
Performance Guarantees for B-trees with Different-Sized
Atomic Keys∗

Michael A. Bender
Dept. of Computer Science

Stony Brook University
Stony Brook, NY 11794, USA
bender@cs.sunysb.edu

and
Tokutek, Inc.

Haodong Hu
Windows Division

Microsoft
Redmond, WA, 98052, USA

hu_hd@hotmail.com

Bradley C. Kuszmaul
MIT CSAIL

Cambridge, MA 02139, USA
bradley@mit.edu

and
Tokutek, Inc.

ABSTRACT
Most B-tree papers assume that all N keys have the same
size K, that f = B/K keys fit in a disk block, and therefore
that the search cost is O(logf+1 N) block transfers. When
keys have variable size, however, B-tree operations have no
nontrivial performance guarantees.

This paper provides B-tree-like performance guarantees
on dictionaries that contain keys of different sizes in a model
in which keys must be stored and compared as opaque ob-
jects. The resulting atomic-key dictionaries exhibit per-
formance bounds in terms of the average key size and match
the bounds when all keys are the same size. Atomic key
dictionaries can be built with minimal modification to the
B-tree structure, simply by choosing the pivot keys properly.

This paper describes both static and dynamic atomic-key
dictionaries. In the static case, if there are N keys with
average size K, the search cost is O(⌈K/B⌉ log1+⌈B/K⌉ N)
expected transfers. The paper proves that it is not pos-
sible to transform these expected bounds into worst-case
bounds. The cost to build the tree is O(NK) operations
and O(NK/B) transfers if all keys are presented in sorted
order. If not, the cost is the sorting cost.

For the dynamic dictionaries, the amortized cost to insert
a key κ of arbitrary length at an arbitrary rank is domi-
nated by the cost to search for κ. Specifically the amortized
cost to insert a key κ of arbitrary length and random rank
is O(⌈K/B⌉ log1+⌈B/K⌉ N + |κ| /B) transfers. A dynamic-
programming algorithm is shown for constructing a search
tree with minimal expected cost.

∗Supported in part by the Singapore-MIT Alliance, DOE
Grant DE-FG02-08ER25853, and NSF Grants
ACI-0324974, CCF-0540897/05414009, CCF-0541209,
CCF-0621439/0621425, CCF-0621511,
CCF-0634793/0632838, CCF-0937822, CCF-0937860,
CNS-0540248, CNS-0615215, and CNS-0627645.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0033-9/10/06 ...$10.00.

Categories and Subject Descriptors: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems—Sorting and Searching ; H.3.1
[Information Storage and Retrieval]: Content Analysis
and Indexing—Indexing Methods

General Terms: Algorithms, Theory

Keywords: B-tree with different-sized keys, atomic keys,
dynamic programming

1. INTRODUCTION
Most published descriptions of B-trees (which for this dis-

cussion include common variants, such as B+-trees) assume
that all keys have the same size. If all N keys have size K,
and f = B/K keys fit in a disk block, then the search cost
is O(logf+1 N) block transfers.

However, for four decades most production-quality B-trees
(e.g., those in databases and file systems) have supported
variable-size keys. The basic search, insert, and delete oper-
ations all work correctly when keys have variable sizes, but
the operations no longer have nontrivial performance guar-
antees. Roughly speaking, it is better to use short keys as
pivots near the top of the tree because short keys means a
larger branching factor and a more efficient search. However,
one cannot simply choose to put the shortest keys in the root
node because this choice may do a poor job of dividing the
search space evenly.

Most B-tree rebalancing algorithms do not attempt to
choose short pivot keys. As a result, they generally do not
provide nontrivial performance guarantees. For example,
if a B-tree stores a mix of unit-sized keys and Θ(B)-sized
keys, a search may use O(logB+1 N) or O(log2 N) memory
transfers. If most nodes in a root-to-leaf path employ short
pivots with a branching factor of Θ(B) then the search cost
is O(logB+1 N), but if most nodes employ large pivots with
a branching factor of O(1) then the search cost is O(log2 N).

Empirical experience and folk wisdom suggest that, al-
though there may not be formal guarantees, the data struc-
ture works pretty well most of the time. Nonetheless, in the
worst-case B-tree performance can suffer because of a small
number of large records.

Atomic-Key Dictionaries
This paper explores B-tree variations that have performance
guarantees even when keys have variable sizes. Our objective

305

is to modify the traditional B-tree as little as possible. We
want the same basic search algorithm based on a k-ary tree
and a simple rebalancing scheme.

In this paper we study atomic-key dictionaries. The
essential feature of an atomic-key dictionary is that a key
is stored and manipulated as an atomic or opaque object.
Keys cannot be split up, and so whenever a key is stored in
the data structure, the entire key must be stored. Whenever
the system compares keys, two entire keys must be brought
into memory and compared. The data structure does not
know anything about the internals of the keys (except for
their size) or the comparison function.

We analyze the performance using the Disk Access Ma-
chine (DAM) model [1], which provides an internal memory
of size M and an arbitrarily large external memory. A DAM
transfers blocks of size B, each transfer incurring unit cost.

We are interested in performance guarantees for search,
insert, and delete, and these guarantees should be parame-
terized by the average key size. The natural bound to strive
for is O(logf N) memory transfers, where f is the average
number of elements that fit in a disk block. (Thus, f is the
block size B divided by the average key length.) This is a
natural bound because it matches the B-tree performance
when all keys have the same size of B/f . Unfortunately, as
we show in this paper, the bound is provably unattainable
in general for atomic-key B-trees.1

Instead, this paper shows how to achieve these asymptotic
bounds in expectation for both static and dynamic dictio-
naries. Thus, for a given number of elements and a total
data size, the structure performs at least as well in expecta-
tion as if all the elements had the same size.

Alternatives for Supporting Variable-Size Keys
When the keys are strings the problem can be solved faster.
For example, a string B-tree [15] can insert, delete or
search for a key κ using O(|κ| /B+logB+1 N) transfers. This
performance is optimal in the sense that the first term repre-
sents the cost to read a key and the second term represents
the cost to search when all keys have unit size. It is also
superior to what one can achieve with an atomic-key dictio-
nary.

The string B-tree is not a solution to the problem posed
in this paper, however. It has a different type of search algo-
rithm from that used in a B-tree, and it is not an atomic-key
dictionary. String keys can be chopped up and stored in dif-
ferent places and different parts of the key can be compared
at different times. String dictionaries can achieve better
asymptotic performance than atomic-key dictionaries.

Most dynamic dictionaries employ industrial-strength B-
trees, not string B-trees. The ubiquity of B-trees helps jus-
tify why we strive to give provable bounds for variable-size
keys.

Some production-quality B-trees are not atomic-key dic-
tionaries because they also employ some variant of front
compression [4,11,28], commonly called prefix compres-
sion . In front compression if κ and κ′ are two contiguous
keys in a node and they share a common prefix of length
ℓ, then κ′ is encoded by the length ℓ of the shared prefix

1Interestingly, the reference manual to Oracle Berkeley
DB [24] claims that Berkeley DB achieves these target
bounds, an indication that users may want them. Unfor-
tunately, these bounds cannot be achieved in general when
Berkeley DB is used as an atomic-key dictionary.

along with the unshared suffix. A set of front-compressed
keys consumes the same space as the uncompacted trie of
those keys [21].

