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ABSTRACT

One of the most basic algorithmic problems concerning caches is
to compute the LRU hit-rate curve on a given trace. Unfortunately,
the known algorithms exhibit poor data locality and fail to scale to
large caches. It is widely believed that the LRU hit-rate curve cannot
be computed efficiently enough to be used in online production
settings. This has led to a large literature on heuristics that aim to
approximate the curve efficiently.

In this paper, we show that the poor data locality of past
algorithms can be avoided. We introduce a new algorithm, called
Increment–and–Freeze, for computing exact LRU hit-rate
curves. The algorithm achieves RAM-model complexity 𝑂 (𝑛 log𝑛),
external-memory complexity 𝑂 ( 𝑛

𝐵
log𝑛), and parallelism Θ(log𝑛).

We also present two theoretical extensions of Increment–and–
Freeze, one that achieves SORT complexity in the external-memory
model, and one that achieves a parallel span of 𝑂 (log2 𝑛) which is
near linear parallelism, while maintaining work efficiency.

We implement Increment–and–Freeze [5] and obtain a
speedup of up to 9× over the classical augmented-tree algorithm
on a single processor. On 16 threads, the speedup becomes as large
as 60×. In comparison to the previous state-of-the-art parallel
algorithm, Increment–and–Freeze achieves a speedup of up to
10× when both algorithms use the same number of threads.
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1 INTRODUCTION

The basic theory of caches is well understood. Although the op-
timal cache-eviction strategy OPT [3, 20] cannot be implemented
by an online algorithm, the strategy of always evicting the least-
recently-used item (LRU) [20] is known to be provably (1 + 𝜀)-
competitive with 𝑂 (1/𝜀)-factor resource augmentation [24]. Most
modern caches implement variations of LRU; these variations in-
clude simplifications that reduce overhead and workload-specific
optimizations. In recent decades we have seen the emergence of
giant caches, especially in the context of Content Distribution Net-
works (CDNs). These caches can span 100s of machines and cost
millions of dollars a year to run.

Since these caches are so large, altering the cache size or eviction
strategy in response to a changing workload can result in significant
cost savings and performance benefits. For engineers in charge of
running such a cache, there are several core questions that they
want to keep track of: Could they shrink the cache (therefore saving
resources) while achieving a similar hit rate? Could they grow the
cache by a small amount and achieve a significantly smaller miss
rate? Are the ways in which the cache approximates LRU hurting
its performance in comparison to a true LRU cache? And to what
degree are the optimizations that the cache makes beyond LRU
leading to better performance? All of these questions are made
more difficult by the fact that the answers change over time. The
optimizations that led to better performance on a previous data set
may have little or no benefit on the current one. And the cache size
that made sense earlier may be suboptimal now.

A natural strategy for answering these “what-if” questions is to
compute the LRU hit-rate curve for the cache over time. That is,
for each time period (e.g., each day) and for each possible cache
size 𝑘 , what is the hit rate that would have been achieved by an LRU
cache of size 𝑘 in that time period? However, the task of actually
computing the LRU hit-rate curve can itself be daunting. Even on
relatively small caches, the time to compute the hit-rate curve often
ends up exceeding the execution time of the trace under analysis by
multiple orders of magnitude [21].
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Whereas cache sizes have scaled tremendously in past decades,
our algorithms for computing LRU hit-rate curves have not. The
classical augmented-tree algorithm, due to Bennett and Kruskal [6]
in 1975, uses an augmented binary search tree in order to compute
the hit-rate curve on a trace of size 𝑛 in time 𝑂 (𝑛 log𝑛). Although
the algorithm’s running time is near-optimal in the RAMmodel [31],
it struggles to scale to large applications, both because it is diffi-
cult to parallelize without incurring a significant memory blowup
[21] and because it exhibits poor data locality, incurring Θ(𝑛 log𝑛)
misses to CPU cache. This augmented-tree approach has remained
the only 𝑂 (𝑛 log𝑛) algorithm in the literature for more than four
decades.

This lack of locality poses a significant bottleneck. By definition,
the program under analysis incurs at most one cache miss for each
memory access in the trace, and typically less than one miss per
hundred accesses [2]. As a result, any hit-rate-curve algorithm
incurring 𝑂 (log𝑛) cache misses per access experiences far more
misses than the trace it is processing. Moreover, the footprint of a
trace produced by large distributed cache may massively exceed
the cache of the machine analyzing it. The result is that hit-rate
computations are easily bottlenecked by cache-misses and IOs.1

The deficits of the augmented-tree algorithmhave led to thewide-
spread belief that exact LRU hit-rate curves cannot be computed
efficiently enough for online use in production systems [26, 29].
Thus, there has been a great deal of work on heuristics for efficiently
approximating the LRU hit-rate curve [15–17, 23, 26, 29, 31]. These
heuristics are observed to achieve high experimental accuracy, but
do not offer provable correctness guarantees.

In this paper, we revisit the claim that exact LRU hit-rate curves
are necessarily impractical. We introduce a new algorithm that is
significantly faster than the classic augmented-tree approach (both
in serial and in parallel), and we show that this algorithm naturally
generalizes to achieve SORT time in the external-memory model
and near-optimal parallelism in the CREW PRAM model.

This Paper: The Increment-and-Freeze Algorithm. In this
paper, we present a new 𝑂 (𝑛 log𝑛)-time algorithm which we call
Increment–and–Freeze. The most basic version of this algorithm
achieves parallelism Θ(log𝑛) and incurs a cost of 𝑂 ( 𝑛

𝐵
log𝑛) in

the external-memory model. Improving the data-locality is espe-
cially important as it results in significant speedups over the classic
augmented-tree algorithm even when using a single thread.

On the theoretical side, we also present extensions of the
Increment–and–Freeze algorithm that achieve even stronger
bounds on IO efficiency and parallelism. In the external memory
model, we achieve a bound of 𝑂 ( 𝑛

𝐵
log𝑀/𝐵

𝑛
𝐵
) IOs. In the CREW

PRAM model, we achieve 𝑂 (𝑛 log𝑛) work with 𝑂 (log2 𝑛) span.
This implies a parallelism of Θ(𝑛/log𝑛), which is optimal up to
polylogarithmic factors.

We implement and evaluate Increment–and–Freeze as well as
a variation that is sensitive to limits on the maximum cache size.
This limit can either be a user-specified parameter or the natural
1As a convention, we will often use the term ‘IO’ instead of ‘cache miss’ when referring
to the cache misses incurred by our algorithms. This is both to disambiguate between
the cache misses incurred by our algorithm versus those incurred by the trace and
because the term IO is standard when performing analyses in the external-memory
model [1].

bound of the number of unique request-ids. With a cache size
limit of 𝑘 , our implementation performs work 𝑂 (𝑛 log𝑘), achieves
Θ(log𝑘)-fold parallelism, and has an external-memory bound of
𝑂 ( 𝑛

𝐵
log𝑘). We remark that our implementation produces the hit-

rate curve not just at the end of the trace 𝑇 , but also at regular
intervals of size 𝑂 (𝑘).

Increment–and–Freeze achieves a speedup of 4×–9× over
the classical augmented-tree algorithm on a single processor. On
16 threads, the speedup becomes as large as 60×. In comparison
to the previous state-of-the-art parallel algorithm, Increment–
and–Freeze achieves a speedup of 2×–10× when both algorithms
use the same number of threads. For all experiments, the biggest
speedups occurred on the largest traces. A trace that took 13 hours
for the classical augmented-tree algorithm was processed in only
13 minutes by Increment–and–Freeze (Section 9).

2 RELATEDWORK

In 1970, Mattson et al. [20] gave an𝑂 (𝑛2) algorithm for computing
the LRU hit-rate curve. They showed that each access 𝑥 has an LRU

stack distance 𝑑 that determines whether the access is a cache hit
or miss: an access with LRU stack distance 𝑑 is an LRU cache hit
iff (1) the cache has size 𝑑 or larger, and (2) the address has been
accessed at least once before. They gave a simple characterization of
LRU stack distance: the number of distinct items accessed between
the current time 𝑡 and previous time 𝑡0 that 𝑥 was accessed (where
𝑡0 = 0 if 𝑥 was never accessed before). The𝑂 (𝑛2) algorithm follows
by storing the distinct addresses in a stack, sorted by their most
recent access time. Whenever an address is accessed, it is moved
to the front of the stack, and its LRU stack distance is given by
the position that it previously occupied. The algorithm can be
parameterized by the average LRU stack distance 𝑠 , taking time
𝑂 (𝑛𝑠)—variations of this algorithm were studied by Kim et al. [18].

