
Topics in the Engineering of Computer Systems

CHAPTER SEVEN: COORDINATION, ATOMICITY, AND RECOVERY

March, 1985

TABLE OF CONTENTS

Overview

Glossary

A. 	Introduction

B. 	Atomicity

7-3

7-3

7-7

7-10

1. Interpreters 7-10

2. interpreter sequencing 7-11

3. L.:.yers of interpreters 7-13

4. Example of atomic and non-atomic operations 7-17

5. Coordinating parallel interpreters 7-18

6. The definition of atomicity 7-22

C. Recovery 7-25

1. Reobvery models 7-25

2. Example: Atomic put using version numbers 7-29

D. 	Systematically achieving atomicity 7-35

1. Achieving atomicity: commit points 7-35

2. Achieving coordination atomicity 7-44

3. The mark-point-sequential algorithm 7-48

4. The read-capture algorithm 7-52

5. Making progress 7-56

7-2 	 Coordination, Atomicity, and Recovery

E. 	Logs and locks 	 7-58
1. Logs 7-58
2. Locks 7-65
3. Performance complications 7-67
4. Deadlock 7-71

F. 	Multi-site atomic actions 7-72
1. Hierarchical composition of atomic operations 7-72
2. Why multi-site atomicity is harder 7-77.
3. The two-generals' problem 7-78
4. Remote procedure call 7-80
5. Two-phase commit 7-81

G. 	Perspectives 7-84

Appendix 7-A: 	Case studies of atomic operations 7-91
1. Honeywell 68/80 7-91
2. IBM System/360 7-92
3. The Apollo desktop computer and the Motorola M68000 microprocessor 7-92

Appendix 7-B: 	A better model of disk failure, with atomicity algorithms 7-93
1. 	Algorithms to obtain stable storage 7-95

Appendix 7-C: Case study of System R 7-99
1. Transactions 7-99
2. System R file recovery 7-100
3. Questions 7-101

4. The recovery manager of a data management system 7-102

last page 7-122

© 1978,1980,1982,1984,1985 by J. H. Saltier

Coordination, Atomicity, and Recovery 	 7-3

Overview

This chapter explores two closely related system engineering problems: coordinating parallel

activities, and recovering from failures of an activity in a computer system. A single conceptual

framework, the atomic operation, provides a useful way of thinking about both of the problems. An

atomic operation appears either to complete or to do nothing at all (in the case of a failure) and it

appears to act either completely before or completely after every other atomic operation; in short

there is no way to discover that an atomic operation may actually be composed of several

suboperations. After defining atomicity and looking at some ad hoc examples of atomic operations

we explore systematic ways of achieving both failure atomicity and coordination atomicity. This

exploration has three major components: the conceptually elegant version history, the commonly

encountered log-lock system, and the use of messages to accomplish multi-site coordination.

Several case studits in the appendices provide real-world examples of atomicity as a tool for

recovery and coordination.

Glossary

atomic operation—An operation that, when performed by an interpreter, produces no externally

visible evidence that it might have been composed of intermediate steps. An operation may
be atomic under parallelism, which means that its internal composition is not noticeable by

other simultaneously operating interpreters. It may also be atomic under expected error,

which means that if some specified error occurs during the operation, the operation will
appear either never to have been invoked or else to have been accomplished completely.

atomic stable storage—Storage that is both atomic and stable.

atomic storage—Storage for which a multiword put operation can have only two possible outcomes:

1) all data was stored successfully, or 2) no data was stored; previous data unchanged.

(Compare with stable storage.)

back-out-list protocol—An atomicity logging rule in which each log entry contains a data object

identifier and its old value, so that if the system crashes before the atomic operation

completes, a recovery algorithm can use the log entry to undo the partially completed atomic

operation.

cell storage—Storage in which the write or put operation destroys old information. Most physical

storage devices such as magnetic disk or silicon transistor memory implement cell storage.

Cell storage has the problem that the act of writing commits the writer.

commit—For an atomic operation, to renounce the ability to abandon the operation unilaterally.

For example, one usually would commit an operation before making the results of the

7-4 	 Coordination, Atomicity, and Recovery

operation available to other operations. Before committing, the operation can be abandoned

and one can pretend that it had never been attempted. After committing, the operation must

be able to complete. A committed operation cannot be abandoned; if it can be determined

precisely how far its results have propagated, it may be possible to undo the operation by

compensation. (q.v.) Commitment also includes the expectation that the results will survive

any later failure either of the atomic operation or of the system as a whole.

compensation—Performing a set of operations that reverses the effect and all of the consequences of

some previously committed operation. Usually applied to situations in which it is nececcary

to track down and reverse other, a priori unknown operations that may have used the results

of the operation being compensated. (Compare with undo.)

deadlock—A cycle of parallel activities in which every member of the cycle is waiting for other

members of the cycle to complete before it can continue.

decay set—A set of storage blocks, words, tracks, etc., in which several or all members of the set may

spontaneously fail together, but independently of any other decay set.

detectable error—An error that can be reliably detected. An error that is not detectable is

automatically an intolerable error. (q.v.)

expected error—When the outcome of an operation is not the desired result, but is within some

range of anticipated undesired behavior for which an automated recovery strategy can be

devised. A prerequisite for an expected error is that it be detectable. In contrast, automated

recovery cannot be expected to cope with unplanned-for or undetectable errors. (Compare

with intolerable error.)

hint—Redundant information provided to improve performance. but whose integrity, currency, or

validity is not guaranteed. Some mechanism must always be provided for establishing the

currency or validity of a hint before it is relied upon.

idempotent sequence—A sequence of operations with the property that the sequence can be stopped

at any point and restarted from the beginning, any number of times, and still lead to a correct

result. (Note that "idempotent" is correctly pronounced with the accent on the second

syllable, not on the first and third.)

intentions-list protocol—An atomicity logging rule in which each log entry contains a data identifier

and its new value, so that if the system crashes after the atomic operation passes its commit

point, a recovery algorithm can use the log entry to redo any cell storage updates that were

lost in the crash.

interpretation level—The operation repertoire of a conceptual interpreter, usually composed of a real

interpreter and one or more programs. Other operations (e.g.. those of the real interpreter or

Coordination, Atomicity, and Recovery 	 7-5

of lower levels of interpretation) are not considered part of the repertoire: this restriction may

be accomplished either by fiat or by mechanical barriers.

interpreter—An active agent of a computer system: the entity that executes or evaluates functions,

programs, requests, commands, instructions, or operations. An interpreter is characterized by

a repertoire of operations that it is prepared to perform and a closure variable that identifies

the current point of interpretation and the environment in which the operation is to be

performed. An interpreter is a piece of hardware, typically supplemented by a program that

makes it appear to have a different repertoire of operations. See also the definitions of

repertoire and interpretation level.

intolerable error—An error that is either undetectable or not planned for, and therefore cannot be

handled by an automatic recovery strategy. (Compare with expected error and detectable

error.)

lock—A mark made by one operation to protect a data value from reading or writing by another,

parallel operation. Used to achieve coordination atomicity.

lock point—In a locking coordination system, the first instant in an atomic operation when every

lock that will ever be in the lock set has been seized.

lock set—The collection of locks held by an atomic operation when it reaches its lock point.

mutual exclusion—A coordination constraint among potentially parallel operations that they must

not operate simultaneously, but either may go first (Compare with sequence coordination.)

normal sequence—The usual operation of a interpreter, in which upon completing an operation the

interpreter embarks upon the next operation designated by the program being interpreted.

process—The abstract unit of parallel activity. The term "process" has been used so often without

careful definition or with varied definitions that it is now unsafe to use for precise

communication. The terms task, activity, locus of execution, execution point, virtual processor,

and thread have all been used in the literature for versions of this concept.

progress—A desirable property of a mechanism that coordinates parallel operations: that some

useful work get done. Its usual definition is that of the set of parallel operations being

coordinated, the coordination mechanism guarantees that it will not abort at least one of the

set. In practice, lack of a theoretical progress guarantee can be compensated for by a

try-again-later strategy.

raw storage—Storage that may fail, undetectably, at any time. (Compare with volatile storage.)

7-6 	 Coordination, Atomicity, and Recovery

recoverable object—An object whose overall representation is designed so as to survive expected

errors of individual storage components or expected errors of an interpreter that makes a

change to the object.

recoverable operation—An operation that is atomic under expected errors.

recovery log—An append-only record of a system that implements atomic operations. Generally

used to record old data values and completed or anticipated operation sequences to allow

undo-redo processing if an error occurs.

redo—To perform some operation again, typically as part of an error recovery scenario. As a

general rule, the data being operated on may not be the same as before, because other

transactions may have taken place in the interim.

remote procedure call—A protocol for invoking a procedure in a parallel processor that may fail

independently of the processor of the invoker. A too-simple remote procedure call protocol

may lead to uncertainty or duplicate invocations in some failure scenarios. With careful

design a remote procedure call protocol will reliably assure that the procedure is invoked

exactly once, no matter when failures occur.

repertoire—The set of operations an interpreter is prepared to perform or evaluate. Since one can.

by writing a program, construct operations not part of the original repertoire of an interpreter,

it is often useful to talk about the operation repertoire at a given interpretation level. (q.v.)

sequence coordination—A coordination constraint among potentially parallel operations that for

correctness one of the operations must precede the other. If they run in the wrong order, the

result may be incorrect. (Compare with mutual exclusion.)

sequence delay—When an interpreter waits for a signal from another interpreter before embarking

on the next operation designated by the program being interpreted.

sequence deviation—A sequence delay or a sequence disruption.

sequence disruption—When an interpreter does not proceed to the next operation designated by the

program being interpreted.

simple locking—A locking protocol for coordination of atomic operations that requires that no data

be read or written until after the lock point (q.v.) If the atomic operation is to be recoverable,

a further requirement is that no locks be released until commit time. Compare with

two-phase locking.

stable storage—Storage that never fails to return on a get the data that was stored by a previously

successful put. In practice, storage can be considered stable when the probability of failure is

Cooniinalion, Atomicity, and Recovery 	 7-7

sufficiently low that it can be ignored for the application. (Compare with volatile storage and

atomic stable storage.)

transaction—An operation composed of a set of smaller operations in a computer system. Often

used as a shorthand for "recoverable transaction", which is another term for an operation that

is atomic under expected errors.

two-phase commit—A protocol that creates atomic operations out of separate steps that are

implemented on different systems that can crash independently. The protocol goes through a

preparation phase, in which each site tentatively commits or aborts, and a completion phase,

in which one site, acting as coordinator, makes a final decision; thus the name two-phase.

Two phase commit has no connection with the similar-sounding term two-phase locking.

two-phase locking—A locking protocol for coordination of atomic operations that requires that no

locks be released until all locks have been acquired (that is, there must be a lock point.) If the

atomic operation is also to be recoverable, a further requirement is that no locks for objects to

be written be released until commit time. Compare with simple locking. Two-phase locking

has no connection with the similar-sounding term two-phase commit.

undo—To perform an operation that reverses the effect of some previously completed, but not yet

committed, operation. (Compare with compensation.)

volatile storage—Storage that may return on a get either the data that was stored on a previously

successful put or else a recognizable null value that indicates that the previously put data has

been lost. (Compare with stable storage and raw storage.)

write-ahead log protocol—A rule that requires that a log entry be written to stable storage before the

corresponding data in cell storage is updated.

A. Introduction

Most computer systems involve several activities that proceed somewhat independently of

. one another and in parallel, at least conceptually if not in reality. The independence is usually

constrained by the need to coordinate the activities. For example. one would want to make sure that

two airline agents do not sell the same seat, that a bank transfer involve both a credit to one account

and a debit to another, that opening of a vent in an oil refinery be verified before application of heat

to the contents of a tank, that batches of printed output lines from two computer users not end up

interleaved on the paper. All these constraints require that the system designer have a

well-developed technology of coordination of parallel activities.

Whether or not the activities of a system proceed in parallel, errors may occur during system

operation. Errors may occur for many reasons: a failure in the electronic hardware, a mistake in a

7-8 	 Coordination, Atomicity, and Recovery

program, an out-of-reason data value arriving as an input to the system. the breakdown of a piece

of mechanical equipment such as a badge reader. Whatever the source of the error, it is usually a

requirement of a system design that errors be handled in a systematic, graceful way. An important

insight on error recovery comes from the realization that when an activity encounters an error, that

line of activity is effectively blocked, at least until some recovery action occurs: the activity following

the recovery action operates conceptually in parallel with the original activity, as suggested by figure

7-1. Thus the technology of coordinating parallel activities plays a part in error recovery. One of the

key approaches in providing for recovery after an error is the same systematic design technique

required to allow coordination.

Conversely, it is often the case that correct coordination of parallel activities implies that one

activity should be delayed on the chance that another will interact with it: but it may turn out that

no interaction will actually happen: one must actually perform one or both activities to find out.

Delaying one until the other is complete is the safe course. If such delays are common, they may

affect performance. Therefore, a common design strategy is to estimate the chance that an

interaction will actually occur in practice, and if it seems small enough, allow both activities to

proceed, with the intention of detecting an interaction if it does happen, and treating it exactly as

though an error occurred, with recovery and restart of one or both activities. Thus again we find

that the techniques of error recovery and the techniques of coordination have common elements.

The systematic design technique previously mentioned involves the concept of atomicity.

Atomicity is the performing of several operations so that they appear to be a single step. Parallel

activities that are not part of the atomic operation have no opportunity to influence the result once

the operation starts and can observe no intermediate results. In the case of an error, atomicity

means that there are no leftover partially completed effects that can be discovered above the level

that performed the atomic operation. Thus in this chapter we explore first the concept of atomicity

and techniques for achieving it, and then the methods by which these techniques are used to

accomplish coordination of parallel activities and recovery from errors.

Ideally, these techniques should be able not just to do the required coordination and error

recovery, but to do so in a way that is easy to design. easy to understand (for later maintenance) and

for which it is easy to verify correctness. The importance of these desiderata should not be

underestimated, since the difficulty of discovering and diagnosing mistakes in coordination of

,parallel activities is orders of magnitude greater than that of finding mistakes in a single, purely

sequential. activity. The difficulty arises from the astronomical number of possible combinations in

the actual time sequences of even a few parallel activities. When a coordination mistake is noticed,

but the evidence is inadequate for diagnosis. it may be impossible to discover exactly which of many

possible sequences of operations actually happened. It is therefore effectively impossible to

reproduce the trouble under more carefully controlled circumstances. Thus techniques that tend

naturally to lead to correct coordination are particularly valuable.

/error detected
t

activity-,, XN-)

----original path of

activity

Coordination, Atomicity, and Recovery 	 7-9

recovery -

altered path of activity-'

4 	

'..region of parallel activity
and danger of miscoordination

activity progress

Figure 7-1. How error recovery can introduce parallelism into a purely sequential activity, and

consequently introduce the need for coordination.

7-10 	 Coordination, Atomicity, and Recovery

B. Atomicity

I. Interpreters

We have used the vague term "activity" to characterize something that might go on in parallel

with something else; this notion needs to be refined. Much of the literature of computer systems

defines an abstract unit of parallelism, usually consisting of a locus of control associated with a

sequence of values of state information. This unit is named variously: process, thread execution

point, task, or activity. This abstract unit of parallelism tends to get a bit elusive, especially when

one tries to understand what part, if any, of the computing environment is to be included; there

seem to be as many definitions as authors on the subject. For this reason, we take as our unit of

parallel activity the more concrete abstraction of a physical hardware processor. We call this

abstract processor an interpreter. Parallel activities are characterized by the apparently simultaneous

operation of two or more interpreters. Whether there exist real, physical processors to match the

number of interpreters is not important, at least conceptually.

An interpreter is characterized by three properties: 1) a repertoire of operations that it is
prepared to perform; 2) an environment identifier that leads to the programs and data that are to be

the source and target of the operations; and 3) a next operation identifier that keeps track of the

progress of the computation being interpreted. Note that we consider the environment to be an

abstraction distinct from the interpreter itself. This distinction makes it easier to discuss sharing of

information among interpreters.

If we consider a typical hardware processor as an example of an interpreter, these three

properties are manifest respectively as: 1) an instruction set; 2) a closure table pointer, a page map

base and stack pointer, or a cable to a memory box, depending on the sophistication of the memory

implementation; and 3) an instruction location counter that names the next instruction to be

executed. For simplicity, we can ignore any other registers of the processor. considering them to be

engineering refinements that transparently improve performance without affecting the fundamental

concepts. Probably the main reason for choosing our abstract unit of parallelism to be the

interpreter is the mental image this choice evokes of a real hardware processor. We shall in some

contexts refer to an interpreter as a virtual processor to emphasize the correspondence.

Another example of an interpreter is an interactive LISP programming system. In this case,

the three properties are again manifest: 1) the operation repertoire is the set of LISP language

operations; 2) the environment identifier is harder to find; it is the name of the active workspace

that contains the programs and data of the user; and 3) the next operation identifier is a variable not

usually of concern to the user that moves from one LISP statement to the next in the course of

executing functions; it often "points" to the input terminal, since that is the source of the next

operation to be interpreted. Note that we use the term "interpreter" to mean the combination of a

Coordination, Atomicity, and Recovery 	 7-11

hardware engine and the LISP language interpretation program that runs on that engine.[1] We

shall presently discover that this composite character of the interpeter turns out to be quite

important.

2. 	Interpreter sequencing

The normal state of affairs for an interpreter is to follow some program, operation by

operation. When one operation is complete, the interpreter proceeds to another, perhaps the next

sequential instruction, an alternative one because of a successful if test., a subroutine, or a signalled

procedure. In each of these cases, the next step is apparent by examining the program.[2] The term

normal sequencing applies to this usual case. There is also a variety of situations in which the normal

sequence cannot or should not be followed. We might call these situations sequence deviations. It is

because of the possibility of sequence deviations that we become interested in atomic operations.

There are two common kinds of sequence deviations: sequence delays, and sequence disruptions.

A sequence delay is a deviation only in timing of the operation of the interpreter. The next

operation follows the current one with the normal inevitability, but only after waiting for arrival of a

signal from some source outside the interpreter, usually another interpreter. Sequence delays may

be imposed upon the interpreter from the outside (perhaps because the real interpreter is being

multiplexed among several virtual interpreters.) in which case they are "invisible" to the running

program, or they may be requested by the running program by executing an operation to wait for a

signal or otherwise coordinate with some activity outside the interpreter.

Sequence disruptions are deviations in what operation is next to be performed by the

interpreter. The next operation supplied by the running program for some reason cannot be

honored, perhaps because of an error in that program or perhaps because of orders to that effect

arriving from outside the interpreter. Sequence disruptions can range from simply stopping the

interpreter dead in its tracks, through "backing it up" and undoing previously completed

operations, to diverting it to a completely different sequence. All of these kinds of sequence

disruptions are, in some semantic sense, "visible" to the running program, in contrast to the normal

sequence or sequence delays imposed from outside.

1. Frequently the LISP language interpretation program alone is called an "interpreter". That usage

of the term is almost always clear from context* though we shall avoid it.

2. We use the terminology of sequential programs here in order to be concrete. It should be

understood that a completely equivalent set of observations could be made using the terminology of

evaluating applicative functions.

7-12 	 Coordination. Atomicity, and Recovery

What real world situations might seem to call for sequence deviations, either delays or

disruptions? Here are some examples:

1. A hardware error for which there may be a way to recover:

- parity failure in memory

- dust on a disk

- unreadable tape

2. Software or hardware encounters something that may be wrong:

- attempt to divide by zero

- negative argument to square root subroutine

3. Dynamic binding or resource allocation is required:

- missing page

- context initialization was postponed, now needed

4. There is more important work to do:

- this job is running longer than expected

- the president wants an answer to a different question, now

- multiplexing/time-sharing

5. The user notices the first output values look wrong:

- calculating e, the program starts to display 3.1415...

- asked to print the wrong file

6. A deadlock has happened:

- job A has seized a tape drive, and is waiting for the printer

- job B has seized the printer, and is waiting for the tape drive

7. Several users want to update the same record:

- airline seat record

- bank account

- two typists editing the same memorandum

- two programmers making changes to a compiler

8. A user needs to change two records "at once":

- debit one bank account, credit another

- replace six pieces of the compiler simultaneously, so users get either all old or all new pieces

In the last two examples, it is not so obvious where the sequence deviations might occur.

Consider that if one interpreter is to accomplish the job, other interpreters may have to put up with

delays or maybe even disruptions.

Coordination, Atomicity, and Recovery 	 7-13

Although it may not be apparent just yet, all these examples of requirements calling for

sequence deviations can be framed in terms of wanting to see some sequence of operations

performed either completely or not at all: that is, an atomic operation is involved. To give some

insight into how this generalization might be a reasonable one, we first consider in detail how one

might handle errors detected by an interpreter, for which consideration we first look more carefully

into the structure of a typical interpreter.

3. 	Layers of Interpreters

Practical interpreters are usually built in layers, either systematically or otherwise, starting

with a hardware engine that has a fairly primitive repertoire of operations. and adding successive

layers of programs so as to provide an increasingly rich or specialized different repertoire of

operations. A full-blown application system may involve four or five identifiable layers of

interpretation.

Consider, for example, a word processing system for use in preparing correspondence and

memoranda. The word processing system as a whole is an interpreter of the requests coming from

the typist—requests to retrieve a file, to select a letter, to change part of the letter, to print it on a

hard-copy output device. The set of acceptable requests constitutes the operation repertoire of the
highest interpretation level.

The word processing system may be implemented in some programming language, such as

LISP, PASCAL, PL/I, or BASIC. Each request of the word processing system is typically

implemented not by one, but by a sequence of operations in the programming language. The

application program thus transforms the operation repertoire of the programming language into the

operation repertoire of the word processing system: if this transformation is done carefully and

completely, the typist will never notice any evidence of the composite nature of the implementation

or of the underlying operation repertoire of the programming language. The operation repertoire of

the programming language represents the next-highest level of interpretation of this system.

The programing language operations, in turn, may be interpreted by a lower level program,

which uses an operation repertoire of register loads and bit-test instructions, commonly called a

."machine language". Each operation of the higher level language typically requires several steps at

the lower level. Again, if this interpreter is carefully implemented, the composite nature of the

implementation in terms of machine language will be completely hidden from the programmer who

writes in the higher-level programming language.[1]

1. Usually, the interpreter for the higher-level language translates the program into a form allowing

more rapid interpretation: often the translation is into the machine language itself, in which case the

program has been compiled. We can ignore these translations as being refinements for efficiency

7-14 	 Coordination, Atomicity, and Recovery

Finally, the machine language itself, though apparently implemented by a piece of hardware,

may actually be created by a combination of a hardware microprocessor and a microprogram. The

microprocessor has an instruction repertoire consisting of simple data movement and control

branching operations: the microprogram interprets a single machine language instruction by

executing a sequence of operations from the microprocessor repertoire. Again, with careful design

the composite nature of individual machine instructions will be invisible to the machine language

programmer.

Thus our hypothetical word processing interpreter might actually be implemented in four

layers, as in figure 7-2. Each layer acts in conjunction with the layers below it to provide a complete

interpreter at the next higher level. The interpreter at any level accomplishes single operations in

the repertoire of the next higher level by a sequence of one or more operations in the repertoire of

its own level. The choice of the number of levels that should be implemented for a particular

application system and the exact nature of the operation repertoire of the intermediate levels is a

vast area of engineering design involving many tradeoffs among speed, cost, availability of

interpreter programs and hardware, and compatibility with other systems. Those considerations are

very important, but not our current topic. We are interested in this layered multilevel organization

for the insight it gives us into atomicity, coordination, and error recovery.