Our work is incomparable to front compression or other
compression techniques. Even in a tree with front compres-
sion, one can sometimes encounter long keys that propagate
up the tree but do not share much prefix with their up-
propagated cousins. On the other hand, there are situations
where prefix compression saves more space and therefore
gives more fanout than the techniques introduced in this
paper. So both techniques are likely to be needed.

Results
Our results can be summarized as follows.

Static atomic-key B-tree
We show how to build a static atomic-key B-tree. With this
construction, for a dictionary storing N keys of average size
K̄, the expected cost to search for a random key in the tree
is O(

˚

K̄/B
ˇ

log1+⌈B/K̄⌉ N) memory transfers when keys are
searched with uniform probability. Building the tree uses
O(NK̄) operations and O(NK̄/B) memory transfers.

To understand why this bound achieves our objective of
searching for different-size keys with the same expected cost
as same-size keys, plug in several values for the average key
size K̄. If K̄ = O(1), then the expected search cost is
O(logB+1 N), the performance for a B-tree storing unit-size
keys. On the other hand, if K̄ = O(B), then the expected
search cost is O(log2 N), which is what we expect if all keys
have size O(B) and the branching factor is constant. If the
average key size is K̄ = Ω(B), then the branching factor
is constant, but nodes can span many blocks, leading to an
expected search cost of O((K̄/B) log2 N).

We prove that it is not possible to guarantee these bounds
for arbitrary searches. This impossibility result helps ex-
plain one departure from the structure of traditional B-trees.
In traditional B-trees, all leaves reside at the same depth,
whereas in atomic-key B-trees, we allow leaves to reside at
different depths.

Dynamic atomic-key B-tree
We show how to build a dynamic atomic-key B-tree in which
the expected cost to search for random keys matches that for
static trees, the amortized cost to insert or delete a random
key κ is O(

˚

K̄/B
ˇ

log1+⌈B/K̄⌉ N+|κ| /B), and the amortized
cost to insert or delete an arbitrary key κ is dominated by
the search cost.

Optimal static atomic-key B-tree
We present an O(BN3)-operation dynamic program for con-
structing a static atomic-key dictionary with minimal ex-
pected search cost. For simplicity we present a version for
which each key fits in a block. The algorithm takes as input
the keys κ1, . . . , κN , their sizes, and their search probabili-
ties p1, . . . , pN . Unlike in the earlier results, here the search
probabilities need not be equal.

Outline
The rest of this paper is organized as follows. Section 2 dis-
cusses a greedy algorithm for building static trees. Section 3
analyzes the search cost for static trees. Section 4 shows how
to build the trees efficiently. Section 5 shows how to build
dynamic trees. Section 6 presents a dynamic program for

306

building an optimal static search tree. Section 7 discusses
work related to atomic B-trees, and Section 8 concludes with
a brief discussion of open problems.

2. STATIC ATOMIC-KEY B-TREE
In this section we give a greedy algorithm for constructing

a static atomic-key B-tree on N different-size keys. The idea
is to store short keys near the top of the tree and long keys
near the bottom while simultaneously choosing pivot keys
that are spread out in the key-space.

We first give notation. Denote the average length of the N
keys, {κi}, by K̄. No key is larger than a constant fraction
of memory. For block size B, define

f = max



3,

—

B

K̄

�ff

. (1)

Building the Root Node
Here we give a greedy algorithm for creating the root node,
given a set of N keys in sorted order. Divide the keys into
f sets {Ci}0≤i≤f−1 so that each set contains N/f keys. The
first set C0 contains the leftmost N/f keys, the second set C1

contains the next N/f keys, and so on. For each set, except
for the first and the last, we pick the representative key ri

to be the minimum-length key in each set; we do not need
representatives from the first and the last sets.

We assign these f − 2 representatives {ri}1≤i≤f−2 to be
the pivot keys in the root node of the static atomic-key B-
tree. The root node therefore has f − 1 children, and we
recursively use the greedy algorithm to assign pivot keys to
the children nodes.

In the following two lemmas, we give upper bounds on
the size of the root node in two cases, when K̄ ≤ B/3 and
K̄ > B/3, respectively. Let ĉi be the average length of keys
in the ith set Ci and let k′

i be the minimum-length key in Ci.

Lemma 1. Suppose that K̄ ≤ B/3. Then the root node
has size less than B and thus fits within a single block.

Proof. By (1) and because K̄ ≤ B/3, we have

f = max



3,

—

B

K̄

�ff

=

—

B

K̄

�

≤ B

K̄
. (2)

Because the total length of all N keys is the sum of the
lengths of the keys in each set Ci (0 ≤ i ≤ f − 1), we have

f−1
X

i=0

Nĉi

f
= NK̄.

Replacing the average key length ĉi by the shortest key
length k′

i for each i, we obtain

f−1
X

i=0

Nk′
i

f
≤ NK̄. (3)

Multiplying by f/N and applying (2), (3) simplifies to

f−1
X

i=0

k′
i ≤ fK̄ ≤ B. (4)

Because the root node stores f − 2 representatives, it has
size

f−2
X

i=1

k′
i < B,

as promised.

Lemma 2. Suppose that K̄ > B/3. Then the root con-
tains a single key whose length is less than 3K̄ and therefore
fits in at most

˚

3K̄/B
ˇ

blocks.

Proof. By (1) and because K̄ > B/3, we have

f = max



3,

—

B

K̄

�ff

= 3.

Thus, the root node has fanout 2 and contains only a single
representative key from the middle set C1. Since the total
length of all keys in the set C1 is strictly less than the total
length of the N keys in C0 ∪ C1 ∪ C2, we have NK̄ > ĉ1N/3,
which simplifies to

ĉ1 < 3K̄.

Thus, the root node fits in at most
˚

3K̄/B
ˇ

blocks.

These f −2 representatives separate the N keys into f −1
sets, which we denote {Si}1≤i≤f−1. Each set becomes a
child of the root node. We denote the average length of
each child set Si to be K̄i.

Recursive Step, Base Case, and Leaf Structure
We recursively apply the greedy algorithm to each child set
Si and thus generate the static atomic-key B-tree. Observe
that different children may have different fanouts, depending
on the values of K̄i. The base case is when a child set Si

fits entirely within a B-sized chunk of memory or there is
a single element remaining. Then, we assign all of Si to a
single leaf node.

We next coalesce the leaf nodes into a single contiguous
chunk to ensure fast range queries and linear space. A tradi-
tional B-tree with unit-size keys is built from the leaves up,
and by construction, all leaves have size Θ(B) (unless there
is only one leaf). Here the construction is top-down, which
can result in leaves of size o(B). Thus, we store all leaves in
order in a single chunk of space of size O(NK̄). The space
consumption is linear and range queries are fast because the
keys are stored contiguously and in order.

Performance Results
The greedy layout achieves the following performance, as we
prove in Section 3.

Theorem 3. A static atomic-key B-tree with N elements
and average key size K̄ has an expected search cost of
O(
˚

K̄/B
ˇ

log1+⌈B/K̄⌉ N) block transfers when all leaves are
searched with equal probability. A scan of L contiguous el-
ements of average size K̄L takes O(1 + LK̄L/B) additional
memory transfers after the first element in the range has
been examined. The data structure consumes O(NK̄) space,
that is, linear space.

A static atomic-key B-tree can be built with the following
cost, as we prove in Section 4.

