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ABSTRACT
This paper analyzes the worst-case performance of randomized
backoff on simple multiple-access channels. Most previous anal-
ysis of backoff has assumed a statistical arrival model.

For batched arrivals, in which all n packets arrive at time 0,
we show the following tight high-probability bounds. Random-
ized binary exponential backoff has makespan Θ(n lgn), and more
generally, for any constant r, r-exponential backoff has makespan
Θ(n loglgr n). Quadratic backoff has makespan Θ((n/ lg n)3/2),
and more generally, for r > 1, r-polynomial backoff has make-
span Θ((n/ lg n)1+1/r). Thus, for batched inputs, both exponential
and polynomial backoff are highly sensitive to backoff constants.
We exhibit a monotone superpolynomial subexponential backoff
algorithm, called loglog-iterated backoff, that achieves makespan
Θ(n lg lgn/ lg lg lgn). We provide a matching lower bound show-
ing that this strategy is optimal among all monotone backoff algo-
rithms. Of independent interest is that this lower bound was proved
with a delay sequence argument.

In the adversarial-queuing model, we present the following sta-
bility and instability results for exponential backoff and loglog-
iterated backoff. Given a (λ,T )-stream, in which at most n = λT
packets arrive in any interval of size T , exponential backoff is sta-
ble for arrival rates of λ = O(1/ lgn) and unstable for arrival rates
of λ = Ω(lg lgn/ lg n); loglog-iterated backoff is stable for arrival
rates of λ = O(1/(lg lgn lgn)) and unstable for arrival rates of λ =
Ω(1/ lg n). Our instability results show that bursty input is close to
being worst-case for exponential backoff and variants and that even
small bursts can create instabilities in the channel.

This research was supported in part by the Singapore-MIT Alli-
ance and NSF Grants ACI-0324974, CNS-0305606, EIA-0112849,
CCR-0208670, and CCR-9820879.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05, July 18–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-986-1/05/0007 ...$5.00.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Modeling Techniques; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems;
G.2.1 [Discrete Mathematics]: Combinatorics.
General Terms: Algorithms, Performance.

Keywords: Worst-Case Backoff Performance, Exponential Back-
off, Polynomial Backoff, Batch, On-line.

1. INTRODUCTION
Backoff is the method of choice for resolving contention in the

use of multiple-access channels. The idea of backoff is that when-
ever a packet experiences a collision in the use of the channel in
a time slot, it retries in subsequent time slots, but with a dimin-
ished probability of transmission. If all packets cooperate in using
this strategy and the channel is not oversubscribed, then all packets
eventually transmit without interference from other packets.

Exponential backoff is well known in the context of the Eth-
ernet [31] local-area network. When several packets attempt to
use the multiple-access Ethernet channel at the same time, a col-
lision occurs, and no packets are successfully transmitted. Eth-
ernet’s exponential-backoff hardware resolves this contention by
retrying packet transmissions with exponentially decreasing fre-
quency. Specifically, whenever an attempted transmission fails due
to network contention, the hardware responsible for transmitting
the packet doubles the value of a counter, and then it waits for a
random amount of time whose expectation is proportional to the
value of the counter before trying to transmit the packet again.

Exponential backoff has proved itself to be an effective and prac-
tical method for contention resolution in a myriad of settings be-
sides Ethernet, including radio and satellite networks [1], email re-
transmission [4,6], TCP congestion control [34], Sun RPC conges-
tion control [41], HTTP congestion control [7], DHCP retry [42],
setting power levels on radio transmitters [44], barrier synchroniza-
tion in shared-memory multiprocessors [2], optical switching [9,
11,14], contention resolution in PRAMs [27,30], randomized rout-
ing on fat trees [18], transaction conflict resolution in databases [40]
and distributed databases [33], transactional memory access [22,
24], lock conflicts [21, 23], etc.

Given the prominent role played by exponential backoff in com-
puter systems, it is surprising that many aspects of backoff are not
yet understood. Backoff strategies have typically been analyzed by
making statistical assumptions on the distribution of problem in-
puts [12, 13, 16, 20, 35]. Although these analyses provide valuable
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insights into the efficacy of exponential backoff and its variants, it is
dangerous to neglect the worst case by assuming statistical arrivals
because bursty and other pathological inputs are often the common
case [19, 29].

The Model
In this paper we study the worst-case performance of randomized
backoff algorithms for simple multiple-access channels with the
goal of understanding bursty packet arrivals. We begin by defining
the channel model, details of exponential backoff and its general-
izations, packet-arrival models, and performance measures.

In simple multiple-access channels, if several packets collide on
the channel, none is successfully delivered. The only feedback
to the backoff algorithm is that a transmission was not success-
ful. Moreover, the algorithm cannot “listen” to the channel and
glean information without actually attempting a transmission. (In
contrast, channels where snooping is allowed are called Ethernet
channels [30] or full-sensing channels [10].) Finally, the algorithm
cannot exploit knowledge of a global clock in order to synchronize
the transmission attempts of different packets. Simple multiple-
access channels are useful not only for understanding the shared
properties of many conflict resolution systems, but also for exactly
modeling some of these situations. For example, satellites such as
Aloha are not be able to listen to their channel because of excessive
delays [1], while 802.11 [25] wireless links cannot do so because
a sender’s own transmission is so loud it drowns out the channel
information. These systems rely on various kinds of acknowledg-
ments to verify transmission.

We define and generalize exponential backoff as follows. We
consider backoff strategies in which time is partitioned into a se-
quence 〈W1,W2, . . .〉 of windows, and exactly one transmission at-
tempt is made by each packet within each window1. A backoff
strategy is monotone if Wi ≤ Wi+1. For any constant r > 1, the
r-exponential backoff algorithm is defined by Wk = Θ(rk). When
r = 2, we refer to the algorithm as binary exponential backoff. Sim-
ilarly, r-polynomial backoff is defined by Wk = Θ(kr). Below, we
also explore a continuum of backoff strategies in which r is non-
constant.

