
Theory Comput Syst (2011) 48: 269–296
DOI 10.1007/s00224-009-9242-2

Optimal Cache-Oblivious Mesh Layouts

Michael A. Bender · Bradley C. Kuszmaul ·
Shang-Hua Teng · Kebin Wang

Published online: 27 October 2009
© Springer Science+Business Media, LLC 2009

Abstract A mesh is a graph that divides physical space into regularly-shaped re-
gions. Meshes computations form the basis of many applications, including finite-
element methods, image rendering, collision detection, and N-body simulations. In

M.A. Bender was supported in part by NSF Grants CCF 0621439/0621425,
CCF 0540897/05414009, CCF 0634793/0632838, CNS 0627645, and CCF 0937822 and by DOE
Grant DE-FG02-08ER25853.
B.C. Kuszmaul was supported in part by the Singapore-MIT Alliance, NSF Grant ACI-0324974, and
DOE Grant DE-FG02-08ER25853.
S.-H. Teng was supported in part by NSF grants CCR-0311430 and ITR CCR-0325630.

M.A. Bender (�)
Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA
e-mail: bender@cs.sunysb.edu

M.A. Bender · B.C. Kuszmaul
Tokutek, Inc., 1 Militia Drive, Lexington, MA 02421, USA
url: http://www.tokutek.com

B.C. Kuszmaul
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
e-mail: bradley@mit.edu

S.-H. Teng
Computer Science Department, University of Southern California, 941 Bloom Walk, Los Angeles,
CA 90089-0781, USA
e-mail: shanghua@usc.edu

S.-H. Teng
Akamai Technologies, Inc., Cambridge, MA 02124, USA

K. Wang
Computer Science Department, Boston University, Boston, MA 02215, USA
e-mail: kwang@cs.bu.edu

mailto:bender@cs.sunysb.edu
http://www.tokutek.com
mailto:bradley@mit.edu
mailto:shanghua@usc.edu
mailto:kwang@cs.bu.edu

270 Theory Comput Syst (2011) 48: 269–296

one important mesh primitive, called a mesh update, each mesh vertex stores a value
and repeatedly updates this value based on the values stored in all neighboring ver-
tices. The performance of a mesh update depends on the layout of the mesh in mem-
ory. Informally, if the mesh layout has good data locality (most edges connect a pair
of nodes that are stored near each other in memory), then a mesh update runs quickly.

This paper shows how to find a memory layout that guarantees that the mesh up-
date has asymptotically optimal memory performance for any set of memory para-
meters. Specifically, the cost of the mesh update is roughly the cost of a sequential
memory scan. Such a memory layout is called cache-oblivious. Formally, for a d-
dimensional mesh G, block size B, and cache size M (where M = �(Bd)), the mesh
update of G uses O(1 + |G|/B) memory transfers. The paper also shows how the
mesh-update performance degrades for smaller caches, where M = o(Bd).

The paper then gives two algorithms for finding cache-oblivious mesh layouts.
The first layout algorithm runs in time O(|G| log2 |G|) both in expectation and with
high probability on a RAM. It uses O(1 + |G| log2(|G|/M)/B) memory transfers
in expectation and O(1 + (|G|/B)(log2(|G|/M) + log |G|)) memory transfers with
high probability in the cache-oblivious and disk-access machine (DAM) models. The
layout is obtained by finding a fully balanced decomposition tree of G and then per-
forming an in-order traversal of the leaves of the tree.

The second algorithm computes a cache-oblivious layout on a RAM in time
O(|G| log |G| log log |G|) both in expectation and with high probability. In the
DAM and cache-oblivious models, the second layout algorithm uses O(1 + (|G|/B)

log (|G|/M)min{log log |G|, log(|G|/M)}) memory transfers in expectation and
O(1 + (|G|/B)(log (|G|/M)min{log log |G|, log(|G|/M)} + log |G|)) memory
transfers with high probability. The algorithm is based on a new type of decom-
position tree, here called a relax-balanced decomposition tree. Again, the layout is
obtained by performing an in-order traversal of the leaves of the decomposition tree.

Keywords Cache-oblivious · Decomposition tree · Fully-balanced decomposition
tree · Geometric separator · Mesh layout · Relax-balanced decomposition tree

1 Introduction

A mesh is a graph that represents a division of physical space into regions, called
simplices. Simplices are typically triangular (in 2D) or tetrahedral (in 3D). They are
well shaped, which informally means that they cannot be long and skinny, but must be
roughly the same size in any direction. Meshes form the basis of many computations
such as finite-element methods, image rendering, collision detection, and N-body
simulations. Constant-dimension meshes have nodes of constant-degree.

In one important mesh primitive, each mesh vertex stores a value and repeatedly
updates this value based on the values stored in all neighboring vertices. Thus, we
view the mesh as a weighted graph G = (V ,E,w, e) (w : V → R, e : E → R

+). For
each vertex i ∈ V , we repeatedly recompute its weight wi as follows:

wi =
∑

(i,j)∈E

wjeij .

Theory Comput Syst (2011) 48: 269–296 271

We call this primitive a mesh update. Expressed differently, a mesh update is the
sparse matrix-vector multiplication, where the matrix is the (weighted) adjacency
matrix of G, and vectors are the vertex weights.

On a random access machine (RAM) (a flat memory model), a mesh update runs
in linear time, regardless of how the data is laid out in memory. In contrast, on a
modern computer with a hierarchical memory, how the mesh is laid out in memory
can affect the speed of the computation substantially. This paper studies the mesh
layout problem, which is how to lay out a mesh in memory, so that mesh updates run
rapidly on a hierarchical memory.