Theorem 4. A static atomic-key B-tree can be built with
O(1 + NK̄/B) memory transfers—the scan bound—for pre-
sorted data.

We conclude this section by giving limitations on the worst-
case search cost in atomic-key B-trees.

307

Theorem 5. The expected search cost can not be achieved
for worst-case searches. Specifically

1. There exists a set of N keys with average key size K̄
and maximum length at most B, for which in any tree
layout the worst-case search cost (or the tree height)
is a factor of Ω(log(B + 1)) worse than the expected
search cost in a good tree.

2. There exists a set of N keys with average key size K̄
for which in any tree layout the worst-case search cost
(or the tree height) is a factor of Ω((N/B) logB+1 N)
greater than the expected search cost in a good tree.

Proof. For Part 1, Consider a key set in which the first√
N elements have length B and the remaining N −

√
N ele-

ments have length 1. An information-theoretic lower bound
for searching in a binary tree shows that in any tree there
is some leaf of length B that requires Ω(log2 N) memory
transfers to reach. In contrast, if all pivots of length B are
deeper than any pivot of length 1, then the expected search
cost is O(log1+B N) memory transfers.

For Part 2, Consider a key set in which the first ele-
ment has length N and the remaining N − 1 elements have
length 1. Then the cost to search for the first element is
Θ(N/B) memory transfers, and the expected search cost is
Θ(log1+B N) memory transfers.

3. SEARCH ANALYSIS
In this section we prove Theorem 3, thus establishing the

expected search cost in an atomic-key B-tree. We prove
by induction on N that a static atomic-key B-tree with N
elements and average key size K̄ has an expected search cost
of O((1+ K̄/B) log2+B/K̄ N) block transfers when all leaves
are searched with equal probability.

In an atomic-key B-tree, the root node R comprises f − 2
keys (which is always at least one). Thus, the root node has
f − 1 children {Ti}1≤i≤f−1, each of which is a subtree on
the set Si.

Assume for induction that for the subtrees Ti of size |Si|
(less than N), the search cost is

c
`

1 + K̄i/B
´

log2+B/K̄i
|Si|,

for some constant c > 0. We show that the search cost also
applies to the tree T of size N .

The expected search cost in the tree T = (R, T1, . . . , Tf−1)
is the number of block transfers to fetch the root node R plus
the expected search cost in the appropriate subtree Ti. We
first calculate the number of block transfers to fetch the root
node R. By Lemmas 1 and 2, when K̄ ≤ B/3, the root node
R has size less than B; when K̄ > B/3, R has size less than
3K̄. In summary, the number of block transfers to fetch the
root node R is at most 1 + 3K̄/B.

To prove Theorem 3, we show that for the same constant
c,

1 +
3K̄

B
+

c

N

f−1
X

i=1

|Si|
„

1 +
K̄i

B

«

log2+B/K̄i
|Si|

≤ c

„

1 +
K̄

B

«

log2+B/K̄ N,

(5)

subject to the following constraints:

• The tree contains N keys, i.e.,

f−1
X

i=1

|Si| = N, (6)

• the total length of all keys is

f−1
X

i=1

|Si|K̄i = NK̄, (7)

• and by construction, for all i,

0 < |Si| < 2N/f. (8)

To simplify our calculations, we introduce some notation.
Let xi = K̄i/B, x = K̄/B, and ti = |Si|/N . Thus, (5)-(8)
become respectively (9)-(12).

Thus, we need to show that for some constant c > 0,

1 + 3x + c

f−1
X

i=1

ti(1 + xi) log2+1/xi
(tiN)

≤ c(1 + x) log2+1/x N ,

(9)

subject to the constraints:

f−1
X

i=1

ti = 1 , (10)

f−1
X

i=1

tixi = x , (11)

∀i, 0 < ti < 2/f . (12)

Before proceeding further, we prove the following claim.

Claim 6. Let xi > 0 and x > 0, and let ti be constrained
as follows:

f−1
X

i=1

ti = 1 and

f−1
X

i=1

tixi = x .

Then the following inequality holds:

f−1
X

i=1

ti(1 + xi)

ln(2 + 1/xi)
≤ 1 + x

ln (2 + 1/x)
. (13)

Proof. Let function h(x) be defined as follows

h(x) =
1 + x

ln (2 + 1/x)
(x > 0) .

Then (13) can be rewritten as

f−1
X

i=1

tih(xi) ≤ h

f−1
X

i=1

tixi

!

.

The above inequality holds as long as the function h(x) is
concave.

To prove that the function h(x) is concave, we show that
its second derivative is negative. The first derivative is

h′(x) =
ln(2 + 1/x) + (1 + x)/(2x2 + x)

ln2(2 + 1/x)

and the second derivative is

h′′(x) =
2 + 2x − (3x + 1) ln(2 + 1/x)

(2x2 + x)2 ln3(2 + 1/x)
. (14)

308

Because x > 0, ln(2 + 1/x) > 0. Thus, the numerator of
(14) is negative, i.e.,

ln(2 + 1/x) >
2 + 2x

1 + 3x
.

Let y = 1/x. Because x is positive, the range of y is also
(0,∞). Thus, by replacing 1/x by y in the above inequality,
we obtain

ln(2 + y) >
2y + 2

y + 3
= 2 − 4

y + 3
(y > 0). (15)

The derivative of the left side of (15) is

(ln(2 + y))′ =
1

2 + y
> 0 ,

and the derivative of the right side of (15) is

„

2 − 4

y + 3

«′

=
4

y2 + 6y + 9
> 0.

Thus, both ln(2 + y) and 2 − 4/(y + 3) are monotonically
increasing.

We also need to show that ln(2 + y) increases faster than
2 − 4/(y + 3) in (0,∞), that is,

(ln(2 + y))′ ≥
„

2 − 4

y + 3

«′

.

This inequality holds because

1

2 + y
≥ 4

y2 + 6y + 9
,

which is equivalent to

y2 + 2y + 1 ≥ 0 .

Furthermore, at the initial point, when y = 0,

ln(2 + y) = ln 2 ≈ 0.69 ,

and

2 − 4/(y + 3) = 2 − 4/3 ≈ 0.67 .

Thus, the left side of (15) has an initial value greater than
the right side of (15), mean that (15) holds.

In summary, h′′(x) < 0, and therefore h(x) is concave.
Thus, the claim follows.

Our objective is to establish (9)-(12). We first simplify
the lefthand side of (9). By (12), we obtain

1 + 3x + c

f−1
X

i=1

ti(1 + xi) log2+1/xi
(tiN)

≤ 1 + 3x + c

f−1
X

i=1

ti(1 + xi) log2+1/xi
(2N/f).

Moving ln(2N/f) out of the summation in the above in-
equality, we obtain

1 + 3x + c

f−1
X

i=1

ti(1 + xi) log2+1/xi
(tiN)

≤ 1 + 3x + c ln(2N/f)

f−1
X

i=1

ti(1 + xi)

ln(2 + 1/xi)
.

(16)

From Claim 6 and (16), we obtain

1 + 3x + c

f−1
X

i=1

ti(1 + xi) log2+1/xi
(tiN)

≤ 1 + 3x + c ln(2N/f)
1 + x

ln(2 + 1/x)
.