In 1975, Bennett and Kruskal [6] reduced the time to 𝑂 (𝑛 log𝑛)
by storing Mattson et al.’s stack as an augmented search tree. This
approach has since seen many variations [2, 22, 25] (see, also,
Byrne’s survey [13]). Several modern implementations [21, 25]
have converged to using a splay tree whose leaves are the members
of the stack and whose internal nodes store additional information
so that the average time per operation is𝑂 (log𝑛). These algorithms
can also be implemented to run in time 𝑂 (𝑛 log𝑘) where 𝑘 is the
maximum cache size that we wish to consider.

Unfortunately, even the 𝑂 (𝑛 log𝑛) time achieved by the
augmented-tree algorithm is typically viewed as too heavy-weight
for practical online use in production systems [26, 29]. Thus,
researchers have resorted to approximation algorithms, which
aim to produce accurate estimates for the LRU hit-rate curve.
There has been a great deal of work on heuristic-based algorithms
[15–17, 23, 26, 29], which have been observed to achieve high
accuracy on experimental inputs but which do not offer provable
guarantees. On the theoretical side, there has also been work by
Drudi et al. [14] on space-efficient single-pass streaming algorithms
for approximating the LRU hit-rate curve at 𝑝 uniformly spaced
points—they offer a nearly optimal bound of 𝑂 (𝑝2𝜀−2 polylog𝑛)
bits on the space needed to achieve additive error 𝜀, and they prove
that achieving a small multiplicative error requires linear space.
There has also been work on implementing approximate versions
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of the augmented-tree algorithm that use sketching techniques
and bloom filters in order to improve performance [28].

Zhong et al. [31] proposed that, rather than approximating the
hit-rate curve itself, one could instead approximate the LRU stack
distances for each access. They gave an elegant algorithm that, for
any constant 𝜀 > 0, can be used to obtain a (1+𝜀)-approximation for
every LRU stack distance in time 𝑂 (𝑛 log log𝑛). One downside of
this approach is that it does not translate into an accuracy guarantee
for the hit-rate curve that is produced.

Finally, Niu et al. [21] tackle the problem of parallelizing the
exact augmented-tree algorithm. The problem is that dependencies
across time translate into serial dependencies for the algorithm.
Nonetheless, Niu et al. [21] show that, if one is willing to incur
a significant memory blowup, then parallelism is still possible:
they break the trace into large chunks, they process the chunks in
parallel, and then they perform cleanup work in order to handle the
dependencies between chunks. To ensure that the cleanup work
doesn’t dominate, each chunk needs to have size larger than the
the number 𝑢 of distinct addresses in the trace. One consequence
is that, in order to achieve a 𝑝-fold parallel speedup, one must use
memory Ω(𝑢𝑝). This approach, known as PARDA [21], works well
for sizes on the order of a CPU cache [21], but becomes limited on
large caches by its memory behavior. The blowup in memory usage
restricts PARDA’s parallelism in many of our experiments, and
the poor data locality of the underlying augmented-tree algorithm
further limits performance. At moderately large cache sizes, PARDA
is slower on 16 threads than Increment–and–Freeze is on a single
thread.

Although we have focused here on the LRU hit-rate curve, there
has also been a great deal of work on computing the hit-rate curve
for the offline optimal cache-eviction strategy OPT. Surprisingly,
although the optimal eviction strategy cannot be determined online,
its miss rate can: in 1966, Bélády [3] described an online algorithm
known as MIN that calculates the number of cache hits for an
optimal cache of a given size for a given trace. In 1970, Mattson et
al. [20] showed that the offline Furthest-in-The-Future algorithm is
offline optimal, and then in 1974, Bélády and Palermo [4] proved the
correctness of MIN (that is, that MIN and Furthest-in-The-Future
produce the same results).

Standard augmented-tree approaches can be used to construct
offline OPT for a given cache size 𝑘 on a given trace of size 𝑛 in
time 𝑂 (𝑛 log𝑘). This approach does not generalize to producing
the entire hit-rate curve in time 𝑂 (𝑛 log𝑛). For several decades it
remained open to compute the hit-rate curve for caches of sizes
in the range 1, . . . , 𝑘 in any time better than 𝑂 (𝑛𝑘 log𝑘). The first
breakthrough on this occurred in 2011 when Bilardi et al. [8] gave
an 𝑂 (𝑛

√
𝑘 log𝑘)-time algorithm. In subsequent work, the same

set of authors [9] were able to achieve a bound of 𝑂 (𝑛 log𝑘). The
practical performance of these algorithms, sampling approaches to
OPT, and their applications to heterogeneous memory hierarchies
have been explored [7, 27, 30], and remain interesting directions of
work.

3 PRELIMINARIES

A trace 𝑇 = ⟨𝑡1, 𝑡2, . . . , 𝑡𝑛⟩ is a sequence of memory accesses, where
𝑡𝑖 ∈ [𝑢] denotes the address referenced by the 𝑖-th memory access.

Computing the hit-rate curve of𝑇 is equivalent to, for each 𝑡𝑖 ∈ 𝑇 ,
finding the stack distance of 𝑡𝑖 . The stack distance of an access 𝑡𝑖 is
equal to the number of unique addresses accessed between 𝑡𝑖 and
𝑡 𝑗 = 𝑡𝑖 the previous time this address appeared in 𝑇 .

For each access 𝑡𝑖 , define prev(𝑖) to be the largest 𝑗 < 𝑖 such
that 𝑡 𝑗 = 𝑡𝑖 . If and only if there is no such 𝑗 , then let prev(𝑖)
be 0. Similarly, define next(𝑖) to be the smallest 𝑗 > 𝑖 such that
𝑡 𝑗 = 𝑡𝑖 , or to be ∞ if no such 𝑗 exists. Define the distance vector
⟨𝑑1, 𝑑2, . . . , 𝑑𝑛⟩ so that 𝑑𝑖 is the number of distinct addresses in the
sequence 𝑡𝑖 , 𝑡𝑖+1, . . . , 𝑡next(𝑖 )−1. On an LRU cache of size 𝑘 , the ac-
cess 𝑡𝑖 will be a cache hit if and only if prev(𝑖) ≠ 0 and 𝑑prev(𝑖 ) ≤ 𝑘 .
The LRU hit-rate curve 𝐻𝑇 : {1, 2, . . . , 𝑛} → [0, 1] is, for each
cache size 𝑘 , what fraction 𝐻𝑇 (𝑘) of accesses are hits. That is,

𝐻𝑇 (𝑘) =
|{𝑖 | prev(𝑖) ≠ 0 and 𝑑prev(𝑖 ) ≤ 𝑘}|

𝑛
. (1)

The task of computing 𝐻𝑇 naturally decomposes into three
phases: the pre-processing phase, during which one computes
prev(𝑖) and next(𝑖) for each 𝑖 ∈ [𝑛]; the distance computa-

tion phase, during which one computes the distance vector
⟨𝑑1, 𝑑2, . . . , 𝑑𝑛⟩; and the post-processing phase during which one
constructs 𝐻𝑇 using (1).

We will analyze our algorithms in three standard models: the
RAM model [19], the external-memory model [1], and the CREW
PRAM model [12]. The external-memory model measures cost
in terms of IOs (such as block transfers or cache misses) and is
governed by two additional parameters 𝑀 and 𝐵, where 𝑀 is the
size of internal memory and 𝐵 is the external-memory block size
(such as the cache-line transfer size, or the size of a disk block). The
CREWPRAMmodelmeasures a parallel algorithm by itswork (i.e.,
how long it would take to run in serial) and by its span (i.e., how
long it would take to run in parallel on infinitely many processors).
The parallelism of a parallel algorithm is then defined to be the
work divided by the span. All of our CREW PRAM algorithms can
be implemented as fork-join parallel programs [19].

Both the pre-processing and post-processing phases reduce
straightforwardly to a constant number of sort and prefix-sum
operations. Since it is well understood how to implement both
sorting and prefix sums efficiently in all three models (and even
simultaneously [11]), we will not concern ourselves with this here.
Instead we will focus our technical discussion on the distance
computation phase.

4 INCREMENT–AND–FREEZE ALGORITHM

This section introduces the Increment–and–Freeze algorithm,
which is a new 𝑂 (𝑛 log𝑛)-time algorithm for computing the dis-
tance vector ⟨𝑑1, 𝑑2, . . . , 𝑑𝑛⟩ of a trace 𝑇 . The algorithm has cost
𝑂 ((𝑛/𝐵) log𝑛) in the external-memory model and has parallelism
Θ(log𝑛) in the CREW PRAM model. We will also see in later sec-
tions how to improve these bounds further with additional algo-
rithmic ideas.

