), the total number of regions can as

spaces become fragmented. The maximum number of regions, which is fixed when the PMM is

initialized, must be chosen to anticipate the degree of PMM-level fragmentation expected.

3.1.3 Areas

Regions that have been allocated to a given program for a given purpose are grouped together

into areas. An area is simply a set of regions; there are no restrictions on how many regions

may belong to a given area, nor on whether the regions are part of the same space or different

spaces. Each region, however, is always part of exactly one area. An example of an area is an

area under the control of the run time system, consisting of regions drawn from the I-structure

memory of all I-structure boards in the system. Each space in the PMM has an associated free

area, consisting of all unallocated regions in the space.

When the PMM is initialized, the only areas which exist are the free areas for each space,

and another area containing one region: the region containing the PMM data structure itself!

As programs like the loader and run time system are initialized, they will establish other areas

for their own purposes. The maximum number of areas, which is fixed when the PMM is

initialized, must be chosen to anticipate the needs of all PMM users. Regions may be added to

or removed from an area at any time after the area is created.

3.2 The PMM Data Structure

67 	 Version 003; January 1990

3 + 5S + 2A + 4R words

S A R
S D
0

11

	

SD 	AD

	

S —1 	0

k AD
A-1

RD
0

1 RD
R-1

Figure 3.1: The PMM Data Structure

The PMM data structure describes all spaces, areas, and regions under control of the PMM. The

maximum number of spaces, areas, and regions are each fixed at the time the PMM is initialized;

call these S, A, and R. respectively. The PMM data structure consists of three words containing

S, A, and R, followed by S space descriptors, A area descriptors, and R region descriptors (see

Figure 3.1). Note that the number of spaces is a function of machine configuration and does not

change once the system is brought up. PMM allocation and deallocation operations, however,

may add or remove areas and/or regions from use. At any given time, therefore, some area

and region descriptors actually describe areas and regions, while others will be unused. An

allocation operation which attempts to use more areas or regions than the maximum values

A or R will fail. Space, area, and region descriptors are separately numbered beginning with

zero.

A space descriptor consists of five words:

type Says what kind of memory or resource this space describes. The values allowed for type and

their meanings must be agreed upon by all PMM users; the current values are tabulated

in Section 3.5.

pe Says which of many spaces of similar type this space describes.

low The smallest legal address for this space.

high The largest legal address for this space.

free The descriptor number of the free area for this space. (There is a convention that dictates

the free area number for each space; see below.)

An area descriptor consists of two words:

owner This word contains zero for an unused area descriptor, in which case the remaining

word in the descriptor is random. Otherwise, it is some nonzero value indicating to what

PMM user the area belongs. The nonzero values of owner and their meanings are agreed

upon by all PMM users; the current values are tabulated in Section 3.5. The main use of

nonzero owner values is for debugging.

region The regions comprising an area are indicated by a linked list of region descriptors; region

is the descriptor number of the first region in the list. If the area has no regions, region

contains the value —1.

Version 003; January 1990 	 68

A region descriptor consists of four words:

space Contains the descriptor number of the space of which this region is a part, or —1 if this

is an unused region descriptor. In the latter case, the remaining words in the descriptor

are random.

low The smallest address in the region.

high The largest address in the region.

next The descriptor number of the next region belonging to the same area, or —1 if there are

no more regions.

The following constraints on the PMM data structure must be observed:

• It must be located in a contiguous region of a single space (it occupies 3 + 5S + 2A + 3R

words).

• It must be located in a space accessible by all PMM users.

• All words of the PMM data structure are integers. The region words of area descriptors

and the next words of region descriptors are 2's complement signed integers, while all

other words are unsigned. (Note that low and high values are integers, not Monsoon

pointer (tag) values.)

• It must be located in a space whose word size accomodates:

— Unsigned integers in the range minlow < i < maxhigh, where minlow is the smallest

low value over all spaces and maxhigh is the largest high value.

— Signed integers in the range —1 < i < max (S , A, R).

It is not required, however, that the space accomodate the range —1 < i < maxhigh.

Rationale: This allows the PMM data structure to be kept in n-bit memory even when

marlow is zero and marhigh is 2 — 1. It is for the same reason that the high words of

space and region descriptors are inclusive bounds, even though exclusive bounds would

be more consistent with Common Lisp and C programming practice as well as with
other interfaces defined in this document.

The areas used by the PMM as free areas for each space must obey the following restrictions:

• The regions in a free area must all be from the same space (obviously).

• The regions must be linked in ascending address order.

• The regions must be maximal; i.e., there are no abutting regions.

These restrictions are imposed to simplify the allocation process for PMM users. There are

no similar restrictions on tile regions comprising areas other than PMM free areas; however,

each PMM user is free to impose his own conventions for the areas under his control.

By convention, the area numbers for the spaces' free areas are chosen as follows. If there are

a total of S spaces and A areas, then the free area for space s is A— S+ s. In other words, the free

areas are the S highest numbered areas, appearing in the same order as the spaces. The reason

69 	 Version 003; January 1990

for this convention is that certain areas participating in the bootstrap process need to have area

numbers established by convention, independent of PMM size. Hence, these areas need to be

assigned the lowest area numbers. See Figure 5.1 for a summary of areas established to support

the Id programming environment, and Section 5.9 for details of the bootstrap procedure.

PMM users need to know the address of the PMM. By convention, the PMM is kept in the

data memory of PE zero, and word zero of that data memory contains an unsigned integer (not

a Monsoon pointer) that is the address of the first word of the PMM data structure. The words

of the PNINI itself will have presence bits read-only and type bits unsigned (see Section 5.10

for the actual numeric values). The memory occupied by the PMM itself must be accounted

for in the PNINI data structure. By convention, area zero is the area containing the PMM data

structure, and only the PMM data structure.

Rationale: The data memory of PE zero is accessible both to Monsoon programs and

to programs running on the front end, and has sufficiently wide words. Having word

zero contain the address of the PMM rather than being the first word of the PMM

itself allows the PMM to be placed in high memory without fixing how much physical

memory PE zero must contain. High memory is desirable because low memory is a

more precious resource, owing to the limitations of absolute-FP addressing.

3.3 PMM Operations

Conceptually, the PMM provides three kinds of operations: requests to determine machine

configuration (by examining space descriptors), requests to create areas and allocate regions

to them. and requests to return regions to free areas (there are no plans to use the latter at

present). But because the PMM is a data structure, not a program, there are no procedures

defined as part of the PMM interface. Instead, each PMM user may manipulate the PMM

data structure as it pleases, subject to the constraints outlined above. As currently defined,

the loader accepts a very general directive to allocate PMM areas; this allows a program that

would otherwise be a PMM user to obtain its areas strictly through "configuration" files loaded

by the loader. See Section 4.1.

Rationale: PNINI allocation requests tend to be rather complicated, as PMM users may

need regions with synchronized origins, or may have complicated formulas for deciding

how much space to allocate based on configuration, etc. As experience is accumulated,

we may define a standard procedural interface to the PMM data structure to support

the kinds of requests we need. The need for this sort of standard will increase as we

move toward a system where the PMM plays more than just a "boot time" role.

3.4 Multiple PMMs

The PMM data structure is capable of supporting a hierarchy of PMM's. That is, one could

allocate a large area containing regions drawn from many spaces, and then consider those

regions as the spaces of a subordinate PMM. Each PMM user would take as an argument the

address of a PMM; it would be oblivious as to whether it is the master PMM or a subordinate

one. Currently, there are no plans to exploit this feature—perhaps in the future it will be used

to partition the machine or support multiple users.

Version 003; January 1990 	 70

3.5 Numeric Values of Memory Types and Owners

The following tabulates all of the values that currently may be found in the type field of space

descriptors (the name column is for documentation purposes only).

Name Value Description

2

4

8

3

pe-dm-short-r

pe-cim-long-r

p e- dm-no - r

mini-dm

pe-im

Those locations in PE Board Data Memory accessible

through the "short-r" absolute addressing mode (0 <

addr < 210).

Those locations in PE Board Data Memory accessible

through the "long-r" absolute addressing mode but not

through the "short-r" mode (210 < addr < 22°).

Those locations in PE Board Data Memory not accessible

through any absolute addressing mode (addr > 22').

I-Structure Board Data Memory.

Data memory simulated by and accessible through the

MMI, but not accessible from Monsoon itself (normally

used only for the loader-internals area, as described

in Section 4.7.2).

PE Board Instruction Memory.

16

32

These values have been chosen to accomodate the area definition commands in MOC (see

Section 4.1). The MOC commands allow the user to request an area allocated from any of a

number of spaces, by adding together one or more type values given above. In the PMM itself,

however, only the values given above will be found in the type field of space descriptors.

The values that may be found in the owner field of area descriptors include the following:

Value Description

0 An unused area descriptor.

1 The free area for a space.

2 The area containing the PMM itself.

3 An internal area of the loader (not a "loader area").

4 A loader area (Section 4.1).

5 An area controlled by the Id Run Time System.

Other values of the owner field are available for future use.

71 	 Version 003; January 1990

Version 003; January 1990 	 72

Chapter 4

Monsoon Object Code Format

This chapter describes the Monsoon Object Code format (MOC). The object code format

has some knowledge of Monsoon hardware—limited to number of bits per word, the fields

in tags, instructions, etc. The loader has zero knowledge of Id and runtime environment;

hence, it supports any kind of Monsoon programming. It is able to encode arbitrary memory

images: code, data, etc. The loader must support dynamic linking across modules so that the

programmer may have interactive compile-test-debug sessions without long waits for linking

and loading.

The largest unit in MOC is an object module, the unit normally generated by an invocation

of the compiler. A module will often be an implicitly delimited entity, consisting of all the

records written to a file or stream. A module consists of a version object followed by a sequence

of records; records either give data to be loaded into Monsoon memory (data records) or are

directives to the loader (command records).

There are four kinds of data records; these are by far the most common kind of record.

Absolute, local, and global data records simply give the contents of a contiguous region of

memory. They differ in how they specify the address where the data is to be loaded: an

absolute record gives a physical address, while local and global records allow the loader to

choose the address, within limits. The address chosen by the loader for a local or global record

is made available to other records via a name; any word of a data record may have a reference

to a name, which the loader replaces by the address of the corresponding record. A variety

of reference methods are provided so that such addresses may be inserted into any field of a

referencing word. The difference between local and global records is that the associated name

is valid across all modules for a global record but only within the defining module for a local

record.

The remaining kind of data record is the table entry record. This is similar to an ordinary

data records, but its data becomes part of a data structure called a table. Tables allow infor-

mation generated at different times, and possibly appearing in different MOC object modules,

to be collected into a single structure available to programs other than the loader. A typi-

cal example would be a table summarizing all Id procedures currently loaded, for use by the

Execution Manager.

A typical object code file is composed primarily of local data records, with a smattering

of global data records and table entry records for linkage between procedures. Absolute data

records tend only to be used for system initialization purposes.

There are six kinds of command records. A define-table record causes the loader to

establish a new table for the use of subsequent table entry records. A define-area record

73

provides a simple interface to the Proto-Memory Manager (Chapter 3) by creating an area

with certain parameters and making its number available to other records. Areas created

by define-area records are to be managed by other programs. Two specialized versions of

this, define-broadcast -area and define-interleaved-area records, create areas which are
managed by the loader. Every data record must indicate an area created by one of these

two commands; this is how data records are directed to program or data memory, for example.
Broadcast and interleaved loader areas differ in how the loader treats them when they encompass

multiple PE's. All of these command records are typically found only in system initialization

files

The remaining two command records, provide and require records, implement a simple

mechanism for ensuring cornpatability between modules loaded at different times.

Exsym Tables: In a departure from the TTDA Id World, Exsym Tables in the Mon-
soon system will be kept in separate compiler information files. Including exsym tables

in MOC modules would compromise the modularity of the Big Picture—it would mean

having two-way communication between the loader and the compiler, and it means keep-

ing to the Lisp machine model of one big address space for all modules and processes.
At least for a while, we will have to think in the style of standard operating systems,

where each program has its own memory. This also keeps us from having to encode

msyms in MOC until someone writes Id Compiler Version 3 in Id.

Note, however, that we do expect that debugging information will be encoded in MOC.

More accurately, we expect that debugging information will be included in the records
of object modules; it will become part of instruction memory (or data memory) just as

the executable part of object code will. MOC, therefore, has no special knowledge of

debugging information—it looks like any other data record.

4.1 Loader Areas

The Proto-Memory Manager (PMM) data structure (Chapter 3) partitions the resources of

Monsoon into areas, each of which is a set of resources under the management of some program.

The loader provides an interface to the PMM through the define-area record, which simply

creates an area for use by some other program. But the loader itself manages some areas; these

are called loader areas and are created by define-broadcast-area and define-interleaved-

area records. Local and global MOC data records are always loaded into memory contained in

a loader area; each such record gives the name of a loader area, whereupon the loader is free

to choose an address for the record within that area.

Each of the three area defining records specifies a name for that area. The name may appear

as a symbolic reference within a data record, in which case the name stands for the PMM area

number of the area. Additionally, the names of loader areas are found in the headers of local

and global data records, indicating in what area the data records are to be loaded.

In the PMM, an area consists of a set of regions, each of which is a contiguously addressed

portion of a resource with some PE number. When an area is created by a MOC command an

ordering on these regions is established for use when the area is referenced by name. Specifically,

there is a reference method which calls for "the PE number of the ith region of the area

named a." In this method, "ith" is with respect to the region ordering established by the

loader. Each of the area-creating commands discussed below defines what that region ordering

is. Furthermore, the loader will link the PMM region descriptors according to the ordering

when it creates the area.

Version 003; January 1990 	 74

4.1.1 Non-Loader Areas

define-area area-name mtype owner n-pes start-pc end-pe size start end 	[MOC Record]

alignment syncp

A define-area record creates a new area in the PMM, and makes its number available to other

records via the name area-name. The area will consist of n-pes regions drawn from spaces of

type mtype on consecutively numbered PE's, one region for each PE number. Each region will

be size words long, and if syncp is true all regions will have the same starting (and therefore

ending) address. Start-pc (inclusive) and end-pc (exclusive) constrain the range of PE numbers

from which the regions may be drawn; either constraint may be omitted by supplying —1

in its place. Similarly, start (inclusive) and end (exclusive) constrain the range of addresses

each region will occupy, and may also be omitted by supplying —1. It is an error if either

end-pc — start-pc < n-pes or end — start < size, when those constraints are supplied. The

starting addresses for each region will be a multiple of alignment (a value of 1 may be supplied

if alignment is not important). The ordering on the regions for the purpose of reference methods

is consecutive, smallest PE first.

The argument mtype may take on more values than are tabulated in Section 3.5. If mtype is

even, it is taken to be the sum of one or more of the five data memory values pe-dm-short-r,

pe-dm-long-r, pe-drn-no-r, is-dm, and mini-din. If mtype is odd, it must be the instruction

memory value pe-im (although in the future, there might be more instruction memory types,

and an odd mtype would be taken as the sum of one or more of them). If rntype is the sum

of more than one value, it means that the area may be allocated from spaces of any or all of

those types. For example, an mtype value of 14 (the sum of pe-dm-short-r, pe-dm-long-r,

and pe-dm-no-r) indicates that any PE data memory may be allocated.

Despite the abundance of options, please note that define-area is not the most general

interface to the PMM possible. Specifically, an area created by define-area can only have one

region per PE, all regions must be of the same size and type, and the PE numbers must be

consecutive. None of these restrictions are imposed by the PMM itself.

Warning: Due to the foregoing, define-area is subject to change in the future. The
intent is to provide enough functionality that things like the Id Run Time System
can be initialized by loading a NIOC file. More experience is needed to see whether
define-area together with other MOO features is truly adequate for this purpose.

4.1.2 Loader Areas

There are two kinds of loader managed areas: broadcast and interleaved. When a data record is

loaded into a broadcast area, copies are loaded on all PE's in the area, at like addresses. When

a data record is loaded into an interleaved area, consecutive words are directed to consecutive

PE's, following the same interleaving technique as supported by the Monsoon hardware. Typ-

ically, objects such as user code and symbol information are stored in broadcast areas, while

constant data structures may be stored in interleaved areas.

Because the loader must manage the free space in loader areas, the loader may reserve a few

words out of each loader area to hold free pointers and similar information. Thus, if a loader

area of 1000 words is created, a smaller number (e.g., 998 words) may actually be available

to hold data records. Unpredictable results may occur if an absolute record is loaded into a

loader area, as the loader will not recognize that free space has been consumed.

75 	 Version 003; January 1990

Broadcast Areas

A broadcast area must satisfy two criteria:

• The area must consist of regions of identical size and type.

• Each region must start (and therefore end) at the same address.

These constraints imply that every region of a broadcast area has a unique PE number. As dis-

cussed earlier, there must be an ordering on these regions for use by certain reference methods.

When a local or global record is loaded into a broadcast area, it is loaded into each region

of the area at the same address. The name of such a record maps to the following values:

Area(name) The PNINI area number of the area into which the record is loaded.

Addr(name) The absolute address of the first word of the record in each region. (Note that

the address is the same for all regions.)

A special case of broadcast area is called an aliased broadcast area; in addition to the above

criteria an aliased broadcast area must satisfy the following:

• The area must consist of 2' equal size regions of type data memory, where E is a non-

negative integer.

• The PE numbers of the regions must be consecutive, and must start with a multiple of 2K

(i.e., i21 < PE < (i + 1)2K for some i).

The names of records loaded into aliased broadcast areas also map to the following values, in

addition to those described above:

Map(narne) The value E + 32, where there are 2' PE's in the area.

PE(itanic) The value i21" , that is, the number of the lowest numbered PE in the area.

FP(name) The same as Addr(name).

Note that the triple (Map(Name), PE(name), FP (name)) is a Monsoon pointer to the first

word in the record, using the aliased-FP mapping strategy.

define-broadcast-area area-name mtype n-pes start-pc end-pc size start end [MOC Record]

alignment aliasp

A define-broadcast-area record establishes a broadcast area, into which subsequent MOC

data records may be loaded. The parameters have exactly the same meaning as they do for the

define-area record. Notice, though, that there is no syncp parameter, as broadcast areas are

required to be synchronized. The ordering on the regions for the purpose of reference methods

is consecutive, smallest PE first.

If aliasp is true, then the following restrictions also apply:

• 	N-pes must be a power of two (2K).

• Start-pc and end-pc (when specified) must span a range that includes n-pes PE's starting

with a multiple of 2/` .

• Mtype must be a data memory type.

Version 003; January 1990 	 76

In this case, the PE's from which the regions are drawn will have numbers beginning with a

multiple of 2", so that the area will qualify as an aliased broadcast area.

The name area-name maps to values Area(area-name), etc., as would a record loaded into

the first location in the area. Thus, area-name may be used to refer to the beginning of the

area.

Limitation: As with define-area, define-broadcast-area is somewhat more re-

strictive than is required by the criteria for broadcast areas. In particular, the area

created by define-broadcast-area is always on consecutively numbered PE's. We

may decide to enhance this in the future.

Note that other systems may request broadcast areas, but manage the areas themselves.

Interleaved Areas

Interleaved areas must satisfy the following criteria:

• The area must consist of 2' equal size regions of type data memory, where K is a non-

negative integer.

• Each region must start (and therefore end) at the same address.

• The PE numbers of the regions must be consecutive, and must start with a multiple of 2K

(i.e., i2K < PE < (i + 1)2K for some i).

The ordering on regions for an interleaved area is always consecutive, smallest PE first.

When a local or global data record is loaded into an interleaved area, it is loaded at some

address in the area, but consecutive words in the record are interleaved across the different

regions of the area (and therefore different PE's). The interleaving follows the same scheme as

that supported by the Monsoon hardware. That is, if word j of a record is loaded at address a

on PE p, then the next word will be loaded at address a on PE p + 1 unless PE p + 1 is

outside the range of PE's in the area, in which case the word will be loaded at address a + 1

on PE p 1 — 2K.

Let an interleaved area consist of 2K PE's starting with PE po, where each region starts at

address ao, and let the first word of a record loaded into such an area be record be loaded at

address a on PE p. Then the name of a record maps to the following values:

Area(name) The PIVIM area number of the area.

Addr(narne) The value 2K(a — ao) (p — po), that is, the logical displacement of the start of

the record from the start of the area.

Map(name) The value K.

PE(name) The value p.

FP(name) The value a.

Note that the triple (Map(Arame), PE(name), FP(narrze)) is a Monsoon pointer to the first

word in the record, using the interleaved-FP mapping strategy. Note too that Addr(name) for

an interleaved area is a relative value (relative to the start of the area), while for a broadcast

area it is an absolute quantity.

77

	

Version 003; January 1990

Rationale: An absolute address does not make much sense for an interleaved area

unless it has only one region, in which case FP (nam e) can be used to obtain the absolute

address. For both interleaved and broadcast areas, however, two A ddr(name) quantities

from the same region can be subtracted to get a "distance between" value.

define-interleaved-area area-name mtype n-pes start-pc end-pe size start [MOC Record]

end alignment

A define-interleaved-area establishes an interleaved area, into which subsequent MOC

data records may be loaded. The parameters have exactly the same meaning as they do for the

define-area record, except that:

• N-pes must be a power of two (2K).

• Start-pc and end-pc (when specified) must span a range that includes n-pes PE's starting

with a multiple of 2K.

• Mtype must be a data memory type.

Notice, too, that there is no syncp parameter, as interleaved areas are required to be synchro-

nized. As mentioned above, the ordering on the regions for the purpose of reference methods

is consecutive, smallest PE first.

The name area-name maps to values Area(area-name), etc., as would a record loaded into

the first location in the area. Thus, area-name may be used to refer to the beginning of the

area.

Note that another system may request an interleaved area, but manage the area itself An

example of this would be the heap manager asking for an interleaved area for the heap—it may

load a single record to initialize the heap, but manage the heap afterwards.

4.2 Data Records

A data record consists of a header, contents, and references. The header of a record tells where

to load the record and what name (if any) to associate with the address where the record is

loaded. The contents of a record defines a contiguous block of instruction or data memory,

possibly broadcast or interleaved among several PE's. The references say how to fix up the

contents of the record when they refer to names defined by other records, either in the same

module or in other modules.

4.2.1 Headers

The format of the contents and references part of a data record is the same for all kind of

data records. In the description of data records below, it is understood that the contents and

references follow the header parameters.

absolute dm-or-im pe address 	 [MOC Record]

An absolute record says that the contents are to be loaded in consecutive locations beginning

with address on PE pe. The dm-or-irn parameter indicates data memory or instruction memory.

The locations into which the record is loaded must not be part of a loader area; they normally

Version 003, January 1990 	 78

should be part of a PMM area that is not a loader area. Loading an absolute record into a

loader area may confuse the loader's free space management.

local dm-or-im record-name area-name 	 [MOC Record]

A local record says that the contents are to be loaded in some previously unused portion of

memory contained in the loader area named area-name. If that area is a broadcast area, the

contents are loaded on all PE's in the area, if an interleaved area, they are interleaved among

them. Other records within the module may have references to record-name, which will map

to the address of the first word of the record. It is an error for record-name to be the name of

any other record in the current module, and for record-name to be the name of a global record

in previously loaded modules. The dm-or-im parameter indicates data memory or instruction

memory; the value of this parameter must be consistent with the type of memory from which

the area named area-name was allocated.

Rationale: The dm-or-im parameter of the local record is redundant information,

as the value of area-name will determine whether the contents of the record should

be data memory contents or instruction memory contents. It is included anyway, be-
cause it is impossible to parse the contents portion of the record without knowing the

type of memory. Including the dm-or-irn parameter explicitly makes the MOC format

somewhat more robust in the event that the wrong area name is specified.

These same comments apply not only to the local record, but also to the global,

aligned-local, aligned-global, and table-entry records as well.

global drii-or-im record-name area-name 	 [MOC Record]

A global record says that the contents are to be loaded in a portion of memory contained in

the loader area named area-name. If that area is a broadcast area, the contents are loaded on

all PE's in the area, if an interleaved area, they are interleaved among them. Other records

within the current module and in other modules may have references to record-name, which will

map to the address of the first word of the record. If no record bearing the name record-name

has been encountered by the loader in any module since its initialization, a new portion of area

area-name will be allocated. Otherwise, the contents will overwrite what already exists at the

address to which record-name maps. In the latter case, it is an error for the number of words

in the contents to be greater than the number of words in previously encountered records with

the same name. The dm-or-im parameter indicates data memory or instruction memory; the

value of this parameter must be consistent with the type of memory from which the area named

area-name was allocated.

aligned-local dm-or-im record-name area-name al!.-,nrnent
	

[MOC Record]

aligned-global dm-or-im record-name area-name csiqinment
	

[MOC Record]

These records are like local and global records, but 1 her specify that the starting address of

the record relative to the beginning of the area must t. 	multiple of alignment. More precisely,

if loaded into a broadcast area, the value Addr(record-name) — Addr(area-name) must be a

multiple of alignment, while if loaded into an interleaved area, the value Addr(record — name)

must be a multiple of alignment. Often, aligned records will be loaded into areas which are

themselves aligned, so that the absolute addresses of the records will be aligned.

79 	 Version 003; January 1990

table-entry dm-or-im record-name table-name 	 [MOC Record]

The table-entry record is similar to the local record, except that its contents are loaded into
a table data structure rather than in an arbitrary location in memory. See Section 4.3 for details

on how the loading of table-entry records differs from ordinary data records. The mapping of
the record-names, however, is exactly analogous to ordinary data records: record-name maps
to the address where the first word of the contents is loaded. The scope of the name is like a

local record: it is defined only for the current module (why this is not a limitation is discussed
in Section 4.3). The drn-or-im parameter indicates data memory or instruction memory; the

value of this parameter must be consistent with the type of memory containing the table named
table-name.

There are two key differences between local and global data records:

1. Global names are defined across module boundaries and loader invocations, while local

names are defined only within a module.

2. Global records may overwrite a previously loaded record, while local records are always

loaded into freshly allocated memory.

A typical use of a global record would be to hold a fixed-size structure describing a top-level user

procedure, with a record name derived from the name of the procedure. Each time a module

is loaded containing a new definition of the procedure, a new descriptor record replaces the old

one in Monsoon memory, thus accomplishing dynamic linking. Note that a global record which

replaces another must be of the same size or smaller, implying that global records are unsuitable

for holding the actual code of a user procedure (which may change in size). The "meat" of an

object module—code for user procedures, user data structures, and the like—is usually found

in local records, with global records only containing fixed-size objects with references to the

local records. Table-entry records (discussed in Section 4.3) will often have pointers to global

records, as loader tables are typically used to aggregate the objects found in global records into

a single summary data structure.

4.2.2 Contents

The contents part of a record says what to load. The general format is the number of words,

followed by defaults for type bits, presence bits, and the like, followed by the actual words

themselves, in ascending address order. For the purposes of identifying a word within a record,

the first word is called word zero and the last word N — 1, where N is the number of words in

the record.

The actual format of data words depends on whether the record is to be loaded into data

memory or instruction memory. For data memory, each word consists of presence bits, type

bits, data bits, and a holep bit (described below). For instruction memory, each word just has

data bits and a holep bit. Because it is often the case that all words in a record will have similar

presence, type and holep bits, each data word may appear in a short format which takes these

values from a default which immediately follows the number of words. Again, the format of the

default depends on whether the record is to be loaded into data memory or instruction memory.

The data bits themselves may appear in any of several different encodings, corresponding to

the different encodings found in the MMI, on a word-by-word basis. The format of data words

(DM or IM) must agree with the memory type of the area into which the record is loaded.

The holep bit, when true, suppresses the loading of the corresponding presence, type, and

data bits under certain circumstances. For an absolute data record, a true holep always

Version 003; January 1990 	 80

suppresses the word. For global and table-entry data records, holep suppresses the word

only when the record is replacing an earlier record, as opposed to when the record is loaded into

newly-allocated memory. For a local data record, all holep bits are ignored. By "suppressing

a word" it is meant that the presence, type, and data bits in the record are ignored, and the

corresponding word in Monsoon memory is left unchanged. The holep feature is primiarly

useful with global records, where it allows initialization of words of an object which should

not subsequently change when the object is replaced.

The detailed format of the contents part may be found in Section 4.5.

4.2.3 References

The references part of a record says how to adjust certain words of the record, based on the

values of names of this or other records. The references part is just a sequence of references, each

of which tells how to fix up one word of the record contents. There may be several references

fixing up the same word, in which case they are applied in the order in which they appear.

A reference consists of an offset and a reference expression. The offset says which word

of the record to adjust (zero being the first word) while the reference expression says how to

compute the value to be stored there. The expression may specify the adjustment of the entire

word or just a subfield, but in any event a reference only acts on data bits, never on presence

or type bits.

If offset refers to a word for which loading was suppressed by the holep mechanism, the

reference is ignored.