(17)

Reorganizing the above inequality, we obtain

1 + 3x + c

f−1
X

i=1

ti(1 + xi) log2+1/xi
(tiN)

≤ c(1 + x) log2+1/x N + 1 + 3x
−c(1 + x) log2+1/x(f/2).

(18)

To prove the theorem, we need find the constant c such
that the right part in (18) is less than c(1 + x) log2+1/x N ,
that is

1 + 3x − c(1 + x) log2+1/x(f/2) ≤ 0.

Therefore, we derive that

c ≥ (1 + 3x) ln(2 + 1/x)

(1 + x) ln(f/2)
.

Because (1 + 3x)/(1 + x) = 3− 2/(1 + x) < 3, it is sufficient
to find the constant c such that

c ≥ 3
ln(2 + 1/x)

ln(f/2)
.

To find such constant c, we use the following claim.

Claim 7. For x = K̄/B and f = max{3, ⌊B/K̄⌋}, there
exists a constant c independent of x and f , such that

c ≥ 3
ln(2 + 1/x)

ln(f/2)
. (19)

Specifically, let c = 3 ln 6/ ln(3/2).

Proof. There are two cases.
The first case is when B/K̄ < 3, meaning that f = 3 and

1/x < 3. Then we can choose c ≥ 3 ln 5/ln(3/2).
The second case is when B/K̄ ≥ 3. We have

f =

—

B

K̄

�

=

—

1

x

�

and 1/x ≥ 3. Therefore we have

ln(2 + 1/x)

ln(f/2)
≤ ln(3 + ⌊1/x⌋)

ln(f/2)
≤ ln(2⌊1/x⌋)

ln(f/2)

=
ln(2f)

ln(f/2)
≤ ln 6

ln(3/2)
.

The first inequality is by 1/x ≤ 1 + ⌊1/x⌋; The second
inequality follows from ⌊1/x⌋ ≥ 3; the third equation is
from f = ⌊1/x⌋ and the last inequality follows by the fact
that ln(2f)/ ln(f/2) is monotonically decreasing and f ≥ 3.
Thus, we can choose c = 3 ln 6/ ln(3/2) to satisfy (19) for
both cases.

In conclusion, by (18) and for the constant c from Claim 7,
we establish

1+3x+c

f−1
X

i=1

ti(1+xi) log2+1/xi
(tiN) ≤ c(1+x) log2+1/x N.

309

4. BUILDING AN ATOMIC KEY B-TREE
This section presents a construction algorithm for atomic-

key B-trees, proving Theorem 4. The algorithm takes as
input a set of N sorted keys of variable size and returns an
atomic-key B-tree. The construction cost matches the scan
bound of O(1+NK̄/B) transfers, which is optimal. The idea
for building the tree is to proceed level by level, starting at
the root and continuing down the tree. First select the pivot
elements in the root. Then recursively build each subtree.
The algorithmic challenge is to select the pivots quickly.

By way of comparison, a naive solution scans through
the elements to select the pivot keys. The running time
is bounded by the height of the tree times the scan bound.
Observe that the height of the tree could be much larger
than the expected search cost, as Theorem 5 indicates.

We now give a faster way to select pivot elements. The
trick is to preprocess the keys to answer two different kinds
of queries.

Average-Length Queries
The first preprocessing step is basic: preprocess the N keys
to answer queries about the average length of the elements
in a given range. Thus, a query is a pair of indexes (i, j),
and the response is the average length of the elements i
through j. Answering a query takes O(1) memory transfers.
Preprocessing takes O(1+NK̄/B) memory transfers and an
additional O(N) space. Preprocess by storing, for each key
i, the total length of the first i keys. This step requires a
simple linear scan of the data.

Minimum-Length Queries
The second preprocessing step is more involved: preprocess
the N keys to answer queries about the minimum length
of the elements in a range. A query is a pair of indexes
(i, j), and the response is the index k of the shortest el-
ement ranked between i and j. As before, answering a
query takes O(1) memory transfers, and preprocessing takes
O(1 + NK̄/B) memory transfers and an additional O(N)
space.

This algorithmic problem is well known as the Range
Minimum Query (RMQ) problem and is closely related
to the Least Common Ancestor (LCA) problem. In the
RAM model there are linear time reductions between the
two problems [16], and the inputs can be preprocessed in
linear time to answer constant-time queries [6, 8, 19,26].

In contrast, we are interested in external-memory data
structures. In the DAM, there is no known linear-time (that
is, matching the scan bound) reduction between the RMQ
and the LCA. There exist older LCA algorithms designed
for external memory [10]. However these algorithms have
different tradeoffs between preprocessing and queries, and
they are designed to answer multiple LCA queries in bulk.

It is relatively straightforward to adapt [6] to solve
RMQ queries for the case where the largest key has length
O(M/ log log N) (or even O(M/ log log log N)). The idea is
to build a data structure for RMQ when j−i = Ω(log log N)
or even j − i = Ω(log log log N). This restriction is good
enough to solve all interesting cases for element sizes.

However, [13] gives a cache-oblivious solution to the RMQ
problem with no restriction on element sizes. Their data
structure answers queries in O(1) transfers and preprocesses
an array storing the lengths of the N elements in O(1+N/B)
memory transfers, which is the scan bound and therefore op-

timal. Building such array entails scanning all N elements,
which takes O(1 + NK̄/B) memory transfers. (Cache-
oblivious means that the solution is not parameterized by
B or M . The algorithm is memory-hierarchy universal,
working simultaneously for all values of B or M .) By using
this data structure, we achieve the desired performance for
minimum-length queries.

Tree Construction
We now show how to build an atomic-key B-tree. First per-
form the precomputation for average-length and minimum-
length queries. Then build the atomic-key B-tree recursively,
starting with the root.

The base case is when the atomic-key B-tree first fits in
main memory (when its size becomes smaller than M) or
contains a single element. For the base case, the cost to
build the tree is one plus the size of the tree divided by B,
that is, the cost of a linear scan.

Next we show how to build the root node when the atomic-
key B-tree is larger than M and contains more than one ele-
ment. First ask an average-length query to find the average
key size K̄ of all N keys; this uses O(1) transfers. Then
calculate f = max{3,

˚

B/K̄
ˇ

}.
Next pick the set of f−2 representative keys from the sets

C1 . . . Cf−2. To do so, first calculate the boundaries between
each set Ci. The minimal-length element in each set, which
is found by a minimum-length query, is the representative
element.

Thus, the cost to construct the root node is as follows.

Lemma 8. The root node can be built using O(f + K̄/B)
transfers.

Proof. There are two cases. If K̄ ≤ B/3, then the cost
to build the root is dominated by the cost to identify the
representatives. We can identify each of the f − 2 repre-
sentative elements by a minimum-length query at a cost of
O(1) transfers per representative for a total of O(f) memory
transfers.

If K̄ > B/3, then the root only has one element in it. The
cost to build the root is dominated by the cost to write the
element, which is

˚

3K̄/B
ˇ

.

We now finish the proof of Theorem 4. In the base case of
the construction algorithm, it is efficient to build an atomic-
key B-tree, costing only a linear scan. In the recursive
step, it may be more expensive to build (internal) nodes, as
Lemma 8 indicates, since there is an additive cost of O(f).
However, we can charge the cost of building these internal
node to the cost of touching each of its children. Thus, a
static atomic-key B-tree can be built in the scan bound,
which is O(1 + NK̄/B) memory transfers.

