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iWarp: System Building Blocks for High Performance 

Systems 

iWarp is a parallel computer system that supports a broad range of 

high-performance computational algorithms including matrix operations and 

signal and image processing. The system architecture is modular, using a single 

VLSI component plus memory as a building block to support a variety of 

connection topologies. Systems are configured as a two-dimensional array of 

processors, as in Figure 1-1, with performance that scales from 20 to 20,000 

millions of floating-point operations per second (MFLOPS). Each iWarp cell 

consists of an iWarp component and its local memory. Cells communicate by 

passing messages over the communication channels that connect them, and the 
I/0 capacity for the system scales with the computation power. 

Figure 1-1: An example of a two-dimensional iWarp torus array 

The Development Partnership 

Intel has developed the iWarp system with Carnegie Mellon University under a 

four-year cost shared development contract sponsored by the Defense Advanced 

Research Projects Agency (DARPA). The iWarp system is a substantial 

advancement in high-performance computer technology created through the 

partnership of industry, academia, and government. Industry provided VLSI 

development and systems and production technology, academia provided 
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research basis and conceptual insight, and government provided the vision and 

support of sponsorship. 

The iWarp program is supported under DARPA's Strategic Computing Program 

for the development of programmable systems that use systolic array technology. 

The systolic architectural concept is a fine-grain (few calculations per I/0 

operation) computational technique pioneered by Professor H.T. Kung and his 

students at Carnegie Mellon University. Systolic architectures achieve high 

computational efficiency and performance for large arrays of processors and are 

particularly well suited to the computational needs of signal, image, and matrix 

processing. 

The Need 

Historically, high-performance signal and image processing applications users 

have been forced to use special-purpose system designs to obtain the billions of 

floating-point operations per second (GFLOPS) performance required. Typical 

applications like adaptive beam-forming for sonar, image analysis and 

recognition for factory automation systems, and elastic wave equation modeling 

for seismic analysis all require performance in the 1-10 GFLOPS range. 

Though special-purpose systems can effectively meet specific requirements for a 

particular application, they are generally not adaptable to other needs. Fielded 

systems can be obsolete by the time they reach operational status. More 

important, in today's rapidly changing, complex environment, these systems must 

often be adaptable to both dynamic operational needs and changing 

requirements. 

In applications with lower performance requirements, the use of commercial 

VLSI microcomputer components has been a real benefit. This benefit is derived 

from the maturity of the technology, the economies gained by large-scale, 

cost-sensitive manufacturing, and the extensive software support that comes from 

a broad base of users. Further, these systems also benefit from the evolutionary 

enhancements of market-driven microprocessor technology. System 

enhancements and upgrades can often be accomplished with simple board 

replacements. 

A similar infrastructure is provided by the iWarp VLSI component for 

high-performance systems. Signal and image processing applications are most 

dramatically benefited. 

iWarp meets these needs with the following capabilities: 

Communication level 

• high communication performance and 110 capability 

iWarp communication capability scales with increasing computational 
power to meet the needs of I/0 intensive applications. 
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• low overhead,course-grain, message-based, communication 

iWarp's cut-through and worm-hole routing mechanisms provide 

efficient point-to-point data message delivery to any destination in the 

array without intervention by intermediate processing elements. 

• multiple logical connections on each physical 1/0 bus 

A number of logical connections can be maintained on each physical bus 

connecting two iWarp cells. This substantially expands the set of 

intercell communication models that an iWarp array can support. 

• low overhead, fine-grain systolic communication 

iWarp is the first commercial processor to support fine-grain systolic 

communication. By using data directly from the communication 

pathway, computational algorithms avoid memory bottlenecks, latency is 

reduced, and large parallel systems perform closer to peak performance 

expectations. 

• support for multi-functional systems 

iWarp's combination of fine-grain systolic and coarse-grain 

message-based communication allow the array to be divided into 

independent functional sub-arrays that interact asynchronously for 
applications with high complexity. 

Computation level 

• high Computational power at low cost 

iWarp computational power scales to 20 GFLOPS, and high capacity 

VLSI production technology brings new economics to high performance 
computing. 

• high computational density 

iWarp supports a computational density of 1 to 3 GFLOPS per cubic 

foot, opening up general purpose functionality to application-specific 

systems. 

• low latency, high performance scalar computations 

iWarp floating-point arithmetic elements in each processor optimize 

scalar performance by executing a complete arithmetic operation in a 

single instruction. The single-cycle long instruction word architecture 

allows iWarp to achieve high performance without vectorization. 

System level 

• modularity 

iWarp's single component requires only memory chips to form a 

complete processing element that can be combined to form a variety of 

general-purpose processor arrays of various sizes. System building 

blocks provide flexibility for rapid prototyping and feasibility 

demonstration. 
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• broad applicability and flexibility 

iWarp's balance between low-latency communication and high-speed 
computational performance gives it applicability over a broad range of 
computational algorithms. These features also provide the architectural 
basis for optimized compilers and development tools for array-level 
programming. 

• high-level programming environment 

iWarp provides a high-level programming environment using C and 
FORTRAN languages, with parallel application development tools to 
speed development and minimize life cycle support and maintenance 
costs. 

• immunity to fault and failure 

iWarp's on-chip error detection and reporting, logical connections, and 
source-routed communication allows isolation of faults and supports the 
development of reconfigurable systems with fault tolerance and graceful 
degradation properties. 

Computation and Communication Requirements 

Signal and image processing algorithms are characterized by relatively few 

computations per data element, as compared with scientific algorithms. This 

relationship is illustrated in Figure 1-2, where the number of arithmetic 
calculations per data element is compared to data base sizes for business 

applications, signal and image processing applications, and scientific 

applications. 
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Figure 1-2: Applications with different computation and communication 

requirements 

Comparing Requirements 

The number of calculations per data element is a primary design issue that 

impacts the architecture of all computer systems. For instance, business 

applications, like transaction processing, perform relatively little computation but 

are dominated by 1/0 operations. Systems must support a large number of 1/0 

channels with many peripheral devices. Thus, the principal design goals are 

maximizing 1/0 capacity and providing the ability to handle many independent 

tasks. 

Conversely, scientific applications, particularly those of the supercomputer class, 

require thousands of calculations per data element. Additionally, the number of 

calculations per data element increases rapidly with the size of the problem. For 

example, there is a 30-fold increase in the number of calculations per data 

element between an order 32 Gaussian Elimination problem containing 1024 

data elements and an order 1000 problem (one million data elements). 

Architectures for scientific computers are, therefore, focused on raw 

computational performance and memory capacity. The highest level of 

performance and greatest efficiency are obtained when the entire problem is 

resident, and the machine can operate for hours or days until the problem is 

completed. 

Signal and image processing systems differ in that a typical algorithm requires 

only 10 to 100 calculations per data element. The calculations per data element 



remain nearly constant with the size of the problem. For example, a 1024-point 

complex Fast Fourier Transform (F1-1) requires only about 20 calculations per 

data element. An increase in problem size by three orders of magnitude to a one 

million-point complex 1+1 only doubles the required number of calculations per 

data element to 40. This low reuse of data for signal and image processing 

systems dictates that scalable systems must be capable of matching increases in 

compute power with corresponding increases in 1/0 capacity. High performance 

computing must be supported by a corresponding 1/0 capacity with the external 
environment. 

Typical signal processing applications require 1/0 performance that exceeds by 

several orders of magnitude the requirements of scientific machines having 
similar performance. This need is coupled with the additional real-time 

interactive requirements of many signal processing applications. These 

requirements amplify the importance of 1/0 architecture to signal and image 
processing systems. 

iWarp systems meet these needs by supporting an 1/0 performance of 320 

MBytes/s between two iWarp cells. For interfacing with the outside world, an 

iWarp array can have a number of 40 MBytesis external 1/0 interfaces. 

Communication Needs 

iWarp supports both the coarse-grain message-based communication model of 

traditional parallel systems and a new fine-grain systolic communication model 

that is particularly well suited to high performance signal and image processing 

applications. The systolic model allows the computational element of each 

processor to use data directly from any of the four communication pathways 

without sacrificing memory access bandwidth. The term systolic illustrates the 

concept that data from external sensors can flow, or be pumped, through the 

array of processors as it is used simultaneously in cell computations. 

The coexistence of these two forms of communication is essential for building 
efficient and flexible high-performance real-time systems. The coarse-grain 

message-based communication provides the means for interaction between 

independent heterogeneous tasks and cooperating elements in practical systems. 
The fine-grain systolic model provides the most efficient use of system resources 

for tightly coupled compute-intensive tasks. 

Application Examples 

iWarp's ability to simultaneously handle fine-grain and coarse-grain 

communication is fundamental for supporting a broad application base and for 
achieving high utilization from the cells in an iWarp array. The sections that 

follow illustrate these concepts. 



A Sonar Example 

A simple sonar application illustrates the benefits of iWarp fine-grain and 

coarse-grain communication models. Figure 1-3 shows a functional breakdown 

of the example. 

signal 

conditioning beam-forming sensor 

inputs -11' 

spectral 

analysis 

operator 
console 

-1 

display 

output 
control 

signal 
analysis 

Figure 1-3: Sonar application 

The processing task divides into several functional blocks that are performed in a 
multi-function pipelined fashion. The sensor inputs are signals that might be 

derived from an array of hydrophones being towed behind a ship. For the first 

stage of processing, these signals are filtered and digitized by the signal 
conditioning section of the system and sent to the beam-forming section. 

The beam-forming section can use a variety of computational algorithms for 

forming steerable acoustic monitoring beams. Sophisticated techniques can 
account for the changing shape of the array as the ship maneuvers and adapt to 

the noise environment by nulling out undesired signals while enhancing other 

regions of interest. These techniques depend heavily on matrix linear algebra 

using QR decomposition and singular value decomposition as the basic 
computational algorithms. 

The output of the beam-forming section is passed to the spectral analysis section. 
This section computes a spectrum for each of the beams. The rotating machinery 
of ships, submarines, and other .marine devices produces acoustic energy that has 

characteristic spectral patterns, which help to detect and identify the source. 
Typically, the FF1' and related signal processing algorithms are the core functions 

for this task. 

The spectral output then passes to the signal analysis section where analysis of 

the spectral data is performed. Detection of a suspect event can be used to alert 
an operator or generate control functions that change the operational parameters 

for the other sections of the processor. For example, detection of energy in a 
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specific area of interest might trigger a high resolution mode for the spectral 

analysis section so the structure of the signal can be more accurately evaluated. 

Additionally, it could direct the beam-former to lay a tight beam on the region of 

interest for improved noise immunity. Computational requirements vary 

depending on operational mode and signals being analyzed. The ability to 

dynamically adapt computational resources to operational needs is a fundamental 
need of modem systems. 

Implementing the Sonar Application on an iWarp Array 

In conventional systems, each of the functional elements of Figure 1-3 is 

implemented as a separate hardware element. This configuration constrains the 

adaptability of the system for new operational scenarios, new algorithms, and 
processing requirements. In an iWarp array, the mapping of the functional 

elements is configured as illustrated in Figure 1-4. 

Figure 1-4: Sonar application on a 16-cell iWarp array 

Synergy between Communication Models 

Processors in each of the functional groups use fine-grain systolic 
communication to achieve the greatest efficiency and performance for the 
computational task. Processors, in effect, work together as a single 
high-performance functional element. Data and control signals that pass between 

the functional elements use coarse-grain message-based communication. This 
loosely coupled, asynchronous form of communication allows each functional 

element of the array to work independently of other functional elements and still 
interact in a timely fashion required for real-time applications. 
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Fine-Grain Systolic Communication 

To illustrate the benefits of fine-grain systolic communication, consider the 
matrix multiply example of Figure 1-5. Two matrices, A and B, are multiplied to 

form the matrix C. The familiar dot product method is used, which requires that 

we take the dot product of each row of A against each column of B. The entire 

calculation requires n3  multiply-accumulate operations. 

AxB=C 

Where Cij = E aik Xbkj 
k=1 

a1r. 	11;11— bJf  

a•1— a — a in  I 

n1—  — — an) 

X 	bij  

bn' bnn 

Figure 1-5: Matrix multiply example 

Consider a linear array of n iWarp cells into which the n columns of matrix B are 

distributed so that each cell has a column of B. Since each row of matrix A is 

applied against each column of B, we can pass each row of A down the array and 

perform the corresponding dot product operation as elements flow past the cells. 

