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Most B-tree papers assume that all N keys have the same size K, that f = B/K keys fit in a disk block,
and therefore that the search cost is O(logf+1N) block transfers. When keys have variable size, B-tree
operations have no nontrivial performance guarantees, however.

This paper provides B-tree-like performance guarantees on dictionaries that contain keys of different
sizes in a model in which keys must be stored and compared as opaque objects. The resulting atomic-key
dictionaries exhibit performance bounds in terms of the average key size and match the bounds when
all keys are the same size. Atomic key dictionaries can be built with minimal modification to the B-tree
structure, simply by choosing the pivot keys properly.

This paper describes both static and dynamic atomic-key dictionaries. In the static case, if there are N
keys with average size K, the search cost is O(dK/Be log1+dB/KeN) expected transfers. It is not possible
to transform these expected bounds into worst-case bounds. The cost to build the tree is O(NK) operations
and O(NK/B) transfers if all keys are presented in sorted order. If not, the cost is the sorting cost.

For the dynamic dictionaries, the amortized cost to insert a key κ of arbitrary length at an arbitrary
rank is dominated by the cost to search for κ. Specifically the amortized cost to insert a key κ of arbitrary
length and random rank is O(dK/Be log1+dB/KeN + |κ| /B) transfers. A dynamic-programming algorithm
is shown for constructing an search tree with minimal expected cost.

This paper also gives a cache-oblivious static atomic-key B-tree, which achieves the same asymptotic
performance as the static B-tree dictionary, mentioned above. A cache-oblivious data structure or algorithm
is not parameterized by the block size B or memory size M in the memory hierarchy; rather, it is universal,
working simultaneously for all possible values of B or M . On a machine with block size B, if there are N
keys with average size K, search operations costs O(dK/Be log1+dB/KeN) block transfers in expectation.
This cache-oblivious layout can be built in O(N log(NK)) processor operations.
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1. INTRODUCTION
Most published descriptions of B-trees (which for this discussion include common vari-
ants, such as B+-trees) assume that all keys have the same size. If all N keys have
size K, and f = B/K keys fit in a disk block, then the search cost is O(logf+1N) block
transfers.

However, for over four decades most production-quality B-trees (e.g., those in
databases and file systems) have supported variable-size keys. The basic search, in-
sert, and delete operations all work correctly when keys have variable sizes, but the
operations no longer have nontrivial performance guarantees. Roughly speaking, it is
better to use small keys as pivots near the top of the tree because small keys means
a larger branching factor and a more efficient search. However, one cannot simply
choose to put the smallest keys in the root node because this choice may do a poor job
of dividing the search space evenly.

Most B-tree rebalancing algorithms do not attempt to choose small pivot keys. As a
result, they generally do not provide (nontrivial) performance guarantees.

For example, if a B-tree stores a mix of unit-sized keys and Θ(B)-sized keys, a search
may use O(logB+1N) or O(log2N) memory transfers, depending on which keys are
chosen for pivots. In particular, if most nodes in a root-to-leaf path employ small pivots
with a branching factor of Θ(B) then the search cost is O(logB+1N), but if most nodes
employ large pivots with a branching factor of O(1) then the search cost is O(log2N).

To demonstrate that real B-trees can suffer performance degradation by choosing
pivot keys poorly, we created two Berkeley DB B-Trees, a “good” tree and a “bad” tree,
each containing one million key-value pairs. We disabled the prefix compression since
we wanted the keys to be atomic. The keys were mostly 4 bytes long, but 1/128 of
the keys were 999 bytes long. The keys were inserted in increasing order (from left to
right). In the “good” tree, the long keys were not used as pivots and so the tree had
fanout of 225 and a depth of 3, whereas in the “bad” tree, the long keys were used as
pivots, so the tree had fanout 5 and a depth of 8. It was a simple matter to force the
system to choose bad pivots, since the splitting algorithm is predictable. The keys with
rank equal to 63 (mod 128) get used as a pivot.

Empirical experience and folk wisdom suggest that, although there may not be for-
mal guarantees, the data structure works pretty well most of the time. Nonetheless,
in the worst-case B-tree performance can suffer because of a small number of large
records.

Atomic-Key Dictionaries
This paper explores B-tree variations that have performance guarantees even when
keys have variable sizes. Our objective is to modify the traditional B-tree as little as
possible. We want the same basic search algorithm based on a k-ary tree and a simple
rebalancing scheme.

In this paper we study atomic-key dictionaries. The essential feature of an atomic-
key dictionary is that a key is stored and manipulated as an atomic or opaque object.
Keys cannot be split up, and so whenever a key is stored in the data structure, the en-
tire key must be stored. Whenever the system compares keys are ordering, two entire
keys must be brought into memory and compared. The data structure does not know
anything about the internals of the keys (except for their size) or about the comparison
function.
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We analyze the performance using the Disk Access Machine (DAM) model [Aggarwal
and Vitter 1988], which provides an internal memory of sizeM and an arbitrarily large
external memory. A DAM transfers blocks of size B, each transfer incurring unit cost.

We are interested in performance guarantees for search, insert, and delete opera-
tions, and these guarantees should be parameterized by the average key size. The nat-
ural bound to strive for is O(logf N) memory transfers, where f is the average number
of elements that fit in a disk block. (Thus, f is the block size B divided by the average
key length.) This is a natural bound because it matches the B-tree performance when
all keys have the same size of B/f . Unfortunately, as we show in this paper, the bound
is provably unattainable in general for atomic-key B-trees.1

Instead, this paper shows how to achieve these asymptotic bounds in expectation for
both static and dynamic dictionaries. Thus, for a given number of elements and a total
data size, the structure performs at least as well in expectation as if all the elements
had the same size.

Alternatives for Supporting Variable-Size Keys
When the keys are strings the problem can be solved faster. For example, a string
B-tree [Ferragina and Grossi 1999] can insert, delete or search for a key κ using
O(|κ| /B + logB+1N) transfers. This performance is optimal in the sense that the first
term represents the cost to read a key and the second term represents the cost to
search when all keys have unit size. It is also superior to what one can achieve with
an atomic-key dictionary.

The string B-tree is not a solution to the problem posed in this paper, however. It
has a different type of search algorithm from that used in a B-tree, and it is not an
atomic-key dictionary. String keys can be chopped up and stored in different places
and different parts of the key can be compared at different times. String dictionaries
can achieve better asymptotic performance than atomic-key dictionaries.

Most dynamic dictionaries employ industrial-strength B-trees, not string B-trees.
The ubiquity of B-trees helps justify why we strive to give provable bounds for variable-
size keys.

Some production-quality B-trees are not atomic-key dictionaries because they also
employ some variant of front compression [Clark et al. 1969; Wagner 1973; Bayer
and Unterauer 1977], commonly called prefix compression. In front compression if κ
and κ′ are two contiguous keys in a node and they share a common prefix of length `,
then κ′ is encoded by the length ` of the shared prefix along with the unshared suffix.
A set of front-compressed keys consumes the same space as the uncompacted trie of
those keys [Knuth 1973].

Our work is incomparable to front compression or other compression techniques.
Even in a tree with front compression, one can sometimes encounter long keys that
propagate up the tree but do not share much prefix with their up-propagated cousins.
On the other hand, there are situations where prefix compression saves more space
and therefore gives more fanout than the techniques introduced in this paper. So both
techniques are likely to be needed.

Results
Our results can be summarized as follows.

1Interestingly, the reference manual to Oracle Berkeley DB [Oracle 2009] claims that Berkeley DB achieves
these target bounds, an indication that users may want them. Unfortunately, these bounds cannot be
achieved in general when Berkeley DB is used as an atomic-key dictionary.
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Static atomic-key B-tree. We show how to build a static atomic-key B-tree. With this
construction, for a dictionary storing N keys of average size K̄, the expected cost to
search for a random key in the tree is O(

⌈
K̄/B

⌉
log1+dB/K̄eN) memory transfers when

keys are searched with uniform probability. Building the tree uses O(NK̄) operations
and O(NK̄/B) memory transfers.

To understand why this bound achieves our objective of searching for different-size
keys with the same expected cost as same-size keys, plug in several values for the
average key size K̄. If K̄ = O(1), then the expected search cost is O(logB+1N), the
performance for a B-tree storing unit-size keys. On the other hand, if K̄ = O(B), then
the expected search cost isO(log2N), which is what we expect if all keys have sizeO(B)
and the branching factor is constant. If the average key size is K̄ = Ω(B), then the
branching factor is constant, but nodes can span many blocks, leading to an expected
search cost of O((K̄/B) log2N).

We prove that it is not possible to guarantee these bounds for arbitrary searches.
This impossibility result helps explain one deviation from the structure of traditional
B-trees. In traditional B-trees, all leaves reside at the same depth, whereas in atomic-
key B-trees, we allow leaves to reside at different depths.

Dynamic atomic-key B-tree. We show how to build a dynamic atomic-key B-tree in which
the expected cost to search for random keys matches that for static trees, the amortized
cost to insert or delete a random key κ is O(

⌈
K̄/B

⌉
log1+dB/K̄eN + |κ| /B), and the

amortized cost to insert or delete an arbitrary key κ is dominated by the search cost.

Optimal static atomic-key B-tree. We present an O(BN3)-operation dynamic program for
constructing a static atomic-key dictionary with minimal expected search cost. For sim-
plicity we present a version for which each key fits in a block. The algorithm takes as
input the keys κ1, . . . , κN , their sizes, and their search probabilities p1, . . . , pN . Unlike
in the earlier results, here the search probabilities need not be equal.

Cache-oblivious static atomic-key B-tree. We present a cache-oblivious static atomic-key
B-tree that achieves the same asymptotic performance as the static B-tree above.
Specifically, on a machine with block size B, if there are N keys with average
size K̄, the expected search cost in our cache-oblivious static atomic-key B-tree is
O(dK̄/Be log1+dB/K̄eN) when all keys are searched with equal probability.