So consider now what happens if an error is detected by the lowest level interpreter, the

hardware microprocessor—maybe a register overflow condition. The microprogram is probably "in

the middle" of interpreting a machine language instruction, say an add instruction. The machine

language add instruction is from a part of the LISP interpreter program that is "in the middle" of

interpreting a LISP expression to scan an array. That LISP expression in turn is "in the middle" of

interpreting a request from the typist to change the name "Smith" to "Jones". Clearly, the report

"Overflow in register 4 while trying to execute microprogram instruction 4174" is not intelligible to

the typist: that is a description that is intelligible only at the microprogram level. Unfortunately, the

implication of being "in the middle" of higher-level operations is that the only accurate description

of the current state of affairs is in terms of the progress of the microprogram.

The actual state of affairs in our word processing example as understood by an all-seeing

observer might be the following: the overflow at the microprocessor level was caused by adding one

.to a register that contained a two's complement negative one at the machine language level. That

machine language add instruction was part of an operation to scan an array of characters at the LISP

level and a zero means that the end of the array has been reached. The array scan was embarked

upon by the LISP level in response to the typist's request to change the name "Smith" to "Jones".

The highest level interpretation of the error is thus "the name 'Smith' didn't appear anywhere in this

letter". We want to make sure that this report goes to the typist, rather than the one about overflow

in the microprocessor. Not only that but we want to be able to assure the typist that this mistake has

that, if done correctly, are invisible to all concerned and do not affect the conceptual layer structure.

Coordination, Atomicity, and Recovery 	 7-15

Interface

level

Typical operation from

the repertoire at this

level

Human user

generating

requests

<-- word processing

request level

Word processing

Application

Program

<-- LISP language

level

LISP Language

Interpreter

Procram

<-- machine language

level

microprogram to

interpret machine

language

<-- microprocessor

level

microprocessor

hardware

substitute "Jones" for

"Smith"

(eq (car N1) (car file))

add R1 to R2

move R1 and R2

to adder

Figure 7-2. Example of an application system that exhibits four levels of interpretation, each with

its own operation repertoire.

7-16 	 Coordination, Atomicity, and Recovery

not caused any changes to the file being edited; since the system couldn't do the requested change it

should do nothing at all except report the error.

To accomplish this goal, we introduce the concept of atomicity. A programmed sequence of

operations is atomic if, once embarked upon, the sequence always either

1. completes,

or

2. aborts in such a way that it appears that the sequence had never been undertaken in the first

place. We say that the programmed sequence backs out.

(This definition is in terms of purely sequential operations. We shall later need to generalize this

provisional notion of atomicity to cope with parallel operations.)

In our layers of interpreters, we want to design the operations of each level to be atomic. That

is, whenever an operation is carried out by a sequence of operations at the next lower level, that

sequence should be atomic. Every higher-level operation thus either completes as expected or else

backs out, actin as though it had not been invoked at all. The problem of being "in the middle" of

an operation thus is (at least conceptually) not a problem; if an error is discovered inside an atomic

operation at an awkward time, the operation will either complete gracefully or else act as though it

had not been invoked at all. In our word processing system example, we might expect that the

microprogram level would go ahead and complete the add instruction, with an overflow report to

the machine language level. The machine language level might then decide that its array scan has

failed, and return a report of "scan operation complete, string not found" to the LISP language

level; the word processing program would take this string-not-found report as a signal that it should

back up, completely undo any tentative changes, and inform the typist that the request cannot be

fulfilled. Thus some levels might run to completion, while others back out and act as though they

have never been invoked, but at every level the operations are atomic. In this word processing

example, the sequence deviation in interpreter activity would probably propagate all the way back

to the human user to find out what to do. Other sequence deviations might be intercepted by some

intermediate interpreter level that knows on its own an alternative strategy to follow. In that case,

that interpreter level will find it much easier to proceed if all the lower levels are atomic, so that the

state of the computation is intelligibly describable at whichever level handles the problem. (Note

also that while using atomic operations makes it easier for a programmer to deliver intelligible error

messages, it does not by itself guarantee that the message will be intelligible. Correct,

human-engineered design is still required.)

.4 	Atomicity is not usually achieved accidentally, but rather by careful design and planning. To

get some insight into what is involved, let us examine some examples of both non-atomic and

atomic operations.

Coorimation, Atomicity, and Recovery 	 7-17

4. 	Examples of atomic and non-atomic operationi

One of the simplest and most common examples of an atomic operation is sometimes

provided in the bus interface between a processor and a memory module. The bus may provide a

"hold" line that, when set high by a processor, prevents all other active bus participants from using

the bus. The purpose of this feature is to allow a processor to read a value from memory, change it,

and write it back, all without any other processor or input/output device changing the memory

value in the interim. The processor designer usually takes some special precaution to avoid

sequence deviations while performing one of these atomic read-alter-rewrite operations. For

example, if interrupts may arise from input/output devices, the processor may defer recognizing

them until the end of the atomic operation. Thus the operation of reading, updating, and rewriting

the memory value is guaranteed, once undertaken, to run to the end. (Or, if for example, the atomic

operation attempts to read a non-existent address, the operation can abort before changing anything

visible, and therefore appear never to have been tried at all.)

Non-atomic operations that are troublesome have often been discovered upon adding virtual

memory features to a computer architecture. Unless the original machine architect arranged things

so that every machine language instruction was an atomic operation, there will be cases in which a

missing page can be discovered "in the middle" of an instruction, after some information has been

irretrievably lost When such a situation arises, the designer of the virtual memory feature is

trapped. The instruction cannot run to the end, because one of the operands it needs is not in real

memory. While the missing page is being retrieved from secondary storage, the designer would like

to allow the processor to be used for something else (for example to run the program that fetches the

missing page) but reusing the processor requires that the state of the currently executing program be

saved, so that it can be restored later when the missing page is available.

If every instruction is an atomic operation, one can simply set the next-instruction pointer

back to point once again to the current instruction (that is, the one that encountered the missing

page) and then save the program's state. The resulting saved state description shows that the

program is between two instructions, one of which has been completely executed, and the next one

of which has not yet begun. Later, when the page is available, the program can be restarted simply

by reloading all the program-visible registers and transferring control to the instruction that

.previously faulted; this time it may succeed. When the instruction set is non-atomic, this simple,

clean interrupt scheme is not possible. Several techniques have been invented to "retrofit"

atomicity at the machine language level. Appendix 7-A describes some examples of machine

architectures and the techniques that were used to add virtual memory to them.

A second example of an interface that needs to be atomic is a call to a supervisor routine. For

example, a common supervisor function is one to read the next typed character from an attached

keyboard. There is a good chance that at the instant the application program calls the supervisor no

character has been typed yet, and the question arises as to what the supervisor should do. Different

systems choose one of three possibilities, the first one of which is non-atomic:

7-18 	 Coordination, Atomicity, and Recovery

1. The supervisor program waits for the user to type a character. Although this possibility is

conceptually simpler than the other two, note that the state description (for example, to an

application debugging program) is "blocked in the middle of the supervisor". If the supervisor

operates in a protection domain different from the user, this state description is not at all

helpful.

2. Unwind the call, adjust the return point to the original call instruction, and transfer directly to

the supervisor "wait" function. Now, if the user asks about the current state of his program, the

answer is "blocked, poised to execute a read call". This description is not only intelligible to the

programmer, the programmer can save it and then restore the program to that state later.

3. Return to the calling program with a zero-length result, expecting that the program itself can

cope with the problem. (The program would probably test the length of the result and if zero,

call the supervisor "wait" function.) This approach also leaves the programmer with a simple,

clean description of the current state of affairs.

The second and third alternatives correspond to the two possibilities in the definition of an

atomic operation. In the second alternative the supervisor program aborts in such a way that it

appears that the call had never taken place, while in the third alternative the supervisor program

completes every time it is called. Both alternatives make the supervisor programs atomic operations,

and both lead to a user-intelligible state description if a sequence deviation should happen to occur

while waiting.

In most systems, the collection of supervisor functions acts as a kind of programmed

extension of the machine language level, interposed between the application program and the

interpreter of the machine language. In terms of figure 7-2, one can talk of an additional level, just

above the machine language level, the supervisor language level. When viewed this way, it becomes

more apparent why it is of interest to design supervisor entries to act as atomic operations.

5. 	Coordinating parallel interpreters

In many computer systems it is a helpful abstraction to imagine that there are several program

. interpreters operating in parallel, simultaneously. The actual underlying hardware system may be

implemented with only a single (or a few) hardware processors that are multiplexed to produce the

effect of many virtual processors, or there may be direct hardware interpretation of some or all of

the virtual processors. Let us assume that multiplexing is successfully hidden from our

considerations, and that virtual processors, however created, are the units of interest for

coordination. Such parallel program interpreters each individually follow programs that appear to

be sequential in nature, so they do not represent any special problem until their paths cross. The

way in which paths cross can always be described in terms of shared objects. A shared object is some

piece of stored, changeable information that two different interpreters happen to take an interest in

at the same time. From the point of view of the programmer of an application, there are two quite

Coordination, Atomicity, and Recovery 	 7-19

different kinds of coordination requirements: sequencing and mutual exclusion. Sequencing is a
constraint of the type "W must happen before X". For correctness the first one mentioned must

complete before the second begins. For example, reading of input data from a typing keyboard

must be complete before the program to present that data on a display can operate. As a general

rule, sequencing constraints are anticipated at the time a program is written, and the identity of the

parallel activities is known by the programmer. Sequencing constraints are thus usually explicitly

programmed, using either special language constructs or, if such constructs are not available,
operating system entry points and shared variables.

In contrast, mutual exclusion is a constraint that two operations should not run at the same

time, but either one may operate first. One might put this "either W must happen before X, or else

X must happen before W". Generally, the programmer of one such operation, such as W in our

example, does not know the identity (e.g.. X) of the other operations that might require exclusion.

This lack of knowledge makes it difficult to accomplish mutual exclusion by explicit program steps,

and thus the programmer would be aided by automatic. implicit mechanisms that assure that mutual

exclusion happens when it is needed. Such implicit mutual exclusion can be achieved with the aid

of atomic operations. Consider, for example, a banking application. We might define a procedure
named "transfer" that debits one account and credits a second account, as follows:

transfer: procedvre(debitaccount, creditaccount, amount);

debitaccount <-- debitaccount - amount;

creditaccount <-- creditaccount + amount;

return;

If this procedure is applied to accounts A (initially containing $300) and B (initially containing $100)
as in

call transfer(A, 8, $10);

we expect account A, the debit account, to end up with $290, and account B. the credit account., to

end up with $110. Suppose, however, a second, parallel program interpreter is executing the
statement

call transfer(B, C, $26);

where account C starts with $175. We expect B to end up with $85 and C with $200. Further, this

expectation should be fulfilled no matter which of the two transfers happens first. The danger

occurs if the two transfers happen at about the same time. To understand this danger, consider

figure 7-3, in which several possible time sequences of read and write operations of the two

interpreters are illustrated. With each sequence is shown the history of values of the cell containing

the balance of account B. If both the operations 1-1 and 1-2 precede both the operations 2-1 and

2-2, (or vice-versa) the two transfers will work as expected, and B ends up with $85. If. however,

operation 2-1 occurs after operation 1-1, but before operation 1-2, a mistake will occur: one of the

7-20 	 Coordination, Atomicity, and Recovery

interpreter #1
	

interpreter #2

1-1 	read creditaccount(B)
	

2-1 	read debitaccount(B)

1-2 	write creditaccount(B)
	

2-2 	write debitaccount(B)

Six possible histories of account 8

operation

sequence

step value step 	value step 	value step value step 	value step value

r1-1 100 2-1 100 1-1 100 1-1 100 2-1 100 2-1 100

11-2 110 2-2 75 2-1 100 2-1 100 1-1 100 1-1 100

2-1 110 1-1 75 1-2 110 2-2 75 1-2 110 2-2 75

L2-2 85 1-2 85 2-2 75 1-2 110 2-2 75 1-2 110

desired result

undesired result

Figure 7-3. Possible histories if two interpreters with a shared variable do not coordinate their

activities.

Coordination, Atomicity, and Recovery 	 7-21

two transfers will not affect account B, even though it should have. The first two columns illustrate

the history of shared variable B for the two cases in which the answers are the desired result; the

remaining four columns show four different sequences leading to two undesirable values for B.

Thus we need to assure that one of the operation sequences of the first two columns is the one

actually followed. The best way to describe this requirement is that the two steps 1-1 and 1-2

should be atomic, and the two steps 2-1 and 2-2 should similarly be atomic. In terms of the original

procedure, the step

debitaccount <-- debitaccount - amount;

should be atomic. There should be no possibility that a parallel program interpreter that intends to

change the value of the shared variable "debit-account" read its value between the read and write

steps of this statement.

We can also find an example of a higher-level atomicity requirement in the same application.

Suppose the following audit procedure is available; its purpose is to verify that the sum of the

balances of all accounts is zero:

audit: procedure;

sum <-- 0;

for A <-- each account do;

sum <-- sum + balance of A;

, 	end;

If sum 0 0 call for investigation;

return:

Suppose that the audit procedure is running at the same time that someone else applies the transfer

procedure between a pair of accounts. If audit examines one of the accounts before the transfer and

the other account after the transfer, then the amount of money transferred will be picked up twice

(or not at all—depending on which account it examined first) and the audit will fail. So the entire

audit procedure should occur either before or after any transfer: we want the audit procedure to be

an atomic operation. Similarly, if the audit program should run after the statement

debitaccount <-- debitaccount - amount;

and before the statement

creditaccount <-- creditaccount 	amount;

audit will calculate a sum that does not include "amount": we conclude that the transfer procedure

itself ought to be an atomic operation. That is, the transfer operation should occur either completely

before or completely after any audit operation.

7-22 	 Coordination, Atomicity, and Recovery

6. 	The definition of atomicity

What exactly is the meaning of "atomic" with respect to coordination of parallel activities?

Our earlier notion that the sequence of sub—steps either completes or backs out is not sufficient;

there must be more to atomicity if the concept applies also to coordination. We replace our earlier,

provisional description of atomicity with this final, more general one:

An operation is atomic if there is no way to discover that its implementation is composite.

This definition is the fundamental specification of the concept of atomicity. We immediately

draw two important consequences of this specification:

1. From the point of view of an activity that invokes an atomic operation, the atomic operation

always appears either to complete as expected, or to do nothing but report why it cannot. This

consequence is the one that makes atomic operations useful in recovering from expected errors.

2. From the point of view of a parallel activity, an atomic operation acts as though it occurs either

completely before or completely after every other parallel operation. This consequence is the one

that makes atomic operations useful for coordinating parallel activities.

These two consequences are not really different. They are simply two perspectives, the first from

inside and the second from outside the operation itself; both points of view follow from the single

idea that the composite nature of the operation is not visible outside the operation. Such hiding of

internal structure is the essence of modularity, and we have here defined a strong form of

modularity. We are hiding not just the details of which operations compose the atomic operation,

but the very fact that it is composite. Note that we have used the phrases "appears to complete" and

acts as though" rather than demanding that an atomic operation actually do those things. This

apparently relaxed view is all that is required for correctness, and it leaves an opportunity for the

implementation to operate in any way that provides the atomic effect.

This slightly relaxed view is often stated in the following way: parallel operations are

. considered to be correctly coordinated if their result is one that could have been obtained by some

purely sequential application of those same operations. So long as the only coordination

requirement is mutual exclusion, any order will do. Underlying this perspective is a straightforward

modularity goal: being able to make an argument for correctness of a coordination mechanism

without getting tangled up in questions of whether or not the application using the mechanism is

correct. Figure 7-4 shows, abstractly, the effect of applying some atomic operation to a system: the

atomic o eration aol

Coordination. Atomicity, and Recovery 	 7-23

Figure 7-4. A single atomic operation takes a system from one state to another.

Figure 7-5. When several atomic operations act in parallel, they together produce a new state.

Figure 7-6. We insist that the final state be one that could have been reached by some sequential

ordering of the atomic operations. but we don't care which ordering. In addition, we do not need to

insist that the intermediate states ever actually exist. The actual state trajectory could be that shown

by the dotted lines, but only if there is no way of observing the intermediate state from outside.

7-24 	 Coordination, Atomicity, and Recovery

state of the system changes. If we assume

1. the old state of the system was proper, and

2. the atomic operation, performing in isolation, properly takes any proper old state to a

proper new state,

then we can reason that the new state must also be proper. Note that this line of reasoning holds for

any application-dependent definition of "proper", so our reasoning method is independent of that

definition and of the application. Now, our coordination requirement is that when several atomic

operations act in parallel, as in figure 7-5, the resulting new state ought to be one of those that

would result from some sequential ordering, as in figure 7-6. We do not need to insist that the
system actually traverse the intermediate states along any particular path of figure 7-6—it may

actually follow the dotted trajectory through intermediate states that are not by themselves proper

ones. However, so long as the system ends up in one of the acceptable final states, we can, for

purposes of argument, say that the final state is proper, because there exists a trajectory that leads to

that state for which a propriety argument can be applied to every step.

There is one aspect of correctness and invisibility of the composite nature of atomic

operations that we should note: there can be "benevolent" violations of atomicity, without

necessarily doing violence to the concept. A common example is an error log, in which atomic

operations that run into trouble record the nature of the error for later analysis. If the operation

were perfectly atomic, then when an error leads to rollback, the audit log would be rolled back, too;

but rolling it back would defeat its purpose—we prefer that the error log record the fact that the

atomic operation tried and failed. A further example of a benevolent atomicity violation occurs

often in data management systems: an atomic operation asks to insert a new record into a file, and

the data management system decides as a performance optimization that now is the time to

rearrange the file into a better physical order. If the atomic operation aborts, the rollback need only

insure that the newly-inserted record be removed; the file does not need to be restored to its older,

less efficient, storage arrangement. Similarly, a low-level cache that now contains a variable

touched by the atomic operation does not need to be cleared. Such benevolent side effects that

apparently violate atomicity are acceptable as long as they are not noticeable to the higher-level

.client of the atomic operation except perhaps in the speed with which later operations get carried

out, or when asking explicitly about errors.

We now have a complete definition of the concept of atomicity, and a conceptual framework

that allows us to test whether or not some proposed algorithm correctly coordinates parallel

activities. We have not yet identified a corresponding framework for discussing recovery in a

systematic way; that is the topic of the next section.

Coordination, Atomicity, and Recovery 	 7-25

C. Recovery

I. Recovery models

In order to talk systematically about atomicity and recovery from errors there are some

important distinctions regarding errors that help in the design of recovery algorithms. As a general

rule, one can design recovery algorithms to cope only with specific, expected errors. Further, a
recovery algorithm can cope only with errors that are actually detected Thus when making

arguments about whether or not a system design has satisfactory recovery procedures, it is helpful to

distinguish among three kinds of error events:

1. A detectable error can be detected reliably. If it occurs, we will discover it with certainty.

2. An expected error is one for which there is some procedure available for recovery.

3. An intolerable error is any error that is either undetectable or unexpected.

The term "intolerable" does not mean that the error cannot happen, but rather that if it does

the system should not be expected to meet its specifications—it cannot tolerate such errors.

Similarly, the term "expected" implies that even if such errors occur, the system should still operate

correctly—it is designed to tolerate such errors, provided they are detected. Figure 7-7 illustrates

how these kinds of error events overlap.

The usual effect of an error is that some part of the state of the system is wrong. A subtle

consequence of the concept of an expected error is that there must be a well-defined boundary

around that part of the state that might be wrong. The recovery procedure must restore all of the

,state within that boundary, using only information that is safely outside the boundary. The real

meaning of detectable, then, is that the error is discovered before its consequences have propagated

beyond this well-defined boundary.

The distinctions among detectable, expected, and intolerable errors are the basis for a

systematic recovery design procedure that goes as follows:

1. Analyze the system for all possible failure events. Categorize them into those that can be

reliably detected and those that cannot. At this stage, detectable or not, all errors are

intolerable.

Set of all
45 errors

Set of
detectable
errors,

Set of
expected
errors

Set of
tolerable
errors

7-26 	 Coordination, Atomicity, and Recovery

Figure 7-7. Detectable, expected, and tolerable errors. All errors that are not both expected and

detectable are intolerable,

Coordination, Atomicity, and Recovery 	 7-27

2. For each undetectable error, evaluate the probability of its occurrence. If not negligible, modify

the system design in whatever way necessary to make the error reliably detectable. Otherwise

the undetectable error will be the system's downfall.

3. For each detectable error, evaluate the probability of its occurrence. If not negligible, devise a

recovery algorithm for it and reclassify it as a tolerable error.

When finished with such a design procedure, the designer should have a useful recovery

specification for the system. Some errors, which have negligible probability of occurrence, will be

intolerable, while others will have specified recovery algorithms. A review of the system recovery

strategy can separately focus on two distinct (but sometimes confused) questions:

1. Is the designer's list of intolerable failures complete, and is the assessment of negligible

probability for them realistic?

2. Is the designer's set of algorithms to cope with the expected errors complete and correct?

These two questions are very different in nature. The first is a question of models of the real world.

It addresses an issue of experience and judgement about real-world probabilities and whether or not

all real-world modes of failure have been discovered. Two different engineers, with different

real-world experiences, may reasonably disagree on such judgements—they may have different

models of the real world. The second question is more abstract and also more absolutely

answerable, in that an argument for correctness—unless it is a hopelessly complicated argument—or

a counter-example showing an error that the recovery algorithm does not handle, should be

something that everyone can agree on. In system design, it seems very helpful to follow design

procedures that distinctly separate these classes of questions. When someone questions a reliability

feature, the designer can first ask "are you questioning the correctness of my recovery algorithm or

are you questioning my model of what needs to be recovered?," and thereby properly focus the

discussion or argument.

Let us apply this method of reasoning to a simple error-correcting code for memory wOrds,

just to see how it works. Suppose that with each 32-bit block of memory are stored enough extra

bits (in this case five) to allow any single-bit error to be corrected and any double-bit error to be

detected, using a standard encoding.[1] When one reads an encoded word from memory, before

1. A code that can correct all one-bit errors and detect all two-bit errors is constructed by cleverly

choosing as legitimate data values only some of the total number of possible bit patterns. The ones

that are chosen all have the property that to transform any one of them to any other, at least four

bits must be changed. Then, if one bit gets changed accidentally, not only will the result be

detectably wrong (since no legitimate code value has this pattern) but it is obvious which bit got

changed, since the result differs from only one legitimate bit pattern in only one bit value. If two

bits get changed, one can still detect that the coded word is wrong. but not decide which was the

original correct value, so two-bit errors are not correctable. If three or more bits get changed, the

resulting word may look like a one-bit error in some other value, and all bets are off. The

systematic construction of such codes is a field of study by itself. Chapter 9, section 7, suggests some

reading on the subject.

7-28 	 Coordination. Atomicity, and Recovery

applying the error-decoding algorithm, the following event analysis applies:

probability

desired event: 	all 37 raw bits are correct 	modest

undesired events:

expected: 	exactly one bit is wrong 	 0(p)

expected: 	exactly two bits are wrong 	0(p squared)

intolerable: three or more bits are wrong 	0(p cubed)

After applying the error decoding algorithm, the event analysis changes to:
probability

desired event: 	all 32 data bits are correct 	very high

undesired events:

intolerable: 	reported error (because two bits were wrong) 0(p squared)

intolerable: unreported error (because more than 	0(p cubed)

two bits were wrong)

The recovery algorithm has eliminated all the failures with probability of order p. It has not

eliminated the reported two-bit errors, so that one must be considered intolerable. (If this error

correcting code were embedded in a system that provided a recovery procedure for values reported

to be in error, we could reclassify the two-bit error as expected.) We can now question this design

on two independent points. First, we ask whether or not the estimate of bit failure probability is

realistic, and whether or not it is realistic to suppose that multiple bit failures are statistically

independent of one another (failure independence appeared in the analysis in the claim that the

probability of an n-bit failure has the order of the nth power of the probability of a one-bit failure.)