We analyze the mesh layout problem in the disk-access machine (DAM) model [2]
(also known as the I/O-model) and in the cache-oblivious (CO) model [17]. The DAM
model is an idealized two-level memory hierarchy. These two levels could represent
L2 cache and main memory, main memory and disk, or any other pair of levels. The
small level (herein called cache) has size M , and the large level (herein called disk)
has unbounded size. Data is transferred between the two levels in blocks of size B;
we call these memory transfers. Thus, a memory transfer is a cache-miss if the DAM
represents L2 cache and main memory and is a page fault, if the DAM represents
main memory and disk.

A memory transfer has unit cost. The objective is to minimize the number of mem-
ory transfers. Focusing on memory transfers, to the exclusion of other computation,
frequently provides a good model of the running time of an algorithm on a mod-
ern computer. The cache-oblivious model is essentially the DAM model, except that
the values of B and M are unknown to the algorithm or the coder. The main idea
of cache-obliviousness is this: If an algorithm performs an asymptotically optimal
number of memory transfers on a DAM, but the algorithm is not parameterized by
B and M , then the algorithm also performs an asymptotically optimal number of
memory transfers on an arbitrary unknown, multilevel memory hierarchy.

The cost of a mesh update in the DAM and cache-oblivious models depends on
how the mesh is laid out in memory. An update to a mesh G = (V ,E) is just a
graph traversal. If we store G’s vertices arbitrarily in memory, then the update could
cost as much as O(|V | + |E|) = O(|G|) memory transfers, one transfer for each
vertex and each edge. In this paper we achieve only �(1+|G|/B) memory transfers.
This is the cost of a sequential scan of a chunk of memory of size O(|G|), which is
asymptotically optimal.

Our mesh layout algorithms extend earlier ideas from VLSI theory. Classical
VLSI-layout algorithms turn out to have direct application in scientific and I/O-
efficient computing. Although these diverse areas may appear unrelated, there are
important parallels. For example, in a good mesh layout, vertices are stored in (one-
dimensional) memory locations so that most mesh edges are short; in a good VLSI
layout, graph vertices are assigned to (two-dimensional) chip locations so that most
edges are short (to cover minimal area).

1.1 Results

We give two algorithms for laying out a constant-dimension well-shaped mesh G =
(V ,E) so that updates run in �(1+|G|/B) memory transfers, which is �(1+|V |/B)

since the mesh has constant degree.

272 Theory Comput Syst (2011) 48: 269–296

Our first layout algorithm runs in time O(|G| log2 |G|) on a RAM both in ex-
pectation and with high probability.1 In the DAM and cache-oblivious models, the
algorithm uses O(1 + (|G|/B) log2 (|G|/M)) memory transfers in expectation and
O(1 + (|G|/B)(log2 (|G|/M) + log |G|)) memory transfers with high probability.
The layout algorithm is based on decomposition trees and fully balanced decom-
position trees [7, 24]; specifically, our mesh layout is obtained by performing an in-
order traversal of the leaves of a fully-balanced decomposition tree. Decomposition
trees were developed several decades ago as a framework for VLSI layout [7, 24],
but they are well suited for mesh layout. However, the original algorithm for build-
ing fully-balanced decomposition trees is too slow for our uses (it appears to run in
time O(|G|�(b)), where b is the degree bound of the mesh). Here we develop a new
algorithm that is faster and simpler.

Our second layout algorithm, this paper’s main result, runs in time
O(|G| log |G| log log |G|) on a RAM both in expectation and with high prob-
ability. In the DAM and cache-oblivious models, the algorithm uses O(1 +
(|G|/B) log(|G|/M)min{log log |G|, log(|G|/M)}) memory transfers in expectation
and O(1 + (|G|/B)(log(|G|/M)min{log log |G|, log(|G|/M)} + log |G|)) memory
transfers with high probability.

The algorithm is based on a new type of decomposition tree, which we call a relax-
balanced decomposition tree. As before, our mesh layout is obtained by performing
an in-order traversal of the leaves of a relax-balanced decomposition tree. By care-
fully relaxing the requirements of decomposition trees, we can retain asymptotically
optimal mesh updates, while improving construction by nearly a logarithmic factor.

The mesh-update guarantees require a tall-cache assumption on the memory sys-
tem that M = �(Bd), where d is the dimension of the mesh. We also show how the
performance degrades for small caches, where M = o(Bd). If the cache only has size
O(Bd−ε), then the number of memory transfers increases to O(1 + |G|/B1−ε/d).

In addition to the main results listed above, this paper has contributions extend-
ing beyond I/O-efficient computing. First, our algorithms for building fully-balanced
decomposition trees are faster and simpler than previously known algorithms. Sec-
ond, our relax-balanced decomposition trees may permit some existing algorithms
based on decomposition trees to run more quickly. Third, the techniques in this pa-
per yield simpler and improved methods for generating k-way partitions of meshes,
earlier shown in [23]. More generally, we cross-pollinate several fields, including
I/O-efficient computing, VLSI layout, and scientific computing.

2 Geometric Separators and Decomposition Trees

In this section we review the geometric-separator theorem [27], which we use for
partitioning constant-dimensional meshes. We then review decomposition trees [24].
Finally, we show how to use geometric separators to build decomposition trees for
well shaped meshes.

1For input size N and event E, we say that E occurs with high probability if for any constant c > 0 there
exists a proper choice of constants defining the event such that Pr{E} ≥ 1 − N−c .

Theory Comput Syst (2011) 48: 269–296 273

2.1 Geometric Separators

A finite-element mesh is a decomposition of a geometric domain into a collection
of interior-disjoint simplices (e.g., triangles in 2D and tetrahedra in 3D), so that two
simplices can only intersect at a lower dimensional simplex. Each simplicial element
of the mesh must be well shaped. Well shaped means that there is a constant upper
bound to the aspect ratio, that is, the ratio of the radius of the smallest ball containing
the element to the radius of the largest ball contained in the element [33].

