TR ODU

C-T1

O N

I N




Introduction to iWarp







DISCLAIMER

The information provided in this manual describes the concepts and systems of the iWarp technology
development program and is subject to change without notice. No representation or
announcement of Intel products is expressed or implied.

The view, opinions, and/or findings contained in this manual should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of the Navy, Space and Naval Warfare Systems Command, or the
position of Camegie Mellon University.

ACKNOWLEDGEMENT

The work resulting in the concepts and systems described in this manual is supported, in part, by
Defense Advanced Projects Agency (DoD), ARPA Order No. 4864, monitored by the Space and
Naval Warfare Systems Command under Contract number 00039-C-0134 and Contract Number
00039-87-C-0254 and, in part, by Intel Corporation.

We particularly acknowledge the efforts of the Camnegie Mellon University, School of Computer
Science, Warp team. This team included, Dr. H.T. Kung, his associates, and his students who
provided the primary technical direction for iWarp technology.

TRADEMARKS

VMS is a registered trademark of Digital Equipment Corporation.
UNIX is a registered trademark of AT&T Bell Labortories.
Sun is a registered trademark of Sun Microsystems, Inc.






CONTENTS

] Introducing iWarp

iWarp: System Building Blocks for High Performance Systems .... 1-1

TREDEVEIOPMER PRIOCEBHMY 5 cvs v 5o 50 S50 5 i pe omrm b b iR 1-1
£ By e o TU RO e ) ) e T 1-2
Computation and Communication Requirements ....... ey 14
Comparing REQUISIMEIIE . o500 iavi i mms neduwan s sawessae vy s £as S 1-5
COMMUBICEBORIIERER v ovcnvviv smamasanmet oves Waes L6 i e mmes e s 1-6
Application Examples ..........cco0vieennnnn. 1-6
ASORIFIRERMDIE. 150 oo aivsic 6555 00555 banvigni b e e S e £33 1-7
Implementing the Sonar Application onan iWarp Armay ..........covvvuvvennnn 1-8
Synergy between CommunicationModels .............coiiiiiiiiieiianns 1-8
Fine-Grain SYSoHc ComEmatieaion ...« ove verdusl vasmmpin vons vak sees owei 1-9
PERRTRRNee ABRIVEIE: .o invoni i waes daaidEsn EEREEEAT Foa AN Ak seieie 1-9
Advanlages of he SySOBC MDAEL . ..o vovs dhndonls vnm vwans ssmssns oues vass 1-10
Fundamental iWarp Concepts ...........cc000ue Caeas iasvanmes | Bell
Integrated Communication and Computation . ...........vvvvuinniininacnans 1-11
Balanced Communication to Computation . .............cooiiiuiniinnnannnns 1-11
Independent Communication and Computation Elements ..................... 1-11
Scalar and VecIor PEITONTBAOE 555505 555 wsdie dambommimienoae aonue siviaie ae shas oas 1-12
iWarp Architecture Overview ................ R ssansaane ~AeAS
iWarp Communication and ComputationModels ................cooiiuainn. 1-14
LOgical CORDECHONE: .. <o ivie 55 5585 608 ok balewbie sce armomeiwinimoe sses Sieitne S o 1-17

iwal'psystems CRE I R A I R B O O B I B B R B B B B R A O I L B 1_1.8

COBRTIPOERMONS 5 < i i o i vsd viam vodvhas SV TG BIAE SRR E ERes S s 1-19
SIBPIC BOMEARIRY & o055 o niiinensaen smemame pwse smw s fee Eeme s 1-20
TheSigniﬂCﬂnCQOfiWﬂrp..-.. ------- s e s s s s e nsEB e B ee ce s s 1_21

3 iWarp Hardware

The iWarp Component .......cccecvvscse0e0e0ss T T & 2-1
CONDOE AT . < oo v 50050 s MBS B O FESS SRR A4 % |
CompubsBoB AREIR . o io5a 5t 60k 5535 hinas e ammn voms nmmesivaias g Fanie o 2-3
RegiSter File UDIL ......ovvieeeeeeeennnnnneeennsnnnnnnnsnaanassseeens 2-3
LOCRE MISRIOEY BIOL - o o506 555 diinct wimsie mmimsminalaimiminie wimimss #i0gumwtimin walhid o 67 814 2-4
PEOREER SWIE URME . . oo ovvmis sannniin suiensls vesn sosn bons Had s ors wiae o 2-5



Instruction Sequencing Unit ..........coiiiiiinnreriiiisnnararinnrarenes
Integer Logic Unit ......c.viviinernneennaeinioncnnssnnseaneanesaannons
Floating-point Unit ......ccooitievnnreseecsssnsassnsanssessscnssascnns
Streaming/Spooling Unit . . . ..ccvvivrvenrarenctriscsssssossssinnssonans
Communieation APEOE . ....ous cdewes oo e e §ms coes vvee v s v s as s
IBSICHON FOMEEIE + 5.5 o550 s vesem wintes ceimenien anak LS SFFE SEUR ame B/

TheiWarp Boards .....crvvevesvercscsnssssszsvins e,
OiEd CEILBOMN onivvnvvannmammneveoishas B s pave Dads Arm ey e nis
SInpIECRIl BOAML . .. <o vis'is sutim i so o svs a5.9% ¢354 s ves wonws v
S BORT] ATTRY. & vo-cpiss wmimmannam wasaniin oo m bt £ BN CT0S S0 oaW Va8

TheTWarp Cadcage ASoDlY . ovccssississovssns sannnersss

The iWarp System ............ SRR A AR SRR
THABTOBUCE - oniiovaivninm vuns aninsmansnsainn LArA S5 A IR SRR SR T TE 3

3 iWarp Software

iwarpsoﬁwamAmhit“tum L L B B B B O B B B B D B BB B B B AR D B B

iWarp Host Environment ..........ccocvvevevecncnconnns PR
iWarp Program DevelopmeDt TO0IS . ....covnvnnncnssssnssiasanisssasaenss

iWarp Runtime Environment ..........
IWErD RODEIC LIBCAIRD . o« o0 5 o5 00000 5555 5 00 et wioies Sliem whms wUaisls o 4
TWELD SYRIEESOPDIEL. 50505100 i w was v wisie smuremameny aiviem e s s s s

Programuning a0 TWRrD SYBRIN. . . ... voivvonisnisss s soa savs savasaies
Apply: for Image Processing ApDpHCations: ., co.vvvevavicsiasssvsmrvessennss

WEB Library ROUHEES: . oo ines snionwmns osse ines i in s sossras svmasssn

Appendix: Computational Models

Bibliography
Glossary

Index

Preliminary

31

33
3-3

3-7
3-7
3-8
3-10
3-14



F1GURES

FIGURE
1-1: An example of a two-dimensional iWarptorusarmay .........cconvvueunn.
1-2: Applications with different computation and communication requirements. . . . .
1-3: Sonar application

.................................................

1-4: Sonar application on a 16-cell iWarp array

1:5 MAGX TORIEDAY CXMIMME . 5.0vx vovinre aiminiewifon: avsvwrs. wiosaia o aiedys 560 06 55 015 060 00008
1-6: Time line of performance peak in matrix multiply example ................
1=1: IWED a0 eI AICIMBCIIR < <0 s svov 65755 Sa 5 5058 6o am sinmie s aein e &5 00 Koes s
=0 TWarD CEIL TC): CROMEHY <5 a0 oaiiom e mnmincmnssc assmsawrsiiesson SRS S0 A HIEEE 4
1% DI PEIWAYE « 00 0ss come nnmsommeiie e gy el SEE SERS BT RRSE S
1-9 a and b : Express messages and systolic computation ............covevennen
1-9 ¢ and d: Spooling and streaming and memory-to-memory messages ..........
1-9 e and f: Memory computation and combination ....... ..................
1-10- Phvaical Gl IGRICRIINIIES: . ..v:co voivnmonen snpeasmieson e i suas oo s e
1-11: Logical buses support sharing of physical resources .....................
1-12: iWarp system configuration CONCEPL . . ... vivvinnnennnnneenssnnnsnnns

1-13: iWasp syatem bllGing BIOCKE . . . . «.o0v et so e vnrnsvanesns vses sansresss

1-14
15
1-16
1-16
1-17
1-17
1-18

1-19

1-21

2-1

2-2

2-3



FIGURE PAGE

2-9: Streaming/Spooling Unit ........coviviennreeiirenerinenaenaaannns 2-8
2-10: Communication AEnt ... ..ovvureerivrirssasaressssssassasanssssns 2-9
2-11: iWap Ol MK ......onnnnnoessiiieiossiasicinsinesesssvessassne 2-9
212 NIORRagE BERIEE . .. visivusiinenwrivie s b ey caee maw we e v 68 6573 2-10
2-13: Compute and access instruction format ............coiuniiaeinnnnanans 2-11
2-14; iWarp Quad Cell Board ,......cccouemmsensssinnavsessvonversnveie 2-13
2-15: Q00 'Cell CONNPUTRHON «5 .o vanasmesss suvs sownemeanes suee nie ey b 2-14
2.16; iWarp Single CEILBOME. . .. o0 wiii oo sis svis s itin aaiivb s s o0 HEAT G o8 2-14
2=17 Single cEll cOORPUIMIN. . o o553 s i o EemERE W ET TS Hasn Pany 2-15
2-18: Single Board Array with Quad CellBoard ...............covivnnunnnn. 2-16
19 DNRD CaIGE AN . . . .55 v 5o saa suei 5565 0 KeTE Smvs bEws 518
2-20: 4 by 8 array with one external connection .. ...........oouiinunnnnnnans 2-18
22212 IWarp System CabIEL . . .o sannin somm simminaons v LiiF sa3H sa cavs 2-19
3-1: Relationship between iWarp software and hardware architecture ............ 3-1
3-2: IWarp hOStEnVITODIENE - . .....cccvvvvirorvmonoonuesssnstissasssisi 3-3
3-3: iWarp runtime environment SOftWare ............cocvineeeirnnnnrncans 3-7
3-4: Master cell and cell communication configuration ..............c.00ven... 3-9
3<% Using Apply for PROGYIIIMND ..o vioie mioime oinmns s 0 6.6/5.8 FaT 5595 S 000 508 3-13

Prelimi









1 Introducing iWarp

intd
WARP™
Carnegie Mellon

W=

Preliminary






iWarp: System Building Blocks for High Performance
Systems

......................................................................

iWarp is a parallel computer system that supports a broad range of
high-performance computational algorithms including matrix operations and
signal and image processing. The system architecture is modular, using a single
VLSI component plus memory as a building block to support a variety of
connection topologies. Systems are configured as a two-dimensional array of
processors, as in Figure 1-1, with performance that scales from 20 to 20,000
millions of floating-point operations per second (MFLOPS). Each iWarp cell
consists of an iWarp component and its local memory. Cells communicate by
passing messages over the communication channels that connect them, and the
/O capacity for the system scales with the computation power.

Figure 1-1: An example of a two-dimensional iWarp torus array

The Development Partnership

Intel has developed the iWarp system with Carnegie Mellon University under a
four-year cost shared development contract sponsored by the Defense Advanced
Research Projects Agency (DARPA). The iWarp system is a substantial
advancement in high-performance computer technology created through the
partnership of industry, academia, and government. Industry provided VLSI
development and systems and production technology, academia provided

Preliminary 1-1



1-2

The Need

research basis and conceptual insight, and government provided the vision and
support of sponsorship.

The iWarp program is supported under DARPA’s Strategic Computing Program
for the development of programmable systems that use systolic array technology.
The systolic architectural concept is a fine-grain (few calculations per I/O
operation) computational technique pioneered by Professor H.T. Kung and his
students at Carnegie Mellon University. Systolic architectures achieve high
computational efficiency and performance for large arrays of processors and are
particularly well suited to the computational needs of signal, image, and matrix
processing.

Historically, high-performance signal and image processing applications users
have been forced to use special-purpose system designs to obtain the billions of
floating-point operations per second (GFLOPS) performance required. Typical
applications like adaptive beam-forming for sonar, image analysis and
recognition for factory automation systems, and elastic wave equation modeling
for seismic analysis all require performance in the 1-10 GFLOPS range.

Though special-purpose systems can effectively meet specific requirements for a
particular application, they are generally not adaptable to other needs. Fielded
systems can be obsolete by the time they reach operational status. More
important, in today s rapidly changing, complex environment, these systems must
often be adaptable to both dynamic operational needs and changing

requirements,

In applications with lower performance requirements, the use of commercial
VLSI microcomputer components has been a real benefit. This benefit is derived
from the maturity of the technology, the economies gained by large-scale,
cost-sensitive manufacturing, and the extensive software support that comes from
a broad base of users. Further, these systems also benefit from the evolutionary
enhancements of market-driven microprocessor technology. System
enhancements and upgrades can often be accomplished with simple board
replacements.

A similar infrastructure is provided by the iWarp VLSI component for
high-performance systems. Signal and image processing applications are most
dramatically benefited.

iWarp meets these needs with the following capabilities:
Communication level
* high communication performance and I/O capability

iWarp communication capability scales with increasing computational
power to meet the needs of I/O intensive applications.

Preliminary



low overhead,course-grain, message-based, communication

iWarp's cut-through and worm-hole routing mechanisms provide
efficient point-to-point data message delivery to any destination in the
array without intervention by intermediate processing elements.

multiple logical connections on each physical I/0 bus

A number of logical connections can be maintained on each physical bus
connecting two iWarp cells. This substantially expands the set of
intercell communication models that an iWarp array can support.

low overhead, fine-grain systolic communication

iWarp is the first commercial processor to support fine-grain systolic
communication. By using data directly from the communication
pathway, computational algorithms avoid memory bottlenecks, latency is
reduced, and large parallel systems perform closer to peak performance
expectations.

support for multi-functional systems

iWarp's combination of fine-grain systolic and coarse-grain
message-based communication allow the array to be divided into
independent functional sub-arrays that interact asynchronously for
applications with high complexity.

— Computation level

high computational power at low cost

iWarp computational power scales to 20 GFLOPS, and high capacity
VLSI production technology brings new economics to high performance
computing.

high computational density

iWarp supports a computational density of 1 to 3 GFLOPS per cubic
foot, opening up general purpose functionality to application-specific
systems.

low latency, high performance scalar computations

iWarp floating-point arithmetic elements in each processor optimize
scalar performance by executing a complete arithmetic operation in a
single instruction. The single-cycle long instruction word architecture
allows iWarp to achieve high performance without vectorization.

System level

modularity

iWarp’s single component requires only memory chips to form a
complete processing element that can be combined to form a variety of
general-purpose processor arrays of various sizes. System building
blocks provide flexibility for rapid prototyping and feasibility
demonstration.