Those questions concern the real world, and the accuracy of our model of it. Second, we can ask

whether or not the coding algorithm actually corrects all one-bit errors and detects all two-bit

errors. That question is explored by examining the mathematical technique used to construct the

code values and is quite independent of anybody's estimate or measurement of real-world failure

rates.

Error-detecting codes are the usual method for reducing the probability of intolerable errors

in storage devices. All storage devices seem to be subject to physical failures of various kinds: an

attempt to read or write a bit may produce the wrong bit value, or a bit may spontaneously change

value. Storage that can fail without warning we label raw storage, and unless its probability of

. failure is extremely low, one must plan to apply some reliability-enhancing technique to it. In the

case of a primary memory technology where one-bit errors are the most likely problem, such as

electronic random access memory, one might store one extra bit with each byte, or a few extra bits

bits get changed. one can still detect that the bit pattern is wrong, but not decide which was the

original correct value, so two-bit errors are not correctable. If three or more bits get changed, the

resulting bit pattern may look like a one-bit error in some other value, and all bets are off The

systematic construction of such codes is a field of study by itself. Chapter 9, section 7, suggests some

reading on the subject.

Coordination,. Atomicity, and Recovery 	 7-29

with a larger block, coding the extra bits to allow detection of one-bit errors. In the case of a disk

memory, where bad spots in the magnetic medium may take out a group of adjacent bits, one might

record a "longitudinal cyclic redundancy check" code of 32 or more bits at the end of each track.

The details of the coding method are unimportant: what matters is that both of these techniques

transform the raw storage into what may be termed volatile storage: storage that may fail, but in a

detectable way. One must always keep in mind that there is a residual—one hopes very

small—probability that an error will alter enough different bits in such a way that the result slips

through without error detection. The definition of volatile storage is that the probability of

intolerable (that is, undetected) errors is small enough to be ignored, but the probability of

detectable errors is large enough that one must plan for them.

For long-term storage of files, volatile storage is not very satisfactory, so one usually resorts to

multiple-copy techniques, placing the copies on different physical devices so that the probability of

a detectable error in one copy is independent of the probability of error in the next one. A carefully

designed multicopy strategy can produce what is called stable storage, whose definition is that the

probability of any error. detectable or not, over the lifetime of the stored data, is so low as to be

negligible. Note in this regard that some physical storage media, such as electronic random access

memory, tends naturally to be best organized as volatile storage. because they depend on a

continuous supply of electric power and will reset if the power fails or the system is accidentally

unplugged. Because data stored in magnetic media, such as disk or tape, can survive power outages,
magnetic media are usually considered better candidates for the extra effort of a stable storage

implementation.

2. Example: Atomic put using version numbers

A realistic example of our recovery design procedure can become quite complicated. Let us

start with a quite simple model that allows us to implement an atomic operation for disk update.

The algorithm used in this model was first described in connection with the American Airlines

SABRE seat reservation system, in 1961.

We start with a processor and operating system that use a volatile primary memory and a

stable secondary memory (disk storage). If the processor and operating system components are

.designed without much thought given to system error recovery, it may actually be very difficult to

build a reliable system out of them. However, only a minor effort is required to do it right. As a

general rule, these two components do not have to be exceptionally reliable, but they do have to be

able to detect their own mistakes. This rule will be seen repeatedly in the following detailed set of

assumptions about these components.

7-30 	 Coordination, Atomicity, and Recovery

Processor/Primary memory/Operating system

desired events: 	Processor, memory, system follow specifications

undesired events: something goes wrong in hardware or operating system

expected: 	failure detected, processor goes to restart point

before any disk writes

intolerable: failure not noticed, processor muddles along

and writes bad data on the disk

In other words, the system must be designed to "crash" in a predictable, systematic manner

whenever anything goes wrong in either hardware or operating system software. This design

requirement does not forbid including in the system design local error recovery procedures that, for

example, retry failed instructions in the hope that they will work a second time. The essence of the

requirement is that any time the result is going to come out wrong, the system crash immediately

rather than continue without doing something about the error. Such a system is sometimes called

fail—fast. The part of the system state that might be in error is all processor registers and all of

primary memory. and the first step of recovery is to reset those registers and memory to zero.

Restart will thus depend entirely on the disk storage system to provide application state storage, and

any failure must be detected before anything incorrect gets written to the disk storage system.

Disk storage system

We assume the usual semantics of secondary storage. That is, there are two operations, Put

and Get. Most important, we assume that the secondary storage is stable. That assumption,

unfortunately, doesn't eliminate all undesired events, because a failure in the operating system can

still disturb secondary storage, as seen in this event breakdown:

Put(address, data)

desired event: 	all words of data are written at address

undesired events:

expected: 	system crashes during write; some new data has

overwritten some old data from the beginning.

intolerable: 	wrong data is written at address or the new data

is written at the wrong address.

Get(address, data)

desired event: 	previously written data is returned

undesired events:

expected: 	none planned

intolerable: 	previously written data is read with errors

Coordination. Atomicity, and Recovery 	 7-31

This mode) oversimplifies by assuming that the raw hardware provides stable storage directly; in a

real magnetic disk one would expect that the intolerable error category contains occurrences of

non-negligible probability. To meet this criticism, we later examine a better, but much more

complex model. But for the moment let us proceed to develop an atomic update algorithm, just to

see how it works. Note that all expected errors lead to the same situation: the system detects the

error, resets all processor registers and primary memory, and it restarts. If a disk write was in

progress at the instant of the crash, a single disk record may be partially overwritten with new data.

We also assume that when a crash occurs, the system will send a message to all attached

terminals alerting their operators of the crash: an agent in the middle of a transaction now wants the

atomic property to hold: either the transaction in progress is complete, or else it has not occurred at

all. The agent will inquire as to which, and then if necessary reenter the transaction from the

beginning. Finally, we nsume that a transaction involves writing exactly one disk block.

The problem, of course, is that the Put operation does not provide the atomicity we need. It
may overwrite only part of a disk record before the system crashes, and the next person to read that

record may find an unrecognizable mish-mash of old and new data there.

What we want to do is create "atomic disk storage," in which we guarantee either to change

the data completely and correctly or else not to touch it at all. The overall strategy is to write the

data twice, preceded each time by a version number, taking care to do everything in a predictable

craer, as in ine foiiok:;;,-, diagram:

order of writing

Vt Data VO Data

VI 	 Dl 	 V2 	 D2

Suppose for a moment that some record has been correctly stored in this double format, and

someone updates it with a new version. If the update follows the ordered double-write strategy,

even if a crash occurs in the middle of the update a later reader can always be assured of getting a

complete. consistent version of the data by reading all four records and examining the version

numbers. If V2 is identical to V1, then data D1 must be OK since V2 is written after DI is written

,and no crash could have taken place while writing Dl. Similarly, if V2 is different from VI, then

data D2 must be the old un-updated data, since the crash occurred before V2 was written. This

correctness argument depends on the supposition that the two copies were intact when the update

started, so the update algorithm should check to make sure they are intact before beginning the

update.

Figure 7-8 shows a complete version of this algorithm, with programs named atomic-get and

atonlic-put. In that figure the individual steps are labelled a through i, for reference in the following

discussion. We can make several observations about the algorithm of figure 7-8:

7-31
	

Coordination, Atomicity, and Recovery

atomic-get: 	get(V1, 01, V2, 02);

return (if VI = V2 then DI else 02)

atomic-put 	get(VI, DI. V2, 02); 	 a

if VI = V2 then (if D1 $ 02, put DI onto 02) 	b

else (put 02 onto 01: 	 c

put V2 onto VI); 	d

new-V <-- VI + 1; 	 e

put new-V onto V1: 	 f

put new-data onto Dl; 	 9

put new-V onto V2; 	 h

put new-data onto 02; 	 i

return;

I

Step identification for

the notes in the text

Figure 7-8. The SABRE double-write atomicity algorithm.

Coordination, Atomicity, and Recovery 	 7-33

1. This atomicity algorithm assumes that only one processor is working on the data That processor

can crash and restart any number of times: it can even crash during atomic-put and then do

atomic-get. But we don't have to consider the possibility that both atomic-get and atomic-put

are in progress simultaneously.

2. Steps b. c, and d of figure 7-8 are preparing for recovery in case a crash happens before

completing all steps of atomic-put. Step b takes care of the case that the previous use of

atomic-put on this data made it through step h but crashed in step i. Steps c and d fix things up

in case the previous use of atomic-put made it through step fbut crashed before getting through

step h.

3. Steps a through g of the algorithm are idempotenr, that means that one can crash out of them

and repeat them from the beginning any number of times with the same ultimate result as if no

crash had occurred.

4. Step h exposes the new data to atomic-get operations.

5. If we never get to step i it doesn't matter, since the next invocation of atomic-put will complete

the job in step b.

6. In the failure-free case, atomic-get does four reads, and atomic-put does four reads and four

writes, assuming each version numner and data copy is in a separate disk record. These numbers

can be halved by pairing version numbers with data in the same records, with no effect on

expected failures.

It is interesting to analyze the visibility of the data, as seen by a caller to atomic—get, during

the atomic-put operation. Figure 7-9 illustrates that at all times during the operation of atomic-put,

an atomic-get operation will return only completely old or completely new data. Whenever

atomic-put writes a data record, it writes on the copy that is hidden from atomic—get because of the

values of the version numbers. And whenever atomic-put writes a version number, the two data

copies are both known to be good copies. This visibility argument provides further confidence in

the correctness of the algorithm.

As noted earlier, a real magnetic disk provides raw storage that one could consider stable only

if the application had unusually high tolerance for lost data A somewhat more elaborate model of

disk failure modes would take into account the relatively high probability that a disk record may be

written or read incorrectly, or that it may spontaneously decay. Such a model, due to Larnpson and

Sturgis, is found in Appendix 7-B, together with the more elaborate recovery algorithms required to

deal with the additional expected error events, and thus produce real stable storage.

V
put (D

1
-+ D

2
)

no effect on
t atomic-get because)

V 	11
2

1

put D
2 	

D
1

put V -4-• 	-
2 	l'

new-V 4- V +
1

put new-V -4- V 	41kv
1

•

60'
1;

7-34 	 Coordination, Atomicity, and Recovery

atomic-put: get , DI , V2 , D2);

yes 	 no

(no effect on
,t atomic-get

/ 	because V V
I

2 N,

no 	 yes

N ‘,/ no effect on 	\

Y atomic-get because ,

\\ Di D2 if we get
N.Q.lis far

//no effect on
-I atomic-get because

D i D2 by the end of)
\every path to her",

put new-data ÷ •
'"N \I no effect on

atomic-get because \

V
1
 # V

2

kfp put new-V + V
2'

•

••• his step 	 no effect on /f
(exposes new data 	

put new-data D • 	 atomic-get because \\ 	
p 	

2'
\:1 V2 \ to a caller of

atomic- get

end

Figure 7-9. Visibility of data to a caller of atomic-get during operation of atomic-put when using

the SABRE double-write-with-version-numbers algorithm.

Coordination, Atomicity, and Recovety 	 7-35

D. Systematically achieving atomicity

Our definition of atomicity may lead us to believe that atomic operations would be nice to

have, but it offers no clue as to how to achieve atomicity. Our example of the SABRE disk update

algorithm demonstrates that atomicity can be attained, at least in some special cases, but again that

example offers little guidance as to how to create an atomic operation. We approach this subject by

first sketching a high-level, very general overview of how atomic operations are assembled,

introducing the idea of a commit point. Then we look at one systematic way to achieve atomicity for

both expected errors and coordination, using the idea of a version history. Finally, we look at logs

and locks, a pair of techniques commonly employed to achieve atomicity.

1. 	Achieving atomicity: commit points

Ideally, one might like to be able to take any arbitrary sequence of operations in a program,

surround that sequence with some sort of begin and end statements as in figure 7-10, and expect that

the language compilers and lower level operating system will perform some magic that makes the

surrounded sequence into an atomic operation. Although one can try hard to provide such a

friendly programming environment, it appears that the programmer always needs to make some

concession to the requirements of atomicity. This concession is expressed in the form of a discipline

on the lower-level steps of the atomic operation.

In its MOSE general form, the discipline consists of identifying some step of the sequence of

lower-level operations as the commit point. The atomic operation is thus divided into two phases, a

pre-commit phase and a post-commit phase, as suggested by figure 7-11. During the pre-commit

phase, the disciplining rule of design is that no matter what happens, it must be possible to back out

of this atomic operation in a way that leaves no trace. During the post-commit phase the

disciplining rule of design is that no matter what happens, the operation must run to the end

.successfully. Thus an atomic operation can have two outcomes. If the atomic operation backs out,

we say that it aborts. If the atomic operation passes the commit point, we say that it commits.

We can make several observations about the nature of the pre-commit phase. The

pre-commit phase must identify all the resources needed to complete the operation, and establish

their availability. The names of data should be bound, access control should be checked, the pages

to be read or written should be in memory, tapes should be mounted, space must be allocated, etc.

In other words, all the steps needed to anticipate the severe run-to-the-end-without-faltering

requirement of the post-commit phase should be completed during the pre-commit phase. In

addition, the pre-commit phase must maintain the ability to abort at any instant. Any changes that

7-36 	 Coordination, .,-Itomic•ity, and Recovery

begin atomic operation;

lower level operations

end atomic operation;

Figure 7-10. Imaginary semantics for painless programming of atomic operation&

<-- first step of atomic operation

pre-commit phase: can back out without a trace

<-- Commit point

post-commit phase: completion is inevitable

<-- last step of atomic operation

Figure 7-11. The commit point of an atomic operation.

Coordination, Atomicity, and Recovery 	 7-37

the pre-commit phase makes to the state of the system must be both invisible to parallel activities

and undoable in case this atomic action aborts. Usually, this requirement means that shared

resources, once reserved, cannot be released until the commit point is passed. (Once an atomic

operation releases a shared resource, some other, parallel operation may seize that resource

indefinitely. If the resource is needed in order to undo some effect of the first atomic operation,

releasing the resource is tantamount to abandoning the ability to abort.) Finally, the reversibility

requirement means that the atomic operation should not do anything externally visible (e.g., print a

check or fire a missile) prior to the commit point.[1]

In contrast, the post-commit phase can expose results to parallel activities, it can release

reserved resources that are no longer needed, and it can perform externally visible actions (e.g.,

print a check). But it cannot try to reserve anything, because an attempt to reserve might fail, and

the post-commit phase is not permitted the luxury of failure. The post-commit phase must confine

itself to finishing just the activities that were planned during the pre-commit phase.

Two concrete examples illustrate several of these ideas:

1. The dry run. This technique was used, for example, in some IBM System/360 processors to

ensure that the instruction set (which includes operations that touch several operands) is atomic

despite the possibility of missing pages in the virtual memory:

Pre-commit: Do a practice execution of the operation in order to generate its address trace, and

try to touch all the pages that will be required to complete it. If a missing page is

encountered, abort this instruction, fetch the missing page, then restart this instruction

from the beginning. The practice execution is carried out delicately, being careful not to

modify any of the programmer-visible processor registers.

Post-commit: Now do the operation for real, fetching the operands, all of which are, for the

moment, guaranteed to be in primary memory.

2. Work on a copy. This technique is used in some data management systems such as text file

editors to ensure that following a system crash the user does not end up with a file containing

some, but not all, of the intended changes:

1. We are intentionally avoiding a more complex and hard-to-verify possibility. Some systems

allow other, parallel operations to see uncommitted results. and they allow externally visible actions

before commit. Those systems must also be prepared to track down and abort those parallel

operations (this tracking down is called cascaded abort) and perform compensating external actions

(e.g., a send letter requesting return of the check or apologizing for the missile firing.)

7-38 	 Coordination, Atomicity, and Recovery

Pre-commit: Create a complete duplicate copy of the data file that is to be modified. Then,

make as many changes as desired to the copy.

Post-commit: Carefully exchange the copy with the original. Release the space that was

occupied by the original.

It should be apparent that the SABRE atomic put is a specialized version of the work-on-a-

copy strategy. These examples may increase our confidence that atomicity can be achieved in at

least some special cases, but we have not yet identified a systematic way to create atomic operations.

A fundamental difficulty confronts a designer trying to create atomic operations: memory,

when organized as a set of named storage cells, has semantics that are hard to cope with. The act of

storing data destroys old data; storing commits a new data value. If the atomic operation later

aborts, the old value is irretrievably gone; at best it can only be reconstructed from information kept

elsewhere. In addition, storing data in a cell reveals it to the view of parallel activities, whether or

not the atomic operation that stored it is ready for that exposure. If the atomic operation happens to

have exactly one output value, then writing that value into a memory cell can be the mechanism of

committing the operation, and there is no problem. But if the result is supposed ID consist of several

output values, all of which should be committed simultaneously, it is harder to see how to construct

the atomic operation. Once the first output value is stored, the computation of the remaining

outputs has to be successful: there is no going back. Examining the special technique of the text file

editor above ("work on a copy") provides a useful clue, however. The essence of the mechanism

that allows a text editor to make several changes to a file, yet not reveal any of the changes until

commit time, is the following: the only way another prospective reader of a file can get to read it is

by going through some catalog to find the file's physical address. Until commit time the editor is

working on an uncatalogued. and therefore effectively invisible, copy of the file. The operation of

cataloguing the new version (which might be accomplished by storing a pointer to it in a catalog

memory cell) is the step that makes the entire set of updates simultaneously visible to other

participants.

This observation suggests that atomic operations would be better served by a model of storage

that behaves differently: instead of a model in which a store operation overwrites old data, we

would instead create a new, tentative version of the data, in a way that the tentative version remains

invisible to all readers outside this atomic operation until the operation commits. We can provide

such semantics even though we start with a traditional cell-type memory by interposing a layer

between it and the user who requires tools to implement atomic operations. This layer can

implement version storage. The basic idea of version storage is quite straightforward: we associate

with every named object not a single cell, but a list of cells; the values in the list represent the history

of the variable. Figure 7-12 illustrates. Whenever anyone proposes to write into the object, the

version storage manager appends the prospective new value to the end of the list. Clearly this

approach, being history-preserving, offers some hope of being helpful. because if an atomic

operation aborts, one can imagine a systematic way to locate and discard all of the new versions it

wrote. Moreover, we can explicitly equip the version manager to expect to receive tentative values,

Atomic Version Storage System

begin-atomic-operation(id

read-current-value

(data, value. id)

write-new-value

(data, value, id)

commit-operation(id)

abort-operation(id)

Object Storage

System

read
	

- catalogs

write
	

- versions

create
	

- commit records

delete

Version

Manager

Coordination, Atonzicity, and Recovery 	 7-39

Variable A: 7 20 5 29 112 14

History of earlier values

18 :

tentative

next value

Current value

Figure 7-12. Version history of a variable.

Figure 7-13. Interface to and internal organization of an atomic storage system based on version

histories.

7-40 	 Coordination, Atomicity, and Rgcoery

and to be prepared to ignore them if the atomic operation that created them fails to commit. The

basic mechanism to accomplish such an expectation is quite simple: the version storage manager

should make a note, next to each new version, of the identity of the atomic operation that created it.

Then, at any later time, it can discover the status of the tentative version by inquiring whether or not

the atomic operation actually committed.

Figure 7-13 illustrates the overall structure of such a version storage system. In this particular

model, we assign to the version manager most of the job of providing tools for programming atomic

operations. Thus the implementer of a prospective atomic operation should begin that operation by

invoking the version manager entry "begin-atomic-operation", and later complete the operation by

invoking either "commit-operation" or "abort-operation". If in addition the atomic operation

performs all reads and writes of data by invoking the version manager's "read-current-value" and

"write-new-value" entries, our hope is that the result will automatically be atomic with no further

concern of the implementer. (We have somewhat simplified the version manager interface by

omitting calls to create and delete new objects. For the moment, our atomic operations will have to

restrict their interest to already existing objects.)

How could this automatic operation work? The first step is that the version manager, when

called at begin-atomic-operation, should assign a new, unique identifier to the prospective atomic

operation, and create, in a cell memory, a record of this new identifier and the state of the new

atomic operation. This record is called a commit record,. it begins its existence in the state

"uncommitted;" depending on the outcome it will eventually move to one of the states "committed"

or "aborted," as suggested by figure 7-14. No other state transitions are possible, except to discard

the commit record once there can be no further interest in its state.

When a client calls the version manager to write a new value, that client supplies the identifier

of the data object, a new value for the data object, and the identifier of the atomic operation that has

proposed this new, tentative data value. The version manager calls on the lower level storage

management system to create a new object to contain the version; it places in that cell the new data

value and the identifier of the atomic operation. Thus the version manager creates a version history

as illustrated in figure 7-15.

Now, when someone proposes to read a data value by calling "read-current-value," the

version manager can review the version history, starting with the latest version and, for example,

return the most recent committed value. By inspecting the commit records, the version manager can

ignore those versions that were written by atomic operations that aborted or that haven't yet

committed. The operations "read-current-value" and "write-new-value" thus follow the

algorithms of figure 7-16.

The important property of this pair of algorithms is that they make tentative changes invisible

outside the atomic operation that is proposing the changes. If atomic operation number 99 proposes

to change the values of nineteen different data objects, all nineteen changes will be hidden from

other readers until atomic operation 99 commits. Operation 99 reveals the entire set of changes

uncommitted Committed aborted

value: 24 115 75

atomic operation id: 1101 1423 1794

. Commit records

1101: 	1423: 	 t_ 1794.

Coordination, Atomicity, and Recovery 	 7-41

atomic operation

commits

non-existent 	uncommitted 	 discarded

new atomic

operation is

created 	atomic 	 state no

operation 	 longer of

	

aborts 	 interest

Figure 7-14. The allowed state transitions of a commit record.

Version history of the object named A

Figure 7-15. Portion of a version history, with commit records.

7-42 	 Coordination, Atomicity, and Recovery

read-current-value: 	procedure(data-id):

locate history of data-id;

starting at end of history, for each version v;

examine commit-record of atomic-action-id of v;

If committed then

return value of v;

else

skip v; continue backward search;

write-new-value: 	procedure(data-id, new-value, client-id);

locate history of data-id;

add new version v at end of data-id;

value of v <-- new-value;

atomic-operation-id of v <-- client-id;

return;

Figure 7-16. Algorithms followed by read-current-value and write-new-value.

Coordination, Atomicity, and Recovery 	 7-43

simultaneously and atomically, only at the instant that it changes its commit record from

"uncommitted" to "committed". Should atomic operation 99 run into any kind of trouble, or

should the system crash and forget completely that it was doing atomic operation 99, the

uncommitted versions will never be observed by any other operation that reads data using our

version manager.

The essence of the version history mechanism—the part that assures correctness—is what we

have just examined. A practical system that implemented version histories would probably add

several refinements that increase efficiency and reduce storage bulk. The most interesting of these

refinements is to add to each commit record a list containing pointers to all the tentative versions

that are dependent on this commit record. This list allows the operations commit or abort, after

setting the commit record state, to also copy the new commit record state directly into the tentative

versions (in effect replacing the commit record pointer with the commit record value.) That way, a

reader of the version history can more quickly discover that the version belongs to a committed or

aborted atomic operation—it can avoid an extra reference to the commit record. Even better, once

all the tentative versions have been so updated, the commit record itself is no longer of any interest;

it can be discarded and its storage space reclaimed. (If we do not have this refinement, the commit

record may have to be kept forever, a kind of "tombstone" for the atomic operation.) In addition, if

a crash interrupts the copying, the version manager continues to operate correctly; any future reader

of the data may volunteer to continue the copying. In other words, updating versions with the final

value of commit records and discarding the records themselves is a transparent performance

improvement that has no effect on the atomicity algorithm itself.