A partition of a graph G = (V ,E) is a division of G into disjoint subgraphs G0 =
(V0,E0) and G1 = (V1,E1) such that V0 ∩V1 = ∅, and V0 ∪V1 = V . G0 and G1 is a
β-partition of G if they are a partition of G and |V0|, |V1| ≤ β|V |. We let E(G0,G1)

denote the set of edges in G crossing from V0 to V1, and E(v,G1) denote the set of
edges in G connecting vertex v to the vertices of G1. For a function f , G = (V ,E)

has a family of (f,β)-partitions if for each subset S ⊆ V and induced graph GS =
(VS,ES), graph GS has a β-partition of GS0 = (VS0 ,ES0) and GS1 = (VS1 ,ES1) such
that |ES − ES0 − ES1 | ≤ f (|VS |).

The following separator theorem of Miller, Teng, Thurston, and Vavasis [27]
shows that meshes can be partitioned efficiently:

Theorem 1 (Geometric Separators [27]) Let G = (V ,E) be a well shaped finite-
element mesh in d dimensions (d > 1). For constants ε (0 < ε < 1) and c(ε, d) de-
pending only on ε and d , a (f (N) = O(N1−1/d), (d + 1 + ε)/(d + 2))-partition of
G can be computed in O(d|G| + c(ε, d)) time with probability at least 1/2.

The separator algorithm from [27] works as follows. First, project the coordinates
of the vertices of the input graph G onto the surface of a unit sphere in (d + 1)-
dimensions. The projection of each point is independent of all other input points and
takes constant time. Sample a constant number of points from all projected points uni-
formly at random. Compute a centerpoint of the sampled points. (A centerpoint of a
point set in d-dimensions is a point such that every hyperplane through the center-
point divides the point set approximately evenly, i.e., in the ratio of d to 1 or better.)
Rotate and then dilate the sampled points. Both the rotation and dilation are func-
tions of the centerpoint and the dimension d . Choose a random great circle on this
unit sphere. (A great circle of a sphere is a circle on the sphere’s surface that evenly
splits the sphere.) Map the great circle back to a sphere in the d-dimensional space
by reversing the dilation, the rotation, and the projection. Now use this new sphere to
divide the vertices and the edges of the input graph.

Now more mechanics of the algorithm. Mesh G is stored in an array. Each ver-
tex of G is stored with its index (i.e., name), its coordinates, and all of its adjacent
edges, including the index and coordinates of all neighboring vertices. (This mesh
representation means that each edge is stored twice, once for each of the edge’s two
vertices.)

To run the algorithm, scan the vertices and edges in G after obtaining the sphere
separator. During the scan, divide the vertices into two sets, G0, containing the ver-
tices inside the new sphere and G1, containing the vertices outside the sphere. Mark
an edge as “crossing” if the edge crosses from G0 to G1. Verify that the number of

274 Theory Comput Syst (2011) 48: 269–296

crossing edges, |E(G0,G1)|, is O(|G|1−1/d), and if not, repeat. The cost of this scan
is O(|G|/B + 1) memory transfers.

The geometric separator algorithm has the following performance:

Corollary 2 Let G = (V ,E) be a well shaped finite-element mesh in d dimensions
(d > 1). For constants ε (0 < ε < 1) and c(ε, d) depending only on ε and d , the
geometric-separator algorithm finds an (f (N) = O(N1−1/d), (d + 1 + ε)/(d + 2))-
partition of G. The algorithm runs in O(|G|) on a RAM and uses O(1 + |G|/B)

memory transfers in the DAM and cache-oblivious models, both in expectation and
with probability at least 1/2. With high probability, the geometric-separator algo-
rithm completes in O(|G| log |G|) on a RAM and uses O(1+|G| log |G|/B) memory
transfers in the DAM and cache-oblivious models.

Proof A linear scan of G takes time O(|G|) and uses an asymptotically optimal
number of memory transfers. We expect to find a good separator after a constant
number of trials, and so the expectation bounds follow by linearity of expectation.
The probability that after selecting c lg |G| candidate separators, none are good is at
most 1/2c lg |G| = |G|−c . Thus, with high probability, the geometric separator algo-
rithm completes in O(|G| log |G|) on a RAM and uses O(1 + |G| log |G|/B) mem-
ory transfers in the DAM and cache-oblivious models. The separator algorithm is
cache-oblivious since it is not parameterized by B or M . �

2.2 Decomposition Trees

A decomposition tree TG of a graph G = (V ,E) is a recursive partitioning of G. The
root of TG is G. Root G has left and right children G0 and G1, and grandchildren
G00, G01, G10, G11, and so on recursively down the tree. Graphs G0 and G1 parti-
tion G, graphs G00 and G01 partition G0, and so on. More generally, a node in the
decomposition tree is denoted Gp (Gp ⊂ G), where p is a bit string representing the
path to that node from the root. We call p the id of Gp . We say that a decomposition
tree is β-balanced if for all siblings Gp0 = (Vp0,Ep0) and Gp1 = (Vp1,Ep1) in the
tree, |Vp0|, |Vp1| ≤ β|Vp|. We say that a decomposition tree is balanced if β = 1/2.
For a function f , graph G has an f decomposition tree if for all (nonleaf) nodes Gp

in the decomposition tree, |E(Gp0,Gp1)| ≤ f (|Vp|). A β-balanced f decomposition
tree is abbreviated as an (f,β)-decomposition tree.