Thus, each cell j performs the computation, aik  x bki + cii, as each aik  value 

flows through the array. The first result, cll, is complete and can flow out of the 

array when the dot product between am and /AI  has completed in cell 1. Other 

results of matrix C are completed in turn as the rows of A proceed through the 

iWarp array. 

Performance Analysis 

As a general rule, parallel algorithms go through a three stage process of 
initialization, computation, and cleanup. The initialization process distributes 

data to processors and gets the computation going. The computation stage occurs 

when all processors are involved in the process and the peak performance of the 
system is achieved. The clean-up stage completes the computational process and 

collects the results at the final destination. 

Systolic architectures have a performance advantage over other parallel 

architectures because the initialization and clean up stages occur as fast as data 



can flow through the network of processors. This process can be illustrated by 

viewing performance of the matrix multiply application as a function of time, as 
in Figure 1-6. 

Performance 

laN 	Time 

a 11 	a 71  a  nn 	a nn 

cell 1 	cell 	n cell 1 	cell 	n 

c11 out c11 out 

Figure 1-6: Time line ofperformance peak in matrix multiply example 

The computation starts when all  reaches cell 1. The initialization phase is 

complete as soon as all  completes its path through the array and reaches cell n. 
At this point, all cells are fully involved in the calculation, and the first result, c11, 

is complete. The iWarp array runs at full performance until any, reaches cell 1. 

Then the clean-up phase begins. As ann  continues down the array, each cell in 

turn completes its computation, and the performance drops as these cells send out 

their results and become idle. 

Advantages of the Systolic Model 

The matrix multiply example illustrates another benefit of systolic computing 

overcoming memory bottlenecks of Von Neumann and Harvard architectures. 

iWarp addresses these limitations by augmenting memory bandwidth with 

comparable 1/0 bandwidth to sustain peak performance of arithmetic elements. 

The benefits are twofold. First, operands used in common by all cells are 

broadcast over the 1/0 path as was done for the rows of matrix A. Second, more 

effective use is made of memory because intermediate storage accesses are 

avoided. Using matrix A directly from the communication pathway avoids four 
memory accesses that would be required by conventional memory-to-memory 

message-passing techniques. 
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Fundamental iWarp Concepts 

The following concepts arc central to the iWarp system design: 

• Integrated communication and computation elements for minimizing 
communication latency, maximizing communication bandwidth, and 
maximizing computational performance. 

• Balanced ratio between communication and computation for supporting 
fine-grain systolic computation models. 

• Independent communication and computation elements for supporting 
coarse-grain heterogeneous computation models. 

• Scalar computational capability to minimize latency, improve the 
efficiency of compiled code, and broaden the base for supported 
applications without impacting vector performance. 

Integrated Communication and Computation 

The iWarp architecture supports tightly coupled integrated communication and 
computation elements that provide high-level hardware support for low-latency 

and high bandwidth sophisticated communications operations. Examples of 
these operations include word level, intercell, flow control synchronization, 

automatic spooling and streaming of message data, buffer management, and 

logical connections that interleave multiple message streams over the finite 
physical buses. 

Balanced Communication to Computation 

iWarp supports the one-to-one communication to computation ratio that is an 

essential element of fine-grain systolic computing concepts. During a single 

floating-point multiply-add cycle, two operands can be used from the 
communication pathways, and two operands can be sent to other cells. This 
capability broadens the range of algorithms and applications that can benefit from 

iWarp technology by supporting algorithms that require very few computations 
per data element. Additionally, the systolic computation model provides near 
linear speedup for scalable systems, to the limit of the parallelism in the 

application, by making more effective use of memory bandwidth and IJO 

capacity. 

Independent Communication and Computation Elements 

Independent communication and computation elements provide support for 

heterogeneous computation models. This ability allows individual processors or 

groups of processors to communicate asynchronously and supports transparent 
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overlapping of computation with communication in hardware. Practical 

applications require a combination of communication capability: fine-grain for 

high performance and efficiency, and coarse-grain for interaction between 

loosely coupled processes and external events. 

Scalar and Vector Performance 

A design goal for iWarp was to reduce latency at all levels of the cell 

architecture. For the arithmetic elements of the processor, this goal resulted in 
exceptional scalar performance while maintaining excellent vector performance. 

The benefit was greater computational efficiency from high-level language 

compilers and broader applicability of iWarp in a wide range of algorithms and 

applications. Reduced latency also yields benefits in the handling of exception 

conditions and external events. In a tightly coupled parallel system, large delays 

in one processor caused by an exception condition can affect all other processors 

in the array. 

iWarp Architecture Overview 

Let us consider how these features are reflected in the iWarp communication 

architecture. An iWarp system is made up of an array of iWarp cells connected 

by communication pathways. Each iWarp cell consists of an iWarp component 
plus memory. As shown in Figure 1-7, the iWarp component contains 

independent communication and computation agents. Closely coupled yet 

independently controlled agents make it possible to efficiently overlap 

communication and computation, and provide greater efficiency for random 

communication. Nonadjacent cells in the array communicate without disturbing 

the computation on intermediate cells. 

1-12 	 Preliminary 



iWarp cell 

iWarp component 

a Communication 
Agent 

.... .... . ... 

iWarp array 

Figure 1-7: iWarp system architecture 

The use of source cell routing and logical connection mechanisms provides the 

capability of reconfiguring the array for fault tolerance and graceful degradation 

on complex systems. Dead or suspect cell segments can be routed around, and 
tasks can be redistributed to meet the needs of demanding operational scenarios. 

As shown in Figure 1-8, each iWarp cell supports four full duplex I/O channels. 

Each 1/0 channel is labelled with a unique name XLeft, YUp, )(Right, or 
YDown. Each channel input or output bus has a sustained performance of 40 
MBytes/s. This configuration gives a combined input data bandwidth of 160 

MBytes/s plus an output bandwidth of 160 MBytes/s per iWarp cell. The 

Computation Agent can use half of this bandwidth, 80 MBytes input and 80 
MBytes output, while sustaining a similar 160 MBytes/s data I/0 capacity with 

local memory. 
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Figure 1-8: iWarp cell I/O capacity 

Each cell has a peak performance of 20 MFLOPS for 32-bit single precision and 
10 MFLOPS for 64-bit double precision. The iWarp component contains 

600,000 transistors on a 540 mil square die and is packaged in a 280-pin, pin grid 
array (PGA) package. The component and its local memory (typically 18 static 

RAM components) take up the space of a 3"x5" index card (7.6 cm x 12.7 cm), 

approximately 15 square inches (96 square cm) of circuit board space. 

iWarp Communication and Computation Models 

Figure 1-9 shows the primary functional elements of the iWarp component 

architecture. The computation engine performs the computation and control 

tasks and is essentially serviced by the other functional elements. The 

communication pathway provides the interface to other cells in the array and 
handles message traffic between cells. The memory interface and 

spooler/streamer elements provide the interface between memory and both the 

computation engine and communication pathway. The XL channel of a cell's 

Communication Agent connects to the XR channel of a neighboring cell and 
vice versa. Y'U and YD connections are used in the same way. 
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Figure 1-9: Data pathways 

These functional units work together to perform a variety of sophisticated 

communication/computation functions that are classified as follows: 

• Express messages - Messages that route directly through a cell. 

• Systolic computation - Computation uses operands directly off the 

pathway. 

• Spooling - DMA between memory and pathway. 

• Streaming - Buffering systolic data through memory. 

• Memory-to-memory message passing - Standard message-based 

communication. 

• Memory-based computation - Conventional method of computation 

with operands in memory. 

Figure 1-9a illustrates the movement of messages that are not intended for the 

current cell and pass through unhindered. The cell pathway hardware 

automatically expresses them through the communication pathway and on to an 

adjacent cell. Routing information provided at the message level supports 

corner-turning or transfer of the message from an X connection to a Y 

connection, in effect, a ninety-degree turn. 

XL 

YU 

XR 
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a. Express messages 
	

b. Systolic computation 

Figures 1-9 a and b : Express messages and systolic computation 

Figure 1-9b illustrates the movement of data for systolic computation. Data is 

taken by the computation engine directly off the pathway, used by the 

computational task, and results sent back on the pathway to another processor in 

the array. 

Figure 1-9c illustrates a variation on systolic computing that supports buffering 

messages in memory. If the computation engine is busy, and a systolic message 

is received, the spooler can perform a DMA transfer of the data directly into a 

preassigned buffer in memory, holding it until the processor is available to 

respond. The data is then streamed out of memory and presented to the prOcessor 

by the streamer as if it had been received over the communication pathway. This 

feature ensures consistency in software, even though the data has been treated 

differently in hardware. 

MI CE 

CP
—,.. 

V 

c. Spooling and streaming d. Memory-to-memory messages 

Figures 1-9 c and d: Spooling and streaming and memory-to-memory messages 

Figure 1-9d indicates the movement of data for standard memory-to-memory 

message passing. In this case, the received message automatically goes into 

memory to be used by the processor at a later time, and messages sent from 
memory are spooled out in a like manner. The cell runtime system software 

supports spooling directly between process data spaces without using 

intermediate buffering. 
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Computation 
Agent 

and memory 

Communication Agent 

20x20 logical crossbar 

Figure 1-9e shows standard memory-based computation. A combination of 

communication activity is shown in Figure 1-9f. Express operations, 

memory-to-memory message passing, spooling, memory access, systolic, and so 

on, are all shown. Note that iWarp component hardware supports all of these 

communication/computation models simultaneously. 

e. Memory computation 
	

f. Combination 

Figures 1-9 e and!.  Memory computation and combination 

Logical Connections 

The physical buses that connect iWarp cells are time multiplexed into logical 

buses that allow several connections to share the same physical pathway. This 

division improves the use of physical buses, avoids deadlock, and minimizes data 
starvation problems for unbalanced tasks. As shown in Figure 1-10, logical 
buses can be viewed as a 20 x 20 crossbar. Logical buses are statically allocated 

to physical buses under software control. In both Figures 1-10 and 1-11, 
logical buses have been evenly distributed among the four physical channels and 
the Computation Agent. Different logical-to-physical mappings can be supported 

according to the application requirements. 

Figure 1-10: Physical and logical buses 
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Figure 1-11 illustrates the use of logical connections for an isolated segment of a 

two-dimensional iWarp array. Note the sharing of the physical bus between cells 

3 and 4 using two independent logical connections. Logical connections share 
the physical communication path in a time multiplexing manner. Priority is given 

on a round-robin word-level basis, taking into account active logical buses only. 
Physical bus bandwidth is not consumed by idle logical buses. 

Figure 1-11: Logical buses support sharing of physical resources 

iWarp Systems 

iWarp systems can be configured in a linear array or in a two-dimensional array 

with a mesh or torus topology. Each iWarp cell consists of an iWarp component 
plus memory. External I/0 interfaces to iWarp cells can be provided by 

implementing a dual-ported memory block within the memory space of a cell. 
The external interface accesses one port of the dual-port memory, and the iWarp 

cell accesses the other. 

Figure 1-12 illustrates this approach. In this model, interfaces are connected 

using iWarp cells on the loop-around connections. iWarp interface cells are 
contained in the host interface, the file server interface, and the video interface. 

The system is configured using Quad Cell Boards for the main processing array. 

Single Cell Boards, with their large memory capacity, are used for staging data 
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between external interfaces. Network access is provided to multiple users via the 

host local area network. Both Quad Cell Boards and Single Cell Boards are 

discussed in Chapter 2. 

Figure 1-12: iWarp system configuration concept 

Configurations 

Configurable iWarp systems and system building blocks can be used for 

applications research, system development, and rapid prototyping. These 
systems provide a wide range of configuration options, using boards, Cardcage 
Assemblies, and System Cabinets, as shown in Figure 1-13. Quad Cell Boards 

support four iWarp cells with .5 to 1.5 MBytes of memory per cell, and Single 
Cell Boards support 6 MBytes of memory per cell. Boards can be used in 
custom systems or configured in the standard iWarp Cardcage Assembly. 

Cardcage Assemblies are self-contained chassis, including a power supply, fans 
and a clock distribution board. Using the loop-around cables and interconnects, a 
wide range of system configurations are supported. System enclosures are 19-

inch RETMA racks. iWarp configured systems comply with UL, FCC, VDE, 
CSA, IEC, and GS regulations for safety and emissions. 