A second refinement is to require that each prospective atomic operation predict its

completion time (by an extra argument to begin-atomic-operation, for example). This prediction

can be stored in the commit record for the atomic operation. Then, whenever anyone examines a

commit record (for example, while reading a version history) the examiner can also compare the

completion time prediction with the current time. If a tentative version is found linked to a commit

record for an uncommitted atomic operation, .and the current time has passed the predicted

completion time, the examiner can assume that the original atomic operation got waylaid

somewhere, and abort it. Prediction of completion time has one major flaw. Actual execution times

for a given atomic operation can be extremely variable depending on system load, user

responsiveness, and the state of the data. Worse, a reasonable prediction can be rendered obsolete

. by installation of a faster or slower processor. replacement of disk storage with a newer model or

growth of a data base. When such a change of environment occurs, atomic operations that once

worked fine may suddenly begin timing out; the prospect of pawing through a large system to root

out and identify every timeout prediction is not a pleasant one.

A third refinement, and one that may be essential in practice, is to provide some kind of

storage reclamation strategy that discards old versions. As we have defined read-current-value,

versions older than the most recent committed version are inaccessible anyway and they might as

well be discarded. Discarding could be accomplished either as an additional step in the program

that implements the first refinement above, or as part of a separate garbage collection activity.

7-44 	 Coordination, Atomicity, and Recovery

Again, discarding inaccessible older versions is a transparent performance improvement_ (Note that

for certain applications it may be very useful to keep older versions around longer and provide entry

points that allow those older versions to be read by programs that need them. The banking industry

abounds in requirements that make use of history information, such as reporting a consistent sum of

balances in all bank accounts, paying interest on the fifteenth on balances as of the first of the

month, or calculating the average balance last month.)

So far, the mechanism we have developed assures that a single operation composed of several

steps will either get a chance to execute all of those steps or else have the effect of never having

started the first step. That is, the operation is atomic with respect to expected errors, whether that

error is detected by the operation itself (e.g., noticing an inappropriate input value) or the program

interpreter decides on the basis of external events (e.g„ an impending loss of electric power) to

abandon the operation. Whatever the source of the error, if the error occurs before the commit

point all data objects that are read or written with the read-current-value and write-new-value

discipline will have values as if the operation had never been started. Conversely, any error that

happens after the commit point will have no effect on the new values; at worst some

performance-enhancing tune-ups will have to be finished off by later operations that notice the

opportunity.

However, as we have seen earlier, the composite nature of a multistep operation can be

discovered in two ways: either by a failure part way through the operation, or else by a parallel

operation that happens to look in on the value of a variable in the midst of execution of the first

operation. We have so far provided a systematic defense against only the first kind of discovery.

Although the version history mechanism does prevent parallel operations from seeing tentative

changes, that prevention by itself is sufficient only for failure atomicity; it doesn't prevent other

parallel operations from reading other variables that aren't yet changed, but should be for

consistency with the tentative changes that are now hidden. Making an operation atomic with

respect to a parallel observer is the subject of the next section.

2. Achieving Coordination Atomicity

To understand how to design a mechanism to achieve coordination atomicity, we should first

recall our criterion for correctness of coordination. We consider the coordination among several

parallel operations to be correct if the result is one that could have been obtained by some purely

sequential application of those same operations. Since our atomicity goal is that every atomic

operation should act as though it ran either completely before or completely after each other atomic

operation, correctness of coordination follows from achievement of coordination atomicity.

Our mechanism of version histories and commit records is a starting point from which we can

develop several different, correct coordination strategies. each with subtly different properties. We

have already discovered that we need to assign a unique identifier to each atomic operation.

Suppose that we use sequential integers for these unique identifiers, and suppose further that we

Coordination, Atomicity, and Recovery 	 7-45

impose on the program interpreter the following simple rule: atomic operation n may not begin its
first step until atomic operation (n-1) has either committed or aborted. In other words, we force the

operations to be purely sequential, in the order that atomic operation identifiers happen to be
assigned. Since that order is one of the possible sequential orders of the various operations, by

definition this approach will produce correct coordination. But it does so by being too

conservative: it forbids all parallelism, and thus any speedup that could be obtained by using

parallel interpreters. Nevertheless, this approach has two important values: first, in some practical

applications it may actually be the best, on the basis of simplicity. Second, by looking a little more

carefully at why it works, we can discover a whole range of less conservative approaches that allow

more parallelism while at the same time preserving correctness with confidence.

The version history is the starting point for this consideration. Figure 7-17 illustrates in a

single figure the version histories of four objects named A, B, C, and D, during the execution of six

atomic operations, numbered with unique identifiers 1 through 6. The first atomic operation

initializes all the objects to contain the value 0 (think of a banking system; the objects are bank

accounts) and the following atomic operations transfer various amounts back and forth between

pairs of account objects. This figure provides a straightforward interpretation of why the purely

sequential discipline works correctly. and it provides clues as to how to increase parallelism.

Consider atomic operation three, which must both read and write objects B and C in order to

transfer funds from one to the other. One way for operation three to appear to run after operation

two is that all of three's input objects have values that include the effect of operation two—if

operation two committed, then any objects it changed should have new values; if operation two

aborted, then any objects it tentatively changed should contain the values that they had when

operation two started. Since operation three reads object B and operation two creates a new version

of B. it is clear that a constraint that operation three not begin (or at least not read the value of B)

until operation two either commits or aborts will produce a correct result. Looking at operation four

(suppose we are just starting operation four and don't know yet that it. will eventually abort) it

becomes apparent just where the strictly sequential discipline is too strict Operation four reads

values only from 'objects A and D, yet operation three has no interest in either object. Thus the

values of A and D will be the same whether or not operation three commits, and a discipline that

requires that four wait for three to complete delays four unnecessarily. On the other hand,

operation four does use an object that operation two modifies, so in any case four ought to wait for

two to complete. (And the purely sequential discipline guarantees that it will, since four can't begin

three completes and operation three couldn't have started till operation two completed.)

These observations suggest that other, more relaxed, disciplines conceivably could be used

with correct results; they also suggest that any such discipline will probably involve detailed

examination of exactly which objects each atomic operation reads and writes.

By drawing the version histories as in figure 7-17 we have created one representation of what

may be thought of as a system state sequence history, but it is a little hard to interpret it that way.

Figure 7-18 is a redrawn version of figure 7-17 in which the system state history is more explicit. In

figure 7-18, it appears that each atomic operation has perversely created a new version of every

7-46 	 Coordination, Atomicity, and Recovery

object 	value of object at end of atomic operation

Ii 1 2 3 4 5 6

AIMMIMMMIO

A 0 +10 +12 0

-8 8 0 -10 12 2

Commit

record
	

A

state

Ii

Atomic operation 1: 	initialize all accounts to 0

2: transfer 10 from 8 to A

3: transfer 4 from C to 8

4: transfer 2 from 0 to A (aborts)

5: transfer 6 from 8 to C

8: transfer 10 from A to 8

Figure 7-17. Version history of a banking system.

0 +10

IS 12 -2
- -1 4• ••

object 	value of object at end of atomic operation

2 	3 	4 	5 	6 	7 1

	i 4 1 	
7 ". 	I 	

+2

r —

	+ 2 	+ 2 —
J 	. aloe t 	J

	 0 	4

r - - --1 	r -

0 1,

-
I 	I 	1
1 0 	-----21 0 1---
L..-J 	I. J J

1

	i+10. fo
r

A

• .J

10

Coordination, Atomicity, and Recovery 	 7-47

Commit

record --0. C 	C 	C 	A 	C 	U 	U

state

unchanged value

changed value

Figure 7-18. Version history with unchanged values filled in.

7-4 	 Coordination, Atomicity, and Recovery

object in sight with unchanged values in dotted boxes for those objects it wasn't really interested in.

Although it would be silly to implement a system this way, the resulting conceptual picture of

sequential system state is quite useful. For example, it emphasizes that the vertical slot for, say,

atomic operation three is in effect a reservation in the state sequence for every object in the system;

atomic operation three has an opportunity to propose a new value for every object if it wishes, but

only at this point in the state sequence.

The reason a system state sequence is important to the discussion is that we framed our

intuitively satisfying definition of correctness of coordination in terms of state sequences like this

one. As long as we eventually end up with a state sequence such as the one illustrated, the actual

order in time in which individual object versions get created is quite unimportant For example, in

figure 7-18, atomic operation three could create its new version of object C before transaction two

creates its new version of B. We don't much care when things happen, as long as the result is to fill

in the history with a set of values that are those of some sequential ordering.

Making the actual time sequence unimportant is exactly our goal, since that allows us to put

parallel interpreters to work on the various atomic operations. There are, of course, constraints on

time ordering, but they become quite evident by examining the state sequence history.

Figure 7-18 allows us to see exactly what time constraints must be observed in order for the

version history to appear to record this particular sequence of atomic operations. In order for an

atomic operation to generate results appropriate for being in position n in the sequence, it should

use as its input values the latest versions of all objects. If figure 7-18 were available, atomic

operation four could scan back along the histories of objects A and D, to the most recent solid boxes

(the ones created by operations two and one, respectively) and correctly conclude that if operations

two and one have committed then operation four can proceed—even if operation three hasn't gotten

around to filling in values for objects B and C and hasn't a notion yet of whether or not it will

eventually commit

This observation suggests that any atomic operation has enough information to coordinate

correctly if it can discover the dotted-versus-solid status of those version history boxes to its left

That observation in turn suggests several specific algorithms that will insure correct coordination.

Each of these algorithms is based on the idea of putting marks in the version history.

3. The mark-point-sequential algorithm

The first algorithm we may call the mark-point-sequential algorithm. In this algorithm, the

first step of every atomic operation is to mark every version it intends to write. (This algorithm will

be useful only if the atomic operation can predict which data will be updated. If it is necessary to

read one data object to discover the identity of another that requires update, a more complex

algorithm may be required.) In terms of figure 7-18, the boxes under newly arrived atomic

operation seven are all dotted; its first step is to mark the ones that it plans to make solid. This

Coordination, Atomicity, and Recovery 	 7-49

marking could be done in practice quite simply by actually creating a new physical version now with

the plan of supplying a data value later. For this purpose, we might split the write algorithm of

figure 7-16 into two parts. create-new-version and write-new-value, as in figure 7-19. When

finished marking, the operation is expected to announce that it has reached its mark point. It may

then go about its business, reading and writing values as appropriate to its purpose. We must also

modify read-current-value to wait for uncommitted values to become committed, rather than to

skip them. Figure 7-19 shows this modification, too. There are two subtleties in the modification to

read-current-value. First, if the atomic action marks some object history by creating a tentative

version, and later tries to read the current value of that same object, we don't want a simple-minded

read algorithm to wait for this tentative version to commit. Therefore, we must ask the atomic

operation to provide its own identifier as an argument to read-current-value, and ask

read-current-value to skip over any tentative versions created by its current client.

Second, because a later-arriving atomic operation can now run on ahead, create new versions,

and commit, we want to be sure that this atomic operation doesn't accidentally read or wait for one

of those later values. Thus read-current-value should also skip over any versions created by later

atomic operations. Both of these subtleties are handled by one test in read-current-value in figure

7-19:

if atomic-operation-id of w 2 cliont-id then skip v;

This test has one side-effect that could surprise some application programs. If an atomic operation

makes an update and then, before committing. tries to read the value of the object it updated, it will

get the old, previously committed value rather than its own, newly proposed value. If one wanted

an atomic operation to be able to read its own updates, a slightly more complex algorithm would be

required.

Finally, we make a rule, perhaps enforced by putting a test and a possible wait in

begin-atomic-operation, that no atomic operation may begin until the preceding atomic operation

reports that it has reached mark point.

It is this last rule that guarantees coordination correctness, and that also gives this algorithm

its name. Because no atomic operation can start until the previous atomic operation has reached its

. mark point, all atomic operations earlier in the sequential ordering must also have passed their mark

points, so every atomic operation earlier in the sequential ordering has already created all of the

versions that it ever will. Since read-current-value now insists on waiting for preceding,

uncommitted values to become committed or aborted, it will always return to its client a value that

represents the final outcome of all preceding atomic operations. All input values to an atomic

operation thus contain the committed result of all atomic operations that appear earlier in the

sequential ordering, so the result of that atomic operation is now guaranteed to be the result that it

would have produced if it had followed the purely sequential discipline. The result is identical to

that produced by a sequential ordering, no matter what real order the various atomic operations end

up writing actual data values into their version slots.

7-50 	 Coordination, Atomicity, and Recovery

read-current-value: procedure(data-id, value, client-id);

locate history of data-id;

starting at end of history, for each version v;

If atomic-operation-id of v 1 client-id then skip v;

examine commit-record of atomic-operation-id of v;

if uncommitted then

wait for atomic-operation-id of v

to commit or abort;

if committed then

return value of v:

else

skip v; continue backward search;

create-new-version: procedure(data-id, client-id):

locate history of data-id;

add new version v at end of data-id;

value of v <-- null;

atomic-operation-id of v <-- client-id:

return;

write-new-value: procedure(data-id, new-value, client-id);

locate history of data-id:

locate this client's version v of history of data-id

(if not found, report coordination error)

value of v <-- new-value:

return:

Figure 7-19. Mark-point-sequential versions of read-current-value, create-new-version, and
write-new-value.

Coordination, Atomicity, and Recovery 	 7-51

We note in passing that the delays of the purely sequential discipline (which were all

concentrated in begin-atomic-operation) are now distributed. Some delays may still occur in

begin-atomic-operation, waiting for the preceding atomic operation to complete its mark phase;

one expects that some atomic operations will complete their mark phase early, and thus that delay

should be not as great as waiting for them to commit or abort. Other delays may occur at any read

step but only in cases where real interference would occur; in return for an opportunity to run

non-interfering atomic operations in parallel we have sacrificed some predictability in the details of

progress rate, although the overall delay for any given operation should never be more than that

imposed by the purely sequential discipline.

One important property of the waits in the mark-point-sequential algorithm should be

noted: whenever a wait occurs it is a wait for some atomic operation earlier in the ordering. That

atomic operation in turn may be waiting for a still earlier operation, but since no one ever waits for

an operation later in the ordering, progress is guaranteed. At all times there must be some "earliest

uncompleted atomic operation". Thanks to the mark-point-sequential ordering property, that

earliest atomic operation will encounter no waits for coordination, so it. at least., can make progress.

When it completes, some other operation in the ordering takes over the mantle as "earliest", and it

now can be certain to make progress. Eventually, by this argument, every atomic operation will find

that its wait is complete. This kind of reasoning about progress is an important element of any

proposed coordination algorithm and sometimes it is more difficult to make a convincing argument,
as we shall see when we analyze the read-capture algorithm in the next section. It is. unfortunately,

quite easy to invent algorithms that can be shown to be "correct" but that do not guarantee

progress: such algorithms would prove to be defective in practice because parallel operations might

end up waiting for one another, forever.

Two other minor points should be noted. First, if atomic operations wait to announce their

mark-point until they commit or abort, the mark-point-sequential algorithm reduces to the purely

sequential algorithm. That observation confirms that one algorithm is a relaxed version of the

other. Second, there are some opportunities in the mark-point-sequential algorithm to discover

and report coordination errors to clients. For example, an atomic operation should not be allowed

to call create-new-version after announcing the mark point; similarly, write-new-value should

report an error if the client operation calls trying to write a value for which a new version was never

created.

The mark-point-sequential algorithm gives an atomic operation complete freedom to mark

any object in the system for update, at any time preceding that operation's mark-point

announcement: the atomic operation may even delay the mark-point announcement until it is ready

to commit. This flexibility and freedom for an individual atomic operation is only a convenience,

and it could have the side effect of delaying other operations more than really needed.

7-52 	 Coordination, Atomicity, and Recovery

4. The read-capture algorithm

We can increase parallelism by picking up on an idea suggested in the introduction; if

interference between parallel atomic operations is relatively rare anyway. allow them to proceed in

parallel, watch for actual interference, and force operations that do interfere to abort and start over

again. In terms of our system state history, we can allow atomic operations to fill in values in any

order and at any time, but with the risk that some attempts to write may be met with the response

"Sorry, that write would interfere with another atomic operation. You must abort, abandon this slot

in the system state history, obtain a new slot and try your atomic operation from the beginning

again."

A specific example of this approach is the "read-capture" algorithm. Under the read-capture

discipline, no advance marking is required. Eliminating advance marking has the advantage that an

atomic operation does not need to predict the identity of every object it will update—it can discover

the identity of those objects as it works. Instead of advance marking, whenever an atomic operation

reads the value of an object it makes a mark at its own position in the version history for the object it

read. This mark tells potential version-inserters earlier in the sequential ordering but arriving later

in real time that they are no longer allowed to insert—they must abort and try again, using a later

slot in the version history. Had the prospective version-inserter gotten there sooner, before the

reader had left its mark, the new version would have been acceptable, and the reader would have

happily waited for the version-inserter to commit, and taken that new value instead of the earlier

one. In effect, we are giving a reader the power of extending validity of a version from the

sequential position in which it was created, through intervening atomic operations, and up to the

position of the reader. This view of the situation is illustrated in figure 7-20, which contains the

same version history as did figure 7-17.

The key property of read-capture is illustrated in figure 7-20. Atomic operation four was late

in creating a new version of object A; by the time it tried to do the insertion, atomic operation six

had already read the old value (+10) and thereby extended the validity of that old value to the end

of atomic operation five. Therefore, atomic operation four had to be aborted; it has been

reincarnated to get another try as atomic operation seven. In its new position as atomic operation

seven, its first act is to read object D, extending the validity of its most recent committed value

(zero) to the end of atomic operation six. When it tries to read object A, it discovers that the most

. recent version is still uncommitted, so it must wait for operation six to either commit or abort. Note

that if operation six should now decide to create a new version of object C. it can do so without any

objection. but if it should try to create a new version of object D, it would run into a conflict with

the old, now extended version of D, and would have to abort.

Read-capture is relatively easy to implement in a version history system. We start by adding

a new step to read-current-value, a step that records with each data object the identifier of the

highest-numbered atomic operation that has ever read a value from this object's version history.

That identifier is to serve as a warning to other atomic operations that started some time ago (and

thus have early positions in the sequential ordering) but are late in creating new versions. The

10
	

-6
	

-12

+2 4 0

2 	3 	4 	5 	6 	7 11, 1

+10
	

0

+12

A
47--
+2

Coordination, Atomicity, and Recovery 	 7-53

object 	Value of object at end of atomic operation

Commit

record --a. C 	C 	C 	A 	C 	U 	U

state

Atomic operation 7: retry operation 4

(transfor 2 from 0 to A)

Figure 7-20. Version history with read-capture discipline in operation.

7-54 	 Coordination, Atomicity, and Recovery

warning is that someone later in the ordering has already read a version from earlier in the ordering,

so it is too late to put a new version in now. We can implement an observation of this warning by

adding a step to create-new-version. This new step checks the read-mark for the object to be

written, to see if any atomic operation with a higher sequence number has already read the latest

version of the object. If not, we can create a new version without concern. But if the atomic

operation identifier in the read-mark is greater than this atomic operation's own identifier, this

operation must abort, obtain a new (higher-numbered) identifier, and start over again.

Finally, we now plan to place no constraints at all on the real-time sequence of the

constituent steps of the parallel atomic operation, so there is a possibility that a high-numbered

atomic operation will create a new version of some object, and then later a lower-numbered atomic

operation will try to create a new version of the same object. Since our create-new-version

procedure simply tacks new versions on the end of the object history, we could end up with a history

in the wrong order. The simplest way to avoid mistakes is to put an additional test in

create-new-version, to ensure that every new version has a client identifier that is larger than the

identifier of the next previous version. If not, create-new-version aborts the atomic operation, just

as if a read-capture conflict had occurred. (Note that this test will lead to aborting an atomic

operation only for those applications that modify data objects without first reading their previous

values. Such applications are relatively few in the real world.) Figure 7-21 illustrates the

read-capture version history management algorithms.

The first question one must raise about this kind of algorithm is whether or not it actually

works: is the result always the same as some serial sequencing of the parallel atomic operations?

Because the read-capture algorithm permits greater parallelism than the earlier approach, the

correctness argument is a bit more involved. It goes as follows:

1. Every value read by atomic operation n is from a version created by some committed atomic

operation k with k < n.

2. No uncommitted atomic operation I with k < 1< n can insert a new version of an object after

atomic operation n has read the version created by k.

3. Therefore, every input to atomic operation n, no matter when n actually reads it, has the value it

will have when atomic operation (n - I) completes (commits or aborts).

4. Therefore, every atomic operation n will act as if it sequentially follows operation (n - 1).

This argument depends for its soundness on the correctness of its first two premises, which are

claimed to be properties of the algorithms of figure 7-21. It is quite instructive to develop a line of

reasoning that these two premises are true, based on the individual steps of these algorithms.

Read-capture, as we have described it here, has one slightly annoying property. Once an

atomic operation extends the validity of an old version of an object by read-capture, that extension

Coordination, Atomicity, and Recovery 	 7-55

read-current-value: procedure(data-id, value, client-id);

locate history of data-id;

starting at end of history, for each version v;

If atomic-operation-id of v 2 client-id then skip v;

examine commit-record of atomic-operation-id of v;

If uncommitted then

wait for atomic-operation-id of v to commit or abort;

if committed then

read-mark of v <-- max(read-mark of v, client-id);

return value of v;

else

skip v; continue backward search;

create-new-version: procedure(data-id, client-id);

locate history of data-id;

If (client-id < read-mark of data-id)

or (client-id < (atomic-operation-id of latest

version of data-id))

then abort this atomic operation and exit;

add new version v at end of data-id;

value of v <-- 0;

atomic-operation-id of v <-- client id;

return;

write-new-value: procedure(data-id, value, client-id);

locate history of data-id;

locate this client's version of history of data-id;

(if not found, report coordination error)

value of v <-- new-value;

return;

Figure 7-21. Read-capture form of read-current value, create-new-version, and write-new-value.

7-56 	 Coordination, Atomicity, and Recovery

is permanent. even if the atomic operation that did the read-capture should abort an instant later.

Thus it is possible that other atomic operations that want to insert new values will abort

unnecessarily. On reflection, this annoyance is probably much less serious than one might first

guess. The reason is that highly parallel operations are appropriate only if they do not interfere with

each other very often. If one is going to the trouble of implementing read-capture (rather than, say,

a mark-point-sequential algorithm) it is probably the case the application is a good candidate for

more parallelism, which means that data interference is not very common anyway. Thus even

though aborted operations leave behind unnecessary version-validity extensions, one might expect

that the other atomic operations that were in progress at the time will notice those extensions and

abort unnecessarily so infrequently that the performance impact is inconsequential.

5. Making progress

There is one loose end in the argument that claims read-capture will work. The argument

guarantees that any atomic operations that complete will produce results as though they were run

sequentially, but it says nothing about whether or not any atomic operation will ever commit The

reason for wondering about this detail is that the algorithm itself introduces an extra reason to abort

an atomic operation: one might envision a pathological situation where the algorithm aborts every

atomic operation, no matter how many times retried. In other words, this coordination algorithm

guarantees correctness, in the sense that no wrong answers will come out of the system, but it does

not guarantee progress.