For a parent node Gp and its children Gp0 and Gp1, there are several categories
of edges. Inner edges connect vertices that are both in Gp0 or both in Gp1. Crossing
edges connect vertices in Gp0 to vertices in Gp1. Outgoing edges of Gp0 (resp. Gp1)
connect vertices in Gp0 (resp. Gp1) to vertices in neither set, i.e., to vertices in G −
Gp . Outer edges of Gp0 (resp. Gp1) connect vertices in Gp0 (resp. Gp1) to vertices in
G−Gp0 (resp. G−Gp1); thus an outer edge is either a crossing edge or an outgoing
edge. More formally, inner(Gp0) = E(Gp0,Gp0), crossing(Gp) = E(Gp0,Gp1),
outgoing(Gp0) = E(Gp0,G − Gp), and outer(Gp0) = E(Gp0,G − Gp0).

Theory Comput Syst (2011) 48: 269–296 275

We build a decomposition tree TG of mesh G recursively. First we run the geomet-
ric separator algorithm on the root G to find the left and right children, G0 and G1.
Then we recursively build the decomposition tree rooted at G0 and then the decompo-
sition tree rooted at G1. (Thus, the right child of TG is not processed until the whole
left subtree is built.)

The decomposition tree is encoded as follows. Each leaf node Gq for TG stores
the single vertex v and the bit string q (the root-to-leaf path). The leaf nodes of TG

are stored contiguously in an array LG. The bit string q contains enough informa-
tion to determine which nodes (subgraphs) of TG contain v—specifically any node
Gq̂ , where q̂ is a prefix of q (including q). As mentioned earlier, each vertex is stored
along with its coordinates, adjacent edges, and coordinates of all neighboring vertices
in G. (Recall that each edge is therefore stored twice, once for each of the edge’s ver-
tices.) Each edge e in G is a crossing edge for exactly one node in the decomposition
tree TG. In TG, each edge e also stores the id p of the tree node Gp for which e is
a crossing edge. The bit strings on nodes and edges therefore contains enough infor-
mation to determine which edges are crossing, inner, and outer for which tree nodes.
Specifically, e ∈ crossing(Gp). Let p̂ be a prefix of p that is strictly shorter (p �= p̂);
then e ∈ inner(Gp̂). Let p̃ be bit string representing a node in TG where p is a strictly
shorter prefix of p̃ (p �= p̃). Then e ∈ outer(Gp̃). If p̃0 and p̃1 represent nodes in TG,
then e ∈ outgoing(Gp̃0) or e ∈ outgoing(Gp̃1).

Thus, decomposition tree TG is laid out in memory by storing the leaves in order in
an array LG. We do not need to store internal nodes explicitly because the bit strings
on nodes and edges encode the tree structure.

Here are a few facts about our layout of TG. Given any two nodes Gp and Gq of
LG, the common prefix of p and q is the smallest node in TG containing all vertices
in both Gp and Gq . All the vertices in any node Gp of TG are stored in a single
contiguous chunk of the array. Thus, we can identify for Gp , which edges are inner,
crossing, outer, and outgoing by performing a single linear scan of size O(|Gp|).

We construct the decomposition tree TG by recursively partitioning of G. While
TG is in the process of being constructed, its encoding is similar to the above, except
that (1) a leaf node Gq may contain more than one vertex, and (2) some edges may
not yet be labelled as crossing. Thus, when the process begins, TG is just a single
leaf comprising G. The nodes are stored in a single array of size O(|G|) and are
stored in an arbitrary order. Then we run the geometric separator algorithm. Once we
find a good separator, we partition G into G0 and G1, and we store G0 before G1
in the same array. We label vertices of G0 with bit string 0 and vertices of G1 with
bit string 1. We then run through and label all crossing edges with the appropriate
bit string (for the leaf node, the empty string). Now the nodes in each of G0 and G1
are stored in an arbitrary order, but the subarray containing G0 is stored before the
subarray containing G1. We then apply the geometric separator algorithm for G0. We
partition into G00 and G01, label vertices in G0 with 00 or 01, and label all crossing
edges of G0 with the bit string 0; we then do the same for G00 and so on recursively
until all leaf nodes are graphs containing a single vertex.

We now give the complexity of building the decomposition tree. Our high-
probability bounds are based on the following observation involving a coin with a
constant probability of heads. In order to get at least one head with probability at

276 Theory Comput Syst (2011) 48: 269–296

least 1 − 1/poly(N), �(logN) flips are necessary and sufficient. In order to get
�(logN) heads with probability at least 1 − 1/poly(N), the asymptotics do not
change; �(logN) flips are still necessary and sufficient. The following lemma can
be proved by Chernoff bounds (or otherwise):

Lemma 3 Consider S ≥ c logN flips of a coin with a constant probability of heads,
for sufficiently large constant c. With probability at least 1 − 1/poly(N), �(S) of the
flips are heads.

Theorem 4 Let G = (V ,E) be a well shaped finite-element mesh in d dimensions
(d > 1). Mesh G has a (2d + 3)/(2d + 4)-balanced-O(|V |1−1/d) decomposition
tree. On a RAM, the decomposition tree can be computed in time O(|G| log |G|) both
in expectation and with high probability. The decomposition tree can be computed
in the DAM and cache-oblivious models using O(1 + (|G|/B) log (|G|/M)) mem-
ory transfers in expectation and O(1 + (|G|/B) log |G|) memory transfers with high
probability.

Proof We first establish that the tree construction takes time O(|G| log |G|) on a
RAM in expectation. The height of the decomposition tree is O(log |G|), and the total
size of all subgraphs at each height is O(|G|). Since the decomposition of a subgraph
takes expected linear time, the time bounds follow by linearity of expectation.