Packets are injected over time. The most common injection pat-
tern in the literature is that the packets arrive according to a Poisson
distribution with arrival rate λ. We study other arrival distributions
in order to analyze how exponential backoff and variants behave
in the presence of bursts. In this paper we show that the perfor-
mance of backoff on Poisson arrivals differs substantially from that
on bursty arrivals. We first consider the limiting case of a burst,
the batched arrival case, in which all n jobs arrive at time 0. The
problem of contention resolution with batched arrival on a simple
channel is known as the Control Tower Problem [30] and was mo-
tivated by the routing of h-relations on optical computers.

We also consider the adversarial queuing model [5]. We define
a (λ,T )-stream to be an input stream of packets in which at most
n = λT packets arrive during any time interval of size T . Once
again, λ is referred to as the arrival rate, and T is called the in-
terval size. We explore the difference between Poisson arrivals
and adversarial-queueing-theory arrivals. In contrast to Poisson ar-

1Alternatively, a backoff strategy can be viewed as a sequence
p0, p1, . . . of random variables, where pt is the probability that an
as-yet undelivered packet is transmitted on the tth step after its ar-
rival. We say that a backoff strategy is Bernoulli (or age-based) if
pt is a function only of t, in which case all pt are mutually indepen-
dent. Although Bernoulli strategies have been extensively studied,
we show that they perform substantially worse than the window
protocols in this paper.

rivals, the adversarial model imposes an upper bound on the num-
ber of packet arrivals within an interval but allows these packets to
be distributed arbitrarily. We illustrate the interplay between this
strict upper bound and the burstiness within the window.

We use several measures of performance of a backoff strategy
with respect to a packet model. For the batch case, we define the
makespan to be the time at which the last packet completes. For a
(λ,T )-stream, we define the throughput to be the number of packets
that complete in a window of size T normalized by T . We say that
a backoff strategy is (λ,T )-unstable if there exists a (λ,T )-stream
such that the throughput is less than the arrival rate. Otherwise, a
backoff strategy is (λ,T )-stable.

Previous Results
Most of the prior analytical results for contention resolution as-
sume a statistical queuing-theory model, that is, Poisson packet ar-
rivals. The literature in this area is rich (see [10] for a nice sur-
vey). We mention that Raghavan and Upfal [35] give a protocol
that has O(logn) expected delay for Poisson arrivals in a model
where users queue up packets that they are to send. Goldberg et
al [13] give backoff strategies that achieve O(1) expected response
time with Poisson arrivals. Kumar and Merakos had simulation re-
sults [28] that bulk arrivals seem to lead to greater stability than
Poisson, when using exponential backoff.

Several papers have bounds on polynomial backoff rather than
exponential [12, 15, 20, 35]. For example, Hastad, Leighton, and
Rogoff [20] show that in the model where users queue up the pack-
ets they are to send, quadratic backoff (or any polynomial back-
off) is stable for any arrival rate λ < 1, whereas there is a constant
0 < λ0 < 1, such that exponential backoff is unstable for any arrival
rate λ > λ0. We will consider the makespan of polynomial backoff
in the batch case.

In contrast to publication [20], we show that in the batch case,
exponential backoff outperforms polynomial backoff. We believe
that on bursty inputs in general, polynomial backoff backs off too
slowly, and exponential backoff provides a more aggressive back-
off. Batch arrivals have been considered by several authors [9, 11,
14, 16, 17, 43] with the goal of routing h-relations, involving multi-
ple channels, while we consider a detailed analysis of one channel.
The most relevant work is by Gereb-Graus and Tsantilis [9] (see
also [18]), who showed that there is a backoff-backon protocol with
an optimal O(n) makespan for the Control Tower Problem.

There is a marked contrast between this work and that of Al-
dous [3]. Both papers assume the queue-free model, where all
packets are independent. Aldous shows that, for Poisson arrivals
with positive (constant) λ and for binary exponential backoff, o(t)
packets transmit in the first t steps. Because of the strict upper
bound on the number of arrivals and despite the bursty behavior,
we can achieve stability or instability depending on the arrival rate,
as described below.

Our results
We begin by analyzing batched arrivals, a setting that models the
limiting case of a single burst. In Section 2 we use delay-sequence
arguments [37] to show that for batch arrivals, if every window
has size W = Θ(n), then with high probability2, the makespan is
n lg lgn±O(n).

We use this result to analyze backoff strategies with varying win-

2Define high probability to mean with probability at least 1 −
O(n−O(1)). We say that a parameterized event Ep occurs with high
probability if for any constant c > 0 there exists a valid choice of
parameter p such that Pr

{

Ep
}

≥ 1−n−c .
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dow sizes. Specifically, in Section 3, we show that binary exponen-
tial backoff has makespan Θ(n lgn) and that more generally, for
any constant r > 1, the r-exponential backoff algorithm has make-
span Θ(n lglg r n). We also show that for any constant r > 1, the
r-polynomial backoff algorithm has makespan Θ((n/ lgn)1+1/r).
Thus, both exponential and polynomial backoff are highly sensi-
tive to constants for batched inputs.

All of these batch strategies are monotonic. In Section 4, we ex-
hibit a monotonic backoff algorithm, which we call loglog-iterated
backoff, that achieves makespan Θ(n lg lgn/ lg lg lgn). Thus, r-ex-
ponential backoff is not optimal for any constant r. Interestingly,
loglog iterated backoff is exponential backoff with r = 1 + o(1),
and thus, it is superpolynomial and subexponentional. Finally, we
show a lower bound for the performance of any monotonic backoff
strategy. This lower bound matches the performance of loglog-
iterated backoff, which is thus optimal over all monotonic backoff
schemes.