FULLY CONFIGURED SYSTEMS 

1 to 4 Card Cage Asm. per Cabinet 
1 to 4 Cabinets per System 

64 to 1024 Cells 
1,280 to 20,480 MFLOPS 

SINGLE CELL 
BOARD 

6MB/Cell 

CARD CAGE ASSEMBLIES 

16 Boards 
16 to 64 Cells 

320 to 1,280 MFLOPS 

QUAD CELL 
BOARD 

1.5 MB/Cell 

QUAD CELL 

BOARD 
.5 MB/Cell 

Figure 1-13: iWarp system building blocks 

Single Board Array 

A Single Board Array is provided for Sun workstations. This system provides an 

effective development environment for use throughout a development group or as 

an application accelerator for dedicated systems, as shown in Figure 1-14. 

iWarp Single Cell and Quad Cell Boards are supported in Single Board Array 

systems. Each Single Board Array supports one or four iWarp cells configured as 

a linear or 2x2 array, respectively. Up to eight boards can be configured in a 

32-cell array within a workstation. 
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iWarp arrays of 4-16 cells plus host interface 
are supported in a single SUN workstation. 

SINGLE BOARD ARRAY 

4 Cells, .5 or 1.0 MB/Cell 

1 to 8 Boards per Workstation 

80 to 640 MFLOPS 

Figure 1-14: iWarp Single Board Arrays and development systems 

The Significance of iWarp 

iWarp represents a major step forward in high-performance computer 

architectures and will have its greatest impact on the broad base of signal and 
image processing applications. For these applications, performance beyond the 

GFLOPS plus range has historically been accomplished only through 

special-purpose systems. iWarp provides for the first time a programmable 

system architecture that can be configured to meet both the computational needs 
and the 1/0 needs of these signal and image processing applications. iWarp's 

building block approach to construct very reprogrammable, high-performance, 
general-purpose systems, as well as special-purpose systems introduces a new era 
in parallel computing technology. 
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The iWarp Component 

The iWarp component is the basic building block of the iWarp system. Each 
iWarp component is a complete computer that includes 110 interfaces to connect 

many devices in a large array of processors. The iWarp component, combined 

with local memory, forms the iWarp cell, as shown in Figure 2-1. 

Local 
Memory 

 

A - Address 

D - Data 

C - Control 

 

Figure 2-1: tWarp cell 

The initial iWarp component package is a pin-grid array. 

Component Architecture 

The iWarp component architecture is divided into a Computation Agent and a 
Communication Agent. The Computation Agent and the Communication Agent 

function independently, so the processor does not have to participate in the 

communication process. This allows the communication activities of a cell to 
proceed without disturbing computation. Figure 2-2 shows a block diagram of 

the iWarp component architecture. 
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Figure 2-2: iWarp component architecture block diagram 
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Computation Agent 

The Computation Agent executes an individual cell's portion of an algorithm that 

has been distributed over an iWarp array of cells. The Computation Agent 

consists of the following functional units: 

• Register File Unit 

• Local Memory Unit 

• Instruction Sequencing Unit 

• Program Store Unit 

• Integer Logic Unit 

• Floating-point Unit 

• Streaming/Spooling Unit 

Register File Unit 

Figure 2-3: Register File Unit 

The 15-port Register File is the central element of the iWarp component 

architecture, routing data between functional units. The Register File is a 

general-purpose, multi-ported shared RAM containing 128 32-bit locations. 

Register File access is by bytes, half-words, words, or double words, depending 

on the instruction used. 

The Register File Unit supports nine read and six write operations in a single 

5Ons clock cycle. The Register File has nine standard ports, three each to the 

Integer Logic Unit, the Floating-point Adder, and the Floating-point Multiplier. 

The Register File also has two local memory ports and four special-purpose 

ports, or gates, that allow data from memory or the pathway to be placed in 
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predetermined locations in the Register File. This process of using a 

programmable gate to access the communication pathways is called streaming 

and is discussed further in the description of the Streaming/Spooling Unit. 

Local Memory Unit 

Figure 2-4: Local Memory Unit 

The Local Memory Unit provides the interface between the iWarp component 

and its local memory. The local memory contains both data and instructions, so 

the Local Memory Unit provides a direct interface to both the Register File Unit 

and the instruction cache in the Program Store Unit_ 

Local memory has two separate buses to maximize performance: a 24-bit address 
bus and a 64-bit data bus. Local memory can support up to 64 Mbytes in RAM 

and ROM and provides 20 MHz performance with up to 20 million memory 

accesses per second. 
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Program Store Unit 

Figure 2-5: Program Store Unit 

The Program Store Unit fetches instructions from Local Memory, stores them in 

an instruction cache, and provides them to the Instruction Sequencing Unit. The 

Program Store Unit contains a 1 Kbyte instruction cache and an 8 Kbyte 

instruction ROM. 

The instruction cache is divided into four sectors, with each sector containing 

four 64-byte blocks. The mapping of sectors is fully associative, but blocks 

within a sector contain contiguous addresses. Management of the instruction 

cache is transparent once it is initialized. 

The instruction ROM is divided into eight 1 Kbyte sections. The ROM contains 

initialization and start-up programs, as well as system routines. 
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Figure 2-6: Instruction Sequencing Unit 

The Instruction Sequencing Unit controls the flow of program execution by 

decoding all instructions, producing and distributing control signals to other 

functional units, evaluating their responses, and scheduling execution. The 

Instruction Sequencing Unit receives instructions from the Program Store Unit. 

Integer Logic Unit 

Figure 2-7: Integer Logic Unit 

The Integer Logic Unit is a full 32-bit processor, providing integer arithmetic and 
logical operations on 8, 16, and 32-bit data, and generating addresses for data 
access to local memory. The Integer Logic Unit runs at 20 million instructions 
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Figure 2-8: Floating-point Unit 

per second (MIPS). In a single 50-nanosecond instruction cycle, the Integer 

Logic Unit accesses two operands, performs a computation, and writes the result 

back into the Register File Unit. The long instruction word architecture of the 
iWarp processor allows the Integer Logic Unit to operate in parallel with the 

Floating-point Unit, generating a peak computing rate of 20 MFLOPS and 20 

MIPS for the iWarp cell. 

Floating-point Unit 

The Floating-point Unit contains a non—pipelined Floating-point Adder and 

Floating-point Multiplier. The Floating-point Adder and Multiplier each provide 
a peak performance of 10 MFLOPS on 32-bit operations and 5 MFLOPS on 
64-bit operations. The Adder and Multiplier run on a two-clock instruction 

cycle, each producing a result every 100 nanoseconds. In this time, the Adder 

and Multiplier can each access two operands from the Register File Unit, perform 

a computation, and write the result back to the Register File Unit. Double 

precision operations require a four-clock (200 ns) instruction cycle. The 
Floating-point Unit also contains bypass paths, so the result of a computation can 
be used as an operand in the next instruction, eliminating the need for an 

intermediate store and read of the result. 
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Streaming/Spooling Unit 

Figure 2-9: Streaming/Spooling Unit 

The Streaming/Spooling Unit is a sophisticated DMA controller that spools data 

from the Communication Agent to memory and streams data from memory to the 

computation units through the stream gates of the Register File Unit. If the 

processor is busy and it receives a message, the Streaming/Spooling Unit can 

direct the data into a preassigned buffer in memory, holding it until the processor 
is available. When the processor becomes available, the data streams out of 

memory to the processor. 

By removing blocked messages from the pathways and allowing unblocked 

messages behind them to proceed, spooling helps to relieve pathway congestion 

and improve overall performance. 
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Figure 2-10: Communication Agent 

The Communication Agent provides communication between cells in an iWarp 
array by controlling the transfer of data over the physical links between cells. 
Each cell in an iWarp array connects to its neighbors through four physical links, 
as shown in Figure 2-11. 

1-dimensional array 

2-dimensional array 

Figure 2-11: iWarp cell links 
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Each of the physical links has two unidirectional buses, one to transmit data and 

the other to receive data. Data is transmitted between cells in units called 

messages. Each message contains a header that has address and control 

information for that message. Bits 0-19 of the header contain the destination 

address for the message, and bits 20-23 contain control information. Figure 2-12 
illustrates a message header. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
31 
	

23 	2019 	 0 

Address 

Control 

Figure 2-12: Message header 

If an incoming message is addressed for the local cell, the Communication Agent 

delivers the message to the proper destination. If the message is addressed for 

another cell, the Communication Agent routes the message through to the next 
cell. 

In a two-dimensional array, it may be necessary for a message to change from an 

X to a Y, or from a Y to an X direction. If a change in direction is required, the 

appropriate control bit in the message header is set, and the Communication 

Agent performs the corner-turning operation that allows a message to change 

direction. 

Instruction Formats 

For greater flexibility and efficiency in controlling the functional units of the 

iWarp component, there are two iWarp instruction formats: a 96-bit compute and 

access instruction format, and a 32-bit general-purpose instruction format. The 

96—bit instruction format includes all frequently used operations, while the 32—bit 

instruction format constitutes a general—purpose RISC instruction set. 

The compute and access instruction has the benefits of a long instruction word 
architecture, which allows multiple operations in parallel. This instruction can 

perform floating-point add, floating-point multiply, two memory address 
computations and memory access operations, plus loop decrement and branch 

evaluation in two 50 ns clock cycles for single precision data. 

Both the floating-point add and floating-point multiply operations support 7-bit 

fields for their source and destination operands, allowing random access to any 
location in the Register File Unit. Reserved register locations in the Register File 

Unit provide high efficiency access to the pathways. 

Word three of the 96-bit instruction can specify either a 32—bit general—purpose 
instruction or two memory operations. The 32—bit instruction option is useful 
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-(16)- -(16)- 

Operand for 1st Read Access Operand for 2nd Read/Write Access 

when a general-purpose operation is needed during a compute and access cycle. 

Figure 2-13 illustrates the compute and access instruction format. 

Word 1 

-(2)- -(4)- -(4)- -(7)- -(7)- -(7)- 

J I 	I Data Mode _ 	FADD B operand ree , A operand reg K operand reg 

Word 2 

-(9)- -(2)- -(7)- -(7)- -(7)- 

Memory Control PAUL M onerand ref! N oPer-and ree _ R operand re2 

Word 3 (Option 1 

Word 3 (Option 2) 

432)- 

General—purpose Instruction 

Figure 2-13: Compute and access instruction format 

The general-purpose instruction format supports general control functions such 
as timer operations, pathway control, and event handling flow control. 

The floating-point adder supports operations in hardware, including add, subtract, 

compare, maximum, minimum, and binary log. Similarly, the floating-point 
multiplier supports multiply, divide, square root, and remainder in hardware. The 
general-purpose instruction format also supports data conversion operations and 

a full range of logical operations. This format also supports byte, half-word 
(16-bit), full-word, and double-word memory operations, as well as automatic 
read-modify-write in hardware for byte and half-word operations. Table 2-1 

summarizes the general-purpose instruction format functions. 
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Table 2-1: general-purpose Instruction Summary 

FUNCTION OPERATIONS 

General Control 
timer operation 

pointer control 

pathway control 

event control 

spool request 

execute instruction 

Flow Control 
call 

push 

pop 

branch 

return 

break 

enter loop 

stack control 

Extended Flow Control absolute call/branch 

indirect call/branch 

Floating-point Operations 

add 

subtract 

compare 

maximum 

minimum 

binary log 

multiply 

divide 

square root 

remainder 

Data Conversion Operations integer to floating-point 

floating-point to integer 

Integer/Logical Operations 

logical 

arithmetic 

bit 

rotate 

fmd MSB 

Memory Access Operations byte 

half-word 

full-word 

double-word 

The iWarp Boards 

There are two types of iWarp cell boards, the Quad Cell Board and the Single 

Cell Board. As their names imply, the Quad Cell Board contains four iWarp 

cells, and the Single Cell Board contains one iWarp cell. Each cell on an iWarp 

board consists of an iWarp component and its associated local memory. Both the 

Quad and Single Cell Boards are approximately 9 by 11 inches, and they operate 
at a minimum clock rate of 40 MHz, or 20 MFLOPS per cell. 

Each cell on the Quad and Single Cell Boards controls three LEDs mounted on 

its front panel. Two of the LEDs indicate cell status, and the third indicates an 
error condition. The boards also contain clock circuitry that synchronizes cells to 
within 5ns of each other in a Cardcage Assembly and within 25ns across multiple 

Cardcage Assemblies. 
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In addition to the Quad and Single Cell Boards, iWarp offers a Single Board 

Array that plugs directly into a Sun 3 or Sun 4 system. The Single Board Array 

is a Quad or Single Cell Board combined with a Sun interface board to form a 

complete iWarp array. The Single Board Array is approximately 14 by 14 inches 

for direct fit into the Sun workstation. 