Preliminary



* broad applicability and flexibility

iWarp's balance between low-latency communication and high-speed
computational performance gives it applicability over a broad range of
computational algorithms. These features also provide the architectural
basis for optimized compilers and development tools for array-level

programming,.
¢ high-level programming environment

iWarp provides a high-level programming environment using C and
FORTRAN languages, with parallel application development tools to
speed development and minimize life cycle support and maintenance
COSsts.

¢ immunity to fault and failure

iWarp's on-chip error detection and reporting, logical connections, and
source-routed communication allows isolation of faults and supports the
development of reconfigurable systems with fault tolerance and graceful
degradation properties.

Computation and Communication Requirements

----------------------------------------------------------------------

Signal and image processing algorithms are characterized by relatively few —
computations per data element, as compared with scientific algorithms. This

relationship is illustrated in Figure 1-2, where the number of arithmetic

calculations per data element is compared to data base sizes for business

applications, signal and image processing applications, and scientific

applications.

1-4 Preliminary



10G

1G

100M

10M

M

Data base size

100K

10K

1K

1 10 100 1K 10K 100K
Calculations per data element

Figure 1-2: Applications with different computation and communication
requirements

Comparing Requirements

The number of calculations per data element is a primary design issue that
impacts the architecture of all computer systems. For instance, business
applications, like transaction processing, perform relatively little computation but
are dominated by I/O operations. Systems must support a large number of /O
channels with many peripheral devices. Thus, the principal design goals are
maximizing I/O capacity and providing the ability to handle many independent
tasks.

Conversely, scientific applications, particularly those of the supercomputer class,
require thousands of calculations per data element. Additionally, the number of
calculations per data element increases rapidly with the size of the problem. For
example, there is a 30-fold increase in the number of calculations per data
element between an order 32 Gaussian Elimination problem containing 1024
data elements and an order 1000 problem (one million data elements).
Architectures for scientific computers are, therefore, focused on raw
computational performance and memory capacity. The highest level of
performance and greatest efficiency are obtained when the entire problem is
resident, and the machine can operate for hours or days until the problem is
completed.

Signal and image processing systems differ in that a typical algorithm requires
only 10 to 100 calculations per data element. The calculations per data element

Preliminary



remain nearly constant with the size of the problem. For example, a 1024-point
complex Fast Fourier Transform (FFT) requires only about 20 calculations per
data element. An increase in problem size by three orders of magnitude to a one
million-point complex FFT only doubles the required number of calculations per
data element to 40. This low reuse of data for signal and image processing
systems dictates that scalable systems must be capable of matching increases in
compute power with corresponding increases in I/O capacity. High performance
computing must be supported by a corresponding I/O capacity with the external
environment.

Typical signal processing applications require I/O performance that exceeds by
several orders of magnitude the requirements of scientific machines having
similar performance. This need is coupled with the additional real-time
interactive requirements of many signal processing applications. These
requirements amplify the importance of I/O architecture to signal and image
processing systems.

iWarp systems meet these needs by supporting an I/O performance of 320
MBytes/s between two iWarp cells. For interfacing with the outside world, an
iWarp array can have a number of 40 MBytes/s external I/O interfaces.

Communication Needs

iWarp supports both the coarse-grain message-based communication model of
traditional parallel systems and a new fine-grain systolic communication model
that is particularly well suited to high performance signal and image processing
applications. The systolic model allows the computational element of each
processor to use data directly from any of the four communication pathways
without sacrificing memory access bandwidth. The term systolic illustrates the
concept that data from external sensors can flow, or be pumped, through the
array of processors as it is used simultaneously in cell computations.

The coexistence of these two forms of communication is essential for building
efficient and flexible high-performance real-time systems. The coarse-grain
message-based communication provides the means for interaction between
independent heterogeneous tasks and cooperating elements in practical systems.
The fine-grain systolic model provides the most efficient use of system resources
for tightly coupled compute-intensive tasks.

Application Examples

......................................................................

iWarp's ability to simultaneously handle fine-grain and coarse-grain
communication is fundamental for supporting a broad application base and for
achieving high utilization from the cells in an iWarp array. The sections that
follow illustrate these concepts.

Preliminary



A Sonar Example

A simple sonar application illustrates the benefits of iWarp fine-grain and
coarse-grain communication models. Figure 1-3 shows a functional breakdown
of the example.

i

signal

sensor conditioning

inputs

analysis

console

Figure 1-3: Sonar application

The processing task divides into several functional blocks that are performed in a
multi-function pipelined fashion. The sensor inputs are signals that might be
derived from an array of hydrophones being towed behind a ship. For the first
stage of processing, these signals are filtered and digitized by the signal
conditioning section of the system and sent to the beam-forming section.

The beam-forming section can use a variety of computational algorithms for
forming steerable acoustic monitoring beams. Sophisticated techniques can
account for the changing shape of the array as the ship maneuvers and adapt to
the noise environment by nulling out undesired signals while enhancing other
regions of interest. These techniques depend heavily on matrix linear algebra
using QR decomposition and singular value decomposition as the basic
computational algorithms.

The output of the beam-forming section is passed to the spectral analysis section.
This section computes a spectrum for each of the beams. The rotating machinery
of ships, submarines, and other marine devices produces acoustic energy that has
characteristic spectral patterns, which help to detect and identify the source.
Typically, the FFT and related signal processing algorithms are the core functions
for this task.

The spectral output then passes to the signal analysis section where analysis of
the spectral data is performed. Detection of a suspect event can be used to alert
an operator or generate control functions that change the operational parameters
for the other sections of the processor. For example, detection of energy in a

Preliminary



specific area of interest might trigger a high resolution mode for the spectral
analysis section so the structure of the signal can be more accurately evaluated.
Additionally, it could direct the beam-former to lay a tight beam on the region of
interest for improved noise immunity. Computational requirements vary
depending on operational mode and signals being analyzed. The ability to
dynamically adapt computational resources to operational needs is a fundamental
need of modern systems.

Implementing the Sonar Application on an iWarp Array

In conventional systems, each of the functional elements of Figure 1-3 is
implemented as a separate hardware element. This configuration constrains the
adaptability of the system for new operational scenarios, new algorithms, and
processing requirements. In an iWarp array, the mapping of the functional
elements is configured as illustrated in Figure 1-4.

o oy 4 Operator control
3 o uoz

beam—former ": :
data G :6-.{.-'c
- spectral
: data
data flow > e control wf»

Figure 1-4: Sonar application on a 16-cell iWarp array

Synergy between Communication Models

Processors in each of the functional groups use fine-grain systolic
communication to achieve the greatest efficiency and performance for the
computational task. Processors, in effect, work together as a single
high-performance functional element. Data and control signals that pass between
the functional elements use coarse-grain message-based communication. This
loosely coupled, asynchronous form of communication allows each functional
element of the array to work independently of other functional elements and still
interact in a timely fashion required for real-time applications.

Preliminary



Fine-Grain Systolic Communication

To illustrate the benefits of fine-grain systolic communication, consider the
matrix multiply example of Figure 1-5. Two matrices, A and B, are multiplied to
form the matrix C. The familiar dot product method is used, which requires that
we take the dot product of each row of A against each column of B. The entire
calculation requires #° multiply-accumulate operations.

AxB=C

n
Where Cjj =£ ajp x bkj
k=1

o' R |
| ajj— a !’E f— ah‘ll X
‘ ] =
Rows of A Columns of B distributed in focal memory Results of C

sent systolicly ; | ; recelvejrstohcly

Figure 1-5: Matrix multiply example

Consider a linear array of n iWarp cells into which the n columns of matrix B are
distributed so that each cell has a column of B. Since each row of matrix A is
applied against each column of B, we can pass each row of A down the array and
perform the corresponding dot product operation as elements flow past the cells.
Thus, each cell j performs the computation, aj x by + cjj, as each ay value
flows through the array. The first result, ¢;;, is complete and can flow out of the
array when the dot product between a;, and b,; has completed in cell 1. Other
results of matrix C are completed in turn as the rows of A proceed through the
iWarp array.

Performance Analysis

As a general rule, parallel algorithms go through a three stage process of
initialization, computation, and cleanup. The initialization process distributes
data to processors and gets the computation going. The computation stage occurs
when all processors are involved in the process and the peak performance of the
system is achieved. The clean-up stage completes the computational process and
collects the results at the final destination.

Systolic architectures have a performance advantage over other parallel
architectures because the initialization and clean up stages occur as fast as data

Preliminary



1-10

can flow through the network of processors. This process can be illustrated by
viewing performance of the matrix multiply application as a function of time, as
in Figure 1-6.

Performance
| |
| |
I |
| |
T 1 : 1 & Time
| | | |
a1 a1 a nn @ nn
cell1 cell n cell1 cell n
C11 out €44 out

Figure 1-6: Time line of performance peak in matrix multiply example

The computation starts when a,; reaches cell 1. The initialization phase is
complete as soon as aj; completes its path through the array and reaches cell n.
At this point, all cells are fully involved in the calculation, and the first result, c,;,
is complete. The iWarp array runs at full performance until a,, reaches cell 1.
Then the clean-up phase begins. As a,, continues down the array, each cell in
turn completes its computation, and the performance drops as these cells send out
their results and become idle.

Advantages of the Systolic Model

The matrix multiply example illustrates another benefit of systolic computing
overcoming memory bottlenecks of Von Neumann and Harvard architectures.
iWarp addresses these limitations by augmenting memory bandwidth with
comparable I/O bandwidth to sustain peak performance of arithmetic elements.
The benefits are twofold. First, operands used in common by all cells are
broadcast over the I/O path as was done for the rows of matrix A. Second, more
effective use is made of memory because intermediate storage accesses are
avoided. Using matrix A directly from the communication pathway avoids four
memory accesses that would be required by conventional memory-to-memory
message-passing techniques.

Preliminary



Fundamental iWarp Concepts

......................................................................

The following concepts are central to the iWarp system design:

® Integrated communication and computation elements for minimizing
communication latency, maximizing communication bandwidth, and
maximizing computational performance.

* Balanced ratio between communication and computation for supporting
fine-grain systolic computation models.

¢ [ndependent communication and computation elements for supporting
coarse-grain heterogeneous computation models.

e Scalar computational capability to minimize latency, improve the
efficiency of compiled code, and broaden the base for supported
applications without impacting vector performance.

Integrated Communication and Computation

The iWarp architecture supports tightly coupled integrated communication and
computation elements that provide high-level hardware support for low-latency
and high bandwidth sophisticated communications operations. Examples of
these operations include word level, intercell, flow control synchronization,
automatic spooling and streaming of message data, buffer management, and
logical connections that interleave multiple message streams over the finite
physical buses.

Balanced Communication to Computation

iWarp supports the one-to-one communication to computation ratio that is an
essential element of fine-grain systolic computing concepts. During a single
floating-point multiply-add cycle, two operands can be used from the
communication pathways, and two operands can be sent to other cells. This
capability broadens the range of algorithms and applications that can benefit from
iWarp technology by supporting algorithms that require very few computations
per data element. Additionally, the systolic computation model provides near
linear speedup for scalable systems, to the limit of the parallelism in the
application, by making more effective use of memory bandwidth and I/O
capacity.

Independent Communication and Computation Elements

Independent communication and computation elements provide support for
heterogeneous computation models. This ability allows individual processors or
groups of processors to communicate asynchronously and supports transparent

Prelimi



overlapping of computation with communication in hardware. Practical
applications require a combination of communication capability: fine-grain for
high performance and efficiency, and coarse-grain for interaction between
loosely coupled processes and external events.

Scalar and Vector Performance

A design goal for iWarp was to reduce latency at all levels of the cell
architecture. For the arithmetic elements of the processor, this goal resulted in
exceptional scalar performance while maintaining excellent vector performance.
The benefit was greater computational efficiency from high-level language
compilers and broader applicability of iWarp in a wide range of algorithms and
applications. Reduced latency also yields benefits in the handling of exception
conditions and external events. In a tightly coupled parallel system, large delays
in one processor caused by an exception condition can affect all other processors
in the array.

iWarp Architecture Overview

......................................................................

Let us consider how these features are reflected in the iWarp communication
architecture. An iWarp system is made up of an array of iWarp cells connected
by communication pathways. Each iWarp cell consists of an iWarp component
plus memory. As shown in Figure 1-7, the iWarp component contains
independent communication and computation agents. Closely coupled yet
independently controlled agents make it possible to efficiently overlap
communication and computation, and provide greater efficiency for random
communication. Nonadjacent cells in the array communicate without disturbing
the computation on intermediate cells.

Preliminary



iWarp array
iWarp cell

Cell Cell Cell

2]
2]

ell § | Cell § | Cell

Cell § | Cell ff | Cell

Cella Cell CeIIE

L2]e

|Communication}
Agent _

Figure 1-7: iWarp system architecture

The use of source cell routing and logical connection mechanisms provides the
capability of reconfiguring the array for fault tolerance and graceful degradation
on complex systems. Dead or suspect cell segments can be routed around, and
tasks can be redistributed to meet the needs of demanding operational scenarios.

As shown in Figure 1-8, each iWarp cell supports four full duplex I/O channels.
Each /O channel is labelled with a unique name XLeft, YUp, XRight, or
YDown. Each channel input or output bus has a sustained performance of 40
MBytes/s. This configuration gives a combined input data bandwidth of 160
MBytes/s plus an output bandwidth of 160 MBytes/s per iWarp cell. The
Computation Agent can use half of this bandwidth, 80 MBytes input and 80
MBytes output, while sustaining a similar 160 MBytes/s data I/O capacity with
local memory.

Prelimi



1-14

- - | iWarp Component
Agent
20 MFLOPS
and 20 MIPS

40 MBytes/ sec
Bus
XLeft : XRight
Communication
YUp Agent YDown

Figure 1-8: iWarp cell I/O capacity

Each cell has a peak performance of 20 MFLOPS for 32-bit single precision and,
10 MFLOPS for 64-bit double precision. The iWarp component contains
600,000 transistors on a 540 mil square die and is packaged in a 280-pin, pin grid
array (PGA) package. The component and its local memory (typically 18 static
RAM components) take up the space of a 3"x5” index card (7.6 cm x 12.7 cm),
approximately 15 square inches (96 square cm) of circuit board space.

iWarp Communication and Computation Models

Figure 1-9 shows the primary functional elements of the iWarp component
architecture. The computation engine performs the computation and control
tasks and is essentially serviced by the other functional elements. The
communication pathway provides the interface to other cells in the array and
handles message traffic between cells. The memory interface and
spooler/streamer elements provide the interface between memory and both the
computation engine and communication pathway. The XL channel of a cell’s
Communication Agent connects to the XR channel of a neighboring cell and
vice versa. YU and YD connections are used in the same way.