The reference expression is in postfix notation. Operationally, one can think of a stack of

values, with the reference expression being a sequence of operators which push and pop values

from the stack. The stack is initially empty. The last operator in any reference expression

is a command to store the value or values remaining on the stack into some field or fields of

the word being adjusted. Such operators also implicitly delimit the end of a reference, hence

each reference expression performs exactly one storing operation. All calculations in reference

methods are performed using arbitrary-precision integer arithmetic.

number n

Pushes ri onto the stack.

area name

Pushes Area(name) onto the stack.

addr name

Pushes Addr(name) onto the stack.

[Reference Operator]

[Reference Operator]

[Reference Operator]

map name 	 [Reference Operator]

Pushes Al ap(name) onto the stack. Valid only when Map(name) is defined, that is, when name

is the name of a data record loaded into an an interleaved or aliased broadcast area, or the

name of such an area itself.

pe name 	 [Reference Operator]

Pushes PE(name) onto the stack. Valid only when PE(name) is defined, that is, when name is

the name of a data ret:o: loaded into an an interleaved or aliased broadcast area, or the name

of such an area itself.

81 	 Version 003; January 1990

fp name 	 [Reference Operator]

Pushes FP(name) onto the stack. Valid only when FP(name) is defined, that is, when name is

the name of a data record loaded into an an interleaved or aliased broadcast area, or the name

of such an area itself.

plus 	 [Reference Operator]

minus 	 [Reference Operator]

times 	 [Reference Operator]

floor 	 [Reference Operator]

ceiling 	 [Reference Operator]

truncate 	 [Reference Operator]

round 	 [Reference Operator]

The plus operator pops two values off the stack, v2 followed by v1 , and then pushes the value

t)1 -i-t,2 onto the stack. The other operators are analogous. For example, the following sequence:

number 5 number 3 minus

has the effect of pushing the number 2 onto the stack (not —2). The operators floor, ceiling,

truncate, and round are all forms of integer division, differing in their treatment of non-

integral results. floor rounds towards negative infinity, ceiling rounds towards positive infin-

ity, truncate rounds towards zero, and round rounds to the nearest integer, or to the nearest

even integer if the result is exactly between two integers.

ptr name 	 [Reference Operator]

Pushes the three values Map(name), PE(name), and FP(name) onto the stack, in that order.

Valid only when these quantities are defined, that is, when name is the name of a data record

loaded into an an interleaved or aliased broadcast area, or the name of such an area itself. Using

the ptr operator is exactly equivalent to the sequence:

map name pe name fp name

but is provided for convenience. It is most often used in conjunction with the ptrinc and

tag-ptr reference operators described below.

ptrinc 	 [Reference Operator]

Pops the four values A, fp, pe, and map, in that order, from the stack, then pushes the values

map', pe', and fp', in that order, as defined by:

(map', pe` , fp') = PointerInc((map,pe, fp), d)

where Pointerinc is the Monsoon pointer increment operation. In other words, the sequence

ptr name number A ptrinc

has the effect of pushing a pointer which is at offset A from the pointer to which name maps,

under the appropriate interleaving strategy.

ithpe 	 [Reference Operator]

Pops the values i and A, in that order, from the stack, where A is the PMM area number of

a loader area. It then pushes the PE number of the ith PE in the region ordering of area A,

Version 003; January 1990 	 82

interpreting i modulo the number of regions in the area. It is an error for A to be other than

the PMNI number of some loader area.

thislpe 	 [Reference Operator]

Pushes the logical PE number of the word being adjusted onto the stack. The "logical PE

number" is the PE's position within the region ordering of the area into which the current

record is being loaded; it is an integer between zero inclusive and the number of regions in

the area, exclusive. For an interleaved area, the number pushed onto the stack depends on

where the word being alljusted ended up according to the interleaving. For a broadcast area,

the number pushed is different for each copy of the record loaded. The latter case is the only

situation in which a reference can cause a different value to be loaded for each copy of a record

in a broadcast area. In general, if the thisipe operator occurs in a reference expression for a

record loaded into a broadcast area, the reference expression will need to be recomputed for

each copy.

signed size position 	 [Reference Operator]

The signed operator pops the top value off the stack and stores it in a subfield of the word

being adjusted. The value is stored as a two's complement signed integer, in a field size bits

wide, and with the least significant bit position bits to the left of the least significant bit of

the word. Size must be positive, position must be non-negative, and size + position must be

no greater than the number of data bits in the word to be adjusted (which may be different

between data memory and instruction memory). The value to be stored must fall in the range

x < 2size-1. This operator implicitly indicates the end of the reference expression.

unsigned size position 	 [Reference Operator]

The unsigned operator is similar to the signed operator, except that the field is to be treated

as a unsigned. The same interpretations of and restrictions on size and position apply, while

the permissible range for the value is 0 < x < 2 3 t2 . This operator implicitly indicates the end

of the reference expression.

tag-pe 	 [Reference Operator]

tag-ip 	 [Reference Operator]

tag-fp 	 [Reference Operator]

tag-map 	 [Reference Operator]

tag-port 	 [Reference Operator]

These may only be used with a record loaded into a data memory area. Each is equivalent to

an unsigned operator, specifying the subfield of a data word corresponding to a component of

a tag. All of these operators implicitly indicate the end of the reference expression.

tag-ptr 	 [Reference Operator]

The tag-ptr operator pops three values fp, pe, and map, in that order, and stores them in

the subfields of the word being adjusted corresponding to the appropriate components of a tag.

This operator implicitly indicates the end of the reference expression.

instruction-opcode 	 [Reference Operator]

instruction-fl 	 [Reference Operator]

83 	 Version 003; January 1990

instruction-f2 	 [Reference Operator]

These may only be used with a record loaded into an instruction memory area. Each is equiv-

alent to an unsigned operator, specifying the subfield of a data word corresponding to a com-

ponent of an instruction. All of these operators implicitly indicate the end of the reference

expression.

instruction-s1
	

[Reference Operator]

instruction-s2
	

[Reference Operator]

These may only be used with a record loaded into an instruction memory area. Each is equiv-

alent to an signed operator, specifying the subfield of a data word corresponding to the `s'

subfield of a destination component of an instruction. All of these operators implicitly indicate

the end of the reference expression.

instruct ion-r [Reference Operator]

Equivalent to the instruction-fl operator. This operator implicitly indicates the end of the

reference expression.

instruction-long-r 	 [Reference Operator]

Equivalent to an unsigned operator, specifying the subfield which is a combination of 	and

'f2', used by instructions as a long 'r' value. This operator implicitly indicates the end of the

reference expression.

Non-Limitation: While all of the storing operators currently defined refer to con-

tiguous bit fields, there is no reason in principle why this must be the case. Indeed,

future changes to the format of machine data types may require some of the tag- or

instruction- operators to refer to concatenations of several contiguous fields. Cur-

rently, however, none of them do, nor is there any general way of specifying an arbitrary

concatenated field.

Rationale: A fairly restricted syntax and semantics of reference methods is used to give

the loader maximum freedom in dealing with forward references. It is fairly easy for the

loader to figure out which references expressions contain forward references, and which

references adjust overlapping fields of the same word. If a more elaborate reference

expression language were allowed, say one in which names were first-class objects or

in which more than one word could be adjusted from within the same expression, the

loader might have to store a great deal more information while forward references were

pending.

4.3 Tables

A define-table record establishes a table data structure in some area, consisting of two-

word pairs (called indicator and value). A name is given to the table, whose scope is across

invocations (like a global data record), mapping to the first word in the entire table data

structure. This name allows other programs to gain access to the entire table through the

reference mechanism.

Initially a table has no pairs; subsequent table-entry records can add pairs (none are ever

removed). A table-entry record always consists of exactly two words, which are entered as an

indicator/value pair in the table. The pair replaces an existing table entry if the new indicator

is bit-for-bit the same as an existing indicator, otherwise the pair is added to the table. Within

Version 003; January 1990 	 84

• • •

Figure 4.1: Structure of a Loader Table

a given table, therefore, indicators are unique. A table-entry record may have references on

both content words; a special algorithm is used for applying them.

The structure of a table is a linked list of blocks of indicator/value pairs, as illustrated in

Figure 4.1. Each block consists of 3 + 2B words, where B is the block size of that block, the

maximum number of indicator/value pairs in that block. The first three words are:

1. A pointer to the next block, or a pointer to this block if it is the last. A pointer for this

purpose is a tag whose PORT and IP fields are zero, and whose MAP, PE, and FP fields are

as appropriate given whether the table is in an interleaved or aliased broadcast area. If

in a non-aliased broadcast area, MAP is zero and PE is the first PE in the region ordering.

2. The number of indicator/value pairs in this block, as an integer. This is always equal

to B unless this is the last block in the table.

3. The size of this block (B), as an integer.

[To be determined: what type and presence bits to use?]

Rationale: A list of blocks was used rather than a list of pairs for three reasons. One,
it consumes less memory (unless the block size is terribly inappropriate). Two, it leads
to less fragmentation. Three, it is a nicer representation if used as a fixed-size table.

The convention for the end-of-list pointer is a bit weird, but it avoids having to choose

some representation for nil—remember that MOC is supposed to be independent of
language, and anyway the language's version of nil may not exist at the time the very

first table is created!

def ine-t able table-name area-name block-size 	 [MOC Record]

A define-table command establishes a new table named table-name, suitable for use by

subsequent table-entry records in this or other modules. The table is established in area

85 	 Version 003; January 1990

area-name, which must be a data memory area, with an initial block size of block-size; a total of

3 +2 x block-size words are allocated in that area. The name table-name is available for use not

only in subsequent table-entry commands, but also in references, where it behaves like the

name of a global record, mapping to the beginning of the table's first block. It is an error for

subsequent define-table or data records to redefine table-name, in either this or subsequent

modules.

table-entry record-name table-name 	 [MOC Record]

A table-entry record is like a local record except that the header specifies a table name rather

than an area name. The contents must consist of exactly two words, though there may be an

arbitrary number of references. It is loaded as follows:

1. Load the first word into a temporary area.

2. Apply any references to the first word (MYLPE reference methods are not allowed, nor are

references to the name of this record).

3. If the first word (updated) matches, bit-for-bit, an indicator in the table, let the name of

this record map to that pair. Otherwise, add a new entry using the updated first word

as the indicator, and let the name of this record map to it. If the last block of the table

was full, a new block of the same block size is allocated, in the same area, and linked in.

4. Load the second word into the value word of this entry, replacing the old value if the

indicator matched an existing entry in Step 3.

5. Apply any references to the second word (no restrictions).

Note that the name of a table-entry maps to the address where the indicator ended up. While

this name is scoped like a local record, this is not a limitation: if a subsequent module wants to

refer to a previous table-entry record, it may include its own table-entry record with the

same indicator, and a value that has the holep bit turned on.

4.4 Require and Provide Records

A MOC module is generated with certain assumptions about the run time system, microcode,

and system configuration. Require records allow these assumptions to be made explicit—if

some facility named by the require record has not been loaded, then the loader signals an

error. To indicate that a particular facility has been loaded, a module includes a provide

record, which names a facility along with version numbers. A module may include as many

provide and require records as it wishes.

The facilities required by a module are not necessarily loaded through MOC modules,

although they should have associated MOC modules that do the provide. An example of this

is microcode, for which no provision has been made in MOC.

When the loader signals an error due to an unsatisfied require, it will normally suspend

itself and allow the user to take corrective action. For example, the user may at that point load

whatever module is required and then restart the loader.

The require/provide mechanism was inspired by a similar facility in Common Lisp.

Version 003; January 1990 	 86

provide facility-name major-version minor-version 	 [MOC Record]

A provide record specifies that any require of facility facility-name and version major-

version.minor-version will be satisfied. If the current module is compatible with more than

one version of the facility, a provide record should be loaded for each supported version.

require facility-name major-version minor-version 	 [MOC Record]

This record specifies that version major-version.minor-version of facility facility-name is re-

quired in order to use the current module.

Facility-name is a name denoting some sort of software facility or subsystem, and the two

version numbers are integers. The provide/require mechanism supports a major and minor

version number, but in fact it is up to each facility to decide how to interpret the two numbers.

As far as MOC is concerned, the two version numbers are just values to be matched for equality,

with no further ordering or interpretation.

4.5 Record Encodings

A MOC file (or stream) is merely an encoding of a MOC module. It contains a version object

followed by a series of MOC records. The MOC format is built on top of CIOBL, Version 2,

described in Chapter 7. MOC format requires only a Level I implementation of CIOBL, and

makes heavy use of fixed-length objects in order to minimize the space required by MOC files.

The grammar gives the complete encoding of MOC into CIOBL objects. The only CIOBL

objects found in MOC files are Unsigneds, Signeds, Doubles, Integers, and Keywords, which

appear below as nbit-unsigned, nbit-signed, double, integer and keyword, respectively.

The notation <absolute> indicates a 6-bit unsigned; a table giving the numerical values of

these words follows the grammar.

Rationale: Things like <absolute> are used as punctuation to indicate record types

and the like. 6-bit unsigneds are used instead of keywords because they take only one

byte in both the Binary and Compressed encodings, while keywords take at least two.

Signeds and Unsigneds are used for most data because there is no reason to expect
that a significant fraction of them will require fewer bits than their maximum, implying
variable-length integers would take more space. The sole exception is the argument of
the number reference operator, which is a variable-length integer.

MODULE 	 ---, VERSION -OBJECT {RECORD}.

VERSION -OBJECT --. keyword 8bit -unsigned 8bit-unsigned

RECORD 	 ---, DATA-RECORD I COMMAND-RECORD

All data records have a common syntax for their CONTENTS and REFERENCES parts. The

lbit-unsigned in the definition of the headers is zero for a data memory record, one for

instruction memory.

DATA-RECORD

DATA

—+ DATA-HEADER CONTENTS REFERENCES

ABSOLUTE-HEADER I LOCAL-HEADER I

GLOBAL-HEADER I TABLE-ENTRY-HEADER I

ALIGNED-LOCAL-HEADER I

ALIGNED-GLOBAL-HEADER

87 	 Version 003; January 1990

ABSOLUTE-HEADER

LOCAL-HEADER

GLOBAL-HEADER

ALIGNED-LOCAL-HEADER

ALIGNED-GLOBAL-HEADER

TABLE-ENTRY-HEADER

<absolute> lbit-unsigned PE ADDRESS

<local> lbit-unsigned NAME NAME

<global> lbit-unsigned NAME NAME

- <aligned-local> 1bit-unsigned NAME NAME ADDRESS

<aligned-global> lbit-unsigned NAME NAME ADDRESS

<table-entry> 1bit-unsigned NAME NAME

The CONTENTS part varies depending on whether the record is intended for a data memory

area or an instruction memory area, which is always indicated as part of the header. The

12-bit unsigned PRESENCE-TYPE-HOLEP contains type bits in the least eight significant bits,

presence bits in the next most significant three bits, and holep in the most significant bit.

The 1-bit unsigned HOLEP contains only the holep bit. A holep value of one indicates that

holep processing should take place (that is, it indicates the presence of a "hole"), zero that it

should not. The order of the last five fields in the DM-TAG and DM-SHORT-TAG word specifiers

is PORT, MAP, IP, PE, and FP. The order of the last three fields in the IM-INSTRUCTION and
IM-SHORT-INSTRUCTION word specifiers is OPCODE, Fl, and F2.

CONTENTS 	 . DM-CONTENTS I IM-CONTENTS

DM-CONTENTS 	 — 32bit-unsigned PRESENCE-TYPE-HOLE? {DM-WORD}*

IM-CONTENTS 	 32bit-unsigned HOLEP {11-WORD}*

DM-WORD
	

- DM-BITS j DM-INTEGER I DM-FLOAT I DM-TAG I

DM-SHORT-BITS I DM-SHORT-INTEGER I

DM-SHORT-FLOAT I DM-SHORT-TAG

DM-BITS 	 - <dm-bits> PRESENCE-TYPE-HOLE? 64bit-unsigned

DM-INTEGER 	 <dm-integer> PRESENCE-TYPE-HOLE? 64bit-signed

DM-FLOAT 	 <drn-float> PRESENCE-TYPE-HOLE? double

DM-TAG 	 <dm-tag> PRESENCE-TYPE-HOLE? lbit-unsigned

8bit-unsigned 23bit-unsigned 10bit-unsigned

22bit-unsigned

DM-SHORT-BITS 	 - <dm-short-bits> 64bit-unsigned

DM-SHORT-INTEGER 	 <dm-short-integer> 64bit-signed

DM-SHORT-FLOAT 	 <dm-short-float> 64bit-double

DM-SHORT-TAG 	 <dm-short-tag> lbit-unsigned 8bit-unsigned

23bit-unsigned 10bit-unsigned 22bit-unsigned

PRESENCE-TYPE-HOLE?
	

12bit-unsigned

IM-WORD 	 1M-BITS I IM-INSTRUCTION I

IM-SHORT-BITS IM-SHORT-INSTRUCTION

IM-BITS 	 --+ <im-bits> HOLE? 32bit-unsigned

IM-INSTRUCTION 	 <im-instruction> HOLE? 12bit-unsigned

10bit-unsigned 10bit-unsigned

IM-SHORT-BITS
	 - <im-short-bits> 32bit-unsigned

IM-SHORT-INSTRUCTION
	

<im-short-instruction> 12bit-unsigned

10bit-unsigned 10bit-unsigned

HOLE?
	

lbit-unsigned

The references part starts with a number indicating how many references there are. The

end of a reference expression is implicitly delimited by the last reference operator. The 6-bit

Version 003; January 1990 	 88

Unsigned which follows the operators signed and unsigned, indicating the size of a field to be

stored, is actually encoded as one less than the size. For example, if the field is to be five bits

wide, the number four appears in the file.

REFERENCES 	 - 32bit-unsigned {REFERENCE}*

REFERENCE 	 --t 32bit-unsigned REFERENCE-EXPRESSION

REFERENCE-EXPRESSION 	{REFERENCE-OPERATOR}" TERMINATING-REFERENCE-OPERATOR

REFERENCE-OPERATOR 	 <number> integer I <area> NAME I <addr> NAME

<map> NAME I <pe> NAME I <fp> NAME I

<plus> I <minus> I <times> I

<floor> I <ceiling> I <truncate> 1 <round> 1

<ptr> NAME I <ptrinc> 1 <ithpe> 1 <thislpe>

TERMINATING - REFERENCE-OPERATOR

<signed> 6bit-unsigned 6bit-unsigned 1

<unsigned> 6bit-unsigned 6bit-unsigned 1

<tag-pe> 1 <tag-ip> 1 <tag-fp> 1

<tag-map> 1 <tag-port> 1 <tag-ptr> 1

<instruction-op> 1 <instruction-fl> 1 1

<instruction-f2> 1

<instruction-s1> I <instruction-s2> 1

<instruction-r> I <instruction-long-r>

Command records are straightforward.

COMMAND-RECORD 	- DEFINE-TABLE-RECORD I DEFINE-AREA-RECORD I

DEFINE-BROADCAST-AREA-RECORD I

DEFINE-INTERLEAVED-AREA-RECORD

PROVIDE-RECORD I REQUIRE-RECORD

DEFINE-TABLE-RECORD - <define-table> NAME NAME 16bit-unsigned

DEFINE-AREA-RECORD

	

	- <define-area> NAME MTYPE 32bit-unsigned N-PE

OPT-PE OPT-PE ADDRESS OPT-ADDRESS OPT-ADDRESS

ADDRESS BOOL

DEFIN E-BROADCAST-AREA-RECORD 	<define-broadcast-area> NAME MTYPE

N-PE OPT-PE OPT-PE ADDRESS OPT-ADDRESS

OPT-ADDRESS ADDRESS BOOL

DEFINE-INTERLEAVED-AREA-RECORD 	<define-interleaved-area> NAME MTYPE

N -PE OPT-PE OPT-PE ADDRESS OPT-ADDRESS

OPT-ADDRESS ADDRESS

PROVIDE- RECORD 	 - <provide> NAME 8bit-unsigned 8bit-unsigned

REQUIRE-RECORD
	

<require> NAME 8bit-unsigned 8bit-unsigned

NAMES are encoded simply as CIOBL keywords. The values for MTYPE are defined by the

Proto-Memory Manager (Chapter 3). The value of an N-PE, which indicates how many PE's

an area should span, is encoded as one less than the number of PE's desired. For example, if

an area is to be defined across four PE's, the number three actually appears in the file. The

values OPT-PE and OPT-ADDRESS are used for arguments to various area definition commands

that expect either a PE (or address), or —1 to indicate an unspecified value. OPT-PE and

OPT-ADDRESS are signed to accomodate the —1 value.

89 	 Version 003; January 1990

Punctuation

Value 	 Punctuation 	 Value

<absolute>

<local>

<global>

<aligned-local>

<aligned-global>

<table-entry>

<dm-bits>

<dm-integer>

<dm-float>

<dm-tag>

<dm-short-bits>

<dm-short-integer>

<dm-short-float>

<dm-short-tag>

<im-bits>

<im-instruction>

<im-short-bits>

<im-short-instruction>

<number>

<area>

<addr>

<map>

<pe>

<fp>

<plus>

<minus>

<times>

<floor>

	

1 	<ceiling>
	

29

	

2 	<truncate>
	

30

	

3 	<round>
	

31

	

4 	<ptr>
	

32

	

5 	 <ptrinc>
	

33

	

6 	<ithpe>
	

34

	

7 	<thislpe>
	

35

	

8 	<signed>
	

36

	

9 	<unsigned>
	

37

	

10 	<tag-pe>
	

38

	

11 	<tag-ip>
	

39

	

12 	<tag-fp>
	

40

	

13 	<tag-map>
	

41

	

14 	<tag-port>
	

42

	

15 	<tag-ptr>
	

43

	

16 	<instruction-op>
	

44

	

17 	<instruction-fl>
	

45

	

18 	<instruction-f2>
	

46

	

19 	<instruction-sl>
	

47

	

20 	<instruction-s2>
	

48

	

21 	<instruction-r>
	

49

	

22 	<instruction-long-r>
	

50

	

23 	<define-table>
	

51

	

24 	 <define-area>
	

52

	

25 	<define-broadcast-area>
	

53

	

26 	<define-interleaved-area>
	

54

	

27 	<provide>
	

55

	

28 	<require>
	

56

Figure 4.2: Numeric Values of MOC Punctuation

NAME

PE

N-PE

OPT-PE

ADDRESS

OPT-ADDRESS

MTYPE

- keyword

- 10bit-unsigned

- 10bit-unsigned

- llbit-signed

- 31bit-unsigned

- 32bit-signed

- 16bit-unsigned

The numeric values of punctuation items such as <absolute> are given in Figure 4.2.

4.6 Restricted Mode

During initialization of the Monsoon software system, it is necessary to load certain data into

data and instruction memory before the PMM and the loader's symbol tables have been ii-

Version 003; January 1990 	 90

tialized (see Section 5.9 for details of the bootstrap process). To support this need, the loader

has a restricted mode of operation, in which it accepts only a subset of the MOC language.

A MOC file in the restricted subset has the same syntax as the full MOC language, except

that the only record type allowed is the absolute data record. Furthermore, those absolute

records must all have zero references. Thus, the restricted subset only allows absolute data to

be loaded into absolute locations. The loader can load such records without the existence of

the PMM, or of its internal symbol tables.

The loader has a special command-line directive that instructs it to initialize its internal

tables, rather than load a module. This directive is usually given during the bootstrap process,

after the PMM has been established. Once this directive has been given, the loader may be

used in unrestricted mode.

4.7 Loader Structure

This section describes some of the internal structure of the loader, and is only pertinent to

people interesting in actually writing a MOC loader.

4.7.1 Memory Management for Loader Areas

It is the loader's responsibility to keep track of free space within loader areas, and allocate this

space as data records are loaded into these areas. Note that the run time system is loaded

by the loader, and therefore may not be used by the loader (besides which, the loader must

operate independent from any particular run time system, as run time systems are specific to

a particular programming language environment).

Currently, we do not expect the loader to recycle storage within loader areas. In other

words, once a data record is loaded into a loader area, that space is never reused for other

records (of course, a global record may overwrite a previously loaded global record of the same

name).

The reason we cannot recycle space in loader areas is that the loader cannot tell whether

pointers to data records have been stored in other areas outside the loader's control. On the

other hand, normal garbage collection of the machine cannot recycle loader managed space,

because the garbage collector is not expected to have access to or knowledge of the loader's

Own storage management data structures.

Given all the foregoing, it is likely that the loader will manage storage by simply keeping a

free pointer for each area. A more complex scheme could be used if a large number of aligned

records are leading to wasted storage with a simple free pointer scheme. In any event, the

loader is free to keep free pointers and other information about the free space of an area in the

area's memory itself.

4.7.2 Loader Internal Data Structures

Abstractly speaking, the loader must keep the following data structures:

Global Name Table This table maps global names to the five values Area(name), Addr(name),

Map(name), PE(name), and FP(name) (the latter three are not relevant if the area is a

non-aliased broadcast area). It also maps each name to the size of the first record with

that name loaded, so that an error may be signalled if an attempt is made to redefine a

global name with a record larger than the original record for that name.

91 	 Version 003; January 1990

The Global Name Table also records the names of areas defined by the define-area,

define-broadcast-area, and define-interleaved-area commands, as well as those

defined by the define-table command.

Local Name Table This table is similar to the Global Name Table, but keeps track of local

names instead of global names. It is cleared before loading each MOC module.

Provide Table This table records the names and versions declared by provide commands, to

perform subsequent verification of require commands.

Pending References This data structure keeps track of reference expressions that have not

yet been computed and stored, because they refer to one or more names that have not

yet been defined. Expressions containing one or more local names must be identifiable,

so that an error may be signalled if any such expressions are outstanding after a module

has been completely read (such expressions could never be satisfied, since local names

are defined only within one module). A special loader command may be used to find out

the names of all records that have pending references, as well as the names that those

references are waiting for. This allows the Execution Manager to inform the user if the

program he is trying to run is not completely loaded.

Of these data structures, all but the Local Name Table must persist across invocations of

the loader, as they contain information that is valid across all modules ever encountered. If the

loader runs outside of Monsoon, therefore, these tables must be kept in persistent storage. The

most logical place to put these tables is in Monsoon's memory itself, since the tables describe

the state of other parts of Monsoon's memory. The loader-internal area is reserved for this

purpose (see Chapter 5). Note that the data in this area does not need to be accessible by a

running Monsoon program, and so the loader-internal area can be allocated from memory

accessible only through the MM1. The MM1 can simulate a data memory of a fictitious PE

number, so that the loader may still be written as if the data structures were kept in Monsoon

memory itself.
The Local Name Table, as it does not need to persist across invocations of the loader, may

simply be an ordinary data structure within the loader program.

The exact format of the persistent data structures as kept in Monsoon's memory will be

defined at a later date.

Version 003; January 1990 	 92

Chapter 5

Id Object Code Format

Id Object Code Format is a blanket term which refers to a collection of conventions obeyed by

Id programs when compiled for the Monsoon architecture. This is more than simply the layout

of compiled code, as it encompasses many aspects which are run-time, as opposed to load-

time, characteristics. These conventions represent agreement between the compiler, execution

manager, debugger, and run-time system. Other components of the software system, including

the loader, statistics viewer, and Monsoon itself (including interface software and the MINT

emulator) have no built-in knowledge of these conventions. The topics which comprise Id Object

Code Format are enumerated below; this list is also an outline of this chapter. We indicate

which aspects must be respected by which components of the software system.

Areas The memory of Monsoon is partitioned into various areas, each containing different

sorts of objects. Some of these areas reflect architectural restrictions; for example, there is

an area of words that can be addressed with "short-R" absolute addressing. Others reflect

a difference between load-time and run-time objects, or between different garbage-collection

policies. Still others hold linkage information.

Heap Management The Id language requires heap storage for many of its datatypes. Heap

management routines provide facilities for allocating and deallocating (explicitly or via garbage

collection) heap storage; from the point of view of these routines, heap objects are just a

contiguous group of words, of various sizes. Conventions are established for placing these

objects in heap along with size indications, where necessary. These conventions are necessary

for the garbage collector to be able to find objects, and also for the debugger to sensibly interpret

the contents of memory. The run-time system provides the heap management routines which

must obey these conventions. To the extent that data objects are included in object code, the

comper must also obey these conventions.

Object Representation During execution, an Id program manipulates data representing

objects found in the Id programming language. These conventions say how each datatype is

represented in Monsoon as a type/data bits pair. When an object uses heap storage, these

conventions also say what is found in each word of the heap object it occupies. These con-

ventions are necessary for the garbage collector to distinguish pointers from non-pointers, for

the execution manager to properly format input data and interpret output data, and for the

debugger to present the contents of memory in a format meaningful to the Id programmer. The

compiler must obey these conventions by producing code which builds and interprets objects

according to them.

Dynamic Linking Id is a separately compiled, dynamically linked language. This means

that a user can change a single top-level Id definition, load it into the system, and have it

93

replace the old definition, with all callers automatically linked to the new version. The MOC

loader langauge provides primitive mechanisms for accomplishing this; the dynamic linking

conventions specify exactly how these mechanisms are employed for Id, and therefore give the

layout of object code and how different Id procedures refer to one another. Dynamic linking

conventions also allow different code blocks to share literal constants loaded into frame store.