By cache-oblivious [Frigo et al. 1999; 2012; Prokop 1999], we mean that the al-
gorithm or data structure has no memory-hierarchy-specific parameterization. Thus,
an optimal-cache-oblivious algorithm or data structure is not parameterized by any
block size, cache or RAM size, or memory- or disk-access times. Remarkably, many
problems have optimal (and practical) cache-oblivious solutions. In particular, there is
a series of papers on cache-oblivious static and dynamic B-tree [Prokop 1999; Bender
et al. 2000; Brodal et al. 2002; Bender et al. 2005; Bender et al. 2002; 2004] and string
B-trees [Brodal and Fagerberg 2006; Bender et al. 2006].

To build this data structure, we rely upon a family of B-trees for several carefully
chosen values of block-size B, which all have the same parent-child topology but a
different “layout” in memory. We show how to construct this family of trees. Then we
prove that the trees in this family have the same performance as the static B-tree
structures described above. Finally, we call upon the “split-and-refine” technique from
[Alstrup et al. 2002] to collapse this family into a single cache-oblivious structure. This
cache-oblivious layout can be built in O(N log(NK̄)) processor operations.
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Outline
The rest of this paper is organized as follows. Section 2 describes the greedy structure
of a static tree by giving a greedy strategy for selecting the root of the tree. Section 3
analyzes the search cost for static trees. Section 4 shows how to build a static tree effi-
ciently, by proving that the greedy strategy from Section 2 can be realized with a small
number of operations and I/Os. Section 5 shows how to build dynamic trees. Section 6
presents a dynamic program for building an optimal static search tree. Section 7 ex-
hibits how to build a fixed-topology atomic-key B-tree, analyzes its performance, and
then uses a family of fixed-topology atomic-key B-trees to achieve a cache-oblivious
static B-tree layout. Section 8 discusses work related to atomic B-trees. and Section 9
concludes with a brief discussion of open problems.

2. STATIC ATOMIC-KEY B-TREE
In this section give the structure of a static atomic-key B-tree. We do so by giving a
greedy algorithm for constructing a static atomic-key B-tree on N different-size keys.
The idea is to store small keys near the top of the tree and big keys near the bottom
while simultaneously choosing pivot keys that are spread out in the key-space. (In
Section 4 we give an efficient realization of this algorithm that uses few I/O.)

We first give notation. Denote the average length of the N keys, {κi}, by K̄. No key
is larger than a constant fraction of memory. For block size B, define

f = max

{
3,

⌊
B

K̄

⌋}
. (1)

Building the Root Node
Here we give a greedy algorithm for creating the root node, given a set of N keys in
sorted order. Divide the keys into f sets {Ci}0≤i≤f−1 so that each set contains N/f
keys. The first set C0 contains the smallest N/f keys, the second set C1 contains the
next smallest N/f keys, and so on. For each set, except for the first and the last, we
pick the representative key ri to be the minimum-length key in each set; we do not
need representatives from the first and the last sets.

We assign these f − 2 representatives {ri}1≤i≤f−2 to be the pivot keys in the root
node of the static atomic-key B-tree. The root node therefore has f − 1 children, and
we recursively use the greedy algorithm to assign pivot keys to the children nodes.

· · · · · ·

The root node

N keys

r1 r2 rf−2

rf−2 κN−N/f+1κ1 · · · κN/f κN/f+1 r1 · · · · · · κN· · · · · · · · ·

Fig. 1. The greedy algorithm for the root node of a static tree layout.

In the following two lemmas, we give upper bounds on the size of the root node in
two cases, when K̄ ≤ B/3 and K̄ > B/3, respectively. Let ĉi be the average length of
the keys in the ith set Ci and let k′i be the minimum-length key in Ci.
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LEMMA 2.1. Suppose that K̄ ≤ B/3. Then the root node has size less than B and
thus fits within a single block.

PROOF. By (1) and because K̄ ≤ B/3, we have

f = max

{
3,

⌊
B

K̄

⌋}
=

⌊
B

K̄

⌋
≤ B

K̄
. (2)

Because the total length of all N keys is the sum of the lengths of the keys in each set
Ci (0 ≤ i ≤ f − 1), we have

f−1∑
i=0

Nĉi
f

= NK̄.

Replacing the average key length ĉi by the smallest key length k′i for each i, we obtain
f−1∑
i=0

Nk′i
f
≤ NK̄. (3)

Multiplying by f/N and applying (2), (3) simplifies to
f−1∑
i=0

k′i ≤ fK̄ ≤ B. (4)

Because the root node stores f − 2 representatives, it has size
f−2∑
i=1

k′i < B,

as promised.

LEMMA 2.2. Suppose that K̄ > B/3. Then the root contains a single key whose
length is less than 3K̄ and therefore fits in at most

⌈
3K̄/B

⌉
blocks.

PROOF. By (1) and because K̄ > B/3, we have

f = max

{
3,

⌊
B

K̄

⌋}
= 3.

Thus, the root node has fanout 2 and contains only a single representative key from
the middle set C1. Since the total length of all keys in the set C1 is strictly less than the
total length of the N keys in C0 ∪ C1 ∪ C2, we have NK̄ > ĉ1N/3, which simplifies to

ĉ1 < 3K̄.

Thus, the root node fits in at most
⌈
3K̄/B

⌉
blocks.

These f − 2 representatives separate the N keys into f − 1 sets, which we denote
{Si}1≤i≤f−1. Each set becomes a child of the root node. We denote the average length
of each child set Si to be K̄i.

Recursive Step, Base Case, and Leaf Structure
We recursively apply the greedy algorithm to each child set Si and thus generate the
static atomic-key B-tree. Observe that different children may have different fanouts,
depending on the values of K̄i. The base case is when a child set Si fits entirely within
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a B-sized chunk of memory or there is a single element remaining. Then, we assign all
of Si to a single leaf node.

We next coalesce the leaf nodes into a single contiguous chunk to ensure fast range
queries and linear space. A traditional B-tree with unit-size keys is built from the
leaves up, and by construction, all leaves have size Θ(B) (unless there is only one leaf).
Here the construction is top-down, which can result in leaves of size o(B). Thus, we
store all leaves in order in a single chunk of space of size O(NK̄). The space consump-
tion is linear and range queries are fast because the keys are stored contiguously and
in order.

Performance Results
The greedy layout achieves the following performance, as we prove in Section 3.

THEOREM 2.3. A static atomic-key B-tree with N elements and average key size K̄
has an expected search cost of O(

⌈
K̄/B

⌉
log1+dB/K̄eN) block transfers when all leaves

are searched with equal probability. A scan of L contiguous elements of average size K̄L

takes O(1 + LK̄L/B) additional memory transfers after the first element in the range
has been examined. The data structure consumes O(NK̄) space, that is, linear space.

A static atomic-key B-tree can be built with the following cost, as we prove in Section 4.

THEOREM 2.4. A static atomic-key B-tree can be built with O(1 + NK̄/B) memory
transfers—the scan bound—for presorted data.

We conclude this section by giving limitations on the worst-case search cost in atomic-
key B-trees.

THEOREM 2.5. The expected search cost can not be achieved for worst-case searches.
Specifically, there exists a set of N keys with average length O(1) and maximum length
`, where B ≤ ` ≤ M , for which the following holds. For every tree layout having an
asymptotically optimal expected search cost, the worst-case search cost (e.g., tree height)
is a factor of Ω( `B log(B + 1)) worse than the expected search cost.

PROOF. Consider a key set in which the first
√
N elements have length `, where

B ≤ ` ≤ M , and the remaining N −
√
N elements have length 1. An information-

theoretic lower bound for searching in a binary tree shows that in any tree there is
some leaf of length ` that requires Ω( `B log2N) memory transfers to reach. In contrast,
if all pivots of length ` are deeper than any pivot of length 1, then the expected search
cost is O(log1+B N) memory transfers.

3. SEARCH ANALYSIS
In this section we prove Theorem 2.3, thus establishing the expected search cost in an
atomic-key B-tree.

We prove by induction on N that a static atomic-key B-tree with N elements and
average key size K̄ has an expected search cost of O((1 + K̄/B) log2+B/K̄ N) block
transfers when all keys are searched with equal probability. Then Theorem 2.3 will
follow directly. Because ⌈

K̄

B

⌉
≤ 1 +

K̄

B
≤ 2

⌈
K̄

B

⌉
(5)

(6)
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and

1 +

⌈
B

K̄

⌉
≤ 2 +

B

K̄
≤ 2

(
1 +

⌈
B

K̄

⌉)
, (7)

the search cost is equivalent to O(
⌈
K̄/B

⌉
log1+dB/K̄eN).

In an atomic-key B-tree, the root node R comprises f − 2 keys (which is always at
least one). Thus, the root node has f−1 children {Ti}1≤i≤f−1, each of which is a subtree
on the set Si.

Assume for the sake of induction that for the subtrees Ti of size |Si| (less than N ),
the search cost is

c
(
1 + K̄i/B

)
log2+B/K̄i

|Si|,

for some constant c > 0. We show that the search cost also applies to the tree T of size
N .

The expected search cost in the tree T = (R, T1, . . . , Tf−1) is the number of block
transfers to fetch the root node R plus the expected search cost in the appropriate
subtree Ti. We first calculate the number of block transfers to fetch the root node R.
By Lemmas 2.1 and 2.2, when K̄ ≤ B/3, the root node R has size less than B; when
K̄ > B/3, R has size less than 3K̄. In summary, the number of block transfers to fetch
the root node R is at most 1 + 3K̄/B.

To prove Theorem 2.3, we show that for the same constant c,

1 +
3K̄

B
+

c

N

f−1∑
i=1

|Si|
(

1 +
K̄i

B

)
log2+B/K̄i

|Si| ≤ c
(

1 +
K̄

B

)
log2+B/K̄ N, (8)

subject to the following constraints:

— The tree contains N keys, i.e.,
f−1∑
i=1

|Si| = N, (9)

— the total length of all keys is
f−1∑
i=1

|Si|K̄i = NK̄, (10)

— and by construction, for all i,

0 < |Si| < 2N/f. (11)

To simplify our calculations, we introduce some notation. Let xi = K̄i/B, x = K̄/B,
and ti = |Si|/N . Thus, (8)-(11) become respectively (12)-(15).