We next establish that the tree construction uses O(1 + (|G|/B) log(|G|/M)) ex-
pected memory transfers in the DAM and cache-oblivious models. Because we build
the decomposition tree recursively, we give a recursive analysis. The base case is
when a subtree first has size less than M . For the base case, the cost to build the
entire subtree is O(M/B) because this is the cost to read all blocks of the subtree
into memory. Said differently, once a subgraph is a constant fraction smaller than M ,
the cost to build the decomposition tree from the subgraph is 0, because all necessary
memory blocks already reside in memory. For the recursive step, recall that when
a subgraph Gp has size greater than M , the decomposition of a subgraph takes ex-
pected O(|Gp|/B) memory transfers, because this is the cost of a linear scan. Thus,
there are O(log (|G|/M)) levels of the tree with subgraphs bigger than M , so the
algorithms uses expected O(1 + (|G|/B) log (|G|/M)) memory transfers.

We next establish the high-probability bounds. We show that the building process
uses O(|G| log |G|) time on a RAM and O(1 + |G| log |G|/B) memory transfers in
the DAM and the cache-oblivious models with high probability.

First consider all nodes that have size �(|G|/ log |G|). There are �(log |G|) such
nodes. To build these nodes, we require a total of �(log |G|) good separators. We
can view finding these separators as a coin-flipping game, where we need �(log |G|)
heads; by Lemma 3 we require �(log |G|) coin flips. However, separators near the
top of the tree are more expensive to find than separators deeper in the tree. We bound
the cost to find all of these separators by the cost to build the root separator. Thus,
building these nodes uses time O(|G| log |G|) and O(1 + |G| log |G|/B) memory
transfers with high probability. This is now the dominant term in the cost to build the
decomposition tree.

Theory Comput Syst (2011) 48: 269–296 277

Further down the tree, where nodes have size O(|G|/ log |G|), the analysis is eas-
ier. Divide the nodes to be partitioned into groups whose sizes are within a con-
stant factor of each other. Now each group contains �(log |G|) elements. Thus,
by Lemma 3 the time to build the rest of the tree with high probability equals the
time in expectation, which is �(|G| log |G|).

We now finish the bound on the number of memory transfers. As above, because
we build the decomposition tree recursively, subtrees a constant fraction smaller than
M are build for free. Also, because each group contains �(log |G|) elements, the cost
to build these lower levels in the tree with high probability equals the expected cost,
which is O(1+ (|G|/B) log (|G|/M)). This cost is dominated by the cost to build the
nodes of size �(|G|/ log |G|). �

3 Fully-Balanced Decomposition Trees for Meshes

In this section we define fully-balanced partitions and fully-balanced decomposi-
tion trees. We give algorithms for generating these structures on a well shaped
mesh G. As we show in Sect. 4, we use a fully-balanced decomposition tree
of a mesh G to generate a cache-oblivious mesh layout of G. Our construction
algorithm is an improvement over [7, 24] in two respects. First the algorithm
is faster, requiring only O(|G| log2 |G|) operations in expectation and with high
probability, O(1 + (|G|/B) log2(|G|/M)) memory transfers in expectation, and
O(1 + (|G|/B)(log2 (|G|/M) + log |G|)) memory transfers with high probability.
Second, the result is simplified, no longer relying on a complicated theorem of [18].

This section makes it easier to present the main result of the paper, which appears
in Sect. 5.

3.1 Fully-Balanced Partitions

To begin, we define a fully-balanced partition of a subgraph Gp of G. A fully-
balanced f -partition of Gp ⊆ G is a partitioning of Gp = (Vp,Ep) into two sub-
graphs Gp0 = (Vp0,Ep0) and Gp1 = (Vp1,Ep1) such that

• |crossing(Gp)| ≤ f (|Vp|),
• |Vp0| = |Vp1| ± O(1), and
• |outgoing(Gp0)| = |outgoing(Gp1)| ± O(1).

We give the following result before presenting our algorithm for computing fully-
balanced partitions. The existence proof and time complexity comprise the easiest
case in [18].

Lemma 5 Given an array L of N elements, where each element is marked either
blue or red, there exists a subarray that contains half of the blue elements to within
one and half of red elements to within one. Such a subarray can be found in O(N)

time and O(1 + N/B) memory transfers cache-obliviously.

Proof This result is frequently described in terms of “necklaces.” Conceptually, at-
tach the two ends of the array together to make a necklace. By a simple continuity

278 Theory Comput Syst (2011) 48: 269–296

Fig. 1 Unfilled beads represent blue elements and filled beads represent red elements. Pick an arbitrary
initial bisection A and Ā of the necklace. Here A contains more than half of all blue beads. (We can focus
exclusively on blue beads because if A contains half of the blue beads to within one, it also contains
half of red beads to within one.) We “turn” the bisection clockwise so that A takes one bead from Ā and
relinquishes one bead to Ā. Thus, the number of blue beads in A can increase/decrease by one or remain
the same after each turn. However, after N/2 turns, A becomes Ā, which contains less than half of all blue
beads. So by a continuity argument, A contains half of all blue beads after some number of turns. The
argument is similar for both odd and even N

argument (the easiest case of that in [18]), the necklace can be split into two pieces,
A and Ā, using two cuts such that both pieces have the same number of blue elements
to within one and the same number of red elements to within one. (For details of the
continuity argument, see Fig. 1.) Translating back to the array, at least one of A and
Ā does not contain the connecting point and is contiguous.

To find a good subarray, first scan L to count the number of blue elements and
the number of red elements. Now rescan L, maintaining a window of size N/2. The
window initially contains the first half of L and at the end contains the second half
of L. (For odd N , the middle element of the array appears in all windows.) Stop the
scan once the window has the desired number of red and blue elements.

Since only linear scans are used, the algorithm is cache-oblivious and requires
�(1 + N/B) memory transfers. �

We now present an algorithm for computing fully-balanced partitions. Given
Gp ⊆ G, and a (f (N) = O(Nα),β)-partitioning geometric separator, FullyBal-
ancedPartition(Gp) computes a fully-balanced (f (N) = O(Nα))-partition Gpx and
Gpy of Gp .