Let𝐴[1, 2, . . . , 𝑛] be an array initializedwith zeros. The algorithm
will perform a series of “Increment” and “Freeze” operations on
the array. A Freeze(𝑖) operation freezes the value of array element
𝐴[𝑖], preventing it from ever being modified again (if 𝑖 = 0, then
the Freeze operation does nothing). An Increment(𝑖, 𝑗, 𝑟 ) operation
increments the array elements 𝐴[𝑖], . . . , 𝐴[ 𝑗] each by 𝑟—but any
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array element that has been frozen is not affected by the increment
(if 𝑖 > 𝑗 , then the Increment operation does nothing).

Consider the operation sequence,

S = ⟨I1, F1, I2, F2, . . . , I𝑛, F𝑛⟩,

where I𝑖 = Increment(prev(𝑖), 𝑖 − 1, 1) and F𝑖 = Freeze(prev(𝑖)).
Note that all of the Increment operations I𝑖 increment by only
1—the ability to increment by 𝑟 > 1 will be useful for merging
neighboring Increment operations. Each 𝐼𝑖 increments all unfrozen
address from its previous occurrence up to, but not including, itself.
After performing the increment, we freeze 𝑖’s previous occurrence.

We now prove that the operation sequence S computes the
distance vector ⟨𝑑1, . . . , 𝑑𝑛⟩.
Lemma 4.1. If the operation sequence S is performed on array 𝐴,

then the result is 𝐴[𝑖] = 𝑑𝑖 for each 𝑖 ∈ [𝑛].

Proof. The array element 𝐴[𝑖] is Frozen by 𝐹next(𝑖 ) (unless
next(𝑖) = ∞). Therefore the increment operations 𝐼 𝑗 for 𝑗 > next(𝑖)
are not applied to 𝐴[𝑖]. The increment operations 𝐼 𝑗 that apply to
𝐴[𝑖] are therefore the ones for which

prev( 𝑗) ≤ 𝑖 < 𝑗 ≤ next(𝑖).

That is, 𝐴[𝑖] is incremented once for each trace element 𝑡 𝑗 that
appears in 𝑡𝑖+1, . . . , 𝑡next(𝑖 ) and such that prev( 𝑗) ≤ 𝑖 . The total
number of times that 𝐴[𝑖] is incremented by the operation se-
quence S is therefore equal to 𝑑𝑖 , the number of distinct addresses
in 𝑡𝑖+1, . . . , 𝑡next(𝑖 ) . □

We perform the operation sequence S by recursively “project-
ing” the sequence onto smaller and smaller sub-arrays of 𝐴. For an
operation 𝐼 = Increment(𝑖, 𝑗, 𝑟 ), define proj(𝐼 ) of 𝐼 onto an interval
[𝑎, 𝑏] to be the operation 𝐼 ′ in which the interval [𝑖, 𝑗] is shrunk
into [𝑎, 𝑏], that is, 𝐼 ′ = Increment(max(𝑖, 𝑎),min( 𝑗, 𝑏), 𝑟 ). For an
operation 𝐹 = Freeze(𝑖), define proj(𝐹 ) of the operation onto an
interval [𝑎, 𝑏] to be Freeze(𝑖) if 𝑖 ∈ [𝑎, 𝑏] and Freeze(0) otherwise.
When an operation does not fall within the range [𝑎, 𝑏] then its
projection will do nothing. We refer to these do-nothing operations
as null operations—that is, Increment(𝑖, 𝑗, 𝑟 ) is null if 𝑖 > 𝑗 and
Freeze(𝑖) is null if 𝑖 = 0. Define the projection of an operation se-
quence X = ⟨𝑥1, . . . , 𝑥𝑚⟩ onto an interval [𝑎, 𝑏] to be the sequence
⟨𝑥 ′1, . . . , 𝑥

′
𝑚⟩ where 𝑥 ′

𝑖
is the projection of 𝑥𝑖 onto [𝑎, 𝑏].

Define the shrunk projection of X onto [𝑎, 𝑏] to be the projec-
tion ⟨𝑥 ′1, . . . , 𝑥

′
𝑚⟩ but shrunk by the removal of redundant opera-

tions. There are two ways that the projection ⟨𝑥 ′1, . . . , 𝑥
′
𝑚⟩ can be

shrunk. First, all null operations can be removed. Second, whenever
adjacent operations both increment the same range [𝑖, 𝑗], the first
operation by some 𝑟1 and the second operation by some 𝑟2, the
operations can be combined to a single Increment(𝑖, 𝑗, 𝑟1 + 𝑟2) op-
eration. This processes can be repeated until every pair of adjacent
Increment operations operate on distinct ranges.

The Increment–and–Freeze algorithm performs S on
𝐴[1, 2, . . . , 𝑛] via a simple divide-and-conquer approach. The
algorithm first computes the shrunk projections of S onto
[1, ⌊𝑛/2⌋] and [⌊𝑛/2⌋ + 1, 𝑛], which we call S1 and S2, respec-
tively. The algorithm then recursively applies the operation
sequences S1 and S2 to the sub-arrays 𝐴[1], . . . , 𝐴[⌊𝑛/2⌋] and to
𝐴[⌊𝑛/2⌋ + 1], . . . , 𝐴[𝑛], respectively. The algorithm stops recursing

once it gets to a sub-array of size 1, at which point the algorithm
simply applies the operations in the sequence one after another.

We define the size of a subproblem to be the size of its shrunk
projection. That is, if a recursive subproblem is responsible for a
sub-interval I of the array, and size of the shrunk projection of S
onto I is ℓ , then the subproblem has size ℓ .

At the 𝑖-th level of recursion, there are 2𝑖 recursive subproblems.
A single Increment operation inS could potentially project to many
different subproblems. Nonetheless, we can prove that, for each
level of recursion, the sum of the sizes of the recursive subproblems
is 𝑂 (𝑛).
Lemma 4.2. For any discrete interval I = {𝑎, 𝑎 + 1, . . . , 𝑏}, the
shrunk projection XI of S onto I has size |XI | = 𝑂 ( |I|).

Proof. Say that an Increment(𝑖, 𝑗, 𝑟 ) operation appears actively
in the shrunk projection XI if the range [𝑖, 𝑗] intersects I without
fully containing I, and say that the operation appears passively
in XI if the range [𝑖, 𝑗] contains I.

Whenever two consecutive Increment operations in XI both
apply to the full range I, they are combined together. Define 𝐶I
to be the number of Freeze operations that appear in XI plus the
number of Increment operations that appear actively in XI . Then

|XI | ≤ 2𝐶I + 1, (2)

since no two consecutive operations in XI can both be passive
appearances of Increment operations.

Since each 𝑖 ∈ I gets frozen at most once by S, the number of
Freeze operations in XI is at most |I |. Notice that, for each index
𝑖 ∈ I, the operation sequence S contains at most one Increment
operation of the form Increment(𝑖, next(𝑖)−1, 1) (if next(𝑖) ≤ 𝑛) and
one Increment operation of the form Increment(prev(𝑖 + 1), 𝑖, 1)
(if 𝑖 + 1 ≤ 𝑛). Thus the number of active Increment operations
is at most 2|I |. This implies that 𝐶I ≤ 3|I |, which by (2) gives
|XI | = 𝑂 ( |I|). □

Using Lemma 4.2, we can now analyze the Increment–and–
Freeze algorithm.
Theorem 4.3. Increment–and–Freeze computes the distance vec-

tor ⟨𝑑1, . . . , 𝑑𝑛⟩ of a trace𝑇 of length 𝑛 in time𝑂 (𝑛 log𝑛) in the RAM
model. The algorithm incurs cost 𝑂 ( 𝑛

𝐵
log𝑛) in the external-memory

model. Finally, the algorithm can be implemented in the CREW PRAM

model to have work 𝑂 (𝑛 log𝑛) and span 𝑂 (𝑛).

Proof. The algorithm’s correctness follows from Lemma 4.1.
Thus we focus on the costs in each of the three models. We will
repeatedly use the fact that, by Lemma 4.2, every recursive sub-
problem in the 𝑖-th level of recursion is guaranteed to have size
𝑂 (𝑛/2𝑖 ).

At the 𝑖-th level of recursion, there are 2𝑖 recursive subproblems
each of which has size 𝑂 (𝑛/2𝑖 ). It follows that, in the RAM model,
there is𝑂 (𝑛) work per level of recursion and𝑂 (𝑛 log𝑛) total work.
The external-memory cost of a subproblem of size𝑂 (𝑛/2𝑖 ) is atmost
𝑂

(
𝑛/2𝑖
𝐵

+ 1
)
. Additionally, if a subproblem has size 𝐵 or smaller,

the entire subproblem can be completed in 𝑂 (1) IOs (including
all of its recursive descendants), meaning that we can treat its
descendants as being free. Since we need to consider only the costs
of subproblems where 𝑛/2𝑖 = Ω(𝐵), the cost of such a subproblem
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can be rewritten simply as 𝑂
(
𝑛/2𝑖
𝐵

)
. The total IO cost per level of

recursion is therefore at most 𝑂 (𝑛/𝐵), implying a total external-
memory cost of 𝑂

(
𝑛
𝐵
log𝑛

)
for the algorithm.