In Section 5, we study adversarial packet arrivals. Our results
focus on exponential backoff. We show that there exists a suffi-
ciently large constant c such that for any interval size T , binary ex-
ponential backoff is unstable with respect to some (λ,T )-stream, if
λ≥ c lg lgn/ lgn. On the other hand for a sufficiently small constant
c, binary exponential backoff is stable with respect to any (λ,T )-
adversary, if λ ≤ c/ lgn. Curiously, the loglog-iterated backoff re-
quires smaller arrival rate λ to achieve stability than does exponen-
tial backoff.

In Section 6, we wrap up with some analysis of non-window
backoff strategies and future work.

2. FIXED BACKOFF
In this section we analyze a simple backoff algorithm for the

batch setting, namely one in which there is no backoff. Specifically,
we analyze the fixed backoff algorithm where all windows have the
same fixed size, proportional to the number of packets. We use
delay-sequence arguments to prove that with high probability, all
packets successfully transmit with makespan n lg lgn±O(n). We
use these results in Sections 3 and 4 to analyze window backoff
strategies, such as exponential backoff, with asymptotically varying
window sizes.

We find it convenient to analyze the fixed backoff algorithm in
terms of rounds, where each round consists of a single window.
Since we are in the batch setting, the rounds are synchronized a-
cross all packets.

We use the technique of delay sequences [37, 38] to prove the
results of this section. Intuitively, a delay sequence is a minimal
explanation of why some packet survives for a given number of
rounds.

DEFINITION 1. A length-k delay sequence is an event described
by a sequence 〈S1,S2, . . . ,Sk〉 of sets of packets, such that

1. Si+1 ⊆ Si (1 ≤ i < k);

2. 2|Si+1| ≥ |Si| (1 ≤ i < k);

3. |Sk| = 2.

We say that a delay sequence 〈S1,S2, . . . ,Sk〉 occurs if in round i,
each packet in set Si collides with another packet in Si, thus sur-
viving round i. The volume of the delay sequence is defined to be
Ssum = |S1|+ · · ·+ |Sk|, and the base of the delay sequence is S1.

We first prove the upper bound of n lg lgn + O(n) for the fixed
backoff algorithm. Although it is straightforward to show a make-
span of Θ(n lg lgn) with high probability (proving this result is an
exercise in [32]), we shall see in Section 3 that backoff protocols

can be exquisitely sensitive to constants. Consequently, our analy-
sis relegates asymptotic notation to second-order terms.

THEOREM 2. Consider a batch instance in which all n pack-
ets have fixed linear window size W ≥ 3e3n. Then, all packets
transmit successfully in time n lg lgn + cn with probability at least
1−n−2c+2.

Proof Sketch. The full proof argues that if some packet p sur-
vives k rounds, then some length-k delay sequence occurs. It
then shows that the probability of a given length-k delay sequence
(S1,S2, . . . ,Sk) occurring is at most (e|S1|/2W )Ssum/2. The number
of distinct length-k delay sequences for given values of |S1| and Ssum

can then be bounded as

NUMDS( |S1|,SSUM) ≤
(

ne2(Ssum + |S1|)
|S1|2

)|S1|
.

The sets S1, . . . ,Sk obey the following size restrictions:
1. |S1| ≤ 2k;
2. Ssum ≥ 2(|S1|−1+ k− lg |S1|).
Let PROBDS( |S1|,SSUM) represent the probability that a given de-

lay sequence occurs having the values |S1| and Ssum. The probability
that any length-k delay sequence occurs is at most

2k

∑
|S1|=2

k|S1|
∑

Ssum=2(|S1|−1+k−lg |S1|)
NUMDS( |S1|,SSUM)PROBDS( |S1|,SSUM) .

Observe that the largest term in the sum occurs when the volume is
as small as possible and the base is as large as possible. Plugging
in W ≥ 3e3n and k = lg lgn+ c completes the proof.

The bounds from Theorem 2 hold even if the windows have dif-
ferent sizes in different stages, as long as they are sufficiently large.

COROLLARY 3. Consider a uniform batch instance in which
the packet windows have size W ≥ 3e3n, (i ≥ 1). All packets trans-
mit successfully in at most lg lgn + c windows with probability at
least 1−n−2c+2.

We now use a delay-sequence argument to prove that if all the
n packets have a fixed linear window size W = Θ(n), then some
packet requires time n lg lgn−O(n) with high probability to trans-
mit successfully. The technical novelty lies in finding a sufficiently
likely set of disjoint delay sequences, since we cannot use the union
bound.

The delay sequence for the lower bound is as follows:

DEFINITION 4. A length-k delay sequence is an event de-
scribed by ordered pair (Tk,J), where

1. Tree Tk is a complete binary tree of height k; height is de-
fined so that a single node has height 1.

2. Ordered set J is a sequence of 2k distinct packets.
3. Each node u ∈ Tk is an ordered pair of packets (uleft,uright).
4. Let nodes v and w be the left and right children respectively
of node u. Then, uleft = vleft and uright = wleft.

A length-k delay sequence (Tk,J) occurs if the following conditions
hold:

1. For each node u ∈ Tk of height h, packets uleft and uright col-
lide with each other in round h.

2. Moreover, for each node u ∈ Tk of height h, packets uleft and
uright collide with no other packets (including packets not in
J) in this round.
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3. For each node u ∈ Tk of height h, packet uright completes in
round h + 1, i.e., in round h + 1 packet uright collides with no
other packets.

Consider two delay sequences (Tk,J) and (T ′
k ,J) that are identical

except that the order of the packets in the root node of the tree is re-
versed; (Tk,J) and (T ′

k ,J) describe the same computational event.
We say that two delay sequences are distinct if they described dif-
ferent events. We say that two delay sequences (Tk,J) and (T ′

k′ ,J
′)

overlap if they share common packets, i.e., J∩ J′ 6= /0.