We conclude the section by giving construction bounds
when the data is not sorted. The following (straightforward)
bound applies to the case where no key is too large compared
to main memory.

Corollary 9. Suppose that the longest key has length
M1−εBε, for constant ε (0 < ε < 1). Then an (M/B)ε-way
merge sort can presort the keys in

O

„

NK̄

εB
logM/B

N

B

«

transfers, which is asymptotically optimal, since ε is a con-
stant.

310

5. DYNAMIC STRUCTURE
In this section we give a dynamic atomic-key B-tree on

N elements. Our results apply to two models of how in-
sertions arrive, one strictly more general than the other.
In the first model elements of arbitrary length are inserted
at random locations in the atomic-key B-tree. In the sec-
ond model elements of arbitrary length are inserted at ar-
bitrary locations in the atomic-key B-tree. We give a re-
cursive structure for the dynamic atomic-key B-tree, which
is a modification of the structure presented in Section 2.
We prove bounds showing that representative elements can
retain their status despite a bounded number of subsequent
inserts or deletes. We then give a dynamic atomic-key B-tree
that supports efficient inserts and deletes when the average
key size K̄ = O(B). Finally, we explain how to use indi-
rection for large keys to give a dynamic atomic-key B-tree
that supports efficient inserts and deletes for both small and
large keys.

We establish the following theorem.

Theorem 10. A dynamic atomic-key B-tree with N ele-
ments and average key size K̄ has the following performance
bounds:

1. The expected search cost is O(
˚

K̄/B
ˇ

log1+⌈B/K̄⌉ N)
transfers when all leaves are searched with equal prob-
ability.

2. Any subset of L contiguous elements with average
size K̄L can be scanned in O(1 + LK̄L/B) transfers.

3. The tree has linear size, i.e., size O(NK̄).

4. The tree can be built using a linear number of block
transfers, i.e., O(1 + NK̄/B) transfers if the keys are
presorted. A subtree of L elements with average size
K̄L can be rebuilt in O(1 + LK̄L/B) transfers.

5. The cost to insert or delete an element κ at a random
location in the atomic-key B-tree is

O(
˚

K̄/B
ˇ

log1+⌈B/K̄⌉ N + |κ| /B)

transfers, where K̄ is the average key size after the
modification, and κ fits within a constant fraction of
memory.

6. The cost to insert or delete an element κ, which fits
in a constant fraction of memory, at an arbitrary lo-
cation is asymptotically the same as the search cost,
i.e., the amortized modification cost is dominated by
the search cost.

Recursive Structure
As with the static atomic-key B-tree, the algorithm builds
the dynamic atomic-key B-tree recursively starting at the
root. The algorithm operates as follows. Define a root pa-
rameter

f = max



2,

—

B

K̄

�ff

, (20)

and divide the N elements into f + 1 sets {Ci}i∈[0,f]. The
first and last sets, C0 and Cf , each contains N/(2f) elements,
and the remaining sets, C1, . . . , Cf−1, each contains N/f el-
ements. Pick a representative key {ri}i∈[1,f−1] from each of
the middle sets C1 . . . Cf−1, and store the representatives in
the root node. In Section 2 we selected the minimal-length
key in each set as a representative. Here we relax this re-
quirement. For each set Ci, we have the freedom to choose

any key whose length is at most a constant fraction larger
than the average key length ĉi of the elements in Ci.

We first show that if the average key length K̄ is at most
B/2, then the root fits within a constant number of disk
blocks.

Lemma 11. Suppose that K̄ ≤ B/2, and let β > 0 be a
constant. If we choose a representative key ri from Ci such
that ri ≤ βĉi, then the root node has size at most βB and
thus fits within ⌈β⌉ blocks.

Proof. If K̄ ≤ B/2, then by definition,

f = max



2,

—

B

K̄

�ff

=

—

B

K̄

�

.

Because the total length of all N keys is the sum of the
lengths of the keys in each set Ci, 0 ≤ i ≤ f ,

NK̄ =

f−1
X

i=1

N

f
ĉi +

N

2f
ĉ0 +

N

2f
ĉf ≥

f−1
X

i=1

N

f
ĉi.

We choose a representative ri from the set Ci such that ri ≤
βĉi. Thus, the above inequality becomes

f−1
X

i=1

ri ≤ βfK̄.

Since f =
¨

B/K̄
˝

, meaning that fK̄ ≤ B, we obtain

f−1
X

i=1

ri ≤ βB.

Since the root contains the representative keys, the lemma
follows immediately.

We next show that if the average element length K̄ ≥ B/2,
then the root is has size O(K̄).

Lemma 12. Suppose that K̄ > B/2, and let β > 0 be a
constant. Then the root maintains a single element whose
length is at most 2βK̄, and therefore fits in

˚

2βK̄/B
ˇ

blocks.

Proof. If K̄ > B/2, then by definition

f = max



2,

—

B

K̄

�ff

= 2.

Thus, the root node has fan-out 2 and contains only a single
representative from the set C1. Since |C1| = N/2, NK̄ >
ĉ1N/2. The representative r1 satisfies the inequality that
r1 ≤ βĉ1. Thus, NK̄ ≥ r1N/(2β), which simplifies to r1 ≤
2βK̄. Therefore the root node fits in

˚

2βK̄/B
ˇ

blocks.

Because the representative key need not be the minimal-
length key in each set Ci, we have the flexibility to choose
ri such that it is closer to the middle of Ci. This require-
ment shows that we can have somewhat more balanced trees
without hurting our search bounds. The following lemma
quantifies how close the representative key ri from Ci can be
to the middle of that set.

Lemma 13. Let β > 1 be a constant. There are more
than (1 − 1/β)N/f keys that are shorter than βĉi.

Proof. We divide the set Ci (1 ≤ i ≤ f − 1) into two
disjoint subsets, Cs

i and Cℓ
i , meaning that

|Ci| = |Cs
i | + |Cℓ

i | = N/f . (21)

311

The set Cs
i contains all elements shorter than βĉi, and the

set Cℓ
i contains all elements of length at least βĉi. Since each

element has length at least 1,

ĉi|Ci| ≥ βĉi|Cℓ
i | + |Cs

i | > βĉi|Cℓ
i |. (22)

By (21) and (22), we obtain

|Cs
i | >

„

1 − 1

β

«

N

f
.

Now we explain how to choose the representative key.
Our algorithm is parameterized by some constant β > 1.
Unlike in Section 2, we do not choose the minimal-length
key from the whole set Ci. Instead, we choose a minimal-
length key whose rank is sufficiently close to the middle of
the set. Specifically, suppose that the set Ci (1 ≤ i ≤ f − 1)
starts with the element of rank

`

i − 1
2

´

N
f

and ends with

the element of rank
`

i + 1
2

´

N
f

. Then we choose the min-

imum length element whose rank lies between
“

i − 1
2β

”

N
f

and
“

i + 1
2β

”

N
f

.

We give a brief definition. We say that a representative
element ri in Ci is (β, γ)-good if ri has length less than
βĉi, and there are at least a (1/2 − γ)-fraction of elements
in Ci both before and after ri. Thus, we have the following
corollary to Lemma 13.

Corollary 14. Each representative element ri (i ≤ 1 ≤
f − 1) is (β, 1/(2β))-good when it is chosen.

These f−1 representatives separate the N elements into f
sets {Si}i∈[1,f], each of which is stored in a different subtree
of the root. We thus bound |Si| as follows.