Finally, we can run the subproblems in each level of recursion
in parallel. The 𝑖-th level of recursion therefore has span 𝑂 (𝑛/2𝑖 ),
implying a total span of

∑
𝑖 𝑂 (𝑛/2𝑖 ) = 𝑂 (𝑛). Since the work is

𝑂 (𝑛 log𝑛), this completes the analysis in the CREW PRAM model.
□

5 AN EXTERNAL-MEMORY ALGORITHM

The algorithm from Section 4 achieves 𝑂 ( 𝑛
𝐵
log𝑛) IOs in the

external-memory model. In this section we introduce External–
Increment–and–Freeze, which achieves an IO bound of

𝑂

(𝑛
𝐵
log𝑀

𝐵

𝑛

𝐵

)
.

As discussed in Section 3, it suffices to achieve this bound for com-
puting the distance vector ⟨𝑑1, . . . , 𝑑𝑛⟩.

Part of what makes Increment–and–Freeze nice to work with
is that it has essentially the same recursive structure as quicksort.
This analogue extends to the external-memory setting: External–
Increment–and–Freeze will have essentially the same relation-
ship to Increment–and–Freeze as the external-memory distribu-
tion sort algorithm [1] has to quicksort.

Let 𝑐 be a large positive constant to be determined later. The
External–Increment–and–Freeze algorithm has the following
recursive structure: If a subproblem is on an interval of size 𝑀/𝑐
or smaller (this is a base-case subproblem), then it is solved in
internal memory, and the components of the distance vector that
it computes are then written to external memory. Otherwise, the
subproblem is an internal subproblem, and it is implemented to
have recursive fanout𝑀/𝐵. In more detail, if an internal subproblem
takes as input the shrunk projection SI of S of some interval I,
then it outputs the shrunk projections SI1 , . . . ,SI𝑟 on 𝑟 = 𝑀/𝐵
equal-sized intervals I1, . . . ,I𝑟 .

Since a subproblem’s input SI may not fit into internal memory,
the subproblem breaks the input into blocks of size 𝑂 (𝐵) and pro-
cesses each block one after another. Additionally, since the outputs
SI1 , . . . ,SI𝑟 may also not fit in internal memory, the subproblem
keeps a buffer of size 𝑂 (𝐵) for each output SI𝑖 and flushes the
buffer to external memory whenever it fills up. We can perform the
projection sequentially because the interval(s) that an operation
projects to can be determined independently from other operations
and when merging redundant operations we need only consider
the previous operation in the shrunk projection.2

Theorem 5.1. Assume that 𝑛 ≥ 𝐵. External–Increment–and–

Freeze computes the distance vector ⟨𝑑1, . . . , 𝑑𝑛⟩ for a trace of size 𝑛
with an external-memory cost of

𝑂

(𝑛
𝐵
log𝑀

𝐵

𝑛

𝐵

)
.

Proof. We begin by confirming that base-case subproblems re-
ally are small enough to process in internal memory. Since each
base-case subproblem is on an interval of size𝑀/𝑐 , and since 𝑐 is a
2There is a small subtlety here: whenever we write the buffer for SI𝑖 to external
memory, the first operation of the buffer may need to be combined with the operation
that precedes it (i.e., the operation that was at the end of the most recent previous
buffer for SI𝑖 to have been written to external memory).

sufficiently large positive constant, we have by Lemma 4.2 that the
input to the subproblem takes space at most𝑀/2. Thus the entire
subproblem can be evaluated in internal memory, as claimed in the
algorithm description.

Next we observe that, by design, every subproblem is on an
interval of size Ω(𝐵) (since the branching factor is𝑀/𝐵 and each
internal subproblem is on an interval of size Ω(𝑀)). Also observe
that, since there are 𝑂 (log𝑀/𝐵 (𝑛/𝐵)) levels of recursion, and by
Lemma 4.2 the total size of all subproblems at a given level of recur-
sion is 𝑂 (𝑛), the total size of all subproblems is 𝑂 (𝑛 log𝑀/𝐵 (𝑛/𝐵)).
We will make use of both of these facts throughout the rest of the
proof.

If a subproblem is on an interval of size ℓ = Ω(𝐵), then its input is
guaranteed to have size𝑂 (ℓ) (by Lemma 4.2), andwill therefore take
time𝑂 (ℓ/𝐵+1) = 𝑂 (ℓ/𝐵) to read. Summing across the subproblems,
the total time spent reading inputs is 𝑂 ((𝑛/𝐵) log𝑀/𝐵 𝑛) IOs.

If an internal subproblem is on an interval of size ℓ = Ω(𝑀), then
its𝑀/𝐵 outputs will have cumulative size 𝑂 (ℓ) (again, by Lemma
4.2). Thus, the subprobem will incur at most𝑂 (ℓ +𝑀/𝐵) = 𝑂 (ℓ/𝐵)
IOs writing its output. Summing across the internal subproblems,
the total time spent writing outputs is 𝑂 ((𝑛/𝐵) log𝑀/𝐵 𝑛) IOs.

Finally, if a base-case subproblem is on an interval of size ℓ =

Ω(𝐵), then its output will consist of ℓ distance-vector entries, and
will require 𝑂 (ℓ/𝐵 + 1) = 𝑂 (ℓ/𝐵) IOs to write to external memory.
Summing over the base-case subproblems, the total time spent writ-
ing distance-vector entries to external memory is at most 𝑂 (𝑛/𝐵)
IOs. □

6 ACHIEVING NEAR-OPTIMAL PARALLELISM

In this section, we show how to modify the Increment–and–
Freeze algorithm in order to achieve near-optimal parallelism in the
CREW PRAM model. The algorithm that we introduce, which we
call Parallel–Increment–and–Freeze, achieves span 𝑂 (log2 𝑛),
work 𝑂 (𝑛 log𝑛), and parallelism 𝑂 (𝑛/log𝑛).

Recall that the main algorithmic sub-routine used in Increment–
and–Freeze is the following: We take as input the shrunk projec-
tion SI of S onto some interval I, and we produce as output the
shrunk projections S𝐼1 and S𝐼2 of S onto the two halves I1 and I2
of I. We refer to this as a partition routine. The partition routine
takes 𝑂 (𝑛) time in serial. Our main challenge is to implement a
parallel version of the routine that still incurs 𝑂 (𝑛) work, but that
has span polylog𝑛.

Our algorithm will make use of the parallel-prefix-sum opera-
tion. Given a sequence 𝑎1, 𝑎2, . . . , 𝑎𝑚 of𝑚 ≤ 𝑛 items, and given an
associative operator ◦, a parallel-prefix sum computes𝑏1, 𝑏2, . . . , 𝑏𝑚
where 𝑏𝑖 = 𝑎1 ◦ 𝑎2, ◦ · · · ◦ 𝑎𝑖 . Parallel prefix sums have 𝑂 (𝑚) work
and 𝑂 (log𝑚) span in the CREW PRAM model [10].

One classic way to use a parallel prefix sum is to remove holes
from a sequence: given a sequence 𝑥1, 𝑥2, . . . , 𝑥𝑚 , where some 𝑥𝑖s
are null, one can construct a new sequence 𝑥 ′1, 𝑥

′
2, . . . , 𝑥

′
𝑚′ con-

sisting only of the non-null 𝑥𝑖 ’s from the original sequence. This
task, which we refer to as sequence compression, is performed
as follows: (1) define 𝑎1, . . . , 𝑎𝑚 so that 𝑎𝑖 indicates whether 𝑥𝑖
is null; (2) use a parallel prefix sum to compute 𝑏1, . . . , 𝑏𝑚 where
𝑏𝑖 =

∑𝑖
𝑗=1 𝑎 𝑗 ; and (3) build 𝑥 ′1, 𝑥

′
2, . . . where each non-null 𝑥𝑖 be-

comes 𝑥 ′
𝑏𝑖
.
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In addition to sequence compression, we will use parallel prefix
sums in a second slightly more sophisticated way:
Lemma 6.1 (The Cluster Sum Lemma). Consider a sequence of pairs

𝑎1, 𝑎2, . . . , 𝑎𝑚 , where each 𝑎𝑖 is either of the form (1, 0) or of the form
(0, 𝑘𝑖 ) for some 𝑘𝑖 ∈ Z.