THEOREM 5. For n packets with window size 2n ≤ W ≤ 4n,
there exists one packet not completed after k = blg lgnc−3 rounds
with probability at least 1−4n−3/8 .

Proof Sketch. The full proof argues that if a length-k delay se-
quence occurs, then some packet p survives exactly k + 1 rounds.
It then shows that the probability that a given delay sequence (Tk,J)
occurs is at least

(

1
W

)2k−1 (

W −n
W

)2k+1−2

.

The number of distinct length-k delay sequences is the number of
ways of selecting set J with order divided by 2, and this quantity
can therefore be bounded as (1/2)n!/(n−2k)!.

Because a lower bound is being established, the proof cannot
use the union bound as in a majority of delay-sequence arguments,
including the proof of Theorem 2. Instead, the full proof identi-
fies discrete events that can be added together with no overestima-
tion. Specifically, the probability that exactly one height-k delay
sequence occurs is exactly

∑
(Tk ,J)

Pr{Only delay sequence (Tk,J) occurs} .

Definition 4 is structured to ensure that if two delay sequences
(Tk,J) and (T ′

k′ ,J
′) overlap, then at most one of (Tk,J) and (T ′

k′ ,J
′)

can occur. Consequently, when two delay sequences both occur,
they have no common packets.

Suppose that a height-k delay sequence (Tk,J) occurs. The prob-
ability that a second height-k delay sequence (T ′

k ,J′) occurs is at
most the probability that there exists a delay sequence of height k
for n− 2k packets (again with window size W ). This probability
is less or equal to the probability of having at least one packet not
completed after k rounds starting from n−2k packets with window
size W . This last probability is less or equal than the probability p
of having at least one packet not completed after k rounds starting
from n packets and with window size W .

For each delay sequence (Tk,J), we have

Pr{(Tk,J) occurs and no other delay sequences occur} ≥

(1− p)

(

1
W

)2k−1 (

W −n
W

)2k+1−2

.

Because there are n!/2(n−2k)! delay sequences, we have

p ≥ Pr{At least one delay sequence of height k occurs}
≥ Pr{Exactly one delay sequence of height k occurs}

≥ n!
2(n−2k)!

(1− p)

(

1
W

)2k−1 (

W −n
W

)2k+1−2

.

The full proof simplifies further to obtain

p ≥ (1− p)
n
4

( n
8W

)2k−1
.

Observe that n/(8W ) ≥ 2−5 and k = blg lgnc− 3. Thus, we have
p ≥ (1− p)2(3/8) lg n−2, implying that

p ≥ 1−4n−3/8

= 1−o(1) .

3. EXPONENTIAL AND POLYNOMIAL
BACKOFF

This section analyzes exponential and polynomial backoff strate-
gies in the batch setting. We show that the familiar binary ex-
ponential backoff algorithm, in which every packet’s kth window
has size Wk = Θ(2k), has makespan Θ(n lg n) with high probabil-
ity. More generally, we show that for any constant r > 1, the r-
exponential backoff algorithm, in which Wk = Θ(rk), has make-
span Θ(n(lgn)lg r) with high probability. We also show that for
any constant r > 1, the r-polynomial backoff algorithm, in which
Wk = Θ(kr), has makespan Θ((n/ lg n)1+1/r) with high probability.
Thus, exponential backoff is superior to polynomial backoff in the
batch setting.

THEOREM 6. Binary exponential backoff has makespan at
most 6e32c+1n lgn with probability at least 1−n−2c+2, and make-
span at least n lgn/196 with probability at least 1−1/(1+

√
n/2).

Proof Sketch. The main part of the analysis begins after the first
n/2 steps, after which the window size is Θ(n). At most n/2 pack-
ets can be transmitted during this interval, although small window
sizes mean that many fewer packets are in fact transmitted with
high probability; for the upper bound we can assume that no pack-
ets transmit. We show that once the window size is Θ(n), only
lg lgn + O(1) rounds are necessary and sufficient to transmit all
packets. The upper bound follows from Corollary 3; the larger win-
dow sizes ensure that no more rounds are necessary than in Theo-
rem 2.

It may seem surprising that the number of rounds is no fewer
than lg lgn+O(1) even though the window sizes are exponentially
increasing; the proof of this claim is similar to the proof of Theo-
rem 5. The delay-sequence argument gives intuition why: most of
the nodes in the tree-structure of the delay sequence are near the
leaves, meaning that the probability that the delay sequence occurs
only decreases marginally.

Observe the exquisite sensitivity of exponential backoff to the
constants: an additive constant in the number of rounds translates
to a multiplicative constant in the makespan. This is because the
number of rounds is not significantly decreased by increasing the
scaling constant of the exponential backoff, while the lengths of
the rounds increase significantly. Thus, if instead of doubling win-
dow sizes in each round, we quadrupled the window sizes, then the
makespan would become Θ(n log2 n). More generally, we have the
following corollary.

COROLLARY 7. Any r-exponential backoff algorithm has
makespan Θ(n lglg r n) with high probability.

An alternative backoff strategy is quadratic backoff or, more gen-
erally, polynomial backoff. It turns out that quadratic backoff is too
slow in general, having makespan Θ((n/ lgn)3/2) with high proba-
bility. The following theorem proves this result for the general case
of polynomial backoff.
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THEOREM 8. For any constant r > 1, the r-polynomial backoff
algorithm, in which Wk = Θ(kr), has makespan Θ((n/ lg n)1+1/r)
with high probability.