Quad Cell Board 

The Quad Cell Board contains four iWarp components and four banks of local 

memory. Figure 2-14 shows the physical layout of the Quad Cell Board. 

Figure 2-14: iWarp Quad Cell Board 

The systolic pathways that extend off the Quad Cell Board are connected directly 
from the appropriate cell to a board edge connector. Each pathway coming off 

the board is capable of sustaining transfer rates of 80 Mbytes/s (40 MBytes/s in 
each direction). Figure 2-15 shows the pathway configuration for the Quad Cell 

Board. 
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Figure 2-15: Quad cell configuration 

Single Cell Board 

The Single Cell Board contains a single iWarp component and four banks of local 

memory. Figure 2-16 shows the physical layout of the Single Cell Board. 

Memory 
Expansion 
Connector 

iWarp 
Component 

Figure 2-16: iWarp Single Cell Board 
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As with the Quad Cell Board, the pathways that extend off the Single Cell Board 

are connected directly from the appropriate cell to a board edge connector. Each 

pathway coming off the board can sustain transfer rates of 80 MBytes/s (40 

MBytes/s in each direction). Figure 2-17 shows the pathway configuration for 

the Single Cell Board. 

V 	 V 
2YD 	 1YD 

Figure 2-17: Single cell configuration 

The pathways that are not connected to another cell are bypass connections that 

directly connect 2XL to 2XR and 2YU to 2YD on the board. 

Single Board Array 

The Single Board Array is a Single or Quad Cell Board combined with a Sun 

interface board to form a complete iWarp array. The Single Board Array plugs 

directly into a Sun 3 or Sun 4 system, providing a dedicated program 

development environment or a network performance accelerator. Up to eight 

Single Board Arrays can be connected in a single workstation to form a 32-cell, 2 

by 16 array. Figure 2-18 shows the physical layout of a Single Board Array with 

a Quad Cell Board. 
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Figure 2-18: Single Board Array with Quad Cell Board 

Local Memory 

Each iWarp board contains four banks of local memory. On the Single Cell 

Board, the single component has access to all four banks. On the Quad Cell 
Board, each cell has access to one bank. Each bank of local memory consists of 
18 SRAMs. 

Local memory can be expanded with the Memory Expansion Module. Memory 

Expansion Modules connect to a Single or Quad Cell Board through a connector 

residing on the board. Each Memory Expansion Module contains up to two 

banks of additional local memory, and up to four Memory Expansion Modules 
can be connected per board, allowing three times the local memory. In addition, 
each bank of local memory can be configured using one of two SRAM densities, 

allowing even greater local memory flexibility. Table 2-2 lists the available 
memory for each iWarp cell. The maximum amounts represent full use of 
Memory Expansion Modules. 
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Table 2-2: iWarp Cell Memory 

Available Memory per iWarp Cell (bytes) 

SRAM 

density 

Quad Cell Board Single Cell Board _ 

minimum maximum minimum maximum 

256K 512K 1.5M ' 2M 6M 

1M 2M 6M 8M 24M 

The 1M SRAM density is not available until 1991. 

The iWarp Cardcage Assembly 

The iWarp Cardcage Assembly is a standard 19-inch rack-mountable open-frame 

chassis that combines the following into a single assembly: 

• 17-slot cardcage 

• backplane 

• external device interface 

• power supply 

• fans 

Sixteen of the slots in the Cardcage assembly are available for Single or Quad 

Cell Boards. A single Cardcage Assembly can hold up to 64 iWarp cells using 

Quad Cell Boards or up to 16 iWarp cells using Single Cell Boards. Single and 

Quad Cell Boards can also be mixed within a Cardcage Assembly to allow even 

greater flexibility. 

The remaining slot in the Cardcage Assembly is reserved for the Clock/Sync 

Board. This board provides the necessary circuitry for synchronizing all cells 

within an iWarp array, even if the array extends to multiple Cardcage Assemblies. 

Figure 2-19 shows the iWarp Cardcage Assembly. 
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Figure 2-19: iWarp Cardcage Assembly 

Cardcage Assemblies can be connected to form larger iWarp arrays by using 

iWarp External Interface Boards. These boards plug directly into the appropriate 

cell pathways on the backplane. External Interface Boards also allow connection 

of other external devices to an iWarp array. Figure 2-20 shows an example of a 4 

by 8 iWarp torus array with a single external connection. 

External 
Connection 

- 	External 
A 77: Interface 

b A 1 4 Board 

Figure 2-20: 4 by 8 array with one external connection 
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The external connection to the iWarp array can be made at any of the loops in 

either the X or the Y direction. 

The iWarp System 

Flexibility is the key characteristic of the iWarp system. From one to four iWarp 
Cardcage Assemblies reside in a single System Cabinet, and up to four cabinets 

can be connected to form even larger arrays. With a system of four cabinets, an 

iWarp system can be extended to a 32 by 32 array of 1024 iWarp cells. Figure 
2-21 shows the iWarp System Cabinet, which contains up to four Cardcage 

Assemblies. 

Figure 2-21: zWarp System Cabinet 

The front door of the System Cabinet contains an LED display that shows status 

conditions for each iWarp cell housed in the cabinet. The LED display consists of 

four 8 by 8 LED arrays, with each array corresponding to one of the cardcages in 
the cabinet. Each pair of LEDs in the array corresponds to the status of a specific 

cell. There is also an error LED and a power LED for each array. 
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Diagnostics 

The iWarp diagnostics consist of self-tests for the interface board and a set of 

tests to ensure the integrity of the entire system. The interface tests are run at 

power-up or when a system reset is done. These tests ensure that the interface 

board is functioning correctly. The system test checks the data paths from the 

host to the interface and from the interface to the processor array. These tests 

can be run interactively or in batch mode. 
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iWarp Software Architecture 

iWarp software architecture supports high-performance computation in signal 

and image processing and scientific applications. iWarp's software environment 

is composed of a program development environment that resides on the host 

workstation and execution support that resides on the iWarp array. This software, 

which is closely tied to iWarp's hardware architecture, provides the following: 

• a host development environment supported on Sun workstations 

• a runtime environment supported on each iWarp cell and the host 

Parallel user code is executed on the array of iWarp cells. Sequential code can 

either run on the host or on a single iWarp cell. The software for the file server 

can also run on the I/O subsystem (see figure 1-12) or on the host. Figure 3-1 

illustrates the relationship between iWarp's software and hardware architecture. 

Figure 3-1: Relationship between iWarp software and hardware architecture 

The following lists summarize the software for the iWarp cell and iWarp array. 

The software listed is described in the following sections of this chapter. 

iWarp cell software 

compilers: 

• 

• FORTRAN 

• symbolic debugger 
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utilities: 

• linker/combiner 

• loader 

• librarian 

communication software: 

• blocking and non—blocking message passing using a mailbox paradigm 

• inter—cell communication mechanisms can be used to communicate 

between processes on a single cell 

• remote UNIX I/0 

libraries: 

• math libraries 

• subset of UNIX Sys V Library calls 

system functions: 

• memory allocation 

• user timers 

• multi—threaded programs based on Mach C-threads 

• priority-based preemptive scheduling 

• process (thread) control 

iWarp array software 

compilers: 

• Apply 

communication software: 

• blocking and non—blocking message passing using a mailbox paradigm 

• word—by—word user—programmed systolic communication 

• user—programmed spooling 

• request—response and RPC protocols 

libraries: 

• WEB 

system functions: 

• support for UNIX file I/0 to be executed on the attached host 

• low-level functional access to iWarp communication engine 

• remote thread creation and invocation 

iWarp host software 

• combiner 

• array allocation 

• array job management 
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iWarp Host Environment 

The host environment (the Sun system) includes program development software 

and software that supports communication between the host and the iWarp array. 

The host software grants access to the iWarp array and maintains the connection 

between a user's system and the iWarp system after access is granted. The 

program development environment for iWarp is supported on Sun workstations 

using SunOS. This environment provides UNIX-based program development 

tools such as: 

• cross compilers/assembler/linker 

• loader 

• debugger 

• diagnostics 

Figure 3-2 illustrates the structure of iWarp's host environment software. 

Figure 3-2: iWarp host environment 

iWarp Program Development Tools 

iWarp provides tools to develop, manage, link, load, and debug programs in a 

familiar UNIX environment. 
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The single-cell compilers 

The iWarp C and FORTRAN compilers are highly optimizing compilers that run 

on the Sun workstation and generate iWarp object code for individual iWarp 

cells. The compilers, assembler, linker, and loader have standard UNIX 

interfaces. The compilers pack multiple operations into each wide instruction 

word, allowing the iWarp hardware functional units to execute those operations 

simultaneously. The iWarp C compiler is an industry standard Kernighan and 

Ritchie C language compiler with iWarp-specific extensions that provide access 

to the systolic pathway. The iWarp FORTRAN compiler accepts standard 

FORTRAN77 source with VMS extensions and iWarp-specific extensions. 

The iWarp extensions for C and FORTRAN support 

• systolic communication support (send and receive primitives) 

• iWarp condition code checking support 

• sophisticated assembly code miming capability 

• pragma support for inlining specification 

Getting better performance 

To make a program run faster and take less space, the iWarp compilers employ a 

variety of optimizations to fully use the multiple functional units of iWarp cells. 

Two of these optimizations important to iWarp users are software pipelining and 

local code compaction. These code scheduling techniques allow the compilers to 

generate code with multiple operations in the same machine instruction. The 

following two examples discuss how pipelining and code compaction, two of the 

many optimization features of the iWarp compilers, support the iWarp program 

developer. 

With software pipelining, an iteration of a loop in the source program can be 

initiated before preceding iterations are completed. This technique exploits the 

repetitive nature of loops to generate efficient code for processors with multiple 

functional units. At any time, multiple iterations are simultaneously in different 

stages of the computation. The steady state of this pipeline constitutes the loop 

body of the object code. 

Software pipelining uses multiple functional units to perform the calculations of 

several iterations of a loop at the same time. The following example shows 

source code and pseudo assembler output that illustrate software pipelining of a 

simple loop. 

DO I = 1, 10 

A(I) = A(I) * C 

ENDDO 

Register r1  contains the iteration count minus 2 (10 - 2 = 8), and register r2 

contains the constant C. Registers r3  and r4  contain intermediate results. 

load al,r3  

fmul r21 r3,r4; 	load a2,r3  
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loop r1  

el f store r4,ai-2; 
	

tmul r2,r3,r4; 	load ai,r3 

store r4,an-1 	tmul r21 r3,r4  

store r4,a, 

In this example, three iterations of the loop are computed simultaneously. The 

"steady state" of the loop is shown on the line beginning with "el" (for, "end 

Loop"). On the i-th iteration, the load of A(I) takes place in parallel with the 

multiplication of A(I-1) and C, and the store into A(I-2). 

Code compaction can be performed anywhere there are enough source level 

operations to make the optimization worthwhile. The following example shows a 

sequence of operations typical of complex arithmetic. 

REAL = ( TEMP 1 * WREAL ) - ( TEMP 2 * WIMAG ) 

IMAG = ( TEMP1 * WIMAG ) - ( TEMP 2 * WREAL ) 

This example shows six operations, but with compaction, two of the operations 

can be overlapped, resulting in four instructions actually being used. Loading and 
storing of values can also be overlapped, giving a greater savings than this 

example implies. 

Some additional optimizations include: 

• redundant-instruction elimination 

• flow-of-control optimizations 

• algebraic simplification 

• peephole optimizations 

• function-preserving transformations 

• common subexpression elimination 

• copy propagation 

• dead-code elimination 

• induction variables and reduction in strength 

• constant folding 

• branch elimination 

• variable renaming 

• inline renaming 

• loop unrolling 



The linker and loader 

The iWarp linker acts much like the UNIX linker. It combines multiple, 

separately compiled modules into one object file ready to be loaded onto the cell. 

The iWarp linker also supports user-created libraries. The loader places certain 

linked files into specified cells. In addition, the iWarp loader handles segments 

of files and acts as an array-level combiner to resolve intercell resource issues. 

The debugger 

The iWarp debugger helps the programmer monitor the behavior of iWarp cell 

programs and gather information about the programs being run. It is an 

interactive symbolic debugger that supports application debugging for C, 

FORTRAN, and iWarp assembly language programs. Debugger breakpoints 

allow the programmer to suspend and examine cell or array programs and then 

continue or terminate execution. The debugger displays both high-level and 

assembly language program text and can be used from a window-based interface. 

iWarp Runtime Environment 

The runtime system manages the resources of the hardware on which it runs and 

provides the application programmer with a set of routines that can be called to 

use these resources. The iWarp runtime environment provides libraries and 

communication protocols supported on each cell, the host, and the file server. 