These conventions are necessary for the execution manager and debugger to identify and invoke

various Id procedures, and also establish how the run time system obtains certain necessary

information about code blocks, such as frame size. The compiler must obey these conventions

when formatting a compiled procedure into MOC records.

Frame Layout and Calling Conventions Associated with each dynamic invocation of a

code block is an activation frame, containing local data for that invocation. Conventions are

established for the placement of certain information in activation frames, particularly argu-

ment/result linkage information. These conventions, therefore, are intimately tied to the calling

convention used within Id programs. These conventions help the debugger provide a meaning-

ful trace of activity in a halted Id program, and also are necessary for the garbage collector

to identify the root set of active heap objects. The compiler must obey these conventions by

producing code which builds and uses activation frames according to them. The execution

manager must also obey these conventions when constructing the initial activation frame.

Debugging Information The source debugger for Id tries to present the contents of Mon-

soon's memory in a format most easily understood by the Id programmer. This means the

debugger must associate Id identifiers with memory locations, identify procedure names, re-

construct detailed type signatures for objects, give pointers to source code, etc. Much of this

information is not necessary for correct execution of the program, but is additional information

supplied by the compiler specifically for debugging. These conventions are used only by the

debugger, and must be obeyed by the compiler in the code it produces (when the inclusion of

such information is enabled by the user).

Some of these conventions, particularly those related to debugging information and storage

management, are still topics of research. Everything in this chapter should be considered subject

to change.

It is important to understand the difference between the conventions of IOCF and the MOC

loader language. MOC is a general-purpose language of loader directives, which instruct the

loader to store given data in Monsoon's memory, and also to resolve the use of data by one

object module that is defined in another. As MOC is general purpose, it has no knowledge
of conventions specific to the Id language system, though it does have some knowledge of

architectural details of Monsoon. Those aspects of IOCF which are reflected in compiler output

(object code) will determine what MOC constructs the compiler emits, but none of those

conventions are part of the MOC language or built into the loader.

5.1 Areas

Different kinds of objects are kept in different areas in memory, because different objects require
memory with differing characteristics, and because there are different constraints on how the

objects are created and used. For instance, the instruction format constrains some literals

to be in the low kiloword (210 words) of a processor's data memory, others to be in the low

megaword (220 words). Instructions must be in a different kind of memory than data. Also,

data structures are grouped according to the type of use and type of resource management.

For example, information about code blocks is kept in one area because this information is

Version 003; January 1990 	 94

Area Name

Area

Number

Storage

Management Organization

Memory

Type Restrictions

plum 0 Static Broadcast DM PE 0 only
loader-internal 1 QDM (see text)

static-constants Static A. Broadcast DM Must include PE 0
static-code Static Broadcast IM
code-block Loader Broadcast IM
short-literal Loader A. Broadcast PEDM addr < 210
long-literal Loader A. Broadcast PEDM addr < 220
code-block-descriptor Loader Broadcast DM
identifier-descriptor Loader Broadcast DM
dynamic-link-table Loader Interleaved DM
load-time-pair Loader Interleaved DM
load-time-headered Loader Interleaved DM
run-time-pair RTS Interleaved DM
run-time-headered

stat ic-frame
frame

RTS
Static
RTS

Interleaved DM
PEDM
PEDN1

DM 	= Data Memory, PE or I/S
PEDM = Data Memory, PE only
IM 	= Instruction Memory
QDM 	= Data Memory or Quasi-Data Memory (see text)

Figure 5.1: Summary of Areas in IOCF

maintained by the loader. Data structures generated by a program's execution are kept in

another area, because they are allocated and deallocated at run time.

The Proto-Memory Manager (PMM), described in Chapter 3, is the data structure and

general conventions for partitioning memory into areas. We describe here the particular par-

titioning required by IOCF. While IOCF imposes many constraints on what areas must be

allocated arid where, there is great freedom in choosing the exact sizes and placement of the

various areas. The primary function of system initialization is to establish these areas, and

therefore define the resources available to the Id system. The allocation of areas will therefore

depend on the system configuration, and will incorporate experience and expectations of system

performance, e.g., the most desirable ratio of activation frame memory to heap memory.

IOCF defines a total of sixteen areas, summarized in Figure 5.1. Each area has a name,

known to the loader, which may be used in MOC records and references. Each area also has a

number, the index of that area's descriptor in the PMM data structure. Most of these numbers

are assigned arbitrarily by the loader when it loads the MONASM file which sets these areas

up (see Section 5.9), but the numbers of the pmm and loader-internal areas are required

to be zero and one (see page 70). The storage management column indicates who manages

the contents of the area: "static" means that the exact layout of the area is established by

convention (and described elsewhere in this chapter) and loaded using absolute MOC records;

"loader" means that objects are placed into the area using local and global MOC records, so

that the loader manages the layout; and "RTS" means that the Id Run Time System manages

the area. The organization column indicates the addressing strategy; see Section 4.1 for more

details ("A. Broadcast" stands for "aliased broadcast"). The memory type column indicates

95 	 Version 003; January 1990

what kind of memory comprises the area; in PMM terms, it indicates the memory type of the

spaces from which the area's regions are drawn. Finally restrictions on where the area may be

allocated are noted in the last column.

It should be noted that Figure 5.1 does not give the whole story of how various areas should

be allocated. For example, the code-block, short-literal, and long-literal areas must be

allocated on the same set of PE's, as instructions loaded into the code-block area will have

absolute R fields which refer to addresses of words in short-literal and long-literal area.

More detailed information is given in the descriptions of the individual areas, which follows.

pmm This area holds the PMM data structure, described in Chapter 3. That chapter stipulates

that the PMM be located in the data memory of PE 0. Typically this area would be carved

out of high memory, as low memory is needed by short-literal and long-literal areas.

Even in a multi-node system, this area only has one region, on PE 0. It needn't be larger

than the PMM data structure itself (which does not change size).

loader-internal This is the area where the loader keeps its internal symbol tables and lists

of pending references. Note that these are completely internal to the loader: their format

is not part of the NIOC specification, nor is there any way for another component of the

software system to directly examine them. (The loader's internal symbol tables should

not be confused with the tables explicitly established and managed through the MOC

define-table and table-entry directives, explained in Section 4.3.) While the contents

of this area must persist between invocations of the loader, it does not actually have to

be located in Monsoon's memory at all, if the loader is not a Monsoon program. This is

why the memory type is given as "QDM" in Figure 5.1; the memory for this area may

be something like a disk file, accessed through the MMI as if it were Monsoon memory.

On the other hand, it could be placed in real data memory, and would have to be if the

loader actually ran on Monson.

static-constants This data memory area holds constants at addresses established by con-

vention, so that the various components of the software system can communicate with

one another. The layout of this area is completely described in Section 5.6. This area is

always found at the lowest addresses in data memory of PE 0, as well as all other PE's in

the system; the contents of the area is identical on all PE's. The reason it has to include

the low memory of PE 0 is because the PMM specification stipulates that the address of

the PMM data structure be stored in data memory location 0 on PE 0, and the reason it

includes all PE's is so that the static constants can be read using absolute-FP addressing.

static-code This instruction memory area holds (1) a block of 256 instructions comprising

the repertoire of I-structure emulation instructions; (2) a block of 256 instructions which

are the entry points for exception handlers (the first of these is always the pipeline idle

instruction); and (3) any other code that must be loaded before the loader can run.

The latter would include, for example, instructions that must be there for the scan-ring
implementation of the MMI to completely function. Note that these instructions might

be loaded before the PMM is actually established; see Section 5.9 for a more detailed

discussion. This area is a broadcast area encompassing all PE's, since all PE's will need

these instructions to function. It is statically allocated not only because the loader is

not completely functional when this area is written, but also because the absolute IP's

of most of the instructions involved are established by convention. In particular, the

I-structure instructions must be at IP's zero through 255, because of the way the PE

Version 003; January 1990 	 96

generates I-structure request tokens, and so this area will always include those addresses.

While the exception entry points can be anywhere, it makes most sense to put them at

IP's 256 through 511, with the remaining instructions in this area starting at IP 512.

The first exception entry point is always the idle instruction because of the way idles are

generated by the PE board.

code-block This instruction memory area normally includes all of the instruction memory of

all PE's, excluding what belongs to the static-code area. All code is loaded in this

area, including both user Id code and nearly all of the code that is part of the run time

system. Current policy makes this a broadcast area (so that all code is loaded into the

same addresses on all PE's).

short-literal This data memory area holds Id objects and other constants which are accessed

using sliort-R absolute addressing. Because of the addressing mode, this area must be on

PE data memory, within the first 210 locations. This area is a broadcast area, consistent

with the policy for code blocks. Literals are discussed in Section 5.4.1.

long-literal This data memory area holds Id objects and other constants which are accessed

using long-R absolute addressing. Because of the addressing mode, this area must be on

PE data memory, within the first 220 locations. This area is a broadcast area, consistent

with the policy for code blocks. Literals are discussed in Section 5.4.1.

code-block-descriptor This data memory area holds code block descriptors, described in

Section 5.4.2. Code block descriptors have to go in a separate area because of the way

closures are encoded (see Section 5.3.6). This area could be either an aliased broadcast

area or an interleaved area, as it is always accessed using split-phase transactions. As

a broadcast area it would save network traffic, as an interleaved area it would minimize

total memory usage. Currently, IOCF requires this area to be a broadcast area; changing

it to an interleaved area would entail a slight adjustment in the way references to closures

are encoded in MOC (Section 5.5.2).

identifier-descriptor This data memory area holds identifier descriptors, described in Sec-

tion 5.4.3. This area could be either an aliased broadcast area or an interleaved area, as

it is always accessed using split-phase transactions. As a broadcast area it would save

network traffic, as an interleaved area it would minimize total memory usage. Currently,

IOCF requires this to be a broadcast area.

Identifier descriptors do not necessarily have to be in a separate area; they could be put

in the load-time-headered area, for example, if they were given proper headers.

dynamic-link-table This data memory area holds two MOC tables: one mapping symbols to

code block descriptors, and one mapping symbols to identifier descriptors. These tables

are discussed in Section 5.4.4. This area could be either an aliased broadcast area or an

interleaved area, as it is always accessed using split-phase transactions.

load-time-pair This data memory area holds Id aggregate objects which are (1) created at

load time, and (2) have an active area less than or equal to two. See Section 5.3.

load-t ime-headered This data memory area holds Id aggregate objects which are (1) created

at load time, and (2) have an active area greater than two. See Section 5.3.

97 	 Version 003; January 1990

run-time-pair This data memory area holds Id aggregate objects which are (1) created at

run time, and (2) have an active area less than or equal to two. See Section 5.3.

run-time-headered This data memory area holds Id aggregate objects which are (1) created

at run time, and (2) have an active area greater than two. See Section 5.3.

static-frame This data memory area is used as activation frames by code which runs before

the Run Time System's frame area has been initialized. In particular, the program which

intializes the Run Time System uses this area.

frame This data memory area holds the activation frames managed by the Run Time System.

As different frame management policies are tried out, we may find that we need several

frame areas, corresponding to different allocation strategies for different size frames. In

any event, the frame area must be distinct from the run-time-headered area because

frames have different restrictions on processor assignment and interleaving.

5.2 Heap Management

The heap contains Id objects that are aggregates: objects which contain other objects. When

such an object is created, a new region of data memory must be allocated to contain it. When

that object is no longer accessible from a running program, the heap space can be reclaimed,

either by the program explicitly deallocating the storage, or by an automatic garbage collector

that finds and reclaims all inaccessible objects.

This section defines the basic layout of the areas comprising the heap. We try to do this in a

way that does not take a position on the algorithms and data structures used for managing the

heap; for example, we want the freedom to use a first fit allocation algorithm or a buddy system

algorithm, the freedom to have explicit deallocation or automatic garbage collection. What we

do take a position on is the layout of those words of heap which have been allocated to objects—

the layout described in this section must be obeyed no matter what allocation/deallocation

system is used. We describe the strategy for identifying the boundaries of an object.

5.2.1 Basic Heap Operations

The operation allocate(n) allocates n contiguousl words of heap. The program making such a

request receives a pointer to the first of those n words, and can rely on the remaining words

being at logically consecutive locations. On the other hand, the program cannot rely on any

relationship between the addresses returned by two calls to allocate, regardless of their argu-

ments or timing relationship. The n words beginning with the pointer returned are called the

active area of the object. The allocator may also allocate additional words before and after

the active area; together with the active area they comprise the total area of the object. The

total area is also required to be contiguous. Words outside the active area may be used by the

heap manager for various overheads, but the program calling allocate cannot depend on their

existence or non-existence.
A program has two ways of returning previously allocated storage to the heap for subsequent

re-use. The first is an explicit deallocate operation, which takes a pointer to previously allocated

11n all discussions of heap storage, the word "contiguous" means logically contiguous with respect to the

interleaving strategy of the area containing that heap storage. That is, the addresses of contiguous words are

obtained by applying Monsoon's pointer increment operation, using the appropriate "map" value.

Version 003; January 1990 	 98

heap and returns it for use. It is the program's responsibility not to read or write deallocated

storage, except as such storage is later returned to the program by another call to allocate.

The second way of returning previously allocated storage is by automatic garbage collection,

which deallocates all objects to which the program cannot possibly refer. Typically, garbage

collection begins with a "root set" of objects known to be non-garbage, then scans these objects

to find other pointers to objects, which are then deemed non-garbage. The transitive closure

of this process therefore finds all accessible objects, and the rest are assumed to be garbage

and available for deallocation. This is not to say that the garbage is returned to use by calling

deallocate on each garbage object; more often, the garbage collection process transforms the

entire state of the heap at once into one with more available storage.

Either method of garbage collection can result in relocation of non-garbage objects, meaning

that the addresses of allocated objects change. Explicit deallocation may relocate objects to

reduce fragmentation. Garbage collection often copies non-garbage objects as it scans them,

also resulting in relocation. If deallocation results in relocation, all pointers to relocated objects

must be adjusted accordingly.

One of the main topics of research on Monsoon focuses on heap management policy. We

therefore do not want to specify what storage allocation algorithm must be used, nor whether

deallocation is explicit, automatic, or some combination of the two. What we do specify here,

though, is how an allocated object is laid out in memory: what it would look like if a snapshot

of memory were taken. The specification guarantees the following two properties:

• Given the address of some word within the total area of an allocated object, the boundaries

of the total area can be determined. Thus the address of any word within an object's total

area may be used to name an object for explicit deallocation, or to indicate a non-garbage

object to be scanned for other non-garbage objects.

• A word outside the active area of an object can never be mistaken for an active word

containing a reference to another object. Thus the total area may be scanned for object

references if the active area is not known.

There are two other properties which are necessary for certain heap management systems, but

require the cooperation of both the heap system and the conventions for representing Id objects:

• Given the root set of the program, all heap objects to which the root set refers can be

identified, and given a non-garbage object, all its references to other heap objects can be

identified. This is necessary if automatic garbage collection is used.

• All references to heap objects anywhere in the program's state can be identified. This is

necessary if deallocation (explicit or automatic) causes relocation.

These properties will be discussed again when the conventions for representing Id objects are

presented in Section 5.3. That section also defines the exact representation of a pointer.

Deficiency: As will be pointed out in Section 5.3, the current conventions for ob-

ject representation do not guarantee the second property, and so do not accomodate

relocation. This is a topic under investigation.

5.2.2 Layout

An object created during execution of a program is allocated from one of two areas, the

run-time-pair area or the run-time-headered area, depending on the size of its active area.

99 	 Version 003; January 1990

The run-time-pair area holds objects whose active area is one or two. The total area of

an object in this area is always exactly two, and begins on an even boundary (i.e., a location

that is an even number of locations away from the first word of the whole area).

The run-time-headered area holds objects whose active area is greater than two. If the

active area is n, the total area is always at least n + 1. The first word of the total area

has presence bits read-only, type bits header, and data bits which give the total area as an

unsigned integer. (Section 5.3.4 discusses the various presence bit values found in aggregates.

Section 5.10 gives the actual numeric values for presence and type fields, which are referred to

by name throughout this chapter.) The active area begins with the second word of the total

area. The program is not permitted to store a word with type bits header anywhere within

the active area.

In both the run-time-pair area and the run-time-headered area, any inactive words

following the active area have presence bits unused. Thus, a word outside the active area

cannot be mistaken for an active word containing a reference to another object, as such a word

will either have presence bits unused or type bits header.

Rationale: Objects in run-time-headered area are allowed to have total area greater
than n + 1 to allow for storage allocation algorithms which can't allocate arbitrary size
objects. For example, the buddy system can only allocate powers of two.

Caveat: IOCF does not guarantee that unused is a distinct presence bit value from
empty. See Section 5.10.

An algorithm for finding the boundaries of the total area of an object given a pointer within

the total area is as follows:

1. If the pointer p is into the run-time-pair area, the boundaries are 2 [p/2j and 2 ly/2.1 +1.

2. If the pointer is into the run-time-headered area, scan backward until a word with type

bits header is found; this word is the beginning of the total area. The data bits of this

word indicate the size of the total area, and therefore the end of the total area.

Note that it is necessary to identify a pointer's area to find the boundaries of the corresponding

object. This suggests that it may be a good idea to choose the boundaries of the areas to

minimize the complexity of this test.

The load-time-pair and load-t ime-headered areas are laid out exactly as the run-time-

pair and run-time-headered areas, but hold objects created at load time rather than at run

time. Storage in these areas is allocated by the loader when it encounters MOC records that

specify those areas; such records must obey the layout rules described above. While objects in

the load-time areas will be scanned during garbage collection, it is not feasible to deallocate

them because the loader is managing the storage. The number of garbage load-time objects is

likely to be very small, so this is not expected to be a problem.

5.3 Representation of Datatypes

5.3.1 Immediates versus Aggregates

The view of objects and their representations taken in IOCF is the "object reference" view.

This view is explained by Moon2 :

2 David A. Moon, "Architecture of the Symbolics 3600," in Proceedings of the 12th Annual International

Symposium on Computer Architecture, IEEE, June, 1985.

Version 003; January 1990 	 100

The fundamental form of data... is an object reference. The values of variables,

the arguments to functions, the results of functions, and the elements of lists are all

object references. An object reference designates a conceptual object. There can

be more than one reference to a given object. Copying an object reference makes a

new reference to the same object; it does not make a copy of the object.

A typical object reference contains the address of the representation in storage

of the object. There can be several object references to a particular object, but

it has only one stored representation. Side-effects to an object, such as [storing

into] an array, are implemented by modifying the stored representation. All object

references address the same stored representation, so they all see the side-effect.

In addition to such object references by address, it is possible to have an immedi-

ate object reference, which directly contains the entire representation of the object.

The advantage is that no memory needs to allocated when creating such an object.

the disadvantage is that copying an immediate object reference effectively copies

the object; thus immediate object references can only be used for object types that

are not subject to meaningful side-effects, have a small representation, and need

very efficient allocation of new objects. [Integers and floating point numbers] are

examples of such types.

We will use the term immediate object to denote an object represented by an immediate

object reference, and aggregate object to denote an object represented by an object reference

by address. Thus, "aggregate object" is synonymous with "heap-allocated object."

In Monsoon, object references consist of type bits and data bits (currently eight type bits

and 64 data bits), and are carried on tokens and stored in data memory.

5.3.2 Data Bits

The Monsoon architecture views data bits in one of five machine data formats: integer (a two's

complement signed integer), Dfloat (an IEEE double precision floating point number), Sfloat (an

IEEE single precision floating point number), pointer (a four tuple of NODE, OFFSET, MAP, and

is Fo), continuation (a four tuple of PE, FP, IP, and PORT). (A sixth type, request (a three tuple

of NODE. OFFSET, and OPCODE) is used internally by the instruction set in the implementation

of split-phase transactions.) What IOCF describes is how objects and object references are

encoded into these five machine data formats. Generally speaking, all object references by

address are encoded as pointers, and different immediates are encoded into integers, Dfloats,

pointers, and continuations. Sfloats are not used by IOCF. A more detailed discussion is

found in the sections describing the representation of each Id datatype; a general discussion of

the hardware formats and type system is found in the Monsoon Macro-Architecture Reference

Manual.

5.3.3 Type Bits

In the current definition of IOCF, type bits serve two purposes. First, they allow the garbage

collector to distinguish between immediate object references and object references by address

(i.e., between non-pointers and pointers). Second, they give additional information about

immediates which can help a low-level debugger print them in a meaningful way. Id is strongly

typed, so the type bits are not relied upon to implement the semantics of the language. Also,

type bits are not adequate to recover the complete Id type of an arbitrary object, and so they

do not adequately support the needs of a high-level debugger for the Id programming language.

101 	 Version 003; January 1990

Major Type Data Format Minor Type

Integer

SFloat

DFloat

Pointer

Continuation

Continuation

void

signed

boolean

enum*

character'

packed-character'

header*

[Not used by IOCF]

dp-float

internal

external

head*

closure*

[Encodes PRIV and COLOR]

[Not used by IOCF]

INT

Figure 5.2: Type Bits in IOCF

Future Improvement: Eventually, the IOCF specification will be extended to fully

support the needs of high-level debugging of Id programs. It is not yet known, however,

to what extent the type bits will assist in allowing such a debugger to determine complete

Id datatypes. It is likely that the final specification will use a combination of type bits,

address conventions, and information stored in the data bits of objects to achieve this

effect.

SFLT

DFLT

PTR

CONT

FUTR

*Defined by IOCF.

The instruction set of Monsoon provides the overall structure of the type bits system. The

instruction set divides the type bits into major type and minor type. The major type identifies

a class of related types, and all types within a given major type will have data bits in one

particular format. All exceptions taken on the basis of type bits are sensitive only to the major

type. The minor type further qualifies the major type. Some of the minor types within each

major type are defined by the instruction set, others are "user defined" from the instruction

set's point of view, and are defined by IOCF. Figure 5.2 summarizes the major and minor types,

indicating which ones are defined by IOCF.

The following values of type bits are found on object references that may be pointers of one

kind or another: head, internal, external, and closure. The meanings of the first three are

discussed in Section 5.3.5 on the general format of aggregates, while closures are described in

Section 5.3.6. The type bits header is not found on any object references, but has a special

role in storage management described in Section 5.2. All other values of type bits are found on

Version 003; January 1990 	 102

immediates, their values helping to indicate how an immediate should be printed by a low-level

debugger. (The actual numeric values of type bits are given in Section 5.10.)

5.3.4 Presence Bits

The representation of an aggregate determines the range of presence bit values that each word

in heap can assume. Basically, every word in heap can either have I-structure semantics, or

read-only semantics. Read-only semantics are used for words whose values are stored when the

object is created, while I-structure semantics are used for words that are stored asynchronously

with respect to the creation of the object.

Words with read-only semantics can have one of two values of presence bits: empty and

read-only. The code which creates an aggregate must insure that no attempt is made to

read an empty read-only slot, thereby allowing code that does read those slots to rely on

never having those reads deferred. Typically, the creator of an aggregate will first obtain empty

storage from the storage allocator, then fill in the read-only slots (simultaneously changing each

word's presence bits from empty to read-only), and only then releasing the object reference to

potential readers of the data structure. Read-only slots, therefore, are only used for data which

is guaranteed known at object creation time, such as the access coefficients for an array. The

advantage of read-only slots is potentially cheaper access, since readers of those slots do not

need to worry about the possibility of deferred reads.

Words with I-structure semantics can have one of five values of presence bits: empty,

present, deferred, delayed, or lock-deferred. The meanings of these values are as fol-

lows:

empty The word has neither been written nor read; the data and type bits are unspecified. For

a location used as a lock, it may also mean that the location had been written but was

subsequently taken.

present The word has been written: the data and type bits contain an object reference.

deferred The word has been read at least once but not yet written: when the value is even-

tually written, a copy should be sent in the data part of a token, with the tag part of the

token given by the current contents of the word (data and type bits). Sending this token

may have the effect of satisfying several deferred readers.

delayed The word has not been read and the computation which is to write the word has been

delayed. When the word is read, the data and type bits are sent to the thunk manager,

which will interpret them as a pointer to a thunk representing the delayed computation

which, when executed, will write the word.

lock-deferred The word has been taken at least once but never written, or taken at least

once after a prior take had emptied the word. When the value is eventually written (put),

it will be sent to one of the deferred takers.

Words with either read-only or 1-structure semantics may also have presence bits error,

indicating that an inappropriate transition has taken place. This can only occur if the hardware

malfunctions, or if there are bugs in system code.

Figure 5.3 summarizes the state transitions that can take place on 1-structure words. Omit-

ted from the figure are transitions to the error state: any operation for which no transition is

depicted in the figure causes a transition to the error state. Also, there are operations pro-

vided for writing an arbitrary presence value, regardless of current state. The operations and

103 	 Version 003; January 1990

I-Fetch

Store-Read-Only
I-Fetch

Store-Delay

Take

Figure 5.3: I-Structure State Transition Diagram

transitions are presented only to assist in understanding the meaning of each presence value;

technically, the meaning of I-structure operations and their associated transitions is outside the

scope of the IOCF specification.

The actual numeric values of presence bits are given in Section 5.10.

5.3.5 Aggregates: General Policy

To describe the representation of an object as an aggregate we must say how the object is laid

out in heap and how the object reference is encoded. In this section we give the general rules

that all aggregate encodings follow. Note that an Id program only makes use of the active area

of an aggregate, and in general has no information on what may or may not exist outside the

active area.

References to Aggregates

An object reference to an aggregate always has type bits head, and data bits which are formatted

as a "pointer" machine data type. The INFO field is zero, and the MAP, NODE, and OFFSET

fields are a Monsoon pointer to the first word of the active area of the aggregate. That is, the

first word of the aggregate is found in word OFFSET of data memory on node number NODE.

Successive words of the aggregate are found at logically successive addresses, by using MAP to

control the Monsoon pointer increment operation.

The head object reference is the usual reference to an aggregate; it corresponds to a deno-

table value in Id. There are two other types of object references that do not truly denote an

object, but nevertheless arise as intermediate values during manipulation of object references.

An internal pointer is a reference to an object that points to some word of that object, though

not necessarily the first. An external pointer is a reference to an object that may not even point

at a word within the object. Both have the same format as pointers, except that the type bits

are internal or external, respectively. Because the program has no knowledge of what may

lie outside the active area, internal pointers will only be created for words within the active

Version 003; January 1990 	 104

area, even though the storage manager could deal with a pointer to any word within the total

area just as well.

Head pointers, internal pointers, and external pointers obey the following rules, important

to a garbage collector. If a head pointer to an object is accessible from the root set, then that

object is not garbage. Similarly, if an internal pointer is accessible then the object is not garbage,

even if there are no head references to that object. On the other hand, an external pointer to

an object may not exist unless there is a head pointer or internal pointer accessible from the

root set. Thus, a garbage collector may disregard all external pointers when determining which

objects are not garbage (the "marking" phase).

The above rules imply that a garbage collector must be able to identify the end of an

object given a head pointer to it (the head pointer identifies the beginning). Similarly, given

an internal pointer, the garbage collector must be able to find both the beginning and the end.

Given an external pointer, however, the garbage collector does not need to be able to infer

anything about the object (and in general will not be able). How the boundaries of an object

are identified was discussed in Section 5.2.

Rationale: The distinction between internal and external pointer was made because

internal pointers are created routinely by the ordinary increment-pointer operation. It

would be prohibitively expensive to insure that a pointer to an object exists whenever an

internal pointer does (consider the case where the last reference to an array is about to

be consumed by a increment-pointer and I-fetch pair, just after the increment-pointer

executes but before the I-fetch. On the other hand, external pointers are generated

only through the application of specialized optimizations, particularly the hoisting of

invariant code from loops. In these cases, it is not terribly expensive to insert special

code to insure a head pointer or internal pointer exists (not expensive in terms of run-

time overhead, but it may make life hard for the compiler!).

Deficiency: While the scheme outlined here is adequate to mark the heap (separate

the non-garbage from the garbage) in the presence of internal and external pointers, it is

not sufficient to enable the proper updating of external pointers if objects are relocated

during garbage collection. This is because there is no way to identify to which object

an external pointer refers. This is still a topic under investigation.

Active and Total Area

We reiterate here some points about active and total area.

From the Id programmer's point of view, an aggregate consists only of other object ref-

erences. In fact, there are two kinds of overhead associated with aggregates which consume

additional words beyond that needed for subcomponents' object references. One overhead is

words needed by the Id language to record attributes of an object, such as the dimensions of

an array, or the disjunct number of a member of an algebraic data type. The other overhead

is words used by the heap manager to keep track of the boundaries of objects. In IOCF, these

two overheads are kept separate from each other and from the subcomponents.