Preliminary



memory port

memory interface computation
spooler and streamer engine

XL = XR

communication pathway

YU = YD

Figure 1-9: Data pathways

These functional units work together to perform a variety of sophisticated
communication/computation functions that are classified as follows:

Express messages - Messages that route directly through a cell.

Systolic computation - Computation uses operands directly off the
pathway.

Spooling - DMA between memory and pathway.
Streaming - Buffering systolic data through memory.

Memory-to-memory message passing - Standard message-based
communication.

Memory-based computation - Conventional method of computation
with operands in memory.

Figure 1-9a illustrates the movement of messages that are not intended for the
current cell and pass through unhindered. The cell pathway hardware

automatically expresses them through the communication pathway and on to an

adjacent cell. Routing information provided at the message level supports
comer-turning or transfer of the message from an X connectiontoa 'Y
connection, in effect, a ninety-degree turn.

Preliminary



a. Express messages

Figures 1-9 a and b : Express messages and systolic computation

Figure 1-9b illustrates the movement of data for systolic computation. Data is
taken by the computation engine directly off the pathway, used by the
computational task, and results sent back on the pathway to another processor in
the array.

Figure 1-9¢ illustrates a variation on systolic computing that supports buffering
messages in memory. If the computation engine is busy, and a systolic message
is received, the spooler can perform a DMA transfer of the data directly into a
preassigned buffer in memory, holding it until the processor is available to
respond. The data is then streamed out of memory and presented to the processor
by the streamer as if it had been received over the communication pathway. This
feature ensures consistency in software, even though the data has been treated
differently in hardware.

b M

MI Mi

c. Spooling and streaming  d. Memory-to-memory messages

Figures 1-9 ¢ and d: Spooling and streaming and memory-to-memory messages

Figure 1-9d indicates the movement of data for standard memory-to-memory
message passing. In this case, the received message automatically goes into
memory to be used by the processor at a later time, and messages sent from
memory are spooled out in a like manner. The cell runtime system software
supports spooling directly between process data spaces without using
intermediate buffering.

Preliminary



Figure 1-9e shows standard memory-based computation. A combination of
communication activity is shown in Figure 1-9f. Express operations,
memory-to-memory message passing, spooling, memory access, systolic, and so
on, are all shown. Note that iWarp component hardware supports all of these
communication/computation models simultaneously.

'} M [ M

MI CE

CP

e. Memory computation f. Combination

Figures 1-9 e and f: Memory compulation and combination

Logical Connections

The physical buses that connect iWarp cells are time multiplexed into logical
buses that allow several connections to share the same physical pathway. This
division improves the use of physical buses, avoids deadlock, and minimizes data
starvation problems for unbalanced tasks. As shown in Figure 1-10, logical
buses can be viewed as a 20 x 20 crossbar. Logical buses are statically allocated
to physical buses under software control. In both Figures 1-10 and 1-11,

logical buses have been evenly distributed among the four physical channels and
the Computation Agent. Different logical-to-physical mappings can be supported
according to the application requirements.

Computation
- and memory
—a Cell Cell
L3 % Communication Agent
=] cei Cell t c?{ 20x20 logical crossbar

Hiy THH

Cell

R

it
=

Figure 1-10: Physical and logical buses

Preliminary



Figure 1-11 illustrates the use of logical connections for an isolated segment of a
two-dimensional iWarp array. Note the sharing of the physical bus between cells
3 and 4 using two independent logical connections. Logical connections share
the physical communication path in a time multiplexing manner. Priority is given
on a round-robin word-level basis, taking into account active logical buses only.
Physical bus bandwidth is not consumed by idle logical buses.

Figure 1-11: Logical buses support sharing of physical resources

iWarp Systems

iWarp systems can be configured in a linear array or in a two-dimensional array
with a mesh or torus topology. Each iWarp cell consists of an iWarp component
plus memory. External I/O interfaces to iWarp cells can be provided by
implementing a dual-ported memory block within the memory space of a cell.
The external interface accesses one port of the dual-port memory, and the iWarp
cell accesses the other.

Figure 1-12 illustrates this approach. In this model, interfaces are connected
using iWarp cells on the loop-around connections. iWarp interface cells are
contained in the host interface, the file server interface, and the video interface.
The system is configured using Quad Cell Boards for the main processing array.
Single Cell Boards, with their large memory capacity, are used for staging data

Preliminary



between external interfaces. Network access is provided to multiple users via the
host local area network. Both Quad Cell Boards and Single Cell Boards are

C)

‘\ discussed in Chapter 2.
S -
e T |
N
..i 'i‘n!i' ;ll;-l; ;ll;' ;l';l;' g g "‘l!""l!"
L n | | | ] | | | =4
" 1 1 1Y ¥AY ¥ATF T
= - .---'&':-'t':&"rt':&'a't':'a't':'-.-'t':'-.l-
_I -‘-ﬂ l‘-‘.‘-‘l l‘.’.‘.’! l‘.'.‘l F. .H F-".ﬂ l‘.".‘l
| or rnx riy ¥HY TAT FHE TF
-.-..ll‘l_..l‘l-...‘.‘l‘. l!- .EI&I‘.EI!!.-
[ ima k| igi ] L J L
¥
g | Fie 9 iWarp Array
Scecr;:sr — wo%onﬁ:eﬂlgps
120 MBytes (30 Mwords)
Figure 1-12: iWarp system configuration concept
Configurations

Configurable iWarp systems and system building blocks can be used for
applications research, system development, and rapid prototyping. These
systems provide a wide range of configuration options, using boards, Cardcage
Assemblies, and System Cabinets, as shown in Figure 1-13. Quad Cell Boards
support four iWarp cells with .5 to 1.5 MBytes of memory per cell, and Single
Cell Boards support 6 MBytes of memory per cell . Boards can be used in
custom systems or configured in the standard iWarp Cardcage Assembly.

Cardcage Assemblies are self-contained chassis, including a power supply, fans
and a clock distribution board. Using the loop-around cables and interconnects, a
wide range of system configurations are supported. System enclosures are 19-
inch RETMA racks. iWarp configured systems comply with UL, FCC, VDE,
CSA, IEC, and GS regulations for safety and emissions.

Preliminary



FULLY CONFIGURED SYSTEMS

1 to 4 Card Cage Asm. per Cabinet
SINGLE CELL 1 to 4 Cabinets per System
BOARD 64 to 1024 Cells
8MBI/Cell 1,280 to 20,480 MFLOPS
QUAD CELL
BOARD
1.5 MB/Cell
QUAD CELL |,
BOARD i
S5MB/Cell |}
J CARD CAGE ASSEMBLIES
16 Boards
16 to 64 Cells
320 to 1,280 MFLOPS
Figure 1-13: iWarp system building blocks
Single Board Array

A Single Board Array is provided for Sun workstations. This system provides an
effective development environment for use throughout a development group or as
an application accelerator for dedicated systems, as shown in Figure 1-14.

iWarp Single Cell and Quad Cell Boards are supported in Single Board Array
systems. Each Single Board Array supports one or four iWarp cells configured as
a linear or 2x2 array, respectively. Up to eight boards can be configured in a
32-cell array within a workstation.

1-20 Preliminary



5=
Q
I

SINGLE BOARD ARRAY

4 Cells, .5 or 1.0 MB/Cell

1 to 8 Boards per Workstation
80 to 640 MFLOPS

iWarp arrays of 4-16 cells plus host interface
are supported in a single SUN workstation.

Figure 1-14: iWarp Single Board Arrays and development systems

The Significance of iWarp

......................................................................

iWarp represents a major step forward in high-performance computer
architectures and will have its greatest impact on the broad base of signal and
image processing applications. For these applications, performance beyond the
GFLOPS plus range has historically been accomplished only through
special-purpose systems. iWarp provides for the first time a programmable
system architecture that can be configured to meet both the computational needs
and the I/O needs of these signal and image processing applications. iWarp’s
building block approach to construct very reprogrammable, high-performance,
general-purpose systems, as well as special-purpose systems introduces a new era
in parallel computing technology.

Preliminary 1-21






2 iWarp Hardware

System

Board
Component

Cardcage

Preliminary






The iWarp Component

......................................................................

The iWarp component is the basic building block of the iWarp system. Each
iWarp component is a complete computer that includes I/O interfaces to connect
many devices in a large array of processors. The iWarp component, combined
with local memory, forms the iWarp cell, as shown in Figure 2-1.

A - Address

D - Data

C - Control
XLeftin XRight out
Xieftout €——  jwarp XRight in

Component

YUpin ——Pp YDown out
YUp out 4'_ YDown in

Figure 2-1: iWarp cell

The initial iWarp component package is a pin-grid array.

Component Architecture

The iWarp component architecture is divided into a Computation Agent and a
Communication Agent. The Computation Agent and the Communication Agent
function independently, so the processor does not have to participate in the
communication process. This allows the communication activities of a cell to
proceed without disturbing computation. Figure 2-2 shows a block diagram of
the iWarp component architecture.

Preliminary

2-1



Computation Agent

Program
Sto?g Unit
(PSU)

ROM and cache

Integer
Logic Unit

(ILU)

Register

File Unit

(RFU)

Streaming/
Spooling Unit
(SSU)

Floating-point
Unit (FPU

Communication Agent |

£
I

5

Pathway Buffers
and Control

Communication Agent (CA)




Computation Agent

The Computation Agent executes an individual cell’s portion of an algorithm that
has been distributed over an iWarp array of cells. The Computation Agent
consists of the following functional units:

* Register File Unit

e Local Memory Unit

¢ [nstruction Sequencing Unit
® Program Store Unit

¢ Integer Logic Unit

* Floating-point Unit

e Streaming/Spooling Unit

Register File Unit

Figure 2-3: Register File Unit

The 15-port Register File is the central element of the iWarp component
architecture, routing data between functional units. The Register File is a
general-purpose, multi-ported shared RAM containing 128 32-bit locations.
Register File access is by bytes, half-words, words, or double words, depending
on the instruction used.

The Register File Unit supports nine read and six write operations in a single
50ns clock cycle. The Register File has nine standard ports, three each to the
Integer Logic Unit, the Floating-point Adder, and the Floating-point Multiplier.
The Register File also has two local memory ports and four special-purpose
ports, or gates, that allow data from memory or the pathway to be placed in

Preliminary 2-3



2-4

predetermined locations in the Register File. This process of using a
programmable gate to access the communication pathways is called streaming
and is discussed further in the description of the Streaming/Spooling Unit.

Local Memory Unit

Figure 2-4: Local Memory Unit

The Local Memory Unit provides the interface between the iWarp component
and its local memory. The local memory contains both data and instructions, so
the Local Memory Unit provides a direct interface to both the Register File Unit
and the instruction cache in the Program Store Unit.

Local memory has two separate buses to maximize performance: a 24-bit address
bus and a 64-bit data bus. Local memory can support up to 64 Mbytes in RAM
and ROM and provides 20 MHz performance with up to 20 million memory
accesses per second.



Program Store Unit

Figure 2-5: Program Store Unit

The Program Store Unit fetches instructions from Local Memory, stores them in
an instruction cache, and provides them to the Instruction Sequencing Unit. The
Program Store Unit contains a 1 Kbyte instruction cache and an 8 Kbyte
instruction ROM.

The instruction cache is divided into four sectors, with each sector containing
four 64-byte blocks. The mapping of sectors is fully associative, but blocks
within a sector contain contiguous addresses. Management of the instruction
cache is transparent once it is initialized.

The instruction ROM is divided into eight 1 Kbyte sections. The ROM contains
initialization and start-up programs, as well as system routines.

2-5



2-6

Instruction Sequencing Unit

Figure 2-6: Instruction Sequencing Unit

The Instruction Sequencing Unit controls the flow of program execution by
decoding all instructions, producing and distributing control signals to other
functional units, evaluating their responses, and scheduling execution. The
Instruction Sequencing Unit receives instructions from the Program Store Unit.

Integer Logic Unit

Figure 2-7: Integer Logic Unit

The Integer Logic Unit is a full 32-bit processor, providing integer arithmetic and
logical operations on 8, 16, and 32-bit data, and generating addresses for data
access to local memory. The Integer Logic Unit runs at 20 million instructions ~—

Preliminary



per second (MIPS). In a single 50-nanosecond instruction cycle, the Integer
Logic Unit accesses two operands, performs a computation, and writes the result
back into the Register File Unit. The long instruction word architecture of the
iWarp processor allows the Integer Logic Unit to operate in parallel with the
Floating-point Unit, generating a peak computing rate of 20 MFLOPS and 20
MIPS for the iWarp cell.

Floating-point Unit

Figure 2-8: Floating-point Unit

The Floating-point Unit contains a non—pipelined Floating-point Adder and
Floating-point Multiplier. The Floating-point Adder and Multiplier each provide
a peak performance of 10 MFLOPS on 32-bit operations and 5 MFLOPS on
64-bit operations. The Adder and Multiplier run on a two-clock instruction
cycle, each producing a result every 100 nanoseconds. In this time, the Adder
and Multiplier can each access two operands from the Register File Unit, perform
a computation, and write the result back to the Register File Unit. Double
precision operations require a four-clock (200 ns) instruction cycle. The
Floating-point Unit also contains bypass paths, so the result of a computation can
be used as an operand in the next instruction, eliminating the need for an
intermediate store and read of the result.

Preliminary



Streaming/Spooling Unit

Figure 2-9: Streaming/Spooling Unit

The Streaming/Spooling Unit is a sophisticated DMA controller that spools data
from the Communication Agent to memory and streams data from memory to the
computation units through the stream gates of the Register File Unit. If the
processor is busy and it receives a message, the Streaming/Spooling Unit can
direct the data into a preassigned buffer in memory, holding it until the processor
is available. When the processor becomes available, the data streams out of
memory to the processor.

By removing blocked messages from the pathways and allowing unblocked
messages behind them to proceed, spooling helps to relieve pathway congestion
and improve overall performance.

Preliminary



Communication Agent

T
Communicstion AME

Figure 2-10: Communication Agent

The Communication Agent provides communication between cells in an iWarp
array by controlling the transfer of data over the physical links between cells.
Each cell in an iWarp array connects to its neighbors through four physical links,
as shown in Figure 2-11.

1-dimensional array

2-dimensional array

Figure 2-11: iWarp cell links

Preliminary 2-9



2-10

Each of the physical links has two unidirectional buses, one to transmit data and
the other to receive data. Data is transmitted between cells in units called
messages. Each message contains a header that has address and control
information for that message. Bits 0-19 of the header contain the destination
address for the message, and bits 20-23 contain control information. Figure 2-12
illustrates a message header.

e e e o I I |
31 23 2019 0
N N /

— Address

Control

Figure 2-12: Message header

If an incoming message is addressed for the local cell, the Communication Agent
delivers the message to the proper destination. If the message is addressed for
another cell, the Communication Agent routes the message through to the next
cell.