We need to show that for some constant c > 0,

1 + 3x+ c

f−1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ c(1 + x) log2+1/xN , (12)

subject to the constraints:
f−1∑
i=1

ti = 1 , (13)
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f−1∑
i=1

tixi = x , (14)

∀i, 0 < ti < 2/f . (15)

Before proceeding further, we prove the following claim.

CLAIM 3.1. Let xi > 0 and x > 0, and let ti be constrained as follows:
f−1∑
i=1

ti = 1 and
f−1∑
i=1

tixi ≤ x .

Then the following inequality holds:
f−1∑
i=1

ti(1 + xi)

ln(2 + 1/xi)
≤ 1 + x

ln (2 + 1/x)
. (16)

PROOF. Let function h(x) be defined as follows

h(x) =
1 + x

ln (2 + 1/x)
(x > 0) .

Then (16) can be rewritten as
f−1∑
i=1

tih(xi) ≤ h(x).

The above inequality holds as long as the function h is concave and increasing on the
positive line, because

f−1∑
i=1

tih(xi) ≤ h

(
f−1∑
i=1

tixi

)
concavity of h

≤ h(x) h is increasing in (0,∞).

We show that these two properties for h. The first derivative is

h′(x) =
ln(2 + 1/x) + (1 + x)/(2x2 + x)

ln2(2 + 1/x)
,

which is positive for x > 0. The second derivative is

h′′(x) =
2 + 2x− (3x+ 1) ln(2 + 1/x)

(2x2 + x)2 ln3(2 + 1/x)
. (17)

Because x > 0, ln(2 + 1/x) > 0. Thus, the numerator of (17) is negative, i.e.,

ln(2 + 1/x) >
2 + 2x

1 + 3x
.

Let y = 1/x. Because x is positive, the range of y is also (0,∞). Thus, by replacing 1/x
by y in the above inequality, we obtain

ln(2 + y) >
2y + 2

y + 3
= 2− 4

y + 3
(y > 0). (18)
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The derivative of the left side of (18) is

(ln(2 + y))′ =
1

2 + y
> 0 ,

and the derivative of the right side of (18) is(
2− 4

y + 3

)′
=

4

y2 + 6y + 9
> 0.

Thus, both ln(2 + y) and 2− 4/(y + 3) are monotonically increasing.
We also need to show that ln(2 + y) increases faster than 2− 4/(y+ 3) in (0,∞), that

is,

(ln(2 + y))′ ≥
(

2− 4

y + 3

)′
.

This inequality holds because
1

2 + y
≥ 4

y2 + 6y + 9
,

which is equivalent to
y2 + 2y + 1 ≥ 0 .

Furthermore, at the initial point, when y = 0,

ln(2 + y) = ln 2 ≈ 0.69 ,

and
2− 4/(y + 3) = 2− 4/3 ≈ 0.67 .

Thus, the left side of (18) has an initial value greater than the right side of (18), mean
that (18) holds.

In summary, h′′(x) < 0, and therefore h(x) is concave. Thus, the claim follows.

Our objective is to establish (12)-(15). We first simplify the lefthand side of (12). By
(15), we obtain

1 + 3x+ c

f−1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ 1 + 3x+ c

f−1∑
i=1

ti(1 + xi) log2+1/xi
(2N/f).

Moving ln(2N/f) out of the summation in the above inequality, we obtain

1 + 3x+ c

f−1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ 1 + 3x+ c ln(2N/f)

f−1∑
i=1

ti(1 + xi)

ln(2 + 1/xi)
. (19)

From Claim 3.1 and (19), we obtain

1 + 3x+ c

f−1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ 1 + 3x+ c ln(2N/f)

1 + x

ln(2 + 1/x)
. (20)

Reorganizing the above inequality, we obtain

1 + 3x+ c

f−1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ c(1 + x) log2+1/xN + 1 + 3x

− c(1 + x) log2+1/x(f/2). (21)
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To prove the theorem, we need to find the constant c such that the right part in (21)
is less than c(1 + x) log2+1/xN , that is

1 + 3x− c(1 + x) log2+1/x(f/2) ≤ 0.

Therefore, we derive that

c ≥ (1 + 3x) ln(2 + 1/x)

(1 + x) ln(f/2)
.

Because (1 + 3x)/(1 + x) = 3− 2/(1 + x) < 3, it is sufficient to find the constant c such
that

c ≥ 3
ln(2 + 1/x)

ln(f/2)
.

To find such constant c, we use the following claim.

CLAIM 3.2. For x = K̄/B and f = max{3, bB/K̄c}, there exists a constant c inde-
pendent of x and f , such that

c ≥ 3
ln(2 + 1/x)

ln(f/2)
. (22)

Specifically, let c = 3 ln 6/ ln(3/2).

PROOF.
There are two cases.
The first case is when B/K̄ < 3, meaning that f = 3 and 1/x < 3. Then we can

choose c ≥ 3 ln 5/ln(3/2).
The second case is when B/K̄ ≥ 3. We have

f =

⌊
B

K̄

⌋
=

⌊
1

x

⌋
and 1/x ≥ 3. Therefore we have

ln(2 + 1/x)

ln(f/2)
≤ ln(3 + b1/xc)

ln(f/2)
≤ ln(2b1/xc)

ln(f/2)
=

ln(2f)

ln(f/2)
≤ ln 6

ln(3/2)
.

The first inequality is by 1/x ≤ 1 + b1/xc; The second inequality follows from b1/xc ≥
3; the third equation is from f = b1/xc and the last inequality follows by the fact
that ln(2f)/ ln(f/2) is monotonically decreasing and f ≥ 3. Thus, we can choose c =
3 ln 6/ ln(3/2) to satisfy (22) for both cases.

In conclusion, by (21) and for the constant c from Claim 3.2, we establish

1 + 3x+ c

f−1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ c(1 + x) log2+1/xN.

4. BUILDING AN ATOMIC KEY B-TREE
This section presents an efficient construction algorithm for atomic-key B-trees, prov-
ing Theorem 2.4 and establishing that the greedy algorithm from Section 2 can be
realized with few I/Os.

The algorithm takes as input a set of N sorted keys of variable size and returns
an atomic-key B-tree. The construction cost matches the scan bound of O(1 + NK̄/B)
transfers, which is optimal. The idea for building the tree is to proceed level by level,
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starting at the root and continuing down the tree. First select the pivot elements in
the root, and then recursively build each subtree; see Section 2.

The algorithmic challenge addressed in this section is how to select the pivots
quickly.

By way of comparison, a naı̈ve solution scans through the elements to select the
pivot keys. The running time is bounded by the height of the tree times the scan bound.
Observe that the height of the tree could be much larger than the expected search cost,
as Theorem 2.5 indicates.

This section gives a faster way to select pivot elements. The trick is to preprocess the
keys to answer two different kinds of queries, “average-length queries” and “minimum-
length queries,” as defined below.

Average-Length Queries
The first preprocessing step is basic: preprocess theN keys to answer queries about the
average length of the elements in a given range. Thus, a query is a pair of indexes (i, j),
and the response is the average length of the elements i through j. Answering a query
takesO(1) memory transfers. Preprocessing takesO(1+NK̄/B) memory transfers and
an additional O(N) space. Preprocess by storing, for each key i, the total length of the
first i keys. This step requires a simple linear scan of the data.

Minimum-Length Queries
The second preprocessing step is more involved: preprocess the N keys to answer
queries about the minimum length of the elements in a range. A query is a pair of
indexes (i, j), and the response is the index k of the shortest element ranked between
i and j. As before, answering a query takes O(1) memory transfers, and preprocessing
takes O(1 +NK̄/B) memory transfers and an additional O(N) space.

This algorithmic problem is well known as the Range Minimum Query (RMQ)
problem and is closely related to the Least Common Ancestor (LCA) problem. In
the RAM model there are linear time reductions between the two problems [Gabow
et al. 1984], and the inputs can be preprocessed in linear time to answer constant-time
queries [Harel and Tarjan 1984; Schieber and Vishkin 1988; Berkman and Vishkin
1993; Bender and Farach-Colton 2000].

In contrast, we are interested in external-memory data structures. In the DAM,
there is no known linear-time (that is, matching the scan-bound) reduction between
the RMQ and the LCA. There exist older LCA algorithms designed for external mem-
ory [Chiang et al. 1995]. However these algorithms have different tradeoffs between
preprocessing and queries, and they are designed to answer multiple LCA queries in
bulk.

It is relatively straightforward to adapt [Bender and Farach-Colton 2000] to solve
RMQ queries for the case where the largest key has length O(M/ log logN) (or even
O(M/ log log logN)). The idea is to build a data structure for RMQ when j − i =
Ω(log logN) or even j − i = Ω(log log logN). This restriction is good enough to solve
all interesting cases for element sizes.

However, [Demaine et al. 2009] gives a cache-oblivious solution to RMQ prob-
lem with no restriction on element sizes. Their data structure answers queries in
O(1) transfers and preprocesses an array storing the lengths of the N elements in
O(1+N/B) memory transfers, which is the scan bound and therefore optimal. Building
such array entails scanning all N elements, which takes O(1 +NK̄/B) memory trans-
fers. (Cache-oblivious means that the solution is not parameterized by B or M . The
algorithm is memory-hierarchy universal, working simultaneously for all values of B
or M .) By using this data structure, we achieve the desired performance for minimum-
length queries.
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Tree Construction
We now show how to build an atomic-key B-tree. First perform the precomputation for
average-length and minimum-length queries. Then build the atomic-key B-tree recur-
sively, starting with the root.

The base case is when the atomic-key B-tree begins to fit in main memory (when its
size becomes smaller than M ) or contains a single element. For the base case, the cost
to build the tree is one plus the size of the tree divided by B, that is, the cost of a linear
scan.

Next we show how to build the root node when the atomic-key B-tree is larger than
M and contains more than one element. First ask an average-length query to find
the average key size K̄ of all N keys; this uses O(1) transfers. Then calculate f =
max{3,

⌈
B/K̄

⌉
}.