These libraries include runtime libraries such as mathematical and utility 

functions, I/0 libraries, and pathway libraries. The runtime environment works 

with the hardware to provide several internode communication paradigms for 

program development. The runtime environment includes: 

• C and FORTRAN runtime libraries 

• remote I/0 runtime libraries 

• basic nmtime system support 

• message passing protocol support 

• systolic protocol support 

Figure 3-3 illustrates the iWarp runtime environment software. 
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Figure 3-3: iWarp runtime environment software 

iWarp Runtime Libraries 

The runtime libraries include the standard C, FORTRAN, and 110 libraries, as 

well as special pathway runtime libraries. The pathway runtime libraries 

provide the programmer with a set of routines for low-level access to the 

pathway hardware. These routines also provide a high-level interface for 

opening and debugging ports and connections as well as creating and accepting 

messages. 

iWarp System Support 

iWarp's runtime system software provides a complete, yet low overhead 

management of the iWarp component's resources. This software has the basic 

services associated with general-purpose runtime systems plus some 
special-purpose services to handle the distributed nature of an iWarp array. 

iWarp provides a number of communication protocols that can be used to transfer 

data between cells or between a cell and host. These include high-level 
communication protocols, such as remote procedure calls and guaranteed arrival 

streams for the application programmer. Lower-level communication protocols, 
such as a data link layer, are for the user who intends to build higher-level 
protocols. In addition, multitasking provides support for asynchronous 

communication protocols that allow server processes to run in the background 

and provide service to communication requests as resources become available. 
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iWarp communication facilities support both memory-to-memory message 

passing communication and program-to-program word-by-word systolic 
communication. 

• Message-based communication is based on variable length, untyped 

messages that are sent or received from buffers in cell memory. The user 
calls send and receive primitives to transfer data, specifying the protocol 
that should be used to transmit the data. Sends and receives may be 
blocking or non-blocking, and a task can resynchronize with a 
non-blocking call to find out when the operation is completed. 

• Systolic communication allows the user to perform arbitrary 
computations on operands taken directly from the pathway without the 
overhead associated with memory-to-memory communication. Since the 

iWarp hardware and software are optimized for systolic data transfer, this 
method provides optimal performance for certain applications. 

iWarp facilitates both efficient message passing and flexible systolic 

communication by providing the required hardware support, discussed in 

Chapter Two. The hardware supports word-level flow control, logical buses, and 

streaming and spooling. Message passing communication is a commonly used 

model for coarse-grain parallel computation. Conversely, systolic 

communication is typically used for fine-grain parallel computation. 

Programming an iWarp System 

So far in this chapter, we have discussed the overall software environment, how 

it relates to the hardware environment, and the software tools for programming 

the iWarp system. 

The following program gives an example of what the user can do by 

programming the array in C. This approach requires that the programmer be 

familiar with the functioning of the cell array, but it offers great programming 

flexibility. As an alternative, the program developer can use the Apply language, 

which is specialized for image processing applications. Such programs are fairly 

easy to write in Apply. 

The following simple example shows segments of an iWarp C program that 

evaluates a polynomial. It demonstrates the solution of an n-th order polynomial 

at m data points using an n+1 cell ring array of iWarp cell processors. Each 

iWarp cell processor is connected to its right neighbor with two paths. Each of n 

cells computes one step of the Horner algorithm and passes the result to the right. 

The n+lth cell serves as a master cell. The master cell provides data and 

receives, stores, and prints the results. In this example, we are computing the 

following 5th order polynomial using 6 cells: 

P(z)..c.0z4+c1z3+c2z2+c3z+c4  

Figure 3-4 illustrates how data flows from the master cell around the array of 

cells. 
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Figure 3-4: Master cell and cell communication configuration 

There are two parts to the program: one part that runs on the master cell and one 
part that runs on each cell. The #include statements and the master cell program 
segment that reads in the data from the host and writes back the results have been 

omitted for brevity. 

static float c[5]; /*coefficients*/ 

static float z[5]; /*data points*/ 

static float p[5];/*results*/ 

static int nc; /*number of coefficients*/ 

static int nz; /*number of data points*/ 

main() 

register int i, tmp, error = 0; 

register float ftmp, fzero = 0.0; 

/*host input*/ 

if( pathway_init() ) return(1); 

sendi( GATEO, nc ); 

tmp = _receivei( GATEO ); 

sendi( GATEO, nz ); 

tmp = _receivei( GATEO ); 

/* send coefficients */ 

for ( i = 0; i < tic; i++ ) 

sendf( GATEO, c[i] ); 

/* send z and receive p */ 

for ( i = 0; i < nz; i++ ) 

sendf( GATEO, z[i] ); 
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sendf( GATE1, fzero ); 
ftmp = _receivef( GATEO ); 
p[i] = _receivef( GATE1 ); 

if( pathway_close() ) return(1); 

/* write results back to host */ 
return 0; 

This portion of the program runs on each cell. 

main() 

register int i, nc, nz; 
register float temp, coeff, xin, yin, ans; 
register float fzero = 0.0; 

if( pathway_init() ) return(1); 

no = _receivei( GATEO ); 
sendi( GATEO, nc-1 ); 
nz = _receivei( GATEO ); 
sendi( GATEO, nz ); 

/* capture the first coefficient 
* and pass the rest on. 	*/ 

coeff = _receivef( GATEO ); 
for ( i = 1; i < nc; i++ ) 

temp = _receivef( GATEO ); 
sendf( GATEO, temp ); 

/* Homer's rule 

for ( i = 0; i < nz; i++ ) 
xin = receivef( GATEO ); 
yin = _receivef( GATE1 ); 
sendf( GATEO, xin ); 

ans = coeff + yin * xin; 
sendf( GATE1, ans ); 

if( pathway_close() ) return(1); 
return 0; 

Apply: for Image Processing Applications 

Apply is a special-purpose, high-level language for image processing 

applications that frees the programmer from having to program low-level 

inter-processor communication. 



The Apply language: 

• provides per-pixel generation of the output image 

• allows a local operation to be written easily; more easily than with serial 

languages like C 

• has special functions for borders, image expansion, and reduction 

This language is designed for writing two-dimensional local operator 

algorithms. Apply generates parallel code that runs on an array of iWarp cells of 

any size. Apply and its implementation on iWarp is designed for implementing 

low-level vision algorithms such as: 

• edge detection 

• smoothing 

• contrast enhancement 

• thresholding 

• point operators 

• image addition, subtraction, multiplication, and division 

• image reduction and expansion 

• color conversion 

The Apply language simplifies programming two-dimensional image processing 

operations. Data objects are scalars and two-dimensional arrays of scalars having 

various types. These types include byte, integer, real, and double. Apply uses 

conventional expression syntax to specify computations on these data objects. 

Apply procedures are called from FORTRAN or C language main programs in 

much the same way as other procedures are called. On the calling side, 

arguments to the Apply procedures are declared according to syntax and 

semantics of the FORTRAN or C languages. Inside the Apply procedure, 

arguments are declared in a slightly different way, as required by the syntax and 

semantics of the Apply language. 

Image data from the calling program is transferred from the calling program to 

the array of computational cells on which the ApplS,  routine is executed. Results 

are returned to the calling program before control passes back to the calling 

program. This data transfer is normally invisible to the Apply programmer. 

Apply procedures can be compiled for sequential execution on the Sun 

workstation for convenience in debugging new code. This code can be run as a 

single native program on the Sun workstation or can be run on a single iWarp cell 

that is fitted with a large memory. Afterwards, the Apply procedure can be 

compiled for high performance parallel execution on an array of iWarp cells. 

An Apply program is a procedure that represents the inner loop of an 

image-to-image operation. The Sobel operator is a simple edge detection 

operation. The output is a combination of the horizontal and vertical edge values. 

An Apply implementation of the Sobel edge detector is shown in the following 

example. In this example, the operation is performed on a 3x3 window. The 
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horizontal edge value is horiz and the vertical edge value is vert. One of two 

different methods of computing imageout is used, depending on the value of 

type. 

procedure egsbl (imagein : in array (-1..1,-1..1) 	--1 

of byte border mirrored, 

type : const integer 

image : out byte) 
is 	 --2 

horiz, vert : integer; 	 --3 

begin 

horiz := imagein(-1,-1) + 

+ imagein(-1,1) 

- 2*imagein(1,0) - 

vert := imagein(-1,-1) + 

+ imagein(1,-1) 

- 2*imagein(0,1) 

if type = I then imageout 

--4 

else imageout := 

end if; 

end egsbl; 

2*imagein(-1,0) 

imagein(1,-1) 

imagein(1,1); 

2*imagein(0,-1) 

- imagein(-1,1) 

- imagein(1,1); 

:= sqrt(horiz*horiz 

+ vert*vert); 

abs(horiz) + abs (vert); 

--5 

- -6 

--7 

--8 

Line 1 defines the input, output, and constant parameters to the function. The 

input parameter imagein is a window of the input image. Line 1 also defines the 

input image window. The window is a 3x3 window centered about the current 

pixel processing position. This position is filled with the value 0 when the 

window lies outside the image. This same line declares the constant and output 

parameters to be floating-point scalar variables. Line 3 defmes horiz and vert, 

which are internal variables used to hold the results of the horizontal and vertical 

Sobel edge operator. 

The straightforward expressions on lines 5 through 7 implement the 

computation of the Sobel convolutions. 

The Apply programmer cannot control the order in which the Apply program is 

executed over the image. This restriction is the key to the easy mapping of 

Apply programs onto parallel computers. Because the order is unrestricted, the 

entire image can be processed in parallel if there are as many processors as 

pixels, or it can be processed in sections, one section per processor, if there are 

fewer processors than pixels. 

Figure 3-5 illustrates how the edge detection program works. 
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procedure egebl (imagoin : in array (-1..1,-1..1) of byte 
border mirrored, 

type : coast integer 
Image : out byte) 

1. 
horiz, vert 	Integer: 

begin 
horiz 	Unageln(-1,-1) 	2.imagein(-1,0) 

+ imagein(-1,1) - imagein(1,-1) 
- 2.imagein(1,0) - imagein(1,1) 

vert 	imagein(-1,-1) 	2.imagein(0,-1) 
imageln(1,-1) - imagein(-1,1) 

- 2.imagein(0,1) - Lmagein(I,1): 
if type - I then imageout :-agrt (horiz.horiz 

vert.vert): 
else imageout 	abe(horz) 	abs (vert): 

end if: 
end egsbl: 

 

 

 

 

Figure 3-5: Using Apply for programming 

Special features extend the power of the Apply language and match what is 

needed to write image processing programs. Apply provides the user with these 

important features 

• The apply program is written on a per-pixel basis rather than a 
per-image basis. 

• All the input parameters are input images; all output parameters are 

output images. 

• The const parameters are broadcast all across the image; all cells get the 

same value. 
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WEB Library Routines 

WEB is a basic library of routines, based on the Spider library for image 

processing. All of the Apply routines can be recompiled easily for C code 

generation and for different image sizes and number of cells. WEB consists of 

approximately 100 programs covering the areas listed below: 

• Basic image operations: add, subtract, multiply, divide images by 

images and images by constants, assign zeroes, assign constant inside 
region. 

• Convolution: convolution with a variable or constant weight window. 

• Edge detection: Roberts, Frei and Chen, Kirsch, Sobel Laplacian, 

Prewitt, Robinson, Kasvand. 

• Image greyvalue operations: clip threshold, remap greyvalues, reduce 

greyvalues. 

• Smoothing: adaptive local smoothing, median filtering, local maximum 

and minimum, iterative enhancements, texture image processing. 

• Binary image processing: detect borders, compute image of boundary 
points, connectivity, crossing, expand or contract, shrink components. 

• Conversion: byte to real, real to byte, polar to cartesian. 

• Color conversion: color to black and white. 

• Multi-level image processing: generate pyramid, reduce by half, double. 



Appendix: Computational Models 
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Computational models for parallel computers 

BY H. T. KUNG 

Department of Computer Science, Carnegie Mellon University, Pittsburgh, 

Pennsylvania 15213, U.S.A. 

Computational models define the usage patterns of a computer. They can be used to 

derive the architecture of the machine, provide guidelines for programming tools, 

and suggest how the machine should be used in applications. Identifying 

computational models is especially important for parallel computers, because their 

architectures and usages are still not well understood in general. 