In a two-dimensional array, it may be necessary for a message to change from an
XtoaY, orfromaY toan X direction. If a change in direction is required, the
appropriate control bit in the message header is set, and the Communication
Agent performs the corner-turning operation that allows a message to change
direction.

Instruction Formats

For greater flexibility and efficiency in controlling the functional units of the
iWarp component, there are two iWarp instruction formats: a 96-bit compute and
access instruction format, and a 32-bit general-purpose instruction format. The
96-bit instruction format includes all frequently used operations, while the 32-bit
instruction format constitutes a general-purpose RISC instruction set.

The compute and access instruction has the benefits of a long instruction word
architecture, which allows multiple operations in parallel. This instruction can
perform floating-point add, floating-point multiply, two memory address
computations and memory access operations, plus loop decrement and branch
evaluation in two 50 ns clock cycles for single precision data.

Both the floating-point add and floating-point multiply operations support 7-bit
fields for their source and destination operands, allowing random access to any
location in the Register File Unit. Reserved register locations in the Register File
Unit provide high efficiency access to the pathways.

Word three of the 96-bit instruction can specify either a 32-bit general-purpose
instruction or two memory operations. The 32-bit instruction option is useful

Preliminary



when a general-purpose operation is needed during a compute and access cycle.
Figure 2-13 illustrates the compute and access instruction format.

Word 1

<2)- <4)- <4 - «7)- (7>
Jl11] DataMode FADD B operandreg | A operandreg | K operand reg |
Word 2

9)- -2)- 7y -7 -(7)-
L__MemorvConrol | FMUL | Moperandreg | Noperandreg | R operandreg |

Word 3 (Option 1)

«16)- -(16)-
Operand for 1st Read Access Opumdfmhdmm.&m
Word 3 (Option 2)
32)-
General-purpose Instruction

Figure 2-13: Compute and access instruction format

The general-purpose instruction format supports general control functions such
as timer operations, pathway control, and event handling flow control.

The floating-point adder supports operations in hardware, including add, subtract,
compare, maximum, minimum, and binary log. Similarly, the floating-point
multiplier supports multiply, divide, square root, and remainder in hardware. The
general-purpose instruction format also supports data conversion operations and

a full range of logical operations. This format also supports byte, half-word
(16-bit), full-word, and double-word memory operations, as well as automatic
read-modify-write in hardware for byte and half-word operations. Table 2-1
summarizes the general-purpose instruction format functions.

Preliminary 2-11



Table 2-1: general-purpose Instruction Summary

FUNCTION OPERATIONS
timer operation _event control i
General Control pointer control spool request
pathway control execute instruction
call return
Flow Control push break
pop enter loop
branch stack control
Extended Flow Control absolute call/branch
indirect call/branch
add binary log
Floating-point Operations | subtract multiply
compare divide
maximum square root
minimum remainder

Data Conversion Operations

integer to floating-point
floating-point to integer

logical rotate
Integer/Logical Operations | arithmetic find MSB
bit
Memory Access Operations | byte full-word
half-word double-word

The iWarp Boards

......................................................................

There are two types of iWarp cell boards, the Quad Cell Board and the Single
Cell Board. As their names imply, the Quad Cell Board contains four iWarp
cells, and the Single Cell Board contains one iWarp cell. Each cell on an iWarp
board consists of an iWarp component and its associated local memory. Both the
Quad and Single Cell Boards are approximately 9 by 11 inches, and they operate
at a minimum clock rate of 40 MHz, or 20 MFLOPS per cell.

Each cell on the Quad and Single Cell Boards controls three LEDs mounted on
its front panel. Two of the LEDs indicate cell status, and the third indicates an
error condition. The boards also contain clock circuitry that synchronizes cells to
within 5ns of each other in a Cardcage Assembly and within 25ns across multiple

Cardcage Assemblies.

Preliminary



In addition to the Quad and Single Cell Boards, iWarp offers a Single Board
Array that plugs directly into a Sun 3 or Sun 4 system. The Single Board Array
is a Quad or Single Cell Board combined with a Sun interface board to form a
complete iWarp array. The Single Board Array is approximately 14 by 14 inches
for direct fit into the Sun workstation.

Quad Cell Board

The Quad Cell Board contains four iWarp components and four banks of local
memory. Figure 2-14 shows the physical layout of the Quad Cell Board.

o
-]

= OR0D
e == S
Connector df =| (B9 =]l =] Connector
]l = 0l =
=] = 0l |5 ,
= - [ | I iWarp
Status == = Component
LEDs ato =1=l={
+] ]
oo [ P
D O |5 gl |5
A== |l =
={@= =| |E=%~ Memory
=] W= al |15 Bank
=1l = = |5 | | (18 SRAMS)
P=ili= -l =
=]l = =]l =]
LOUB a-e, L

Figure 2-14: iWarp Quad Cell Board

The systolic pathways that extend off the Quad Cell Board are connected directly
from the appropriate cell to a board edge connector. Each pathway coming off
the board is capable of sustaining transfer rates of 80 Mbytes/s (40 MBytes/s in
each direction). Figure 2-15 shows the pathway configuration for the Quad Cell
Board.

Preliminary

2-13



YD YD

YU | vu

YD YD

Figure 2-15: Quad cell configuration
Single Cell Board

The Single Cell Board contains a single iWarp component and four banks of local
memory. Figure 2-16 shows the physical layout of the Single Cell Board.

Memory
Expansion
Connector
N\

- = 480 Pin
i1 1] = 1 Connector
Gal | =1 1B
) 1B T —
={ll= [ O
B3l 1B =11 T
52 B|IS

Status

LED oD—El = JI:IO
) e PO - g
== ==
e O =
i ) O () i [ -
] = [ \“\ Memory
=lll= =lll= Bank
=1ll= IDLEI (18 SRAMS)
= e = I:I,T

iWarp
Component

Figure 2-16: iWarp Single Cell Board

2-14 Preliminary



As with the Quad Cell Board, the pathways that extend off the Single Cell Board
are connected directly from the appropriate cell to a board edge connector. Each
pathway coming off the board can sustain transfer rates of 80 MBytes/s (40
MBytes/s in each direction). Figure 2-17 shows the pathway configuration for

the Single Cell Board.
2YU 1 éu
YU
1xL<¢ XL xnh—bmn
YD
oxL4 P 2XR
v v
2YD 1YD

Figure 2-17: Single cell configuration

The pathways that are not connected to another cell are bypass connections that
directly connect 2XL to 2XR and 2YU to 2YD on the board.

Single Board Array

The Single Board Array is a Single or Quad Cell Board combined with a Sun
interface board to form a complete iWarp array. The Single Board Array plugs
directly into a Sun 3 or Sun 4 system, providing a dedicated program
development environment or a network performance accelerator. Up to eight
Single Board Arrays can be connected in a single workstation to form a 32-cell, 2
by 16 array. Figure 2-18 shows the physical layout of a Single Board Array with
a Quad Cell Board.

Preliminary 2-15



2-16

Sun Interface Board

L

1
0
}._.

1|

|
000000000 0DDoooooo

uoo
J

000000000 0DDD00000
]

000000000

00000000

— ——{ 1 ]
0oooooood
. 00000000

Quad Cell Board

Figure 2-18: Single Board Array with Quad Cell Board

Local Memory

Each iWarp board contains four banks of local memory. On the Single Cell
Board, the single component has access to all four banks. On the Quad Cell
Board, each cell has access to one bank. Each bank of local memory consists of
18 SRAMs.

Local memory can be expanded with the Memory Expansion Module. Memory
Expansion Modules connect to a Single or Quad Cell Board through a connector
residing on the board. Each Memory Expansion Module contains up to two
banks of additional local memory, and up to four Memory Expansion Modules
can be connected per board, allowing three times the local memory. In addition,
each bank of local memory can be configured using one of two SRAM densities,
allowing even greater local memory flexibility. Table 2-2 lists the available
memory for each iWarp cell. The maximum amounts represent full use of
Memory Expansion Modules.

Preliminary



A

Table 2-2: iWarp Cell Memory

Available Memory per iWarp Cell (bytes)
Quad Cell Board Single Cell Board
SRAM | minimum | maximum | minimum | maximum
density
256K 512K 1.5M M 6M
1M 2M 6M 8M 24M

The IM SRAM density is not available until 1991.

The iWarp Cardcage Assembly

---------------------------------------------------------------------

The iWarp Cardcage Assembly is a standard 19-inch rack-mountable open-frame
chassis that combines the following into a single assembly:

e 17-slot cardcage

® backplane

e external device interface
e power supply

e fans

Sixteen of the slots in the Cardcage assembly are available for Single or Quad
Cell Boards. A single Cardcage Assembly can hold up to 64 iWarp cells using
Quad Cell Boards or up to 16 iWarp cells using Single Cell Boards. Single and
Quad Cell Boards can also be mixed within a Cardcage Assembly to allow even
greater flexibility.

The remaining slot in the Cardcage Assembly is reserved for the Clock/Sync
Board. This board provides the necessary circuitry for synchronizing all cells

within an iWarp array, even if the array extends to multiple Cardcage Assemblies.

Figure 2-19 shows the iWarp Cardcage Assembly.

Preliminary

2-17



External Interface
Boards

1.5 KW
Power Supply

17 Slot
Cardcage ~

Base (with fans)
Figure 2-19: iWarp Cardcage Assembly

Cardcage Assemblies can be connected to form larger iWarp arrays by using
iWarp External Interface Boards. These boards plug directly into the appropriate
cell pathways on the backplane. External Interface Boards also allow connection
of other external devices to an iWarp array. Figure 2-20 shows an example of a 4
by 8 iWarp torus array with a single external connection.

External
Connection

M. Jl . External

! Interface
%-?- Board

]
m-mmeseeeeheeeeee ...

¢
4

Figure 2-20: 4 by 8 array with one external connection

2-18 Preliminary



The external connection to the iWarp array can be made at any of the loops in
either the X or the Y direction.

The iWarp System

......................................................................

Flexibility is the key characteristic of the iWarp system. From one to four iWarp
Cardcage Assemblies reside in a single System Cabinet, and up to four cabinets
can be connected to form even larger arrays. With a system of four cabinets, an
iWarp system can be extended to a 32 by 32 array of 1024 iWarp cells. Figure
2-21 shows the iWarp System Cabinet, which contains up to four Cardcage
Assemblies.

—_——

Figure 2-21: iWarp System Cabinet

The front door of the System Cabinet contains an LED display that shows status
conditions for each iWarp cell housed in the cabinet. The LED display consists of
four 8 by 8 LED arrays, with each array corresponding to one of the cardcages in
the cabinet. Each pair of LEDs in the array corresponds to the status of a specific
cell. There is also an error LED and a power LED for each array.

Preliminary 2-19



2-20

Diagnostics

The iWarp diagnostics consist of self-tests for the interface board and a set of
tests to ensure the integrity of the entire system. The interface tests are run at
power-up or when a system reset is done. These tests ensure that the interface
board is functioning correctly. The system test checks the data paths from the
host to the interface and from the interface to the processor array. These tests
can be run interactively or in batch mode.

Preliminary



3 iWarp Software

C

UNIX
FORTRAN
Sun Host

Prelimi






iWarp Software Architecture

......................................................................

iWarp software architecture supports high-performance computation in signal
and image processing and scientific applications. iWarp's software environment
is composed of a program development environment that resides on the host
workstation and execution support that resides on the iWarp array. This software,
which is closely tied to iWarp’s hardware architecture, provides the following:

e a host development environment supported on Sun workstations

¢ a runtime environment supported on each iWarp cell and the host

Parallel user code is executed on the array of iWarp cells. Sequential code can
either run on the host or on a single iWarp cell. The software for the file server
can also run on the I/O subsystem (see figure 1-12) or on the host. Figure 3-1
illustrates the relationship between iWarp’s software and hardware architecture.

Hardware

parallel user
code

programming
tools

file server I/O subsystem

Figure 3-1: Relationship between iWarp sofiware and hardware architecture

The following lists summarize the software for the iWarp cell and iWarp array.
The software listed is described in the following sections of this chapter.
iWarp cell software
compilers:
s C
e FORTRAN
e symbolic debugger

Preliminary



3-2

utilities:
* linker/combiner
e oader
e librarian
communication software:
¢ blocking and non-blocking message passing using a mailbox paradigm

e inter—cell communication mechanisms can be used to communicate
between processes on a single cell

e remote UNIX /O
libraries:
e math libraries
e subset of UNIX Sys V Library calls
system functions:
® memory allocation
® user timers
¢ multi-threaded programs based on Mach C-threads
® priority-based preemptive scheduling
e process (thread) control
iWarp array software
compilers:
* Apply
communication software:
* blocking and non-blocking message passing using a mailbox paradigm
¢ word-by-word user—programmed systolic communication
e user—programmed spooling
* request-response and RPC protocols
libraries:
e WEB
system functions:
e support for UNIX file I/O to be executed on the attached host

e low-level functional access to iWarp communication engine
e remote thread creation and invocation
iWarp host software
e combiner
e array allocation

e array job management

Preliminary



iWarp Host Environment

......................................................................

The host environment (the Sun system) includes program development software
and software that supports communication between the host and the iWarp array.
The host software grants access to the iWarp array and maintains the connection
between a user’s system and the iWarp system after access is granted. The
program development environment for iWarp is supported on Sun workstations
using SunOS. This environment provides UNIX-based program development
tools such as:

® cross compilers/assembler/linker
e Joader

¢ debugger

e diagnostics

Figure 3-2 illustrates the structure of iWarp's host environment software.

Host Environment Software

Program Development

linker
Compilers loader
C debugger
and
FORTRAN

Standard /O
servers

Diagnostics

Figure 3-2: iWarp host environment

iWarp Program Development Tools

iWarp provides tools to develop, manage, link, load, and debug programs in a
familiar UNIX environment.

Preliminary



34

The single-cell compilers

The iWarp C and FORTRAN compilers are highly optimizing compilers that run
on the Sun workstation and generate iWarp object code for individual iWarp
cells. The compilers, assembler, linker, and loader have standard UNIX
interfaces. The compilers pack multiple operations into each wide instruction
word, allowing the iWarp hardware functional units to execute those operations
simultaneously. The iWarp C compiler is an industry standard Kernighan and
Ritchie C language compiler with iWarp-specific extensions that provide access
to the systolic pathway. The iWarp FORTRAN compiler accepts standard
FORTRANT77 source with VMS extensions and iWarp-specific extensions.

The iWarp extensions for C and FORTRAN support:
® systolic communication support (send and receive primitives)
® iWarp condition code checking support
* sophisticated assembly code inlining capability
e pragma support for inlining specification
Getting better performance

To make a program run faster and take less space, the iWarp compilers employ a
variety of optimizations to fully use the multiple functional units of iWarp cells.
Two of these optimizations important to iWarp users are software pipelining and
local code compaction. These code scheduling techniques allow the compilers to
generate code with multiple operations in the same machine instruction. The
following two examples discuss how pipelining and code compaction, two of the
many optimization features of the iWarp compilers, support the iWarp program
developer.