Next pick the set of f − 2 representative keys from the sets C1 . . . Cf−2. To do so, first
calculate the boundaries between each set Ci. The minimal-length element in each set,
which is found by a minimum-length query, is the representative element.

Thus, the cost to construct the root node is as follows.

LEMMA 4.1. The root node can be built using O(f + K̄/B) transfers.

PROOF. There are two cases. If K̄ ≤ B/3, then the cost to build the root is dom-
inated by the cost to identify the representatives. We can identify each of the f − 2
representative elements by a minimum-length query at a cost of O(1) transfers per
representative for a total of O(f) memory transfers.

If K̄ > B/3, then the root only has one element in it. The cost to build the root is
dominated by the cost to write the element, which is

⌈
3K̄/B

⌉
.

We now finish the proof of Theorem 2.4. In the base case of the construction algo-
rithm, it is efficient to build an atomic-key B-tree, costing only a linear scan. In the
recursive step, it may be more expensive to build (internal) nodes, as Lemma 4.1 in-
dicates, since there is an additive cost of O(f). However, we can charge the cost of
building these internal node to the cost of touching each of its children. Thus, a static
atomic-key B-tree can be built in the scan bound, which is O(1 + NK̄/B) memory
transfers.

We conclude the section by giving construction bounds when the data is not sorted.
The following (straightforward) bound applies to the case where no key is too large
compared to main memory.

COROLLARY 4.2. Suppose that the longest key has length M1−εBε, for constant ε
(0 < ε < 1). Then an (M/B)ε-way merge sort can presort the keys in

O

(
NK̄

εB
logM/B

N

B

)
transfers, which is asymptotically optimal, since ε is a constant.

5. DYNAMIC STRUCTURE
In this section we give a dynamic atomic-key B-tree on N elements.

Our results apply to two models of how insertions arrive, one strictly more general
than the other. In the first model elements of arbitrary length are inserted at random
locations in the atomic-key B-tree. In the second model elements of arbitrary length are
inserted at arbitrary locations in the atomic-key B-tree. We give a recursive structure
for the dynamic atomic-key B-tree, which is a modification of the structure presented
in Sections 2-4.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2016.



39:14

We prove bounds showing that representative elements can retain their status de-
spite a bounded number of subsequent inserts or deletes. We then give a dynamic
atomic-key B-tree that supports efficient inserts and deletes when the average key
size K̄ = O(B). Finally, we explain how to use indirection for large keys to give a dy-
namic atomic-key B-tree that supports efficient inserts and deletes for both small and
large keys.

We establish the following theorem.

THEOREM 5.1. There exists a dynamic atomic-key B-tree with N elements and av-
erage key size K̄ having the following performance bounds:

(1) Search cost. The expected search cost is O(
⌈
K̄/B

⌉
log1+dB/K̄eN) transfers when all

keys are searched with equal probability.
(2) Scan/range-query cost. Any subset of L contiguous elements with average size K̄L

can be scanned in O(1 + LK̄L/B) transfers.
(3) Space consumption. The tree has linear size, i.e., size O(NK̄).
(4) Construction cost. The tree can be built using a linear number of block transfers,

i.e., O(1 + NK̄/B) transfers, if the keys are presorted. A subtree of L elements with
average size K̄L can be rebuilt in O(1 + LK̄L/B) transfers.

(5) Random-insert cost. The expected amortized cost to insert or delete an element κ, of
length at most a constant fraction of memory, at a random location in the atomic-key
B-tree is

O(
⌈
K̄/B

⌉
log1+dB/K̄eN + |κ| /B)

transfers, where K̄ is the average key size after the modification.
(6) Arbitrary-insert cost. The amortized cost to insert or delete an element κ, which fits

in a constant fraction of memory, at an arbitrary location is asymptotically the same
as the search cost, i.e., the amortized modification cost is dominated by the search
cost.

Recursive Structure
As with the static atomic-key B-tree, the algorithm builds the dynamic atomic-key B-
tree recursively starting at the root. The algorithm operates as follows. Define a root
parameter

f = max

{
2,

⌊
B

K̄

⌋}
, (23)

and divide the N elements into f + 1 sets {Ci}i∈[0,f ]. The first and last sets, C0 and Cf ,
each containsN/(2f) elements, and the remaining sets, C1, . . . , Cf−1, each containsN/f
elements. Pick a representative key {ri}i∈[1,f−1] from each of the middle sets C1 . . . Cf−1,
and store the representatives in the root node. In Section 2 we selected the minimal-
length key in each set as a representative. Here we relax this requirement. For each set
Ci, we have the freedom to choose any key whose length is at most a constant fraction
larger than the average key length ĉi of the elements in Ci.

We first show that if the average key length K̄ is at most B/2, then the root fits
within a constant number of disk blocks.

LEMMA 5.2. Suppose that K̄ ≤ B/2, and let β > 0 be a constant. If we choose a
representative key ri from Ci such that ri ≤ βĉi, then the root node has size at most βB
and thus fits within dβe blocks.
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PROOF. If K̄ ≤ B/2, then by definition,

f = max

{
2,

⌊
B

K̄

⌋}
=

⌊
B

K̄

⌋
. (24)

Because the total length of all N keys is the sum of the lengths of the keys in each set
Ci, 0 ≤ i ≤ f ,

NK̄ =

f−1∑
i=1

N

f
ĉi +

N

2f
ĉ0 +

N

2f
ĉf ≥

f−1∑
i=1

N

f
ĉi.

We choose a representative ri from the set Ci such that ri ≤ βĉi. Thus, the above
inequality becomes

f−1∑
i=1

ri ≤ βfK̄.

Since f =
⌊
B/K̄

⌋
, meaning that fK̄ ≤ B, we obtain

f−1∑
i=1

ri ≤ βB.

Since the root contains the representative keys, the lemma follows immediately.

We next show that if the average element length K̄ ≥ B/2, then the root has size
O(K̄).

LEMMA 5.3. Suppose that K̄ > B/2, and let β > 0 be a constant. Then the root
maintains a single element whose length is at most 2βK̄, and therefore fits in

⌈
2βK̄/B

⌉
blocks.

PROOF. If K̄ > B/2, then by definition

f = max

{
2,

⌊
B

K̄

⌋}
= 2. (25)

Thus, the root node has fan-out 2 and contains only a single representative from the
set C1. Since |C1| = N/2,

NK̄ > ĉ1N/2.

The representative r1 satisfies the inequality that r1 ≤ βĉ1. Thus, NK̄ ≥ r1N/(2β),
which simplifies to r1 ≤ 2βK̄. Therefore the root node fits in

⌈
2βK̄/B

⌉
blocks.

Because the representative key need not be the minimal-length key in each set Ci,
we have the flexibility to choose ri such that it is closer to the middle of Ci. This re-
quirement shows that we can have somewhat more balanced trees without hurting
our search bounds. The following lemma quantifies how close the representative key
ri from Ci can be to the middle of that set.

LEMMA 5.4. Let β > 1 be a constant. For set Ci (1 ≤ i ≤ f − 1), there are more than
(1− 1/β)N/f keys that are shorter than βĉi.

PROOF. We divide the set Ci (1 ≤ i ≤ f − 1) into two disjoint subsets, Csi and C`i ,
meaning that

|Ci| = |Csi |+ |C`i | = N/f . (26)
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The set Csi contains all elements shorter than βĉi, and the set C`i contains all elements
of length at least βĉi. Since each element has length at least 1,

ĉi|Ci| ≥ βĉi|C`i |+ |Csi | > βĉi|C`i |. (27)

By (26) and (27), we obtain

|Csi | >
(

1− 1

β

)
N

f
.

Now we explain how to choose the representative key. Our algorithm is parame-
terized by some constant β > 1. Unlike in Section 2, we do not choose the minimal-
length key from the whole set Ci. Instead, we choose a minimal-length key whose
rank is sufficiently close to the middle of the set. Specifically, suppose that the set
Ci (1 ≤ i ≤ f − 1) starts with the element of rank

(
i− 1

2

)
N
f and ends just before the

element of rank
(
i+ 1

2

)
N
f . Then we choose the minimum length element whose rank

lies between
(
i− 1

2β

)
N
f and

(
i+ 1

2β

)
N
f .

We give a brief definition. We say that a representative element ri in Ci is (β, γ)-
good if ri has length less than βĉi, and there are at least a (1/2−γ)-fraction of elements
in Ci both before and after ri. Thus, we have the following corollary to Lemma 5.4.

COROLLARY 5.5. Each representative element ri (i ≤ 1 ≤ f − 1) is (β, 1/(2β))-good
when it is chosen.

These f − 1 representatives separate the N elements into f sets {Si}i∈[1,f ], each of
which is stored in a different subtree of the root. We thus bound |Si| as follows.

LEMMA 5.6. If all representatives are (β, 1/(2β))-good, then for all child sets Si
(1 ≤ i ≤ f) the greedy layout guarantees that

(
1− 1

β

)
N
f ≤ |Si| ≤

(
1 + 1

β

)
N
f .

PROOF. Recall that the first set S1 and the last Sf are constructed differently from
the remaining sets {Si}2≤i≤f−1. We first bound the size of S1. (Bounding Sf has the
same analysis.) Set S1 contains all elements before r1 and is composed of two parts: (1)
all the elements in C0 and (2) all the elements in C1 before r1. By Corollary 5.5, which
bounds the number of elements before r1,(

1− 1

2β

)
N

f
≤ |S1| ≤

(
1 +

1

2β

)
N

f
. (28)

Now we bound the size of each set Si (2 ≤ i ≤ f − 1). Recall that Si comprises the set
of keys between ri−1 and ri, and contains two parts: (1) the keys in Ci−1 after ri−1 and
(2) the keys in Ci before ri. By Corollary 5.5,(

1− 1

β

)
N

f
≤ |Si| ≤

(
1 +

1

β

)
N

f
. (29)

The lemma follows from (28) and (29).