Define the ◦ operator to combine two pairs (𝑎, 𝑏), (𝑐, 𝑑) ∈ {0, 1}×Z
using the formula

(𝑎, 𝑏) ◦ (𝑐, 𝑑) =
{
(𝑐, 𝑑) if 𝑐 = 1
(𝑎, 𝑏 + 𝑑) otherwise.

Then ◦ is associative, and the second coordinate of (𝑥𝑖 , 𝑦𝑖 ) = 𝑎1 ◦
𝑎2 ◦ · · · ◦ 𝑎𝑖 can be interpreted as follows: Let 𝑟 be the largest integer

such that 𝑎𝑖−𝑟 , 𝑎𝑖−𝑟+1, . . . , 𝑎𝑖 all have zeros in their first components;

then 𝑦𝑖 =
∑𝑖

𝑗=𝑖−𝑟 𝑘 𝑗 if 𝑟 ≥ 0 and 𝑦𝑖 = 0 otherwise.

Proof. We begin by confirming that ◦ is associative. Consider
(𝑎, 𝑏) ◦ (𝑐, 𝑑) ◦ (𝑒, 𝑓 ).

If 𝑒 = 1, then both ((𝑎, 𝑏)◦(𝑐, 𝑑))◦(𝑒, 𝑓 ) and (𝑎, 𝑏)◦((𝑐, 𝑑)◦(𝑒, 𝑓 ))
evaluate simply to (1, 𝑓 ).

If 𝑒 = 0 and 𝑐 = 1, then both ((𝑎, 𝑏) ◦ (𝑐, 𝑑)) ◦ (𝑒, 𝑓 ) and (𝑎, 𝑏) ◦
((𝑐, 𝑑) ◦ (𝑒, 𝑓 )) evaluate to (1, 𝑑 + 𝑓 ).

Finally, if 𝑒 = 0 and 𝑐 = 0, then both ((𝑎, 𝑏) ◦ (𝑐, 𝑑)) ◦ (𝑒, 𝑓 ) and
(𝑎, 𝑏) ◦ ((𝑐, 𝑑) ◦ (𝑒, 𝑓 )) evaluate to (𝑎, 𝑏+𝑑 + 𝑓 ). Thus ◦ is associative.

Next we confirm the interpretation of (𝑥𝑖 , 𝑦𝑖 ) = 𝑎1 ◦ 𝑎2 ◦ · · · ◦ 𝑎𝑖 .
Let 𝑟 be the largest integer such that 𝑎𝑖−𝑟 , 𝑎𝑖−𝑟+1, . . . , 𝑎𝑖 all have
zeros in their first components. If 𝑟 = 0, then 𝑎𝑖 = (1, 0), and it is
straightforward to confirm that (𝑥𝑖 , 𝑦𝑖 ) will therefore also be (1, 0).

Suppose 𝑟 > 0. Since all of 𝑎𝑖−𝑟 , 𝑎𝑖−𝑟+1, . . . , 𝑎𝑖 have 0s in their
first coordinates, we have that

𝑎𝑖−𝑟 ◦ 𝑎𝑖−𝑟+1 ◦ · · · ◦ 𝑎𝑖 = ©­«0,
𝑖∑︁

𝑗=𝑖−𝑟
𝑘 𝑗
ª®¬ .

If 𝑟 = 𝑖 − 1, then we are done. Otherwise, 𝑎𝑖−𝑟−1 must be (1, 0),
meaning that

𝑎1 ◦ 𝑎2 ◦ · · · ◦ 𝑎𝑖−𝑟−1 = (1, 0).
Thus

𝑎1 ◦ 𝑎2 ◦ · · · ◦ 𝑎𝑖 = (1, 0) ◦ ©­«0,
𝑖∑︁

𝑗=𝑖−𝑟
𝑘 𝑗
ª®¬ = ©­«1,

𝑖∑︁
𝑗=𝑖−𝑟

𝑘 𝑗
ª®¬ .

□

We can now describe how to implement a partition routine in
parallel. Recall that we are given as input the projection SI of S
onto an interval I, and we wish to produce SI1 and SI2 , where I1
and I2 are the two halves of I. Without loss of generality, we can
focus on computing SI1 .

We begin by replacing each operation in SI with its projection
onto 𝐼1. Next, we apply sequence compression to eliminate any null
operations. Call the resulting sequence 𝑥1, 𝑥2, . . . , 𝑥𝑚 .

Call 𝑥𝑖 passive if it can be merged with 𝑥𝑖+1, semi-active if it
can be merged with 𝑥𝑖−1 but not with 𝑥𝑖+1, and active if it cannot be
merged with either 𝑥𝑖−1 or 𝑥𝑖+1. For each semi-active operation 𝑥ℓ ,
and the maximal run 𝑥𝑖 , . . . , 𝑥ℓ−1 of passive operations preceding
it, we wish to compress all of 𝑥𝑖 , . . . , 𝑥ℓ into a single Increment
operation. The new Increment operation should affect the same
interval as did 𝑥ℓ , but should have an increment amount given by

𝑤ℓ :=
∑ℓ

𝑗=𝑖 𝑘 𝑗 , where 𝑘𝑖 , . . . , 𝑘ℓ are the increment amounts for each
of 𝑥𝑖 , . . . , 𝑥ℓ .

We can use a cluster-sum operation (Lemma 6.1) to compute𝑤ℓ

for each semi-active operation 𝑥ℓ . This tells each semi-active oper-
ation what its new increment amount should be. We can then use
sequence compression (treating passive operations as null) to elim-
inate the passive operations. This results in the shrunk projection
S𝐼1 that we wished to compute.

Each cluster-sum and sequence-compression operation has linear
work and logarithmic span. Thus we have a work-efficient imple-
mentation of Parallel Partition with span 𝑂 (log𝑛). Within each
level of recursion in the Parallel–Increment–and–Freeze, we
can run the Parallel Partitions in parallel. Thus, across the𝑂 (log𝑛)
levels of recursion, we have total span𝑂 (log2 𝑛). Thus we have our
desired result in the CREW PRAM model:
Theorem 6.2. Parallel–Increment–and–Freeze is a CREW

PRAM algorithm that computes the distance vector ⟨𝑑1, . . . , 𝑑𝑛⟩ for a
trace 𝑇 of size 𝑛. It has work 𝑂 (𝑛 log𝑛) and span 𝑂 (log2 𝑛).

7 PARAMETERIZING BY A MAXIMUM CACHE

SIZE (OR THE UNIVERSE SIZE)

In this section, we extend Increment–and–Freeze to be parame-
terized by a maximum cache size 𝑘 that we wish to consider. That
is, rather than computing the full hit-rate curve 𝐻𝑇 (1), . . . , 𝐻𝑇 (𝑛),
we instead compute 𝐻𝑇 (1), . . . , 𝐻𝑇 (𝑘). Note that, even if we wish
to consider all cache sizes, one can still set 𝑘 = 𝑢 where 𝑢 is the
number of distinct addresses3 in 𝑇 , since we trivially have that
𝐻𝑇 (𝑖) = 𝐻𝑇 (𝑢) for all 𝑖 > 𝑢.

The main result of this section is that Increment–and–Freeze
can bemodified to take time𝑂 (𝑛 log𝑘) and𝑂 (𝑘)memory. The basic
approach is to partition the input 𝑇 = ⟨𝑡1, . . . , 𝑡𝑛⟩ into chunks 𝑇 =

{𝐶1, . . . ,𝐶𝑛/𝑘 } of size Θ(𝑘). We also show how to achieve strong
external-memory and parallelism bounds, also parameterized by 𝑘 .

Our basic approach is to process each chunk, one after another,
using the standard Increment–and–Freeze algorithm.We perform
additional bookkeeping in order to handle interactions between
chunks. The approach is similar to the one taken in previous work
by Niu et al. [21], with the exception of a modification that we
introduce at the end of the section to achieve polylog𝑛 span.

Before continuing, it is convenient to perform a slight change
of notation for how we discuss the distance vector. Define the for-
ward distance vector 𝑓 = ⟨𝑓1, 𝑓2, . . . , 𝑓𝑛⟩ so that 𝑓𝑖 is the number
of distinct addresses in the sequence 𝑡prev(𝑖 )+1, . . . , 𝑡𝑖 . (In contrast
𝑑𝑖 counts the distinct addresses in 𝑡𝑖 , . . . , 𝑡next(𝑖 )−1.) It is straightfor-
ward to use ⟨𝑓1, . . . , 𝑓𝑛⟩ in place of ⟨𝑑1, . . . , 𝑑𝑛⟩ (or even to simply
convert between the two in SORT time). However, for this section,
it will be more convenient to discuss the forward distance vector.