Lemma 15. If all representatives are (β, 1/(2β))-good,
then for all child sets Si (1 ≤ i ≤ f) the greedy layout guar-

antees that
“

1 − 1
β

”

N
f

≤ |Si| ≤
“

1 + 1
β

”

N
f
.

Proof. Recall that the first set S1 and the last Sf are
constructed differently from the remaining sets {Si}2≤i≤f−1.
We first bound the size of S1. (Bounding Sf has the same
analysis.) Set S1 contains all elements before r1 and is com-
posed of two parts: (1) all the elements in C0 and (2) all the
elements in C1 before r1. By Corollary 14, which bounds the
number of elements before r1,

„

1 − 1

2β

«

N

f
≤ |S1| ≤

„

1 +
1

2β

«

N

f
. (23)

Now we bound the size of each set Si (2 ≤ i ≤ f − 1).
Recall that Si comprises the set of keys between ri−1 and
ri, and contains two parts: (1) the keys in Ci−1 after ri−1

and (2) the keys in Ci before ri. By Corollary 14,
„

1 − 1

β

«

N

f
≤ |Si| ≤

„

1 +
1

β

«

N

f
. (24)

The lemma follows from (23) and (24).

In summary, the atomic-key B-tree has the following prop-
erties:

Lemma 16. The dynamic atomic-key B-tree guarantees
the following properties:

1. The root node has size Θ(B + K̄).

2. Each child set Si of the root contains Θ(N/f) ele-
ments.

As in Section 2, the base case is when the total length of
all elements in a child set Si is at most B or when there
is a single element remaining. Using an almost identical
analysis to that in Section 3, we can establish Property 1 of
Theorem 10.

We now quantify the goodness of the representative ele-
ments after some elements have been inserted or deleted.

Lemma 17. Let β > 5/3. Suppose that the representative
elements are (β, 1/(2β))-good when they are chosen. After
N/(3βf) elements have been inserted or deleted, these rep-
resentatives are ((1/2 + 3β/2), 5/(6β))-good.

Proof. If at most N/(3βf) elements have been inserted
or deleted, then the fraction of elements either before or after
the representative ri can increase by at most an additive
1/(3β) amount, that is, from 1/(2β) to 5/(6β).

When the representative was chosen, there were at most
(1 − 1/β)N/f elements smaller than ri (those outside the
range from which ri was chosen) and at least N/(βf) ele-
ments greater than or equal to ri (those in the range from
which ri was chosen).

Since then, at most N/(3βf) elements smaller than ri

were inserted and at most N/(3βf) elements larger than ri

were deleted. Thus, at most (1 − 2/(3β))N/f elements are
smaller than ri and at least 2N/(3βf) elements are at least
as long.

The total length of all elements in Ci is greater than
2N/(3βf)ri. Let ĉi now represent the average size of Ci

after these inserts and deletes. The total length of all ele-
ments in Ci is less than ĉi(N/f + N/(3βf)). Thus, ri has
length at most (1/2 + 3β/2)ĉi, as promised.

Leaf Structure and Construction
Because the tree is built recursively from top down, leaf
nodes need not have size Ω(B). Consequently, we coalesce
leaf nodes to guarantee optimal range query performance,
linear space, and the ability to rebuild subtrees efficiently.

Leaf node sizes can vary enormously. If the leaf contains
a (single) element whose size is greater than B, then the leaf
is the size of the element. If the leaf only contains keys that
are O(B), then it has size O(B) but can be as small as 1,
depending on how the recursion bottoms out. Leaf nodes
can shrink, grow, or split as the tree is updated.

We coalesce neighboring leaf nodes into chunks. We main-
tain the invariant that a chunk can have size o(B) only if
one of its neighboring chunks has size Ω(B). Thus, we divide
chunks into two categories, large chunks and small chunks.
A large chunk contains a single leaf of size greater than B/2.
In a small chunk, all leaves have size at most B/2. As inser-
tions occur, the size of the chunks can grow or shrink or some
subset of contiguous chunks can be rebuilt from scratch. We
can split and merge chunks similar to standard splitting and
merging algorithms, but with a minor twist.

Only small chunks can merge and split with each other.
Thus, if a small chunk gets too full (of size 3B/2), then it
splits into two small chunks, each of size at least B/2. If a
small chunk gets too empty, then it merges with a neighbor-
ing small chunk, if one exists. This merge may subsequently
induce a split. If it cannot merge, then all neighbors are
large chunks.

312

We build the dynamic atomic-key B-tree by finding rep-
resentative elements as described in Section 4.

The combination of chunks and splits ensures that Prop-
erties 2 and 3 of Theorem 10 are satisfied. Because we
can perform efficient range queries, we can efficiently re-
build subtrees of the atomic-key B-tree. Thus, Property 4
of Theorem 10 is satisfied.

Insertions and Deletions (Special Case)
In this subsection we give insertion and deletion algorithms
for the important special case when all keys have size O(B).

In our algorithms, subtrees of the dynamic atomic-key
B-tree are periodically rebuilt as elements are inserted or
deleted. The atomic-key B-tree is parameterized by the con-
stant β (Lemma 17), which determines when to rebuild. We
say that a node is rebalanced if the entire subtree rooted
at that node is rebuilt (but the parent is not). We say that a
node is involved in a rebalance , if it belongs to the subtree
that is being rebuilt.

A node v is rebalanced when there have been N/(3βf) in-
serts or deletes into the subtree rooted at v since its previous
rebalance. Each node in the atomic-key B-tree stores coun-
ters and other auxiliary information to determine when to
rebalance.

To insert a key κ into the atomic-key B-tree rooted at a
given node v, first examine v to decide whether the insert
triggers a rebalance of v. If so, incorporate κ into the new
subtree being rebuilt. Otherwise, search for the subtree of v
(storing child set Si) where κ should reside, and recursively
insert into it.

To delete a key κ from an atomic-key B-tree rooted at a
node v, proceed similarly. First examine v to decide whether
the delete triggers a rebalance of v. If so, rebuild the atomic-
key B-tree, removing κ. Otherwise, check whether κ is
stored in v as a representative element. If so, mark κ as
deleted. Do not remove it because it can still be used for
guiding searches. Then search for the subtree of v (storing a
child set Si) where κ belongs and recursively delete κ from
Si.

The base case is when the entire set Si fits in a leaf, in
which case, we rearrange the elements in the leaf inserting
or deleting κ, as appropriate. As described in the previous
subsection, rearranging elements in the leaf may cause the
size of the leaf to change, triggering restructuring of one or
several chunks. Similarly, rebuilding subtrees of the atomic-
key B-tree requires restructuring of the chunks.

Lemma 18. Consider a dynamic atomic-key B-tree with
N elements and average element size K̄ = O(B). The amor-
tized cost to rebalance the root of the tree per insert/delete is
at most the cost to read the root of the tree, which is O(1).

Proof. Consider the interval between two consecutive
rebalances of a node. Denote the average element size during
the first rebalance as K̄1. We give an amortized analysis for
paying for the rebalance by the inserts/deletes in between.

The cost for the rebalance is O(1 + NK̄1/B). We charge
the rebalance cost to the Θ(N/f) inserts/deletes that take
place before the second rebalance. Thus, the amortized re-
balance cost per insertion is

O(fK̄1/B) = O(1 + K̄1/B) = O(1). (25)

We now give the amortized cost to insert into the entire
tree.