In summary, the atomic-key B-tree has the following structure:

LEMMA 5.7. The dynamic atomic-key B-tree guarantees the following properties:

(1) The root node has size Θ(B + K̄).
(2) Each child set Si of the root contains Θ(N/f) elements.
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As in Section 2, the base case is when the total length of all elements in a child set
Si is at most B or when there is a single element remaining. Using an almost identical
analysis to that in Section 3, we can establish Property 1 of Theorem 5.1.

We now quantify the goodness of the representative elements after some elements
have been inserted or deleted.

LEMMA 5.8. Let β > 5/3. Suppose that the representative elements are (β, 1/(2β))-
good when they are chosen. After N/(3βf) elements have been inserted or deleted, these
representatives are ((1/2 + 3β/2), 5/(6β))-good.

PROOF. If at mostN/(3βf) elements have been inserted or deleted, then the fraction
of elements either before or after the representative ri can increase by at most an
additive 1/(3β) amount, that is, from 1/(2β) to 5/(6β).

When the representative was chosen, there were at most (1 − 1/β)N/f elements
shorter than ri (those outside the range from which ri was chosen) and at least N/(βf)
elements at least as long as ri (those in the range from which ri was chosen).

Since then, at most N/(3βf) elements shorter than ri were inserted and at most
N/(3βf) elements longer than ri were deleted. Thus, at most (1−2/(3β))N/f elements
are shorter than ri and at least 2N/(3βf) elements are at least as long.

The total length of all elements in Ci is greater than 2N/(3βf)ri. Let ĉi now represent
the average size of Ci after these inserts and deletes. The total length of all elements
in Ci is less than ĉi(N/f + N/(3βf)). Thus, ri has length at most (1/2 + 3β/2)ĉi, as
promised.

Leaf Structure and Construction
Because the tree is built recursively from top down, leaf nodes need not have size Ω(B).
Consequently, we coalesce leaf nodes to guarantee optimal range query performance,
linear space, and the ability to rebuild subtrees efficiently.

Leaf node sizes can vary enormously. If the leaf contains a (single) element whose
size is greater than B, then the leaf is the size of the element. If the leaf only contains
keys that are O(B), then it has size O(B) but can be as short as 1, depending on how
the recursion bottoms out. Leaf nodes can shrink, grow, or split as the tree is updated.

We coalesce neighboring leaf nodes into chunks. We maintain the invariant that a
chunk can have size o(B) only if one of its neighboring chunks has size Ω(B). Thus,
we divide chunks into two categories, large chunks and small chunks. A large chunk
contains a single leaf of size greater than B/2. In a small chunk, all leaves have size at
most B/2. As insertions occur, the size of the chunks can grow or shrink or some sub-
set of contiguous chunks can be rebuilt from scratch. We can split and merge chunks
similar to standard splitting and merging algorithms, but with a minor twist.

Only small chunks can merge and split with each other. Thus, if a small chunk gets
too full (of size 3B/2), then it splits into two small chunks, each of size at least B/2.
If a small chunk gets too empty, then it merges with a neighboring small chunk, if
one exists. This merge may subsequently induce a split. If it cannot merge, then all
neighbors are large chunks.

We build the dynamic atomic-key B-tree efficiently by finding representative ele-
ments as described in Section 4.

The combination of chunks and splits ensures that Properties 2 and 3 of Theorem 5.1
are satisfied. Because we can perform efficient range queries, we can efficiently rebuild
subtrees of the atomic-key B-tree. Thus, Property 4 of Theorem 5.1 is satisfied.

Insertions and Deletions (Special Case)
In this subsection we give insertion and deletion algorithms for the important special
case when all keys have size O(B).
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In our algorithms, subtrees of the dynamic atomic-key B-tree are periodically rebuilt
as elements are inserted or deleted. The atomic-key B-tree is parameterized by the
constant β (Lemma 5.8), which determines when to rebuild. We say that a node is
rebalanced if the entire subtree rooted at that node is rebuilt (but the parent is not).
We say that a node is involved in a rebalance, if it belongs to the subtree that is
being rebuilt.

If a node v is the root of a subtree of size N ′, then it is rebalanced when there have
been N ′/(3βf) inserts or deletes into the subtree rooted at v since v’s previous rebalance.
Each node in the atomic-key B-tree stores counters and other auxiliary information to
determine when to rebalance.

To insert a key κ into the atomic-key B-tree rooted at a given node v, first examine
v to decide whether the insert triggers a rebalance of v. If so, incorporate κ into the
new subtree being rebuilt. Otherwise, search for the subtree of v (storing child set Si)
where κ should reside, and recursively insert into it.

To delete a key κ from an atomic-key B-tree rooted at a node v, proceed similarly.
First examine v to decide whether the delete triggers a rebalance of v. If so, rebuild
the atomic-key B-tree, removing κ. Otherwise, check whether κ is stored in v as a
representative element. If so, mark κ as deleted. Do not remove it because it can still
be used for guiding searches. Then search for the subtree of v (storing a child set Si)
where κ belongs and recursively delete κ from Si.

The base case is when the entire set Si fits in a leaf, in which case, we rearrange
the elements in the leaf inserting or deleting κ, as appropriate. As described in the
previous subsection, rearranging elements in the leaf may cause the size of the leaf
to change, triggering restructuring of one or several chunks. Similarly, rebuilding sub-
trees of the atomic-key B-tree requires restructuring of the chunks.

LEMMA 5.9. Consider a dynamic atomic-key B-tree with N elements each of size
O(B) and average element size K̄. The amortized cost to rebalance the root of the tree
per insert/delete is at most the cost to read the root of the tree, which is O(1).

PROOF. Consider two consecutive rebalances of a node and the interval in between
these rebalances. Let R1 and R2 denote the cost to perform the first and second rebal-
ance, respectively. Let K̄1 and N1 denote the average length of an element and number
of elements in the node’s subtree during the first rebalance. Let f1 be defined according
to (24) for the first rebalance.

We give an amortized analysis for paying for the cost R2 of the second rebalance by
charging to the inserts and deletes in between. Observe that R1 = O(1 +N1K̄1/B). Let
I denote the sum of the lengths of all the keys inserted between the two rebalances.

The cost of the second rebalance is at most the cost of the first rebalance plus the
cost to scan all the keys inserted in the second rebalance. That is:

R2 = O(R1 + I/B). (30)

Since there are N1/(3βf1) inserts or deletes between rebalances, for constant β > 5/3,
we have the following (loose) bounds on I:

N1

3βf1
≤ I ≤ N1B

3βf1
. (31)

Therefore, by (30) and (31),

R2 = R1 +O(I/B) = O(1 +N1K̄1/B +N1/f1). (32)

We charge the rebalance cost R2 to the Θ(N1/f1) inserts and deletes that take place
between the rebalances. Thus, by (24) and (32) the amortized rebalance cost per inser-
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tion is

O(R2f1/N1) = O(fK̄1/B + 1) = O(1), (33)

establishing the claim.

Observe that the proof of Lemma 5.9 needed only very loose bounds on I; see (31).
Specifically, in the rebalance, each newly inserted/deleted element can contribute at
most one I/O per element, which follows from our assumption that elements have
length O(B).

We now give the amortized cost to insert into the entire tree.

LEMMA 5.10. Consider a dynamic atomic-key B-tree with N elements, each of size
O(B). The amortized cost to insert or delete an element κ into the tree is at most the cost
to perform a search for κ.

PROOF. In order to insert κ into the tree, it first needs to be read into memory, which
costs O(1 + |κ| /B) = O(1) memory transfers, since κ = O(B).

Then κ is inserted into the atomic-key B-tree. By Lemma 5.8, the pivot keys are
always good representatives. The insert makes its way along a prefix of a root-to-leaf
search path until it triggers a rebalance. The insert/delete has effectively modified
the balance of all of the nodes along this path. By Lemma 5.9, the amortized cost to
rebalance these nodes is O(1) per node. Thus, the amortized cost to perform this insert
or delete is at most the cost to read all the nodes along the root-to-leaf path.

Lemma 5.10 establishes Properties 5 and 6 of Theorem 5.1 for the case when all keys
have length O(B).

This atomic-key B-tree may not achieve good performance bounds when K̄ = Ω(B).
The proof of Lemma 5.10 gives some indication why. One difficulty is that the aver-
age element size K̄1 during the first rebalance can be very different from the average
element size K̄ later when an insert/delete takes place. This difference affects the ac-
counting argument and becomes important when the amortized rebalance cost (see
(33)) is Ω(1).

Storing Large Elements Using Indirection
The solution is to use indirection for large keys. Small representative keys are stored in
nodes as described earlier. A representative key that is sufficiently large (e.g., at least
4B) is not stored directly in a node. Rather, the node maintains a pointer to the key
along with that key’s size, and the key is stored elsewhere. This strategy is reminiscent
of how binary large objects (blobs) are kept in a B-tree.

The rest of the space in the tree node can be left empty. For practical reasons, one
can coalesce these pointers and sizes into fewer blocks. However, this compaction is
not necessary to achieve good asymptotic bounds.

The advantage of indirection is that it obviates the need to recopy large keys when
rebalancing subtrees. A rebalance now requires manipulating pointers and examining
sizes, not looking at the keys themselves. Without indirection, the cost to rebalance
a tree with N nodes and average key size K̄ is O(1 + NK̄/B), which can be large if
K̄ is large. With indirection, the rebalance cost may be smaller smaller, because even
when keys are larger than B, we do not have to pay more than O(1) I/Os for any
key involved in a rebalance. This means that with indirection, the rebalance cost is
O(1 +N min{K̄,B}/B).

Insertions and Deletions
With indirection we obtain the following generalizations of Lemmas 5.9 and 5.10.
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LEMMA 5.11. Consider a dynamic atomic-key B-tree with N elements. The amor-
tized cost per insertion or deletion to rebalance the root of the tree is at most O(1).