Theory Comput Syst (2011) 48: 269–296 279

FullyBalancedPartition(Gp)

1. Build a decomposition tree—Build a decomposition tree TGp of Gp using the
(f (N) = O(Nα),β)-partitioning geometric separator.

2. Build a red-blue array—Build an array of blue and red elements based on the
decomposition tree TGp . Put a blue element for each leaf Gq in TGp ; thus there is
a blue element for each vertex v in Gp . Now insert some red elements after each
blue element. Specifically, after the blue element representing vertex v, insert
E(v,G − Gp) red elements. Thus, the blue elements represent vertices in Gp =
(Vp,Ep) for a total of |Vp| blue elements, while the red elements represent edges
to vertices in G − Gp , for a total of E(Gp,G − Gp) red elements.

3. Find a subarray in the red-blue array—Find a subarray of the red-blue array
based on Lemma 5. Now partition the vertices in Gp based on this subarray.
Specifically, put the vertices representing blue elements in the subarray in set
Vpx and put the remaining vertices in Gp in set Vpy .

4. Partition Gp—Compute Gpx and Gpy from Vpx and Vpy . This computation also
means scanning edges to determine which edges are internal to Gpx and Gpy and
which have now become external.

We first establish the running time of FullyBalancedPartition(Gp).

Lemma 6 Given a graph Gp that is a subgraph of a well shaped mesh G,
FullyBalancedPartition(Gp) runs in O(|Gp| log |Gp|) on a RAM, both in expec-
tation and with high probability (i.e., probability at least 1 − 1/poly(|Gp|)).
In the DAM and cache-oblivious models, FullyBalancedPartition(Gp) uses
O(1 + (|Gp|/B) log (|Gp|/M)) memory transfers in expectation and O(1 +
|Gp| log |Gp|/B) memory transfers with high probability.

Proof According to Theorem 4, Step 1 of FullyBalancedPartition(Gp) (comput-
ing TGp) takes time O(|Gp| log |Gp|) on a RAM, both in expectation and
with high probability. In the DAM and cache-oblivious models, this steps
requires O(1 + (|Gp|/B) log (|Gp|/M)) memory transfers in expectation and
O(1 + |Gp| log |Gp|/B) memory transfers with high probability. Steps 2–4 of Fully-
BalancedPartition(Gp) each require linear scans of an array of size O(|Gp|), and
therefore are dominated by Step 1. �

We next establish the correctness of FullyBalancedPartition(Gp). In the following,
let constant b represent the maximum degree of mesh G.

Lemma 7 Given a well shaped mesh G and a subgraph Gp ⊆ G, FullyBalancedPar-
tition generates a fully-balanced partition of Gp .

Proof By the way that we generate Vpx and Vpy , we have

||Vpy | − |Vpx || ≤ 1.

This is because the number of blue elements in the subarray is exactly |Vpx |, and the
number of blue elements within and without the subarray differ by at most one.

280 Theory Comput Syst (2011) 48: 269–296

(a) An example subgraph Gp of mesh G. Subgraph Gp has eight vertices, ten edges, and eight outer
edges (i.e., |outer(Gp)| = 8)

(b) A decomposition tree of the subgraph Gp from (a). Building this decomposition tree is the first step
for FullyBalancedPartition(Gp). The crossing edges at each node are indicated by lines between the two
children. Thus, crossing((Gp)0) = {(1,5), (6,7)} and crossing((Gp)101) = {(4,8)}. Observe that each
edge in Gp is a crossing edge for exactly one node in the decomposition tree

(c) The red-blue array for Gp . The blue elements have a dark shade. The red elements have a light shade.
There is one blue element for each vertex in Gp . There is one red element for each outgoing edge in Gp .
Since element 1 is adjacent to two edges in outer(Gp), there are two red elements after it in the red-blue
array. The figure indicates a subarray containing half of the blue elements and half of the red elements to
within one. The red-blue array is used to make the fully-balanced partition of Gp . Specifically, Gpx will
contain vertices 2, 5, 6, and 7 and Gpy will contain vertices 1, 3, 4, and 8. Partition Gpx inherits three
outer edges from Gp , and partition Gpy inherits five outer edges from Gp . This particular subarray
means that two paths in the decomposition tree will be cut. One path, separating element 1 from 6, goes
from node (Gp)00 to the root. The other path, separating element 2 from 4, goes from node (Gp)10 to the
root. The edges that are cut by this partition are the crossing edges of these nodes, i.e.,
E(Gpx,Gpy) = {(1,6), (1,5), (6,7), (1,2), (4,7), (2,3), (3,8), (2,4), (2,8)}. If Gp is a node in the
fully-balanced decomposition tree, then its left child will be Gpx and its right child will be Gpy

Fig. 2 The steps of the algorithm FullyBalancedPartition(Gp) run on a sample graph

Theory Comput Syst (2011) 48: 269–296 281

We next show that

||outgoing(Gpy)| − |outgoing(Gpx)|| ≤ 2b + 1. (1)

To determine |outgoing(Gpx)| and |outgoing(Gpy)|, modify the subarray as follows.
Remove from the subarray any red elements at the beginning of the subarray before
the first blue element in the subarray. Then add to the subarray any red elements
before the first blue element after the subarray. The number of red elements now in
the subarray is |outgoing(Gpx)| and the number of red elements not in the subarray
is |outgoing(Gpy)|. This modification can only increase or decrease |outgoing(Gpx)|
and |outgoing(Gpy)| each by b, establishing (1).

Now, following [7, 24], we show that

E(Gpx,Gpy) ≤ c|Vp|α(1 + βα)/(1 − βα). (2)

By selecting a subarray of the red-blue array, we effectively make two cuts on the
leaves of the decomposition tree TGp . (The only time when there is apparently a
single cut is if the subarray is the first half of the array. In this case, the second
cut separates the first leaf from the last.) Consider one of these cuts. The array is
split between two consecutive leaves of TGp . Denote by P the root of the smallest
subtree of TGp containing these two leaves; see Fig. 2(c). We consider the upward
path P,P1,P2, . . . ,Gp in the decomposition tree TGp from P up to the root Gp of
TGp . Each node in the decomposition tree on this path is a subgraph of G that is being
split into two pieces.