Lemma 19. Consider a dynamic atomic-key B-tree with
N elements, each of size O(B). The amortized cost to insert
or delete an element κ into the tree is at most the cost to
perform a search for κ.

Proof. In order to insert κ into the tree, it first needs
to be read into memory, which costs O(1 + |κ| /B) = O(1)
memory transfers, since κ = O(B).

Then κ is inserted into the atomic-key B-tree. By
Lemma 17, the pivot keys are always good representatives.
The insert makes its way along a prefix of a root-to-leaf
search path until it triggers a rebalance. The insert/delete
has effectively modified the balance of all of the nodes along
this path. By Lemma 18, the amortized cost to rebalance
these nodes is O(1) per node. Thus, the amortized cost to
perform this insert or delete is at most the cost to read all
the nodes along the root-to-leaf path.

Lemma 19 establishes Properties 5 and 6 of Theorem 10
for the case when all keys have length O(B).

This atomic-key B-tree may not achieve good performance
bounds when K̄ = Ω(B). The proof of Lemma 19 gives some
indication why. One difficulty is that the average element
size K̄1 during the first rebalance can be very different from
the average element size K̄ later when an insert/delete takes
place. This difference affects the accounting argument and
becomes important when the amortized rebalance cost (see
(25)) is Ω(1).

Storing Large Elements Using Indirection
The solution is to use indirection for large keys. Small rep-
resentative keys are stored in nodes as described earlier. A
representative key that is sufficiently large (e.g., at least 4B)
is not stored directly in a node. Rather, the node maintains
a pointer to the key along with that key’s size, and the key is
stored elsewhere. This strategy is reminiscent of how binary
large objects (blobs) are kept in a B-tree.

The rest of the space in the tree node can be left empty.
For practical reasons, one can coalesce these pointers and
sizes into fewer blocks. However, this compaction is not
necessary to achieve good asymptotic bounds.

The advantage of indirection is that it obviates the need
to recopy large keys when rebalancing subtrees. A rebalance
now requires manipulating pointers and examining sizes, not
looking at the keys themselves. Without indirection, the
cost to rebalance a tree with N nodes and average key size
K̄ is O(1 + NK̄/B), which can be large if K̄ is large. With
indirection, the rebalance cost is O(1 + N min{K̄, B}/B).

Insertions and Deletions
With indirection we obtain the following generalizations of
Lemmas 18 and 19.

Lemma 20. Consider a dynamic atomic-key B-tree with
N elements. The amortized cost per insertion or deletion to
rebalance the root of the tree is at most O(1).

Proof. Consider the interval between two consecutive
rebalances of a node. Denote the average element size during
the first rebalance as K̄1.

The cost for the rebalance is O(1+N min{K̄1, B}/B). We
charge the rebalance cost to the Θ(N/f) inserts/deletes that

313

take place before the second rebalance. If K̄1 = O(B), the
amortized rebalance cost per insertion is

O(fK̄1/B) = O(1 + K̄1/B) = O(1).

If K̄1 = Ω(B), the amortized rebalance cost per insertion is

O(f) = O(1).

Lemma 21. Consider a dynamic atomic-key B-tree with
N elements. The amortized cost to insert or delete an ele-
ment κ into the tree is O(1 + |κ| /B), the cost to read the
element, plus the cost to perform a search for κ in the tree.

Proof. In order to insert κ into the tree, it first needs
to be read into memory, which costs O(1 + |κ| /B) memory
transfers. Key κ will reside in memory during the entire
search procedure.

Then κ is inserted into the atomic-key B-tree as described
in Lemma 19. By Lemma 21, the amortized cost to rebal-
ance these nodes is O(1) per node. Thus, the amortized cost
to perform this insert or delete is at most the cost to read
all the nodes along the root-to-leaf path.

Lemma 21 establishes Properties 5 and 6 of Theorem 10.

6. OPTIMAL DYNAMIC PROGRAM
This section presents a dynamic program that produces

an optimal static search tree for N atomic keys, κ1, . . . , κN ,
where each key κi has a probability pi of being queried. The
optimal structure minimizes the expected number of blocks
transfered in a root-to-leaf path.

This dynamic program assumes that every key can fit into
a block, leaving enough space if needed for pointers to other
blocks. The program produces only those search trees in
which each node comprises a single block.

The strategy used is that trees for larger sets of keys are
constructed by joining trees for smaller sets. An optimal
tree for the set κi, . . . , κj occupying space less than S in the
root is constructed by optimally joining an optimal tree for
the set κr+1, . . . , κj with space less than S−|κr| in the root
and an optimal tree for the set κi, . . . , κr−1.

Figure 1 illustrates the dynamic program.
For keys i, . . . , j, let

Ki,j =
X

i≤ℓ≤j

|κℓ|

and

Pi,j =
X

i≤ℓ≤j

pℓ.

Let t(i, j, k) be the optimal tree and c(i, j, k) be its cost for
keys κi, . . . , κj subject to the constraint that the sum of the
lengths of the keys in the root node is less than k.

Overloading notation, let p be the size of a pointer from
one block to another. In the rest of the paper we did not
need to worry about the storage for the pointer p because
such considerations do not change the asymptotics. Define
the search cost in terms of a function F (i, r, j, k), as follows:

c(i, j, k) =



Pi,j if Ki,j ≤ k
mini≤r≤j F (i, r, j, k) otherwise.

t(i, r − 1, B)

p |κr| k − |κr| − p

k

κr

t(r + 1, j, k − |κr| − p)

t(i, j, k)

Figure 1: The dynamic program produces a tree
t(i, j, k) by finding an optimal way of allocating the
root block of size k among a pointer of size p to a left
subtree, a key κr, and a right subtree. The left sub-
tree has root block of size B and holds keys κi . . . κr−1,
and incurs the cost of a following a pointer. The
right subtree holds keys κr+1 . . . κj. The right sub-
tree’s root block is “inline” with the block and uses
space k − |κr| − p to hold its root.

F (i, r, j, k) = c(i, r − 1, B) + Pi,r−1 (a subtree)
+ pr (κr here)
+ c(r + 1, j, k − |κr| − p). (rest of block)

The condition |κr|+p ≤ k corresponds to being able to fit a
pointer to the subtree plus the key κr into the block of size
k. If |κr| + p > k then

F (i, r, j, k) = ∞.

The cost of this dynamic program is O(BN3) operations.
To handle keys that are larger than a single block is in

principle straightforward, but the dynamic program seems
substantially more complex without yielding any real insight
to the problem.

7. RELATED WORK
The B-tree [3, 12, 21] has been the most important data

structure for storing on-disk data for four decades. Most
algorithmic descriptions of B-trees assume unit-size keys but
there has been work on variable-size keys since the 70s.

McCreight [23] studies the problem of how to provably
optimize the search performance of B-trees when records
have variable sizes. Since all leaves have the same depth,

314

the problem is how to assign records to pages to minimize
the height of the resulting tree. The approach is to mini-
mize the sum of the key lengths of elements from one level
to be “promoted” to the parents. As long as the records of
each size are uniformly distributed within the file, their con-
struction algorithm results in low-height B-trees. Diehr and
Faaland [14] and Larmore and Hirshberg [22] develop faster
algorithms for finding these elements.