Consider, for example, two atomic operations named Alphonse and Gaston. Alphonse reads

object apple, computes for a long time, and then updates object banana. Atomic operation Gaston

first reads object banana, calculates for a long time, and then updates object apple.

Suppose Alphonse starts first, becoming atomic operation n. When Gaston arrives, it

becomes atomic operation (n+ I). Gaston immediately reads banana, extending the validity of its

most recent version past the end of atomic operation n, namely Alphonse. Thus when Alphonse

finally gets to the point to trying to update banana it will have to abort. Alphonse, after aborting,

tries again, becoming atomic operation (n+ 2), and immediately begins reading apple. But reading

apple extends the validity of its most recent version part the end of atomic operation (n+ 1), namely

Gaston. So when Gaston finally gets to the point of trying to update apple, it will have to abort

Gaston, upon aborting, tries again, becoming atomic operation (n+ 3), and the cycle repeats.

Our implementation offers a small amount of help for such a situation, but it does not solve

the problem. If the programmer of either Alphonse or Gaston knows that some object will be

updated near the end of the operation. the programmer could create a new but empty version of

that object at the outset planning to fill in the value later. Thus, for example, Alphonse might read

object apple and immediately create a new version of object banana. When Gaston arrives and tries

to read banana, the presence of an uncommitted version for banana means that Gaston will wait for

Alphonse to commit. There is still a window (but now smaller in time) between Alphonse's

Cooniination, Atomicity, and Recovery 	 7-57

materiakation and Alphonse's creating the version of banana, during which Gaston could

materiahze and extend the old version of banana. One can fight this problem by a technique called

random back-off before retrying, an operation waits a random length of time (longer than the

indow mentioned above,) in hope that such a random delay will change the relative timing of the

two operations enough that one will succeed and the other can proceed. .Since on each retry there is

some probability of success, one can push this probability as close to unity as desired by continued

retries. A nice property of random back-off is that if repeated retries fail it is almost certainly an

indication of some other problem—perhaps a programming mistake. The one objection to random

back-off is similar to the objection to placing timeouts in commit records: someone must choose a

time range for the random delay. Once the parameters of the time range are chosen and frozen into

code, changes in the environment such as installation of a different, faster, disk drive, may make the

time range inappropriate, in which case the code must be tracked down and changed.

Alternatively, a rather heavy-handed discipline can guarantee progress: suppose the

programmers of Alphonse, Gaston, and every other potentially interfering operation follow these

two rules:

1. For every object that an atomic operation either reads or updates it must both read the object

(thereby assuring read-capture of objects that will only be modified) and it must create a new

version, perhaps repeating the old value (thereby assuring that users of this object later in

sequence must wait for this operation to commit.)

2. Every atomic operation must order its object accesses alphabetically, by object name.

The alphabetic order of object access guarantees that atomic operations wait or abort only when

accessing objects with names further down the alphabet than the objects they have already

captured. That guarantee. in turn, means that at least one atomic operation will not encounter any

waits or algorithm-triggered aborts: that operation can make progress, and when it finishes some

other atomic operation will take over its role.

The design of algorithms or programming disciplines that guarantee progress is a research

topic with only modest payoff. In practice, systems that would have frequent interference among

atomic operations are not usually designed with a high degree of parallelism anyway. When

Interference is not frequent, techniques such as random back-off not only work well, but they are

usually provided anyway, as a technique to cope with any timing-dependent errors that may have

crept into the system design or implementation. Thus a heavy-handed progress-guaranteeing

discipline may be costly, and redundant, and only rarely will it get a chance to promote progress.

7-58
	

Coordination, Atomicity, and Recovery

E. Logs and Locks

I. Logs

Our discussion of systematic techniques that achieve atomicity has used a relatively abstract

model, version histories, that is helpful for understanding principles, but not often implemented in

practice. Direct implementations are rare because of concern for performance: the time required to

locate current versions looks like a possible bottleneck. Probably the most common technique in

widespread use achieves high performance by storing data twice: once in storage cells for fast

access, and a second time in an append-only journal of all changes to those cells, for failure

atomicity. The append-only journal is called a log and it resembles a version history in some ways.

The set of storage cells containing the data is sometimes best viewed as a speed-up cache. This

cache consists of an easy-to-access copy of the data values that are also recorded, but hard to find.

in the log. By maintaining both a cache and a log, the data in the cache can be organized for

optimum access speed. while the data in the log can be organized to guarantee atomicity of data

update operations in the face of failure. Of course, having two copies of every data value around

complicates the algorithms for update and recovery.

The basic element of a log is the log entry. Whenever an atomic operation updates a data

value in cell storage it also appends to the end of the log a new entry containing the identity of the

atomic operation that is making the change. the identity of the data being changed, and either the

old data value or the new data value or both, depending on the purpose of the particular log. Figure

7-22 illustrates. Thus a log is an append-only storage structure with a strong resemblance to a

version history, or more accurately. a set of interleaved version histories, since one log records the

changes to all the data of the system that is to be subject to atomicity constraints. Usually, one

follows a protocol, known as the write-ahead-log protocol, that requires that a log entry be made

before changing the cell storage version of the data.

A log can be used for several quite distinct purposes; this range of purposes is sometimes

confused in real-world designs and implementations.

1. If the log is implemented using a storage medium (say magnetic tape) that fails in ways and at

times that are independent from the failures of cell storage (which might be magnetic disk) then

the data copies in the log can be considered as backup copies in case the copies of the data in cell

storage are accidentally damaged. In this case, the log helps implement stable storage.

atomic operation id: 9974317

data modified: variable x

old value: 81

new value: 83

atomic operation id: 9974312

data modified: variable A

old value: 27

new value: 	114

— 4310

—Q

—ith

—ones

Coordination, .Atomicity, and Recovery
	

7-59

t

- _

end of log

Figure 7-22. The end of a log and the last two log entries.

7-60 	 Coordination, Atomicity, and Recovery

2. If the log is kept forever, it is a place where old values of data can be found, for purposes of

historical study, auditing. or recovery from application-level mistakes (e.g., a clerk incorrectly

deleted an account.) This function is usually known by the term archive.

3. If, in addition to logging data updates. updates to commit record values are also logged, then the

log can be used to determine the outcome of atomic operations. With that outcome information,

one can undo and back out the effects of atomic operations that abort or redo atomic operations

that commit. Thus a log may be used as a mechanism to achieve atomicity.

It is essential to have these three purposes—stable storage, archive, and atomicity—distinct in

one's mind when examining or designing a log implementation, because they lead to different

priorities among design tradeoffs, and are difficult to achieve all at once. When archive is the goal,

low cost of the storage medium is usually more important than quick access to any part of the log,

because archive copies are, in practice, rarely read. When stable storage is the goal, it is important to

use multiple storage media that are physically different, and thus likely to have independent failure

modes. When atomicity is the purpose, high performance in making log entries rises in importance,

because there are constraints on the order of writing physical copies.

As one example, consider the conflicts between a log used for stable storage and one used for

archive. If the cell storage system fails completely (for example, a disk head crashes or software

failure destroys all of the catalogs) the stable storage recovery technique is to scan the log forwards,

starting with the oldest log entry, writing the new data value of each log entry to the cell storage

system. After scanning the entire log, every data value will have been restored to the value it had at

the instant of the failure, and normal operation can continue. If the system has been operating for a

long time, the accumulation of log entries could be very large (and only a few entries in the older

parts of the log may actually contain current values—but the only way to find them is by a complete

log scan). To shorten the log scan, a stable storage implementation will usually include a periodic

snapshot of the entire collection of data in cell storage. This snapshot represents a starting place for

recovery. If the cell data is lost in a system crash, the latest snapshot can be reloaded into cell

storage, and then the log entries made since that snapshot can be scanned to bring the data that was

in the snapshot up to date.

Once the significance of the snapshot is understood, it is apparent that a stable storage

.implementation requires retaining no more than the previous snapshot plus the log entries since that

snapshot. (In practice there might be multiple copies of both the log and the snapshot, or else one

might keep the two most recent snapshots. on the chance that one copy may be defective.) Since the

storage required can be bounded and is in the same order of magnitude as the amount of cell

storage. one might consider using, say, demountable disks or even nondemountable disks on a

companion system rather than magnetic tape for both the log and the snapshot medium.

On the other hand, if the log is also used for archive, one would plan never to discard old log

entries and therefore would be more likely to prefer lower-cost magnetic tape, despite its possibly

lower reliability, slower data rate, and extra handling effort This conflict between the archive

Coordination, Atomicity, and Recovery 	 7-61

function and the stable storage function is often found in the user file backup facilities of.

time-sharing systems.

When one contemplates adding atorrticity guarantees to the list of functions to be provided by

a log, it is usually apparent that the number of conflicting goals is so great that it is appropriate to

use a separate log for the atomicity purpose.

Atomicity in the face of system crashes is relatively straightforward to accomplish with a log,

but it involves one new idea not found in version histories: we must arrange that an explicit system

recovery procedure be executed following every crash. The log approach takes the position that

since failures are relatively infrequent, one should bias the design in the direction of doing extra

work at the time of a failure, explicitly putting things back in order, if in turn one can reduce the

work done during normal operations. As compared with version histories, there are two places

where normal operations might be quicker: first, reading of cell storage does not require pawing

through a history record to discover the right version. Second, since there is only one log, rather

than one version history per variable, it is easy to find the log.

There are several possible rules, or protocols, for atomicity logs, that vary in the order in

which things get done and in the nature of information logged. One simple procedure is the

back-out list protocol, illustrated in the log example of figure 7-23. That log contains two kinds of

entries for this purpose:

1. Whenever an atomic operation changes a data value, it first makes a log entry containing the

identity of the atomic operation, the identity of the data, and the old value of the data. (Logging

old values is a characteristic of a back-out-list log).

2. When an atomic operation commits or aborts, it logs its completion. This log entry becomes the

permanent record of the outcome of the atomic operation. The instant that this log entry is

written is the commit point of the atomic operation.

If a crash occurs, we assume that the atomic operations that were in progress at the time

vanish, that the cell storage is completely intact (perhaps it was recovered with the help of a separate

stability log) and that before allowing any new atomic operations to begin, the system will be sure to

. run an atomicity recovery procedure. This atomicity recovery procedure proceeds by scanning the

atomicity log backward from the latest entry. A backward log scan, sometimes called a LIFO (for

last in. first out) log review, is another characteristic that distinguishes a back-out-list atomicity log.

As the recovery procedure scans backward, it makes two lists of atomic operations: those that

committed or aborted before the crash (the winners) and those that did not commit by crash time

(the losers). Losers are discovered by coming across a log entry for a data change that contains their

identity, but without having encountered a commit or abort so far during the log review. Also as it

scans backwards, whenever it encounters a log entry for a data value that was changed by a loser, it

writes the old data value found in the log entry back into the on-line storage system, thereby

undoing the logged operation. Thus in the course of scanning the log backwards, the atomicity

7-62
	

Coordination, Atomicity, and,Recovet:y

--

--

11942:

X was

11836

Y was

Commit

atomic

11942:

Z was

Abort

atomic

11716:

R was

-- 81 21 operation 4 operation 3

-- 11838 11855

end

of

log

Figure 7-23. An atomicity log.

recovery: winners <-- null;

losers <-- null;

start at end of log;

repeat till beginning of log;

[get previous record.;

case data

If id of record in set winners ignore record; break;

undo: data s old data of record

If id of record not in sot losers thin

add id of record to set losers;

case commit or case abort

add id of record to set winners;

end case]

Figure 7-24. An algorithm for FIFO log review, to achieve failure atomicity.

Coordination, Atomicity, and Recovery 	 7-63

recovery procedure will undo all of the completed steps of all partially completed atomic operations

(the losers) effectively backing them out as though they had not run at all. When the backwards log

scan is complete, the state of the on-line storage can be said to be atomic-operation consistent: it is

as though every atomic operation that committed before the crash had run to completion, while

every atomic operation that was incomplete at crash time had never existed. A program

implementing this algorithm is illustrated in figure 7-24. One apparent oddity of the recovery

algorithm is that it considers atomic operations that abort to be winners. This classification does not

mean that aborted atomic operations become committed ones, only that already-aborted atomic

operations do not require any further recovery if a crash occurs.

This recovery procedure assumes the following corollary of the write-ahead log protocol: an

atomic operation must update all cell storage values before writing the log record that says it has

committed. Similarly, an atomic operation that aborts must undo its cell storage updates before

writing the log record that says it. has aborted. If this corollary protocol is followed, then after a

crash the recovery procedure can safely assume that all atomic operations that are logged as

committed or aborted had a chance to complete their cell storage updates before the crash.

With an atomicity log, just as with the stability log, one wonders if it is really necessary to

keep the entire history of the system and scan the entire log following every crash. If we require that

atomic operations announce their commencement by writing a begin record to the log, then at

recovery time. it is necessary to scan back only as far as the begin record of the oldest incomplete

atomic operation. Tne problem is to discover that oldest incomplete atomic operation. A common

trick to shorten atomicity log reviews is to have the system periodically write a checkpoint record in

the log. A checkpoint record is simply a list of the identifiers of all currently incomplete atomic

operations. If checkpoint records are written in the log, the recovery algorithm can, upon

encountering the first such record during its LIFO log review, immediately complete its list of losers

by adding to that list any atomic operations appearing in the checkpoint record that it has not

already included in either its winners or losers list. Now that the list of losers is known to be

complete, the FIFO log review continues, but it can stop as soon as the begin record of every atomic

operation in the losers list has been found. At the instant recovery is complete, there are no

outstanding atomic operations, so that is an especially good time to write an (empty) system

checkpoint record. An empty system checkpoint record is good news to any future recovery

procedure: it guarantees that there is nothing older of interest in the log—in fact, as far as atomicity

.is concerned, any part of a log older than an empty system checkpoint record can be safely discarded

or recycled. Since its length is limited, an atomicity log might well be kept on-line, in the cell

storage medium. This possibility again emphasizes the differences in design priority among logs

with different functions.

Notice that a critical design property of both the log review algorithm of figure 7-24 and the

quicker algorithm just described must be idempotence. That is, if there should be a second system

crash during the recovery, one can simply start the recovery from the beginning again; any number

of crash-restart cycles might occur without compromising the atomicity properties (though the

system operator may start to lose patience.) Proposals to simplify or speed up log or recovery

7-64 	 Coordination, Atomicity, and Recovery

operations must be reviewed carefully against the idempotence requirement

Another set of observations apply when an individual atomic operation aborts. Because the

atomic operation may have made changes to cell storage, simply writing an abort record in the log is

not enough to make it appear to later observers that the atomic operation never did anything. An

explicit undo procedure must therefore be programmed as part of every atomic operation in a

system that uses logs. This undo procedure must make sure that all storage values that were

modified by the atomic operation are restored to their old values before the atomic operation writes

an abort record in the log. One simple strategy is to call a library undo procedure that scans the

atomicity log backwards looking for entries left by this atomic operation: when it finds one, undo

takes the old data value found in the log record and writes that value back into cell storage. The

extra work required to accomplish abort when logs and cell storage are used. (as compared, say, with

a version history system) is another part of the engineering tradeoff: one anticipates that most

atomic operations will commit and aborted atomic operations should be relatively uncommon. The

extra effort of an occasional undo operation will (one hopes) be more than paid back by the more

frequent gains in performance on updates, reads, and commits.

The back-out-list protocol that we have described is one of several equally acceptable logging

protocols that vary in the constraints they place on order of disk update. One can instead

implement the intentions-list protocol. Under this protocol, an atomic operation does not make any

updates to cell storage until it logs a complete record (including the commit record) of every

planned update. This record is called the intentions list Each log entry contains the new data

value. After completing its intentions list, the atomic operation then updates cell storage, and if it

completes that set of updates it puts a final note in the log to that effect When a crash occurs, the

recovery procedure looks through the log for intentions lists that contain a commit record but are

not followed by completion notes. It then redoes the updates in those intentions lists. Partially

completed intentions lists can be ignored. because the atomic operation never got as far as updating

the cell disk storage. One can also invent protocols that combine features of both the back-out-list

and the intentions-list protocols. The primary requirement is that the constraints on order of

writing the log entries and cell storage allow execution of an idempotent recovery algorithm—one

that can be rerun following a failure during the recovery algorithm itself.

Finally, our log recovery scheme provides atomicity in the face of system failures that cause

.atomic operations to vanish in mid-stream, but it provides no coordination atomicity at all. Worse,

since all updates to data are written in cell storage where they can be immediately viewed by other,

parallel operations, it appears that coordination atomicity will be relatively hard to achieve. That

observation turns out to be true: when logs are the mechanism used for failure atomicity, a

completely separate mechanism must be introduced to achieve coordination atomicity: locks.

Locks are the subject of the next section of this chapter.

Coordination, Atomicity, and Recovery
	

7-65

1. Locks

Since logs provide only failure atomicity, some additional mechanism is needed to accomplish

coordination atomicity. The conventional approach to coordination is called locking. A lock is just

a mark associated with a data object to warn other, parallel, atomic operations not to read or write

the object. Conventionally, two system operations are available:

seize(A);

marks data item A as being locked by this atomic operation, or if it is already locked causes a wait
until A becomes free.

release(A);

unlocks data item A, perhaps ending some other atomic operation's wait for A.

There are many variations on implementation mechanisms for locks, but all variations have

the goal that if two or more atomic operations attempt to seize a lock at about the same time, only

one shall succeed: the others must find the lock already seized. This implementation is usually

accomplished by primary memory access hardware that reads a memory variable, tests it, then sets a

new value, with no possibility of an interrupt intervening or another operation doing the same thing

at the same time. In effect. the general problem of coordinating unconstrained atomic operations is

reduced to the specific. very constrained problem of coordinating access to the lock variable. (Note

the parallel with commit records, which were another example of a constrained, solvable version of

a general, hard-to-solve problem.)

If locks are available, it is relatively easy to provide general coordination of any atomic

operations: there are many possible locking protocols (not all of which work). The simplest rule

that works we call simple lockinr each atomic operation must seize the lock on every data object it

intends to read or write before doing any actual reading and writing: then, only after the last update

is complete. and the operation commits (or the data is completely restored and the atomic operation

aborts) may it begin releasing its locks. We can say that the atomic operation has a lock point: the

first point at which all of its locks are set. The collection of locks it has seized when it reaches its

.lock point is called its lock set.

It is easy to argue that the simple locking protocol leads to correct coordination. One line of

argument is as follows: suppose the system maintains a permanent, ordered list of atomic

operations that have passed their lock point. Upon reaching its lock point an atomic operation adds

itself to this list. By the simple lock protocol the atomic operation has agreed not to read or write

any data until it is in the list. The list provides us with the useful constraint that all other atomic

operations that precede this one in the list have already passed their lock point.. Since no data object

can appear in the lock sets of two atomic operations. no data object in this atomic operation's lock

set appears in the lock set of any uncommitted atomic operation earlier in the ordering. Thus all of

7-66 	 Coordination, Atomicity, and Recovery

this atomic operation's input values are the same as they will be when the next earlier operation

commits or aborts. By repetition and induction the same argument applies to all atomic operations

before that one, so all inputs to this atomic operation are identical to the ones that would be

available if all the atomic operations ran purely sequentially, in the order of the list. Thus the

simple locking protocol produces correct coordination.

There is one significant objection to simple locking: in some applications an atomic operation

does not know in advance the complete list of data objects it should read or write; the way it

constructs that list is by exploration, reading some data objects in order to discover the identity of

others. Actually, simple locking is much more constrained than necessary for correctness. One can

relax the protocol to permit reading (or even writing) a data object as soon as it is locked, as long as

no locks are released until the commit point is passed. Further, one can release locks on objects that

won't be modified any time after the lock point is passed if those objects won't be needed again by

this atomic operation. This relaxed protocol is called two-phase locking, and is widely used, but the

argument that it leads to correct coordination is one step harder. Informally, once a data object is

locked, its value is the same as it will be when the lock point is eventually reached, so reading it must

yield the same result as waiting to read it till later. Releasing a read-only lock must be harmless as

long as this atomic operation will never look at the object again, even to abort.

There are two interactions between locks and the log-based atomicity recovery system that we

should think about: individual atomic operations that abort, and system recovery. Individual

atomic operations are easiest to contemplate. Since we require that an aborting atomic operation

restore its changed data objects to their original values before releasing any locks, no special account

need be taken of aborted operations. From a coordination point of view they look just like

committed operations that didn't change anything. Note that the rule about not releasing any locks

on modified data before commit or abort is essential to accomplishing an abort. If a lock on some

modified object were released, and then the atomic operation decided to abort, it might find that

some other atomic operation has now seized the object and changed it again. Backing out an

aborted change is likely to be impossible unless the locks on modified objects have been held.

The interaction between log-based recovery and locks is less obvious. The first, seemingly

puzzling, question is whether locks themselves are data objects for which changes should be logged.

Since locks exist only to coordinate atomic operations, and at the instant of completion of recovery

.from a crash there will be no outstanding atomic operations (all the incomplete ones will be rolled

back by the recovery procedure), it would actually be a mistake if there were locks still set when

crash recovery is complete. That observation by itself suggests that locks belong in volatile storage,

where they will automatically disappear on a crash, rather than in stable storage, where the recovery

procedure would have to hunt them down to release them. The controlling question, however, is

whether or not the log-based recovery algorithm will construct a correct system state—correct in the

sense that it could have arisen from some sequential ordering of those atomic operations that

committed before the crash.

Coordination, Atomicity, and Recovery 	 7-67

Suppose that the locks are in volatile memory, and at the instant of a crash, all record of the

locks is lost. Some collection of atomic operations has not committed: they had non-overlapping

lock sets before the lock values vanished. The recovery algorithm of figure 7-24 will systematically

locate every data value that was changed by every in-progress atomic operation (that is, every loser),

and reset it to the value it had when the atomic operation started. Because the lock sets are

non-overlapping, no data object will be restored more than once, and so the process of recovery

cannot be affected by the absence of the locks. So long as no new atomic operations begin until

recovery is complete, there is no danger of miscoordination despite the absence of locks. Another

way of looking at this argument is that the result is the same as if: 1) the locks were not lost, 2) the

recovery algorithm scanned back through the log undoing only one of the losing atomic operations,

and then reset its locks, 3) the recovery algorithm performed another scan undoing another atomic

operation, etc., until all losing atomic operations were undone. If that algorithm were followed, it is

clear that the result would be correct At the same time, since the lock sets of the various

rolled-back atomic operations are non-overlapping, there would be no place in the algorithm where

the setting of the locks made any difference.

3. Petfonnance complications

Most logging-locking systems are substantially more complex than our description would

lead one to expect The complications are the result of techniques used to achieve higher

performance. These techniques include:

- buffered writes to disk storage

- log granularity adjustment

- lock granularity adjustment

- lock compatibility modes

- logging instructions for data update rather than old and new values.

• Most disk management systems provide buffering for writes to the disk, in order to smooth

out the flow of disk requests. Without buffering. each call to put starts I/O to the disk, and only

when the disk write is complete does the I/O manager return control to the caller. In a buffered

system. a call to put will start an actual write operation only if the disk I/O manager concludes that

is the optimum operation to schedule right now. If some previous write operation is still in progress,

the 1/0 manager queues this write request for later. In addition, it immediately returns control to

the caller, who may continue with other projects, including perhaps calling put again with additional

write requests. A buffered disk management system is especially useful in the case where an

application issues several puts in a row and then goes on to compute for a long time. In such a case,

the disk writing and the computation can overlap and substantially reduce the overall time required

748 	 Coordination, Atomicity, and Recovery

to complete the job,

Although buffering is an important performance enhancement, it adds complications to the

life of any atomicity system, because if the system crashes, some data updates may still be queued in

buffers in volatile memory, rather than safely on the disk. Worse, some buffering systems may

actually perform write operations in a different order from that requested, if reordering makes disk

operations go faster. Reordering of disk requests is especially hazardous to atomicity systems that

use the write—ahead—log protocol, since a data value may get changed on the disk before the

corresponding log record gets written.