Proof Sketch. Because polynomial backoff increases the window
size slowly, it is not as sensitive to constants as exponential back-
off. Specifically, there are Θ(W 1+1/r) time steps before the window
sizes reach W . While the window size is cn/ lgn, for sufficiently
small c, few packets successfully transmit. For larger c, however,
the probability of a successful transmission increases and and with
high probability all packets transmit successfully before the win-
dow size increases by a constant factor.

Thus, for quadratic backoff in particular, and for polynomial
backoff in general, the dominant cost is waiting until the window
size grows sufficiently large.

4. OPTIMAL MONOTONIC BACKOFF
FOR THE BATCH SETTING

All of the batch strategies we have seen thus far are monotonic,
in the sense that the window sizes increase monotonically over
time, but none are optimal, even over the set of all monotonic back-
off strategies. In this section, we exhibit a monotonic backoff al-
gorithm that achieves makespan Θ(n lg lgn/ lg lg lgn). We prove
that this log-log iterated backoff algorithm, which is superpoly-
nomial and subexponential, is optimal over all monotonic backoff
schemes, even those in which different packets can back off at dif-
ferent rates.

The log-log iterated backoff algorithm generalizes exponential
backoff in that it repeatedly doubles its window size, but it stays
with each window size W for lg lgW rounds before doubling. Al-
ternatively, we can view the algorithm as multiplying the window
by a r = 1+Θ(1/ lg lgn) factor in each round.

THEOREM 9. Log-log iterated backoff has makespan
O(n lg lgn/ lg lg lgn) with high probability.

Proof Sketch. The full proof divides time into rounds, where each
round contains exactly one window. When the windows are smaller
than cn/ lg lg lgn, for c < 2, we need not assume any successful
transmissions: the few packets that successfully transmit only de-
crease the makespan.

The main part of the analysis begins when the window size is at
least cn/ lg lg lgn, for c bounded above 2 by a constant. We claim
that all the packets transmit successfully before the window size
doubles. Specifically, after lg lgn/2 further rounds there are fewer
than n/ ln ln lnn packets left in the system with high probability be-
cause the probability of a transmission is one over an exponential
in Θ(lg lg lgn), say Θ(1/

√
lg lgn). By Theorem 2, these remaining

packets transmit within the next lg lgn rounds with high probability.

We now show that any monotone strategy has makespan
Ω(n lg lgn/ lg lg lgn) with high probability. This lower bound uses
a modification of Theorem 5 and a structural argument showing the
existence of large core sets of synchronized windows.

THEOREM 10. Any monotone window backoff strategy for n
packets has makespan at least Ω(n lg lgn/ lg lg lgn) with high prob-
ability.

Proof Sketch. The full proof first establishes that without loss
of generality, the expected number of packets that transmit per
timestep must be O(lg lg lgn) or the probability of a collision is
too great and few packets transmit successfully. Consequently,

at least a constant fraction of the packets must have window size
Ω(n/ lg lg lgn).

For a sufficiently small constant c, we can let any packet with
window size smaller than cn/ lg lg lgn transmit successfully with-
out even accounting for the increase in makespan from collisions
with these packets. A constant fraction of packets still remain
in the system. All packets must have maximum window size
O(n lg lgn/ lg lg lgn) in order to have hope of achieving the bounds.

Packets p and p′ have approximately synchronized windows if
for all i, the packets’ ith windows are at least 95% overlapping. The
full proof uses a delay-sequence argument to establish that for any
constant c, if Ω(n/(lg lgn)O(lg lgc n) ) packets have approximately
synchronized windows of size at most O(n lg lgn), then with high
probability Ω(lg lgn) rounds are necessary to transmit all jobs.

The full proof uses a structural argument to show that while most
packets’ windows need not be synchronized, there exists a large
core set of packets all of whose windows are approximately syn-
chronized.

First, the proof divides time into O(lg lgn) epochs of size
O(n/ lg lg lgn) where each epoch is a constant factor smaller than
the minimum window size. The proof also divides packet win-
dow sizes into classes ranging in size from Θ(n/ lg lg lgn) to
Θ(n lg lgn/ lg lg lgn).

Windows in the same class differ in size by most a (1 +
O(1/ lg lgn)) factor, implying that there are O(lg lgn lg lg lgn)
classes. The proof then argues that if for all i, packets p and p′

have their ith windows in the same class and their first windows are
approximately synchronized, then p and p′ have all their windows
approximately synchronized.

The proof then counts the number of choices each packet
has for all of its window sizes: for each of the O(lg lgn)
epochs, there are Θ(lg lgn lg lg lgn) choices, yielding a total of
O((lg lgn)O(lg lgn lg lg lgn)) possibilities. Because there are Θ(n)

packets, some set of at least Ω(n/(lg lgn)O(lg lgn lg lg lgn)) packets
agree on all choices and therefore are approximately synchronized.
Because there are Ω(lg lgn) rounds for these packets and each
round has size Ω(n/ lg lg lgn), the theorem follows.

In contrast, it is known that there exists a nonmonotonic back-
off/backon algorithm that achieves optimal makespan Θ(n) [9,18].
This algorithm has window sizes that vary nonmonotonically ac-
cording to a “sawtooth” pattern. The sawtooth backoff strategy
involves a doubly nested loop. The outer loop performs repeated
doubling to “guess” a window size W proportional to the number n
of competing messages. The inner loop consists of Θ(lgW ) phases
of “backon,” where the window size reduces from the guess W by
a constant factor for each phase.

5. ONLINE BACKOFF
We now turn to the online setting, which we analyze using

an adversarial queuing model. Our results focus on exponential
backoff and log-log iterated backoff. We show that there exists
a sufficiently large constant c such that for any interval size T , if
λ ≥ c lg lgn/ lg n, the system is unstable in the sense that the ar-
rival rate exceeds the throughput in the worst case. If, on the other
hand, we have λ ≤ c/ lgn for a sufficiently small constant c, then
the system is stable for a time that is exponential in n.