Also, because we only care about cache of size 𝑘 or smaller, it
suffices to compute min(𝑘 + 1, 𝑓𝑖 ) for each 𝑓𝑖 . If 𝑓𝑖 ≥ 𝑘 + 1, then we
do not care about its specific value, since 𝑡𝑖 is guaranteed to be a
cache miss on all caches of size 𝑘 or smaller.

For any prefix 𝑃𝑖 = 𝐶1 · 𝐶2 · · · · · 𝐶𝑖 of the chunks, define 𝑄𝑖

to be the subsequence of 𝑃𝑖 that contains each address in 𝑃𝑖 in
sorted order by their final access times in 𝑃𝑖 (from least-recently
3It is not necessary for 𝑢 to be known in advance. In the case of 𝑘 = 𝑢, 𝑘 increases
each time a unique address is encountered in𝑇 .
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accessed to most-recently accessed). Finally, let 𝑄𝑖 be the suffix of
𝑄𝑖 consisting of the final 𝑘 accesses (or all of 𝑄𝑖 if |𝑄𝑖 | ≤ 𝑘).

Our next lemma tells us that, by performing Increment–and–
Freeze on the trace 𝑄𝑖 ·𝐶𝑖 (that is, 𝐶𝑖 concatenated onto 𝑄𝑖 ), we
can correctly recover all values (truncated down to 𝑘 + 1) of the
forward distance vector ⟨𝑓1, . . . , 𝑓𝑛⟩ that correspond to chunk 𝐶𝑖 .
Lemma 7.1. Suppose𝐶𝑖 = ⟨𝑡𝑎+1, . . . , 𝑡𝑏⟩. Let 𝑅𝑖 = 𝑄𝑖 ·𝐶𝑖 be the trace
obtained by appending 𝑄𝑖 and 𝐶𝑖 together, and define ⟨𝑟1, 𝑟2, . . .⟩ to
be the forward distance vector for 𝑅𝑖 .

Then the relationship between the 𝑟𝑖 s and the distances in the

true forward distance vector ⟨𝑓1, . . . , 𝑓𝑛⟩ is as follows: for each 𝑗 ∈
{1, 2, . . . , |𝐶𝑖 |}, we have

min
(
𝑘 + 1, 𝑟 |𝑄𝑖 |+𝑗

)
= min(𝑘 + 1, 𝑓𝑎+𝑗 ) .

Proof. Define𝑚 = |𝑄𝑖 |. We begin by considering the case where
𝑚 ≤ 𝑘 , meaning that 𝑄𝑖 = 𝑄𝑖 . In this case we claim that, for each
𝑗 ∈ {1, 2, . . . , |𝐶𝑖 |}, we have

𝑟𝑚+𝑗 = 𝑓𝑎+𝑗 . (3)

We will write 𝑄𝑖 as 𝑞1, 𝑞2, . . . , 𝑞𝑚 and 𝐶𝑖 as 𝑡𝑎+1, . . . , 𝑡𝑏 . Notice
that 𝑓𝑎+𝑗 expands to

𝑓𝑎+𝑗 = |{𝑡prev(𝑎+𝑗 )+1, . . . , 𝑡𝑎+𝑗 }| (4)

If prev(𝑎 + 𝑗) ≥ 𝑎 + 1, then we will trivially have 𝑟𝑚+𝑗 = 𝑑𝑎+𝑗 .
On the other hand, if prev(𝑎 + 𝑗) ≤ 𝑎, then 𝑟𝑚+𝑗 will behave as
follows. Define prev( 𝑗) to be 0 if 𝑡 𝑗 ∉ 𝑄𝑖 , and to satisfy 𝑞prev( 𝑗 ) = 𝑡 𝑗

otherwise. If prev(𝑎 + 𝑗) ≤ 𝑎, then

𝑟𝑚+𝑗 = |{𝑞prev( 𝑗 ) , . . . , 𝑞𝑚} ∪ {𝑡𝑎+1, . . . , 𝑡𝑎+𝑗 }|. (5)

We wish to show that (4) and (5) evaluate to the same quantities.
Critically, by the definition of 𝑄𝑖 , we have that

{𝑞prev( 𝑗 ) , . . . , 𝑞𝑚} = {𝑡prev(𝑎+𝑗 ) , . . . , 𝑡𝑎}. (6)

This is because 𝑄𝑖 can be obtained from 𝑡1, . . . , 𝑡𝑎 by removing any
𝑡𝑟 , 𝑟 ≤ 𝑎, such that 𝑡𝑟 appears again in the sub-trace 𝑡𝑟+1, . . . , 𝑡𝑎 .

By (6), we can conclude that the right sides of (4) and (5) are
equal, meaning that 𝑓𝑎+𝑗 = 𝑟𝑚+𝑗 , as desired.

Finally, we must consider the case where |𝑄𝑖 | > 𝑘 + 1, meaning
that 𝑄𝑖 consists of the final 𝑘 + 1 elements of 𝑄𝑖 . Notice that this
distinction only matters for 𝑓𝑎+𝑗 where 𝑓𝑎+𝑗 ≥ 𝑘 + 1. Moreover, the
distinction preserves the fact that 𝑟 |𝑄𝑖 |+𝑗

(which would have been
𝑟 |𝑄𝑖 |+𝑗 if we set𝑄𝑖 = 𝑄𝑖 ) is at least 𝑘 + 1. Thus min(𝑘 + 1, 𝑟 |𝑄𝑖 |+𝑗

) =
min(𝑘 + 1, 𝑓𝑎+𝑗 ), as desired. □

Bounded–Increment–and–Freeze works as follows: We pro-
cess the chunks 𝐶1,𝐶2, . . . (each of which are size 𝑂 (𝑘)) one after
another. To process a chunk 𝐶𝑖 = [𝑡𝑎+1, 𝑡𝑏 ], we run Increment–
and–Freeze on𝑄𝑖 ·𝐶𝑖 and use Lemma 7.1 to recover min(𝑓𝑎+1, 𝑘 +
1), . . . ,min(𝑓𝑏 , 𝑘 + 1). While processing 𝐶𝑖 , we also compute 𝑄𝑖+1
(this is straightforward to do in time 𝑂 (𝑘) using 𝑄𝑖 and 𝐶𝑖 ). This
means that, once it is time to process 𝐶𝑖+1, we already have 𝑄𝑖+1.

Since |𝑄𝑖 ·𝐶𝑖 | = 𝑂 (𝑘), the time to run Increment–and–Freeze
on 𝑄𝑖 ·𝐶𝑖 is 𝑂 (𝑘 log𝑘). Bounded–Increment–and–Freeze there-
fore takes total time𝑂 (𝑛 log𝑘). Similarly, if𝑘 ≥ 𝐵, then the external-
memory complexity of the algorithm is 𝑂 ((𝑛/𝐵) log𝑘). Addition-
ally, since all requests but 𝑄𝑖+1 can be discarded after processing
𝐶𝑖 , we require only 𝑂 (𝑘) memory.

The algorithm produces the truncated forward distance vector
⟨min(𝑓1, 𝑘+1), . . . ,min(𝑓𝑛, 𝑘+1)⟩, which can be then be used to com-
pute the first 𝑘 entries of the LRU hit-rate curve, while preserving
the algorithm’s complexity in every model (see discussion in Sec-
tion 3). One subtlety here is that we wish to translate⟨min(𝑓1, 𝑘 +
1), . . . ,min(𝑓𝑛, 𝑘 + 1)⟩ into a 𝑘-truncated LRU hit-rate curve in
time𝑂 (𝑛 log𝑘), rather than𝑂 (𝑛 log𝑛). To do this, we can compute
separate 𝑘-truncated hit-rate curves for each 𝐶𝑖 (each takes time
𝑂 ((𝑛/𝑘) log𝑘)), and then sum the curves together.

Thus we have the following theorem:
Theorem 7.2. Bounded–Increment–and–Freeze takes𝑂 (𝑛 log𝑘)
time and 𝑂 (𝑘) memory to compute the first 𝑘 entries of the LRU hit-

rate curve on a trace of size 𝑛. Assuming 𝑘 = Ω(𝐵), the algorithm
incurs 𝑂 ((𝑛/𝐵) log𝑘) IOs in the external-memory model.

We conclude the section by discussion external-memory and
parallel versions of Bounded–Increment–and–Freeze. By using
External–Increment–and–Freeze to process each chunk𝑄𝑖 ·𝐶𝑖 ,
we get an external-memory complexity of 𝑂 ((𝑛/𝐵) log𝑀/𝐵 (𝑘/𝐵)).
Theorem 7.3. Let 𝑘, 𝑛 ≥ Ω(𝐵). External–Bounded–Increment–
and–Freeze computes the first 𝑘 entries of the LRU hit-rate

curve of a trace of size 𝑛, and has external-memory complexity

𝑂 ((𝑛/𝐵) log𝑀/𝐵 (𝑘/𝐵)).
Parallelizing Bounded–Increment–and–Freeze requires a bit

more effort. Naively, we get Θ(log𝑘)-fold paralleism. Even if we
use Parallel–Increment–and–Freeze to process each𝑄𝑖 ·𝐶𝑖 , we
still get span Ω(log2 𝑘 · 𝑛/𝑘), where the 𝑛/𝑘 comes from the fact
that we process the 𝑛/𝑘 chunks in serial.