With software pipelining, an iteration of a loop in the source program can be
initiated before preceding iterations are completed. This technique exploits the
repetitive nature of loops to generate efficient code for processors with multiple
functional units. At any time, multiple iterations are simultaneously in different
stages of the computation. The steady state of this pipeline constitutes the loop
body of the object code.

Software pipelining uses multiple functional units to perform the calculations of
several iterations of a loop at the same time. The following example shows
source code and pseudo assembler output that illustrate software pipelining of a

simple loop.

DO I =1, 10
A(I) = A(I) * C
ENDDO

Register r; contains the iteration count minus 2 (10 - 2 = 8), and register r,
contains the constant C. Registers r3 and r4 contain intermediate results.

{ load aj,r; 1
{ fmul ry,r3,Try; load ag,r3 1
Preliminary



loop 1

el { store ri,aj-3: fmul ry,r3,r4; load aj,xr3 1
{ store ry;ap-i fmul ry,r3,xr4 }
{ store r4,a, }

In this example, three iterations of the loop are computed simultaneously. The
“steady state” of the loop is shown on the line beginning with “el” (for, “end
loop™). On the i-th iteration, the load of A(I) takes place in parallel with the
multiplication of A(I-1) and C, and the store into A(I-2).

Code compaction can be performed anywhere there are enough source level
operations to make the optimization worthwhile. The following example shows a
sequence of operations typical of complex arithmetic.

REAL
IMAG

(TEMP1 * WREAL) - (TEMP2 * WIMAG)
(TEMP1 * WIMAG) - (TEMP2 * WREAL)

I

This example shows six operations, but with compaction, two of the operations
can be overlapped, resulting in four instructions actually being used. Loading and
storing of values can also be overlapped, giving a greater savings than this

example implies.

Some additional optimizations include:
¢ redundant-instruction elimination
¢ flow-of-control optimizations
® algebraic simplification
® peephole optimizations
e function-preserving transformations
e common subexpression elimination
® copy propagation
® dead-code elimination
e induction variables and reduction in strength
® constant folding
e branch elimination
® variable renaming
¢ inline renaming

e loop unrolling



The linker and loader

The iWarp linker acts much like the UNIX linker. It combines multiple,
separately compiled modules into one object file ready to be loaded onto the cell.
The iWarp linker also supports user-created libraries. The loader places certain
linked files into specified cells. In addition, the iWarp loader handles segments
of files and acts as an array-level combiner to resolve intercell resource issues.

The debugger

The iWarp debugger helps the programmer monitor the behavior of iWarp cell
programs and gather information about the programs being run. It is an
interactive symbolic debugger that supports application debugging for C,
FORTRAN, and iWarp assembly language programs. Debugger breakpoints
allow the programmer to suspend and examine cell or array programs and then
continue or terminate execution. The debugger displays both high-level and
assembly language program text and can be used from a window-based interface.

iWarp Runtime Environment

......................................................................

The runtime system manages the resources of the hardware on which it runs and
provides the application programmer with a set of routines that can be called to
use these resources. The iWarp runtime environment provides libraries and
communication protocols supported on each cell, the host, and the file server.
These libraries include runtime libraries such as mathematical and utility
functions, I/O libraries, and pathway libraries. The runtime environment works
with the hardware to provide several internode communication paradigms for
program development. The runtime environment includes:

e Cand FORTRAN runtime libraries
¢ remote I/O runtime libraries
e Dbasic runtime system support
® message passing protocol support
* systolic protocol support
Figure 3-3 illustrates the iWarp runtime environment software.

Preliminary



C
and
FORTRAN
Flunti[ne
Libraries Communication:
Message Passing
and Systolic

Figure 3-3: iWarp runtime environment sofiware
iWarp Runtime Libraries

The runtime libraries include the standard C, FORTRAN, and I/O libraries, as
well as special pathway runtime libraries. The pathway runtime libraries
provide the programmer with a set of routines for low-level access to the
pathway hardware. These routines also provide a high-level interface for
opening and debugging ports and connections as well as creating and accepting
messages.

iWarp System Support

iWarp’s runtime system software provides a complete, yet low overhead
management of the iWarp component’s resources. This software has the basic
services associated with general-purpose runtime systems plus some
special-purpose services to handle the distributed nature of an iWarp array.

iWarp provides a number of communication protocols that can be used to transfer
data between cells or between a cell and host. These include high-level
communication protocols, such as remote procedure calls and guaranteed arrival
streams for the application programmer. Lower-level communication protocols,
such as a data link layer, are for the user who intends to build higher-level
protocols. In addition, multitasking provides support for asynchronous
communication protocols that allow server processes to run in the background
and provide service to communication requests as resources become available.

Preliminary 3-7



3-8

iWarp communication facilities support both memory-to-memory message
passing communication and program-to-program word-by-word systolic
communication.

® Message-based communication is based on variable length, untyped
messages that are sent or received from buffers in cell memory. The user
calls send and receive primitives to transfer data, specifying the protocol
that should be used to transmit the data. Sends and receives may be
blocking or non-blocking, and a task can resynchronize with a
non-blocking call to find out when the operation is completed.

¢ Systolic communication allows the user to perform arbitrary
computations on operands taken directly from the pathway without the
overhead associated with memory-to-memory communication. Since the
iWarp hardware and software are optimized for systolic data transfer, this
method provides optimal performance for certain applications.

iWarp facilitates both efficient message passing and flexible systolic
communication by providing the required hardware support, discussed in
Chapter Two. The hardware supports word-level flow control, logical buses, and
streaming and spooling. Message passing communication is a commonly used
model for coarse-grain parallel computation. Conversely, systolic
communication is typically used for fine-grain parallel computation.

Programming an iWarp System

So far in this chapter, we have discussed the overall software environment, how
it relates to the hardware environment, and the software tools for programming
the iWarp system.

The following program gives an example of what the user can do by
programming the array in C. This approach requires that the programmer be
familiar with the functioning of the cell array, but it offers great programming
flexibility. As an alternative, the program developer can use the Apply language,
which is specialized for image processing applications. Such programs are fairly
easy to write in Apply.

The following simple example shows segments of an iWarp C program that
evaluates a polynomial. It demonstrates the solution of an r-¢h order polynomial
at m data points using an n+/ cell ring array of iWarp cell processors. Each
iWarp cell processor is connected to its right neighbor with two paths. Each of n
cells computes one step of the Homner algorithm and passes the result to the right.
The n+lIth cell serves as a master cell. The master cell provides data and
receives, stores, and prints the results. In this example, we are computing the
following 5th order polynomial using 6 cells:

P(z)=c,z*+c12+crz8 +Caz ey

Figure 3-4 illustrates how data flows from the master cell around the array of
cells.

Preliminary



~ b -
master cell

Figure 3-4: Master cell and cell communication configuration

There are two parts to the program: one part that runs on the master cell and one
part that runs on each cell. The #include statements and the master cell program

segment that reads in the data from the host and writes back the results have been
omitted for brevity.

static float ¢[5]; /*coefficients*/
static float z[5]; /*data points*/

static float p[5];/*results*/

static int nc; /*number of coefficientsx*/
static int nz; /*number of data points*/

main()

{

register int i, tmp, error = 0;

register float ftmp, fzero = 0.0;
/*host input*/

if( pathway_init() ) return(l);
_sendi( GATEO, nc );

tmp = _receivei( GATEO );
_sendi( GATEO, nz );

tmp = _receivei( GATEO );

/* send coefficients */
tor { 1 = 0; 4 < nay I+ )
_sendf( GATEO, c[i] );

/* send z and receive p */
for (i =0; i < nz; i++ ) {
_sendf( GATEO, z[i] );

Preliminary

3-9



3-10

_sendf( GATEl, fzero );

ftmp = _receivef( GATEO );

pli] = _receivef( GATEl );
}

if( pathway_close() ) return(l);

/* write results back to host */
return 0;

}
This portion of the program runs on each cell.

main()

{

register int i, ne, nz;

register float temp, coeff, xin, yin, ans;
register float fzero = 0.0;

if( pathway_init() ) return(l);

nc = _receivei( GATEOQ );
_sendi( GATEO, nc-1 );
nz = _receivei( GATEO );
_sendi( GATEO, nz );

/* capture the first coefficient

* and pass the rest on. */
coeff = receivef( GATEO );
for ( 1 = 1; 1 < nec; i++ ) {

temp = _receivef( GATEO );

_sendf( GATEO, temp );
)

/* Horner’s rule */

for ( L = 0; 1 < nz; i++ ) {
xin = _receivef( GATEO );
yin = _receivef( GATEl );
_sendf( GATEO, xin );
ans = coeff + yin * xin;
_sendf( GATEl, ans );

}

if( pathway_close() ) return(l);
return 0;

Apply: for Image Processing Applications

Apply is a special-purpose, high-level language for image processing
applications that frees the programmer from having to program low-level
inter-processor communication.

Preliminary



The Apply language:
* provides per-pixel generation of the output image

e allows a local operation to be written easily; more easily than with serial
languages like C

e has special functions for borders, image expansion, and reduction

This language is designed for writing two-dimensional local operator
algorithms. Apply generates parallel code that runs on an array of iWarp cells of
any size. Apply and its implementation on iWarp is designed for implementing
low-level vision algorithms such as:

® edge detection

® smoothing

e contrast enhancement

e thresholding

® point operators

e image addition, subtraction, multipkication, and division
® image reduction and expansion

® color conversion

The Apply language simplifies programming two-dimensional image processing
operations. Data objects are scalars and two-dimensional arrays of scalars having
various types. These types include byte, integer, real, and double. Apply uses
conventional expression syntax to specify computations on these data objects.

Apply procedures are called from FORTRAN or C language main programs in
much the same way as other procedures are called. On the calling side,
arguments to the Apply procedures are declared according to syntax and
semantics of the FORTRAN or C languages. Inside the Apply procedure,
arguments are declared in a slightly different way, as required by the syntax and
semantics of the Apply language.

Image data from the calling program is transferred from the calling program to
the array of computational cells on which the Apply routine is executed. Results
are returned to the calling program before control passes back to the calling
program. This data transfer is normally invisible to the Apply programmer.

Apply procedures can be compiled for sequential execution on the Sun
workstation for convenience in debugging new code. This code can be run as a
single native program on the Sun workstation or can be run on a single iWarp cell
that is fitted with a large memory. Afterwards, the Apply procedure can be
compiled for high performance parallel execution on an array of iWarp cells.

An Apply program is a procedure that represents the inner loop of an
image-to-image operation. The Sobel operator is a simple edge detection
operation. The output is a combination of the horizontal and vertical edge values.
An Apply implementation of the Sobel edge detector is shown in the following
example. In this example, the operation is performed on a 3x3 window. The

Preliminary



3-12

horizontal edge value is horiz and the vertical edge value is vert. One of two
different methods of computing imageout is used, depending on the value of

type’

procedure egsbl (imagein : in array (-1..1,-1..1) --1
of byte border mirrored,
type : const integer
image : out byte)
is =23
horiz, vert : integer; ~=3
begin --4
horiz := imagein(-1,-1) + 2*imagein(-1,0) -=5
+ imagein(-1,1) - imagein(1l,-1)
- 2*imagein(l,0) - imagein(l,1);
vert := imagein(-1,-1) + 2*imagein(0,-1) --6
+ imagein(l,-1) - imagein(-1,1)
- 2*imagein(0,1) - imagein(l,1);
if type = 1 then imageout := sqrt(horiz*horiz ==

+ vert*vert):;
else imageout := abs(horiz) + abs (vert);
end if;
end egsbl; --8

Line 1 defines the input, output, and constant parameters to the function. The
input parameter imagein is a window of the input image. Line 1 also defines the
input image window. The window is a 3x3 window centered about the current
pixel processing position. This position is filled with the value 0 when the
window lies outside the image. This same line declares the constant and output
parameters to be floating-point scalar variables. Line 3 defines horiz and vert,
which are internal variables used to hold the results of the horizontal and vertical
Sobel edge operator.

The straightforward expressions on lines 5 through 7 implement the
computation of the Sobel convolutions.

The Apply programmer cannot control the order in which the Apply program is
executed over the image. This restriction is the key to the easy mapping of
Apply programs onto parallel computers. Because the order is unrestricted, the
entire image can be processed in parallel if there are as many processors as
pixels, or it can be processed in sections, one section per processor, if there are
fewer processors than pixels.

Figure 3-35 illustrates how the edge detection program works.

Preliminary



type : const integer
image : out byte)

/ procedure egsbl (imagein : in array (-1..1,-1..1) of byte
border mirrored,
is
horiz, vert : integer:
begin
horiz := imagein(-1,-1) + 2*imagein(-1,0)
512 + imagein(-1,1) - imagein(l,-1)
- 2*imagein(1.0) - imagein(l,l):
vert := (magein(-1l,-1) + 2*imagein(0,-1)
+ imagein(l,-1) - imagein(-1.,1)
- 2*imagein(0.l) - lmagein(l.l);
if type = 1 then imageout :=sqrt (horiz*horiz
+ vertTvert);
else imageout :=~ aba(horz) + abs (vert);
end 1if;
end egsbl;

512 / I/
~

512

Figure 3-5: Using Apply for programming

Special features extend the power of the Apply language and match what is
needed to write image processing programs. Apply provides the user with these

important features :
e The apply program is written on a per-pixel basis rather than a
per-image basis.
e All the input parameters are input images; all output parameters are
output images.
e The const parameters are broadcast all across the image; all cells get the
same value.

Preliminary 3-13



3-14

WEB Library Routines

WERB is a basic library of routines, based on the Spider library for image
processing. All of the Apply routines can be recompiled easily for C code
generation and for different image sizes and number of cells. WEB consists of
approximately 100 programs covering the areas listed below:

Basic image operations: add, subtract, multiply, divide images by
images and images by constants, assign zeroes, assign constant inside
region.

Convolution: convolution with a variable or constant weight window.

Edge detection: Roberts, Frei and Chen, Kirsch, Sobel Laplacian,
Prewitt, Robinson, Kasvand.

Image greyvalue operations: clip threshold, remap greyvalues, reduce
greyvalues.

Smoothing: adaptive local smoothing, median filtering, local maximum
and minimum, iterative enhancements, texture image processing.

Binary image processing: detect borders, compute image of boundary
points, connectivity, crossing, expand or contract, shrink components.

Conversion: byte to real, real to byte, polar to cartesian.
Color conversion: color to black and white.

Multi-level image processing: generate pyramid, reduce by half, double.