To account for these overheads, we distinguish between the total area and the active area

of an object. The total area of an object is all the words consumed by that object, including

language overhead and storage management overhead. Thus, if the total area of some object

is six words, then creating it will remove exactly six words from the heap, and deallocating it

will return exactly six words for use by other objects. The active area of an object includes

the subcomponents and language overhead, but excludes storage management overhead. For

example, the active area of a one-dimensional, three word array is (currently) five: three words

105 	 Version 003; January 1990

for the array elements, and two words for the access coefficient and bounds. Notice that the

active area of an object is completely determined by the compiler; it is independent of the

storage allocation strategy used. The total area of an object is always at least as large as the

active area.

With the above in mind, we elaborate on our earlier description of pointer types:

• The total area of an aggregate is logically contiguous.

• The active area of an aggregate is also logically contiguous, and is contained within the

total area.

• A head reference to an aggregate always points to the first word of the active area.

• A internal reference to an aggregate always points to some word in the active area,

which word may or may not be the first.

• An external reference may point to any word, which word may be in the active area,

the total area, or completely outside the object.

• The storage management system must be able to determine the boundaries of an object's

total area given a head pointer or internal pointer.

The words belonging to the total area but not to the active area are entirely the responsibility

of the storage manager. A request to allocate n words really means allocate n active words,

returning a head pointer to the first active word. Whether there are additional words before or

after the active area is not of interest to the code making the request. Conversely, the storage

allocator does not know what the requestor intends to do with those words, so the number of

total words depends only on the number of active words (and not, for instance, on the type of

object to be stored in those words).

In describing the representations of Id datatypes, we will only speak of active area. The

relationship between active area and total area is discussed in Section 5.2.

5.3.6 Representations of Id Datatypes

The representations of Id datatypes are summarized in Figure 5.4. For immediate datatypes,

the type bits of the object reference are given. For aggregate datatypes, the type bits of the

object reference are always head, or internal or external when appropriate. (Figure 5.4 is

not an exhaustive list of the possible type bits: type bits header and packed-character are

used in the representations of certain aggregates, and type bits request are generated by the

hardware during split-phase transactions. The figure only lists the type bits found on object

references to Id data types.) The signed, void, and continuation datatypes are non-denotable:

no Id identifier can have one of these as its value, but they arise internally in code generated

by the compiler. Each datatype is described in more detail below.

Characters

A character is an immediate object with type bits character. The least significant eight data

bits are the character itself, while the most significant fifty-six data bits are all zero.

The character set of Id includes the 94 printing characters of ASCII, plus some special

characters. The printing characters are encoded as ASCII codes, with the most significant bit

(of eight) zero. The special characters have the following decimal values:

Version 003; January 1990 	 106

Data type

Immediate/

Aggregate

Immediate

Type Bits

Aggregate

Active Area

Aggregate

INFO

Character

Number
Integer (non-denotable)

Boolean

Void (non-denoiable)

Continuation (non-denotable)

charact er
dp-float

signed

boo lean

void
cont inuat ion

String A Nen/81 + 1
Symbol A fien/81 + 1
Array

0-ary Algebraic Disjunct
A

enurn

rank + 1 + n darn,

n-ary Algebraic Disjunct A n or n + 1 0

Closure I or closure 2 217r + cbname

Figure 5.4: Summary of Representations of Id Datatypes

Id Character Encoding

\backspace 8

\tab 9

\newline 10

\linefeed 10

\page 12

\return 13

\space 32

\rubout 127

Numbers (Floats)

A float is an immediate datatype whose type bits are dp-float. The data bits are in the same

format as Monsoon's machine data type Dfloat; that is, the data bits are in IEEE double-

precision floating point format. Single-precision floating point numbers are not used in the

implementation of Id.

Currently, the Id language has only a single numerical datatype called Number, which is

always represented as a float. Integers only arise internally during certain calculations, described

below; the value of an Id identifier or a accessible component of an Id data structure is never

represented as an integer.

Potential Change: It is possible that at some point in the future, both floats and

integers will be denotable in Id. One possible scheme for doing so involves overloading;

use of automatic coercions based on type bits is another possibility. In any event, the

representations of floats and integers in IOCF will not change, only the situations in
which each can appear.

Integers

An integer is an immediate datatype whose type bits are signed. The data bits are in the same

format as Monsoon's machine data type integer; that is, the data bits are the integer in 64-bit

107 	 Version 003; January 1990

two's complement representation.

Integers only arise in the following situations:

1. The access coefficients of arrays (see Arrays, below) are integers.

2. Array subscripts are converted to integers prior to subscript linearization calculations.

3. Constants denoting offsets within n-ary algebraic disjuncts are integers.

4. Various pieces of system code that manipulate Monsoon's machine state, or that comprise

the run time system, may use integers internally.

Booleans

A boolean is an immediate datatype whose type bits are boolean, and represents boolean true

or false. The data bits of true are all ones (i.e., the integer —1), and of false are all zeros.

Void

Void is an immediate datatype whose type bits are void and whose data bits are unspecified.

Void arises during resource management code, especially termination detection; they only

carry information that certain events have completed.

Continuations

A continuation is an immediate datatype whose type bits are continuation, and is a hardware

supported datatype. Continuations represent computational contexts, consisting of a pointer

to code and a pointer to data. The minor type of continuations is used by the hardware to

encode the PRIV and COLOR fields; their use in IOCF is still under study.

Continuations arise during procedure linkage and during other manipulation of activation

frames.

Strings

A string is an aggregate datatype. The first word of the active area is a non-negative integer

giving the number of characters in the string. The following words contain the characters of the

string, packed eight characters to a word, with each group of eight characters arranged in order

from most significant byte to least significant byte, corresponding to left to right. Unused bytes

in the last word (if any) may contain anything. The active area, therefore, totals 1 + rlen/81

words.

All words of strings have read-only semantics. The type bits of the first word are signed,

that of suceeding words are packed-character.

Symbols

A symbol is an aggregate datatype. Symbols have a representation identical in every respect

to that of strings, with the additional property that if two object references refer to symbols

with the same name, then the object references will be bit-for-bit identical. In other words, a

symbol with a given name will only occur once in the entire heap. This allows a quick equality

comparison on symbols. The Id language does not allow new symbols to be created at run-

time; all symbols are created at load time. The encoding of symbols into MOC ensures that

the pointer equality property is preserved.

Version 003; January 1990 	 108

Arrays

An array is an aggregate datatype. The first word of the active area is (an object reference to)

the bounds tuple. The next r words are access coefficients, where r is the rank of the array;

each coefficient is an integer, with type bits signed. The remaining words are the elements of

the array. The bounds tuple and access coefficient words have read-only semantics, while the

remaining words have I-structure semantics.

The access coefficients are as follows. For an array of rank r, the offset o of the element

referenced by a [x i , . . . , xn] is given by the following:

o = co + C1 X1 + • • • + crxr

The actual address of that location is given by PTRINC(p, o), where PTR INC increments p, a

pointer to the first word of the array's active area, by o according to the interleaving specified

in the MAP component of the pointer.

Let the lower and upper inclusive bounds on a subscript xi be i and ui, respectively.

Furthermore, define ni = u, —1, + 1. Then the values of the coefficients are given by:

r 	j-1

CO = (7' -1- 1)- Eli 	nk

j=1 k=1

1-1

C,

j=1

These equations give the coefficients for column-major order. The term r 1 in the equation

for co accounts for the space occupied by the bounds tuple and the coefficients. Note that the

value of c1 is always one, and so there is no need to store it with the array. The coefficients are

stored in the order co, C2 , (3, • • • 'el--

Algebraic Disjuncts

Algebraic datatypes provide a general facility for discriminated unions of fixed-length, hetero-

geneous data structures. Lists and n-tuples in Id are implemented as special cases of algebraic

datatypes (these special cases are discussed at the end of this section).

In its most general form, an algebraic datatype in Id is a type declared by a statement of

the form:

type typename formal-1 . . . formal-k =

d-1 elt-type-1-1 . . . elt-type-1-n1 	. I d-m elt-type-m-1 . . . elt-type-m-nrn

This declares a new type typenarne. Each d-i is the name of a disjunct of the new type; each

disjunct d-i has arity n1, ni > 0. A disjunct of arity ni is essentially an ni-tuple, with component

types given by the expressions elt-type-i-1 through elt-type-i-n, where these expressions may

be in terms of the type variables formal-1 through formal-k. An identifier of type typename

may be bound to any of the m disjuncts, and so it must be possible to distinguish among the

disjuncts of a given algebraic type at run time.

As 0-ary disjuncts have no components, they are represented as immediates. The type bits

of a 0-ary disjunct are enum, and the data bits are a non-negative integer indicating which

109 	 Version 003; January 1990

disjunct the object represents. The correspondence between these integers and the disjunct

names is given below.

An n-ary disjunct, for positive n, is an aggregate. The format of this aggregate, however,

depends on the total number of positive-ary disjuncts in the type. If an algebraic type has only

one n-ary disjunct other than 0-ary disjuncts, then there is no need for the n-ary disjunct to

carry an indication of which disjunct it is; a reference to it is distinguishable from all other

disjuncts of the type since it is the only one with major type PTR. In this case, the active

area of the aggregate is n, each word containing (a reference to) a component, with successive

components corresponding to the left-to-right order in the type declaration. All words have

I-structure semantics.

If an algebraic type has more than one n-ary disjunct other than 0-ary disjuncts, then

every disjunct must carry an indication of which disjunct it is. In this case, the active area of

the aggregate is n -I- 1, where the first word contains an indication of which disjunct, and the

remaining words are the components, in left-to-right order. The first word has type bits enum,

and a non-negative integer as data bits. The correspondence between this integer and disjunct

names is given below. The first word has read-only semantics, while the remaining words have

I-structure semantics.

The integers used as enum values are assigned as follows. First, all 0-ary disjuncts are

assigned consecutive values from zero, in left-to-right order as declared in the type statement.

Then, all positive-ary disjuncts are assigned consecutive values from zero, also in left-to-right

order. The rationale is that in doing a case dispatch on an object reference to a member

of an algebraic datatype, a dispatch on type is first necessary to distinguish 0-ary disjuncts

(immediates) from positive-ary disjuncts (aggregates). Assigning numbers to the two subsets

separately yields two dense dispatches on enum values, rather than two sparse ones. Note that

if there is only one positive-ary disjunct, instances of that disjunct do not actually contain an

enurn value. For example, for the following type:

type status = Yes I Excuse string I No

the object Yes is represented by an immediate with type bits enum and data bits equal to zero,

while No has data bits equal to one. For the following type:

type intermediate_status = Yes I In_progress string I Excuse string I No

the objects Yes and No again have type bits enurn and data bits equal to zero and one, respec-

tively, while the aggregates for In_progress and Excuse have as their first words enums with

data bits equal to zero and one, respectively.
Tuples in Id (obtained through the comma (,) infix syntax) are special cases of algebraic

datatypes. They are represented as if the following definitions existed:

type 2_tuple *0 *1 = Two_tuple *0 *1

type 3_tuple *0 *1 *2 = Three_tuple *0 *1 *2

type 4_tuple *0 *1 *2 *3 = Four_tuple *0 *1 *2 *3

etc.

Thus, an n-tuple is represented as an aggregate with an active area of n, with consecutive words

corresponding to the components in left-to-right order.
Lists in Id (obtained through the colon (:) infix syntax) are also a special case of an algebraic

datatype. They are represented as if the following definition existed:

type list *0 = Nil I Cons *0 (list *0)

Version 003; January 1990 	 110

Thus, Nil is an immediate with type bits enum and data bits equal to zero, while a cons is an

aggregate of two words where the first word is any object, and the second word is either (a

reference to) another cons or the immediate Nil.

There are two special cases of algebraic datatypes that are not denotable: code block de-

scriptors and identifier descriptors. These are only created at load-time, never at run-time, and

are described in Section 5.4.

First-Class Functions (Closures)

An object representing a function in Id is always a partial application of a top-level function to

some of its arguments, specifically, to the first i arguments where i is less than the function's

arity. The name of a top-level function used directly as a value is a special case of a partial

application to zero arguments, while internal functions (functions defined at lexical levels more

inner than top-level) are converted to top-level functions during compilation by the lambda-

lifting transformation. The details of lambda-lifting, and therefore the identity and number of

extra formals introduced during lambda-lifting, are not specified by IOCF.

Partial applications of top-level functions are called closures. Conceptually, a closure con-

sists of the name of a procedure, the number of arguments remaining (the procedure's arity

minus the number of arguments to which it has already been applied), and a linked list con-

taining the arguments to which the procedure has already been applied. Portions of the linked

list may be shared among closures; this arises in the case where the same partial application is

later applied to two different arguments.

The representation of closures is unique, in that it contains both immediate data (the

procedure name and number of arguments remaining) and aggregate data (the linked list of

arguments). The type bits of a closure are always closure. The data bits are formatted as

a pointer, where the MAP, NODE, and OFFSET fields comprise a pointer to the linked list of

arguments, the most significant 7 bits of INFO are the number of arguments remaining minus

one, and the least significant 17 bits of INFO is cbname, described below.

A true pointer to the linked list can be constructed from the MAP, NODE, and OFFSET fields

of the closure by setting the IN FO field to zero and the type bits to head. The linked list is an

aggregate with an active area of two, where the first word contains the argument most recently

applied, and the second word is a linked list of the arguments remaining after that one. Both

words have I-structure semantics. The last pair in the chain has the null pointer (a pointer

whose MAP, NODE, and OFFSET fields are all zero). Note that this is different from an Id list,

where the last pair would have an enum with data bits zero instead of a null pointer. If a

closure has no arguments in the chain (i.e., the number of remaining arguments is the same as

the procedure's arity), the MAP, NODE, and OFFSET fields of the closure are all zero. Hence,

when adding another argument to the front of a chain, the second component of the new pair

can always be obtained by extracting a pointer from the closure.

The value cbname is a compact representation of the address of a code block descriptor (see

Section 5.4.2). The code-block-descriptor area contains contiguous code block descriptors;

if you think of the descriptors as being numbered consecutively from zero, then cbname is the

number of a particular descriptor. Thus, a head pointer to the code block descriptor can be

constructed as follows:

MAP = Map(code-block-descriptor-area)

NODE = [Any]

OFFSET = cbsize x cbname FP(code-block-descriptor-area)

111 	 Version 003; January 1990

INFO =

where cbsize is the number of words in a code block descriptor. Alternatively, we could have

described this pointer as

PTRUC(Ptr(code-block-descriptor-area), cbsize x cbname)

Note that when a closure is applied to another argument, the new INFO is obtained by

subtracting 21' from the old INFO. When only one argument remains, INFO is equal to cbname

(this is why the upper bits of INFO contain the number of arguments remaining minus one).

Alternative: Again, the MAP, NODE, and OFFSET fields would form a pointer to an
argument chain, but INFO would be an entry point to some closure manipulation code
specific to the procedure being applied. To apply the closure to an argument, one
allocates a small frame (at FP'), sends the closure itself to (INFo,FP'). This code will
either return a new closure (with a new entry point) or it will allocate a context and
perform a tail call to the real entry point of the procedure (and unwind the arguments
from the argument chain). This method may require a entry points for an arity a
procedure, but it may require less overhead for general applies than the current scheme.

Delayed Objects (Thunks)

[The mechanism for thunks was still under development as this document went to press. Please

check for any addenda that have been issued.]

5.4 Dynamic Linking I: Literals, Code Blocks, and Identifiers

Literals, code blocks, and identifiers are not denotable objects in the Id language, but are

the framework which binds together the various components of an Id program into a single

programming environment. Identifiers represent the top-level identifiers in the Id program, the

identifiers at the outermost lexical scope. A reference to an identifier occurs when an identifier

defined by one top-level definition appears in the body of the definition of another; such a

reference receives the value to which the identifier is bound, which may be any denotable

Id value. Code blocks are contiguous segments of executable code, loaded into instruction

memory, and correspond to the unit of code for which activation frames are allocated at run

time. References to code blocks occur when the compiler breaks a function definition into

several code blocks (usually for reasons related to resource management): the main code block

of a function will invoke inferior code blocks, and so on. As an optimization, the compiler also

converts a reference to an identifier into a reference to a code block, when the identifier is known

to be bound to a particular function, and is applied to a complete set of arguments. Literals are

constants compiled as part of a code block and stored in data memory. References to literals

occur in constructs like x + 1, where the integer one is effectively built into the object code.

Procedure calling conventions also result in literals that refer to code blocks and identifiers.

All references to an identifier or code block with a given name indirect through a common

data structure, a identifier descriptor or code block descriptor, as appropriate. This allows an

individual procedure to be changed, recompiled, and reloaded, with all callers automatically

seeing the change, thus supporting a highly interactive development environment. Thus, for

Version 003; January 1990 	 112

each top-level identifier in an Id program there is loaded an identifier descriptor, and for each

code block there is an associated code block descriptor.

In addition, a table of all identifier descriptors and a table of all code block descriptors are

maintained; these tables are useful to the Execution Manager and the Debugger.

While identifiers and code blocks are related, they are not in one-to-one correspondence.

While the top-level definition of a function f will define an identifier named f and also generate

a code block named f, the compiler may choose to generate several code blocks to implement f.

On the other hand, a definition like

def pi = 3.1415927;

could define an identifier named pi, but no code blocks at all. Even in the case where an

identifier is bound to a procedure, its value is not the code block for that procedure; rather, its

value is a closure of that procedure over zero arguments. The value of an identifier is always a

denotable value in Id. Code blocks are not denot able, but closures (which are the representations

of first-class procedures) are. The various possibilities for the value of an identifier is covered

in the section on identifiers, Section 5.4.3.

The remainder of this section covers the representation of identifier descriptors and code

block descriptors, and explains the linking conventions for literals, code blocks, identifiers, and

how those conventions are implemented through MOC.

5.4.1 Literals

The Monsoon architecture does not allow constant data to be imbedded directly into instruction

memory. Instead, a compile-time constant, also called a literal, must be stored in data memory,

with the referencing instruction having the data memory address in its R field. The data

memory word contains an ordinary object reference, with presence bits read-only.

An important consideration is the architectural restriction on the R field of instructions.

Monsoon provides two instruction formats: one with a 10-bit R field, and one with a 20-bit R.

When compiling a reference to a particular literal, the compiler must decide whether to generate

an instruction which uses the 10-bit format or the 20-bit format. The 10-bit format generally

results in fewer total instructions, because the other 10 bits may be used for a destination, but

the architecture does not permit more than 1024 (210) different literals to be referenced in this

format.3 IOCF allows the compiler to choose, for each literal reference, whether to use a 10-bit

or a 20-bit reference. The literal will be placed in either short-literal area or long-literal

area; these areas are placed in memory to insure that their addresses fit within 10 bits or 20 bits,

respectively (see Section 5.1).

Clarification: It is solely the responsibility of the compiler to decide whether to use
a short or long literal for a given compile-time constant. If the compiler generates too
many different short literals, when the program is loaded the loader will eventually fill
up the short literal area, and the program will not load. The current thinking on this is
that all literals will be long literals except those on a short list built into the compiler,
which would probably include such things as zero, one, nil, etc. The compiler could
also provide an annotation to allow the programmer to request that a certain literal
should be compiled as short; it would then be the programmer's responsibility to not
use this feature too heavily.

3Actually, the limit is somewhat smaller in practice because some of the low memory locations are occupied

by static constants (see Section 5.6).

113 	 Version 003; January 1990

code-block area

des:

short -literal area

read-only signed 6847

long-literal area

read-only bead
/

10:

2000:

oonst-fetch = 2022
load-time-pair area

read-only signezi 1
,

read-only head
_ ----

read-only signed 2

read-only enum 0

Figure 5.5: A Code Block with Two Literals

A code block with two literals is illustrated in Figure 5.5. The first literal is the integer 6847,

placed in short-literal area. The second literal is the list 1:2:nil, placed in long-literal

area. The literal word contains an object reference exactly as described in Section 5.3, with

presence bits read-only. As the list literal illustrates, the heap storage for literals that are

aggregates is allocated out of load-time-pair and/or load-time-headered area, and all words

in the load time heaps receive presence bits read-only.

In theory, each compile-time constant in every code block needs its own word in literal

area. In practice, IOCF is designed so that multiple references to the same constant share the

same word in literal area, even if the references are in different code blocks defined in different

object modules loaded at different times. This kind of sharing is done for literals that are

characters, floats, integers, booleans, voids, 0-ary disjuncts, symbols, identifier descriptors, and

code block descriptors. Literals that are continuations, strings, arrays, and n-ary disjuncts

are not necessarily shared; each reference gets a new literal word.' The remaining datatypes,

closures and thunks, never appear in literals (although they do appear as components of load-

time aggregates).

Rationale: Sharing of literal words is desirable as it saves memory, especially given

the severe architectural limit on the size of short-literal area. Accomplishing this
sharing, however, requires the values of such literals to be encoded in the names of the

MOC records which load the literal words, as explained in Section 5.5. This is not
feasible for arrays and n-ary disjuncts because of their complex structure. Continuation
literals, which are quite rare, have a slightly different problem in that they are not likely
to be compile-time constants, but instead will have some linking done to them as they

'The compiler may choose to share such literals within an object module, but no MOC mechanism is employed

to obtain this sharing between object modules, as is done for the other literal types.

Version 003; January 1990 	 114

code-block area

1000:

code-block-descriptor area

read-only signed 1000

read-only signed 18
,

read-only head
---""

load-time-headered area

1047:
read-only header 4

read-only signed 10

read-only
packed-

character AUTOMOBI

read-only
packed-

character L E

Figure 5.6: A Code Block and its Descriptor

are loaded. String literals could be shared in the same way as are symbols; experience
will show whether this is really necessary.

5.4.2 Code Block Descriptors

The layout of a code block descriptor is illustrated in Figure 5.6. The code block descriptor is

a data structure of three words, stored in the code-block-descriptor area. Only code block

descriptors are stored in this area, and they are always stored at multiple-of-three boundaries,

so that the address of a code block descriptor may be efficiently encoded into a closure (see

Section 5.3.6). Notice that there are no header words in this area. The type and data bits of

the three slots are as follows; all words have presence bits read-only.

Code Pointer An unsigned integer giving the address in instruction memory (the IP) of the

first word of the code block (recall that the code block itself is in code-block area; as

this is a broadcast area the IP is the same for all processors). The type bits are signed.

Frame Size An unsigned integer giving the size of activation frames created for invocations

of this code block. The type bits are signed.

Name An object reference to a symbol giving the name of the code block, as assigned by the

compiler.

In the illustration, the code block name is AUTOMOBILE and the frame size is 18.

5.4.3 Identifier Descriptors

Each top-level identifier in an Id program has a corresponding identifier descriptor. An iden-

tifier descriptor is a four word data structure, whose slots are as follows (all presence bits are

read-only):

Value An object reference to the value of the identifier, with the appropriate type bits.

115 	 Version 003; January 1990

identifier-descriptor area

read-only dp-float 3.1415927

read-cn...y head
— .

read-only head -- --

read-on: enLlm
,
._

load-time-pair area

read-only signed 2

,
read-on_y

packed-
character P 	II

load-time-headered area

read-only header 4

read-only signed 13

read-only
packed-

character basi C -11

read-only
packed-

character _ 6 r a r'Y

Figure 5.7: An Identifier Descriptor for a Compile-time Constant

Name An object reference to a symbol giving the identifier's name.

Filename An object reference to a string giving the fully qualified name of the MOC file

where the identifier was defined. The compiler will normally generate MOC such that

all identifiers from the same file defined in the same object module will share this string.

Note that the Execution Manager can use the MOC file name to derive the name of the

associated exsym file, which will have source pointers for each identifier as well as the

name of the MOC file, as a cross-check.

Thunk This slot holds an object reference to the thunk when the identifier is defined by an

expression computed at run time. See the discussion below.

Identifier descriptors generated by the Id Compiler fall into one of three cases. The first is

for an identifier defined as a compile time constant, for example:

def pi = 3.1415927;

In this case, the value slot of the identifier descriptor just holds an object reference, and the

thunk slot is nil, as illustrated in Figure 5.7.

The second case is an identifier defined as a top-level function, for example:

clef quad a b c =

Again the value slot holds an object reference to the value of quad, and the thunk slot is nil.

The value of quad, in this case, is a closure of code block quad over zero arguments. See

Figure 5.8.

The last case is an identifier defined as an arbitrary expression that is not a constant at

compile time. For example:

def intvec =
{vector (1,10)

I [i] = i II i <- 1 to 10};

Version 003; January 1990 	 116

read-only head

read-only head

identifier-descriptor area

delayed head (INTO=Addr(56:nunk-mgr))

read-only
,

head

read-only head

read-only head

load-time-pair area

(to CBD of delayed computation) le

	0' (to name)

	fo' (to filename)

Figure 5.9: An Identifier Descriptor for an Arbitrary Expression (Before Execution)

identifier-descriptor area code-block-descriptor area

FP =3 x34:
read-only closure

NoDE=0 	OFFSET =0

MAP = 0 MO = 2 x 217 + 34

read-only head .

read-only head ---..,

read-only enum n ..,

..

read-only signed 2000

read-only signed 33

read-only head
1

(to name)

(to filename)

Figure 5.8: An Identifier Descriptor for a Top-level Function

117 	 Version 003; January 1990

Initially, the value slot holds an object reference to a thunk for the expression. When the first

attempt to fetch the value of intvec is made, the thunk's code block will be invoked, which will

ultimately store the value of intvec back into the value slot of the identifier descriptor. Before

the next execution of the program, the value slot must somehow be reset to contain an object

reference to the thunk. The thunk slot of the identifier descriptor, therefore, always holds an

object reference to the thunk; before the next execution of the program, the execution manager

finds all identifier descriptors with a non-nil thunk slot, and copies their thunk slots into their

value slots. Figure 5.9 illustrates the identifier descriptor for the intvec example.

It is possible for a single thunk to compute the values of several top-level identifiers, for

example:

def a,b,c = function_returning_a_3_tuple x y;

The three identifier descriptors for a, b, and c would all point to the same thunk, which when

invoked would store all three value slots. A locking protocol is used for thunk invocation to

prevent multiple invocation of the same thunk (see Section 5.3.6).

[Note: the mechanism for thunks was still under development as this document went to

press. The above description may not be accurate. Please check for any addenda that have

been issued.1

5.4.4 The Code Block and Identifier Tables

Two loader tables (see Section 4.3) are maintained in the dynamic-link-table area. The code

block table maps symbols to code block descriptors, while the identifier table maps symbols to

identifier descriptors. Each entry in the code block table consists of two words: the first is

an object reference to a symbol, and the second an object reference to the corresponding code

block descriptor. The identifier table is similarly structured.

The code block and identifier tables are primarily kept for the benefit of the debugger,

although the execution manager also needs the identifier table so that it can find all identifier

that need their thunks reset.

Figure 5.10 summarizes the interaction of code blocks, identifiers, and table entries by

showing the data structures associated with a top-level procedure named quad.

5.4.5 References to Code Blocks and Identifiers

When compiled code needs to refer to a code block or identifier, the compiler generates code to

indirect through the code block descriptor or identifier descriptor. This allows the redefinition

of code blocks and identifiers without the need to recompile procedures referring to them.'

There is nothing special about how these references are made; code block descriptors and

identifier descriptors are accessed as would any aggregate data structures. Object references to

descriptors are built into code as literals.

References to code blocks occur in two situations: the linkage between inferior code blocks

(code blocks split from the main code block for a procedure because they contain loops, or
for other reasons), and the optimized calling convention when a known procedure is applied

to a complete set of arguments. In both cases, the caller must read the code block descriptor

to obtain the IP of the code block, and to obtain the activation frame size. The caller will

That is, unless the compiler has performed certain optimizations which bypass the fully dynamic linking

convention. For example, the compiler may take advantage of the type or arity of procedure 1 when compiling

procedure g which refers to f; in that case g would need to be recompiled if the type or arity of f changed.

Version 003; January 1990 	 118

dynamic-link-table area

identifier table 	 code block table

read-on: head read-only head

read-only head read-only head

load-time-pair area

read-only signed 4

packed-
read-only character QU A D

identifier-descriptor area code-block-descriptor area

FP= 3x34:
read-onl:,,r closure

NODE. = 0 	OFFSET = C.)

MAP = 0 	INFO = 2 x 217 + 34

read-only heaci

read-only head
,

—

read-only enlzr, 0

read-only signed 2000

read-only signed 33

read-only head
1

(to filename)

Figure 5.10: Code Block Descriptor, Identifier Descriptor, and Table Entries for a Top-Level

Procedure

119 	 Version 003; January 1990

have a literal that is an object reference to the code block descriptor, and will simply fetch the

descriptor's first and second words.

References to identifiers occur when a top-level variable appears as part of an expression.

The referencing code block has a literal that is an object reference to the code block descriptor,

and fetches the descriptor's first word to obtain the value. It is completely transparent to that

code block whether the descriptor contained an actual object or a thunk.

5.5 Dynamic Linking II: Encoding Into MOC

The previous sections described the layout of memory, the data structures used to achieve

dynamic linking, and the sharing required. This section shows how all of these specifications

are achieved through mechanisms provided by MOC.

An object module in MOC is a series of 1\40C records which are loaded all at one time;

the boundaries of modules typically correspond to the boundaries of object code files. The

boundaries of an object module define the scope of local, as opposed to global, MOC names.