To once again achieve span 𝑂 (polylog𝑛), we need to compute
𝑄1, . . . , 𝑄𝑛/𝑘 in parallel, that way the chunks𝑄1 ·𝐶1, . . . , 𝑄𝑛/𝑘 ·𝐶𝑛/𝑘
can be processed in parallel.

Notice, however, that the 𝑄𝑖s can be obtained using a parallel-
prefix-sum operation. Define 𝑄 (𝐼 ) on any interval 𝐼 to consist of
the distinct addresses in 𝐼 sorted in order of when they are last
accessed in 𝐼 (from least-recent final-access to most-recent final-
access). Define the operator ◦ so that, for any two adjacent intervals
𝐼1 and 𝐼2 that collectively make up an interval 𝐼 , we have that𝑄 (𝐼 ) =
𝑄 (𝐼1) ◦𝑄 (𝐼2). It is straightforward to verify that ◦ is associative. It is
also a straightforward exercise to compute𝑄 (𝐼1) ◦𝑄 (𝐼2) with work
𝑂 (𝑘 log𝑘) and span polylog𝑛; and to compute𝑄 (𝐼 ) for any interval
𝐼 of size 𝑘 with work 𝑂 (𝑘 log𝑘) and span polylog𝑛. It follows that
we can use a parallel prefix sum to compute 𝑄1, 𝑄2, . . . , 𝑄𝑛/𝑘 with
work 𝑂 (𝑛 log𝑘) and span 𝑂 (polylog𝑛).

Thus we have the following theorem:
Theorem 7.4. Parallel–Bounded–Increment–and–Freeze is a

CREW PRAM algorithm that computes the first 𝑘 entries of the LRU

hit-rate curve of a trace of size 𝑛, while achieving work 𝑂 (𝑛 log𝑘)
and span polylog𝑛.
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Figure 1: Prefix(𝑘,−1), in red, and Postfix( 𝑗, 0), in black, are

an efficient encoding of Increment( 𝑗, 𝑘, 1) and Freeze( 𝑗). The
increments outside of the range [ 𝑗 , 𝑘] cancel and within the

range they sum to 1 . The Postfix then freezes 𝑖.

Parallel–Bounded–Increment–and–Freeze pushes its paral-
lelism beyond Θ(log𝑘) at the cost of additional memory consump-
tion (as chunks must reside in memory simultaneously). Given a
memory of size𝑀 , Parallel–Bounded–Increment–and–Freeze
achieves parallelism𝑂 ((𝑀/𝑘) log𝑘). This is a factor log𝑘 improve-
ment over using augmented-tree algorithms to process chunks in
parallel. With 𝑀 memory, this approach, i.e. PARDA [21], achieves
𝑂 (𝑀/𝑘) parallelism.

8 SYSTEMS ENGINEERING

In order for Increment–and–Freeze to be efficient in practice,
there are several important engineering optimizations that need to
be made. We describe here two optimizations that are especially im-
pactful: (1) an alternative space-efficient encoding of the Increment
and Freeze operations, and (2) an optimized approach to performing
the partition routine. These optimizations are critical for minimiz-
ing memory usage. Collectively, they reduce memory usage by a
factor of 6-12×. Roughly a factor of 4-6× comes from the encoding
and roughly 1.5-2× comes from the improved partition. This mem-
ory reduction is, in turn, crucial for performance, as having a small
memory footprint results in fewer cache misses.

An alternative encoding of Increment and Freeze. In our imple-
mentation of Increment–and–Freeze, we replace the Increment
and Freeze operations with a different pair of operations, Prefix and
Postfix. These operations implicitly operate on an interval 𝐼 = [𝑎, 𝑏],
which is the range covered by the current recursive subproblem:

• Prefix(t, r): This is equivalent to an Increment(𝑎, 𝑡, 1) fol-
lowed by an Increment(𝑎, 𝑏, 𝑟 ).

• Postfix(t, r): This is equivalent to an Increment(𝑡, 𝑏, 1), fol-
lowed by a Freeze(𝑡), and then an Increment(𝑎, 𝑏, 𝑟 ).

Recall that, previously, our operation sequence S consisted
of pairs of Increment and Freeze operations of the form
Increment( 𝑗, 𝑘, 1), Freeze( 𝑗). This can be replaced with the pair
Prefix(𝑘,−1), Postfix( 𝑗, 0) as shown in Figure 1. Here we are
using the fact that incrementing the interval [ 𝑗, 𝑘] is equivalent to
incrementing the prefix (−∞, 𝑘], decrementing (−∞,∞), and then
incrementing the suffix (𝑘,∞).

It is a straightforward exercise to express the projection of a
Postfix/Prefix operation onto a smaller interval as a Postfix/Prefix
operation on that interval. Moreover, whenever a Prefix operation
effects an entire interval, it can be merged with the operation di-
rectly preceding it (regardless of whether that operation is a Postfix or
Prefix operation). This replaces the merging of Increment operations
used in the original Increment–and–Freeze algorithm.

One advantage of Postfix/Prefix operations is that they simplify
the code. A second advantage is that, in a careful implementation,
one can guarantee that the total number of operations at each level
of recursion (across all subproblems) never exceeds 2𝑛.

An efficient implementation of the partition routine. We now
turn our focus to implementing the partition routine, which takes
as input the shrunk projection S𝐼 = ⟨𝑥1, 𝑥2, . . .⟩ of S on interval 𝐼 ,
and outputs the shrunk projections S𝐼1 and S𝐼2 onto 𝐼 ’s constituent
halves. As notation, let 𝐼1 = [𝑎, 𝑏] and 𝐼2 = [𝑏 + 1, 𝑐].

It turns out that S𝐼 has the following property: If the 𝑖-th op-
eration 𝑥𝑖 in S is Prefix(𝑡, 𝑟 ) for some 𝑡 , then all of 𝑥1, 𝑥2, . . . , 𝑥𝑖
are Prefix/Postfix operations whose first arguments are at most
𝑡 . Moreover, if 𝑡 ≤ 𝑏, then one can confirm that these operations
𝑥1, 𝑥2, . . . , 𝑥𝑖 collectively have no effect on 𝐼2.

Thus, we can evaluate the partition routine as follows: We pro-
cess S𝐼 from right to left, building the projections S𝐼1 and S𝐼2 as
we go. Once we encounter some 𝑥𝑖 = Prefix(𝑡, 𝑟 ) satisfying 𝑡 ≤ 𝑏,
we complete the partition by simply adding 𝑥1, . . . , 𝑥𝑖 as a prefix of
S𝐼1 . In fact, with a careful implementation, one can even reuse the
memory storing 𝑥1, . . . , 𝑥𝑖 so that the partition routine never even
needs to touch 𝑥1, . . . , 𝑥𝑖−1. This serves both as a time optimization
(since we need not process 𝑥1, . . . , 𝑥𝑖−1) and as a space optimization.

9 EXPERIMENTS

In this section, we evaluate the performance of Increment–and–
Freeze (IAF) and Bounded–Increment–and–Freeze (Bound–IAF)
as compared to two augmented tree algorithms. The first of these
is PARDA [21], which uses a splay tree. The second is our own
implementation that uses a Weight-Balanced Order-Statistic-Tree
(OST) [19]. To disambiguate between the single-threaded version
of PARDA (which is simply a splay-tree version of the augmented-
tree algorithm) versus the multi-threaded version of PARDA (which
achieves parallelism across time chunks), we will refer to the former
as SPLAY and the latter as PARDA.

IAF achieves a speedup of 3-8× relative to SPLAY and uses 2-31×
as much memory. Bound–IAF achieves a speedup of 3-6× relative
to SPLAY and uses 0.9-1.32× as much memory. The main advantage
of Bound-IAF is that it limits memory blowup in cases where the
trace length 𝑛 is significantly larger than the number of unique
addresses 𝑢.

Both PARDA and Bound–IAF offer support for a user provided
cache limit. Our baseline experiments do not impose a limit. For
completeness, in Subsection 9.3, we also evaluate the effect of im-
posing cache limit.

PARDA, IAF, and Bound–IAF are multithreaded. We evaluate
the parallelism of each algorithm by comparing it’s serial running
time to its parallel running time on multiple threads. By this met-
ric, IAF and Bound–IAF achieve comparable speedups to PARDA,
while using significantly less memory on large numbers of threads.
Because IAF and Bound-IAF are faster than PARDA in serial, they
continue to be faster in parallel.