Preliminary



Appendix: Computational Models

Preliminary






Phil. Trans. R. Soc. Lond. A 326, 357-371 (1988) [ 357 ]
Printed in Great Britain

Computational models for parallel computers

By H.T. Kuneg

Department of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213, U.S.A.

Computational models define the usage patterns of a computer. They can be used to
derive the architecture of the machine, provide guidelines for programming tools,
and suggest how the machine should be used in applications. Identifying
computational models is especially important for parallel computers, because their
architectures and usages are still not well understood in general.

This paper describes a number of computational models for parallel computers.
These models characterize the communication patterns under which processors
exchange their intermediate results during computation. Emphases are placed upon
models for one-dimensional processor arrays, reflecting Carnegie Mellon’s experiences
with the Warp systolic array machine. These models include local computation,
domain partition, pipeline, multifunction pipeline and ring.

1. INTRODUCTION

Many problems in science and technology are becoming so computationally demanding that
conventional sequential computers can no longer provide the required computing power.
Parallel computers have the potential to provide that power. A large number of parallel
computers are commercially available. Shared-memory parallel computers include mmMp
(muldple instruction multiple data) machines such as Alliant, Encore, Sequent, and Cray
X-MP. Distributed-memory computers include miMp machines such as Transputer, Warp, and
Hypercube, and siMp (single instruction multiple data) machines such as Connection Machine
and DAP. Many more parallel machines of enhanced capabilities are under development.
Successful use of parallel computers has been demonstrated in a number of application areas
including scientific computing, signal and image processing, and logic simulation.

It is useful to develop models to capture important ways in which parallel computers are
actually used in applications. These models can be used to derive architectures of new parallel
machines, provide guidelines for programming tools, and suggest how each machine should be
used in applications. There are roughly three stages in solving an application problem on a
parallel computer:

step 1, application definition (e.g. by mathematical formula);

step 2, computation specification (e.g. by program);

step 3, computation on the parallel machine.

Computational models described in this paper characterize the interprocessor communication
behaviour of step 3.

These computational models are based on our experiences in parallel algorithm design and
parallel architecture development at Carnegie Mellon. In 198487 Carnegie Mellon developed
a programmable systolic array machine called Warp, that has a one-dimensional (1D) array
of 10 or more processing elements (Annaratone et al. 1987). The machine is currently

26-2



358 H. T. KUNG

produced and marketed by General Electric Company. Anticipating the future need for
integrated Warp systems, Carnegie Mellon and Intel Corporation have been developing a visi
(very large scale integrated) Warp chip, called the iWarp chip. The iWarp system will be
available in 1989-90. Our work in Warp and i{Warp has shown us the importance of being
explicit about computational models in the development of a new parallel architecture as well
as its applications and programming tools. The paper will mention some of these insights.

In this paper we describe computational models for 1D processor arrays. We use 1D
processor arrays because their simple structure makes presentation easy and we have extensive
applications experiences with the 1D array in Warp. It should be clear that the concepts
presented here generalize to 2D or higher-dimensional processor arrays, and other parallel
computer architectures.

Section 2 provides background information on the Warp and iWarp systems. Nine
computational models for 1D processor arrays are presented in §3. Among them five models
are frequently used on Warp. These are models corresponding to local computation, domain
partition, pipeline, multifunction pipeline and ring. They will be discussed in more detail than
the other models. The last section contains some concluding remarks.

2. OvErvVvIEw OF WARP AND tWARP
2.1. Warp

The Warp machine has three components: the Warp array, the interface unit, and the host,
as shown in figure 1. We describe the machine only briefly here; details are available from
a separate paper (Annaratone ¢f al. 1987). The Warp array performs the bulk of the
computation. The interface unit handles the input—output between the array and the host. The
host supplies data to and receives results from the array, in addition to executing the parts of
the application programs that are not mapped onto the Warp array.

Figure 1. Warp machine overview.

The Warp array is a 1D systolic array with identical processing elements called Warp cells.
Data flow through the array on two communication channels (X and Y), as shown in ﬁgqre 1.
The direction of the Y channel is statically configurable at compile time. By putting the Y
channel in the opposite direction from the X channel, a ring interconnection can be formed
inside the 1D array. Another way to form a ring is to use the interface unit to connect the first
and last cells of the array.



COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 359

Each Warp cell is implemented as a programmable horizontal micro-engine, with its own
microsequencer and program memory. The cell data path includes a 5 MFLOPS (5 x 10°
floating-point operations per second) floating-point multiplier (Mpy), a 5 MFLOPS floating-
point adder (Add), a local memory, and two data input queues for the X and Y channels. All
these components are connected through a crossbar. An output port of the crossbar can receive
the value of any input port in each cycle. Via the crossbar the floating-point units can directly
access data at the front of any input queue, and insert computed results at the end of any input
queue of the next cell. Data at the front of any input queue can also be sent directly to the next
cell. A (much) simplified description of the Warp cell data path is given in figure 2.

Mpy Add

—
crossbar
—

LT

local memory |

Ficure 2. Warp cell data path (much simplified).

A feature that distinguishes a Warp cell from many other processors of similar computation
power is its high I/O bandwidth, an important characteristic for systolic arrays. Each Warp
cell can transfer up to 20 x 10°* words (80 Mbytes) to and from its neighbouring cells per
second. This high intercell communication bandwidth makes it possible to transfer large
volumes of intermediate data between neighbouring cells and support fine-grain parallelism on
the Warp array.

The host consists of a Sun-3 workstation that serves as the master controller of the Warp
machine, and a VME-based multi-processor ‘external host’, so named because it is external to
the workstation. The workstation provides a UNIX environment for running application
programs. The external host controls the peripherals and contains a large amount of memory
for storing data to be processed by the Warp array. Its dedicated processors transfer data to
and from the Warp array and perform operations on the data, with low operating system
overhead.

Warp programs are written in a high level pascaL-like language called W2, which is
supported by an optimizing compiler (Gross & Lam 1986; Lam 1987). To the application
programmer, Warp is a 1D array or a ring of simple sequential processors, communicating
asynchronously. Based on the user’s program for this abstract array or ring, the compiler
generates code for the host, interface unit and Warp array automatically. W2 programs are
developed in a uisp-based programming environment supporting interactive program
development and debugging. A C or LisP program can call a W2 program from any UNIX
computer on the local area network.



360 H. T. KUNG

2.2. Warp

Carnegie Mellon and Intel are jointly developing a large visi chip, called the iWarp chip, to
implement an integrated version of the Warp cell. The iWarp chip is a programmable
processor capable of delivering at least 20 or 10 MFLOPS for single or double precision
floating-point computations, respectively. This chip together with a local memory form the
iWarp cell, is shown in figure 3. The :Warp cell is a powerful building-block cell for a variety
of processor arrays, including 1D and 2D arrays. With recompilation, the iWarp cell will be
able to execute W2 programs originally written for the Warp cell.

iWarp cell

local
memory

I

iWarp
chip b

A 4

" IF

Ficure 3. tWarp cell consisting of {Warp chip and local memory.

The initial prototype :Warp system will have an array of 72 iWarp cells, with a peak
performance of at least 1440 MFLOPS. To ensure that a large fraction of this peak
performance can actually be realized in real applications, the {Warp array supports the
following features:

large local memory for the cells (at least 24 address bits);

high bandwidth intercell communication (320 Mbytess™);

2D or higher-dimensional interconnection;

on-chip message routing hardware.

Passing messages by a cell is handled by its routing hardware, and is transparent to its program.
This implies that communication between non-neighbouring cells can now be easily
accomplished.

3. COMPUTATIONAL MODELS

We will describe the following computational models for 1D processor arrays:

1. local computation ; 4. multifunction pipeline; 7. divide-and-conquer;
2. domain partition; 5. ring; 8. query processing; and
3. pipeline; 6. recursive computation; 9. task queue.

These models correspond to different ways in which cells interchange their intermediate results
during computation. Under each model there may also be different ways in handling inputting
and outputting for the processor array (see discussions below concerning the local computation
model). Therefore the computational models are based on the communication behaviour for
intermediate results rather than input and output.



COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 361

The current Warp system uses the first five models mostly, whereas the future iWarp system
will efficiently support all the models. Because of our experience with Warp, we will give more
detailed descriptions for the first five models. The other models will only be briefly touched,
mainly to indicate that there are other models which could be important for parallel computers
to support.

In the diagrams, cells in a 1D processor array are denoted by square boxes, and named as
cell 1, cell 2,..., cell N from left to right. Solid arrows denote data flows of intermediate results
between cells.

3.1. Local computation model

The local computation model corresponds to the case where cells do not exchange their
intermediate results during computation at all. Many computational problems have the
property that elements in the output set are computed independently from each other. The use
of the local computation model is natural in solving these problems on a parallel computer. In
this model each output is computed entirely within a cell, and all the cells compute different
outputs simultaneously. The main characteristic is that the entire computation for each output
is done locally at a cell, i.e. the computation does not depend on intermediate results
computed by other cells.

Various methods can be used to take care of the inputting and outputting for each cell. For
example, before or during computation, the required input to a cell can be shifted in via the
cells to the left, and during or after the computation the output produced by a cell can be
shifted out via the cells to the right. This is shown by figure 4, where dotted arrows denote the
shift-in and shift-out paths for input and output, respectively. To achieve high performance,
it is important that the I/O time and computation time can be overlapped as much as
possible.

mput — = L= F-> ==

-——} --—-) -——) ---) output

Ficure 4. Local computation model, with input and output shifted in and out.

Many image processing computations involve transforming an input image to an output
image, using a kernel operator defined by, say, a 3x3 window. Figure 5 shows such a
transformation, with which each pixel in the output image depends on a neighbourhood of the
corresponding pixel in the input image. Clearly, all the pixels in the output image can be
computed simultaneously and independently. Therefore the local computation model applies
here. The figure illustrates that four cells can work on the four subregions of the output image
independently, provided that the input pixels needed by each cell’s computation are pre-stored
in the cell. Note that cells computing adjacent subregions have overlapped input; the larger
is the kernel, the larger is the overlap.

As shown by the figure, the partitioning of the image processing task for the local
computation model is straghtforward. All that needs to be done is to partition the output image
equally for all the cells. This partitioning has been automated ; Carnegie Mellon has developed
a compiler called Apply, which can generate W2 programs for image-processing computations
based on kernel operators as described above, and other computations of similar kind (Hamey
et al. 1987).



362 H. T. KUNG

™
B

input output

Figure 5. Local computation model for image processing using a kernel operator straightforward.

Apply-generated W2 programs are able to overlap I/O with computation. While computing
a row of pixels for the output image, a cell can output a previous row of pixels already
computed and input a new row of pixels required for future computations. The Warp array
supports this overlapping well, because the array has a high intercell communication
bandwidth, and each cell is a horizontal micro-engine capable of performing several
computation and I/O operations in each cycle. Because with Apply this overlapping is
done automatically, Apply-generated Warp programs are often more efficient than the
corresponding hand-generated code.

There is another interesting form of overlapping input with computation for the local
computation model. Although all the cells compute different parts of the output set, the cells
may share some input. In this case the shared input may be pumped systolically from cell to
cell during computation. In the following this is illustrated with a matrix multiplication
example.

Given n X n matrices 4 and B, we wish to compute their product C on a linear processor array
of k cells. We assume that k is much less than n, and in the illustration below, £k = 4. We evenly
partition columns of B and C as shown in figure 6a. By using the local computation model, cell
¢ will compute the entires of submatrix C,. As its inputs, cell i needs 4 and B,. Therefore input
A is shared by all cells. Cell i will first load entries of B, into its local memory. Then during
computation, entries of matrix 4 will be input to the left-most cell in the row-major ordering,
and shifted to the right from cell to cell, as shown in figure 6 4. Cell i will perform inner products

(@) - =
l

ey
[l
5
ez
e
i s

(b)

emrieso{A_) 5 1 3, _* 2, _* .

_cell cell 2 cell 3 cell 4

Ficure 6. Matrix multiplication: (a) partitioning of matrices B and C, and () distribution of the
resulting submatrices of B to the cells; entries of A moving to the right during computation.




COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 363

for all pairs of row and column in A and B,, respectively. (Each entry of A4 will be input
repeatedly as it will be used by each cell multiple times, one for each of the columns of B that
the cell has.) Each inner product involves reading in a row of 4 from one of its input queues
and a column of B, from the cell’s local memory, and performing a sequence of multiply-
accumulate operations. By shifting in entries of 4 on-the-fly, each cell does not have to store
the entire matrix. This can significantly save memory storage and access time for each cell
(Kung 1988).

There are many other usage examples based on the local computation model. They include
the discrete cosine transform (Annaratone et al. 1986) and the labelled histogram computation
(Kung & Webb 1986).

3.2. Domain partition model

For some applications the computation shown in figure 5 is repeated many times; each time
a new output image is computed based on the previous output image. This computational
process, called successive relaxation (Rosenfeld 1977; Rosenfeld et al. 1976), is shown in
figure 7, where the grids correspond to the images.

Pl P R

i = = =
/

grid | grid 2 grid 3 grid 4

v

Il

Ficure 7. Successive relaxation.

The successive relaxation process is often used in scientific computing. Consider, for example,
the solution of the following elliptic partial differential equations using successive overrelaxation
(Young 1971):

O%u/0x® +3%u/dy® = flx,y).

The system is solved by repeatedly computing values of z on a 2D grid using the following
recurrence :

";.; =(l—-w)uy, +i"’(ﬂ,1+";.1—1+“¢.;+1+“i+1..1+“;-1.;):

where @ is a constant parameter. In the recurrence, values associated with location (z,7) of the
grid have indices (i,7).

Suppose that the partitioning scheme of figure 5 is used. Then when computing a new grid,
each cell must import from its neighbouring cells some of the values computed for the previous
grid. The required bidirectional data flows between neighbouring cells are shown in figure 8.

With this example, the concept of the domain partition model can be easily introduced. The
model arises when a problem domain (such as the grid space corresponding to an image, or to



364

Ficure 8. Bidirectional data flows for successive relaxation.

a finite-difference or finite-element modelling) is partitioned so that each cell handles a
subdomain. This model differs from the local computation model in that each output is not
computed entirely by a single cell. That is, once in a while the cell needs to receive
intermediate results from its neighbouring cells before it can proceed further with its
computation. Figure 9 shows the domain partition model.

H L

Ficure 9. Domain partition model.

There are many computations that can be naturally done with the domain partition model.
Numerical simulations of properties of a physical object, formulated by either differential
equations or Monte Carlo methods, can be partitioned along the physical space. A large file
can be sorted on a 1D array by using the bidirectional communication to merge sublists sorted
by individual cells. The merging can be done with only nearest-neighbour communications, in
a manner similar to that used in the odd—even transposition sort (Baudet & Stevenson 1978).
Labelling of connected components in an image can be done by using the bidirectional
communication to merge labels in the subimages computed by individual cells (Kung & Webb
1986).