It is assumed by IOCF that a given object will contain only one definition of a code block or

identifier with a given name, although different object modules containing different definitions

of the same code block or identifier may be loaded at various times.

In reading the examples of MOC that follow, it should be remembered that MOC encodes

pointers and continuations both as instances of "tags." The encoding is as follows:

Tag Fields PORT IF MAP PE FP

Pointer Fields

Continuation Fields

0

PORT

INFO

IP

MAP

0

NODE

PE

OFFSET

FP

5.5.1 Literals

Each literal generally requires one MOO record in addition to the code block using the literal,

that record defining the word in short-literal or long-literal area actually containing

the object reference. If the literal is an aggregate, additional records defining the aggregate

contents in load-time-pair or load-time-headered area are also needed. Where sharing of

literal words or of the aggregates (in the case of symbols) is required, global records are used,

with record names chosen as a function of the literal's value.

When the compiler generates an object module, it need not include records defining the

same literal more than once if it can recognize that fact. On the other hand, there is no harm

in including a literal record every time a reference is made. It is not permissible, however, for

an object module to refer to a literal that it does not define itself, as there is no guarantee

that some other module will eventually define that literal. The sharing conventions insure that

no extra storage is consumed if the same literal is defined in two different object modules (for

shared literals).

The record defining the literal word will always be one word long, and will have a name

chosen according to the rules in Figure 5.11. Unshared literals are defined by local records,

and their names are simply chosen so as not to conflict with other records in the same object

module. Shared literals, however, are defined by global records, and their names are derived as

a function of the literal's value. This causes repeated definitions of the same literal to occupy

the same storage.

The records defining the contents of aggregates are almost always local records, the sole

exception being the records defining the contents of symbols. Records defining the contents of

Version 003; January 1990 	 120

Datatype

Record

Type

Record

Name

Global

Global

Global

Global

Global

Local

Local

Global

Local

Global

Local

Global

Global

Character

Float

Integer

Boolean

Void

Continuatioh

String

Symbol

Array

0-ary Disjunct

n-an' Disjunct

Code Block Desc.

Identifier Desc.

LLITSCHARACTER$x

LLIT$FLOAT$x

LLITV1NTEGER$z

LLIT$BOOLEAN$2:

LLIT$VOID

LLIT$z

LLIT$2:

LLIT$SYMBOL$x

LLIT$x

LLIT$ENUM$x

LLITSJ:

LLITCBDz

LLITSID$.r

x is the eight bits of the character, as a two-

digit hexidecimal string.

x is the 64 data bits of the float (IEEE double

precision representation), as a 16-digit hex-

idecimal string.

x is the 64 data bits of the integer (two's com-

plement representation), as a 16-digit hexidec-

imal string.

z is either TRUE or FALSE according to the

value of the boolean.

There is only one void.

x is a serial number unique to the current ob-

ject module.

x is a serial number unique to the current ob-

ject module,

x is the name of the symbol.

x is a serial number unique to the current ob-

ject module.

x is the 64 data bits of the enumeration tag,

as a 16-digit hexidecimal string.

x is a serial number unique to the current ob-

ject module.

x is the name of the code block.

x is the name of the identifier.

Note: The records defining short literals have names beginning with SLIT rather than LLIT.

Figure 5.11: Rules for Naming Literal Records

121 	 Version 003; January 1990

symbols have record name SYMBOLk, where x is the name of the symbol. All other aggregate

records have record name HEAP$x, where x is a serial number unique to the current object

module.

Various literals as encoded into MOC are illustrated below.

Shared Immediate Literal

Here is the MOC code for a code block with the integer literal 6847, as a long literal:

GLOBAL CBSEXAMPLE Area = CODE-BLOCK

n words

34 	INST Opcode = const-f etch F1 = 0 F2 = 0

m references

34 ADDR LLIT$INTEGER$0000000000001ABF INSTRUCTION-LONG-R.

GLOBAL LLITSINTEGER$0000000000001ABF Area = LONG-LITERAL

1 words 	Presence 	Type
	

Data

0 INTEGER read-only signed 6847

0 references

Short literals are similar, except that the area is short-literal, the record name of the

literal begins with SLIT instead of LLIT, and of course the reference expression for the instruction

is different (this case is also illustrated in Figure 5.5):

GLOBAL CBSEXAMPLE Area = CODE-BLOCK

n words

34 	INST Opcode = const-f etch Fl = [(lest] F2 = 0

m references

34 ADDR SLIT$INTEGER$0000000000001ABF INSTRUCTION-R.

GLOBAL SLITSINTEGER$0000000000001ABF Area = SHORT-LITERAL

1 words 	Presence 	Type
	

Data

0 INTEGER read-only signed 6847

0 references

Symbol Literals

Here is a code block with a long literal whose value is the symbol AUTOMOBILE:

GLOBAL CBSEXAMPLE Area = CODE-BLOCK

n words

68 	INST Opcode = const-f etch Fl = 0 F2 = 0

m references

68 ADDR LLITSSYMBOLSAUTOMOBILE INSTRUCTION-LONG-R

Version 003; January 1990 	 122

GLOBAL LLITSSYMBOL$AUTOMOBILE Area = LONG-LITERAL

1 wo rds 	Presence 	Type 	 Data

0 TAG read—only head Port =R IP =0 Map = 0 PE = 0 FP = 0

1 references

0 PTR SYMBOL$AUTOMOBILE TAG-PTR

GLOBAL SYMBOL$AUTOMOBILE Area = LOAD-TIME-HEADERED

4 words 	Presence 	Type 	 Data

0 BITS read-only header 	 4

1 BITS read-only signed 	 10

2 	BITS read—only packed— character 256 char-code(A) + 248 char-code(U) + • • •

3 	BITS read-only packed-character 256 char-code(L) + 248 char-code(E)

0 references

Code Block Descriptor Literals

Here is a code block with a reference to some other code block via its descriptor, as a long

literal:

GLOBAL CB$EXAMPLE Area = CODE-BLOCK

n words

. . .

47 INST Opcode = const —fetch Fl = 0 FE = 0

refe rencesin

47 ADDR LLITSCBDSAUTOMOBILE INSTRUCTION-LONG-R

GLOBAL LLITCBDAUTOMOBILE Area = LONG-LITERAL

1 words 	Presence 	Type 	 Data

0 TAG read—only head Pori = R IF = 0 Map = 0 PE = 0 FP = 0

1 references

o PTR CBD$AUTOMOBILE TAG-PTR

The MOO defining the code block descriptor itself is discussed in Section 5.5.2.

Identifier Descriptor Literals

Here is a code block with a reference to an identifier via its descriptor, as a long literal:

GLOBAL CBSEXAMPLE Area = CODE-BLOCK

n words

. . .

23 INST Opcode = const —fetch Fl = 0 FE = 0

in references

23 ADDR LLITIDAUTOMOBILE INSTRUCTION-LONG-R

GLOBAL LLITSIDSAUTOMOBILE Area = LONG-LITERAL

1 words 	Presence 	Type 	 Data

0 TAG read—only head Port = R IF = 0 Map = 0 PE = 0 FP = 0

1 references

o PTR ID$AUTOMOBILE TAG-PTR

The MOC defining the identifier descriptor itself is discussed in Section 5.5.2.

123 	 Version 003; January 1990

Unshared Aggregate Literals

Here is a code block with the literal list 1: 2 : nil (this is illustrated in Figure 5.5):

GLOBAL CB$EXAMPLE Area = CODE-BLOCK

n words

47 	INST Opcode = const-f etch F1 = 0 F2 = 0

m references

47 ADDR LLIT$2691 INSTRUCTION-LONG-R

LOCAL LL1T$2691 Area = LONG-LITERAL

1 words 	Presence 	Type 	 Data

0 TAG read-only head Pori = R. JP = 0 Map = 0 PE = 0 FP = 0

1 references

0 PTR HEAP$2692 TAG-PTR

LOCAL HEAP$2692 Area = LOAD-TIME-PAIR

2 words 	Presence 	Type 	 Data

0 INTEGER read-only signed 1

1 	TA G 	read-only head 	Put t = R IP = 0 Map = 0 PE = 0 FP = 0

1 refer.e 71 Ce S

1 PTR BEAP$2693 TAG-PTR

LOCAL HEAP$2693 Arta = LOAD-TIME-PAIR

2 words 	Presence 	Type 	Data

0 INTEGER read-only signed 2

1 BITS 	read-only enurn 0

0 references

5.5.2 Code Blocks

The 1\10C records for the code block shown in Figure 5.6 along with its associated descriptor

and table entry are illustrated below.

First, the code block itself. The code block is a local record, because if it is redefined it

might be a different size, and therefore cannot overwrite the previous definition. The name is

always CB$x, where x is the name of the code block; this cannot conflict with any other name

in the same object module because we assume that code blocks are not redefined within the

same object module.

LOCAL CB$AUTOMOBILE Area = CODE—BLOCK

48 words

0 INST Opcode = plus F] = 7 F2 = 10

0 references

The code block descriptor. This is a global record, and furthermore aligned on a multiple

of three boundary. The alignment is necessary because of the representation of closures. It is

a global record to achieve dynamic linking of references to code blocks, which indirect through

the descriptors. Its name is always CBD$x, where x is the name of the code block.

Version 003; January 1990 	 124

ALIGNED-GLOBAL CBD$AUTOMOBILE Area = CODE-BLOCK-DESCRIPTOR Align = 3

Type 	 Data

signed 0

signed 18

head 	Port = r IP = 0 Map = 0 PE = 0 FP = 0

2 references

0 ADDR CB$AUTOMOBILE UNSIGNED 32 0

2 PTR SYMBOL$AUTOMOBILE TAG-PTR

The table entry record. The name of the record is CBTESx, where x is the name of the code

block, though this is not terribly important.

TABLE-ENTRY CBTESAUTOMOBILE Table = CODE-BLOCK-TABLE

2 words 	Presence 	Type 	 Data

0 TAG read-only head Port = r IP = 0 Map = 0 PE = 0 FP = 0

1 TAG read-only head Port = r IP = 0 Map = 0 PE = 0 FP = 0

2 references

0 PTR SYMBOL$AUTOMOBILE TAG-PTR

1 PTR CBD$AUTOMOBILE TAG-PTR

The contents of the symbol AUTOMOBILE. This would not have to be included if it already

appeared elsewhere in the same object module.

GLOBAL SYMBOLSAUTOMOBILE Area = LOAD-TIME-HEADERED

4 words 	Presence 	Type 	 Data

	

0 BITS read-only header 	 4

	

1 BITS read-only signed 	 10

2 	BITS read-only packed-character 256 char-code(A) + 248 char-code(U) +...

3 	BITS read-only packed-character 2. 56 char-code(L) + 248 char-code(E)

0 references

The illustration above does not show any literals associated with the code block, but those

records would of course be included, too.

Identifiers

The MOC records for the identifier shown in Figure 5.7 along with its associated descriptor

and table entry are illustrated below.

The identifier descriptor. It is a global record to achieve dynamic linking of references to

identifiers, which indirect through the descriptors. Its name is IDSx, where x is the name of

the identifier.

GLOBAL IDSPI Area = IDENTIFIER

Type 	 Data

dp-float 3.1415927

	

head 	Port = r IP = 0 Map = 0 PE = 0 FP = 0

	

head 	Port = r IP = 0 Map = 0 PE = 0 FP = 0

	

enum 	0

2 references

1 PTR SYMBOLS?' TAG-PTR

2 PTR HEAP$1122 TAG-PTR

The contents of the symbol PI. This would not have to be included if it already appeared

elsewhere in the same object module.

6 words Presence

0 BITS read-only

1 BITS read-only

2 TAG read-only

4 words Presence

0 FLOAT read-only

1 TAG read-only

2 TAG read-only

3 BITS read-only

125 	 Version 003; January 1990

GLOBAL SYMBOL$PI Area = LOAD-TIME-PAIR

2 words 	Presence 	Type Data

0 BITS read-only signed 	 2

1 	BITS read-only packed-character 256 char-code(P) + 248 char-code(I) + • • •

0 references

The table entry record. The name of the record is IDTE$x, where x is the name of the code

block, though this is not terribly important.

TABLE-ENTRY IDTE$P1 Table = IDENTIFIER-TABLE

2 words 	Presence 	Type 	 Data

o TAG read-only head Port = r IP = 0 Map = 0 PE = 0 FP = 0

1 TAG read-only head Port = r IF = 0 Map =0 PE= 0 FP= 0

2 references

o PTR SYMBOL$PI TAG-PTR

1 PTR ID$P1 TAG-PTR

The contents of the string "basic-library". This would normally be shared among all

identifiers in the object module, and so would only appear once. It is a local record, however,

and so is not shared across modules.

LOCAL IMAP$1122 Area = LOAD-TIME-HEADERED

4 words 	Presence 	Type 	 Data

0 BITS read-only header 	 4

1 BITS read-only signed 	 13

2 	BITS read-only packed-character 256 char-code(b) + 248 char-code(a) + • • •

3 	BITS read-only packed-character 256 char-code(b) + 248 char-code(r) + • • •

0 references

The MOC records for the identifier shown in Figure 5.8 are pretty much the same as shown

above, except that a rather unusual reference method is needed to construct the closure which

occupies the value slot. The record for the identifier descriptor is as follows:

GLOBAL ID$QUAD Area = IDENTIFIER

Type 	 Data

closure P071 = r IP = 2 x 217 Map = 0 PE = 0 FP = 0

head 	Port = r IF = 0 Map = 0 PE = 0 FP = 0

head 	Port = r IP = 0 Map = 0 PE = 0 FP = 0

enurn 	0

3 references

0 FP CBD$F00 FP CODE-BLOCK-AREA MINUS NUMBER 3 FLOOR UNSIGNED 17 32

1 PTR SYMBOL$QUAD TAG-PTR

2 PTR HEAP$1122 TAG-PTR

The first word in the data section defines the "arguments remaining" subfield of the closure's

IP field, while the reference expression for that word computes the code block number from the

descriptor's address and stores it in the "cbname" subfield.

The other records that would accompany this identifier are not shown.

The MOC records for the identifier shown in Figure 5.9 are also similar to what is shown

above, except that the value and thunk slots both point to a thunk.

4 words Presence

0 TAG read-only

1 TAG read-only

2 TAG read-only

3 BITS read-only

Version 003; January 1990 	 126

GLOBAL ID$INTVEC Area = IDENTIFIER

4 words Presence Type Data

0 TAG read-only head Port = r IP = 0 Map = 0 PE = 0 FP = 0

1 TAG read-only head Port = r IF = 0 Map = 0 PE = 0 FP = 0
2 TAG read-only head Port = r IF = 0 Map = 0 PE = 0 FP = 0

3 TAG read-only head Port = r IF = 0 Map = 0 PE = 0 FP = 0

6 references

0 PTR HEAP$1534 TAG-PTR

o ADDR %THUNK-MGR TAG-I?

1 PTR SYMBOL$QUAD TAG-PTR

2 PTR HEAP$1535 TAG-PTR

3 PTR HEAP$1534 TAG-PTR

3 ADDR Y.THUNK-MGR TAG-I?

Notice the reference methods used to get the proper IP field for the thunk references.

The NIOC for the thunk:

LOCAL HEAP$1534 Area = LOAD-TIME-PAIR

2 words 	Presence 	Type 	 Data

0 TAG read-only head 	Port = r IF = 0 Map = 0 PE = 0 FP = 0

1 TAG read-only internal Port = r IF = 0 Map = 0 PE = 0 FP = 0

2 references

o PTR CBD$INTVEC-THUNK-0 TAG-PTR

1 PTR ID$INTVEC TAG-PTR

Notice that the second location is an internal pointer naming the first word of the identifier.

The first location is an object reference to the code block descriptor for the code block computing

intvec's value. The NIOC for that code block is not shown.

[Note: the mechanism for thunks was still under development as this document went to

press. The above description may not be accurate. Please check for any addenda that have

been issued.]

5.5.3 Summary of Record Names

The following table summarizes the conventions on record names established by IOCF:

127 	 Version 003; January 1990

Reco iyJ

Name Use

Record

Type

Local/Global

Local/Global

Global

Global

Global

Global

Local

Long literal—see Figure 5.11

Short literal—see Figure 5.11

Contents of symbol named x.

Code block named x.

Code block descriptor for code block named x.

Identifier descriptor for identifier named x.

Table entry into the code block table for code block

named x.

Table entry into the identifier table for identifier named x.

Aggregate contents; x is a serial number unique within

the current object module.

LLIT$2:

SLITSx

SYMBOLSx

CB$x

CBD$x

CBTE$x

IDTE$x

HEAP$x

Local

Local

5.6 Layout of Static Constants

The static-constants area contains short literals whose existence is pre-defined, such as area

numbers for important areas, manager entry points, etc. The value of some of these literals

will be defined before any code is run on Monsoon. All of these literals have presence bits

read-only.

5.6.1 PMM Constants

The PMM will reside in its own area on processor 0. The address of the first word of the PMM

is stored in location 0 on that processor.

pmm-address 	 [Static Constant]

This literal contains the FP of the first word of the PMM data structure, with type bits signed.

The definition of the PMM requires this literal to be at location 0 of PE O's data memory.

pmm-pointer 	 [Static Constant]

This is similar to pmm-address but is a Monsoon pointer to the first word of the PMM, rather

than just the FP. Unlike pmm-address, this constant is initialized when all the other constants

are initialized, not when the PMM is established.

5.6.2 Area Numbers

The following literals contain the area numbers of important areas. All of them have presence

bits read-only and type bits signed.

pmm-area-number 	 [Static Constant]

loader-internal-area-number 	 [Static Constant]

static-constants-area-number 	 [Static Constant]

static-code-area-number 	 [Static Constant]

Version 003; January 1990 	 128

code-block-area-number 	 [Static Constant]

short-literal-area-number 	 [Static Constant]

long-literal-area-number 	 [Static Constant]

code-block-descriptor-area-number 	 [Static Constant]

identifier-des criptor- area-number 	 [Static Constant]

dynamic-link-table-area-number 	 [Static Constant]

load-time-pair-area-number 	 [Static Constant]

load-time-headered-area-number 	 [Static Constant]

run-time-pair-area-number 	 [Static Constant]

run-time-headered-area-number 	 [Static Constant]

static-frame-area-number 	 [Static Constant]

frame-area-number 	 [Static Constant]

5.6.3 Configuration Parameters

my-pe-number 	 [Static Constant]

The value of my-pe-number is the PE number of the processor in whose data memory this word

resides. Note that unlike all other static constants, the value is different on each PE that is

part of the static-constants broadcast area.

5.6.4 Dynamic Link Table Pointers

code-block-table-pointer 	 [Static Constant]

identifier-table-pointer 	 [Static Constant]

The code-block-table-pointer constant holds a Monsoon pointer to the first word of the

code block table, contained in the dynamic-link-table area. Identifier-table-pointer is

analogous, but points to the identifier table.

5.6.5 Manager Entry Points

These literals contain the entry points (IP values) for various manager operations. All have

presence bits read-only and type bits signed.

boot-code-block-entry-point 	 [Static Constant]

This literal contains the IP of the entry point of the boot code block. The execution manager

will presumably start execution by dropping one or more tokens targeted at the boot code

block. The arguments will have been stored as constants in the boot frame (a static frame).

The results and termination signal will also be stored in the boot frame when the procedure

finishes.

context-initialization-entry-point 	 [Static Constant]

get-context-entry-point 	 [Static Constant]

return-context-entry-point 	 [Static Constant]

Before invoking a procedure, the execution manager will invoke the context initialization pro-

cedure, which will set up the run time frame area. During program execution, frames will

be allocated and deallocated by making calls to get-context and return-context. These

managers also may provide hooks for the debugger (e.g., trace).

129 	 Version 003; January 1990

thunk-mgr-entry-point 	 [Static Constant]

This contains the entry point to the thunk manager, which is where a thunk is sent when it is

forced. This manager will allocate a context in which the thunk body will execute.

pair-initialization-entry-point 	 [Static Constant]

allocate-pair-entry-point 	 [Static Constant]

clear-pair-entry-point 	 [Static Constant]

deallocate-pair-entry-point 	 [Static Constant]

headered- initial izat ion-entry-point 	 [Static Constant]

allocate-headered-entry-point 	 [Static Constant]

clear-headered-entry-point 	 [Static Constant]

deallocate-headered-entry-point 	 [Static Constant]

These literals contain the entry points to the manager procedures that initialize the run-time

pair and headered storage areas, and allocate, clear and deallocate from the run-time pair and

headered storage areas.

5.6.6 Manager Parameters

These literals are used by the managers when performing actions such as allocating contexts,

heap storage, etc. These should be static literals so that they may be changed by the execution

manager.

n-initial-frames 	 [Static Constant]

fixed-size-frame-size 	 [Static Constant]

frame-area-address 	 [Static Constant]

n-initial-frames tells the context-initialization routine how many frames to allocate. It will

put this many frames onto the frame-free-list, each of size fixed-size-frame-size.

run-time-pair-area-address 	 [Static Constant]

run-time-headered-area-address 	 [Static Constant]

These literals contain the addresses of the run-time pair and headered storage areas.

5.7 Frame Layout and Calling Conventions

In order to support the use of functions as first-class objects in ID, as well as to facilitate

debugging, the generated code for a procedure must obey certain constraints, loosely known as

the Id calling convention. These constraints include the use of the temporary frame storage,

references to global values, and the manner in which arguments are passed in and results passed

out. A code block has several inputs, sometimes referred to as the arguments, as well as several

outputs or return values.

5.7.1 Frame Layout

For the storage of values temporarily during execution, each procedure has access to a portion

of local memory called the frame. The amount of frame storage used by a given procedure

is fixed at compile time, and is allocated by the calling procedure. The normal mechanism is

Version 003; January 1990 	 130

to allocate a fixed size frame; unusually large procedures thus use the standard frame storage

temporarily while they allocate their own sufficiently large frame storage.

At offset 0 in every frame is stored the return address, to which results are returned (see

below). This is the first location written and the last location cleared in any frame. Thus, an

active frame is easy to identify and link into the call tree.

Frame slots may be distinguished by the matching mode used on them; that is, by the values

their presence bits may take on as execution progresses. Dyadic slots take on the presence

values empty, left-present, and right-present. Constant slots take on the values empty

and read-only. "Count-down" slots take on any of the eight possible values; the presence

bits for those slots are used as a 3-bit counter. At some point in the future, we may allocate

data structures directly in frames as opposed to the heap; in that case, some frame slots may

have I-structure presence values (see Section 5.3.4). The constant slots always precede all other

frame slots except slot 0.

5.7.2 Parameter Passing Conventions

To call a known procedure using the standard calling convention, we need to know the number

of inputs and outputs, as well as the address of the code block. The number of inputs and

outputs is known at compile time; the address of the code block is found by consulting the code

block descriptor. The following steps are then taken:

1. A frame (probably fixed size, see above) is obtained for the storage of temporaries local

to the called procedure.

2. The address of this procedure and the frame are combined to produce a context C.

3. A return address R is generated, to which the returned values will be sent.

4. The return address is sent to C.

5. Argument i (1 < i < n, where n is the number of arguments expected by this procedure)

is sent to Adjust-Offset(C,i), where Adjust-Offset(C,i) is the context obtained by adding i

to the IP of C.

When the procedure returns, the m values returned are sent to Adjust-Offset(R,j), for

1 < j < m. In addition, when the called procedure is finished with the temporary frame

storage, it returns a context to R. In general, however, the context returned to R may not be

the same as the original context C.

This is the standard calling convention; certain code blocks may have non-standard calling

conventions. These conventions have yet to be fully determined, and will be documented later.

5.8 Debugging Information

[This section is omitted until a strategy for source-level debugging can be devised. It will

explain what additional information is placed in code blocks, activation frames, and descriptors

to aid the source-level debugger in presenting a memory image in a way related to the source

text.]

131 	 Version 003; January 1990

5.9 Bootstrapping Monsoon

This section describes how a freshly powered-up single-node Monsoon is brought to the point

where user Id programs may be loaded and run. The process for bringing up a multi-node

Monsoon is essentially the same, but may include some initialization of the token network

which is yet to be determined.

The bootstrap process has three main phases. At the start of the bootstrap phase, only

the micro-architecture has been defined (by the actual circuitry of the processor); there is

no instruction set, or access to the machine in a micro-architecture-independent way. The

bootstrap process then proceeds as follows:

Macro-Architecture I This phase is responsible for transforming the hardware into a working

instruction set dataflow architecture. At the end of this phase, microcode has been loaded

(thus defining an instruction set) and the VME hardware interface initialized. The MMI is

operative in bootstrap mode, providing access (albeit somewhat inefficient) to the macro-

architecture, or instruction set architecture. The loader may be used in restricted mode

(no use of symbols).

Macro-Architecture II This phase is responsible for setting up the infrastructure needed to

allocate machine resources at the PMM level (i.e., at a very gross level), and to make full

use of the capabilities of the loader. At the end of this phase, the PMM data structure

is initialized, as are the loader's internal tables. The MMI is operative in normal mode,

providing efficient access to the macro-architecture. If the MMI's normal mode involves

code actually running on Monsoon, then that code has been loaded and is running.

Id This phase is responsible for loading and initializing all the support for the Id programming

language, including the resource managers. At the end of this phase, all areas and other

data structures specified by IOCF have been created and initialized, and the Id Run Time

System (resource managers) has been loaded and initialized. At this point, the user may

load and run ordinary Id programs.

The Macro-Architecture I phase is always required to use Monsoon. The Macro-Architecture II

phase is always required if the PMM and MOC loader are to be used—we expect that any use

of Monsoon would want these facilities, but it is possible to imagine a software system that

does not. Perhaps a diagnostic program would not need the PMM or full use of the loader,

and could be loaded and run without going through the Macro-Architecture II phase. The Id

phase is specific to Id, and is the only phase that is influenced by the conventions in IOCF.

If some other programming language environment is to be used with Monsoon, some other

bootstrapping phase would replace the Id phase.

Because the MINT emulator does not mimic the micro-architecture, the Macro-Architecture I

phase is different for MINT. Instead of loading microcode and VME registers, this phase consists

of calling the initialization function provided by MINT, establishing upper limits on the amount

of emulated memory, and other like parameters. The end result of the Macro-Architecture I

phase is the same, however: the emulated machine has an instruction set, the MMI is operative

in bootstrap mode, and the loader may be used in restricted mode. The Macro-Architecture II

and Id phases are also performed on MINT, and have exactly the same purpose and implemen-

tation as for the hardware.
The following sections describe in detail the steps taken during each phase of bootstrapping.

Diagnostics are excluded from the discussion: although it is likely that one or more phases will

include running diagnostics, all the details have yet to be determined.

Version 003; January 1990 	 132

5.9.1 The Nlacro-Architecture I Phase

Prior to the Macro-Architecture I phase, the machine has been freshly powered up and reset.

No microcode or other machine state has been initialized.

Load Microcode and VME Registers The first-level decode, type map, presence map,

second-level decode, and type propagation maps are loaded from a microcode file (gener-

ated by the microcode compiler). Various other machine registers (e.g., the base IP for

exception tokens) as well as VN1E registers (e.g., the interrupt vector for VME interrupts)

are also initialized.

While there may be a separate microcode loader program, in all likelihood these tasks

will be accomplished by giving a command script to the Scan Path Debugger.

All internal machine state, including microcode, has now been loaded. The machine has a

definite instruction set.

Load Static Instructions 	Proper operation of Monsoon requires that special instructions

be loaded into instruction memory at particular IP addresses. These instructions include

the Idle instruction, as well as the instructions that emulate 1-structure operations, and

those that handle the second phases of instructions for reading and writing instruction

memory from the instruction stream. All of these instructions fall in the static-code
area defined by IOCF, although at this point none of the infrastructure associated with

areas and IOCF have yet been established.

This task is again accomplished by giving a command script to the Scan Path Debug-

ger.

The machine now conforms completely to the specification of its macro-architecture; it is

now truly a Monsoon processor. The MN1I is now usable in bootstrap mode, providing a path

for manipulating the macro-architecture machine state (data memory, instruction memory,

token queues, and statistics registers). While the loader has not yet initialized its symbol table

management data structures, it is possible to use the loader in "restricted mode," which allows

the loading of absolute data into absolute addresses, with no references to symbols. Because

the NINE is still in bootstrap mode, access to this machine state may be somewhat inefficient,

as in all likelihood it is accessed exclusively through the scan path at this point.

This completes the Macro-Architecture I phase.

5.9.2 The Macro-Architecture II Phase

Prior to the Macro-Architecture II phase, the Macro-Architecture I phase must have been

completed (MINT starts up already in this state).

Initialize PAM The PMM data structure, which describes the available machine re-

sources (e.g., the number and sizes of data memory), and records their gross allocation,

is initialized according the the machine configuration. At this point, only one PMM area

is established: the area that holds the PMM itself. The address of the PMM has been

recorded in location zero of node zero's data memory; this location will eventually be-

come part of the static-constants area defined by IOCF, although at this point none

of 10 CF's areas have been established.