Several papers [5, 18, 20, 27] give dynamic programs for
constructing optimal B-trees and K-ary trees with unit-size
elements. There are “element weights” indicating the prob-
ability that a given element in the tree is the target element
and “gap weights” indicating the probability that that the
target element lies between two contiguous elements in the
tree. Rosenberg and Snyder [25] study the tradeoff between
space and time optimality in B-trees.

There exist optimal dynamic dictionaries designed to store
different-sized keys. The string B-tree [15] of Ferragina
and Grossi supports searches, inserts, and deletes of a key κ
in O(|κ| /B + logB N) block transfers. Thus, the additional
cost to access a key κ is just the additive cost, O(1+ |κ| /B),
to read key κ plus the cost to search in a B-tree, which
is optimal. Refs. [7, 9] give cache-oblivious (i.e., memory-
hierarchy universal) string dictionaries with similar perfor-
mance. These data structures support strings, not atomic
keys. That is, key comparisons do not happen in a single
step. Rather, different parts of the keys are compared at
different times, and the keys can be chopped up and dis-
tributed among different parts of the data structure.

Another related problem on variable-sized keys is the fol-
lowing. For a given probability distribution on the leaf
nodes, how to lay out a fixed-topology tree in memory such
that the expected number of memory transfers for a search
is minimized. Because the topology of the tree is fixed, the
objective is to assign tree nodes to disk blocks to minimize
the search cost. Gil and Itai [17] optimal and near optimal
algorithms for the problem. Alstrup et al. [2] give faster
algorithms for the problem and also give cache-oblivious so-
lutions.

8. CONCLUSION
As mentioned in Section 7, much of the related work em-

ploys dynamic programs for building various kinds of op-
timal trees. Often those programs build trees of uniform
depth to provide worst-case search bounds, whereas this pa-
per gives expected bounds in terms of average key size. One
open question is whether it is possible to build a tree that has
a worst-case search time within a constant factor of optimal
as well as expected bounds matching those in this paper.

As illustrated in Section 6, some of the problems we con-
sider in this paper may be solved using dynamic program-
ming. Trees built with dynamic programing may be optimal
or near-optimal, but the analysis is not parameterized by
the average key size, something that B-tree users often find
useful.

This paper focuses on asymptotics, rather than optimiz-
ing constants. Honing the constants may be important for
squeezing out performance and for building a B-tree variant
that also supports front compression.

Finally, one major open question is whether there exists
a cache-oblivious atomic-key B-tree that attains the bounds
presented here.

Acknowledgments
We would like to thank Martin Farach-Colton, Simai He,
Margo Seltzer, and Marc Tchiboukdjian for helpful discus-
sions in early stages of this work.

9. REFERENCES
[1] Alok Aggarwal and Jeffrey Scott Vitter. The

input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988.

[2] Stephen Alstrup, Michael A. Bender, Erik D.
Demaine, Martin Farach-Colton, J. Ian Munro, Theis
Rauhe, and Mikkel Thorup. Efficient tree layout in a
multilevel memory hierarchy. arXiv:cs.DS/0211010,
November 2002.
http://www.arXiv.org/abs/cs.DS/0211010.

[3] Rudolf Bayer and Edward M. McCreight.
Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189, February
1972.

[4] Rudolf Bayer and Karl Unterauer. Prefix B-trees.
ACM Trans. Database Syst., 2(1):11–26, 1977.

[5] Peter Becker. A new algorithm for the construction of
optimal B-trees. Nordic J. of Computing,
1(4):389–401, 1994.

[6] Michael A. Bender and Martin Farach-Colton. The
LCA problem revisited. In Proceedings of Latin
American Theoretical INformatics (LATIN), pages
88–94, 2000.

[7] Michael A. Bender, Martin Farach-Colton, and
Bradley C. Kuszmaul. Cache-oblivious string B-trees.
In Proc. 25th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems
(PODS), pages 233–242, 2006.

[8] Omer Berkman and Uzi Vishkin. Recursive star-tree
parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993.

[9] Gerth Stölting Brodal and Rolf Fagerberg.
Cache-oblivious string dictionaries. In Proc. 17th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 581–590, 2006.

[10] Yi-Jen Chiang, Michael T. Goodrich, Edward F.
Grove, Roberto Tamassia, Darren Erik Vengroff, and
Jeffrey Scott Vitter. External-memory graph
algorithms. In Proc. 6th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
139–149, 1995.

[11] William A. Clark IV, Kent A. Salmond, and
Thomas A Stafford. Method and means for generating
compressed keys. US Patent 3,593,309, 3 January
1969.

[12] Douglas Comer. The ubiquitous B-tree. ACM Comput.
Surv., 11(2):121–137, 1979.

[13] Erik D. Demaine, Gad M. Landau, and Oren
Weimann. On cartesian trees and range minimum
queries. In Proc. 36th International Colloquium on
Automata, Languages and Programming (ICALP),
volume 5555 of Lecture Notes in Computer Science,
pages 341–353. Springer, 2009.

[14] George Diehr and Bruce Faaland. Optimal pagination
of B-trees with variable-length items. Commun. ACM,
27(3):241–247, 1984.

315

[15] Paolo Ferragina and Roberto Grossi. The string
B-tree: A new data structure for string search in
external memory and its applications. J. ACM,
46(2):236–280, 1999.

[16] Harold N. Gabow, Jon Louis Bentley, and Robert E.
Tarjan. Scaling and related techniques for geometry
problems. In Proc. 16th Annual ACM Symposium on
Theory of Computing (STOC), pages 135–143, 1984.

[17] Joseph Gil and Alon Itai. How to pack trees. J.
Algorithms, 32(2):108–132, 1999.

[18] L. Gotlieb. Optimal multi-way search trees. SIAM J.
Comput., 10(3):422–433, 1981.

[19] Dov Harel and Robert Endre Tarjan. Fast algorithms
for finding nearest common ancestors. SIAM J.
Comput., 13(2):338–355, 1984.

[20] Shou-Hsuan Stephen Huang and Venkatraman
Viswanathan. On the construction of weighted
time-optimal B-trees. BIT, 30(2):207–215, 1990.

[21] Donald E. Knuth. The Art of Computer Programming,
Vol. 3: Sorting and Searching. Addison Wesley,
Reading, MA, 1973.

[22] Lawrence L. Larmore and Daniel S. Hirschberg.
Efficient optimal pagination of scrolls. Commun.
ACM, 28(8):854–856, 1985.

[23] Edward M. McCreight. Pagination of B*-trees with
variable-length records. Commun. ACM,
20(9):670–674, 1977.

[24] Oracle. Oracle Berkeley DB programmer’s reference
guide, release 4.8.
http://www.oracle.com/technology/

documentation/berkeley-db/db/index.html, August
2009.

[25] Arnold L. Rosenberg and Lawrence Snyder. Time- and
space-optimality in B-trees. ACM Trans. Database
Syst., 6(1):174–193, 1981.

[26] Baruch Schieber and Uzi Vishkin. On finding lowest
common ancestors: Simplification and parallelization.
SIAM J. Comput., 17(6):1253–1262, 1988.

[27] Vijay K. Vaishnavi, Hans-Peter Kriegel, and Derick
Wood. Optimum multiway search trees. Acta Inf.,
14:119–133, 1980.

[28] R. E. Wagner. Indexing design considerations. IBM
Syst. J., 12(4):351–367, 1973.

316