The basic mechanism required to restore atomicity is quite simple: one must implement as

part of a buffered I/0 manager an additional entry point that allows the application to request that

certain writes, previously queued, be completed now. This operation is typically named force, and it

takes an argument or identifier that the I/O manager returned on a previous put call.

If every call to put is followed immediately by a corresponding call to force, the application

can cause a buffered disk system to behave (and perform) just like an unbuffered system, thereby

restoring atomicity, at a cost in performance. A more interesting approach is to choose judicious

times to call force. so that disk buffering can be allowed when it doesn't interfere with atomicity.

One set of judicious times is the following:

1. Before calling put for a data record, call force for the log entry that records this data update.

2. Before calling put for a commit (or abort) entry in the log, call force for all data updates (or

undos) of this atomic operation.

3. When writing a commit entry in the log, always call force immediately following the put.

The first rule guarantees that the order of actual disk writes follows the write—ahead log protocol, so

as to be certain that no data update reaches the disk before the log entry that shows how to undo it.

The second rule insures that if a commit (abort) entry appears in the log, all of the updates (undos)

associated with it are on disk, so recovery processing can safely classify this atomic operation a

winner and ignore it. The third rule, by delaying until the commit log entry is on disk, provides the

.atomic operation with assurance that no later crash will cause it to roll back. Once that log entry is

on disk, any future recovery operation will declare this atomic operation to be a winner, so it is safe

for the operation to go ahead and, for example, announce that fact by releasing output mescages.

There exist higher—performance strategies for maximizing buffering and I/O—computation

overlap. One can, for example, develop a strategy based on calling force only at commit time and

only for log entries. However, the complexity (and the difficulty of making convincing correctness

arguments) grows rapidly. To pull off this strategy, one must make sure that the I/O manager

doesn't rearrange its output write queue (if it did, a data update might get to the disk before the

corresponding log entry, and an ensuing crash would be unrecoverable). In addition, the log would

Coordination, Atomicity, and Recovery 	 7-69

have to record both old and new values, so that recovery processing can redo winning atomic

operations whose data updates were still in volatile buffers at crash time. The reconstruction process

required is fairly elaborate, additional measures to avoid scanning the entire log at recovery time

must be planned. and the entire recovery process must be idempoteni Appendix C contains a case

study of a high-performance data management system that uses this strategy.

A problem closely related to buffering is log granularity. In all of the algorithms described so

far, the size of a log entry has been assumed to be exactly the same as the size of the object that was

updated. Whether small or large, each log entry calls for a separate put operation and, depending
on the buffering/atomicity strategy, perhaps a force operation and thus a distinct, expensive write

operation to the disk. Most disk systems have fixed block sizes, chosen for performance

optimization, and they work most efficiently if asked to put records of the fixed block size.

Typically, such a block is much larger than a single log entry, so the logging system finds that it can

improve performance by accumulating log records until it has a block full, and only then calling

put. An accumulation of log entries into a large block is another example of a buffer, and can be

managed in the same way, by insisting on writing that buffer, whether full or not, whenever any

entry in it should be forced to disk.

A similar consideration applies to data updates and to lock granularity: if one makes a

change to a six-byte field in the middle of a 1000-byte block, there is a question about what should
be locked: the six-byte field, or the 1000-byte block? In high-performance I/0 management

systems. only large blocks may be the subject of a put call. If two different, parallel tasks make

updates to unrelated, small fields that happen to be stored in the same disk block, then the two disk

writes must be coordinated; locking the entire block rather than the individual data items is the

most straightforward approach.

The alternative of locking only a single record of a disk block is appealing because it

apparently allows more concurrency: if another atomic operation is interested in a different record

that is in the same disk block, it could proceed in parallel. However, this finer-grained locking

desire actually has a very large side-effect: the I/0 management system must present a logical,

rather than physical disk interface to its atomic operation clients; such things as record management

and garbage collection within disk blocks must now be handled below the I/0 manager interface. A

second consequence of finer-grained locking is that logging must also be done on the same

.finer-grained objects. (Because different parts of the same disk block may be modified by different

atomic operations that are running in parallel, if one operation commits but the other aborts neither

the old nor the new disk block is the correct one to restore following crash; the log entries must

record the old and new values of the individual records of the block.)

There is an important performance refinement used in most locking systems, the specification

of lock compatibility modes. When an atomic operation seizes a lock, it can specify what operation

(for example, read or update) it intends to perform on the locked data item. If that operation is

compatible—in the sense that the result of parallel operations is the same as some sequential

ordering of those operations—then this atomic operation can be allowed to set the lock even though

7-70 	 Coordination, Atomicity, and Recovery

some other atomic operation has already set such a lock. The most common example is read-mode

compatibility: suppose atomic operation Alphonse has seized a lock indicating it plans only to read

some object. Then if atomic operation Gaston wants to seize the same lock for reading, at the same

time, there is no reason to delay Gaston. The purpose of locking in this case is to prevent updates,

and since a simultaneous reader is not a threat, any number of atomic operations can simultaneously

hold a read-mode lock for the same object. If another atomic operation now tries to seize the same

lock with the intent to update that object, that third atomic operation will have to wait for both

Alphonse and Gaston to release their locks.

There are many applications in which most data accesses are for reading only. In such

applications the provision of read-mode lock compatibility often reduces the frequency of lock

interference between parallel operations by an order of magnitude.

The idea of lock modes can be carried further, though one needs a careful analysis of the

application to decide whether more elaboration is worthwhile. For example, there is a common

situation in data bases where one atomic operation may lock a single record in a file, while another

may need to lock the whole file. For such cases one can introduce "someone-is-inside-reading"

and "someone-is-inside-updating" lock modes for the file as a whole. Any number of atomic

operations may be reading and updating individual (non-overlapping) records at the same time.

However, to seize a read lock for the whole file one would have to wait until all "someone-is-

inside-updating" locks on the file were released. Allowing the locking of either a record of a file or

a whole file is a two-level example of what is called nested or hierarchical locking. Research papers

have been written on hierarchical locking modes, though little hard data is available on what typical

performance enhancements result.

One final performance-enhancing technique should be mentioned: to make log entries

shorter, one can record instructions on how to change the data (e.g., "add 5 to each of 100 array

elements") rather than the complete old or new data values. This strategy requires careful thought

to preserve idempotence of the recovery process. The danger is that a recovery procedure may

perform the undo transformation, then crash, then perform the undo transformation a second time,

leading to utterly incorrect data. The usual technique to preserve idempotence is to include in each

data record a note indicating which log record corresponds to its latest value. Then a recovery

procedure can decide whether or not the transformation described by a log entry has been applied

.to a data record that it finds on the disk.

This description of performance complications has not been complete or systematic, but

rather illustrative, to indicate the range of hazards and kinds of complexity that they engender. If

one intends to implement a system using performance enhancements such as buffering or

fine-grained locking, it would be advisable to study carefully some previously existing system that

implements those same enhancements.

Coordination, Atomicity, and Recovery 	 7-71

4. Deadlock

One final issue surrounding use of locks is worth a brief mention. Suppose activity Alphonse

locks object Apple, and then finds that object Banana is locked by activity Gaston. Alphonse

decides to wait until Gaston finishes and frees Apple. If Gaston now becomes interested in object

Apple and tries to lock it, we have a deadlock on our hands. Gaston cannot proceed until Alphonse

continues far enough to release the lock on Apple, but Alphonse is waiting for Gaston to release the

lock on Banana The possibility of deadlock (sometimes called "deadly embrace") is an inevitable

consequence of unrestricted use of locks to coordinate parallel activities. Obviously, any number of

parallel atomic operations could get mutually hung up in a deadlock.

There are several techniques that are used to cope with deadlock, all of which fall into one of

three general categories:

1 Timeout. If there is a timeout expiration on atomic operations. simply wait. When the time for

one of the atomic operations involved in the deadlock expires, the system aborts that atomic

operation (releasing its locks) and the remaining atomic operations may be able to proceed. If

not, another will time out., releasing further locks. As with the progress-insuring strategies of

section D.5, it might be useful for the system to impose a randomly chosen delay on the aborted

atomic operation before letting it try again. The timeout technique is effective, though it has the

usual defect with tirneouts: it is difficult to choose a suitable timeout value that keeps things

moving but also accommodates normal delays and legitimately variable operation times. If the

environment or system load changes, it may be necessary to change all the timeout values, a real

nuisance in a large system.

2. Lock ordering. Number the locks uniquely, and insist that atomic operations must seize locks in

ascending numerical order. That way, when an atomic operation encounters an already-seized

lock, it is always safe to wait for it, since the atomic operation that previously seized it cannot be

waiting for any locks that this atomic operation has already seized—all those locks are lower in

number than this one. There are many variations on this strategy, including an elegant one by

Bensoussan, in which an atomic operation may seize locks in any order, but if it encounters a

seized lock with number lower than some it has seized itself, the atomic operation backs up just

far enough to release its higher-numbered locks. Another generalization is to arrange the locks

in a lattice and require that they be seized in some lattice traversal order.

3. Cycle detection. Maintain, in the operating system, a schedule of which atomic operations are

waiting for which other atomic operations. Whenever another atomic operation tries to seize a

lock and finds it is already locked, the system examines the schedule to see if waiting would

produce a cycle of waits, and thus a deadlock. If it would, the system selects some cycle member

to be the victim, and unilaterally aborts that operation, so that the others may continue. The

aborted operation then retries in the hope that the other atomic operations have made enough

progress to be out of the way and another deadlock does not occur.

7-72 	 Coordination, Atomicity, and Recovery

Generally.-one can say that the more one permits unconstrained parallelism where there may

be frequent interactions among different atomic operations, the more likely is deadlock.

Nevertheless, one hopes that the additional performance gained from the parallelism more than

offsets any time wasted in aborting and retrying occasional atomic operations that encounter

deadlocks. The suggestions for further reading include several papers that explore

deadlock-preventing algorithms in detail.

F. Multi-site Atomic Actions

So far we have explored techniques such as double-writing, commit records, and logs, to

achieve atomicity. All these techniques are designed to hide the composite nature of actions that

occur all in close physical proximity. We now consider how to create atomic operations from steps

that must be carried out in different places—places separated by enough distance that

communication delay. communication reliability, and independent failure are significant concerns.

Multi-site atomic operations are quite complex, so we shall edge up on them by considering first

two sub-problems. The solutions to these two sub-problems will then be the basis for

implementing multi-site atomic operations. The first sub-problem, that of nesting atomic

operations, comes up even in a single site. The second sub-problem, called the two generals'

problem, leads to a remote procedure call protocol that shows how to coordinate steps that must be

carried out at different places. Merging the techniques of the two problem solutions leads to a

multi-site atomicity technique known as the two-phase commit protocol.

I. Hierarchical composition of atomic operations

We got into the discussion of atomic operations by considering that complex interpreters are

engineered in layers, and that each layer should implement atomic operations for its next-higher,

client layer. But each client layer has a still-higher client layer of its own for which it should

.implement atomic operations. so we conclude that atomic operations must be nested, consisting at

every step of lower-level atomic operations. This nesting requires that careful thought be given the

mechanism of achieving atomicity.

Consider again a banking example. Suppose that the earlier-described procedure to transfer

funds from one account to another is available and is implemented as an atomic operation. Suppose

now that we wish to write a higher-level procedure to pay or extract interest on a single customer

account:

Coordination, Atomicity, and Recovery 	 7-73

pay-interest: procedure(account);

If balance(account) > 0

then do;

interest = balance(account) • 0.18;

transfer(bank, account, interest);

end;

else do;

interest = -balance(account) • 0.26;

transfer(account, bank, interest);

end;

return;

This procedure moves an appropriate amount of money from or to an internal account named

"bank", the direction and rate depending on whether the customer account balance is positive or
negative.

We might also expect that periodically the bank runs a program to update interest on every
customer account:

month-end-interest:
	

procedure;

for A <-- each customer account

pay-interest(A);

return;

There are at least two, nested applications for atomic operations in these interest-paying programs.

First, the procedure "pay-interest" should be executed atomically, so as to insure that some other

"transfer" operation doesn't change the balance of the account between the test for balance sign and

the calculation of the interest amount_ Second, procedure "month-end-interest" should be an

atomic operation, to insure that some transfer operation does not move a large amount of money

from an account A to an account B between the interest-payment processing of those two accounts,

since such a transfer could cause the bank to pay interest twice on the same funds. Remembering

that the "transfer" operation by itself is also an atomic operation that is composed of several steps,

we see that we require three nested layers of atomic operations.

The reason nesting is a potential problem comes from a consideration of the "commit" step of

two nested atomic operations. The commit step of the "transfer" operation would seem to have to

occur either before or after the commit step of the "pay-interest" operation, depending on where in

the programming of "pay-interest" we place its commit step. Yet either of these positions will cause

trouble. If the "transfer" commit occurs in the pre-commit phase of "pay-interest" then

pay-interest will not be able to honor its obligation of being able to back out as though it hadn't

tried to operate; if the transfer commit does not occur until the post-commit phase of pay-interest,

there is a risk that the transfer itself will not be completable, for example because one of the

accounts is inaccessible. The conclusion is that somehow the commit point of the nested operation

7-74
	

Coordination, Atomicity, and Recovery

should be coincident with the commit point of the nesting operation.

We can accomplish this coincidence by extending the idea of a commit record slightly: we

allow commit records to be organized hierarchically. Suppose a commit record can contain a

pointer to another commit record. When, as part of an atomic operation, we create a nested atomic

operation. we place in the commit record of the newly-created. nested atomic operation a pointer

back to the nesting atomic operation's commit record. The resulting hierarchical arrangement of

commit records then exactly reflects the nesting of the atomic operations. (A top-level commit

record would contain a null pointer to indicate that it is not nested inside any other atomic

operation.) When a commit record contains a pointer to a higher level commit record, we shall call

it a dependent commit record.

The atomic operations, whether nested or nesting, then go about their business, and

depending on their success mark their own commit records as committed or aborted, as usual.

However, whenever anyone inquires about whether or not an atomic operation has committed, (for

example, when reading an apparently tentative version,) the inquirer must now go through a more

elaborate procedure. Starting with the commit record of the atomic operation in question, check its

status. If it is committed, then follow the pointer in that commit record back to its superior and

check that commit record. If that record is committed, continue following the chain upward until

the highest-level commit record is encountered. The atomic operation in question is actually

committed only if all of the commit records in the chain are committed. If any one is aborted, this

atomic operation is actually aborted (despite claims in its own commit record.) Finally, if neither

condition is true (all committed or at least one aborted) there must be one or more records in the

chain that are uncommitted and the outcome of this atomic operation remains uncommitted until

those records become committed or aborted. Thus the outcome of an apparently-committed

dependent commit record actually depends on the outcome of its ancestors. We can describe this

situation by saying that the dependent commit record and the associated atomic operation are

tentatively committed

This hierarchical arrangement has several interesting programming consequences. First, an

atomic operation can commit even though some atomic operation nested inside it aborts. Success of

that suboperation may not be required for success of the higher-level operation, or perhaps a retry

of the activity (nesting a different atomic operation for the retry) will have worked. Second, visible

.output of nested atomic operations must be thought about very carefully: there should not be any

until all the hierarchically higher operations have committed. For example, if one of the nested

operations decides it is appropriate to open a cash drawer, the sending of the release message to the

cash drawer ought to be held up until the outcome of the highest-level operation is known.

This output visibility consequence is only one example of many relating to the tentatively

committed state. The nested atomic operation, having declared itself in this state, is sitting on a

knife edge. It has renounced the ability to abort—the decision is in someone else's hands. It must

be prepared to run to completion or to abort, and it must maintain that prepared state indefinitely.

Maintaining the ability to go either way can be an awkward business, as the atomic operation may

Coordination, Atomicity, and Recovery 	 7-75

involve holding locks, keeping pages in memory or tapes mounted, or reliably holding on to output

messages. Thus one immediate conclusion is that one cannot blindly take an operation that has

been programmed to be atomic, and include it as a nested part of a larger atomic operation. At the

very least, one must review the resource requirements involved in maintaining the tentatively

committed state.

A third, more complex, consequence arises when one considers possible interactions among

different atomic operations that are nested within the same higher-level atomic operation. Suppose

atomic operation A invokes first atomic operation B, which commits tentatively, pending the

outcome of A. Then A invokes atomic operation C, which is programmed to read as input data some

of the results of tentatively committed atomic operation B. The read-current-value algorithm, as

implemented in figure 7-21, doesn't distinguish between reads arising within the same group of

nested atomic operations and reads from some completely unrelated atomic operation. Fits test for

committed value is extended in the way described earlier to follow the ancestry of the commit

record controlling the latest version, it will undoubtedly force atomic operation C to wait pending

the final outcome of atomic operation B, which is only tentatively committed. But since the final

outcome of B. depends on the outcome of atomic operation A, and the outcome of A currently

depends on the success of C, we have a built-in cycle of waits that at best can only time out and

abort_

The possibility of such cycles means that the question of whether or not to permit reading

tentatively committed values cannot be answered casually. The goal is that uncommitted updates

should not be visible outside the uncommitted operation: but those changes can be passed around

inside the uncommitted operation. We can achieve that goal in the following way: compare the

commit record ancestry of the atomic operation doing the read with the ancestry of the commit
record that controls the version to be read. If these ancestries do not merge (that is, there is no

common ancestor) then the reader should wait for the version's ancestry to be completely

committed. If they do merge, the requirement of correctness is that all the atomic operations in the

ancestry of the data version that are below the point of merge should have tentatively committed, in

which case no wait is necessary. Figure 7-25 illustrates an example of such a situation.[1]

The concept of nesting atomic operations hierarchically is useful in its own right, but our

particular interest in nesting is that it is one of the bases for multi-site atomicity. We now return to

.that subject, first exploring what makes it different from the single-site atomic operation.

1. Note that this rule anticipates the possibility that the atomic operation might start several nested

atomic operations going in parallel. In figure 7-25, A might have started B and C going in parallel,

in which case operation G should not look at data value X until operation B decides whether to

commit or abort_

7-76 	 Coordination, Atomicity, and Recovery

A

nested

commit

records

Object

version with

I

pointer to

/// 	

commit record

Figure 7-25. Atomic operation G, nested in atomic operation C, which is nested in atomic

operation A. wants to read the'current value of object X. which was last written by atomic operation

E, nested in atomic operation B. nested in atomic operation A. Even though this version of X is

only tentatively committed, since the first uncommitted ancestor of X is one that is shared with G,

the read should be allowed.

Coordination, Atomicity, and Recovery 	 7-77

2. Why multi-site atomicity is harder

When an application program invokes a procedure, the programmer plans for success, but

usually has in mind the possibility that the procedure may fail in some way. That is, the procedure

may return an output value that indicates it couldn't do the job, it may leave an error code in a

global variable, or it may signal a failure by invoking some condition-reporting mechanism. Thus

the programmer normally plans to check for one of several outcomes, and assumes that the calling

program will be able to learn which of the outcomes happened and proceed accordingly.

To increase availability and capacity to handle large applications, it is common to use several

computer systems connected with communication links. One of the prime opportunities to increase

availability when several computers are available is independent failure: when one computer

system crashes for whatever reason, the others may be able to carry on with what they were doing, -if

their activities are not too tightly coupled with those of the machine that failed. If they are tightly

coupled, then a failure in one computer may propagate, causing all the systems to crash. The heart

of the multi-site coordination problem is to allow coordination among sites, but keep it loose

enough that individual sites can fail independently of one another.

The way this problem shows up at the application programming level is quite straightforward,

though a little difficult to deal with: if a program invokes a procedure that is actually to be carried

out at another site, there is a new possible outcome. In addition to success or failure, there is the

possibility of no response at all. Lack of response from another site can arise for several reasons:

1. The other site may have crashed, and is being repaired or is in the midst of recovery procedures.

2. The other site may have received the message requesting the operation, and done the operation,

but crashed just as it was about to send back the confirmation of success.

3. The message asking the other site to execute the procedure may have been lost. (A

communication system is best viewed as an additional "site" that may crash independently,

losing messages in transit.)

4. The message confirming that the other site did the requested job may have been lost by the

. 	communication system.

5. The other site has a long queue of work, and will eventually get around to doing the requested

operation, but on a time scale far beyond the invoker's expectations.

6. The originating site may have crashed just after sending the message requesting execution of the

procedure.

7-78 	 Coordination, Atomicity, and Recovery

The important issue that arises in examining these various cases is that lack of response, by

itself, does not provide any clue as to whether the other site did or did not perform the requested

procedure. Thus the new outcome: the caller does not know what happened. This outcome can be

somewhat distressing: if one has not planned ahead for the possibility, simply sending the request

again may result in the job being done twice. For some applications (e.g., retrieving a data page)

that might not hurt, but for others (e.g., debiting a bank account) it would probably be a serious

mistake. The first site could send an inquiry to the second site asking if it did the job, but only if the

original request is uniquely identifiable and the second site keeps good records concerning what it

has and hasn't done. Thus we need to develop a protocol for reliably performing a remote

procedure call. The development of such a protocol is known as the "two—generals' problem".

3. 	The two—generals' problem

The constraints on possible coordination protocols when communication is unreliable are

captured in an analogy, originally posed with vivid images by James N. Gray, called the

two—generals' problem. Suppose that two small armies are encamped on two mountains outside a

city. The city is well—enough defended that it can repulse and destroy either of the two armies if

that army should attack alone. But if the two armies attack simultaneously, they can take the city.

Thus the two generals who command the armies need to coordinate their movements.

The only method of communication between the two generals is to send runners from one

camp to the other. But separating the two mountains is a narrow, deep canyon that the runners

must leap across. Unfortunately. the wind blowing through the canyon is quite treacherous and

unpredictable, and there is a chance that the runner, trying to leap across, will instead fall into the

canyon, never to be heard from again.

The dilemma of the two generals is now apparent. The first general sends the message:

Date: 	22 April

From: 	Patton

To: 	Sherman

Message: Attack at dawn tomorrow. OK?

expecting that the second general will respond either with:

Date: 	22 April

From: 	Sherman

To: 	Patton

Message: OK. dawn on the 23rd.

or. possibly:

Coordination, Atomicity, and Recovery 	 7-79

Date: 	22 April

From: 	Sherman

To: 	Patton

Message: Awaiting reinforcements, can't participate on 23rd.

Suppose that the first message does not get through. In that ease, the second general does not

march because no request to do so arrives, and the first general does not march because no

confirmation arrives, and all is well (except for the lost runner). Now suppose the first message is

delivered successfully and the reply "OK" is sent back but lost. The first general cannot distinguish

this case from the earlier case, so must not march. The second general has agreed to march, but

knowing that the first general won't march unless the confirmation arrives, the second general

should not march unless the first general is known to have received the confirmation. This

hesitation on the part of the second general suggests that the first general should send back an

acknowledgement of the confirmation. Unfortunately, that doesn't help, since the

acknowledgement may be lost and the second general, waiting for the acknowledgement., will still

not march.

We can now leap directly to a conclusion: there is no protocol with a bounded number of

messages that can perfectly coordinate the two generals. If there were such a perfect, bounded

protocol. the last message in that protocol must be unnecessary to the perfection of the protocol,

because it might be lost, undetectably. Since the last message must be unnecessary, one could delete

that message from the protocol to produce another, simpler protocol, that also guarantees perfect

coordination. We can reapply the same reasoning repeatedly to the shorter protocol to produce still

shorter ones, and we must conclude that if such a perfect protocol exists it either is of zero length or

else is unbounded in length.