This paper describes a number of computational models for parallel computers. 

These models characterize the communication patterns under which processors 

exchange their intermediate results during computation. Emphases are placed upon 
models for one-dimensional processor arrays, reflecting Carnegie Mellon's experiences 
with the Warp systolic array machine. These models include local computation, 
domain partition, pipeline, multifunction pipeline and ring. 

1. INTRODUCTION 

Many problems in science and technology are becoming so computationally demanding that 

conventional sequential computers can no longer provide the required computing power. 

Parallel computers have the potential to provide that power. A large number of parallel 

computers are commercially available. Shared-memory parallel computers include MIMD 

(multiple instruction multiple data) machines such as Alliant, Encore, Sequent, and Cray 

X-MP. Distributed-memory computers include MIMD machines such as Transputer, Warp, and 

Hypercube, and SIMD (single instruction multiple data) machines such as Connection Machine 

and DAP. Many more parallel machines of enhanced capabilities are under development. 

Successful use of parallel computers has been demonstrated in a number of application areas 

including scientific computing, signal and image processing, and logic simulation. 

It is useful to develop models to capture important ways in which parallel computers are 

actually used in applications. These models can be used to derive architectures of new parallel 

machines, provide guidelines for programming tools, and suggest how each machine should be 

used in applications. There are roughly three stages in solving an application problem on a 

parallel computer: 

step 1, application definition (e.g. by mathematical formula) ; 

step 2, computation specification (e.g. by program) ; 

step 3, computation on the parallel machine. 

Computational models described in this paper characterize the interprocessor communication 

behaviour of step 3. 

These computational models are based on our experiences in parallel algorithm design and 

parallel architecture development at Carnegie Mellon. In 1984-87 Carnegie Mellon developed 

a programmable systolic array machine called Warp, that has a one-dimensional (1D) array 

of 10 or more processing elements (Annaratone et at. 1987). The machine is currently 
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produced and marketed by General Electric Company. Anticipating the future need for 

integrated Warp systems, Carnegie Mellon and Intel Corporation have been developing a vLst 

(very large scale integrated) Warp chip, called the Marp chip. The iWarp system will be 

available in 1989-90. Our work in Warp and iWarp has shown us the importance of being 

explicit about computational models in the development of a new parallel architecture as well 

as its applications and programming tools. The paper will mention some of these insights. 

In this paper we describe computational models for 1D processor arrays. We use ID 

processor arrays because their simple structure makes presentation easy and we have extensive 

applications experiences with the ID array in Warp. It should be clear that the concepts 

presented here generalize to 2D or higher-dimensional processor arrays, and other parallel 

computer architectures. 

Section 2 provides background information on the Warp and /Warp systems. Nine 

computational models for ID processor arrays are presented in §3. Among them five models 

are frequently used on Warp. These are models corresponding to local computation, domain 

partition, pipeline, multifunction pipeline and ring. They will be discussed in more detail than 

the other models. The last section contains some concluding remarks. 

2. OVERVIEW OF WARP AND ZWARP 

2.1. Warp 

The Warp machine has three components: the Warp array, the interface unit, and the host, 

as shown in figure 1. We describe the machine only briefly here; details are available from 

a separate paper (Annaratone et al. 1987). The Warp array performs the bulk of the 

computation. The interface unit handles the input—output between the array and the host. The 

host supplies data to and receives results from the array, in addition to executing the parts of 

the application programs that are not mapped onto the Warp array. 

host 

interface interface 
unit 

cell 

L. 	  

cell 
(—) • 	HI 

War p array 

cell 
N 

cell 
N-1 

FIGURE I. Warp machine overview. 

The Warp array is a 1D systolic array with identical processing elements called Warp cells. 

Data flow through the array on two communication channels (X and Y), as shown in figure 1. 

The direction of the Y channel is statically configurable at compile time. By putting the Y 

channel in the opposite direction from the X channel, a ring interconnection can be formed 

inside the ID array. Another way to form a ring is to use the interface unit to connect the first 

and last cells of the array. 
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Each Warp cell is implemented as a programmable horizontal micro-engine, with its own 

microsequencer and program memory. The cell data path includes a 5 MFLOPS (5 x 106  

floating-point operations per second) floating-point multiplier (Mpy), a 5 MFLOPS floating-

point adder (Add), a local memory, and two data input queues for the X and Y channels. All 

these components are connected through a crossbar. An output port of the crossbar can receive 

the value of any input port in each cycle. Via the crossbar the floating-point units can directly 

access data at the front of any input queue, and insert computed results at the end of any input 

queue of the next cell. Data at the front of any input queue can also be sent directly to the next 

cell. A (much) simplified description of the Warp cell data path is given in figure 2. 

Mpv Add 

crossbar 

local memory 

FIGURE 2. Warp cell data path (much simplified). 

A feature that distinguishes a Warp cell from many other processors of similar computation 

power is its high I/O bandwidth, an important characteristic for systolic arrays. Each Warp 

cell can transfer up to 20 x 106  words (30 Mbytes) to and from its neighbouring cells per 

second. This high intercell communication bandwidth makes it possible to transfer large 

volumes of intermediate data between neighbouring cells and support fine-grain parallelism on 

the Warp array. 

The host consists of a Sun-3 workstation that serves as the master controller of the Warp 

machine, and a VME-based multi-processor 'external host', so named because it is external to 

the workstation. The workstation provides a UNIX environment for running application 

programs. The external host controls the peripherals and contains a large amount of memory 

for storing data to be processed by the Warp array. Its dedicated processors transfer data to 

and from the Warp array and perform operations on the data, with low operating system 

overhead. 

Warp programs are written in a high level PAscAL-like language called W2, which is 

supported by an optimizing compiler (Gross & Lam 1986; Lam 1987). To the application 

programmer, Warp is a 1D array or a ring of simple sequential processors, communicating 

asynchronously. Based on the user's program for this abstract array or ring, the compiler 

generates code for the host, interface unit and Warp array automatically. W2 programs are 

developed in a usP-based programming environment supporting interactive program 

development and debugging. A C or LISP program can call a W2 program from any UNIX 

computer on the local area network. 
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2.2. iWarp 

Carnegie Mellon and Intel are jointly developing a large VLSI chip, called the iWarp chip, to 

implement an integrated version of the Warp cell. The zWarp chip is a programmable 

processor capable of delivering at least 20 or 10 MFLOPS for single or double precision 

floating-point computations, respectively. This chip together with a local memory form the 

zWarp cell, is shown in figure 3. The zWarp cell is a powerful building-block cell for a variety 

of processor arrays, including ID and 2D arrays. With recompilation, the /Warp cell will be 

able to execute W2 programs originally written for the Warp cell. 

FIGURE 3. iWarp cell consisting of iWarp chip and local memory. 

The initial prototype zWarp system will have an array of 72 /Warp cells, with a peak 

performance of at least 1440 MFLOPS. To ensure that a large fraction of this peak 

performance can actually be realized in real applications, the zWarp array supports the 

following features: 

large local memory for the cells (at least 24 address bits) ; 

high bandwidth intercell communication (320 Mbytes s' ) ; 

2D or higher-dimensional interconnection; 

on-chip message routing hardware. 

Passing messages by a cell is handled by its routing hardware, and is transparent to its program. 

This implies that communication between non-neighbouring cells can now be easily 

accomplished. 

3. COMPUTATIONAL MODELS 

We will describe the following computational models for ID processor arrays: 

1. local computation; 
	

4. multifunction pipeline; 
	

7. divide-and-conquer; 

2. domain partition; 
	

5. ring; 
	

8. query processing; and 

3. pipeline; 
	

6. recursive computation; 
	

9. task queue. 

These models correspond to different ways in which cells interchange their intermediate results 

during computation. Under each model there may also be different ways in handling inputting 

and outputting for the processor array (see discussions below concerning the local computation 

model). Therefore the computational models are based on the communication behaviour for 

intermediate results rather than input and output. 
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The current Warp system uses the first five models mostly, whereas the future zWarp system 

will efficiently support all the models. Because of our experience with Warp, we will give more 

detailed descriptions for the first five models. The other models will only be briefly touched, 

mainly to indicate that there are other models which could be important for parallel computers 

to support. 

In the diagrams, cells in a ID processor array are denoted by square boxes, and named as 

cell 1, cell 2, ... , cell N from left to right. Solid arrows denote data flows of intermediate results 

between cells. 
3.1. Local computation model 

The local computation model corresponds to the case where cells do not exchang..,e their 

intermediate results during computation at all. Many computational problems have the 

property that elements in the output set are computed independently from each other. The use 

of the local computation model is natural in solving these problems on a parallel computer. In 

this model each output is computed entirely within a cell, and all the cells compute different 

outputs simultaneously. The main characteristic is that the entire computation for each output 

is done locally at a cell, i.e. the computation does not depend on intermediate results 

computed by other cells. 

Various methods can be used to take care of the inputting and outputting for each cell. For 

example, before or during computation, the required input to a cell can be shifted in via the 

cells to the left, and during or after the computation the output produced by a cell can be 

shifted out via the cells to the right. This is shown by figure 4, where dotted arrows denote the 

shift-in and shift-out paths for input and output, respectively. To achieve high performance, 

it is important that the I/O time and computation time can be overlapped as much as 

possible. 

FIGURE 4. Local computation model, with input and output shifted in and out. 

Many image processing computations involve transforming an input image to an output 

image, using a kernel operator defined by, say, a 3 x 3 window. Figure 5 shows such a 

transformation, with which each pixel in the output image depends on a neighbourhood of the 

corresponding pixel in the input image. Clearly, all the pixels in the output image can be 

computed simultaneously and independently. Therefore the local computation model applies 

here. The figure illustrates that four cells can work on the four subregions of the output image 

independently, provided that the input pixels needed by each cell's computation are pre-stored 

in the cell. Note that cells computing adjacent subregions have overlapped input; the larger 

is the kernel, the larger is the overlap. 

As shown by the figure, the partitioning of the image processing task for the local 

computation model is straghtforward. All that needs to be done is to partition the output image 

equally for all the cells. This partitioning has been automated; Carnegie Mellon has developed 

a compiler called Apply, which can generate W2 programs for image-processing computations 

based on kernel operators as described above, and other computations of similar kind (Harney 

et al. 1987). 
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input 	 output 

FIGURE 5. Local computation model for image processing using a kernel operator straightforward. 

Apply-generated W2 programs are able to overlap I/O with computation. While computing 

a row of pixels for the output image, a cell can output a previous row of pixels already 

computed and input a new row of pixels required for future computations. The Warp array 

supports this overlapping well, because the array has a high intercell communication 

bandwidth, and each cell is a horizontal micro-engine capable of performing several 

computation and I/O operations in each cycle. Because with Apply this overlapping is 

done automatically, Apply-generated Warp programs are often more efficient than the 

corresponding hand-generated code. 

There is another interesting form of overlapping input with computation for the local 

computation model. Although all the cells compute different parts of the output set, the cells 

may share some input. In this case the shared input may be pumped systolically from cell to 

cell during computation. In the following this is illustrated with a matrix multiplication 

example. 

Given n x n matrices A and B, we wish to compute their product Con a linear processor array 

of k cells. We assume that k is much less than n, and in the illustration below, k = 4. We evenly 

partition columns of B and C as shown in figure 6a. By using the local computation model, cell 

i will compute the entires of submatrix Cs. As its inputs, cell i needs A and B. Therefore input 

A is shared by all cells. Cell i will first load entries of B, into its local memory. Then during 

computation, entries of matrix A will be input to the left-most cell in the row-major ordering, 

and shifted to the right from cell to cell, as shown in figure 6b. Cell i will perform inner products 

B, B, B, B, 

(a)  

B, B, B, B, 

(b) entries of A 

cell 1 	cell 2 	cell :i 	cell 4 

FIGURE 6. Matrix multiplication: (a) partitioning of matrices B and C, and (b) distribution of the 

resulting submatrices of B to the cells; entries of A moving to the right during computation. 
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for all pairs of row and column in A and Bi, respectively. (Each entry of A will be input 

repeatedly as it will be used by each cell multiple times, one for each of the columns of B that 

the cell has.) Each inner product involves reading in a row of A from one of its input queues 

and a column of Bi  from the cell's local memory, and performing a sequence of multiply-

accumulate operations. By shifting in entries of A on-the-fly, each cell does not have to store 

the entire matrix. This can significantly save memory storage and access time for each cell 

Kung 1988). 