This task may be accomplished by a special PMM initializer program, or simply by

loading a file (created by N1ONASM) using the restricted mode of the loader. If a special

133 	 Version 003; January 1990

PMM initializer program is used, it may be able to automatically determine some of the

sizes of machine resources by probing memory locations; otherwise the information must

be precomputed and recorded in file.

At this point, the PMM data structure has been established, making the total machine

resources known to other software components, and also recording how those resources have

been divided up among the components.

Initialize Loader Tables All tables maintained by the loader for managing symbolic refer-

ences are initialized. The loader first creates a new PMM area, called the loader-internal

area, in which it keeps its global symbol table (the table of loader names that persist across

invocations of the loader) and other persistent information. After creating the area, it

initializes the table and any other data structures it keeps there.

This task is performed by the loader itself, directed to do so by invoking it with a

special "initialize" option.

At this point, the loader is fully operational, and may load any arbitrary MOC file.

Load and Initialize MM I Support 	(This task is omitted if the normal mode of the

MMI is the same as its bootstrap mode.) The ultimate version of the MMI will have a

normal mode that allows access to machine state while Monsoon is running. This requires

some MMI support code, written in MONASM, to be loaded into Monsoon's instruction

memory and executing; this code supervises the transactions requested via the MMI. That

code is now loaded and initiated.

The code is loaded by the loader, and a special MMI call is made to start the support

code on Monsoon and switch the MMI from bootstrap mode to normal mode.

At this point, the PMM and loader are fully initialized; the PMM controls gross allocation

of machine resources into areas. Only two areas exist at this point, the palm area and the

loader- internal area, but the loader now provides commands for establishing new areas.

The full capabilities of the loader are available, including the use of symbolic names and the

associated dynamic linking mechanisms. The MMI operates in normal mode, providing efficient

access to the macro-architecture machine state. Ultimately, normal mode will involve code

running on Monsoon to supervise NINE transactions, and this code is up and running at this

point

This completes the Macro-Architecture II phase.

5.9.3 The Id Phase

Prior to the Id phase, the Macro-Architecture II phase has been completed.

Load IOCF Configuration File A MOC file (produced by MONASM) is loaded, creating

all remaining areas defined by IOCF. Various static constants defined by IOCF are also

initialized at this point (one constant and some static code were already loaded in previous

bootstrap phases; this phase must take care to preserve them).

This task is performed by the loader.

At this point, the basic infrastructure defined by IOCF has been established, and all the

areas and data structures to support dynamic linking of Id programs have been initialized.

Version 003; January 1990 	 134

Load Id Run Time System The MOC file (likely produced by the Id Compiler, possibly

with some routines from MONASM) containing the object code of the Id Run Time

System is loaded. This includes all of the code for the resource managers invoked during

execution of a user's Id program, as well as an initialization program to be executed in

the next step of the bootstrap.

This task is performed by the loader.

At this point, the code for the Id Run Time System is in place, although its data structures

have not been initialized.

Initialize the Run Time System 	The "initialize" entry point of the Run Time System

is invoked, causing all of the data structures associated with the Run Time System to

be initialized. In particular, the run-time-pair, run-time-headered, and frame heap

areas are set up and cleared in whatever manner is appropriate for the storage managers

associated with those areas.

This task is performed by the initialization code of the Run Time System. This code

runs On Monsoon itself, and is invoked by the Execution Manager.

At this point, the Id language development system is fully operational, and the user may

load and run his Own programs.

This completes the Id phase, and the entire bootstrap process.

5.10 Numeric Values of IOCF Constants

Throughout the documentation of IOCF, we have used symbolic names for presence values and

the like. We tabulate below the actual numerical values of these names.

5.10.1 I-Structure Presence Bits

These are the values of presence bits that appear in words of heap storage. Their semantics are

described in Section 5.3.4.

Name Value

empty 0

present 2

read-only 3

deferred 4

lock-deferred 5

delayed 6

error 7

5.10.2 Activation Frame Presence Bits

These are the values of presence bits that appear in "constant" and "dyadic" words of frame

store, as discussed in Section 5.7.1.

Name Value

empty

left-present 1
right-present 2

read-only 3

135 	 Version 003; January 1990

5.10.3 Type Bits

These are the values of the type bits on object references. The situations in which these arise

are discussed in Section 5.3.

The instruction set views the eight type bits as having three subfields:

Type Bits

MARK

1

Major Type

3

Minor Type

4

IOCF always sets the MARK bit to zero, although in the future it may be used by garbage

collectors. The major types and some of the minor types are defined by the instruction set;

see the Monsoon Macro-Architecture Reference Manual. The values of all minor types used by

IOCF are given below (these numbers are seven-bit numbers, as they include both major and

minor bits).

Name Hexadecimal Value Decimal Value

void 00

signed 01 1

boolean 02 2

enum 03 3

character 04 4

packed-character 05 5

header 06 6

dp- float 20 32

internal 30 48

external 31 49

head 32 50

closure 33 51

continuation 40 64

Note that the minor type of continuations is interpreted by the hardware as PRiv and

COLOR. All values of type bits not tabulated here are not used by IOCF. This includes the

major types SFLT (major type 1) and FUTR (major type 5).

5.10.4 Port Bits

These are the values that can appear in the PORT field of tags and instructions (when an

Fl or F2 field is used as a destination).

Name Value

left

right
	

1

136 Version 003; January 1990

Chapter 6

Statistics Format

This chapter defines the file format for recording raw data derived from instrumented exe-

cution of Monsoon, whether a hardware or software implementation. Typically, such a file

would be written by the Execution Manager and read and processed later by the Statistics

Analyzer/Viewer. The statistics file format is built on top of CIOBL, Version 2, described in

Chapter 7. Statistics format requires only a Level I implementation of CIOBL, and primarily

uses variable-length objects.

The format provides for two simple kinds of datasets: tables, which are ordered pairs of

keywords and values, and profiles, which are essentially bar graphs. Each table or profile holds

data describing a particular measurement, for example, a table of opcodes and their frequency

of execution, or a profile of AU operations versus time. Often, the same kind of measurement

is made individually for each processor or memory unit in the system; these are grouped into

table sets or profile sets, as appropriate. The aggregate of table and profile sets from a given

execution of a program is called a run.

A statistics file consists of a series of runs, each of which is the collection of statistics

describing a single execution of a program. There is not necessarily any relationship between

the runs found in a given file, although often they represent data from a single experiment, such

as executing the same program on different numbers of processors. Each run has a property

list, zero or more table sets, and zero or more profile sets. The property list is used to give

information about the run as a whole: its name, the time when it took place, etc. Each table

set or profile set is data resulting from a particular type of measurement. The precise format of

run is the property list, followed by the number of table sets, followed by the number of profile

sets, followed by the table sets, followed by the profile sets.

STAT-FILE 	{RIJN }*

RUN 	—0 PLIST integer(t) integer(p) {TABLE-SET Y {PROFILE-SET}P

PL1ST 	 integer(n) {keyword anyvar}n

A table is a set of ordered pairs, where the first element in each pair is a keyword and the

second is an integer. No two pairs in a given table will have the same keyword, and the order

of the pairs' appearence in the table is immaterial. Tables representing the same measurement

on different processors are grouped into sets, and each table set carries a keyword identifying

which measurement it represents.

TABLE-SET 	keyword integer(n) {TABLE}

TABLE 	 integer(rn) {keyword integer}m

137

A profile is a bar graph: a list of ordered pairs (xi, yi), where both xi and yi are unsigned

integers, and where the xi are consecutive. Because the xi are consecutive, only the endpoints

x1 and xx are encoded into the file, followed by the yi in order from lowest xi to highest.

TO conserve space, run length encoding is used: a sequence of k identical yi values, where

k > 2, may be replaced by the two integers —k and yi. The total number of integers required

to encode the y's, therefore, may be fewer than N; this number is called M, and is encoded

into the file for the convenience of programs which read statistics files. The statistics format

does not require that the k's be maximal, although it is obviously desirable.

Profiles representing the same measurement on different processors are grouped into sets,

and each profile set carries a keyword identifying which measurement it represents.

PROFILE-SET 	keyword integer(n) {PROFILE}'1

PROFILE 	 integer(s1) integer(xN) integer(M) {INTEGER)A1

Version 003; January 1990
	

138

Chapter 7

CIOBL

CIOBL stands for "Common Input/Output Base Language," and is pronounced "CHO-bul,"

as if it were an Italian word. It refers to a language for representing various types of data in

files, either for communication between two programs or for communication between different

invocations of the same program. Because CIOBL makes a file appear to contain objects from a

variety of d:.• „type, it provides a higher level of interface than simply character or byte I/O. It

is designed 	e flexible enough to accommodate three broad categories of files, distinguished

by the sorts of objects they contain:

1. Fija.:, composed of a series of simple, atomic objects, which have universal meaning across a

range of programs and programming languages. Such objects include integers, characters,

strings, etc. Example: Monsoon Object Code files produced by the Id Compiler. Monsoon

object code files are built on a grammar that defines their contents as a series of integers.

2. Files composed of atomic objects along with structured objects, which also have universal

meaning across a range of programs and programming languages. The structured objects

are lists and arrays of other objects, Example: GITA statistics files. The main parts of

these have a particular representation as arrays of data, but arrays are a simple enough

data type that they can reasonably be manipulated within any programming language.

3. Files composed of atomic objects, structured objects, and objects which do not have

universal meaning across a range of programs and programming languages. Example:

Id Compiler internal program graph files. These files contain data structures that are

represented by objects defined within the Id Compiler code, and are not meant to be

(easily) read by programs other than the Id Compiler.

Throughout this chapter, these three applications will be referred to Category I, Category II,

and Category III. CIOBL is a layered specification—a given implementation of CIOBL may

only provide support up to a given level:

Level I Provides support only for Category I objects.

Level II Provides support only for Category I and Category II objects.

Level III Provides support for all objects of Category I and Category II, along with some

objects of Category III. The Category III objects supported will vary from implementa-

tion to implementation, as Level III implementations may be customized for a particular

application program.

139

A specification defining a file format using the CIOBL language should state what level of

support is required, and if Level III support is required, it should also state which Level III

objects are required. For example, Monsoon Object Code format requires only Level I support.

The main feature of CIOBL is that it provides three different encodings for files, each useful

for different applications. These encodings are:

Standard An encoding which uses only "standard" characters (the 94 printing characters of

ASCII, plus space and newline), and which is readable enough to be edited manually by

humans.

Compressed An encoding which also uses only standard characters, but uses a variety of tricks

to greatly reduce the number of characters required, at the expense of human readability.

Binary An encoding which uses the same compression techniques as the Compressed encoding,

but which is composed of 8-bit bytes rather than standard characters. This makes it even

more compact than the Compressed encoding.

The Standard and Compressed encodings are useful for transmission over media which only

transmit standard characters, such as electronic mail. The Standard encoding is also useful for

making manual adjustments to CIOBL files.

The CIOBL software provides a uniform interface between files and programs by defining

a set of CIOBL objects which can appear in CIOBL files. Programs that do I/O deal only

with CIOBL objects, and the CIOBL software attends to the details of how the objects are

represented in each of the three encodings. A program need only be aware of the encodings

when opening a file, for at that time it must select which of the three encodings is to be used.

Compatibility Note: This chapter describes Version 2 of CIOBL, which is incompat-

ible with Version 1 used in the TTDA Id World system. The differences are:

• Fixed-length objects have been added to Version 2.

• Non-generic read and write functions have been added to Version 2.

• The Compressed and Binary encondings of floats has changed.

• The syntax of arrays has changed.

• Run length encoding has been removed from the Compressed and Binary encod-

ings in Version 2 (of course, a format designer may explicity do his own run length

encoding).

• The specification of Version 2 has been divided into layers.

7.1 CIOBL objects

A CIOBL file consists of a sequence of CIOBL objects. CIOBL objects are divided into two

classes: fired-length and variable-length. Variable-length objects are the most commonly used:

they include all data types known to CIOBL, including numbers, characters, strings, etc.

Variable-length objects offer the greatest flexibility as the size of these objects—how many

bits in an integer, how many characters in a string, and so forth—is encoded directly into the

CIOBL file. A reader of the file, therefore, need only instruct the CIOBL software to read the

next object, without knowing how large it is, or even what type of object it is. Variable-length

Version 003; January 1990 	 140

objects can be subdivided into atomic objects and compound objects. As the name suggests,

atomic objects are indivisible; examples include numbers, characters, strings, and keywords. An

atomic object is always read or written through a single call to CIOBL software. In contrast,

compound objects are composed of other CIOBL objects; examples include lists and arrays. A

compound object may be read or written in one call, or by many calls which read or write its

components.

While variable-length objects offer the greatest flexibility, they incur a certain amount of

space overhead because length and type information must accompany them in tile CIOBL file.

Fixed-length objects provide an alternative when greater control of space overhead is required,

at the expense of flexibility. The only fixed-length objects are numbers and characters, and

when a fixed length object is read or written the CIOBL software must be informed of its size;

e.g., how many bits in an integer. Because length and type information does not accompany

fixed-length objects, it is the responsibility of the user to read such objects through calls which

exactly match the calls which wrote those objects. Fixed-length objects can offer a space savings

when many objects of known size are to be represented; for example, a series of 8-bit integers.

On the other hand, if a series of numbers is to be written where the largest is 231 but. the

majority are less than 28, variable-length integers will generally be more space-efficient because

the space required for length and type information will be offset by the smaller average space

for data. Section 7.6 gives information for estimating the space required for CIOBL files.

7.1.1 Variable-Length Objects

The variable-length objects available in Level I implementations of CIOBL are the following:

Integers These are distinct from floats which happen to have integral values.

Floats A "float" is a floating point number. As described later, CIOBL uses a representation

which allows arbitrary magnitude and precision.

Characters The only characters allowed in CIOBL files are standard characters, which con-

sist of the 94 printing characters of ASCII plus space and newline. (This restriction to

standard characters has nothing to do with the fact that the Standard and Compressed

encodings use only standard characters. Instead, it stems from the need to make sure

that CIOBL character objects have a representation in all implementations of CIOBL.)

Strings A string is a (possibly empty) character string. The characters of a string are limited

to the 96 standard characters.

Keywords A keyword is a name, composed of standard characters.

CIOBL places no practical limit on the magnitude of integers and floats, or on the length of

strings.

Keywords seem superficially similar to strings, but are usually used for different purposes.

One reason is that an implementation of CIOBL often represents strings and keywords dif-

ferently: while strings are generally represented as arrays of characters, keywords are usually

mapped into addresses or serial numbers, with all keywords with the same name being mapped

into the same address or serial number. Strings are often decomposed into their component

characters, while keywords rarely are. Instead, the names of keywords are important only inso-

far as they distinguish between keywords that are the same and those that are different. Finally,

the Binary and Compressed encodings of CIOBL have a particularly efficient representation for

multiple appearences of the same keyword, while no such effort is expended on strings.

141 	 Version 003; January 1990

In addition to all objects from Level I, the objects available in Level II are the following:

Lists A list is a (possibly empty) delimited sequence of CIOBL objects (which could themselves

be lists). The components of a list need not all be the same type of CIOBL object,

although they all must be variable length.

Arrays Like a list, an array is a sequence of CIOBL objects. Unlike a list, an array carries an

indication of how many objects it contains. Also, arrays may be multidimensional, up to

seven dimensions (there must be at least one dimension). Each dimension has subscripts

running from zero up to but not including the size of the dimension. The components

of an array need not all be the same type of CIOBL object, although they all must be

variable length.

hi designing a file format, the choice between lists and arrays is fairly arbitrary. One consider-

ation is that they will generally have different representations within the program which makes

CIOBL calls. Another has to do with knowing the number of objects the list or array contains.

Lists have the advantage when writing a file that the contents may be written without knowing

the length of the list. When reading a file, this aspect may be a disadvantage.

In addition to all objects from Level II, the objects available in a Level III implementation

can include any of the following:

Symbols A symbol is an ordered pair of names, where the first name is called the package

name and the second is just called the "name." In Level III implementations of CIOBL

which support symbols, symbols subsume keywords in that a keyword is a symbol whose

package name is KEYWORD. Symbols in their full generality are primarily used by Common

Lisp implementations of CIOBL.

Dotted Lists A dotted list is like a list, but also includes a special object at the end. Dotted

lists are mainly used in Common Lisp implementations of CIOBL; they correspond to

non-NIL terminated lists in Common Lisp.

User Defined Objects Arbitrary compound objects may be defined by user applications.

The exact set of objects supported by a Level III implementation may vary, although they will

always include all objects from Level II. This variation is acceptable because Category III files

are primarily those read and written by the same program; each such program will generally

have a different set of user defined objects corresponding to its own internal data types.

Of the objects described above, lists, arrays, dotted lists, and user defined objects are

compound objects. All the others are atomic objects.

7.1.2 Fixed-Length Objects

The fixed-length objects are described below. All fixed-length objects are part of Level I.

Unsigneds An "unsigned" is an integer x in the range 0 < x < 2N, for some N > 0. The

value of N must be specified both when writing and reading an unsigned.

Signeds A "signed" is an integer x in the range —2N-1 < x < 2N-1, for some N > 0. The

value of N must be specified both when writing and reading a signed.

Singles A "single" is an IEEE single precision floating point number.

Version 003; January 1990 	 142

Doubles A -double" is an IEEE double precision floating point number.

Chars A "char" is a standard character.

The difference between a char (a fixed-length object.) and a character (a variable-length object)

is only that characters carry type information with them. That is, while characters do not vary

in length, they are like other variable-length objects in that they carry type information, so

that a call to a generic "read variable-length object" call can distinguish a character from some

other type of variable-length object. Chars carry no such information.

Note that the components of compound objects cannot be fixed-length objects. On the

other hand, there is nothing preventing a user from using fixed-length objects to construct

compound entities; they will just not be objects from CIOBL's point of view.

7.2 CIOBL Tokens and Compound Objects

The contents of a CIOBL file can be viewed from three different levels of abstraction. At the

lowest level, a CIOBL file is just a sequence of characters (or 8-bit bytes, in the case of Binary

encoding). At the highest level, a CIOBL file is a sequence of CIOBL objects, as previously

discussed. At the middle level, a CIOBL file is a sequence of CIOBL tokens.

CIOBL tokens are the smallest indivisible components of CIOBL files, and are independent

of the encoding chosen. The set of CIOBL tokens consists of all of the fixed-length and atomic

variable-length CIOBL objects, as well as some punctuation tokens which serve to identify

compound objects. Defining a token layer allows the portions of a CIOBL implementation

which understand the various encodings to be separated from the portions which understand

how to put together and pick apart compound objects.

Compound CIOBL objects are composed from punctuation tokens and variable-length ob-

jects. Some of these variable-length objects may themselves be compound objects, and so the

syntax of compound objects in terms of tokens is recursive. Ultimately, though, a compound

CIOBL object ends up as a series of atomic variable-length tokens and punctuation tokens. The

syntax of each type of compound object is described below. The names of punctuation tokens

appear in small caps (e.g., LIST-BEGIN).

Lists (Level II) A CIOBL list appears as the token LIST-BEGIN, followed by the CIOBL objects

comprising the list (or none if the list is empty), followed by the token LIST-END.

Dotted Lists (Level III) A dotted list appears as LIST-BEGIN, followed by one or more CIOBL

objects, followed by LIST-DOT, followed by exactly one CIOBL object, followed by LIST-

END

Arrays (Level II) A CIOBL array appears as the token ARRAY-BEGIN, followed by the rank

(an integer), then the dimensions (a series of integers), then the elements of the array

(each a variable-length object). There is no terminating punctuation token. The rank of

the array is the number of integers in the dimension series; each dimension has subscripts

from zero, inclusive, to the integer given in the dimensions, exclusive. The elements of the

array appear in row-major order. Here is an example of a 3 x 2 two dimensional array:

ARRAY-BEGIN 2 3 2 a0,0 (10,1 ai,o a1,1 a2,0 a2,1

143 	 Version 003; January 1990

User Defined Objects (Level III) A user-defined object appears as the token USER-DEFINED-

BEGIN, followed by a symbol, followed by some number of variable-length CIOBL objects,
followed by the token USER-DEFINED-END. The symbol immediately after the USER-

DEFINED-BEGIN indicates which user defined object is being represented; when reading

such an object, the symbol is used to dispatch to user-written code which reads the
remaining objects up to the USER-DEFINED-END.1 In Level III implementations which
do not support full symbols, the object following the USER-DEFINED-BEGIN token is a
keyword.

There is another kind of token that is not associated with any object. Called the version
token, it indicates what version of CIOBL software was used to write the file in which it appears.
It also indicates in which of the three encodings the file is expressed. Whenever a CIOBL file

is opened for writing, a version token is immediately written. Thus, every file has a version

token at the beginning. A file may have more version tokens within, if the file was ever opened
for appending, but if that is the case then the file must contain only variable-length objects.
When a file is read, the version token is used to make sure the file uses the expected encoding,

and that the file was written with a compatible version of CIOBL.

Rationale: The restriction that appended files may only contain variable-length objects
is necessary because it is not possible to distinguish the version token from a fixed-length
object.

To summarize, there are up to 17 kinds of CIOBL tokens in a Level III implementation:
the five atomic variable-length CIOBL objects, the five fixed-length CIOBL objects, the six

punctuation tokens (LIST-BEGIN, LIST-DOT, L1ST-END, ARRAY-BEGIN, USER-DEFINED-BEGIN,

and USER-DEFINED-END), and the version token. (There are five atomic objects, not six, because

keywords are a special case of symbols.) For Level II there are 14 kinds of tokens (no LIST-

DOT, USER-DEFINED-BEGIN, or USER-DEFINED-END), and for Level I there are only eleven (no

LIST-BEGIN, LIST-END, or ARRAY-BEGIN).

7.3 Encodings

In the previous section, the translation between CIOBL tokens and CIOBL objects was de-

scribed. Here, we describe how the 17 CIOBL tokens are encoded in the three types of encod-

ings. Of course, not all 17 are necessarily relevant to a particular implementation, according to

what level of the specification it conforms.

7.3.1 Standard Encoding

Standard encoding is the most easily read by humans. In fact, it is closely related to the syntax

for Common Lisp objects used by the Lisp reader and printer. Beware, however, for CIOBL

Standard encoding is not compatible with Lisp. Each contains objects not present in the other.

Furthermore, CIOBL Standard encoding represents some objects differently, in order that the

job of CIOBL input routines may be made easier.

Here is how the seventeen CIOBL tokens appear in the Standard encoding.

Unsigneds Unsigneds appear exactly as do integers, below.

'The USER-DEF1NED-END token is not strictly necessary, but is included to help catch errors in user-written

handler code.

Version 003; January 1990 	 144

Signeds Signeds appear exactly as do integers, below.

Singles Singles appear exactly as do floats, below.

Doubles Doubles appear exactly as do floats, below.

Chars Chars appear exactly as do characters, below.

Integers Integers are represented as they are written in base 10: a sequence of digits, at least

one digit long, and immediately preceded by a hyphen if negative. Leading zeros are never

present (except when the integer is itself zero).

Floats Floats are represented as a sequence of digits containing exactly one period, with at

least one digit on each side of the period. This may optionally be preceded by a hyphen,

and optionally followed by the letter E (never lowercase e) and a sequence of digits,

possibly with a hyphen appearing between the E and the digits. The number after the E

indicates by what power of ten the number preceding the E should be multiplied.

Characters Characters are represented as the two-character sequence tt\ followed immediately

by the name of the character. For the 94 printing characters, the name of the character

is just the character itself. For example, the character A appears as #\A. The names of

Space and Newline are Space and Newline, respectively.

Strings Strings are represented as the two-character sequence *" followed immediately by the

characters of the string. For example, the string Hello appears as #"Hello. Notice that

there is no closing quotation mark.

Symbols Symbols are represented as the package name, followed immediately by a single

colon (:), followed immediately by the symbol name. Any colon appearing within the

package name or the symbol name must be preceded by a backslash to prevent its being

interpreted as the separator between symbol name and package name. Furthermore, the

first character of a symbol must be preceded by a backslash if it is a digit or a hyphen.

The empty string may be used in place of KEYWORD as a package name. Thus, the symbol A

in the keyword package can appear as :A. If the symbol is accessible in the DFCS package,

the package name and the colon may be dropped entirely. Hence, the symbol NIL appears

as NIL. The exception to this rule is that the symbol in the DFCS package whose name is

the empty string always appears as DFCS:, since there would be nothing left if the package

name and colon were dropped.

Notice that this differs from Lisp syntax in several respects. First, in Standard encoding

lower case letters are not converted to upper case (implying that most symbols will appear

in upper case in Standard encoding files). Second, a double colon is never used. Third,

vertical bars are never used.

For implementations not supporting full Level III symbols, the only type of symbol allowed

is a keyword. Keywords follow the same rules above, with the empty string as the package

name. That is, a keyword appears as a colon followed by the keyword's name, with the

same rules as above for inserting backslashes.

LIST-BEGIN The token LIST-BEGIN appears as a left parenthesis (().

LIST-END The token LIST-END appears as a right parenthesis ()).

145 	 Version 003; January 1990

LIST-DOT The token LIST-DOT appears as a the two-character sequence a. (pound sign followed

by period).

ARRAY-BEGIN The token ARRAY-BEG1N appears as the two-character sequence #A.

USER-DEFINED-BEGIN The token USER-DEFINED-BEGIN appears as as the two-character se-

quence # E.

USER-DEF1NED-END The token USER-DEFINED-END appears as the two-character sequence St].

Version The version token is a four-character sequence: #, followed by V, followed by a char-

acter indicating the version, followed by S. A CIOBL version number is an integer from

1 through 63, inclusive, and is represented in the Standard encoding using the value

column of Section 7.7. The fourth character indicates that this is a Standard encoding

file.

Whitespace characters (Space and Newline) may appear between any adjacent pair of

CIOBL tokens, and is required in certain situations described shortly.

Some terminology is introduced to explain the Standard encoding more precisely. The

whitespace characters are Space and Newline. The terminating characters are open parenthe-

sis ((), close parenthesis ()), and pound sign (#). The escape character is backslash (\). The

remaining 90 standard characters are the constituent characters. A constituent sequence is an

uninterrupted sequence of constituent characters, up to but not including a terminating charac-

ter, whitespace character, or end of file. Any character, constituent or not, may be included in

a constituent sequence by preceding it with an escape character. Thus, the sequence A! \C\\d\

5# is a six-character constituent sequence followed by a pound sign, where the six characters of

the constituent sequence are A, !, C, \, d, Space, and 5.

Integers, floats, the names of characters, the contents of strings, and symbols are all con-

stituent sequences. This means that the rules for escape characters apply. For example, the

string "String #1" appears as #"String\ \#1, and the character \ appears as #\\\. At least

one whitespace character is required between a pair of tokens if either the first token is a integer,

float, character, string, or symbol, or the second token is a integer, float, or symbol.

With that in mind, here is how the Standard encoding can be decoded. A constituent

sequence is read by accumulating characters up to (but not including) the first non-escaped,

non-constituent character. The following algorithm can be used to read a CIOBL token:

1. Skip over any whitespace characters.

2. Take a peek at the next character, which is guaranteed non-whitespace. If an open or

close parenthesis, go to Step 3. If a pound sign, go to Step 4. Otherwise, go to Step 5.

3. Read the next character. The token L1ST-BEGIN or LIST-END has been read, depending

on whether the character was (or), respectively.

4. Read the pound sign, and the character following. If the character following was C,], A,

or ., the token USER-DEFINED-BEGIN, USER-DEFINED-END, ARRAY-BEGIN, or LIST-DOT

has been read. If it was ", read the next constituent sequence; this is the contents of a

String. If it was \, read the next constituent sequence; this is the name of a Character.

If it was V, read the next two characters; they are the remainder of a version token. If it

was anything else, the file is not properly encoded.

Version 003; January 1990 	 146

5. Read the next constituent sequence, including the character peeked in Step 2. If the first

character is an unescaped digit or hyphen, go to Step 6, otherwise go to Step 7.

6. If the sequence contains a period, interpret it as a float, otherwise interpret as an integer.

If it cannot be interpreted as either a float or an integer, the file is not properly encoded.

. The sequence is a symbol. Find an unescaped colon; it serves to separate the package

name from the symbol name.

CIOBL takes no position as to what character codes are used in Standard encoding files.

This is because such files are character files, so it is assumed that an implementation will use

whatever codes for characters are appropriate, and that file transfer programs will take care of

any necessary code conversions when transferring Standard encoding files between machines.

There must, however, be a unique code for each of the 96 standard characters.

7.3.2 Binary Encoding

Binary encoding is the most compact of the three encodings. unlike the other encodings, binary

encoding is based on 8-bit bytes rather than characters. A variety of techniques are used to

reduce the space required by a file.

The following describes how the seventeen CIOBL tokens are represented in the Binary

encoding. All tokens except for fixed-length objects begin with a special byte that identifies

its type. Throughout the discussion, these bytes are represented by a name enclosed in angle

brackets, for example, <b-pos-integer-8>. The numerical values of these bytes are given later.