A practical general, presented with this argument by a mathematician in the field, would

reassign the mathematician to a new job as a runner, and send an engineer to inspect the canyon and

report the probability of a successful leap. Knowing that probability, the general would then send

several runners, each carrying a copy of the message, choosing a number of runners large enough

that the probability that all fail to leap the canyon is so small as to be negligible. (The loss of all the

runners simultaneously becomes an intolerable error—from the point of view of the general.)

• Similarly, the second general sends many runners each carrying a copy of the acknowledgement.

This practical scheme will satisfy the generals, but it leads to an interesting complication: once the

first runner has gotten through, the general at the receiving end must not get confused by the arrival

of additional runners bearing the same message: each general must learn to cope with duplicates.

We can state this conclusion more generally: if messages may be lost, no single protocol can

both prevent duplicates and at the same time guarantee delivery. Coping with duplication is not

impossible, but it is harder than it may appear. The basic approach is to arrange that all operations

triggered by messages be idempotent: doing them again has no effect. If the operation is not

naturally idempotent. it can be made so by placing a unique identifier in each different request

7-80 	 Coordination, Atomicity, and Recovery

message, keeping a list (in stable storage) of the unique identifiers received so far, and explicitly

discarding any request messages that arrive but that contain unique identifiers already in the list. If

the request called for a reply, the reply should also be kept on file and sent back in response to

duplicate requests.

The two generals would probably consider duplicate marching orders to be typical and would

not get confused unless the mathematician (hoping to avoid reassignment as a runner) tried to

explain idempotence.

4. 	Remote procedure call

We can now construct a reliable remote procedure call. Suppose we have two sites, the first

taking on a role as coordinatorC, of the call, the second as worker W. The coordinator sends a
message:

From:

To:

Identifier: 46

Message: 	Please transfer(accountX, accountY, $1000)

The identifier "45" might indicate that this is the 45th remote procedure call from C to W. The

protocol will depend on this identifier being unique, so coordinator C should keep this identifier in

stable storage to make certain that it doesn't get used again and for reference in the event of a crash.

The coordinator then waits for a response from W. The response is expected to be either

From:

To:

Identifier: 46

Message: 	Transfer accomplished. Regards.

or a response of the same form but with the message "transfer not possible. insufficient funds."

Worker W checks to see if it has already responded to message "45" before. If not, it stores the

message identifier "45" in its own stable storage. does the requested transfer, and records the

response message in stable storage, all as a single atomic operation. After completing the atomic

operation. it sends the response message. If it discovers that it has already handled a message

identified as "45", it simply resencis the response for message "45" that it finds in stable storage.

The coordinator, if it does not hear any response in a reasonable time, resends its request

message. lithe reason for lack of response is that the request message was lost or the worker site

was down, then the resent message will now accomplish the desired affeci If the lack of response is

Coordination, Atomicity, and Recovery 	 7-81

because the response message was lost, the worker will notice that it has seen message "45" before

and it will resend the response. If the worker crashed while doing message 45, that crash occurred

either before or after the commit point. If before, since the job was atomic, there will be no record

of message 45, and the worker will now do the job. If after, then the response for message 45 is

securely on file and the worker will resend it.

Assuming the coordinator is persistent enough to keep trying, this protocol will eventually

succeed in getting the remote function invoked exactly once. Even if the coordinator gives up after

several tries and calls for repair of the communication network, when the repair is complete the

coordinator can continue the protocol, eventually assuring success. Note, however, that success

requires that the coordinator be persistent.

Note also that success means only that the remote procedure gets invoked; and the

coordinator knows the result. If there are several such remote operations to be invoked, the

protocol provides no obvious help in forging a single atomic operation out of the set of remote

operations. However, it provides us with a style of protocol design that will be useful in devising a

multi—site atomicity prot000l.

5. Two—phase commit

Between the hierarchical commit record mechanism for nesting atomic operations and the

reliable remote procedure call for dealing with independent failures, we now have the tools needed

to develop a multi—site atomicity algorithm. Our goal is the following: to assemble an atomic

operation that is composed of individual operations that are carried out at several sites, despite the

possibility that messages may be lost and the various sites can crash and recover independently. We

assume that each site, on its own, is capable of implementing local atomic operations, using stable

storage and some mechanism such as version histories or recovery logs. Correctness of the overall

atomicity protocol will be achieved if all the sites commit or if all the sites abort; we will have failed

if some sites commit their part of an atomic operation while others abort their part of the same

atomic operation.

Suppose the atomic operation consists of a coordinator C requesting operations X, Y, and Z

• of worker sites Wl, W2, and W3, respectively. The simple expedient of issuing three remote

procedure calls certainly does not produce an atomic operation, because worker W1 may do X while

worker W2 may report that it cannot do Y. Conceptually, the coordinator might like to send three

messages, to Wi, W2, and W3 respectively, like this one to Wl:

From:

To: 	W1

Identifier: 91

Message: 	If (W2 does Y and W3 does Z)
then do X, please.

7-82
	

Coordination, Atomicity, and Recovery

and let the three workers handle the details. Unfortunately we still have no clue how WI could

execute this strange request.

The clue comes from recognizing that the coordinator and the workers represent a

hierarchical nesting of atomic operations. The coordinator has created a higher-level atomic

operation, and each of the workers is to perform an atomic operation that is nested in the

higher-level operation. The complication is that the coordinator and workers are not reliably in

communication with one another. Our problem then reduces to that of constructing a reliable

communications protocol to la in the middle of a hierarchically composed atomic operation.

The protocol is known as two-phase commit. The protocol starts with the coordinator creating

a top-level commit record for the overall atomic operation. Then the coordinator sends a message

such as this one to worker Wl:

From:

To:
	

W1

Message:
	

Please do X as part of my atomic operation 271.

Similar messages go to workers W2 and W3. As in the remote procedure call, if the coordinator

doesn't get a response from one or more workers in a reasonable time it may resend the message to

the non-responding workers.

A worker site, upon receiving a request of this form, creates an atomic operation of its own

but it makes the commit record a nested one, with its superior being the original atomic operation of

the coordinator. It. then goes about doing job X, and either commits—but only tentatively—or

aborts. It then sends a response back to the coordinator:

From: 	W1

To:

Message: 	I have tentatively committed my part of atomic operation

271. Please don't forget about me. Regards.

or alternatively, a message reporting it has aborted. As in the remote procedure call case, if a

duplicate request arrives at worker W1 from the coordinator C, W1 simply sends back a duplicate of

its previous response, reporting either tentative commitment or abort.

At this point worker Wl, if it has tentatively committed, is out on a limb. Just as in a local

hierarchical nesting, W1 must be prepared either to run to the end or to abort, to maintain that state

of preparation indefinitely, and wait for someone else to tell it which. In addition, the coordinator

may independently crash or lose communication contact, increasing the uncertainty of Wl.

Coordination, Atomicity, and Recovery 	 7-83

The coordinator C collects the response messages from the several workers (perhaps

rerequesting the original operations several times from some worker sites) and if all workers have

agreed tentatively to commit. Phase one of the two-phase commit is complete. Phase two begins as

the coordinator commits the entire atomic operation by marking its own commit record. (If any

worker aborts, the higher-level operation has the choice of aborting the entire operation or, for

example. trying a different worker site for the substep that failed.)

Once the higher-level commit record is marked as committed or aborted, the coordinator

sends a completion message back to each worker:

From:

To: 	W1

Message: 	Atomic operation 271 committed. Thanks for your help.

It then goes about its business, with one important requirement for the future: it must remember,

reliably and for an indefinite time, the outcome of this atomic operation. The reason is that one or

more of its completion messages may have been lost. Any worker sites that are tentatively

committed are awaiting the completion message to tell them which way to go. If a completion

message does not arrive in a reasonable period of time, the worker site should send an inquiry back

to the coordinator:

From: 	W1

To:

Message: 	Hey. whatever happened to your atomic operation 271?

Whenever the coordinator gets such an inquiry it simply sends back the current state of the commit

record for the named atomic operation. If worker site WI crashes, the recovery procedure at W1

should include a test to discover tentatively committed atomic operations and send inquiries about

their current state, on the chance that the completion message arrived during Wl's crash. If the

coordinator reports "committed", the recovery procedure classifies the atomic operation as a

"winner", whereas if the coordinator reports "aborted", the recovery procedure classifies it as a

"loser". If the atomic operation is still uncommitted at the higher level, the recovery procedure

must restore the tentative, waiting state.

If all goes well, coordination of N worker sites will be accomplished in 3N messages: for each

worker site a request message. a response message. and a completion message. This 3N message

protocol is complete and sufficient, although there are several variations one can propose.

Some versions of the two-phase commit protocol have a fourth acknowledgement message

from the worker sites to the coordinator. The intent is to collect a complete set of acknowledgement

messages—the coordinator can resend completion messages over and over until every site

acknowledges. The coordinator can then safely discard its commit record, since every worker site is

guaranteed to have gotten the word.

744 	 Coordination, Atomicity, and Recovery

A system that is concerned both about commit record storage space and the cost of extra

messages can use a further refinement. Since (we assume) most atomic operations commit, we can

use a slightly odd, but very space-efficient representation for the value "committed" of a commit

record: non-existence. Any inquiry about a non-existent commit record is answered "committed".

If the coordinator uses this representation, it commits by destroying the commit record, so a fourth

acknowledgement message from every worker is quite unnecessary. In return for this apparent

magic reduction in both time and space. we notice that commit records for aborted atomic

operations can not easily be discarded, because if an inquiry arrives after discarding, the inquiry will

receive the response "committed". The coordinator can, however, ask for acknowledgement of

aborted atomic operations, and discard the commit record after all these acknowledgements are in.

This last refinement completes our inquiry into multi-site atomicity algorithms. The reader

should be aware that this area is the subject of ongoing research and development activity and that

there are many refinements and variations being explored in the current literature.

G. Perspectives

In this chapter we have gone into considerable depth on several specific problems and

systematic approaches to their solution. At this point it is appropriate to stand back from all those

technical details—as far back as we can get without completely losing sight of the problems being

solved—and try to develop some perspective on how all these ideas relate to the real world. The

observations of this section are wide-ranging: history, tradeoffs, skepticism, and unsettled topics.

Individually these observations appear somewhat disorienting and disconnected, but together they

may provide the reader with some preparation for the wide range of reactions that atomicity receives

in the practical world of computer system design.

First, the history: Systematic application of atomicity to recovery and to coordination is

relatively recent. Ad hoc programming of parallel activities has been common since the late 1950's,

.when machines such as the IBM 7030 (STRETCH) computer and the experimental TX-0 at M.I.T.

used interrupts to keep I/O device driver programs running in parallel with the main computation.

The first time-sharing systems (in the early 1960's) demonstrated the need to be more systematic in

interrupt management, and many different semantic constructs were developed over the next

decade to get a better grasp on coordination problems: Dijkstra's semaphores, Brinch Hansen's

message buffers. Reed and Kanodia's event counts. Habermann's path expressions, and Hoare's

monitors are examples. A substantial literature grew up around these constructs, but a characteristic

of all of them was a focus on properly coordinating parallel activities, each of which by itself was

assumed to operate correctly. The possibility of failure and recovery of individual activities, and the

consequences of such failure and recovery on coordination with other, parallel activities, was not a

Coordination, Atomicity, and Recovery 	 7-85

focus of attention. Another characteristic of these constructs is that they resemble a machine

language, pro‘iding variously-shaped tools but little guidance in how to apply them.

Failure recovery was not simply ignored in those early systems, but it was handled quite

independently of coordination, again using ad hoc techniques. The early time-sharing system

implementers found that users required a kind of stable storage, in which files could be expected to

survive intact in the face of system failures. To this end most time-sharing systems periodically

made extra copies of on-line files, using magnetic tape as the backup medium. The more

sophisticated systems developed incremental backup schemes, in which recently created or modified

files were copied to tape on an hourly basis, producing an almost-up-to-date log. To reduce the

possibility that a system crash might damage the on-line disk storage contents, salvager programs

were developed to go through the disk contents and repair obvious and common kinds of damage.

These ad hoc techniques, though adequate for some time-sharing system use, were not

enough for designers of serious database management systems, who developed the concept of a

transaction, which is exactly a failure-atomic operation applied to a database. Atomicity logging

protocols thus developed in the database environment, and it was some time before they were

recognized as providing a kind of recovery semantics that had wider applicability.

Within the database world, coordination was accomplished almost entirely by locking

techniques that became more and more systematic, with the identification of serializability of atomic

operations as a Func'..imental definition of correctness. That identification, in turn, along with a

requirement for hierarchical composition of programs, led to the development of version-history

systems. Version histories systematically provide both recovery and coordination with a single

mechanism, and they simplify building big atomic operations out of several, independently

developed, smaller ones.

In this chapter, we have reversed this development, because the version history system is

pedagogically the more straightforward, while the more ad hoc logging/locking approach is

somewhat harder to learn at first. However, the reader should realize that a majority of systems

currently in the field use the older approach.

Now, the tradeoffs: An interesting set of tradeoffs applies to techniques for coordinating

.parallel activities. Figure 7-26 suggests that there is a spectrum of coordination possibilities, ranging

from totally serialized operations on the left to complete absence of coordination on the right.

Starting at the left, we can have great simplicity but admit no parallelism at all. Moving toward the

right. complexity increases, but so does the possibility of improved performance, since more arid

more parallelism is admitted. For example, the mark-point-sequential and simple locking

algorithms might lie more toward the left end of this spectrum while read-capture and two-phase

locking would be farther to the right_

Continuing to traverse this spectrum there is an important boundary, of correctness: to the

right of this boundary results may be wrong, in the sense that no serial schedule of the same

7-86
	

Coordination. Atomicity, and Recovery

Correctness

Boundary

high

A
Correct

coordination

Complexity of

coordination

scheme

Wrong answers

from

miscoordination

low

none 	 unconstrained

Amount of parallel activity permitted

Figure 7-26. The tradeoff between parallelism, complexity, and correctness. The choice of where

in this chart to position a system design depends on the answers to two questions: 1) How

frequently will parallel activities actually interfere with one another? 2) How important are 100%
correct results? If interference is rare, it is appropriate to design farther to the right. If correctness is

not essential, it is acceptable to design even to the right of the correctness boundary.

Coordination, Atomicity, and Recovery 	 7-87

operations could have that outcome. The closer one approaches this boundary from the left, the

higher the performance. but presumably at the cost of higher complexity. All of the algorithms

explored in this chapter are intended to operate to the left of the correctness boundary, but we

might inquire about the possibilities of working on the other side. Such a possibility is not as

unthinkable as it might seem at first. If interference between parallel activities is rare, and the cost

of an error is small, one might actually be willing to permit parallel operations that can lead to

certifiably wrong answers. For example, in an inventory control system for a grocery store, if an

occasional sale of a box of cornflakes goes unrecorded because two point-of-sale terminals tried to

update the comflake inventory simultaneously, the resulting slight overstatement of inventory may

not be a serious problem. The grocery store must do occasional manual inventory anyway because

other boxes of cornflakes get misplaced, damaged, and stolen. This higher-level data recovery

mechanism will also correct any errors that creep in because of miscoordination in the programming

of the inventory management system, so its designer might well decide to use a coordination

technique that allows maximum parallelism, is very simple, catches the most common

miscoordination problems. but nevertheless operates to the right of the strict correctness line. A

decision to operate a data management system in a mode that allows such errors can be made on a

rational basis. One would compare the rate at which the system loses track of inventory because of

its own coordination errors with the rate that it loses track because of outside, uncontrolled events.

If the latter rate dominates, it is not necessary to press the computer system for better accuracy.

Another plausible example of acceptable operation to the right of the correctness boundary is

the calculation. by the Federal Reserve Bank. of the United States money supply. Although in

principle one could program a two-phase locking algorithm that includes every bank account in

every bank that contains U.S. funds, the practical difficulty of accomplishing that task with

thousands of independent banks distributed over a continent is formidable. Instead, the data is

gathered without locking, with only loose coordination and it is almost certain that some funds get
counted twice and other funds get overlooked. However, great precision is not essential in the

result, so lack of perfect coordination among the many individual bank systems operating in parallel

is quite acceptable.

Although allowing incorrect coordination might appear usable only in obscure cases, it is

actually applicable to a far wider range of situations than one might guess. In almost all data base

management applications, the biggest cause of incorrect results is wrong input by human operators.

.Typically, stored data already has many defects before the transaction programs of the database

management system have a chance to "correctly" transform it. Thus the proper perspective is that

operation to the right of the correctness boundary of figure 7-26 merely adds to the rate of

incorrectness of the database. With that perspective, one can more sensibly balance heavy-handed

but "correct" transaction coordination schemes against simpler techniques that can occasionally

damage the data in limited ways. If, as is usual, there is a higher-level system in place to cope with

damaged data anyway, the simpler coordination scheme may be preferable. One piece of evidence

that this approach is acceptable in practice is that one of the most widely-used data management

systems. I MS for the IBM System/370, uses a simple set of locking and coordination rules that are

demonstrably incorrect. However, the frequency of awkwardly ordered update operations that can

7-88 	 Coordination, Atomicity, and Recovery

produce wrong answers is apparently low enough that users find the result tolerable.

Unfortunately the same thing cannot be said in the area of instruction set design for central

processors. Three generations of central processor designers (of the main frame processors of the

1950s and 1960's, the mini—computers of the 1970's, and the one—chip micro—processors of the

1980's) have not recogized the importance of atomicity in their initial design and have been forced

to retrofit atomicity into their architectures later.

Next, the unsettled topics: there are several areas in which coordination and recovery are not

completely settled problems. These areas include the fundamental basis of atomicity, the role of

timeouts, composition with locks, the role of forward error correction and the effects of delay, the

systematic application of compensation, the systematic use of loose or incorrect coordination, and

the possibility of malicious participants.

At the bottom of coordination atomicity must be some fundamental mechanism for achieving

mutual exclusion. In a locking system there must be a way of arbitrating between two participants

that happen to try to set the same lock at just the same time. In a version history system, mutual

exclusion is needed in the creation of unique identifiers, to insure that two atomic operations do not

get assigned the same identifier. Mutual exclusion is also required in the updating of the values of

commit records. At the hardware level, mutual exclusion is implemented by an arbiter, a device that

chooses which of two request signals to honor. Unfortunately, all known arbiter designs have a kind

of indeterminacy that appears when the arbiter is asked to choose between very closely—spaced

signals: it seems to be the case that the more closely—spaced the two signals, the longer is the

average time for the arbiter to choose one of them. The arbiter can enter a so—called metastable

state, with an output value somewhere between its two correct values or possibly oscillating between

them at a very high rate. As a consequence, after applying a signal to an arbiter, one must wait some

length of time for its output to settle. For any given delay time there is some probability that the

arbiter will not have settled yet, and a sample of its output may find it changing. This phenomenon

is apparently related to the physics of metastable states, but it has not been studied completely

enough; bounds on settling time are not part of the published specifications of arbiters.

Timeouts are a separate area of difficulty that have been mentioned several times in the

earlier parts of this chapter. Timeouts are used to solve various problems: discovery of deadlocks,

.resolution of contention, garbage collection of failed atomic operations. The trouble with timeouts

is that it is hard to choose a good value for them. If too short, some operation that is proceeding

normally, but under worst—case conditions. may abort unnecessarily. If too long, performance will

degrade as resources are tied up waiting for a timeout to occur. Worse, when conditions change,

timeout values must change accordingly, so it is bad design to embed them in programs. There is

not yet a well—understood and systematic design approach that avoids timeouts or makes the choice

of their length unimportant. The state of the art seems to consist of careful documentation both of

the existence of timeouts and the considerations that led to choice of their value, to minimize the

maintenance burden.

Coordination, Atomicity, and Recovery 	 7-89

Hierarchical composition—making larger atomic operations out of previously programmed

smaller ones—interacts in an awkward way with locking as a coordination technique. The problem

arises because locking protocols require a lock point for coordination correctness. Creating an

atomic operation from two previously independent atomic operations is difficult, because each

separate atomic operation has its own lock point, coinciding with its own commit point. But the

higher-level operation must also have a lock point, suggesting that the order of capture and release

of locks in the constituent atomic operation needs to be changed. But rearrangement of the order of

lock capture and release contradicts the usual goal of modular composition, under which one

assembles larger systems out of components without having to modify the components. To

maintain modular composition, the lock manager (that is. the program that implements "seize" and

"release") needs to know that it is operating in an environment of hierarchical atomic operations.

With this knowledge, it can, behind the scenes, systematically rearrange the order of lock release to

match the requirements of the operation nesting. For example, when a nested atomic operation

calls to release a lock, the lock manager can simply relabel that lock to show that it is held by the

higher level, not-yet-committed, atomic operation in which this one is nested. A systematic

discipline of passing locks up and down among nested atomic operations thus can preserve the goal

of modular composition.

This chapter has focused almost entirely on error recovery using detection and retry, rather

than on error masking by use of redundancy. Error masking, sometimes called forward error

correction, is a widely-used technique in systems that must meet deadlines, such as manufacturing

automation systems, life support s!,stems, ad high-availability database management systems.

Achieving reliability through error detection and retry can lead to unexpected delays at any time,

and some applications cannot cope with such delays. For those applications, forward error recovery

is a more appropriate technique. and the reader is referred to the suggestions for further reading for

papers and books on that subject. One area that has not yet received much attention is the design of

systems that use both retry and forward error correction, blending the techniques to best advantage

for the particular application. Although there exist systems that use both approaches

simultaneously. they are generally ad hoc designs, and there is no well-understood design discipline

that combines the two approaches.

A related problem not explored here is the one of unrecoverable errors: suppose that

multi-site coordination is applied to a group of ships fighting a naval battle, and part way through

.the battle one of the ships sinks. Resending requests to the lost ship is futile: algorithms that can

carry on (perhaps with reduced effectiveness but, one hopes, without forfeiting the battle by default)

are an interesting area for future development

Returning to figure 7-26 for the moment. the possibility of designing a system that operates

in the region of incorrectness is intriguing, but there is one major deterrent: one would like very

much to specify, and thus limit, the nature of the errors that can be caused by miscoordination. This

specification might be on the magnitude of errors, or their direction, or their cumulative effect, or

whatever. Systematic specification of tolerance of coordination errors is a topic that has not yet

been seriously explored.

7-90 	 Coordination, Atomicity, and Recovery

Compensation is the way that one deals with miscoordination or with recovery in situations

where undoing an operation invisibly cannot be accomplished. Compensation is performing a

visible operation that reverses all known effects of some earlier, visible operation. For example, if a

bank account was incorrectly debited, one might later credit it for the missing amount. The

usefulness of compensation is limited by the extent to which one can track down and reverse

everything that has transpired since the operation that needs reversal. In the case of the bank

account, one might successfully discover that an interest payment on an incorrect balance should

also be adjusted; it might be harder to reverse all the effects of a check that was bounced because

the account balance was too low. Apart from generalizations along the line of "one must track the

flow of information output of any operation is that to be reversed" little is known about systematic

compensation; it seems to be a very application-dependent concept.

Finally, the coordination schemes we explored in this chapter assume that the various

participants are all trying to reach a consistent, correct result. A recently emerging area of study

explores what happens if one or more of the workers in a multi-site coordination task decides

maliciously to mislead the others, for example by sending a message to one site reporting it has

committed, while sending a message to another site reporting it has aborted. (This possibility is

described colorfully as the Byzantine Generals' problem.) One reason for exploring this area is the

concern that undetected errors in communication links could simulate this kind of uncooperative

behavior. The importance and practical applicability of this area of study is not yet established but

it provides a wonderful sandbox for theoretical exploration of coordination algorithms.