There are many other usage examples based on the local computation model. They include 

the discrete cosine transform (Annaratone et at. 1986) and the labelled histogram computation 

(Kung & Webb 1986). 

3.2. Domain partition model 

For some applications the computation shown in figure 5 is repeated many times; each time 

a new output image is computed based on the previous output image. This computational 

process, called successive relaxation (Rosenfeld 1977; Rosenfeld et at. 1976), is shown in 

figure 7, where the grids correspond to the images. 

gridt 	 grid 2 
	

grid 3 	 grid 4 

FIGURE 7. Successive relaxation. 

The successive relaxation process is often used in scientific computing. Consider, for example, 

the solution of the following elliptic partial differential equations using successive overrelaxation 

(Young 19711: 

E2,2/x2 ,32u/ay2 	y) .  

The system is solved by repeatedly computing values of u on a 2D grid using the following 

recurrence: 

= (1 — co) /k J  + 14-11)(L i  + 14, j_ 1 	j+  ± 	 /4_ 

where a) is a constant parameter. In the recurrence, values associated with location (i,j) of the 

grid have indices (i,j). 

Suppose that the partitioning scheme of figure 5 is used. Then when computing a new grid, 

each cell must import from its neighbouring cells some of the values computed for the previous 

grid. The required bidirectional data flows between neighbouring cells are shown in figure 8. 

With this example, the concept of the domain partition model can be easily introduced. The 

model arises when a problem domain (such as the grid space corresponding to an image, or to 
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FIGURE 8. Bidirectional data flows for successive relaxation. 

a finite-difference or finite-element modelling) is partitioned so that each cell handles a 

subdomain. This model differs from the local computation model in that each output is not 

computed entirely by a single cell. That is, once in a while the cell needs to receive 

intermediate results from its neighbouring cells before it can proceed further with its 

computation. Figure 9 shows the domain partition model. 

FIGURE 9. Domain partition model. 

There are many computations that can be naturally done with the domain partition model. 

Numerical simulations of properties of a physical object, formulated by either differential 

equations or Monte Carlo methods, can be partitioned along the physical space. A large file 

can be sorted on a 1D array by using the bidirectional communication to merge sublists sorted 

by individual cells. The merging can be done with only nearest-neighbour communications, in 

a manner similar to that used in the odd—even transposition sort (Baudet & Stevenson 19781. 

Labelling of connected components in an image can be done by using the bidirectional 

communication to merge labels in the subimages computed by individual cells ;,Kung & Webb 

1986). 	
3.3. Pipeline model 

There is another (elegant) method to carry out the successive relaxation computation shown 

in figure 7 on a 1D array. This method uses pipelining. Instead of the data space, i.e. the grid, 

we partition along the time axis. That is, successive relaxation steps are done on successive cells. 

In the row-major ordering, each cell receives inputs from the preceding cell, performs its 

relaxation step, and outputs the results to the next cell. Consider, for example, the successive 

overrelaxation computation described in §3.2. While a cell is performing the kth relaxation step 

on row i, the preceding and next cells perform the (k— 1) th and (k+ 1) th relaxation steps on 

rows i+2 and 1-2, respectively. Thus, in one pass of the u values through a k-cell processor 

array, k relaxation steps are performed. This process is repeated, until convergence is; achieved. 

In a similar way we can implement many other iterative methods such as Jacobi and 

Gauss—Seidel methods in a pipelined manner. 

In this pipeline model, the computation for each output is partitioned into a sequence of 
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identical stages, and cell i is responsible for stage i. A characteristic of this model is that cell i+ 

uses computed results of cell i, as shown in figure 10. Intermediate results move in one 

direction and final results emerge from the last cell. I/O and computation are automatically 

overlapped; this is a major advantage of the model. The pipeline model is natural when 

implementing systolic algorithms where the partial results move from cell to cell and get 

updated at each cell they pass (Kung 1982; Kung & Leiserson 1979). 

intermediate results 

input output 

stage I 	stage 2 
	

stage N 

FIGURE 10. Pipeline model. 

Under the pipeline model, cell i+ 1 cannot start its operation until cell i completes at least 

a stage of computation. Thus for this model minimizing the latency between the starting times 

of adjacent cells is a major concern. This is in contrast with the domain partition model, for 

which the starting time of a cell does not depend upon any computed results of other cells. 

For some computations the pipeline model represents the only efficient parallel 

implementation. To see such a case, consider a variant of the image processing task shown in 

figure 5. For this variant, in computing the value of each point, the new values of its neighbours 

will be used whenever possible. Suppose that using a 3 x 3 window, the computation follows 

the row-major ordering. Then computing the value of each new point uses the new values of 

the left neighbour and . the upper three neighbours, which were computed earlier. Local 

computation and domain partition models will not work here, as subregions of the image 

cannot be computed independently from each other. A way of using the pipeline model is that 

cell i computes values of points in row i in the left to right order. Cell i is pre-stored with values 

of points in rows i and i+ 1. During computation, a copy of each new value cell i computes is 

sent to cell i+ 1. Note that cell i+ I can start its computation as soon as cell i has computed 

the values of the first two points in row i. We have implemented a version of this pipeline 

computation on Warp to solve a path planning problem using a dynamic programming 

technique (Bitz & Kung 1988). 

3.4. Multifunction pipeline model 

A single computation may involve a series of subcomputations each performing a different 

function. If these functions can be chained together on a ID array, then a one-pass execution 

of the entire computation will be possible. This is the basic idea of the multifunction pipeline 

model (Gross et al. 1985). In this model, the ID array is a pipeline of several groups, each 

consisting of a number of cells devoted to a different function. The number of cells in each 

group is adjusted so that every group will take about the same time, to maximize the pipeline 

throughout. 

This model is illustrated in the following example, which is a laser radar simulation 

implemented on Warp. 
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Step I, for every 1024-point input block, perform a 1024-point complex FFr (fast Fourier 

transform). Partition each F yr output into 30 overlapped 256-element subsequences. 

Step 2, for each of the 30 x 256-element subsequences, perform the following operations: 

(i) multiply each element by a weight, which is a complex number; 

(ii) perform a 256-point complx inverse FF-r; 

(iii) compute the amplitude of each element in the output subsequences. 

Step 3: threshold the resulting 30 x 256 image using 3 x 3 windows. 

These steps are implemented with consecutive segments of the Warp array, as shown in 

figure 11. 

1024-pt 

input block 

cell 
1 

       

:30X256 
image 

        

     

IMM=.••• 

cell 
10 

   

cell - - - cell 

 

   

2 9 

 

1024-pt FFT 
and 

multiplication 

    

256-pt FFr 

  

amplitude 
and 

thresholding 

FIGURE 11. Multifunction pipeline model to implement a radar simulation on Warp. 

Figure 12 shows another possible use of the multifunction pipeline model in implementing 

the geometry system portion of 3D computer graphics. The first cell performs the matrix 

multiplications, the next three cells do clipping, and the last cell does the scaling operation. 

Three cells are devoted to clipping as it requires more arithmetic operations then either matrix 

multiplication or scaling (Hsu et al. 1985). 

     

=••)1 11•••11Mill 

 

     

input __)1  1111•11) 
	

1.•••)1 

	 output 

group 1 
(for matrix mult) 

group 2 
(for clipping) 

group 3 
(for scaling) 

FIGURE 12. Multifunction pipeline model to implement a geometry system. 

The multifunction pipeline model is useful when a computation requires a number of small 

functions, each of which is not large enough to make an effective use of all the cells in a ID 

array. Concatenating these functions in a chain offers an opportunity to use more cells 

effectively. Also, for some computations, it is inherent that one or few cells must perform 

functions different from the rest. For example, when performing a 2D convolution on a ID 

array, some cells need to buffer a row of image and none of the other cells need to do that 

(Kung 1984). For some computations, the first and last cells of a ID array carry out special 

functions such as interface with the outside world or preparation of data for the next phase of 

computation on the array. An example of this is a neural network simulation on Warp, where 

only the last cell performs weight updates based on weight changes computed by other cells 

(Pomerleau et at. 1988). 

To support the multifunction model, the processor array must allow heterogeneous 

programming, that is, different programs to be executed at different cells at a given time. 

Further, the rate of the input to a group may not be compatible to that of the output from the 



COMPUTATIONAL MODELS FOR PARALLEL COMPUTERS 367 

preceding group. Thus some buffering and flow control mechanisms need to be provided 

between each pair of cells. For the Warp array, all cells can be individually controlled, and 

dedicated hardware queues capable of performing flow control are available between adjacent 

cells. 

In summary, the multifunction model differs from the pipeline model described earlier in 

that cells are now allowed to perform different functions. This flexibility in the usage offers the 

opportunity of effectively using a large number of cells in a 1D array. 

3.5. Ring 

A ID array becomes a ring when the first cell is connected to the last cell. In the ring model 

intermediate results flow on a ring of cells. 

An important usage of the ring model is the implementation of a large 'logic array of logical 

cells, under the pipeline model, with a small 'physical' array of physical cells. One 

implementation is to have each physical cell handle a group of consecutive logical cells as 

shown in figure 13a. This will incur a large latency between the starting times of two adjacent 

physical cells, as the latency will be the sum of all the latencies incurred by those logical cells 

which are assigned to a physical cell. Another implementation is to use the physical array in 

multiple passes to simulate the function of the logical array, as shown in figure 13b. This 

multiple pass scheme can be implemented with a ring as shown in figure 13c. The ring is formed 

by using a queue to connect the last physical cell to the first. The queue can store outputs from 

the last physical cell while the first is still busy in doing its computation for the current pass. 

This ring scheme incurs the minimum latency between the starting times of two adjacent 

physical cells. 

L assigned to 	L.  assigned to J  I— assigned to 	assigned to —/ 
physical cell 1 	physical cell 2 	physical cell 3 	physical cell 4 

pass 2 	 pass :3 

-CPC—C1—C— 
	Mr < 	 

FIGURE 13. Implementing a large pipeline with a small physical array: a) each physical cell is assigned to a set of 

consecutive logical cells, (b) using the physical array in multiple passes and (c) using a ring to implement the 
multiple passes on the physical array. 

Another major use of the ring model is in the implementation of broadcasting. Many 

computational problems involve multiple levels of computation as depicted in figure 14a. Each 

value in a level depends on all the values computed in the previous level. For example, in the 

figure to compute b, in level 2 we need all the values in level 1, as indicated by the lines 

connecting 61  with al, a2, a3  and at. Therefore all the values computed in a level need to be 

broadcast to all the cells which will be computing values in the next level. An example of such 

a computational problem is the ,back propagation neural network simulation (Rumelhart et at. 

1986), for which levels of computation correspond to layers of the neural network. 

b) 

pass 1 

(c) 
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The ring structure can implement the broadcasting in a natural way, provided that the 

computation for each value is commutative and associative so that inputs in the previous level 

can be combined in any order. Figure 14b illustrates the idea, by considering how values in 

level 1 can be sent to cells computing values in level 2. Assume that every value in a layer is 

computed by a separate cell, and for each i the cell which computes a, will also compute by  

Then by pumping the ao around the ring for a full cycle, as shown in figure 14b, cell for every 

i) will be able to meet all the afs so it will have all the inputs to compute b1. The computation 

of b, will occur on-the-fly as each a, passes by. Therefore computation and I/O are totally 

overlapped. 

level 1 	level 2 	level 3 	level 4 

FIGURE 14. (a) Multilevel computation where results in one level are broadcast to the next level, 

and lb) use of the ring model to implement the broadcasting. 

3.6. Recursive computation model 

Recursive computations are those where results of the computation are used for computing 

future results. Examples are recursive filtering (Kung 1979), solution of triangular linear 

systems (Kung & Leiserson 1979), and QR-decomposition (Heller & Ipsen 1982). By flowing 

outputs that were previously computed against the flow of intermediate results that are 

currently being computed, recursive computations can be implemented. The important feature 

of the recursive computation model is the propagation of outputs in the opposite direction of 

intermediate results, as shown by figure 15. 

input -) 

   

output 

   

     

      

FIGURE 15. Recursive computation model. 

3.7. Divide-and-conquer model 

Divide-and-conquer is a fundamental technique in algorithm design (Aho el al. 1975). 