PROOF. Similar to the proof of Lemma 5.9, consider two consecutive rebalances of
a node and the interval in between these rebalances. Let R1 and R2 denote the cost to
perform the first and second rebalance, respectively. Let K̄1 and N1 denote the average
length of an element and number of elements in the node’s subtree during the first
rebalance. Let f1 be defined according to (24) for the first rebalance.

We give an amortized analysis for paying for the cost R2 of the second rebalance by
charging to the inserts and deletes in between. Observe that now, since keys can have
length that is O(B) or Ω(B),

R1 = O(1 +N1 min{K̄1, B}/B). (34)

Define the truncated length of a key to be the minimum of the key length and B.
Let Î and I denote the sum of the truncated lengths and the sum of the full lengths of
all the keys inserted between the two rebalances.

The cost of the second rebalance is at most the cost of the first rebalance plus the
cost to scan all the truncated lengths in the second rebalance. Because of indirection,
no key contributes more than one I/O when it participates in a rebalance, no matter
how long it happens to be. Thus, we obtain:

R2 = O(R1 + Î/B). (35)

Since there are N1/(3βf1) inserts or deletes between rebalances, for constant β > 5/3,
we have the following (loose) bounds on Î:

N1

3βf1
≤ Î ≤ N1B

3βf1
. (36)

Therefore, by (34), (35), and (36),

R2 = R1 +O(Î/B) = O(1 +N1 min{K̄1, B}/B +N1/f1). (37)

We charge the rebalance cost R2 to the Θ(N1/f1) inserts and deletes that take place
between the rebalances, meaning that

the amortized cost per insertion = f1R2/N1. (38)

There are two cases for (38), depending on whether, K̄1 ≤ B/2, in which case (24)
holds, or whether K̄1 > B/2, in which case (25) holds.

In the first case, where f1 = bB/K̄1c, Eq. (38) simplifies to

O(R2f1/N1) = O(f1K̄1/B + 1) = O(1). (39)

In the second case, where f1 = 2, Eq. (38) also simplifies to

O(R2f1/N1) = O(1), (40)

establishing the lemma.

LEMMA 5.12. Consider a dynamic atomic-key B-tree with N elements. The amor-
tized cost to insert or delete an element κ into the tree is O(1 + |κ| /B), the cost to read
the element, plus the cost to perform a search for κ in the tree.

PROOF. In order to insert κ into the tree, it first needs to be read into memory, which
costs O(1 + |κ| /B) memory transfers. Key κ will reside in memory during the entire
search procedure.
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Then κ is inserted into the atomic-key B-tree as described in Lemma 5.10. By
Lemma 5.12, the amortized cost to rebalance these nodes is O(1) per node. Thus, the
amortized cost to perform this insert or delete is at most the cost to read all the nodes
along the root-to-leaf path.

Lemma 5.12 establishes Properties 5 and 6 of Theorem 5.1.

6. AN OPTIMAL DYNAMIC PROGRAM
This section presents a dynamic program that produces an optimal static search tree
for N atomic keys, each of which may have a different size, and each of which has a
fixed probability of being queried.

The optimal structure minimizes the expected number of blocks transfer in a root-
to-leaf path.

This dynamic program assumes that every key can fit into a block, leaving enough
space if needed for pointers to other blocks. The program produces only those search
trees in which each node comprises a single block.

The strategy used is that trees for larger sets of keys are constructed by joining trees
for smaller sets. An optimal tree for the set κi, . . . , κj occupying space less than S in
the root is constructed by joining an optimal tree for the set κr+1, . . . , κj with space
less than S −Kr in the root and an optimal tree for the set κi, . . . , κr−1 in an optimal
way.

Figure 2 illustrates the dynamic program.
Let

Ki,j =
∑
i≤x≤j

Kx

and

Pi,j =
∑
i≤x≤j

px.

Let t(i, j, k) be the optimal tree and c(i, j, k) be its cost for keys κi, . . . , κj subject to the
constraint that the sum of the lengths of the keys in the root node is less than k.

We further assume that p is the size of a pointer from one block to another. In the
rest of the paper we did not need to worry about the storage for the pointer p because
such considerations do not change the asymptotics.

c(i, j, k) =

{
Pi,j if Ki,j ≤ k
mini≤r≤j F (i, r, j, k) otherwise.

where Kr + p ≤ k, then

F (i, r, j, k) = c(i, r − 1, B) + Pi,r−1 (a subtree)
+pr (κr here)
+c(r + 1, j, k −Kr − p). (rest of block)

The condition that Kr + p ≤ k corresponds to being able to fit a pointer to the subtree,
plus the key κr into the block of size k. If Kr + p > k then

F (i, r, j, k) =∞.
The cost of this dynamic program is O(Bn3) operations.
To handle keys that are larger than a single block is in principle straightforward,

but the dynamic program seems substantially more complex without yielding any real
insight to the problem.
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t(i, r − 1, B)

p

t(r + 1, j, k −Kr − p)

Kr k −Kr − p

t(r + 1, j, k −Kr − p)

k

t(i, j, k)

κr

Fig. 2. The dynamic program produces a tree t(i, j, k) by finding an optimal way of allocating the root block
of size k among a pointer of size p to a left subtree, a key κr , and a right subtree. The left subtree has root
block of size B and holds keys κi . . . κr−1, and incurs the cost of a following a pointer. The right subtree
holds keys κr+1 . . . κj . The right subtree’s root block is “inline” with the block and uses space k −Kr − p to
hold its root.

7. CACHE-OBLIVIOUS STATIC ATOMIC-KEY B-TREE
In this section we give a method for building a static cache-oblivious atomic-key B-tree.
We prove that for any given fixed block size B, the performance of the cache-oblivious
dictionary is asymptotically the same as the performance of an atomic-key B-tree.

In order to build our cache oblivious data structure, we use the “split-and-refine”
technique [Alstrup et al. 2002], which converts a family of layouts for known block
sizes into a universal layout that works for all block sizes. This conversion increases
the expected block cost by at most a constant factor, as we explain below.

Overview of Cache-Oblivious Approach
Here we give an overview of our approach for building a cache-oblivious static atomic-
key B-tree by using “split-and-refine.”

Split-and-refine was originally proposed as a technique for solving the following tree-
layout problem [Alstrup et al. 2002]. We are given a (not necessarily balanced) fixed-
topology tree; how can we lay out the tree in external memory to minimize the expected
block cost for searches?

Alstrup et al [Alstrup et al. 2002] first show how to solve this problem for a given
block size B; in this case, laying out the tree means optimizing how to pack nodes
into blocks of size B. Then the paper shows a universal (and hence cache-oblivious)
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solution to the problem, which is simultaneously optimal for all possible values of B.
This layout is based upon selecting several values of B, each leading to a different
layout, and then combining the layouts appropriately. (Alstrup et al. also assume a
uniform distribution on the keys for searches.)

This careful combination is what we call split-and-refine. What makes this technique
particularly interesting is that the packing of tree nodes into blocks for one specific
value of B may have little to do with the packing for other values of B. Nonetheless,
this approach still works.

We want to apply split-and-refine here for building cache-oblivious atomic-key B-
trees, but there are several serious obstacles.

The most daunting one is that when we have an atomic-key B-tree, we do not actu-
ally have a fixed-topology tree—in fact, quite the opposite. That is, in the tree-layout
problem of Alstrup et al. [Alstrup et al. 2002], the tree topology is explicitly fixed. In
our present paper, we have the freedom to choose whichever tree topology we want to
minimize the block cost. And each value of B leads to a different tree topology (see
Sections 2, 5, and 6).

However, the following subsection shows that, remarkably, there exists a single
fixed-topology binary tree that works for all values of B. That is, we can force this
particular pointer structure asymptotically for free and then “pack” those nodes into
blocks. No other tree topology can give asymptotically better bounds than our fixed
topology-plus-packing solution. The math is this paper is in the same spirit as what
appears earlier in the paper, but once we require a universal binary tree structure, the
math becomes somewhat more involved.

Now we have a fixed-topology atomic-key B-tree plus block-packing strategy, which,
for all values of B, leads to asymptotically optimal searches. Next we insure ourselves
that split-and-refine still works even when keys have variable sizes, but this is rela-
tively straightforward. Finally, we invoke split-and-refine, obtaining a universal layout
(linearization of the tree nodes), which is asymptotically optimal for all values of B.

A Fixed-Topology Atomic-Key Binary Tree
We define the min-third-pivot binary tree Tmtp(A) on a sorted array A recursively.
First, we divide the array into three sections so that each of them contains N/3 keys.
We pick the smallest-length element in the middle section as the root r of the tree. All
the elements to the left of r go into the left subtree, and all the elements to the right of
r go into the right subtree. The left and right children of r are chosen recursively.

This binary tree has height at most log3/2N . Although all leaves do not have the
same depth, the height of its shortest branch, which is at least log3N , is at most

log3N
log3/2N

= log3 3/2 = 1− log3 2 times shorter than the height of the longest branch.

A Fixed-Topology Atomic-Key B-Tree
We now explain how to build a B-tree by “blocking” appropriate nodes of Tmtp. Denote
the average length of the N keys, {κi}, by K̄. Let

h = max

{
1,

(
B

K̄

)log3 2
}

(41)

d = max
{
j | 2j ≤ h

}
(42)

g = 2d+1 − 1. (43)

We collect the root of Tmtp together with all its descendants up to depth d as the pivot
keys in the root of the fixed-topology atomic-key B-tree. These g pivots divide the entire
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array into g + 1 sets that form the children of the root of the B-tree. We denote each of
these sets by {Si}1≤i≤g+1 and the average length of keys in them by K̄i. The children
nodes of B-tree root are built on {Si}1≤i≤g+1 recursively using the same procedure as
above.

Base case. The base case of the recursive algorithm occurs when a child set Si has
total length less than B or when there is a single element remaining. Here, we assign
all of Si to a single leaf node.

Coalescing the leaf nodes. To support fast range queries and save space we coalesce
all the leaves in order in a single chunk of space of size O(NK̄). Note that for a range
query, not all the keys in a range are stored in leaves. However, the two search queries
for the boundaries of the range down the fixed-topology atomic-key B-tree contain all
the elements in a range query. Therefore, there is no additional cost of fetching them
beyond the boundary search costs.