We now count the number of edges that get removed as a result of these splits:

|crossing(P) ∪ crossing(P1) ∪ crossing(P2) ∪ · · · ∪ crossing(Gp)|

≤
log1/β |V |∑

i=0

c
(|V |βi

)α

≤ c|V |α/(1 − βα). (3)

As reflected in (3), each node along the path has a different depth, which gives a
geometric series.

The number of edges that cross from Gpx to Gpy , E(Gpx,Gpy), is the number
of edges that get removed when both cuts get made. However, doubling (3) overesti-
mates E(Gpx,Gpy) by an amount |crossing(Gp)| since the root Gp can only be cut
once. Thus, doubling (3) and subtracting |crossing(Gp)|, we establish (2). �

3.2 Fully-Balanced Decomposition Trees

A fully-balanced decomposition tree of a graph G is a decomposition tree of G where
the partition of every node (subgraph) in the tree is fully-balanced.

We build a fully-balanced decomposition tree BTG of G recursively. First we ap-
ply the algorithm FullyBalancedPartition on the root G to find the left and right chil-
dren, G0 and G1. We next recursively build the fully balanced decomposition tree
rooted at G0 and the fully-balanced decomposition tree rooted at G1.

282 Theory Comput Syst (2011) 48: 269–296

Theorem 8 (Fully-Balanced Decomposition Tree for a Mesh) A fully-balanced de-
composition tree of a mesh G of constant dimension can be computed in time
O(|G| log2 |G|) on a RAM both in expectation and with high probability. The fully-
balanced decomposition tree can be computed in the DAM and cache-oblivious
models using O(1 + (|G|/B) log2 (|G|/M)) memory transfers in expectation and
O(1 + (|G|/B)(log2 (|G|/M) + log |G|)) memory transfers with high probability.

Proof We first establish that the construction algorithm takes expected time
O(|G| log2 |G|) on a RAM. By Lemma 6, for any node Gp in the decomposition
tree, we need O(|Gp| log |Gp|) operations to build the left and right children, Gp0
and Gp1, both in expectation and with probability at least 1 − 1/poly(|Gp|). Since
the left and right children, |Gp0| and the |Gp1|, of every node Gp differ in size by
at most 1, BTG has �(log |G|) levels. If |Gp| denotes the size of a node at level i,
then level i has construction time O(|G| log |Gp|). Thus, the construction-time bound
follows by linearity of expectation.

We next establish that the construction algorithm uses O(1 +
|G| log2 (|G|/M)/B) expected memory transfers in the DAM and cache-oblivious
models. Because we build the decomposition tree recursively, we give a recursive
analysis. The base case is when a node Gp has size less than M while its parent
node is greater than M . Then the cost to build the entire subtree TGp is only
O(M/B), because this is the cost to read all blocks of Gp into memory. Said
differently, once a node is a constant fraction smaller than M , the cost to build
the fully-balanced decomposition tree is 0 because all necessary memory blocks
already reside in memory. There are therefore �(log |G| − logM) levels of the
fully-balanced decomposition tree having nonzero construction cost. Each level uses
at most O((|G|/B) log(|G|/M)) memory transfers. Thus, the time bounds follows
by linearity of expectation.

We next establish the high-probability bounds. In the following analysis, we ex-
amine, for each node Gp in the fully-balanced decomposition tree, the decomposition
tree TGp that is used to build that node. We then group the nodes of all the decompo-
sition trees by size and count the number of nodes in each group.

As an example, suppose that |G| is a power of two and all splits are even. There
is one node of size |G|—the root node of the decomposition tree TG. There are four
nodes of size |G|/2—two nodes in TG, one node in TG0 , and one node in TG1 . There
are 12 node of size |G|/4—four nodes in TG, two nodes in TG0 , two node in TG1 ,
and one node in each of TG00 , TG01 , TG10 , and TG11 .

In general, let group i contain all decomposition tree nodes having size in the
range (|G|/2i , |G|/2i−1]. Then group i contains �(i2i) nodes.

Analyzing each group separately, we show that the construction algorithm takes
time O(|G| log2 |G|) on a RAM with high probability. First, consider the �(log |G|)
largest nodes (those most expensive to build), i.e., those in the smallest cardinality
groups. As analyzed in Theorem 4, building these nodes takes time O(|G| log |G|)
with high probability.

We analyze the rest of the node constructions group by group. Since each group i

contains �(i2i−1) nodes, each successive group contains more nodes than the total
number of nodes in all smaller groups. As a result, there are �(log |G|) nodes in

Theory Comput Syst (2011) 48: 269–296 283

each of the rest of the groups. Thus, by Lemma 3, the time to build the rest of the tree
with high probability is the same as the time in expectation, which is O(|G| log2 |G|).
Thus, we establish high-probability bounds on the running time.