For the online setting, arrivals are determined by a worst-case
(λ,T )-stream which injects at most n = λT packets in any window
of size T . We say that a backoff strategy is unstable if there exists a
(λ,T )-stream such that the rate at which packets complete, that is,
the throughput is lower than the arrival rate. Otherwise, a backoff
strategy is stable.
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We begin our analysis of the online case by introducing a lemma
that related the probability of transmission with contention. The
contention κt of the system at any time step t is the sum over all
packets in the system of their probability of attempting a transmis-
sion. We note that for windowed backoff, the probabilities of at-
tempting a run at two time steps are not positively correlated: if
the attempts are within the same window, they are negatively cor-
related, and otherwise they are uncorrelated. This will allow us to
use Chernoff bounds extensively below.

LEMMA 11. Consider a packet j making a transmission at-
tempt at time t when the contention in the rest of the system is κ.
The probability that the transmission of this packet is successful is
at most e−κ and at least max(0,1−κ).

Proof Sketch. Let the remaining packets 1, . . . ,m in the system
have transmission probabilities p1, . . . , pm. Packet j transmit suc-
cessfully only if none of the other packets make a transmission at-
tempt, which occurs with probability ∏i6= j(1− pi). A simple op-
timization argument (e.g., using Lagrange multipliers) shows that
this product is maximized when all pi are equal and minimized
when the probability is concentrated on one packet. When all pi
are equal, we obtain

m

∏
i=1

(1− pi) ≤ (1−κ/m)m ≤ e−κ.

When the probability is concentrated on a small number of pi,
pushing these towards 1, we obtain

m

∏
i=1

(1− pi) ≥ max(0,1−κ).

We are now ready to show that if λ ≤ c/ lg n, for sufficiently
small c, that the system remains stable for time exponential in n lgn:

THEOREM 12. There is a sufficiently small constant c < 1 such
that for λ ≤ c/ lg T, exponential backoff is stable for eΩ(n) time
steps, for any (λ,T )-stream.

We prove Theorem 12 by separately bounding the contribution to
the contention from packets with windows less than T and greater
than T . Since a small-window packet makes lgT transmission at-
tempts before becoming a large-window packet, we have the fol-
lowing lemma, whose proof is immediate:

LEMMA 13. For exponential backoff with arrival rate λ ≤
c/ lg T and for any (λ,T )-stream, at most a c-fraction of time slots
have transmission attempts of small-window packets.

Once a packet’s window has size greater than T , then each trans-
mission attempt collides with a small-window packet with proba-
bility less than c. We show by induction that the contribution of
large-window jobs to the contention is o(1). Therefore each time a
large-window job makes a transmission attempt, there is at least a
constant probability of success, implying that on average large jobs
make O(1) transmission attempts and contribute at most O(1/ lgn)
to the contention.

We now show more formally that large window packets toler-
ate large arrival rates. Let Large-Window Exponential Backoff be
the backoff strategy that has an initial window size of T and then
follows exponential backoff.

LEMMA 14. For large-window exponential backoff with arrival
rate λ ≤ 1/4−d for any constant d so that with probability at least

1− e−Ω(n), the contention remains constant in each time step, im-
plying that the system remains stable for at least an amount of time
exponential in n.

Proof. When each packet makes its ith run attempt, it has a win-
dow of size 2i−1T . We define a packet class Ci to be the set of all
packets having window size 2iT . Since we are guaranteeing cor-
rectness for only an exponential amount of time, there are O(n)
packets classes.

We show by induction on windows that with probability at least
1− e−Ω(n), there are at most n packets in each class.

This guarantee means that in a window of size T we expect at
most n transmission attempts from C0, n/2 transmission attempts
from C1, n/4 transmission attempts from C2, yielding an expected
total of less than 2n transmission attempts and a contention of less
than 2λ. An application of Chernoff bounds shows that in any win-
dow of size T , there are at most (2 + ε) run attempts with a proba-
bility exponentially small in both O(n) and O(ε).

We do the induction separately for each class Ci, partitioning
time into intervals of size 2iT . The base cases are immediate, since
at time 0, there are no packets in the system, and in any window of
size T at most n packets arrive.

We show that the expected number of packets in class i remain-
ing at the end of a 2iT -length interval shrinks by a constant strictly
more than half. Therefore, by an application of Chernoff bounds,
with an error probability exponentially small in n, at most half
the packets remain. After two of these 2iT -length intervals have
passed, the remaining packets form the next larger class. Thus, the
claim follows.

We now conclude the proof of Theorem 12.

Proof of Theorem 12. By Lemma 13, for at least a constant frac-
tion of time steps, no small packets make transmission attempts.
Therefore, using Lemma 14 we can tolerate up to a constant ar-
rival rate packets with large windows, and the arrival rate is only
λ = O(1/ lg T ).

We next turn to the lower bound:

THEOREM 15. The exists a sufficiently large constant c so that
exponential backoff is unstable, as long as λ ≥ c lg lgn/ lgn.

Proof Sketch. We exhibit a (λ,T )-stream as follows: Every T =
n/λ steps, Θ(nε) packets are injected (ε ≤ 1). The remaining
n−Θ(nε) packets are injected in a stream with one injection ev-
ery Θ(lgn/c lg lgn) steps. We call the first Θ(nε) packets the bolus
and the following packets the drip.

The proof proceeds by showing that in any interval of T steps
beginning with the injection of the bolus, O(n/polylog n) packets
successfully transmit. To bound the number of successful trans-
missions, we show that at all times the contention remains above
Ω(lg lgn) with high probability, and thus packets complete on av-
erage every Ω(polylog n) steps by Lemma 11. Thus, the arrival rate
of packets is larger than the transmission rate. Note that the expo-
nent in the polylog is linear in the constant c in the arrival rate.