Size of the Root Node in a Fixed-Topology Atomic-Key B-Tree
In the next two lemmas, we bound the size of the root in a fixed-topology atomic-key
B-tree.

LEMMA 7.1. Suppose that K̄ ≤ B/3. Then the root node of the fixed-topology atomic-
key B-tree has size less than 5B and thus fits within 5 blocks.

PROOF. Since K̄ ≤ B/3, we have that
(
B/K̄

)log3 2 ≥ 2, h ≥ 2, d ≥ 1, and g ≥ 3.
The description of the min-third-pivot binary tree Tmtp determines a set of keys from

which each pivot was chosen. For 0 ≤ j ≤ d, let pji be the ith pivot in the level (depth) j
of Tmtp and let Pji be the set from which pji was chosen. Note that at depth j, 2j pivots
are chosen to be in the tree and thus i ranges in {0, 2, · · · , 2j − 1}.

Let ĉji , n
j
i , and k′ji be the average length of keys, number of keys, and the length of

the pivot in Pji , respectively.
By construction of Tmtp we have

N

(
1

3

)j+1

≤ nji ≤
N

3

(
2

3

)j
. (44)

The quantity we want to bound is the size of the root, Q(r) =
∑d
j=0

∑2j−1
i=0 k′ji . At

each depth j of Tmtp,
⋃2j−1
i=0 P

j
i is a subset of all keys and its total length is less than

the total length of all keys. Therefore, we have

2j−1∑
i=0

ĉjin
j
i ≤ NK̄.

Replacing the average key length ĉji by the smallest key length k′ji for each i, we obtain

2j−1∑
i=0

k′ji n
j
i ≤ NK̄. (45)

By applying the left part of 44 and canceling N from both sides, we get

2j−1∑
i=0

k′ji

(
1

3

)j+1

≤ K̄.
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Therefore, for each depth j, we have

2j−1∑
i=0

k′ji ≤ 3j+1K̄

≤ 3j−d3d+1K̄

≤ 3j−d3log2 h+1K̄ , since d ≤ log2 h

≤ 3j−d+1hlog2 3K̄

≤ 3j−d+1

((
B

K̄

)log3 2
)log2 3

K̄

= 3j−d+1B.

Since 0 ≤ j ≤ d, we have that

Q(r) =
d∑
j=0

2j−1∑
i=0

k′ji ≤
d∑
j=0

3j−d+1B

≤ 3B +B +B/3 + · · ·
≤ 9B/2

≤ 5B.

LEMMA 7.2. Suppose that K̄ > B/3. Then the root of a fixed-topology atomic-key
B-tree contains a single key whose length is less than 3K̄ and therefore fits in at most⌈
3K̄/B

⌉
blocks.

PROOF. Since K̄ > B/3, h < 2, d = 0 and g = 1. The rest of the proof is identical to
Lemma 2.2.

Performance of A Fixed-Topology Atomic-Key B-Tree
The following theorem bounds the expected search cost in a fixed-topology atomic-
key B-tree using an induction argument. While this proof is similar to the proof of
Theorem 2.3, it now has to deal with the following two issues:

(1) Unlike the atomic-key B-tree in Section 2, keys are not repeated in a fixed-topology
atomic-key B-tree.

(2) The pivots of the root node in a fixed-topology atomic-key B-tree divide the ar-
ray into sets that have a wider size range compared to an atomic-key B-tree.
This changes the set of constraints upon which we prove the induction hypothesis.
(Namely, Equation (11) in the proof of Theorem 2.3 is no longer correct in a fixed-
topology atomic-key B-tree.) Therefore, we need to adapt the argument for the new
sets of constraints to bound the expected search cost of a fixed-topology atomic-key
B-tree.

THEOREM 7.3. A fixed-topology atomic-key B-tree with N elements and average key
size K̄ has an expected search cost of O(

⌈
K̄/B

⌉
log1+dB/K̄eN) block transfers when all

keys are searched with equal probability. A scan of L contiguous elements of average
size K̄L takes O(1 + LK̄L/B) additional memory transfers after the first element in the
range has been examined. The data structure consumes O(NK̄) space, that is, linear
space.
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PROOF. We prove the claim by induction on N . Similar to Theorem 2.3, we prove
that a fixed-topology atomic-key B-tree withN elements and average key size K̄ has an
expected search cost of O((1 + K̄/B) log2+B/K̄ N) block transfers when all leaves are
searched with equal probability. Equations (5) and (7) show that the theorem state-
ment follows from this bound.

In a fixed-topology atomic-key B-tree, the root node R comprises g keys and has g+1
children {Ti}1≤i≤g+1, each of which is a subtree on the set Si.

By induction hypothesis, for subtrees Ti of size |Si| (less than N ), the search cost is

c
(
1 + K̄i/B

)
log2+B/K̄i

|Si|,

for some constant c > 0.
By Lemmas 7.1 and 7.2, the number of block transfers to fetch the root node R is at

most 5 + 3K̄/B. By recursion on the subtrees of the root, the expected search cost of
the tree is bounded by

5 +
3K̄

B
+

c

N

g+1∑
i=1

|Si|
(

1 +
K̄i

B

)
log2+B/K̄i

|Si|.

We need to prove that for the same constant c,

5 +
3K̄

B
+

c

N

g+1∑
i=1

|Si|
(

1 +
K̄i

B

)
log2+B/K̄i

|Si| ≤ c
(

1 +
K̄

B

)
log2+B/K̄ N, (46)

subject to the following constraints:

— The tree contains N keys, but those in the root node R are not repeated in the
subtrees,

g+1∑
i=1

|Si| < N,

— the total length of all keys is NK̄,
g+1∑
i=1

|Si|K̄i < NK̄,

— and by construction, for all i,

N

(
1

3

)d+1

≤ |Si| ≤ N
(

2

3

)d+1

.

Let xi = K̄i/B, x = K̄/B, and ti = |Si|/N . Thus, we need to show that for some
constant c > 0,

(5 + 3x) + c

g+1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ c(1 + x) log2+1/xN , (47)

subject to the constraints:

g+1∑
i=1

ti < 1 , (48)
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g+1∑
i=1

tixi < x , (49)

∀i,
(

1

3

)d+1

≤ ti ≤
(

2

3

)d+1

. (50)

We first simplify the left-hand side of (47). By (50), we obtain

(5 + 3x) + c

g+1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ (5 + 3x) + c

g+1∑
i=1

ti(1 + xi) log2+1/xi

(
N

(
2

3

)d+1
)

≤ (5 + 3x) + c ln

(
N

(
2

3

)d+1
)
g+1∑
i=1

ti(1 + xi)

ln(2 + 1/xi)
.

We intend to use Claim 3.1 to bound the
∑g+1
i=1

ti(1+xi)
ln(2+1/xi)

term. However, unlike the
proof of Theorem 2.3, Equation (48) is not tight as required by Claim 3.1. Since the
root has g pivots in it, we can rewrite Equation (48) as an equality

g

N
+

g+1∑
i=1

ti = 1. (51)

Also, we define z > 0 to be a positive constant such that

z
g

N
+

g+1∑
i=1

tixi = x. (52)

Since z > 0 and g/N > 0, we have that
g
N (1 + z)

ln(2 + 1/z)
> 0,

and therefore
g+1∑
i=1

ti(1 + xi)

ln(2 + 1/xi)
≤

g+1∑
i=1

ti(1 + xi)

ln(2 + 1/xi)
+

g
N (1 + z)

ln(2 + 1/z)
.

By applying Claim 3.1, we get that
g+1∑
i=1

ti(1 + xi)

ln(2 + 1/xi)
+

g
N (1 + z)

ln(2 + 1/z)
≤ 1 + x

ln(2 + 1/x)
,

and hence

(5 + 3x) + c

g+1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ (5 + 3x) + c ln

(
N (2/3)

d+1
) 1 + x

ln(2 + 1/x)
.

Reorganizing the above inequality, we obtain

(5 + 3x) + c

g+1∑
i=1

ti(1 + xi) log2+1/xi
(tiN) ≤ c(1 + x) log2+1/xN + (5 + 3x) (53)

+ c(1 + x) log2+1/x

(
(2/3)

d+1
)
.
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To prove the theorem, we must find a constant c such that the right part in Equa-
tion (53) is less than c(1 + x) log2+1/xN , that is

(5 + 3x) + c(1 + x)
(d+ 1) ln(2/3)

ln(2 + 1/x)
≤ 0.

Therefore, we derive that

c ≥ −1

ln(2/3)

(5 + 3x) ln(2 + 1/x)

(1 + x)(d+ 1)
≥ 1

ln(3/2)

(5 + 3x) ln(2 + 1/x)

(1 + x)(d+ 1)
,

since −1/ ln(2/3) = 1/ ln(3/2).
The following claim proves that such a c independent of x, d, and h exists.

CLAIM 7.4. For x = K̄/B and h = max
{

1,
(
B
K̄

)log3 2
}

, and d = max
{
j | 2j ≤ h

}
,

there exists a constant c independent of x, d, and h, such that

c ≥ 1

ln(3/2)

(5 + 3x) ln(2 + 1/x)

(1 + x)(d+ 1)
. (54)

Specifically, let c = 5 ln(5)
ln(3/2) .

This finishes the proof of the theorem, because we have established Equation (46).

It only remains to prove Claim 7.4.

PROOF OF CLAIM 7.4. There are two cases.
The first case is when B/K̄ < 3, meaning that h < 2, d = 0, and 1/x < 3. Then, we

can choose c ≥ 5 ln 5/ln(3/2) because

1

ln(3/2)

(5 + 3x) ln(2 + 1/x)

(1 + x)(d+ 1)
≤ 1

ln(3/2)

5 ln(2 + 1/x)

(d+ 1)
.

The second case is when B/K̄ ≥ 3. We have

h =

(
B

K̄

)log3 2

=

(
1

x

)log3 2

,

and that
log2 h

2
≤ d ≤ log2 h.