3.3. Pipeline model

There is another (elegant) method to carry out the successive relaxation computation shown
in figure 7 on a 1D array. This method uses pipelining. Instead of the data space, i.e. the grid,
we partition along the time axis. That is, successive relaxation steps are done on successive cells.
In the row-major ordering, each cell receives inputs from the preceding cell, performs its
relaxation step, and outputs the results to the next cell. Consider, for example, the successive
overrelaxation computation described in §3.2. While a cell is performing the kth relaxation step
on row i, the preceding and next cells perform the (k—1)th and (£+ 1)th relaxation steps on
rows i+ 2 and i—2, respectively. Thus, in one pass of the  values through a &-cell processor
array, k relaxation steps are performed. This process is repeated, until convergence is achieved.
In a similar way we can implement many other iterative methods such as Jacobi and
Gauss—Seidel methods in a pipelined manner.

In this pipeline model, the computation for each output is partitioned into a sequence of



COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 365

identical stages, and cell i is responsible for stage i. A characteristic of this model is that cell 1+ 1
uses computed results of cell ¢, as shown in figure 10. Intermediate results move in one
direction and final results emerge from the last cell. I/O and computation are automatically
overlapped; this is a major advantage of the model. The pipeline model is natural when
implementing systolic algorithms where the partial results move from cell to cell and get
updated at each cell they pass (Kung 1982; Kung & Leiserson 1979).

intermediate results

e L s

stage 1 stage 2 stage N
Ficure 10. Pipeline model.

Under the pipeline model, cell i+ 1 cannot start its operation until cell i completes at least
a stage of computation. Thus for this model minimizing the latency between the starting times
of adjacent cells is a major concern. This is in contrast with the domain partition model, for
which the starting time of a cell does not depend upon any computed results of other cells.

For some computations the pipeline model represents the only efficient parallel
implementation. To see such a case, consider a variant of the image processing task shown in
figure 5. For this variant, in computing the value of each point, the new values of its neighbours
will be used whenever possible. Suppose that using a 3 x 3 window, the computation follows
the row-major ordering. Then computing the value of each new point uses the new values of
the left neighbour and the upper three neighbours, which were computed earlier. Local
computation and domain partition models will not work here, as subregions of the image
cannot be computed independently from each other. A way of using the pipeline model is that
cell : computes values of points in row i in the left to right order. Cell i is pre-stored with values
of points in rows i and i+ 1. During computation, a copy of each new value cell { computes is
sent to cell i+ 1. Note that cell i+ 1 can start its computation as soon as cell : has computed
the values of the first two points in row ;. We have implemented a version of this pipeline
computation on Warp to solve a path planning problem using a dynamic programming
technique (Bitz & Kung 1988).

3.4. Multifunction pipeline model

A single computation may involve a series of subcomputations each performing a different
function. If these functions can be chained together on a 1D array, then a one-pass execution
of the entire computation will be possible. This is the basic idea of the multifunction pipeline
model (Gross ¢f al. 1985). In this model, the 1D array is a pipeline of several groups, each
consisting of a number of cells devoted to a different function. The number of cells in each
group is adjusted so that every group will take about the same time, to maximize the pipeline
throughout.

This model is illustrated in the following example, which is a laser radar simulation
implemented on Warp.



366 H. T. KUNG

Step 1, for every 1024-point input block, perform a 1024-point complex rrr (fast Fourier
transform). Partition each FFT output into 30 overlapped 256-element subsequences.

Step 2, for each of the 30 x 256-element subsequences, perform the following operations:

(1) multiply each element by a weight, which is a complex number;

(ii) perform a 256-point complx inverse FFT;

(iii) compute the amplitude of each element in the output subsequences.

Step 3: threshold the resulting 30 x 256 image using 3 x 3 windows.
These steps are implemented with consecutive segments of the Warp array, as shown in
figure 11.

1024-pt 30%256
input block e 2

e g S JaH

102‘:‘:;"” L—— 256-ptrrr  —— amplitude
multiplication thm‘::ldmg

Figure 11. Multifunction pipeline model to implement a radar simulation on Warp.

Figure 12 shows another possible use of the multifunction pipeline model in implementing
the geometry system portion of 3D computer graphics. The first cell performs the matrix
multiplications, the next three cells do clipping, and the last cell does the scaling operation.
Three cells are devoted to clipping as it requires more arithmetic operations then either matrix
multiplication or scaling (Hsu ef al. 1985).

impt _,l __,| __,[ _.,l _,| 5 ouput

L J L J L J

group 1 group 2 group 3
(for matrix mult) (for clipping) (for scaling)

Figure 12. Multifunction pipeline model to implement a geometry system.

The multifunction pipeline model is useful when a computation requires a number of small
functions, each of which is not large enough to make an effective use of all the cells in a 1D
array. Concatenating these functions in a chain offers an opportunity to use more cells
effectively. Also, for some computations, it is inherent that one or few cells must perform
functions different from the rest. For example, when performing a 2D convolution on a 1D
array, some cells need to buffer a row of image and none of the other cells need to do that
(Kung 1984). For some computations, the first and last cells of a 1D array carry out special
functions such as interface with the outside world or preparation of data for the next phase of
computation on the array. An example of this is a neural network simulation on Warp, where
only the last cell performs weight updates based on weight changes computed by other cells
(Pomerleau et al. 1988).

To support the multifunction model, the processor array must allow heterogeneous
programming, that is, different programs to be executed at different cells at a given time.
Further, the rate of the input to a group may not be compatible to that of the output from the



COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 367

preceding group. Thus some buffering and flow control mechanisms need to be provided
between each pair of cells. For the Warp array, all cells can be individually controlled, and
dedicated hardware queues capable of performing flow control are available between adjacent
cells.

In summary, the multifunction model differs from the pipeline model described earlier in
that cells are now allowed to perform different functions. This flexibility in the usage offers the
opportunity of effectively using a large number of cells in a 1D array.

3.5. Ring

A 1D array becomes a ring when the first cell is connected to the last cell. In the ring model
intermediate results flow on a ring of cells.

An important usage of the ring model is the implementation of a large ‘logic’ array of logical
cells, under the pipeline model, with a small ‘physical’ array of physical cells. One
implementation is to have each physical cell handle a group of consecutive logical cells as
shown in figure 134. This will incur a large latency between the starting times of two adjacent
physical cells, as the latency will be the sum of all the latencies incurred by those logical cells
which are assigned to a physical cell. Another implementation is to use the physical array in
multiple passes to simulate the function of the logical array, as shown in figure 135. This
multiple pass scheme can be implemented with a ring as shown in figure 13¢. The ring is formed
by using a queue to connect the last physical cell to the first. The queue can store outputs from
the last physical cell while the first is still busy in doing its computation for the current pass.
This ring scheme incurs the minimum latency between the starting times of two adjacent
physical cells.

L assignedto 4 L assignedto < L assignedto~d L assignedto =4
physical cell 1 physical cell 2 physical cell 3 physical cell 4

b pass | =——d b—— pass2 )

@ rD—D—D—EI—l
111

y 4
-

pass 3

Fioure 13. Implementing a large pipeline with a small physical array: (a) each physical cell is assigned to a set of
consecutive logical cells, (4) using the physical array in multiple passes and (¢) using a ring to implement the
multiple passes on the physical array.

Another major use of the ring model is in the implementation of broadcasting. Many
computational problems involve multiple levels of computation as depicted in figure 14a. Each
value in a level depends on all the values computed in the previous level. For example, in the
figure to compute b, in level 2 we need all the values in level 1, as indicated by the lines
connecting b, with a,, a;,a; and a,. Therefore all the values computed in a level need to be
broadcast to all the cells which will be computing values in the next level. An example of such
a computational problem is the back propagation neural network simulation (Rumelhart et al.
1986), for which levels of computation correspond to layers of the neural network.



368 H. T. KUNG

The ring structure can implement the broadcasting in a natural way, provided that the
computation for each value is commutative and associative so that inputs in the previous level
can be combined in any order. Figure 144 illustrates the idea, by considering how values in
level 1 can be sent to cells computing values in level 2. Assume that every value in a layer is
computed by a separate cell, and for each : the cell which computes a, will also compute b,.
Then by pumping the ;s around the ring for a full cycle, as shown in figure 145, cell i (for every
1) will be able to meet all the 4 so it will have all the inputs to compute b,. The computation
of b, will occur on-the-fly as each a, passes by. Therefore computation and I/O are totally
overlapped.

(@ @) ) (&
@ w3 @
@ PNV

level 1 level 2 level 3 level 4

Figure 14. (a) Multilevel computation where results in one level are broadcast to the next level,
and (b) use of the ring model to implement the broadcasting.

3.6. Recursive computation model

Recursive computations are those where results of the computation are used for computing
future results. Examples are recursive filtering (Kung 1979), solution of triangular linear
systems (Kung & Leiserson 1979), and QR-decomposition (Heller & Ipsen 1982). By flowing
outputs that were previously computed against the flow of intermediate results that are
currently being computed, recursive computations can be implemented. The important feature
of the recursive computation model is the propagation of outputs in the opposite direction of
intermediate results, as shown by figure 15.

input—1 Ij :---j:p—)ompm

Ficure 15. Recursive computation model.

3.7. Divide-and-conquer model

Divide-and-conquer is a fundamental technique in algorithm design (Aho ef al. 1975).
Under this design paradigm, we solve a problem by (1) partitioning it into subproblems of
nearly equal size, (2) solving all the subproblems and (3) merging the solutions to the
subproblems; this procedure is applied recursively to all the subproblems. Because of this
recursion, this partitioning scheme distinguishes itself from others used, in, for example, the
local computation and domain partition models. Figure 16 shows the divide-and-conquer
model. Each subproblem is carried out by one cell or a set of consecutive cells. When a
(sub)problem is partitioned into subproblems or solutions to subproblems are merged,



COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 369

00 OO0 O -
OO O

Figure 16. Divide-and-conquer model: (a) 1-apart communication; (b) 2-apart communication.

communications between cells that are either 1-apart, 2-apart,..., or N/2-apart take place.
These communications are depicted by solid arrows in the figure.

The divide-and-conquer model for example can be used in sorting, and various geometric
problems such as computing convex hulls (Preparata & Shamos 1985s).

3.8. Query processing model

A 1D array can be used to process queries. One way to do this is to have the database
partitioned evenly among the cells. Then queries are passed to all the cells. Every cell looks at
the arriving query and outputs its reply to the query. The query processing model is shown in

figure 17.
query —T :1 — =
—> —> reply

Figure 17. Query processing model.

Consider for example the problem of looking for a table in an image. The particular table
we are searching for is defined as having a rectangular top, which will appear as a
parallelogram in the image. Initially, we do not know anything about the position of the table,
except an upper bound on the size of its bounding square in the image. After extracting features
such as lines and edges from the image, we partition it into regions whose sizes are at least that
of the bounding square for the table. We assign each region to a cell. To balance the
computational load between the cells, we define the regions so that there are about the same
number of features associated with each region. Regions assigned to the cells are properly
overlapped to ensure that the entire table is contained in at least one region. All the cells can
work in parallel on their own regions to respond to the query:

‘list all sets of four lines that form a parallelogram’.

Given the response to this query, the host or the cell that controls the searching process can
predict the position of other sides of the table, and produce queries such as:

‘list parallel lines with a given orientation’,
to find the other sides of the table.

The query processing model requires that the cells operate asynchronously, as when
responding to a query they may have to perform different amounts of computations and may
produce variable amounts of outputs.

3.9. Task-queue model

For all of the preceding models, cells work together for a common task, whether they are
tightly coupled (as in the pipeline model) or loosely coupled (as in the local computation or



370 H. T. KUNG

domain partition model). In contrast, the task queue model allows different cells to work on
different tasks in one application. More precisely, a free cell can be dynamically assigned to
execute any task in a task queue maintained by a cell or the host, as depicted by figure 18. Cells
operate in a totally independent and asynchronous manner. Using this model, dynamic load
balancing between cells is possible. The major concern in the implementation of this model is
to minimize the latency between when a cell becomes free and when it starts doing a new task
sent from the task queue. To use the cell effectively, this latency should not be larger than the
time for the cell to execute the task.

- task queue

taski+ 3
task i+ 2
taski+ 1

task ¢ k'—)--- task
i+ - '_.) i=1 L3 output

Fioure 18. Task queue model.

The task queue model will be efficiently supported by the :Warp system. The on-chip
message router at each cell will allow flexible communication between the cell (or host) that
maintains the task queue and other cells. The communication will have low latency because
of the available high bandwidth intercell communication channels.

4. CONCLUDING REMARKS

In this paper we have informally described a number of computational models for 1D
processor arrays. Among these models, local computation, domain partition, pipeline,
multifunction pipeline and ring are frequently used by the Warp users. We have found that in
terms of these models various applications usages of the machine can be easily described. Also,

we can discuss how architectural features support these models. For example, the 1D systolic

array is natural for the pipeline model; and the routing hardware is needed for the efficient
support of the divide-and-conquer or task queue model. Moreover, these models provide a way
to classify programming tools for the automatic generation of parallel programs. For example,
the Apply programming tool is to generate parallel code for the local computation model.
There are several ongoing research projects at Carnegie Mellon intended to generate parallel
programs for the other computational models such as the pipeline model.

For these reasons, we believe that computational models need to be made as explicit as
possible in parallel computing. This paper represents an initial attempt to identify some of the
models that seem to be important. Further work is needed to expand this set of models, and
characterize them more precisely. Eventually, notations need to be developed to represent
computational models.

Many of the ideas presented in this paper were inspired by work done under the Warp
project at Carnegie Mellon. I am especially indebted to those members of the project, including
F. Bitz, G. Gusciora, H. Ribas, P. S. Tseng and J. Webb, for their implementation of some of
the applications examples discussed in this paper.



COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 371

The research was supported in part by Defense Advanced Research Projects Agency (DOD)
monitored by the Space and Naval Warfare Systems Command under Contract N00039-87-
C-0251, and in part by the Office of Naval Research under Contracts N00014-87-K-0385 and
N00014-87-K-0533.

REFERENCES

Aho, A., Hopcroft, J. E. & Ullman, J. D. 1975 The design and analysis of computer algorithms. Reading, Massachusetts:
Addison-Wesley.

Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, O. & Webb, J. A. 1987 The Warp
computer: architecture, implementation and performance. /[EEE Trans. Comput. C-36 (12), 1523-1538,
Annaratone, M., Arnould, E., Kung, H. T. & Menazilcioglu, O. 19864 Using Warp as a supercomputer in signal

processing. Proc. ICASSP 86. IEEE.