This set of perspectives completes our study of atomicity. Three appendices provide

real-world examples of atomicity in action.

Coordination, Atomicity, and Recovery 	 7-91

Appendix 7-A: Case studies of atomic operations at the machine language level

I. Honeywel168/80

In the Honeywell Information System. Inc.. 68/80 computer architecture (a descendent of the

General Electric 600-line, which was very similar,) a feature called "indirect and tally" was

provided. One could specify this feature as a modifier on any indirect word. The instruction

Load register A from location Y indirect,

was interpreted to mean that location Y contains an indirect word, which word contains the address

of the actual operand of the original instruction. But in addition, if the indirect word in Y contains a

"tally" modifier, the processor is to increment the indirect word by one and put it back in location

Y. so that the next time location Y is used as an indirect word it will point to a different

operand—the next sequential one in memory. Thus the indirect and tally feature could be used to

sweep through a table.

Suppose that virtual memory is in use, and that the indirect word is located in one page,

(which is in real memory,) while the operand is in another page (which is not in real memory right

now.) When the above instruction is executed, the processor will retrieve the indirect word,

increment it, and .store the new value in memory. Then it will attempt to retrieve the ultimate

operand, and discover that it is not in real memory: a missing page fault must be triggered. Since

the indirect word has been modified and by now may have been already removed from real memory

by the missing page handler running on another parallel processor, it is not feasible just to go back

and "unmodify" it so as to pretend that this instruction has not been tried.

In the Honeywell 68/80, the virtual memory designers wanted to be able to run other

programs on the halted processor while awaiting the arrival of the missing page. They therefore

extended the definition of the current program state to contain not just the next-instruction counter

and the program-visible registers, but also the complete internal state description of the

processor—a 216-bit snapshot in the middle of the instruction. By later restoring the processor state

to contain the previously saved values of the next-instruction counter, the program-visible registers,

and the 216-bit internal state snapshot, the processor could exactly continue from the point of

interruption. This technique works, but it has two bad side effects: 1) when a program (or

programmer) inquires about the current state of an interrupted processor, the state description

includes things not in the programmer's interface; and 2) the system must be very careful when

7-92 	 Coordination, Atomicity, and Recovery

restarting an interrupted program to make certain that the stored micro-state description is a valid

one. If some one has altered the state description the processor could try to continue from a state it

could never have gotten into by itself, possibly leading to failures of its memory protection features.

2. IBM System/360

When IBM added virtual memory to its System/360 architecture, to produce the System/360

Model 67, certain multi-operand character-editing instructions produced atomicity problems.

These instructions required touching from two or four virtual-memory operands, any one of which

might not be in real memory. Rather than tampering with the program state definition, the IBM

architects chose a different strategy, called the "dry run". With the dry run strategy, the instruction

is executed using a hidden copy of the program-visible registers. If an operand turns out to be

missing from real memory, the processor can pretend that it never tried the instrction, since there is

no program-visible evidence that it did. The stored program state shows only that the

character-editing instruction is about to be executed. After the missing page is retrieved, the

instruction is tried from the beginning again, another dry run. If there are several operands

required, several dry runs may occur to get them all into real memory. When, finally, a dry run

succeeds in completing. the instruction is run once more, this time for real, using the

program-visible registers. Since the System/360 (at the time this modification was made) was a

one-processor architecture, there was no possibility that a parallel processor might snatch a page

away after the dry run but before the real execution of the instruction. (This technique has the side

effect of making life more difficult for a later designer who has the task of adding multiple

processors.)

3. The Apollo desktop computer and the Motorola M68000 microprocessor

When Apollo Computer designed a desktop computer using the Motorola 68000

microprocessor, the designers, who wanted to add a virtual memory feature, discovered that the

microprocessor was not atomic. Worse, because it was constructed entirely on a single chip it could

not be modified to make it atomic (as in the IBM 360) or to make it store the internal microprogram

state (as in the Honeywell 68/80). So the Apollo designers used a different strategy: they provided

.not one, but two M68000 processors. When the first one runs into an operand missing from real

memory, it simply stops in its tracks, and waits for the operand to appear. The second M68000

(whose program is carefully planned to reside entirely in real memory) fetches the missing page and

then restarts the first processor.

Other designers working with the M68000 used a different, somewhat risky trick: modify all

compilers and assemblers to generate only instructions that happen to be atomic. More recently,

Motorola produced a version of the M68000 in which all internal state registers of the

microprocessor can be saved, much like the Honeywell 68/80.

Coordination, Atomicity, and Recovery 	 7-93

Appendix 7-B: A better model of disk failure, with atomicity algorithms

This model of disk operation is similar to that of section 7.C.2, but with the reclassification of

certain intolerable errors as detectable. We begin with the same model of the processor, memory,

and operating system as before, in which all failures in those areas lead to an instant reset of all

volatile storage and restart of the processor. The changes are in the analysis of the disk subsystem

operations, Put and Get. We assume that, rather than providing stable storage, the disk system can

fail in various detectable ways: our goal is to provide the illusion of stable storage despite those
failures.

Put (address, data)

desired event:

undesired events:

expected:

expected:

intolerable:

data is written at address

detectable garbage is written at address

nothing is written at address

(Old data remains. New data may have been

written at some other address by mistake.)

undetectable garbage is written at address

Note that there are subtle interplays among various parts of the system. For example, this model of

Put must continue to apply even if the system crashes in the middle of the Put. One would

probably implement these specifications by writing a redundancy check pattern on the disk after the

last byte of each disk block. By including the address of the disk track in the redundancy check, one

can even detect the case where the data gets written at the wrong address.

To allow a program to participate in recovery, we need a way for it to find out about

detectable errors. Thus the Get operation now has a third argument, a returned opinion on the

validity of the data found at the requested address. The disk system might render this opinion by

reading the data and the associated redundancy check pattern, recalculating the check pattern from

7-94
	

Coordination, Atomicity, and Recovery

the read data, and comparing the two check patterns.

Get (address, data, opinion)

	

desired event:
	

previously written data is returned and

opinion is OK

	

desired event:
	

damaged data or garbage is found and opinion

is not-OK

undesired events:

	

expected: 	previously written data is actually OK but

for some reason opinion is not-OK. (This

situation is called a "soft read error", and

is often correctable by repeated rereading.)

intolerable: damaged data or garbage is found and returned

but opinion is OK

To complete the model of disk storage, we must recognize that there is also a spontaneous event:

decay. It is never desirable. It hits sets of disk pages, called decay sets, for example all the pages on

one drive or on one disk platter. Writing data at the wrong address looks like decay to the owner of

the data at that address.

Because a decay can occur at any instant, the probability that any given disk page is affected

increases with time. We assume a memoryless decay process (technically, a Poisson distribution of

inter-decay intervals). For such a decay process, if we wait a given length of time we can measure

the probability of a decay during that time. Our decay-resistance strategy will be to keep two copies

of the data around, and have a clerk periodically check both copies for decay. If either is discovered

bad at one of these periodic checks, it is rewritten immediately from the good copy. What should

the period of these checks be? It should be short enough that the probability that both copies have

decayed since the previous check is negligible. By inspecting the statistics of experience for the disk

system, we choose such a period, and call it Td This approach leads to the following error analysis:

undesired events:

expected:

intolerable:

intolerable:

intolerable:

data turns to detectable garbage within

some decay set, with an interval of at

least Td seconds after the data was last

verified to be good and after such an event

occurs to any other decay set.

two decay sets fail within Td seconds.

a decay set fails within Td seconds after

it has been verified to contain good data.

data turns to undetectable garbage.

Coordination, Atomicity, and Recovery 	 7-95

Note that the intolerable errors all have to do with errors that are undetectable or (this may not be

obvious yet) for which no recovery measure can be provided. We have thus postulated that the disk

storage system provides a kind of volatile storage rather than raw storage. (Check the definition of

these two terms in the glossary.)

In modeling a computer system this way, we are making two assumptions: 1) there exists a

reasonably straightforward implementation using real hardware and software that exactly follows

this model, and 2) that the implementation can be designed to have a negligibly small probability of

producing any of the intolerable errors. Granted these two assumptions, we can proceed to develop

algorithms that systematically suppress all cases of undesired but expected errors.

I. Algorithms to obtain stable storage

Our goal is to create stable storage, that is, secondary storage that never fails unless some

intolerable error (which has negligible probability) occurs. We proceed in several steps, in each step

improving the quaility of the storage by recovering from some of the undesired but expected error

events.

Step one is to create "careful storage" from our already existing volatile storage. Careful

storage guarantees that if its operations terminate, they were successful. Figure 7-27 shows

aigonthms for careful-get and careful-put. and the new event analysis for each. In careful-get, by

repeatedly reading any data with opinion "not-ok", so-called soft-read errors are suppressed.

Similarly, in careful-put, by reading back (sometimes called verifying) the just-written data and

retrying if the verification fails, the algorithm suppresses soft-write errors, whatever their source.

(Note that if careful-put fails n times, we have an error currently classified as intolerable, but from

which a still cleverer system might be able to recover. That cleverer system might continue retries

on a different disk, of call for repair before continuing, rather than giving up.)

There is a subtlety: the event analysis tells us what happens if the operations careful-get and

careful-put terminate. If careful-put returns, the written data is guaranteed good. (At least until a

decay event happens.) But if the system crashes in the middle of careful-put, we may have

overwritten old, good data with garbage rather than with new, good data. Thus despite the lack of

.expected errors in the accounting of figure 7-27, at this point our expected error events are actually

two: a system crash during careful-put in which both the old and the new data are lost; and a

spontaneous decay event on some track set. We try to solve both these problems with one

mechanism.

The method resembles that of SABRE: write the data twice. However, we now have the

advantage of Get returning opinions, and so careful-get can tell if a crash occurred during a previous

careful-put. So we no longer need the version number of SABRE, we need only to be careful not to

begin writing the second data copy until we are sure we successfully wrote the first one. Figure 7-28

shows the algorithm and the data.

7-96 	 Coordination, Atomicity, and Recovery

careful-get: (do repeated "get" until either data is returned with

opinion 	OK, or n tries have failed)

	

desired event:
	

previously written data returned, opinion is OK

	

desired event:
	

data is bad and opinion is not-OK

(after n tries)

undesired events:

	

expected: 	none

intolerable: 	garbage is returned and opinion is OK

	

careful-put: 	do 	{put (address, data); get (address, buffer, opinion))

until data = buffer and opinion = OK or n tries fail;

	

desired event: 	data is written at address

undesired events:

	

expected: 	none obvious, but see discussion

intolerable: 	n tries to write have failed

Figure 7-27. Algorithms and event analysis for "careful storage." All obvious expected events have

been suppressed by the algorithms, but the text points out that there is one hidden but expected

event: that these algorithms might not terminate.

Data Data

DI 02

atomic-get: 	[careful-get Di;

If DI is not-OK then careful-get 02; return]

atomic-put: [careful-get Dl; careful-get D2;

if either DI or 02 is not-OK, careful-put

to bad copy from good copy:

If DI 	02, careful-put DI --> 02]

careful-put new-data --> DI

careful-put new-data --> 02

return

Figure 7-28. Data arrangement and algorithms to implement atomic stable storage using careful

storage as the starting point.

Coordination, Atomicity, and Recovery 	 7-97

This algorithm offers several opportunities to exercise our ability to reason carefully about

correctness. For example, one might object that atomic-get does not bother to check the quality

(opinion) of D2—perhaps it should. But this algorithm uses only careful-get: careful-get has no

expected errors when reading data that careful-put was allowed to finish working on. Thus opinion

would be not-ok only in the case where careful-put was interrupted in mid-operation. But

atomic-put guarantees that it won't begin careful-put on data D2 until after the completion of its

careful-put on data Dl. At most one of the two copies could be not-ok because of a system crash

during careful-put. Thus if the first copy is not-ok, then we expect that the second one is ok.

Of course the second one might be not-ok because some intolerable error occurred, but the

algorithm is not claimed to work in the face of intolerable errors. What is going on here is that in

reading D2 we have an opportunity to detect an error through the opinion feature, but since we have

not thought of a way to recover when both data copies are damaged, this detectable error must

remain classified as intolerable. In a real implementation one would not just ignore such an

opportunity. At minimum one would watch for detectable, intolerable errors, report them as best

possible, and log them for evaluation.

There is one currently unnecessary step hidden in the bracketed part of atomic-put: if D1 is

not-ok. nothing is gained by copying D2 onto D1, since D1 will be overwritten with new data soon

anyway. The step is included to illustrate a complete decay recovery procedure, or "salvager". This

complete salvager is needed for our next refinement.

If decay events were never to happen, this algorithm would be completely equivalent in its

expected error suppression capability to the SABRE algorithm: if atomic-put begins writing D1

and then crashes. D1 will look "not-ok" to atomic-get, which is exactly the same effect that

changing version numbers had in the earlier algorithm. The last step is to construct atomic stable

storage, which eliminates the last undesired but expected error event, spontaneous storage decay.

To do this construction, we must take two two further steps:

1. Arrange that the two copies, D1 and D2. are placed in independent decay sets.

2. Take the bracketed part of our refined atomic-put, label it "salvager" and run it on every data

record at least once every Td seconds.

If we also run the salvager code after every crash, then we might think that we don't need to

do it at the beginning of atomic-put. That more economical variation is due to Lampson and

Sturgis. It has one minor flaw: it depends on the rarity of coincidence of two undesired but

nevertheless expected error events: the spontaneous decay of one data copy at about the same time

that careful-put crashes in the middle of rewriting the other copy. If we are genuinely convinced

that such a coincidence is rare, we can declare it to be intolerable, and then we have a

self-consistent, correct, and more economical algorithm.

7-98 	 Coordination, Atomicity, and Recovery

An important- consideration in disk management algorithms is performance. Assuming that

errors are rare enough not to dominate performance. the usual cost of atomic-stable-get is just one

disk read, compared with two in the SABRE algorithm. (That count of two assumes that the version

number and the data can be read in a single operation.) The cost of atomic-stable-put is two disk

writes and four disk reads, compared with two disk writes and two disk reads for the SABRE

algorithm. The four disk reads of atomic-stable-put reduce to two if a salvager is run following

every crash, which suggests that that is a winning refinement. Finally, the salvager operation

requires 1n disk reads every Td seconds to maintain n useful, stable pages. There was no

corresponding cost in the simplified SABRE model. The apparent extra expense of this improved

model comes about because of its added function: it provides a defense against disk decay, rather

than assuming its probability to be negligible. (The actual SABRE system was more sophisticated

than our simplified model—it provided a similar, but independent, defense against decay events.)

Coordination, Atomicity. and Recovery 	 7-99

Appendix 7-C: Case Study of System R

Prepared by Craig Goldman

"System R" is a relational data base management system developed as a research project at

the IBM San Jose Research Laboratory. It is divided into two major layers: an external layer called

the Research Data System (RDS) which provides the data base management functions, and a

completely internal layer called the Research Storage System (RSS) which manages the physical

memory and provides for stable storage with a transaction interface. The RSS layer permits

transactions to be committed, aborted, or partially backed up. In addition the system provides

recovery to a transaction-consistent state in case of failure.

The main portion of this case study is a paper by the designers of System RP] The next few

pages provide a guide to reading this paper, an overview of the System R recovery subsystem, and

some questions to think about.

1. Transactions

In a data base management system it would be very desirable if an operation on the data base

either complete correctly or have no effect at all. The RSS system supports two levels of atomicity

to achieve this result. Each RSS "action" is atomic even though it may be composed of several

hundred machine 'instructions and many disk accesses. In addition RSS supports atomicity on a

sequence of RSS actions called a transaction.

A transaction is a sequence of RSS actions that are preceded by a BEGIN action and followed

by a COMMIT action. All intervening RSS actions are part of a single recovery unit. If an

.application detects an error it may issue an ABORT action, which undoes all actions taken by the

transaction. The system may also abort a transaction in progress if some system-wide problem

occurs (e.g., deadlock, system shutdown, resource exhaustion, etc.). Thus there are two possible

1. Gray. J., et al., "The Recovery Manager of a Data Management System." Research Report Ri

2623. IBM Corporation. San Jose, CA., August. 1979. This report was later published under the title

"The Recovery Manager of the System R Database Manager," ACM Computing Surveys 13. (June.

1981) pp. 223-242.

7-100 	 Coordination, Atomicity, and Recovery

outcomes of a transaction: commit and abort. The abort outcome is the same whether triggered

internally or externally.

In addition to the BEGIN. COMMIT, and ABORT actions that delimit a transaction, the

RSS provides a refinement in the form of a firewall within a transaction, known as a transaction save

point. In some cases, system error recovery can be accomplished by undoing a transaction back to

some save point rather than all the way back to the BEGIN point. Transaction save points are

described further in the Gray paper, but the concept is not essential to understanding the principles

behind recovery in System R.

The RSS system maintains a log of all transaction updates. Each RSS action that changes the

RSS state records enough information in the log to either redo the action (change the old state to the

new state) or undo the action (change the new state to the old state). A transaction abort simply goes

through the log backwards and undoes all of the state changes pertaining to that transaction. Should

there be a system crash, the log can be used to redo committed transactions whose effect was not

recorded on the disk. Thus atomicity of transactions can be maintained in the event of system

error.

2. System R file recovery

The storage of System R is viewed as a collection of disk drives. To increase the bandwidth of

access to this storage, the system has some solid-state volatile memory called a memory buffer pool,

which is shared by all users and is used as cache for the disks. A file is a paged linear address space

and is dynamically allocated on disk by pages. The buffer manager uses a least-recently-used

algorithm to determine which pages are in the buffer pool at any time. Because the contents of the

buffer pool are easily damaged by program errors or hardware failures, they are considered volatile

and do not survive a system restart.

Each file is said to follow one of two recovery protocols referred to as shadowed and

non-shadowed. Non-shadowed files have no automatic recovery mechanism and the user is

responsible for making extra copies of these files and storing these copies in a safe place (on disk or

off-line). Shadowed files have an automatic recovery in case of system failure.

RSS maintains two on-line versions of shadowed files: A shadow version and a current

version. RSS actions affect only the current version of the file; the shadow version is not altered

except by a file save or restore. Thus, as changes are made to a file, new pages are allocated and a

current version" page map is created so that all changes to a file are made to these pages. If a page

is not altered then the current version page and the shadow version page are the same page. So, the

current version of a file is made up of all current version pages (pages that have been altered) and

the shadow version pages for any page that has not been altered. (A diagram of this double map

strategy is shown on page 7-110 of the Gray paper.) At some point the application requests that the

file be SAVED and the current version becomes the shadow version and the old shadow version is

Coordination, Atomicity, and Recovery 	 7-101

thrown away. The SAVE action also forces all pages of a file to a disk so that a consistent shadow

version is protected from system crash. If the system crashes before a file has been saved, an

action-consistent version of the file (the shadow version) is certain to be still on the disk, from which

restart can proceed. System R also provides for the log to be integrated with the file recovery at

restart so that starting with the shadow version (which is action-consistent) all committed

transactions may be redone automatically, and all aborted actions can be undone. This procedure is

explained very well in the Gray paper.

3. Questions

1. Consider the following proposal to simplify the undo-redo protocol at system recovery from a

crash: whenever a system checkpoint is to be taken, the system is first quiesced at the

transaction level. That is, a lock is set that forces proposed new transactions to wait until after

the checkpoint; as soon as all outstanding transactions finish, the checkpoint is taken. Describe

the new crash recovery procedure, and show how this proposal would simplify undo-redo

processing. What disadvantages would this approach have? Would this idea be more useful for

some applications than for others?

2. In RSS, the idea of shadow pages was included to guarantee data integrity in the face of certain

kinds of failures. Then, since not all failure threats are countered by shadow pages, the log was

introduced. Looking at these two mechanisms together, one sees that they both seem to operate

by keeping track of "old" and "new" data values whenever data is updated. Does this mean that

since the log has been added, shadow pages are completely redundant? Explain what would go

wrong if one simply changed RSS to eliminate shadow pages and rely entirely on the log.

3. Let's try again to reduce the redundancy that seems apparent in having "old" and "new" values

recorded both in the shadow system and in the log. Suppose that the log, instead of recording

both the old value and the new value for a data record, were to contain just one value, the result

of "exclusive or-ing" the old and new values together. Describe an algorithm for recovery that

uses such an EXOR log.

4. On page 7-111, the authors explain that RSS supports three combinations of recovery attributes

of files: no-log/no-shadow, no-log/shadowed, and log/shadowed. Explain the difficulties in

providing the fourth combination, log/no-shadow recovery. What information needs to be

saved by the log manager? What problem does this pose? (HINT: How much of the log need

be kept on-line (disk or primary memory)?) Is there any way to solve this problem?

5. The use of shadow files adds a large amount of complexity to the RSS recovery subsystem. Yet

another approach is to improve the log so that it can provide all recovery. Whenever an RSS

action is performed. the log record of that action is saved on disk before the data itself is written

to disk. Should an error occur complete recovery of the file can take place by redoing the

actions in the log, and no shadow files are needed. To speed recovery of the log-based system,

7-102 	 Coordination, Atomicity, and Recovery

system-wide save points can be taken thus avoiding the problem of a very long log. Explain how

this system ("Write-Ahead Log") would work. How can the system-wide saves be integrated

into the log? What conditions are necessary to get an accurate save? Does the system have to

wait until all transactions in progress are committed or aborted? (This is a tough

question—think it over.) After the overhead for the Write-Ahead Log is considered (overhead

for long log on-line, overhead of system-wide saves, time needed to quiesce the system for a

save) is there any saving over the shadow file approach?

6. On the last paragraph of page 7-107 the author states:

The transaction model is an unrealizable ideal. At best, careful use of

redundancy minimizes the probability of unrecoverable failures and consequent

loss of committed updates. Redundant copies are designed to have independent

failure modes, making it unlikely that all records are lost at once. However,

Murphy's law ensures that all recovery techniques will sometimes fail. As seen

below, however, System R can tolerate any single failure and can often tolerate

multiple failures.

Describe the model of storage of System R. Perform an expected event analysis. What types of

failures are tolerated and corrected? What type of failures are not tolerated? Compare this

analysis with the model of storage and the expected event analysis of the SABRE system.

Provide an explanation for the differences.

7. Consider the need for special handling of transaction UNDO's. (Transaction UNDO's run as

golden transactions—only one may execute at a time.) Explain the problem which leads to the

need for special handling of UNDO's. Is it possible to have an UNDO for UNDO's? Consider

the possibility of looking ahead to see which locks are needed for the next RSS step to be

undone. Explain how such a scheme could be implemented and comment on its effectiveness.

8. On page 7-115, while discussing techniques to defend against media failure, the authors explain

the dilemma of complete archive copies on tape: the copy should be made atomic with respect

to ongoing transactions, but a copy of all the data in a large storage system may take a very long

time to accomplish, too long to insist on quiescence of all other activity. The paper then suggests

a "fuzzy dump" mechanism in which the data base is copied to tape without quiescing other

activity, and then the log of that activity is also copied to the tape. The idea is that between the

raw data and the log, a consistent copy of the data can be reconstructed if necessary. The paper

refers the reader to Gray's Operating System Notes, but that reference turns out to contain

essentially the same description, along with the comment that "the details of this [reconstruction]

algorithm are left as an exercise for the reader" [8, p. 478]. Describe an algorithm that can be

used to create a "sharp dump" from the "fuzzy dump" plus the log. (Start by proposing a

sharper specification of the "fuzzy dump" procedure itself.)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40