Hence, we get

ln(2 + 1/x)

d+ 1
≤ 2 ln(2 + 1/x)

log2 h+ 1
,

since
1

d+ 1
≤ 2

log2 h+ 1
.

And
ln(2 + 1/x)

d+ 1
≤ 2 ln(2 + 1/x)

log3(2) log2(1/x) + 1
≤ 2 ln(2 + 1/x)

log3(2)
ln 2 ln(1/x) + 1

,
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since

log2(1/x) =
ln(1/x)

ln 2
.

Therefore,

ln(2 + 1/x)

d+ 1
≤ 2 ln(2 + 1/x)

log3(e) ln(1/x) + 1

since
log3(2)

ln 2
= log3(e).

Since the function ln(2 + 1/x)/ ln(1/x) is increasing in x and x ≤ 1/3, we have that

ln(2 + 1/x)

d+ 1
≤ 2 ln(5)

log3(e) ln(3) + 1
≤ 2 ln(5)

1 + 1
≤ ln(5).

Hence, we can choose

c ≥ 5 ln(5)

ln(3/2)
,

as in case 1.

Building Cost of a Fixed-Topology Atomic-Key B-Tree
To build a fixed-topology atomic-key B-tree we utilize the average-length and
minimum-length data structures from Section 4. However, unlike the exposition given
above, we do not build the binary tree first and then go on to block it as a B-tree. In-
stead, we use the binary tree analogy to figure out which nodes will be placed in the
root of the B-tree and which sections will become its subtrees.

Based on Lemma 7.1 and Lemma 7.2, a similar argument to Lemma 4.1 shows the
following lemma.

LEMMA 7.5. The root node of a fixed-topology atomic-key B-tree can be built using
O(g + K̄/B) block transfers.

Finally, a similar argument to Theorem 2.4 shows that a fixed-topology atomic-key
B-tree can be built in O(linear scan) block transfers, which is optimal.

THEOREM 7.6. On a pre-sorted set of keys, a fixed-topology atomic-key B-tree can
be built in O(1 +NK̄/B) block transfers and O(N) processor operations.

PROOF. The block transfer argument is the same argument from Theorem 2.4 by
using Lemma 7.5. As for the processor operations, we first notice that the average-
length and minimum-length query techniques of Section 4 support O(1) processor op-
erations per query. Furthermore, notice that during the recursive construction of the
fixed-topology atomic-key B-tree, each block transfer that contains x keys incurs at
most O(x) processor operations. Therefore, the whole tree can be built in O(N) proces-
sor operations.

Cache-Oblivious Layout
To produce the cache oblivious layout, we use the “split-and-refine” technique [Alstrup
et al. 2002], which converts any family of layouts with known block sizes into a layout
with unknown block size, while increasing the expected number of I/Os in a search
by at most a constant factor. We use the construction algorithm for the fixed-topology
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atomic-key B-tree as a black box, and we compute different layouts for several carefully
chosen block sizes.

We start with the block size B0 = 2dlogNK̄e and we refer to it as the level of detail 0.
Since B0 ≥ NK̄, the fixed-topology atomic-key B-tree is just one node and its search
cost is 1. We halve the block size repeatedly until we reach a block size B1 for which
the expected search cost of the fixed-topology atomic-key B-tree for B1 is between 2
and 4. We compute the fixed-topology atomic-key B-tree for B1 and refer to the blocked
partition of the tree as level of detail 1. By analogy, Bi+1 is derived by halving Bi
repeatedly until the expected search cost of the fixed-topology atomic-key B-tree for
Bi+1 is between 2 and 4 times the expected search cost of the fixed-topology atomic-
key B-tree for Bi. As before, we refer to the blocked partition of this fixed-topology
atomic-key B-tree as level of detail i+ 1.

The partitions of different levels of detail are inconsistent with each other because a
block at one level might not be wholly contained in a block at smaller levels of detail.
We intend to create a recursively consistent structure among these partitions. There-
fore, we refine the level of detail i according to the partitions of all smaller levels of
detail < i. This means that the separation of nodes in the smaller levels of detail pre-
cede the bigger levels of detail.

To achieve this refinement for all different levels of detail at once, we incorporate
a simple sorting mechanism. For every level of detail, we number each block in the
partition produced by the fixed-topology atomic-key B-tree by a unique number. Each
node in the block gets the same label as the block. For each key, we collect these labels
into a meta-label with at most dlogNK̄e+ 1 components. The significance of each com-
ponent in the meta-label is determined by the level of detail the label is coming from,
where the most significant component is level of detail 0. A simple radix sort on these
meta-labels achieves the simultaneous refinement of all levels of detail for all keys. We
then layout elements in memory according to this ordering.

The following theorem is a rephrased version of Theorem 4 from [Alstrup et al. 2002].

THEOREM 7.7 (REPHRASED FROM [ALSTRUP ET AL. 2002]). Given a black-box al-
gorithm to build a layout for a fixed block size B, the split-and-refine algorithm tech-
nique creates a cache-oblivious layout. On any fixed given block size B, the expected
search cost for the cache-oblivious layout is within a constant factor of the expected
search cost of the black-box layout.

Hence we get the following corollary that characterizes the performance and con-
struction cost of a cache-oblivious static atomic-key B-tree.

COROLLARY 7.8. The split-and-refine algorithm technique creates a cache-oblivious
static atomic-key B-tree that for any given fixed B has the same expected search time
as a fixed-topology atomic-key B-tree asymptotically. This layout can be built in in
O(N logNK̄) processor operations.

PROOF. There are at most L = dlogNK̄e + 1 calls to the black-box algorithm for
building a fixed-topology atomic-key B-tree. If the black-box layout can be built in
T (N,B) and there are L levels of detail in the split-and-refine layout, then the building
time of the cache-oblivious layout is O

(∑L
`=0 T

(
N, 2`

))
. Hence, by Theorem 7.6, the

total number of processor operations from these calls is

O

(
L∑
`=0

O (N)

)
= O(N logNK̄).
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Furthermore, the radix sort algorithm takes O(N logNK̄) processor operations as well
because each key has dlogNK̄e+ 1 components.

8. RELATED WORK
The B-tree [Bayer and McCreight 1972; Comer 1979; Knuth 1973] has been the most
important data structure for storing on-disk data for four decades. Most algorithmic
descriptions of B-trees assume unit-size keys but there has been work on variable-size
keys since the 70s.

McCreight [McCreight 1977] studies the problem of how to provably optimize the
search performance of B-trees when records have variable sizes. Since all leaves have
the same depth, the problem is how to assign records to pages to minimize the height
of the resulting tree. The approach is to minimize the sum of the key lengths of ele-
ments from one level to be “promoted” to the parents. As long as the records of each
size are uniformly distributed within the file, their construction algorithm results in
low-height B-trees. Diehr and Faaland [Diehr and Faaland 1984] and Larmore and
Hirshberg [Larmore and Hirschberg 1985] develop faster algorithms for finding these
elements.

Several papers [Gotlieb 1981; Huang and Viswanathan 1990; Vaishnavi et al. 1980;
Becker 1994] give dynamic programs for constructing optimal B-trees and K-ary trees
with unit-size elements. There are “element weights” indicating the probability that
a given element in the tree is the target element and “gap weights” indicating the
probability that that the target element lies between two contiguous elements in the
tree. Rosenberg and Snyder [Rosenberg and Snyder 1981] study the tradeoff between
space and time optimality in B-trees.

There exist optimal dynamic dictionaries designed to store different-sized keys. The
string B-tree [Ferragina and Grossi 1999] supports searches, inserts, and deletes of
a key κ in O(|κ| /B + logB N) block transfers. Thus, the additional cost to access a
key κ is just the additive cost, O(1 + |κ| /B), to read key κ plus the cost to search
in a B-tree, which is optimal. There also exist cache-oblivious (i.e., memory-hierarchy
universal) string dictionaries with similar performance [Bender et al. 2006; Brodal
and Fagerberg 2006]. These data structures support strings, not atomic keys. That is,
key comparisons do not happen in a single step. Rather, different parts of the keys are
compared at different times, and the keys can be chopped up and distributed among
different parts of the data structure.

Provably good static and dynamic dictionaries for B-trees with different-sized atomic
keys were presented by Bender, Hu, and Kuszmaul [Bender et al. 2010]. Bender et al.
also gave a dynamic-programming algorithm to build a B-tree with minimal expected
cost, when there is a search probability distribution for each key.

The present paper serves as the journal version for [Bender et al. 2010], but it also
contains follow-up work. Specifically, the present paper gives a cache-oblivious data
structure for static searching among different-sized atomic keys. Unlike some of the
data structures in this paper, the data structures from [Bender et al. 2010] are not
cache oblivious, since they are explicitly parameterized by B.

The cache-oblivious results in this paper build upon the problem of how to lay out a
fixed-topology tree in memory: Specifically, given a fixed-topology tree and a probabil-
ity distribution on the leaf nodes for searches, what is the optimal layout in external
memory, such that the expected number of memory transfers for a search is minimized.
Because the topology of the tree is fixed, the objective is to assign tree nodes to disk
blocks to minimize the search cost. Gil and Itai [Gil and Itai 1999] give optimal and
near optimal algorithms for the problem. Alstrup et al. [Alstrup et al. 2002] give faster
algorithms for the problem and also give cache-oblivious solutions.
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9. CONCLUSION
As mentioned in Section 8, much of the related work employs dynamic programs for
building various kinds of optimal trees. Often those programs build trees of uniform
depth to provide worst-case search bounds, whereas this paper gives expected bounds
in terms of average key size. One open question is whether it is possible to build a
tree that has a worst-case search time within a constant factor of optimal as well as
expected bounds matching those in this paper.

As illustrated in Section 6, some of the problems we consider in this paper may be
solved using dynamic programming. Trees built with dynamic program may be optimal
or near-optimal, but the analysis is not parameterized by average key size, something
that B-tree users often find useful.

This paper focuses on asymptotics, rather than optimizing constants. Honing the
constants may be important for squeezing out performance and for building a B-tree
variant that also supports front compression.
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