Unsigneds

An unsigned integer of N bits (i.e., in the range 0 < x < 2N) is represented by IN/81 bytes,

where the first byte is the eight least significant bits of the integer, the next byte is the next

eight bits, etc. Any unused upper bits in the last byte are zero.

S ig fled s

A signed integer of N bits (i.e., in the range -2N-1 < x < 2N-1) is represented by rN/81 bytes,

where the first byte is the eight least significant bits of the two's complement representation of

the integer, etc. More precisely, let M = rN/81. Then if the integer x is non-negative, it is

represented exactly as would be the 8M-bit unsigned integer x. If negative, it is represented

exactly as would be the 8M bit unsigned integer 281 - ixl.

Singles

Singles are represented as the four bytes comprising the IEEE single precision representation

of the number, least significant byte first.

Doubles

Doubles are represented as the eight bytes comprising the IEEE double precision representation

of the number, least significant byte first.

147 	 Version 003; January 1990

Chars

The chars corresponding to the 94 printing standard characters or the space character are

represented as would be the 7-bit unsigned integer given by their ASCII codes. The char Space

is represented by the 7-bit unsigned integer 32, and the char Newline is represented by the 7-bit

unsigned integer 10. See also Section 7.7.

This encoding was chosen because it is exactly the encoding used in some systems (e.g.,

Unix), and very close to the encoding used in most others (e.g., the Lisp Machine, where Newline

is 141). CIOBL implementations on non-ASCII systems will have to explicitly translate when

reading or writing Binary encoded files.

Integers

Most integers are represented by a punctuation byte followed by an unsigned that indicates the

magnitude of the integer. The punctuation byte indicates the sign of the integer as well as how

many bits are in the unsigned that follows. The representations are:

Magnitude Range

_ 232 < x < _ 224

_ 224 < x < _ 216

_ 216 < x < _ 28

— 28 < <0

< < 28

< x < 216
216 < 2, < 224

224 < x < 232

Representation

<b-neg-integer-32> 32bit-unsigned

<b-neg-integer-24> 24bit-unsigned

<b-neg-integer-16> 16bit-unsigned

<b-neg-integer-8> 8bit-unsigned

<b-pos-integer-8> 8bit-unsigned

<b-pos-integer-16> 16bit-unsigned

<b-pos-integer-24> 24bit-unsigned

<b-pos-integer-32> 32bit-unsigned

For example, the number —4000 is represented as <b-neg-integer-16> 160 15, and zero is

represented as <b-pos-integer-8> 0. (Throughout, all bytes are given in base ten.)

If the magnitude of the integer is 232 or greater, one of the two bytes <b-pos-long-integer>

or <b-neg-long-integer> is used, followed by an 8-bit unsigned M, followed by an 8M-bit

unsigned giving the magnitude of the integer. For example, five trillion (5 x 1012) appears as

<b-pos-long-integer> 6 0 80 57 39 140 4. Integers with magnitudes greater than or equal

to 25625 cannot be represented (fortunately).

Characters

A character appears as two bytes: <b-character> followed by the corresponding char (see the

section "Chars," above).

Strings

Strings of length 255 or less are encoded as <b-string>, followed by an 8-bit unsigned giving

the length of the string, followed by the characters of the string itself, as chars (see the section

"Chars," above).
Strings whose length is greater than 255 are encoded as <b-long-string>, followed by an

8-bit unsigned M, followed by an 8M-bit unsigned giving the length of the string, followed by

the characters of the string itself, as chars. Strings longer than 256256 cannot be represented

(not that your file system has room for all those characters, anyway).

Version 003; January 1990 	 148

Floats

Floats are not encoded into a two's complement or similar representation. Instead, they appear

as a pair of integers, b and e, such that the float is equal to b x 2'. The number of bits in

these integers is determined based on the magnitude of the exponent and the precision of the

mantissa.

The representation is:

OD-pas-float> nb n, %bit-unsigned riebit-signed

where nt. is an 8-bit unsigned giving the number of bits in the mantissa, and ne is an 8-bit

unsigned giving the number of bits in the exponent. The example above is for a positive float;

for a negative float, the byte <b-neg-float> replaces <b-pos-float>, and the absolute value

of b appears after lie. Note that the mantissa value will normally be in the range 2nb-1 < b < rb;

if b were less than 2n b -1 it would not truly have nb significant bits. The exponent will be in the

range —27;e -1 < e < 2, and Tie will be one if e is zero.

For example, the number —6.023 x 10-23, represented with a 24-bit mantissa, appears as

<b-neg-float> 24 8 144 160 145 159.

By convention, zero is represented with a zero-bit exponent (so that ne is zero and no

bytes follow the mantissa bytes), and with a mantissa of all zeros. While strictly speaking,

zero has LO significant bits, the number of bits in the mantissa may be used to indicate a zero

represented in a particular floating point representation. That is, when the float is read a zero

will be constructed in a floating point representation which for non-zero numbers has at least

n t, significant bits. Usually, <b-pos-float> is used for zero, although <b-neg-float> may be

used to indicate the "negative zero" available in floating point representations such as IEEE.

For example, an IEEE single-precision zero (24 bits of mantissa) appears as <b-pos-float>

24 0 0 0 0.

Symbols

For implementations not supporting full Level III symbols, the only kind of symbol which can

appear is a keyword. Keywords are represented by encoding their names in a similar man-

ner as strings (see the section "Strings," above), except that the bytes <b-keyword-symbol>

and <b-long-keyword-symbol> are used instead of <b-string> and <b-long-string>, respec-

tively.

For implementations which do support Level III symbols, the following may appear in

addition to keywords encoded as above.

The symbol NIL (not the same as NIL in the KEYWORD package) is represented by a single

byte, <b-nil>.

All other symbols are represented by encoding their names in a similar manner as strings,

except that the bytes <b-syrnbol> and <b-long-symbol> are used instead of <b-string> and

<b-long-string>. The package name is not included in the name that follows the <b-symbol>

or <b-long-symbol> byte. Instead, the package name of a symbol read from a Binary encoded

file is taken to be the "current" package name. The current package name is changed by includ-

ing in the file one of the bytes <b-set-current-package> or <b-long-set-current-package>,

which are used like <b-string> and <b-long-string> to encode the package name.

For example, if the following sequence appeared in a Standard encoding file:

:A NIL B:C :NIL NIL B:D Q:R

149 	 Version 003; January 1990

It would be rendered in a Binary encoding file as:

<b-keyword-symbol> 1 65 <b-nil> <b-set-current-package> 1 66

<b-symbol> 1 67 <b-keyword-symbol> 3 78 73 76 <b-nil>

<b-symbol> 1 68 <b-set-current-package> 1 81 <b-symbol> 1 82

The first symbol in a Binary encoding file that is not a keyword or NIL is always preceded

by a set-current-package directive. Note that the set-current-package directive is not a CIOBL

token, but only controls the interpretation of symbols that follow it. Note, too, that the set-

current-package directive has no effect on keywords or NIL.

One additional trick is used to encode symbols. If the same symbol (same package name

and symbol name) appears more than once in the same file, only the first occurrence is encoded

as described earlier. All future occurrences are encoded as an integer which indicates position

within the file of its first occurrence. These remarks do not apply to the symbol NIL, which

is always encoded as the byte <b-nil>. These remarks do apply, however, even when an

implementation does not support Level III symbols. Thus, this trick is used even for files that

have only keywords.

As a Binary encoded file is written, a table is maintained which associates symbols (or just

keywords) and serial numbers. When a non-NIL symbol is to be written, it is looked up in

the table. If an entry for that symbol is present, its serial number is written in a format to

be described shortly. If an entry is not present, the symbol is written in the format described

earlier, preceded by a set-current-package directive if necessary. The symbol is then assigned

the next highest serial number, and entered in the table for future reference. The unique non-

NIL symbols in a file are assigned consecutive serial numbers beginning with zero. Note that

when a symbol is encoded as a serial number, it is never necessary to issue a set-current-package

directive, as the serial number identifies both components of the symbol's name.

A symbol encoded by serial number appears as one of the bytes <b-predefined-symbol-8>,

<b-predefined-symbol-16>, or <b-predefined-symbol-24>, followed by an 8-bit, 16-bit, or

24-bit unsigned, respectively, giving the serial number.

Another example: suppose the following appeared at the beginning of a Standard encoding

file:

:D :A NIL B:C :NIL NIL Q:R B:C B:D

It would be rendered in a Binary encoding file as:

<b-keyword-symbol> 1 68 <b-keyword-symbol> 1 65 <b-nil>

<b-set-current-package> 1 66 <b-symbol> 1 67

<b-keyword-symbol> 3 78 73 76 <b-nil>

<b-set-current-package> 1 81 <b-symbol> 1 82

<b-predefined-symbol-8> 2 <b-set-current-package> 1 66

<b-symbol> 1 68

Only the first 224 different non-NIL symbols in a file can be encoded by serial number.

The Version Token

The version token appears in a Binary file as the four-byte sequence 35 86 version 66, where

version is the version number plus 32. The last byte indicates that this is a Binary file.

Version 003; January 1990 	 150

When reading a Binary encoding file, 163 (35 plus 128) should also be accepted as the

beginning of a version token. In other words, only the lower seven bits are used in recognizing

the beginning of the version token. The number 35 was chosen for the version token because it

is the ASCII code for it, so that a version will be recognized even when read from a file in the

wrong encoding (at least on systems that use ASCII to represent characters). This facilitates

early detection of an attempt to read the wrong kind of file.

Other Tokens

The CIOBL tokens LIST-BEGIN, LIST-DOT, LIST-END, ARRAY-BEGIN, USER-DEFINED-BEGIN, and

USER-DEFINED-END appear in Binary encoding as the bytes <b-list-begin>, <b-list-dot>,

<b-list-end>, <b-array-begin>, <b-user-defined-begin>, and <b-user-defined-end>,

respectit'ely.

Values of Binary Punctuation Bytes

The following table gives the values of each of the 30 binary punctuation bytes.

Name 	 Value 	 Name Value

<b-symbol> 0 <b-pos-integer-32> 23

<b-keyword-symbol> 1 <b-pos-long-integer> 24

<b-long-symbol> 2 <b-neg-integer-8> 25

<b-long-keyword-symbol> 3 <b-neg-integer-16> 26

<b-nil> 4 <b-neg-integer-24> 27

<b-set-current-package> 5 <b-neg-integer-32> 28

<b-long-set-current-package> 6 <b-neg-long-integer> 29

<b-predefined-symbol-8> 7 <b-pos-float> 30

<b-predefined-symbo1-16> 8 <b-neg-float> 31

<b-predefined-symbol-24> 9 <b-version> 35

<b-string> 10 <b-list-begin> 40

<b-long-string> 11 <b-list-end> 41

<b-character> 15 <b-list-dot> 42

<b-pos-integer-8> 20 <b-user-defined-begin> SO

<b-pos-integer-16> 21 <b-user-defined-end> 51

<b-pos-integer-24> 22 <b-array-begin> SS

7.3.3 Compressed Encoding

Compressed encoding is very similar to Binary encoding, but is based on standard characters

rather than 8-bit bytes. This makes it useful for transmission over electronic mail and other

media which can only accomodate character files.

The following describes how the seventeen CIOBL tokens are represented in the Compressed

encoding. All tokens except for fixed-length objects begin with a special character that identifies

its type. Throughout the discussion, these characters are represented by a name enclosed in

angle brackets, for example, <c-pos-integer-6>. The values of these characters are given

later.

151 	 Version 003; January 1990

Note that most of the descriptions below are almost the same as for the Binary encoding,

except that numerical values are broken into groups of six bits, each of which is encoded into

a character according to the third column of the table in Section 7.7.

Unsigneds

An unsigned integer of N bits (i.e., in the range 0 < x < 2N) is represented by [N/61 characters,

where the first character encodes the six least significant bits of the integer, the next character

encodes the next six bits, etc. If N is not a multiple of six, the upper bits of the most significant

group of six are considered to be zero. The encoding of each group of six bits into a character

is given in Section 7.7.

Signeds

A signed integer of N bits (i.e., in the range 	< x < 2N-1) is represented by IN/61

characters, where the first character is the six least significant bits of the two's complement

representation of the integer, etc. More precisely, let M = IN/61. Then if the integer x is

non-negative, it is represented exactly as would be the 6M-bit unsigned integer x. If negative,

it is represented exactly as would be the M bit unsigned integer 26m — x.

Singles

Singles are represented as would be a 32-bit unsigned whose value is the 32 bits comprising the

IEEE single precision representation of the number. Hence, it is represented as 6 characters.

Doubles

Doubles are represented as would be a 64-bit unsigned whose value is the 64 bits comprising the

IEEE double precision representation of the number. Hence, it is represented as 11 characters.

Chars

A char simply appears as itself.

Integers

Most integers are represented by a punctuation char followed by an unsigned that indicates the

magnitude of the integer. The punctuation char indicates the sign of the integer as well as how

many bits are in the unsigned that follows. The representations are:

Magnitude 	Runge Representation

— 224
_ 218

< x < —218
< x < _ 212

<c-neg-integer-24>

<c-neg-integer-18>

24bit-unsigned

18bit-unsigned

212 < x < _ 26 <c-neg-integer-12> 12bit-unsigned

_26 < x < 0 <c-neg-integer-6> 6bit-unsigned

0 < x < 26 <c-pos-integer-6> 6bit-unsigned

26 < x < 212 <c-pos-integer-12> 12bit-unsigned

212 < x < 218 <c-pos-integer-18> 18bit-unsigned
218 < x < 224 <c-pos-integer-24> 24bit-unsigned

Version 003; January 1990 	 152

For example, the number —4000 is represented as <c-neg-integer-12> 6 -, and zero is

represented as <c-pos-integer-6> 0 <space>.

If the magnitude of the integer is 224 or greater, one of the two characters <c-pos-long-

integer> or <c-neg-long-integer> is used, followed by a 6-bit unsigned M, followed by an

6M-bit unsigned giving the magnitude of the integer. For example, one hundred million (108)

appears as <c-pos-long-integer> 	<space> $ > J 'h. Integers with magnitudes greater

than or equal to 6464 cannot be represented (fortunately).

Characters

A character appears as two characters: <c-character> followed by the character itself.

Strings

Strings of length 63 or less are encoded as <c-string>, followed by a 6-bit unsigned giving the

length of the string, followed by the characters of the string itself.

Strings whose length is greater than 63 are encoded as <c-long-string>, followed by a

6-bit unsigned M, followed by an 6M-bit unsigned giving the length of the string, followed by

the characters of the string itself, as chars. Strings longer than 64" cannot be represented (not

that your file system has room for all those characters, anyway).

Floats

Floats are not encoded into a two's complement or similar representation. Instead, they appear

as a pair of integers, b and e, such that the float is equal to b x 2. The number of bits in

these integers is determined based on the magnitude of the exponent and the precision of the

mantissa.

The representation is:

<c-pos-float> nb n, nbbit-unsigned n ebit-signed

where n t, is a 12-bit unsigned giving the number of bits in the mantissa, and ne is a 6-bit

unsigned giving the number of bits in the exponent. The example above is for a positive float;

for a negative float, the character <c-neg-float> replaces <c-pos-float>, and the absolute

value of b appears after 72 E .

For example, the number —6.023 x 10'23, represented with a 24-bit mantissa, appears as

<c-neg-float> 8 <space> (0 " : D ?

Symbols

For implementations not supporting full Level III symbols, the only kind of symbol which can

appear is a keyword. Keywords are represented by encoding their names in a similar man-

ner as strings (see the section "Strings," above), except that the bytes <c-keyword-symbol>

and <c-long-keyword-symbol> are used instead of <c-string> and <c-long-string>, respec-

tively.

For implementations which do support Level III symbols, the following may appear in

addition to keywords encoded as above.

The symbol NIL (not the same as NIL in the KEYWORD package) is represented by a single

byte, <c-nil>.

153 	 Version 003; January 1990

All other symbols are represented by encoding their names in a similar manner as strings,

except that the bytes <c-symbol> and <c-long-symbol> are used instead of <c-string>
and <c-long-string>. The package name is not included in the name that follows the

<c-symbol> or <c-long-symbol> byte. Instead, the package name of a symbol read from

a Compressed encoded file is taken to be the "current" package name. The current pack-

age name is changed by including in the file one of the bytes <c-set-current-package> or
<c-long-set-current-package>, which are used like <c-string> and <c-long-string> to

encode the package name.

For example, if the following sequence appeared in a Standard encoding file:

:A NIL 13:0 :NIL NIL B:D Q:R

It would be rendered in a Compressed encoding file as:

<c-keyword-symbol> ! A <c-nil> <c-set-current-package> ! B
<c-symbol> ! C <c-keyword-symbol> # N I L <c-nil>

<c-symbol> ! D <c-set-current-package> ! Q <c-symbol> ! R

The first symbol in a Compressed encoding file that is not a keyword or NIL is always

preceded by a set-current-package directive. Note that the set-current-package directive is not

a CIOBL token, but only controls the interpretation of symbols that follow it. Note, too, that

the set-current-package directive has no effect on keywords or NIL.

One additional trick is used to encode symbols. If the same symbol (same package name

and symbol name) appears more than once in the same file, only the first occurrence is encoded

as described earlier. All future occurrences are encoded as an integer which indicates position

within the file of its first occurrence. These remarks do not apply to the symbol NIL, which

is always encoded as the byte <c-nil>. These remarks do apply, however, even when an

implementation does not support Level ill symbols. Thus, this trick is used even for files that

have only keywords.

As a Compressed encoded file is written, a table is maintained which associates symbols (or

just keywords) and serial numbers. When a non-NIL symbol is to be written, it is looked up

in the table. If an entry for that symbol is present, its serial number is written in a format to

be described shortly. If an entry is not present, the symbol is written in the format described

earlier, preceded by a set-current-package directive if necessary. The symbol is then assigned

the next highest serial number, and entered in the table for future reference. The unique non-

NIL symbols in a file are assigned consecutive serial numbers beginning with zero. Note that

when a symbol is encoded as a serial number, it is never necessary to issue a set-current-package

directive, as the serial number identifies both components of the symbol's name.

A symbol encoded by serial number appears as one of the characters <c-predefined-

symbol-6>, <c-predefined-symbol-12>, or <c-predefined-symbol-18>, followed by a 6-bit,

12-bit, or 18-bit unsigned, respectively, giving the serial number.

Another example: suppose the following appeared at the beginning of a Standard encoding

file:

:D :A NIL B:C :NIL NIL Q:R B:C B:D

It would be rendered in a Compressed encoding file as:

<c-keyword-symbol> ! D <c-keyword-symbol> ! A <c-nil>

<c-set-current-package> ! B <c-symbol> ! C

Version 003; January 1990 	 154

<c-keyword-symbol> # N I L <c-nil>

<c-set-current-package> !Q <c-symbol> ! R

<c-predefined-symbol-6> " <c-set-current-package> ! B

<c-symbol> ! D

Only the first 218 different non-NIL symbols in a file can be encoded by serial number.

The Version Token

The version token appears in a Compressed file as the four-character sequence * V version C,

where version is the version number as a 6-bit unsigned. The last character indicates that this

is a Compressed file.

Other Tokens

The CIOBL tokens LIST-BEGIN, LIST-DOT, LIST-END, ARRAY-BEGIN, USER-DEFINED-BEGIN,

and USER-DEFINED-END appear in Compressed encoding as the characters <c-list-begin>,

<c-list-dot>, <c-list-end>, <c-array-begin>, <c-user-defined-begin>, and <c-user-

defined-end>, respectively.

Optional Newlines

Newline characters may occur between tokens (but not within them) in the Compressed en-

coding, and are ignored during reading. It is desirable for an implementation to insert newline

characters automatically when writing so that there are no more than 80 or so characters

between consecutive newlines. This makes Compressed files more readily transmissible over

electronic mail and similar media. Of course, it may not always be possible to have newlines

this frequently because tokens may be of arbitrary length.

Values of Compressed Punctuation Characters

The following table gives the values of each of the 30 Compressed punctuation characters.

155 	 Version 003; January 1990

Name

<c-symbol>

<c-keyword-symbol>

<c-long-symbol>

<c-long-keyword-symbol>
<c-nil>

<c-set-current-package>

<c-long-set-current-package>
<c-predefined-symbol-6>

<c-predefined-symbol-12>

<c-predefined-symbol-18>

<c-string>
<c-long-string>

<c-character>
<c-pos-integer-6>
<c-pos-integer-12>

<c-pos-integer-18>

Name

<c-pos-integer-24>

<c-pos-long-integer>

<c-neg-integer-6>

<c-neg-integer-12>
<c-neg-integer-18>

<c-neg-integer-24>

<c-neg-long-integer>

<c-pos-float>

<c-neg-float>
<c-version>

<c-list-begin>
<c-list-end>

<c-list-dot>
0 	<c-user-defined-begin>
1 	<c-user-defined-end>
2 	<c-array-begin>

Value- Value

3

4

5

6

7

8

9

A

7.4 CIOBL Functions (Common Lisp)

This section documents the program interface to CIOBL software for Common Lisp. It also

serves as a guide to the preferred interface in other languages (for the C interface, see Sec-

tion 7.5). Unless otherwise stated, all functions are part of Level I of CIOBL, and must therefore

be present in all implementations.

The names of all functions are external in the CIOBL package. Note that there are three

symbols in the CIOBL package which shadow symbols in the LISP package: ciobl:read-char,
ciobl :write-char, and ciobl :write-string. For this reason, the ciobl package should not

be used by programs that need CIOBL; instead, calls to CIOBL functions should be prefixed

with an explicit ciobl: qualifier. Alternatively, commonly used CIOBL functions could be

individually imported, but this is discouraged.

7.4.1 General CIOBL Stream Functions

ciobl:make-ciobl-strearri underlying-stream encoding 	 [Function]

Returns a CIOBL stream such that CIOBL read and write calls performed on that stream

will cause corresponding reads and writes to be performed on underlying-stream. The value of

encoding gives the encoding to be used in translating between objects in the CIOBL stream

and characters or bytes in the underlying stream; once established, the encoding may not

be changed. The value of encoding must be one of :standard, :compressed, or :binary.

The value of underlying-stream must be a stream to which character I/O can be performed if

encoding is :standard or :compressed, or a stream to which 8-bit byte I/O can be performed

if encoding is :binary. The underlying stream need not be a bidirectional stream, but if it is

unidirectional then so will be the CIOBL stream.

If underlying-stream is an output or bidirectional stream, then make-ciobl-stream will

write a version token before returning. If underlying-stream is an input or bidirectional stream,

Version 003; January 1990 	 156

then the first call to a CIOBL reading function will read the first four characters or bytes from

the stream and interpret them as a version token.

ciobl:close-ciobl ciobl-stream 	 [Function]

A call to ciobl:close-ciobl closes the stream underlying ciobl-strearn, performing any cleanup

operations that calling close on the underlying stream would perform. It is imperative that

ciobl:close-ciobl be called on the CIOBL stream rather than simply closing close on the

underlying stream, because there may be cleanup operations specific to CIOBL.

ciobl:with-ciobl-stream (stream underlying-stream encoding) {declaration}* 	[Macro]

{form)*

ciobl.:with-ciobl-stream evaluates the forms of the body (an implicit progn) with the vari-

able stream bound to the result of calling ciobl :make-ciobl-stream on underlying-stream and

encoding. When control leaves the body, either normally or abnormally, ciobl:close-ciobl is

called on stream. Because ciobl:with-ciobl-stream always calls ciobl:close-ciobl, even

when an error exit is taken, it is preferred over ciobl:make-ciobl-stream for most applica-

tions.

with-ciobl-file (stream underlying-stream encoding &rest open-options) 	[Macro]

{declaration)* {form}*

with-ciobl-file combines with-open-file with ciobl:with-ciobl-stream. The argu-

ments stream, underlying-stream, and encoding are as for with-ciobl-f ile. The open-options

are passed direc to with-open-file. The :element-type option to with-open-file is

supplied automatically, based on the value of encoding.

ciobl:ciobl-stream-p thing 	 [Function]

Returns true if thing is a CIOBL stream, false otherwise.

7.4.2 Reading and Writing Fixed-Length Objects

ciobl :read-unsigned n ciobl-strearn &optional eof-value 	 [Function]

ciobl:read-unsigned reads and returns the next n-bit unsigned integer from the CIOBL

stream ciobl-stream; n must be a positive integer. The value x returned will always be in the

range 0 < x < 2n . Unpredictable results will occur if the stream is not positioned at a place

written by a corresponding clad :write-unsigned, with the same value of n. If the CIOBL

stream is at end-of-file before the call, eof-value is returned instead of an integer (the default

is nil). On the other hand, if end-of-file occurs in the middle of reading the unsigned, an error

is signalled.

ciobl :read-signed n ciobl-st ream &optional eof-value 	 [Function]

ciobl : read-signed reads and returns the next n-bit signed integer from the CIOBL stream

ciobl-stream; n must be a positive integer. The value x returned will always be in the range

—21-1 < x < 2n-1. Unpredictable results will occur if the stream is not positioned at a place

written by a corresponding ciobl :write-signed, with the same value of n. The end-of-file

treatment is the same as for ciobl :read-unsigned.

ciobl :read-single ciobl-stream &optional eof-value 	 [Function]

157 	 Version 003; January 1990

ciobl:read-double ciobl-stream &optional eof-value 	 [Function]

ciobl:read-char ciobl-stream &optional eof-value 	 [Function]

Reads and returns the next single, double, or char from the CIOBL stream ciobl-stream. Un-

predicatable results will occur if the stream is not positioned at a place written by a corre-

sponding ciobl:write-single, ciobl:write-double, or ciobl :write-char. The end-of-file

treatment is the same as for ciobl :read-unsigned.

Implementation Note: Implementations for typed languages such as C will require
a different convention for indicating end of file.

ciobl :write-unsigned n unsigned ciobl-stream 	 [Function]

Writes the n-bit unsigned integer unsigned on ciobl-stream. The value of unsigned must be in

the range 0 < unsigned < 2'.

ciobl :write-signed n signed ciobl-stream 	 [Function]

Writes the n-bit signed integer signed on ciobl-stream. The value of signed must be in the range
_2n-1 < signed <

[Function]

[Function]

[Function]

ciobl :write-single r ciobl-stream

ciobl :write-double x ciobl-stream

ciobl:write-char a ciobl-stream

Each writes the object a on ciobl-stream, as the appropriate fixed-length object.

7.4.3 Reading and Writing Variable Length Objects

ciobl:read-integer ciobl-stream &optional eof-value

ciobl:read-float ciobl-stream &optional eof-value

ciobl :read-character ciobl-stream &optional eof-value

ciobl:read-string ciobl-stream &optional eof-value

ciobl :read-keyword ciobl-stream &optional eof-value

[Function]

[Function]

[Function]

[Function]

[Function]

Each function reads and returns the appropriate variable-length objects from ciobl-stream. If

the stream was positioned at end-of-file before the call, eof-value will be returned instead (the

default is nil). On the other hand, if end-of-file occurs in the middle of reading the object,

an error is signalled. An error will also be signalled if the stream was positioned at a variable-

length object other than the one given in the name of the function. Unpredicatable results will

occur if the stream was positioned at a fixed-length object.

Implementation Note: Implementations for typed languages such as C will require

a different convention for indicating end of file.

ciobl :write-integer a ciobl-stream

ciobl :write-float a ciobl-stream

ciobl :write-character a ciobl-stream

ciobl:write-string a ciobl-stream

ciobl:write-keyword a ciobl-stream

Each function writes the object x as the appropriate

It is an error to call one of these functions with the

ciobl :write- integer with a string.

[Function]

[Function]

[Function]

[Function]

[Function]

variable-length object to ciobl-stream.

wrong type of argument, e.g., calling

Version 003; January 1990 	 158

ciobl:keyword-name keyword 	 [Function]

ciobl:name-keyword string 	 [Function]

These functions convert between keywords as returned by ciobl:read-keyword and accepted

by ciobl:write-keyword and their corresponding names, as strings. ciobl:keyword-name

takes a keyword and returns its name as a string, while ciobl:name-keyword takes a string

and returns the corresonding keyword. Note that the Lisp function eql or the C function

may be used to compare keywords for equality, while the same is not true for strings.

Implementation Note: These functions are included primarily for the benefit of

implementations in langauges (such as C) which do not have keywords as a primitive

data type. Even in langauges which do (such as Common Lisp), a Level I implementation

may wish to use a different representation for CIOBL keywords. For Level III Common

Lisp implementations, however, the following ,.-quivalences hold:

(ciobl:keyword-name x) E (symbol-name x)

(ciobl:name-keyword x) E (intern x "KEYWORD")

7.4.4 Level II Functions

All of the functions in this section are provided only in Level II and Level III implementations

of CIOBL.