To bound the contention, we show that by the time the contention
due to the bolus reaches O(lgn) — during which time, no packets
complete with high probability — enough drip packets have been
injected to contribute at least c′ lg lgn to the contention, for some
c′ > 1. Specifically, after only nε′ drip packets have been injected,
the contention from these packets is

Θ





nε′

∑
i=1

λ
i



 = Θ





nε′

∑
i=1

c lg lgn
i lgn



 = Θ(ε′c lg lgn).
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We now show by induction that for the rest of the round, the
contention due to drip packets stays above c′ lg lgn. Thus, most
of the packets that arrive stay in the system and that these packets
are evenly distributed. We divide the packet arrivals into groups
of size Θ(lgn). The probability of a successful transmission is
1/polylog n, and each packet makes O(1/ log n) run attempts in its
first T steps, implying that each packet transmits successfully with
at most some constant probability p. Thus the expected contention
becomes

Θ





nε′

∑
i=1

cp lg lgn
i lgn



 = Θ(ε′cp lg lgn).

By Chernoff bounds, with high probability, the contention re-
mains c′ lg lgn.

Since in each length-T interval, most packets remain in the sys-
tem, the arrival rate exceeds the transmission rate.

Note that the adversarial job stream in the proof of Theorem 15
is only slightly bursty: a burst of size Ω(nε) for any 0 < ε ≤ 1 is
enough to destabilize the system as long as the constant c in the
arrival rate λ = c lg lgn/ lgn is sufficiently large.

Curiously, many algorithms that guarantee smaller makespans in
the batch setting than exponential backoff achieve stability require
lower arrival rates than exponential backoff to achieve stability. For
example, using a similar approach to that above, we can show that
log-log iterated backoff (see Section 4) has the following online
performance:

THEOREM 16. There is a sufficiently small constant c such that
for λ ≤ c/(lg lgn lgn), log-log iterated backoff is stable for any
(λ,T )-stream.

THEOREM 17. The exists a sufficiently large constant c so that
log-log iterated backoff is unstable, as long as λ ≥ c/ lgn.

6. CONCLUSION
Our results for window backoff on simple multiple-access chan-

nels can be extended in two ways. First, in some settings, one may
wish to use a backoff strategy that is not based on windows. Sec-
ond, one may wish to employ backoff in a multiple-access channel
where more information is available from an unsuccessful trans-
mission than is provided by the simple multiple-access channel. To
conclude, we discuss the possibilities for future results along both
these lines.

In the model of a simple multiple-access channel, a backoff strat-
egy can be viewed as a sequence p0, p1, . . . of random variables,
where pt is the probability that an as-yet undelivered packet is
transmitted on the tth step after its arrival. We say that a back-
off strategy is Bernoulli if pt is a function only of t, in which case
all pt are mutually independent. How do Bernoulli backoff strate-
gies compare with window strategies?

It turns out that in the batch case, any monotone Bernoulli back-
off algorithm has makespan Ω(n lgn/ lg lgn) with high probability,
even when n is known. This result is tight, because monotone Ber-
noulli backoff strategies exist that match this bound, even without
knowing n. Thus, the log-log integrated backoff algorithm, which
is optimal for monotone window backoff, offers smaller makespans
by a factor of Θ((lg lg lgn)/(lg lgn)2) over the optimal monotone
Bernoulli backoff. For nonmonotone Bernoulli backoff, however,
a Bernoulli algorithm can achieve the same Θ(n) makespan as the
optimal windowed algorithm.

Surprisingly the batch problem has an important application in
its own right. In the RFID shopping cart problem, one has a collec-
tion of RFID tags in a shopping cart, each tag containing a unique

serial number and a small computer with a few kilobytes of mem-
ory [8,26,39]. An external transmitter broadcasts a radio frequency
signal to the tags, which provides enough power for each tag to run
its computer for a few steps and to broadcast a message. If more
than one tag broadcasts at the same time, none of the information
is successfully transmitted. One previously published solution [26]
takes time O(nk), where there are n objects in the shopping cart,
and the tags have k-bit serial numbers. Another solution [8] runs in
time O(n log n) if the system can be synchronized tightly enough.
Using the sawtooth algorithm, the problem runs in time O(n) with-
out the tight synchronization requirement.

In the online case, the behavior of windowed versus Bernoulli
backoff is asymptotically the same. The advantage that windowed
exponential backoff has over Bernoulli exponential backoff is that
the probability of collision in the windowed case squares in each
window, and so, once the window gets large enough, loglogn tries
suffice. With Bernoulli backoff, once the probability of execution
reaches 1/n, there is a constant probability that a job does not at-
tempt to run at all during the next n steps, which means it can take
logn rounds to clear the system. In the online case, there is already
a constant probability of collision with each attempt, so windowed
and Bernoulli strategies have the same asymptotic performances.
Similarly, r-exponential backoff has the same behavior as binary
exponential backoff.

With respect to other models of multiple-access channels, the
opportunities for future research seem rife. For example, what hap-
pens if a sender gets more information back from the channel than
just success or failure? A sender may know when others are trans-
mitting, as in the 802.11 wireless standard [25]. Error codes can
be used to determine whether a packet collides with exactly one
other packet or several in Ethernets. Can this information be used
to improve performance? What happens if during a collision, one
of the packets succeeds, as in [36]? What happens if packets take
different amounts of time to transmit?

These questions appear particularly relevant for online settings,
which occur more commonly in practice than batch settings. Cur-
rently, most computer engineers rely on simulations, not theoretical
analyses, to gain confidence in backoff algorithms. As a conse-
quence, systems employing backoff are generally nonalgorithmic,
in the sense that performance is not guaranteed, not even statisti-
cally. Consequently, systems can exhibit wildly unpredictable per-
formance, making it difficult or impossible to meet real-time con-
straints. We are optimistic that further research on backoff algo-
rithms, using techniques such as adversarial queuing theory, will
lead to more stable and higher-performing computer systems.
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[9] M. Geréb-Graus, T. Tsantilas. Efficient optical communication in par-
allel computers. In SPAA’92, pp. 41–48, 1992.