On our largest workload, serial Bound–IAF achieves a speedup
of nearly 10× while consuming only 1.33× the memory when com-
pared with the Order-Statistic-Tree. In absolute terms, finding the
hit-rate curve on a trace of this size tookOST over 13 hours, whereas
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Name Requests IDs Requests per ID

Tiny 4e+7 2e+5 200
Small 1e+8 4e+6 25

Medium 5e+8 2e+7 25
Large 1e+9 1.6e+8 6.25
Huge 1e+10 2.68e+8 37.25

Table 1: We evaluate Increment–and–Freeze, OST, and

PARDA on these synthetic workloads.

Bound–IAF took only an hour and 24 minutes. Computing the hit-
rate curve in parallel with 48 threads increases the memory usage
of Bound–IAF to 1.41× that of the Order-Statistic-Tree while in-
creasing the speedup to over 66×, for a final running time of only
12 minutes.

9.1 Experimental Setup

Machine. We implemented IAF, Bound–IAF, and OST as C++17
libraries. We ran our experiments on a Dell Precision 7820 with
24-core 2-way hyperthreaded Intel(R) Xeon(R) Gold 5220R CPU @
2.20GHz, and 64GB 4x16GB DDR4 2933MHz RDIMM ECC Memory.

Workloads. To test the systems we run them on a variety of
synthetic traces. We use the following distributions: uniformly
random and Zipfian distributions with 𝛼 values of 0.1, 0.2, 0.4, 0.6,
and 0.8. We use a trace from each distribution at the sizes in Table 1.

For each size, we report the average runtime and memory usage
to compute the hit-rate curve of each trace. For each algorithm, we
observe a deviation in runtime of 5-20% and in memory usage of
0-17% when comparing traces of the same size drawn from different
distributions. PARDA has the highest deviation in runtime, likely
due to its splay tree performing better on biased distributions. The
trace with distribution Zipfian 𝛼 = 0.8 is the quickest and has the
lowest memory usage across all algorithms.

If each address corresponds to a 4KiB page, then our workload
sizes represent address spaces of size 781MiB for Tiny and 1TiB for
the Huge workload. In reality, addresses may correspond to smaller
or significantly larger objects. We remark that Increment–and–
Freeze can be augmented to support objects of varying size.

Running Experiments. We tested the performance of OST and
Bound–IAF at every input size. We tested IAF on each input size
except for Huge because its memory consumption would have
exceeded that of our machine. In our experiments, PARDA experi-
enced segmentation faults on traces of size greater than Medium.
When reporting running time results for PARDA, we exclude the
time to pre-partition the trace into a disjoint trace for each thread.

9.2 Serial Performance

Runtime. The average runtime of computing the hit-rate curve for
each input size and each algorithm is given in Table 2a. Both variants
of IAF significantly outpace the augmented-tree approaches. IAF

System Tiny Small Medium Large Huge

SPLAY 31.6 198 1.33e+3 - -
OST 45.0 229 1.45e+3 3.60e+3 4.75e+4
IAF 11.2 32.0 176 377 -

Bound-IAF 12.0 40.0 211 486 5.07e+3
(a) Average runtime in seconds.

System Tiny Small Medium Large Huge

SPLAY 31.0 623 2.89e+3 - -
OST 24.4 401 1.95e+3 1.55e+4 2.67e+4
IAF 957 2.68e+3 1.34e+4 2.85e+4 -

Bound-IAF 35.1 573 2.59e+3 1.80e+4 3.54e+4
(b) Average memory usage in Mebibytes.

Table 2: Increment–and–Freeze and Bounded–

Increment–and–Freeze are faster than both SPLAY

and OST by a factor of up to 9× with minimal memory

overhead.

System Tiny Small Medium Large Huge

PARDA 4.48 40.4 290 - -
IAF 2.20 5.30 26.9 64.5 -

Bound-IAF 2.22 6.66 34.0 79.7 777
(a) Average runtime in seconds.

System Tiny Small Medium Large Huge

PARDA 869 1.22e+4 6.08e+4 - -
IAF 1090 3.02e+3 1.41e+4 2.97e+4 -

Bound-IAF 109 793 3.12e+3 1.92e+4 3.62e+4
(b) Average memory usage in Mebibytes.

Table 3: Increment–and–Freeze and Bounded–

Increment–and–Freeze run up to 10× faster and use much

less memory than PARDA when running with 16 threads.

outperforms SPLAY by a factor of 3-8×, OST by 4-10×, and Bound–
IAF by 1.08-1.29×. IAF outperforms Bound–IAF because although
Bound–IAF has (slightly) better asymptotic performance it also
pays higher constants due to reprocessing 𝑄𝑖 in each chunk.

Our results also support the conclusion that splay-trees offer bet-
ter performance than standard augmented tree approaches. SPLAY
outperformed OST by 10-30%, although, the gap in performance
shrank as the size of the trace grew.

Memory consumption. The memory required to compute the
hit-rate curve for each input size and algorithm is given by Table 2b.
IAF uses significantly more memory than the augmented-tree ap-
proaches while Bound–IAF’s memory consumption is much closer
to that of SPLAY and OST.

The reason for the difference in memory usage between IAF and
the other algorithms is that for the tested traces, 𝑢 < 𝑛, often by
more than an order of magnitude. As expected, we observe that
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IAF’s relative memory usage is highly sensitive to the difference
between 𝑛 and𝑢. For Tiny, where 𝑛/𝑢 = 200, IAF’s memory usage is
30× that of SPLAY and 39× that of OST. Whereas for Large, where
𝑛/𝑢 = 6.3, its memory usage is only 1.8× that of OST.

We also observe that the Order-Statistic-Tree approach is the
most memory efficient, generally using two-thirds of the memory
SPLAY does. SPLAY’s memory usage is in part a reflection of its
treatment of addresses as strings rather than integers. This is also
why Bound–IAF uses less memory than SPLAY on large inputs.

9.3 Cache Size Limit

We test the performance benefit of providing a cache size limit to
PARDA and Bound–IAF for each trace size. These limits are 7.5e+4,
1.5e+6, 8e+6, 6.7e+7, and 6.7e+7 respectively. For objects of size
4KiB, these limits correspond to caches of size 293MiB for Tiny and
up to 256GiB for Large and Huge.

Bound–IAF derives far more benefit from this cache limit than
PARDA. For trace sizes of Tiny to Medium PARDA’s runtime is
reduced by 1%-2% and memory consumption by 0%-1.6% when
supplied with these cache limits. Bound–IAF’s runtime is reduced
by 13%-21.1% and its memory consumption is reduced by 26%-60%.
The variation in runtime reduction is dependent upon the trace
size, and is likely a result of CPU cache behavior.

9.4 Parallel Performance

The result of using more threads to compute the hit-rate curve is
summarized in Figure 2. To compute the self-relative speedup for
an algorithm on a given number of threads and on a given input
size, we divide the algorithm’s serial time by its parallel time, and
take the geometric mean across the input distribution types.

The absolute runtime and memory consumption with 16 threads
is shown in Table 3. Here we can see the significance of PARDA’s
memory scaling linearly with the thread count. At 16 threads, pro-
cessing a Tiny trace requires PARDA to use over 8× the memory
as Bound–IAF. Since the IAF variants achieve similar self-relative
speedup to PARDA, they remain faster than PARDA in our exper-
iments as thread count varies. In fact, on traces of size Small or
larger, PARDA’s parallel performance never reaches that of either
IAF variant’s serial performance.

IAF’s somewhat limited parallel scaling is not surprising as it
has 𝑂 (log𝑛) parallelism. For our workloads, 𝑂 (log𝑛) tops out at
roughly 30. It is likely that a well-engineered implementation of
Parallel–Increment–and–Freeze could achieve better scaling.
This is left to future work.

9.5 64-Bit Addresses

In all our experiments it was sufficient for both variants of IAF
to use 32-bit integers for storing addresses and counters. This is
because the number of requests and addresses was less than 232 for
all inputs except Huge. For Huge, Bound–IAF’s chunks contained
roughly 1 billion requests, so they could be indexed by 32 bits.

If the number of addresses or the chunk size were to exceed
32 bits, then all of the algorithms (IAF, Bound-IAF, OST, PARDA,
and SPLAY) would need to be converted to use 64-bit integers. For
IAF and Bound-IAF executed in serial, switching to 64-bit integers

Figure 2: Increment–and–Freeze achieves comparable

speedups to PARDA with additional threads without experi-

encing a blowup in memory footprint.

resulted in a memory consumption increase of at most 2× and a
runtime increase of at most 1.11×.
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