Compound Objects

ciobl:read-list ciobl-stream &optional eof-value 	 [Function]

ciobl:read-array ciobl-st ream &optional eof-value 	 [Function]

Reads and returns a list or array from ciobl-stream. If the stream was positioned at end-of-file

before the call, eof-value will be returned instead (the default is nil). On the other hand,

if end-of-file occurs in the middle of reading the list or array, whether between component

objects or within them, an error is signalled. An error will also be signalled if the stream was

positioned at a variable-length object other than the one given in the name of the function, or

if an improperly formatted list or array is encountered. Unpredicatable results will occur if the

stream was positioned at a fixed-length object or if fixed-length objects are encountered before

the entire list or array is read.

ciobl:write-list x ciobl-strearn 	 [Function]

ciobl : write-array x ciobl-strearn 	 [Function]

Each function writes the object a. as a list or array to ciobl-stream. It is an error to call one of

these functions with an inappropriate argument, e.g., calling ciobl :write-list with a string.

An error is signalled if ciobl:write-array is called with an array whose rank is less than one

or greater than seven.

ciobl:read-list-begin ciobl-stream &optional eof-value 	 [Function]

ciobl : read-1 ist - end ciobl-strearn &optional eof-value 	 [Function]

ciobl:read-array-begin ciobl-stream &optional eof-value 	 [Function]

These functions are provided for the benefit of programs which wish to read compound objects

without actually having the CIOBL software construct those objects. Each reads a punctuation

159 	 Version 003; January 1990

token from ciobl-st ream and returns nil. If the stream was positioned at end-of-file before the
call, eof-value will be returned instead (the default is nil). An error will be signalled if the

stream was positioned at an atomic variable-length object or at a punctuation token other than

the one given in the name of the function. Unpredicatable results will occur if the stream was

positioned at a fixed-length object.

ciobl :write-list-begin ciobl-stream 	 [Function]

ciobl :write-list-end ciobl-stream 	 [Function]

ciobl :write-array-begin ciobl-stream 	 [Function]

These functions are provided for the benefit of programs which wish to write compound objects

without first constructing them in memory. Each writes a punctuation token to ciobl-stream.

It is the responsibility of the user to observe the proper syntax for compound objects when

writing them in this manner.

Generic Objects

ciobl :read-any ciobl-stream &optional eof-value return-opening-punctuation-p [Function]

return-closing-punctuation-p

ciobl :read-any reads the next variable-length CIOBL object from ciobl-stream. Two values

are returned: the object read, and a keyword indicating what kind of object was read (see

below). If the stream was positioned at end-of-file before the call, the values eof-value (default.

nil) and :eof will be returned instead. On the other hand, if end-of-file occurs in the middle

of reading the object, an error is signalled. Unpredicatable results will occur if the stream was

positioned at a fixed-length object, or if fixed-length objects are encountered while reading a

compound object.

The arguments return-opening-punctuation-p and return-closing-punctuation-p, both de-

faulting to false, control the behavior when the stream is positioned at punctuation tokens. If

the stream is positioned at the beginning of a compound object (at a LIST-BEGIN or ARRAY-

BEGIN token) and return-opening-punctuation-p is false, then the entire list or array is read.

If return-opening-punctuation-p is true, then only the punctuation token is read, and nil is

returned. If the stream is positioned at a LIST-END token and return-closing-punctuation-p is

false, an error is signalled. If return-closing-punctuation-p is true, the punctuation token is

read. Typically, both arguments will be false when a program does not want to read compound

objects manually, and both will be true when it wants to read all compound objects that way.

On the other hand, if a program is in the middle of reading a compound object manually but

does not want to read manually any components which might be themselves compound objects,

return-opening-punctuation-p will be false and return-closing-punctuation-p will be true.

The second value returned by ciobl :read-any depends on return-opening-punctuation-p

and return-closing-punctuation-p. If both are false, then the second value is one of :integer,

:float, :character, :string, :keyword, :list, :array, or :eof. If return-opening-punctuation-

p is true then the second value will never be :list or :array, but it might be :list-begin

or :array-begin. If return-closing-punctuation-p is true then the second value could also be

:list-end.

ciobl :write-any 2' ciobl-stream 	 [Function]

The argument 2.. must be an integer, float, character, string, keyword, list, or array. It is written

as the appropriate variable-length object to ciobl-stream.

Version 003; January 1990 	 160

Implementation Note: Implementations for typed languages (such as C) will require
different conventions for indicating end of file and for indicating the type of object
returned from ciobl :read-any or passed to ciobl write-any.

7.4.5 Level III Functions

All of the functions in this section are provided only in Level III implementations of CIOBL.

A Level III implementation is not required to provide all of them, but of course it should not

provide a read function without the corresponding write function, or vice versa.

ciobl :read-symbol ciobl-strearn &optional eof-value 	 [Function]

ciobl :read-dotted-list ciobl-stream &optional eof-value 	 [Function]

ciobl :write-symbol x ciobl-strearn 	 [Function]

ciobl :write-dotted-list x ciobl-stream 	 [Function]

Analogous to all the other functions for reading and writing variable-length objects. These

are typically provided only in Common Lisp implementations of CIOBL. The argument x to

ciobl :write-dotted-list may be an ordinary list, in which case it is written as such. Note

that in CIOBL, nil and the empty list are not the same.

ciobl:read-t ciobl-strearn &optional eof-value
	

[Function]

ciobl:write-t x ciobl-stream
	

[Function]

A Level III implementation may provide functions of this form for reading and writing particular

cases of user-defined objects of type 1. Typically, such functions would only be provided in

implementations where the vocabulary of user-defined objects is not user programmable.

ciobl :read-any ciobl-streurn &optional eof-value return-opening-punctuation-p 	[Function]

return-closing-punctuation-p

ciobl : write-any 2.• ciobl-stream 	 [Function]

These are the same as in Level II, extended to handle symbols, dotted lists, and user-defined

objects according to what the implementation provides. In implementations where the vocab-

ulary of user-defined objects is user programmable, these functions are typically the only way

of reading and writing such objects in one call. In addition to their Level II roles, return-

opening-punctuation-p governs the behavior when positioned at a USER-DEFINED-BEGIN token,

and return-closing-punctuation- p governs the behavior when positioned at a LIST-DOT or USER-

DEFINED-END token. The second value returned from ciobl :read-any, in addition to the values

it can assume in Level II, may also be :dotted-list, :symbol, any symbol that might occur af-

ter a USER - DEFINED- BEGIN token, :user-defined-begin, :user-defined-end, or :list-dot.

Again, whether some of these can occur depends on return-opening-punctuation-p and return-

closing-punctuation-p.

If :dotted-list is returned, it indicates only that a UST-DOT token was part of the list read,

not that the object following the dot is non-nil. While ciobl:write-list will never write

a LIST-DOT token if the object following would be nil, such a file could be written manually

through calls to ciobl :write-list-begin, ciobl :write-list-dot and ciobl :write-list-end.

ciobl :read-list-dot ciobititurn &optional eof-value 	 [Function]

ciobl :read-user-defined-begin ciobl-stream &optional eof-value 	 [Function]

ciobl :read-user-defined-end ciobl-strearn &optional eof-value 	 [Function]

161 	 Version 003; January 1990

ciobl :write-list-dot ciobl-stream 	 [Function]

ciobl :write-user-defined-begin ciobl-strearn 	 [Function]

ciobl:write-user-defined-end ciobl-stream 	 [Function]

These are analogous to the functions provided in Level II for reading and writing individual

punctuation tokens.

ciobl:defciobl-read type (stream) {declaration}* {form}* 	 [Macro]

ciobl:defciobl-write type (object stream) {declaration)* {form}* 	 [Macro]

ciobl : def ciobl-read and ciobl : def ciobl-write provide a user programmable implementa-

tion of user-defined objects for Common Lisp implementations. When ciobl. :read-any reads

a USER-DEFINED-BEGIN token followed by a symbol with the same name and package as type,

it executes the forms from the ciobl:defciobl-read (as an implicit progn) with the variable

stream bound to the CIOBL stream. The forms should read all objects up to (but not includ-

ing) the matching USER-DEFINED-END, and the last form should return the object. CIOBL

then automatically reads the USER-DEFINED-END token, signalling an error if some other token

is found instead.

Similarly, when ciobl:write-any is passed an object of type type, it writes a USER-

DEFINED-BEGIN token followed by the symbol type, then executes the forms from the ciobl:

defciobl-write (as an implicity progn) with the variable stream bound to the CIOBL stream

and the variable object bound to the object to be written. The forms should write the compo-

nents of the object to stream, as variable-length CIOBL objects. When the forms are finished,

CIOBL automatically writes the USER-DEFIN ED-END token.

It is the responsibility of the user to insure that the ciobl:defciobl-read and ciobl:

defciobl-write definitions for a given type are compatible.

7.5 CIOBL Functions (C)

The C language interface to CIOBL is currently only defined for Level I of CIOBL. The interface

is similar to the Common Lisp interface, but with these differences:

1. Because C does not have arbitrary precision integers, several versions of the integer read

and write functions have been created, differing in their argument or result types. These

differences only constrain the C types of the arguments and results; the formatting of the

CIOBL object being read or written is controlled in the same way as in Common Lisp.

2. Because C does not have optional arguments, and because functions are typed, end-of-file

is indicated in a different way by the reading functions.

3. Because C does not have a general error-signalling mechanism, a different way of indicating

various error conditions is used.

The C interface requires the standard stdio library and include file, as well as the scalar,

int64, and keyword libraries and include files from the MCRC C support package.

7.5.1 General CIOBL Stream Functions

CIOBL_STREAM 	 [Type]

The type of CIOBL streams.

Version 003; January 1990 	 162

CIOBL_ENCODING 	 [Type]

An enumeration type, used to indicate the encoding desired to make_ciobl_stream.

CIOBL_ERROR
	

[Type]

CIOBL_ERROR ciobl_error
	

[Variable]

All CIOBL functions set the global variable ciobl_error before returning; the type of this

variable is CIOBL_ERROR, an enumeration type. if no error or exceptional condition occured, it

is set to CIOBL_NO_ERROR (which has value zero). The other possibilities for ciobl_error are

as follows:

CIOBL_OS_ERROR An operating system error occured during an I/O operation. In this case

the standard C variable errno is set to indicate the error, according to the conventions

established by the operating system.

CIOBL_LIMITATION A limitation peculiar to the particular implementation of the C interface,

such as a buffer size, was exceeded.

CIOBL_EOF A read function was called with the CIOBL stream positioned at end of file.

CIOBL_INTEOF During a read function, end of file was reached within an object.

CIOBL_BADARG Some argument to a CIOBL function was out of range.

CIOBL_OVERFLOW The variable-length object read was too large to be returned properly.

CIOBL_ROUNDOFF The variable-length float read was too precise to be returned fully.

CIOBL_BADVERSION An improperly formatted version token was read.

CIOBL_INCOMPATIBLE A file written with an incompatible version of CIOBL was opened for

reading.

Any of the functions in the C interface may raise the CIOBL_OS_ERROR or CIOBL_LIMITATION

conditions. The other conditions can only occur as documented with each CIOBL function,

below. With the exception of the CIOBL_OVERFLOW and CIOBL_ROUNDOFF conditions, the CIOBL

stream is left in an undefined state after an error occurs, and so further I/O on that stream is

generally precluded.

CIOBL_STREAM make_ciobl_stream (FILE *underlying_stream, STRING type, [Function]

CIOBL_ENCODING encoding)

Returns a CIOBL stream such that CIOBL read and write calls performed on that stream

will cause corresponding reads and writes to be performed on underlying_stream, where

underlying_stream is a stream as returned by fopen or fdopen. The value of encoding

gives the encoding to be used in translating between objects in the CIOBL stream and char-

acters or bytes in the underlying stream; once established, the encoding may not be changed.

The value of encoding must be one of CIOBL_STANDARD, CIOBL_COMPRESSED, or CIOBL_BINARY.

The value of underlying_stream must be a stream to which character I/O can be performed

if encoding is CIOBL_STANDARD or CIOBL_COMPRESSED, or a stream to which 8-bit byte I/O can

be performed if encoding is CIOBL_BINARY.

The directionality of the ciobl stream returned is established by type: a value of "r" yields

an input stream, a value of "w" or "a" yields an output stream, and a value of "r+", "w+",

163 	 Version 003; January 1990

or "a+" yields a bidirectional stream. It is the responsibility of the user to ensure that the

directionality of underlying_stream is compatible with type. The legal values for type were

chosen to be compatible with the standard function fopen, but note that for the purposes of

make_ciobl_stream there is no distinction between "w" and "a", nor between "r+", "w+",
and "a+".

If type specifies an output or bidirectional stream, then make_ciobl_stream will write
a version token onto the stream before returning. If type specifies an input or bidirectional

stream, then the first call to a CIOBL reading function will read the first four characters or

bytes from the stream and interpret them as a version token.

If type specifies an input or bidirectional stream, then the following two errors can occur

if an improper version token is read. If the version token is properly formatted but specifies

a version of CIOBL incompatible with the version being used, ciobl_error is set to CIOBL_
INCOMPATIBLE. In this case, the stream is still opened for reading and writing (if applicable),

but calls to read functions can behave unpredictably. If the version token is not even properly

formatted, or indicates an encoding different from encoding, then ciobl_ error is set to CIOBL_
BADVERSION. In that case, the stream will not be open for input (although it will still be open

for output if type specified a bidirectional stream).

VOID close_ciobl (CIOBL_STREAM ciobl_strearn) 	 [Function]

A call to close_ciobl closes the stream underlying ciobl_stream, performing any cleanup

operations that calling f close on the underlying stream would perform. It is imperative that

close_ciobl be called on the CIOBL stream rather than simply closing fclose on the under-

lying stream, because there may be cleanup operations specific to CIOBL.

CIOBL_STREAM make_ciobl_file (STRING filename, STRING type, 	 [Function]

CIOBL_ENCODING encoding)

Make_ciobl_file is equivalent to calling fopen on arguments filename and type, and passing

the result to make_ciobl_stream along with type and encoding. If, however, the call to fopen

resulted in an error, the call to make_ciobl_stream is not made, and ciobl_error is set to

CIOBL_OS_ERROR.

7.5.2 Reading and Writing Fixed-Length Objects

auINT32 ciobl_read_unsigned_auint32 (auINT16 n, 	 [Function]

CIOBL_STREAM ciobl_stream)

auINT64 ciobl_read_unsigned_auint64 (auINT16 n, 	 [Function]

CIOBL_STREAM ciobl_stream)

Both functions read and return the next n-bit unsigned integer from the CIOBL stream ciobl_

stream; n must be a positive integer. The value x returned will always be in the range 0 <

x < 2. Unpredictable results will occur if the stream is not positioned at a place written

by a corresponding ciobl_write_unsigned_x, with the same value of n (only the n's have to

match; it is permissible to write an integer with ciobl_write_unsigned_auint64 and read

it with ciobl_read_unsigned_auint32, for example, as long as both were given the same

argument n). If the CIOBL stream is at end-of-file before the call, zero is returned, and ciobl_

error is set to CIOBL_EOF. On the other hand, if end-of-file occurs in the middle of reading the

unsigned, zero is returned, and ciobl_error is set to CIOBL_INTEOF.

Version 003; January 1990 	 164

The two functions differ in the type of the result returned, which in turn restricts the range

of n allowed: for ciobl_read_unsigned_auint32, n must be less than or equal to 32, for

ciobl_read_unsigned_auint64, n must be less than or equal to 64. If an inappropriate n is

given, zero is returned and ciobl_ error is set to CIOBL_BADARG.

asINT32 ciobl_read_signed_asint32 (auINT16 n, 	 [Function]

CIOBL_STREAM ciobl_stream)

asINT64 ciobl_read_signed_asint64 (auINT16 n, 	 [Function]

CIOBL_STREAM ciobl_stream)

Both functions read and return the next n-bit signed integer from the CIOBL stream ciobl_

stream; n must be a positive integer. The value x returned will always be in the range -2n-1 <
X < 2n-1. Unpredictable results will occur if the stream is not positioned at a place written by a

corresponding ciobl_write_signed_x, with the same value of n (only the n's have to match; it

is permissible to write an integer with ciobl_write_signed_asint64 and read it with ciobl_

read_signed_asint32, for example, as long as both were given the same argument n). The

end-of-file treatment and the restrictions on n are the same as for ciobl_read_unsigned_

auint32 and ciobl_read_unsigned_auint64.

sFLONUM ciobl_read_single (CIOBL_STREAM ciobl_stream) 	 [Function]

dFLONUM ciobl_read_double (CIOBL_STREAM ciobl_stream) 	 [Function]

CHARACTER ciobl_read_char (CIOBL_STREAM ciobl_stream) 	 [Function]

Reads and returns the next single, double, or char from the CIOBL stream ciobl-stream. Un-

predicatable results will occur if the stream is not positioned at a place written by a corre-

sponding ciobl_write_single, ciobl_write_double, or ciobl_write_char. The end-of-file

treatment is the same as for ciobl_read_unsigned_x.

VOID ciobl_write_unsigned_auint32 (auINT16 n, auINT32 u, 	 [Function]

CIOBL_STREAM ciobl_stream)

VOID ciobl_write_unsigned_auint64 (auINT16 n, auINT64 u, 	 [Function]

CIOBL_STREAM ciobl_stream)

Writes the n-bit unsigned integer u on ciobl_stream. The value of u must be in the range

0 < u < 2. Note that the suffix of the function name in no way constrains the value of n;

for example, it is permissible to call ciobl_write_unsigned_auint32 with n = 48. The suffix

merely indicates the C type of the second argument.

VOID ciobl_write_signed_asint32 (auINT16 n, asINT32 s, 	 [Function]

CIOBL_STREAM ciobl_stream)

VOID ciobl_write_signed_asint64 (auINT16 n, asINT64 s, 	 [Function]

CIOBL_STREAM ciobl_stream)

Writes the n-bit signed integer s on ciobl_stream. The value of s must be in the range

-27-1 < S < 2"— '. Note that the suffix of the function name in no way constrains the value

of n; for example, it is permissible to call ciobl_write_signed_asint32 with n = 48. The

suffix merely indicates the C type of the second argument.

VOID ciobl_write_single (sFLONUM x, CIOBL_STREAM ciobl_stream) 	[Function]

VOID ciobl_write_double (dFLONUM x, CIOBL_STREAM ciobl_stream) 	[Function]

VOID ciobl_write_char (CHARACTER x, CIOBL_STREAM ciobl_stream) 	[Function]

Each writes the object x on ciobl-strearn, as the appropriate fixed-length object.

165 	 Version 003; January 1990

7.5.3 Reading and Writing Variable-Length Objects

auINT32 ciobl_read_integer_auint32 (CIOBL_STREAM ciobl_stream) 	[Function]

asINT32 ciobl_read_integer_asint32 (CIOBL_STREAM ciobl_stream) 	[Function]

auINT64 ciobl_read_integer_auint64 (CIOBL_STREAM ciobl_stream) 	[Function]

asINT64 ciobl_read_integer_asint64 (CIOBL_STREAM ciobl_stream) 	[Function]

Each function reads and returns a variable-length integer from ciobl_stream. If the stream was

positioned at end-of-file before the call, zero is returned, and ciobl_error is set to CIOBL_EOF.

On the other hand, if end-of-file occurs in the middle of reading the object, zero is returned and

ciobl_ error is set to CIOBL_INTEOF. If the stream was positioned at a variable-length object

other than an integer, zero is returned and ciobl_error is set to CIOBL_BADOBJ. Unpredictable

results will occur if the stream was positioned at a fixed-length object.

Because the range of the return type is limited, the stream must be positioned at an integer

that is within the range representable in the return type of each function. If positioned at

some other integer, zero is returned, and ciobl_error is set to CIOBL_OVERFLOW. This is the

only error condition which guarantees the position of ciobl_stream afterward: it is positioned

immediately after the offending integer.

sFLONUM ciobl_read_float_sflonum (CIOBL_STREAM ciobl_stream)
	

[Function]

dFLONUM ciobl_read_float_dflonum (CIOBL_STREAM ciobl_stream)
	

[Function]

Each function reads and returns a variable-length float from ciobl_stream. The error condi-

tions CIOBL_EOF, CIOBL_INTEOF, and CIOBL_BADOBJ are raised in analogous circumstances as

for ciobl_read_integer_x, with zero returned in each case. Unpredictable results will occur

if the stream was positioned at a fixed-length object.

If the magnitude of the float read is too large to allow the float to be represented in the

return type, zero is returned and ciobi_error set to CIOBL_OVERFLOW. If the magnitude is not

too large but the float has more precision than the return type, it is rounded to the nearest

float of the return type, and ciobl_error is set to CIOBL_ROUNDOFF. This is true even if the

extra mantissa bits were all zero. CIOBL_OVERFLOW and CIOBL_ROUNDOFF are the only errors

which guarantee the position of ciobl_stream afterward: it is positioned immediately after the

offending float.

CHARACTER ciobl_read_character (CIOBL_STREAM ciobl_stream) 	 [Function]

Reads and returns a variable-length character from ciobl_stream. The error conditions CIOBL_

EOF, CIOBL_INTEOF, and CIOBL_BADOBJ are raised in analogous circumstances as for ciobl_

read_integer_x, with an unspecified character returned in each case. Unpredictable results

will occur if the stream was positioned at a fixed-length object.

STRING ciobl_read_string (CIOBL_STREAM ciobl_stream) 	[Function]

VOID ciobl_read_string_destructively (auINT32 n, STRING s, 	[Function]

CIOBL_STREAM ciobl_stream)

Ciobl_read_string reads and returns a string from ciobl_stream; the string returned is newly

allocated via malloc.
Ciobl_read_string_destructively is similar, but instead of mallocing the string it is

destructively read into s, with a null character terminating. Elements of s beyond the null

character stored are not modified. No more than n elements of s, however, will be modified;

hence the string read must be no longer than n —1 characters in order to be properly stored in s

Version 003; January 1990 	 166

(including the null terminator). If ciobl_strearn is positioned at a string longer than n - 1,

only the first ri characters will be stored in s, with no terminating null, and ciobl_error will be

set to CIOBL_OVERFLOW. This is the only error which guarantees the position of ciobl_stream

afterward: it is positioned immediately after the offending string.

Both functions raise the error conditions CIOBL_EOF, CIOBL_INTEOF, and CIOBL_BADOBJ in

analogous circumstances as for ciobl_read_integer_x. If any of these conditions is raised,

ciobl_read_string returns the NULL pointer, while ciobl_read_string_destructively may

perform arbitrary modifications to the first n elements of s. Unpredictable results will occur if

the stream was positioned at a fixed-length object.

KEYWORD ciobl_read_keyword (CIOBL_STREAM ciobl_stream) 	[Function]

Reads and returns a keyword from ciobl_strearn. The error conditions CIOBL_EOF, CIOBL_

INTEOF, and CIOBL_BADOBJ are raised in analogous circumstances as for ciobl_read_integer_

x. Unpredictable results will occur if the stream was positioned at a fixed-length object.

VOID ciobl_write_integer_auint32 (auINT32 x, 	 [Function]

CIOBL_STREAM ciobl_stream)

VOID ciobl_write_integer_asint32 (asINT32 x, 	 [Function]

CIOBL_STREAM ciobl_stream)

VOID ciobl_write_integer_auint64 (auINT64 x, 	 [Function]

CIOBL_STREAM ciobl_stream)

VOID ciobl_write_integer_asint64 (asINT64 x, 	 [Function]

CIOBL_STREAM ciobl_stream)

VOID ciobl_write_float_sflonum (sFLONUM x, CIOBL_STREAM ciobl_stream) [Function]

VOID ciobl_write_float_dflonum (dFLONUM x, CIOBL_STREAM ciobl_stream) [Function]

VOID ciobl_write_character (CHARACTER x, CIOBL_STREAM ciobl_stream) 	[Function]

VOID ciobl_write_string (STRING x, CIOBL_STREAM ciobl_stream) 	[Function]

VOID ciobl_write_keyword (KEYWORD x, CIOBL_STREAM ciobl_stream) 	[Function]

Each function writes the object x as the appropriate variable-length object to ciobl_stream.

7.6 	Estimating the Length of CIOBL Files

The designer of a CIOBL file format faces many choices in deciding what CIOBL objects to use

to represent the components of the file. In particular, the designer must choose between fixed-

length and variable-length numbers, strings and keywords, lists and arrays, and so forth. The

following information may prove useful in the event that the designer's main goal is to minimize

(or maximize, for that matter!) the space occupied by a Binary or Compressed version of his

file.

Object

Characteristics 	 Size in Binary Encoding

integer 	x = 0 	 2

256N-1 < Ix' <256', 1 < N < 4 	1 + N

256N-i < 1/1 <256, 4< N <256 	2+ N

Float 	b bit mantissa, e bit exponent 	3 + rb/81 -1- re/81

Character 	 2

String 	len < 256 	 2 -1- len

256N-1 < len < 256N , 2 < N17256 2+ N len,
version 003; January 1990

Symbol 	NIL

Keyword, first occurence

len < 256

256N-1 < len < 256N, 2 < N < 256

Keyword, later occurence

Other symbol, first occurence

len < 256

256N-1 < len < 256, 2 < N < 256

Other symbol, later occurence

Unsigned 	n bits

Signed 	n bits

Single

Double

Char

List

Array

Dotted List

User Defined

1

2 + len

2+ N + len

2, 3, or 4 (see below)

2 + len (see below)

2+ N + len (see below)

2, 3, or 4 (see below)

in/81

In /81

4

8

1

2+ total bytes in components

2 + total bytes in dimension integers

+ total bytes in components

2 + total bytes in components

2 + total bytes in type symbol

+ total bytes in components

Subsequent occurences in a Binary file of the same symbol take fewer bytes because of

the 'predefined symbol' punctuation byte. Subsequent occurences take two bytes for the first

256 unique symbols, three bytes for the next 65280, and four bytes for the next 16,711,680.

The first occurence of symbols other than keywords may require the insertion of a 'set current

package' directive, which takes the same number of bytes as given above for a string, where len

is the number of characters in the package name.

Object 	Characteristics 	Size in Compressed Encoding

x = 0

64N-1 < lx1 < 64N, 1 < N < 4

64N-1 < lx1 < 64N, 4 < N < 64

b bit mantissa, e bit exponent

len < 64

64N-1 < len < 64N, 2 < N < 64

2

1+ N

2 + N

4 + ib/61 + re/61

2

2 -I- len

2 + N + len

Integer

Float

Character

String

Version 003; January 1990 	 168

Symbol

Unsigned

Signed

Single

Double

Char

List

Array

Dotted List

User Defined

NIL

Keyword, first occurence

len < 64

64N-1 < len < 64N , 2< N <64

Keyword, later occurence

Other symbol, first occurence

len < 64

64N-1 < /en < 64N, 2 < N < 64

Other symbol, later occurence

n bits

n bits

1

2 + len

2 + N + len

2, 3, or 4 (see below)

2 + len (see below)

2 + N + len (see below)

2, 3, or 4 (see below)

In/Cl

In/6l

6

11

1

2 + total chars in components

2 + total chars in dimension integers

+ total chars in components

2 + total chars in components

2 + total chars in type symbol

+ total chars in components

Subsequent occurences in a Compressed file of the same symbol take fewer characters because

of the 'predefined symbol' punctuation character. Subsequent occurences take two characters

for the first 64 unique symbols, three characters for the next 4032, and four characters for the

next 258,048. The first occurence of symbols other than keywords may require the insertion of

a 'set current package' directive, which takes the same number of characters as given above for

a string, where len is the number of characters in the package name.

7.7 Character Codes

The following table lists the 96 standard characters. The byte column gives the representation

(in base 10) for each character in the Binary encoding. The value column gives the value

assigned to characters when used to encode integers in the Compressed encoding, and when

used as part of the version token in both the Compressed and the Standard encoding.

169 	 Version 003; January 1990

Char. Byte Value Char. Byte Value Char. Byte

Space 32 0 0 64 32 96

! 33 1 A 65 33 a 97

II 34 2 B 66 34 b 98

* 35 3 C 67 35 c 99

$ 	36 4 D 68 36 d 100

% 37 5 E 69 37 a 101

k 38 6 F 70 38 f 102

> 39 7 G 71 39 g 103

(40 8 H 72 40 h 104

) 41 9 I 73 41 i 105

* 42 10 J 74 42 j 106

+ 43 11 K 75 43 k 107

, 44 12 L 76 44 1 108

45 13 M 77 45 m 109

46 14 N 78 46 n 110

/ 47 15 0 79 47 o 111

0 48 16 P 80 48 p 112

1 49 17 Q 81 49 q 113

2 50 18 R 82 50 r 114

3 51 19 S 	83 51 s 115

4 52 20 T 84 52 t 116

5 53 21 U 85 53 u 117

6 54 22 V 86 54 v 118

7 55 23 1,1 87 55 IT 119

8 56 24 X 88 56 x 120

9 57 25 Y 89 67 y 121

58 26 Z 90 58 z 122

59 27 [91 59 { 123

< 60 28 \ 92 60 I 124

* 61 29 3 93 61 1 125

> 62 30
- 94 62 126

? 63 31 95 63 Newline 10

Value

Version 003; January 1990 	 170

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