[10] L. A. Goldberg. Notes on contention resolution. http://www.dcs.
warwick.ac.uk/˜leslie/contention.html, viewed Oct. 2003.

[11] L. A. Goldberg, M. Jerrum, T. Leighton, S. Rao. Doubly logarithmic
communication algorithms for optical-communication parallel com-
puters. SIAM J. Comput., 26(4):1100–1119, 1997.

[12] L. A. Goldberg, P. D. MacKenzie. Analysis of practical backoff proto-
cols for contention resolution with multiple servers. In SODA’96, pp.
554–563, 1996.

[13] L. A. Goldberg, P. D. MacKenzie, M. Paterson, A. Srinivasan. Con-
tention resolution with constant expected delay. J. ACM, 47(6):1048–
1096, 2000.

[14] L. A. Goldberg, Y. Matias, S. Rao. An optical simulation of shared
memory. SIAM J. Comput., 28(5):1829–1847, 1999.

[15] J. Goodman, A. G. Greenberg, N. Madras, P. March. Stability of bi-
nary exponential backoff. J. ACM, 35(3):579–602, 1988.

[16] A. G. Greenberg, P. Flajolet, R. E. Ladner. Estimating the multiplici-
ties of conflicts to speed their resolution in multiple access channels.
J. ACM, 34(2):289–325, 1987.

[17] A. G. Greenberg, S. Winograd. A lower bound on the time needed in
the worst case to resolve conflicts deterministically in multiple access
channels. J. ACM, 32(3):589–596, 1985.

[18] R. I. Greenberg, C. E. Leiserson. Randomized routing on fat-trees.
Advances in Computing Research, 5:345–374, 1989.

[19] R. Gusella. A measurement study of diskless workstation traffic on an
ethernet. IEEE Trans. on Commun., 38(9):1557–1568, 1990.

[20] J. Hastad, T. Leighton, B. Rogoff. Analysis of backoff protocols for
multiple access channels. In STOC’87, pp. 241–253, 1987.

[21] M. Herlihy. A methodology for implementing highly concurrent data
objects. ACM Trans. Prog. Lang. Syst., 15(5):745–770, 1993.

[22] M. Herlihy, J. E. B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In ISCA’93, pp. 289–300, 1993.

[23] M. P. Herlihy, V. Luchangco, M. Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In ICDCS 2003, pp. 522–
529, 2003.

[24] M. P. Herlihy, V. Luchangco, M. Moir, W. M. Scherer III. Software
transactional memory for dynamic-sized data structures. In PODC
2003, pp. 92–101, 2003.

[25] IEEE 802.11 Working Group. ANSI/IEEE Std. 802.11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions. IEEE Computer Society, 1999.

[26] A. Juels, R. L. Rivest, M. Szydlo. The blocker tag: Selective blocking
of RFID tags for consumer privacy. In Conference on Computer and
Communications Security, pp. 103–111, 2003.

[27] R. M. Karp, M. Luby, F. Meyer auf der Heide. Efficient PRAM sim-
ulation on a distributed memory machine. In STOC’92, pp. 318–326,
1992.

[28] P. Kumar, L. Merakos. Distributed control of broadcast channels with
acknowledgement feedback: Stability and performance. In CDC’84,
1984.

[29] W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson. On the self-
similar nature of ethernet traffic. Comput. Commun. Rev., 23(4), 1993.

[30] P. D. MacKenzie, C. G. Plaxton, R. Rajaraman. On contention res-
olution protocols and associated probabilistic phenomena. J. ACM,
45(2):324–378, 1998.

[31] R. M. Metcalfe, D. R. Boggs. Ethernet: Distributed packet switching
for local computer networks. CACM, 19(7):395–404, 1976.

[32] R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, Cambridge, England, 1995.

[33] F. M. Pittelli, H. Garcia-Molina. Reliable scheduling in a TMR
database system. ACM Trans. Comput. Syst., 7(1):25–60, 1989.

[34] J. Postel. Transmission control protocol. Internet RFC 793, 1981.
[35] P. Raghavan, E. Upfal. Stochastic contention resolution with short de-

lays. SIAM J. Comput., 28(2):709–719, 1999.
[36] R. Rajwar, J. R. Goodman. Transactional lock-free execution of lock-

based programs. In ASPLOS-X, pp. 5–17, 2002.
[37] A. G. Ranade. How to emulate shared memory. J. Comput. and Syst.

Sciences, 42(3):307–326, 1991.
[38] A. G. Ranade. The delay sequence argument. In Handbook of Ran-

domized Algorithms, chapter 1. Kluwer Academic Publishers, 2001.
[39] S. Sarma. Towards the five-cent tag. Tech Report MIT-AUTOID-WH-

006, MIT Auto-ID Center, 2001. http://www.autoidlabs.org/
whitepapers/MIT-AUTOID-WH-006.pdf.

[40] Sleepycat Software. The Berkeley Database version 2. http://
sleepycat.com, 1997.

[41] Sun Microsystems. RPC: Remote procedure call protocol specifica-
tion version 2. Internet RFC 1057, 1988.

[42] Y. T’Joens, C. Hublet, P. De Schrijver. DHCP reconfiguration exten-
sion. Internet RFC 3203, 2001.

[43] D. E. Willard. Log-logarithmic protocols for resolving ethernet and
semaphore conflicts. In STOC’84, pp. 512–521, 1984.

[44] Wiseband. Intelligent amplifiers. http://www.wiseband.com/
Intelligent_amplifiers.pdf (viewed October 2003), 2002.

332