Baudet, G. & Stevenson, D. 1978 Optimal sorting algorithms for parallel computers. /EEE Trans Comput. C-27(1),
84-87.

Bitz, F. & Kung, H. T. 1988 Path planning on the Warp computer: using a linear systolic array in dynamic
programming. In Proc. SPIE Symposium, Vol. 826, Advanced Algorithms and Architectures for Signal Processing I, August
1987. Society of Photo-Optical Instrumentation Engineers. (Also [nt. comput. Math. (In the press.).)

Gross, T. & Lam, M. 1986 Compilation for a high-performance systolic array. In Proc. SIGPLAN 86 Symposium
on Compiler Construction, June 1986. ACM SIGPLAN.

Gross, T., Kung, H. T, Lam, M. & Webb, J. 1985 Warp as a machine for low-level vision. In Proc. 1985 IEEE
International Conference on Robotics and Automation, March 1985.

Hamey, L. G. C., Webb, J. A. & Wu, [. C. 1987 Low-level vision on Warp and the Apply programming model.
In Parallel computation and computers for artificial intelligence (ed. J. Kowalik). Kluwer Academic Publishers.
Heller, D. E. & Ipsen, I. C. F. 1982 Systolic networks for orthogonal equivalence transformations and their

applications. In Proc. Conf. Advanced Research in VLSI, January 1982, Massachusetts Institute of Technology.

Hsu, F. H., Kung, H. T., Nishizawa, T. & Sussman, A. 1985 Architecture of the link and interconnection chip.
In Proc. 1985 Chapel Hill Conference on VLSI, May 1985 (ed. H. Fuchs). The University of North Carolina,
Computer Science Press, Inc.

Kung, H. T. 1979 Let's design algorithms for VLSI systems. In Proc. Conf. on Very Large Scale Integration : Architecture,
Design, Fabrication, January 1979. California Institute of Technology.

Kung, H. T. 1982 Why systolic architectures? Comput. Mag. 15(1), 3746.

Kung, H. T. 1984 Systolic algorithms for the CMU Warp processor, In Proc. 7th Int. Conf. on Pattern Recognition.
International Association for Pattern Recognition. (Revised version: Systolic signal processing systems (ed. E. E.
Swartzlander, Jr.), chap. 3, pp. 73-95. New York: Marcel Dekker (1987).)

Kung, H. T. 1988 Systolic communication. In Proc. Int. Conf. on Systolic Arrays, May 1988. San Diego,
California.

Kung, H. T. & Leiserson, C. E. 1979 Systolic arrays (for VLSI). In Sparse matrix proceedings 1978 (ed. L. S. Duff
& G. W. Stewart). Society for Industrial and Applied Mathematics.

Kung, H. T. & Webb, J. A. 1986 Mapping image processing operations onto a linear systolic machine. Distrib.
comput. 1(4), 246-257.

Lam, M. S. 1987 A systolic array optimizing compiler. Doctoral dissertation, Carnegie Mellon University.

Pomerleau, D. A., Gusciora, G. L., Touretzky, D. S. & Kung, H. T. 1988 Neural network simulation at warp
speed: how we got 17 million connections per second. In Proc. 1988 [EEE Int. Conf. on Neural Networks, July
1988, San Diego, California.

Preparata, F. P. & Shamos, M. I. 1985 Computational geometry : in introduction. New York: Springer-Verlag.

Rosenfeld, A. 1977 Iterative methods in image analysis. In Proc. JEEE Computer Society Conference on Pattern
Recognition and Image Processing. International Association for Pattern Recognition.

Rosenfeld, A., Hummel, R. A. & Zucker, S. W. 1976 Scene labelling by relaxation operations. [EEE Trans.
Systems, Man and Cybernetics SMIC-6, 420-433.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. 1986 Learning internal representations by error propagation.
In Parallel distributed processing : explorations in the microstructure of cognition, Vol. I. Foundations (ed. D. E. Rumelhart
& J. L. McClelland). Cambridge Massachusetts: Bradford Books/MIT Press.

Young, D. 1971 lterative solution of large linear systems. New York: Academic Press.

27 Vol. 326. A






A

BIBLIOGRAPHY

Annaratone, Marcos, R Bitz, J. Deutch, Leonard G.C. Hamey, H. T. Kung, P.C. Maulik, H. Ribas,
P. S. Tseng, and JonWebb. Applications Experiences on Warp. In Proceedings of the 1987 National
Computer Conference. AFIPS, 1987.

Borkar, Shekhar, Robert Cohn, George W. Cox, Sha Gleason, Thomas Gross, H.T. Kung, Monica Lam,
Brian Moore, Craig Peterson, John Pieper, Linda Rankin, P.S. Tseng, Jim Sutton, John Urbanski,
Jon Webb. iWarp: An Integrated Solution to High-Speed Parallel Computing. In Proceedings of
the Supercomputing Conference, Orlando, FL, November 14 -15, 1988.

*Borkar, Shekhar, George W. Cox, Sha Gleason, Dick Hofsheier, Margie Levine, Greg Meece, Brian
Moore, Craig Peterson, Linda Rankin, Jim Sutton, John Urbanski, Intel Corporation; Dan
Hammerstrom, Department of Computer Science/Engineering Oregon Graduate Center; and Marco
Annaratone, Clair Bono, Robert Cohn, Thomas Gross, H. T. Kung, Monica Lam, P.C. Maulik, John
Pieper, P.S. Tseng, Jon Webb. Carnegie Mellon University, Department of Computer Science. iWarp
Macroarchitecture Specification.

Cohn, Robert, Thomas Gross, Monica Lam, and P.S Tseng. Camegie Mellon University, Department of
Computer Science. Architecture and Compiler Tradeoffs for a Long Instruction Word
Microprocessor. In proceedings from the Third International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS III) Boston, Massachusetts, April
3 - 6, 1989.

Gross, Thomas, Monica Lam, James Reinders. Carnegie Mellon University, Department of Computer
Science. Programming Warp in W2. 1988.

Hamey, Leonard G.C., Jon A. Webb, I-Chen Wu. Carnegie Mellon University, Department of Computer
Science. Apply, A Programming Language for Low-Level Vison on Diverse Parallel Architectures.

Kung, H.T. Camegie Mellon University, Department of Computer Science. Network-Based
Multicomputers: Redefining High Performance Computing in the 1990s. In proceedings of
Decennial Caltech Conference on VLSI Pasadena, California, March 20 - 22, 1989.

Lam, Monica. Software Pipelining: An Effective Scheduling Technique for VLIW Machines. In
proceedings of ACM Sigplan 1988 Conference on Programming Language Design and
Implementation.

Webb, Jon, and I-Chen Wu. Camegie Mellon University, Department of Computer Science, A User’s Guide
to Apply. 1988.

* This is a proprietary document, and requires a non—disclosure agreement. Contact Intel iWarp Marketing and Sales
Department for more information.






(GLOSSARY

Apply. A special purpose high level language for
image processing applications.

cardcage assembly. See iWarp Cardcage Assem-
bly.

cell. See iWarp cell.

Communication Agent. The Communication
Agent controls the pathways that provide inter—cell
communications throughout the iWarp System.

component. See iWarp Component.

Computation Agent. One of two functional agents
in the iWarp component, this agent executes the
applications and service process. It consists of the
Instruction Sequencing Unit, the Program Store
Unit, the Integer Logic Unit, the Floating-point
Unit, the Register File Unit, the Local Memory
Unit, and the Streaming/Spooling Unit.

compute and access instruction format. A 96-bit
instruction format for high performance floating-
point computations. This format exhibits the bene-
fits of a long instruction word architecture.

External Interface Board. A small circuit board
that connects to the backplane of an iWarp Cardcage
Assembly, allowing connection to other cardcage
assemblies or external devices.

Floating-point Unit. The Floating-point Adder
and Floating-point Multiplier make up the Floating-
point Unit.

host. The program development host to which the
iWarp array is attached. In certain system configu-
rations, other software such as the file server or the
sequential component of a user’s application may
also run on the host.

general-purpose instruction format. A 32-bit
instruction format for general-purpose require-
ments. This format has many of the features of a re-
duced instruction set computer architecture.

Integer Logic Unit. This unit performs all integer,
ordinal, and logical operations. The Integer Logic
Unit is one of the functional units of the Computa-
tion Agent.

Instruction Sequencing Unit. This unit provides
the instruction execution sequencing and instruc-
tion decoding for all other functional units. The In-
struction Sequencing Unit is one of the functional
units of the Computation Agent.

iWarp. Intel’s Integrated Warp processor, a joint
venture between Intel and Carnegie Mellon Univer-
sity.

iWarp Cardcage Assembly. A 19-inch rack-
mountable chassis that combines a 17-slot card-
cage, backplane, external device interface, power
supply, and fans. The iWarp Cardcage Assembly
can hold up to 64 iWarp cells.

iWarp Cell. An iWarp Cell consists of an iWarp
Component and its local memory.

iWarp Component. A component made up of a
Communication Agent to handle networking be-
tween cells and a Computation Agent to provide
floating-point, integer, and logical operations, as
well as instruction sequencing control.

local memory. The iWarp component’s associated
memory. The local memory combines with the
iWarp Component to form an iWarp cell.

Local Memory Unit. This unit provides the inter-
face between the iWarp Component and its local
memory.

Memory Expansion Module. A small circuit
board that allows additional memory to be added to
an iWarp Single or Quad Cell Board.

message passing model. A course-grain commu-
nication model in which the unit of communication
is a complete message.

Program Store Unit. The Program Store Unit
fetches instructions from local memory and pro-
vides them to the Instruction Sequencing Unit.

Quad Cell Board. An iWarp board that contains
four iWarp cells and four banks of local memory.

Register File Unit. The Register File Unit is the
central element of the iWarp Component architec-
ture. It routes data between all of the functional ele-
ments of the iWarp Component.

Preliminary



Single Cell Board. An iWarp board that contains
one iWarp cell and four banks of local memory.

Streaming/Spooling Unit. The Streaming/Spool-
ing Unit removes data from the pathways to
memory and retrieves data to the computation units.
The process of streaming and spooling helps relieve
pathway congestion.

systolic computing. Data flows, or is pumped,

through an array of processors as it is used simulta-
neously in cell computations.

systolic model. A fine-grain communication mod-
el in which the unit of communication can be as
small as a single word in a message.

Warp. The predecessor of iWarp, developed by
Professor H.T. Kung and his associates at Carmegie
Mellon University and General Electric.

Preliminary



A

Adder, 2-7
Address bus, 2—4
Apply, 3-10
Array, torus, 1-1

Backplane, 2-17

Board, 2-12
External Interface, 2-18
Quad Cell, 1-18, 2-12, 2-13
Single Board Array, 2-15
Single Cell, 1-18, 2-12, 2-14
Bus
address, 24
data, 24

logical, 1-17
physical, 1-17

C

C compiler, 3—4

Cardcage Assembly, 1-19, 2-17
backplane, 2-17
external device interface, 2-17
fans, 2-17

power supply, 2-17
Carnegie Mellon University, 1-1
Cell
architecture, 1-12, 1-14
memory, 2-17
pathways, 2-18
Communication
message—based, 3-8
pathways, 1-6, 1-12, 1-15
systolic, 3-8

Communication Agent, 2-1, 2-9
Communication support software, 3-3
Communication to computation ratio, 1-11

INDEX

Compiler, 3-4

Compilers, 3—4
C 34
FORTRAN, 3-4
optimization, 3—4

Component, 2-1
architecture, 1-14, 2-1

Component architecture
Floating Point Unit, 2-7
Instruction Sequencing Unit, 2-6
Integer Logic Unit, 2-6
Local Memory Unit, 2—4
Program Store Unit, 2-5
Register File Unit, 2-3
Streaming/Spooling Unit, 28

Computation Agent, 2-1, 2-3
Compute and access instruction format, 2—-10
Comer-turning, 1-15

D

DARPA, 1-1

Data bus, 2-4

Data movement, 1-16
Debugger, 3-6

E

External device interface, 2-17
External Interface Board, 2-18

F

Fans, 2-17

Fault tolerance, 1-13
Floating Point Adder, 2-7
Floating Point Multiplier, 2-7
Floating Point Unit, 2-7
FORTRAN compiler, 3-4

G

General purpose instruction format, 2-10

Prelimi



General purpose instruction summary, 2-12

H

Host environment, 3-3

I/O performance, 1-6, 1-10
Image processing, 14
Image processing applications, 3-10
Instruction format, 2-10
compute and access, 2-10
general purpose, 2-10
Instruction Sequencing Unit, 2—6
Integer Logic Unit, 2-6
Interfaces, 1-18
iWarp
architecture, 1-12
board, 2-12
Cardcage Assembly, 1-19, 2-17
compopent, 1-12, 2-1
configurations, 1-19
System, 1-18, 2-19

K

Kung, Dr. H.T,, 1-2

L

LED display, 2-19
Libraries, rantime, 3-7
Linker, 3-6

Loader, 3-6

Local memory, 2-5, 2-16
Local Memory Unit, 2—4
Long instruction word, 2-10

Matrix multiplication, 1-9

Memory
cell, 2-17

Expansion Module, 2-16
local, 2-5, 2-16

Memory Expansion Module, 2-16
Message-based communication, 1-6
Message-based communication, 3-8
Multiplier, 2-7

o

Optimization, 3—4

P

Pathway configuration, 2-15
Pathways, 2-18
Physical pathways, 2-9
Ports, 2-3
Power supply, 2-17
Program development software, 3-1
Program development tools, 3-3
Program Store Unit, 2-5
Programming, 3-8
Programming tools

compiler, 3—4

debugger, 3-6

linker, 3-6

Q

QR decomposition, 1-7
Quad Cell Board, 1-18, 2-12, 2-13
Quad cell configuration, 2-14

R

Register File Unit, 2-3
Runtime environment, 3-1, 3-6
Runtime libraries, 36, 3-7

S

Signal processing, 1-4
Single Board Array, 1-20, 2-15

Preliminary



Single Cell Board, 1-18, 2-12, 2-14
Single cell configuration, 2-15
Singular value decomposition, 1-7
Sonar application, 1-7, 1-8
Spooling, 1-16, 2-8

Streaming, 1-16, 2-8
Streaming/Spooling Unit, 2-8
System cabinet, 2-19

System software, 3-7

Systolic architecture, 1-9

Systolic communication, 1-6, 1-9, 3-8

Systolic computing, 1-16
Systolic pathways, 2-13
Systolic performance, 1-9

T

Torus array, 1-1
Transfer rates, 2-13, 2-15

vV

VLSI, 1-1

Preliminary






Intel Corporation

iWarp Marketing, Mailstop: CO4-#5
5200 NE Elam Young Pkwy.
Hillsboro, OR 97124-6497

Phone: (503) 629-6300

intel

Order#281005




	Page 1
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 1