Under this design paradigm, we solve a problem by (1) partitioning it into subproblems of 

nearly equal size, (2) solving all the subproblems and (3) merging the solutions to the 

subproblems; this procedure is applied recursively to all the subproblems. Because of .this 

recursion, this partitioning scheme distinguishes itself from others used, in, for example, the 

local computation and domain partition models. Figure 16 shows the divide-and-conquer 

model. Each subproblem is carried out by one cell or a set of consecutive cells. When a 

(sub)problem is partitioned into subproblems or solutions to subproblems are merged, 
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(a) El(--)0 El(—)E1 Er—L1 

FIGURE 16. Divide-and-conquer model: (a) 1-apart communication; (b) 2-apart communication. 

communications between cells that are either 1-apart, -apart,...,*2 	or N/2-apart take place. 

These communications are depicted by solid arrows in the figure. 

The divide-and-conquer model for example can be used in sorting, and various geometric 

problems such as computing convex hulls (Preparata & Shamos 1985). 

3.8. Query processing model 

A ID array can be used to process queries. One way to do this is to have the database 

partitioned evenly among the cells. Then queries are passed to all the cells. Every cell looks at 

the arriving query and outputs its reply to the query. The query processing model is shown in 

figure 17. 

query --)1 

    

l• • 	• )1 

--> 

 

    

reply 

      

         

FIGURE 17. Query processing model. 

Consider for example the problem of looking for a table in an image. The particular table 

we are searching for is defined as having a rectangular top, which will appear as a 

parallelogram in the image. Initially, we do not know anything about the position of the table, 

except an upper bound on the size of its bounding square in the image. After extracting features 

such as lines and edges from the image, we partition it into regions whose sizes are at least that 

of the bounding square for the table. We assign each region to a cell. To balance the 

computational load between the cells, we define the regions so that there are about the same 

number of features associated with each region. Regions assigned to the cells are properly 

overlapped to ensure that the entire table is contained in at least one region. All the cells can 

work in parallel on their own regions to respond to the query: 

'list all sets of four lines that form a parallelogram'. 

Given the response to this query, the host or the cell that controls the searching process can 

predict the position of other sides of the table, and produce queries such as: 

'list parallel lines with a given orientation', 

to find the other sides of the table. 

The query processing model requires that the cells operate asynchronously, as when 

responding to a query they may have to perform different amounts of computations and may 

produce variable amounts of outputs. 

3.9. Task-queue model 

For all of the preceding models, cells work together for a common task, whether they are 

tightly coupled (as in the pipeline model) or loosely coupled (as in the local computation or 



task i + 3 

task i + 2 

task i + 1 

output 

FIGURE 18. Task queue model. 
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domain partition model). In contrast, the task queue model allows different cells to work on 

different tasks in one application. More precisely, a free cell can be dynamically assigned to 

execute any task in a task queue maintained by a cell or the host, as depicted by figure 18. Cells 

operate in a totally independent and asynchronous manner. Using this model, dynamic load 

balancing between cells is possible. The major concern in the implementation of this model is 

to minimize the latency between when a cell becomes free and when it starts doing a new task 

sent from the task queue. To use the cell effectively, this latency should not be larger than the 

time for the cell to execute the task. 

task queue 

The task queue model will be efficiently supported by the zWarp system. The on-chip 

message router at each cell will allow flexible communication between the cell (or host) that 

maintains the task queue and other cells. The communication will have low latency because 

of the available high bandwidth intercell communication channels. 

4. CONCLUDING REMARKS 

In this paper we have informally described a number of computational models for ID 

processor arrays. Among these models, local computation, domain partition, pipeline, 

multifunction pipeline and ring are frequently used by the Warp users. We have found that in 

terms of these models various applications usages of the machine can be easily described. Also, 

we can discuss how architectural features support these models. For example, the 1D systolic 

array is natural for the pipeline model; and the routing hardware is needed for the efficient 

support of the divide-and-conquer or task queue model. Moreover, these models provide a way 

to classify programming tools for the automatic generation of parallel programs. For example, 

the Apply programming tool is to generate parallel code for the local computation model. 

There are several ongoing research projects at Carnegie Mellon intended to generate parallel 

programs for the other computational models such as the pipeline model. 

For these reasons, we believe that computational models need to be made as explicit as 

possible in parallel computing. This paper represents an initial attempt to identify some of the 

models that seem to be important. Further work is needed to expand this set of models, and 

characterize them more precisely. Eventually, notations need to be developed to represent 

computational models. 

Many of the ideas presented in this paper were inspired by work done under the Warp 

project at Carnegie Mellon. I am especially indebted to those members of the project, including 

F. Bitz, G. Gusciora, H. Ribas, P. S. Tseng and J. Webb, for their implementation of some of 

the applications examples discussed in this paper. 
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GLOSSARY 

Apply. A special purpose high level language for 
image processing applications. 

cardcage assembly. See iWarp Cardcage Assem-

bly. 

cell. See iWarp cell. 

Communication Agent. The Communication 

Agent controls the pathways that provide inter—cell 

communications throughout the iWarp System. 

component. See iWarp Component. 

Computation Agent. One of two functional agents 

in the iWarp component, this agent executes the 

applications and service process. It consists of the 

Instruction Sequencing Unit, the Program Store 

Unit, the Integer Logic Unit, the Floating-point 
Unit, the Register File Unit, the Local Memory 

Unit, and the Streaming/Spooling Unit. 

compute and access instruction format. A 96—bit 
instruction format for high performance floating-

point computations. This format exhibits the bene-

fits of a long instruction word architecture. 

External Interface Board. A small circuit board 
that connects to the backplane of an iWarp Cardcage 

Assembly, allowing connection to other cardcage 
assemblies or external devices. 

Floating-point Unit. The Floating-point Adder 
and Floating-point Multiplier make up the Floating-
point Unit. 

host. The program development host to which the 
iWarp array is attached. In certain system configu-

rations, other software such as the file server or the 

sequential component of a user's application may 

also run on the host. 

general-purpose instruction format. A 32—bit 

instruction format for general-purpose require-

ments. This format has many of the features of a re-

duced instruction set computer architecture. 

Integer Logic Unit. This unit performs all integer, 

ordinal, and logical operations. The Integer Logic 

Unit is one of the functional units of the Computa-

tion Agent. 

Instruction Sequencing Unit. This unit provides 
the instruction execution sequencing and instruc-

tion decoding for all other functional units. The In-

struction Sequencing Unit is one of the functional 

units of the Computation Agent. 

iWarp. Inters Integrated Warp processor, a joint 

venture between Intel and Carnegie Mellon Univer-

sity. 

iWarp Cardcage Assembly. A 19-inch rack-
mountable chassis that combines a 17-slot card-

cage, backplane, external device interface, power 

supply, and fans. The iWarp Cardcage Assembly 
can hold up to 64 iWarp cells. 

iWarp Cell. An iWarp Cell consists of an iWarp 
Component and its local memory. 

iWarp Component. A component made up of a 

Communication Agent to handle networking be-

tween cells and a Computation Agent to provide 

floating-point, integer, and logical operations, as 

well as instruction sequencing control. 

local memory. The iWarp component's associated 
memory. The local memory combines with the 

iWarp Component to form an iWarp cell. 

Local Memory Unit. This unit provides the inter-
face between the iWarp Component and its local 

memory. 

Memory Expansion Module. A small circuit 
board that allows additional memory to be added to 

an iWarp Single or Quad Cell Board. 

message passing model. A course-grain commu-

nication model in which the unit of communication 

is a complete message. 

Program Store Unit. The Program Store Unit 
fetches instructions from local memory and pro-

vides them to the Instruction Sequencing Unit. 

Quad Cell Board. An iWarp board that contains 
four iWarp cells and four banks of local memory. 

Register File Unit. The Register File Unit is the 

central element of the iWarp Component architec-

ture. It routes data between all of the functional ele-

ments of the iWarp Component. 
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Single Cell Board. An iWarp board that contains 
one iWarp cell and four banks of local memory. 

Streaming/Spooling Unit. The Streaming/Spool-
ing Unit removes data from the pathways to 

memory and retrieves data to the computation units. 
The process of streaming and spooling helps relieve 
pathway congestion. 

systolic computing. Data flows, or is pumped, 

through an array of processors as it is used simulta-
neously in cell computations. 

systolic model. A fine-grain communication mod-
el in which the unit of communication can be as 
small as a single word in a message. 

Warp. The predecessor of iWarp, developed by 
Professor H.T. Kung and his associates at Carnegie 
Mellon University and General Electric. 
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A 

Adder, 2-7 

Address bus, 2-4 

Apply, 3-10 

Array, torus, 1-1 

Backplane, 2-17 

Board, 2-12 
External Interface, 2-18 
Quad Cell, 1-18,2-12,2-13 
Single Board Array, 2-15 
Single Cell, 1-18,2-12,2-14 

Bus 
address, 2-4 

data, 2-4 
logical, 1-17 

physical, 1-17 

C compiler, 3-4 

Cardcage Assembly, 1-19,2-17 
backplane, 2-17 

external device interface, 2-17 
fans, 2-17 
power supply, 2-17 

Carnegie Mellon University, 1-1 

Cell 

architecture, 1-12,1-14 
memory, 2-17 

pathways, 2-18 

Communication 
message—based, 3-8 
pathways, 1-6,1-12,1-15 

systolic, 3-8 

Communication Agent, 2-1,2-9 

Communication support software, 3-3 

Communication to computation ratio, 1-11 

Compiler, 3-4 

Compilers, 3-4 
C, 3-4 
FORTRAN, 3-4 
optimization, 3-4 

Component, 2-1 

architecture, 1-14,2-1 

Component architecture 
Floating Point Unit, 2-7 
Instruction Sequencing Unit, 2-6 

Integer Logic Unit, 2-6 
Local Memory Unit, 2-4 
Program Store Unit, 2-5 
Register File Unit, 2-3 
Streaming/Spooling Unit, 2-8 

Computation Agent, 2-1,2-3 

Compute and access instruction format, 2-10 

Comer—turning, 1-15 

DARPA, 1-1 

Data bus, 2-4 

Data movement, 1-16 

Debugger, 3-6 

External device interface, 2-17 

External Interface Board, 2-18 

Fans, 2-17 

Fault tolerance, 1-13 

Floating Point Adder, 2-7 

Floating Point Multiplier, 2-7 

Floating Point Unit, 2-7 

FORTRAN compiler, 3-4 

General purpose instruction format, 2-10 
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General purpose instruction summary, 2-12 

Host environment, 3-3 

Expansion Module, 2-16 
local, 2-5,2-16 

Memory Expansion Module, 2-16 

Message—based communication, 1-6 

Message-based communication, 3-8 

Multiplier, 2-7 

1/0 performance, 1-6,1-10 

Image processing, 1-4 

Image processing applications, 3-10 

Instruction format, 2-10 

compute and access, 2-10 
general purpose, 2-10 

Instruction Sequencing Unit, 2-6 

Integer Logic Unit, 2-6 

Interfaces, 1-18 

iWarp 

architecture, 1-12 
board, 2-12 

Cardcage Assembly, 1-19,2-17 
component, 1-12,2-1 
configurations, 1-19 
System, 1-18,2-19 

Kung, Dr. H.T., 1-2 

Optimization, 3-4 

Pathway configuration, 2-15 

Pathways, 2-18 

Physical pathways, 2-9 

Ports, 2-3 

Power supply, 2-17 

Program development software, 3-1 

Program development tools, 3-3 

Program Store Unit, 2-5 

Programming, 3-8 

Programming tools 
compiler, 3-4 

debugger, 3-6 
linker, 3-6 

QR decomposition, 1-7 

LED display, 2-19 
	

Quad Cell Board, 1-18,2-12,2-13 

Libraries, runtime, 3-7 
	

Quad cell configuration, 2-14 

Linker, 3-6 

Loader, 3-6 

Local memory, 2-5,2-16 

Local Memory Unit, 2-4 
	

Register File Unit, 2-3 

Long instruction word, 2-10 
	

Runtime environment, 3-1,3-6 

Runtime libraries, 3-6,3-7 

Matrix multiplication, 1-9 

Memory 
	 Signal processing, 1-4 

cell, 2-17 
	

Single Board Array, 1-20,2-15 
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Single Cell Board, 1-18,2-12,2-14 

Single cell configuration, 2-15 

Singular value decomposition, 1-7 

Sonar application, 1-7,1-8 

Spooling, 1-16,2-8 

Streaming, 1-16,2-8 

Streaming/Spooling Unit, 2-8 

System cabinet, 2-19 

System software, 3-7 

Systolic architecture, 1-9 

Systolic communication, 1-6,1-9,3-8 

Systolic computing, 1-16 

Systolic pathways, 2-13 

Systolic performance, 1-9 

T 

Torus array, 1-1 

Transfer rates, 2-13,2-15 

V 

VLSI, 1-1 
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