We now show that the construction algorithm takes O(1 + (|G|/B) ×
(log2(|G|/M) + log |G|)) memory transfers with high probability. First consider the
�(log |G|) largest nodes (those most expensive to build). As analyzed in Theorem 4,
building these nodes uses O(1 + |G| log |G|/B) memory transfers with high prob-
ability. Now examine all remaining nodes. We consider each level separately. Each
group contains �(log |G|) nodes. Thus, by Lemma 3, the high-probability cost of
building the decomposition trees for all remaining nodes matches the expected cost,
which is O(1 + (|G|/B) log2 (|G|/M)) memory transfers. Thus, with high probabil-
ity, the construction algorithm takes O(1 + (|G|/B)(log |G| + log2 (|G|/M))) mem-
ory transfers with high probability, as promised. �

3.3 k-Way Partitions

We observe one additional benefit of Theorem 8. In addition to providing a simpler
and faster algorithm for constructing fully-balanced decomposition trees, we also
provide a new algorithm for k-way partitioning, as described in [23]. For any positive
integer k > 1, a k-way partition of a graph G = (V ,E), is a k-tuple (V1,V2, . . . , Vk)

(hence (G1,G2, . . . ,Gk)) such that
⋃

1≤i≤k Vi = V and Vi ∩ Vj = ∅ for i �= j,1 ≤
i, j ≤ k. For any β ≥ 1, (V1,V2, . . . , Vk) is a (β, k)-way partition if |Gi | ≤ β�|G|/k,
for all i ∈ {1, . . . , k}. It has been shown in [23] that every well shaped mesh in d

dimensions has a (1+ε, k)-way partition, for any ε > 0, such that maxi{outer(Gi)} =
O((|G|/k)1−1/d).

We now describe our k-way partition algorithm of a well shaped mesh G. The
objective is to evenly divide leaves of a fully-balanced decomposition tree of G into
k parts such that their number of vertices are the same within one. First build a fully-
balanced decomposition tree. Now assign the first |V |/k leaves to V1, the next |V |/k

leaves to V2, and so on.
In fact, we can modify this approach so that it runs faster by observing that we need

not build the complete fully-balanced decomposition tree. First build the top �(log k)

levels of the tree, so that there are poly(k) leaves. At most k of these leaves need to
be refined further, since the remaining leaves will all belong to a single group Vi .

Our k-way partition algorithm using fully-balanced decomposition trees is incom-
parable to the algorithm of [23]. By building fully-balanced decomposition tree, even
a partial one, our algorithm is slower than the algorithm of [23], which uses geo-
metric separators for partitioning instead. On the other hand, it can be used to divide
the nodes into k sets whose sizes are equal to within an additive one, instead of only
asymptotically the same size as in [23].

4 Cache-Oblivious Layouts

In this section we show how to find a cache-oblivious layout of a mesh G. Given such
a layout, we show that a mesh update runs asymptotically optimally in �(1+|G|/B)

284 Theory Comput Syst (2011) 48: 269–296

memory transfers given the tall cache assumption that M = �(Bd). We also ana-
lyze the performance of a mesh update when M = o(Bd), bounding the performance
degradation for smaller M .

The layout algorithm is as follows.

CacheObliviousMeshLayout(G)

1. Build a f (N) = O(N1−1/d) fully-balanced decomposition tree TG of G, as de-
scribed in Theorem 8.

2. Reorder the vertices in G according to the order of the leaves in TG. (Recall that
each leaf in TG stores a single vertex in G.) This reorder means: (a) assign new
indices to all vertices in the mesh, and (b) for each vertex, let all neighbor vertices
know the new index.

We now describe the mechanics of relabeling and reordering. Each vertex knows
its ordering and location in the input layout; this is the vertex’s index. A vertex
also knows the index of each of its neighboring vertices. When we change a ver-
tex’s index, we apprise all neighbor vertices of the change. These operations entail
a small number of scans and cache-oblivious sorts [9, 11, 17, 30], for a total cost
of O((|G|/B) logM/B(|G|/B) memory transfers. This cost is dominated by the cost
to build the fully-balanced decomposition tree. (Thus, a standard merge sort, which
does not minimize the number of memory transfers, could also be used.)

The cleanest way to explain is through an example. Suppose that we have input
graph G = {{a, b, c, d}, {(a, c), (a, d), (b, c), (c, d)}}, which is laid out in input or-
der:

(a, c), (a, d), (b, c), (c, a), (c, b), (c, d), (d, a), (d, c).

Suppose that the leaves of fully-balanced decomposition tree are in the order of
a, c, d, b. This means that the renaming of nodes is as follows: [a : 1], [c : 2],
[d : 3], [b : 4]. (For clarity, we change indices from letters to numbers.) We obtain
the reverse mapping [a : 1], [b : 4], [c : 2], [d : 3] by sorting cache-obliviously. We
change the labels on the first component of the edges by array scans:

(a = 1, c), (a = 1, d), (b = 4, c), (c = 2, a), (c = 2, b), (c = 2, d), (d = 3, a),

(d = 3, c).

We then sort the edges by the second component,

(c = 2, a), (d = 3, a), (c = 2, b), (a = 1, c), (b = 4, c), (d = 3, c), (a = 1, d),

(c = 2, d),

and change the labels on the second component of the edge by another scan:

(c = 2, a = 1), (d = 3, a = 1), (c = 2, b = 4), (a = 1, c = 2), (b = 4, c = 2),

(d = 3, c = 2), (a = 1, d = 3), (c = 2, d = 3).

Theory Comput Syst (2011) 48: 269–296 285

We get

(2,1), (3,1), (2,4), (1,2), (4,2), (3,2), (1,3), (2,3).

We sort these edges by the first component to get the final layout. The final layout is

(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,2).

Thus, we obtain the following layout performance:

Theorem 9 A cache-oblivious layout of a well shaped mesh G can be computed
in O(|G| log2 |G|) time both in expectation and with high probability. The cache-
oblivious layout algorithm uses O(1 + |G| log2(|G|/M)/B) memory transfers in ex-
pectation and O(1 + (|G|/B)(log2(|G|/M) + log |G|)) memory transfers with high
probability.

With such a layout, we can perform a mesh update cache-obliviously.

Theorem 10 Every well shaped mesh G in d dimensions has a layout that allows
the mesh to be updated cache-obliviously with O(1 + |G|/B) memory transfers on a
system with block size B and cache size M = �(Bd).

Proof We apply the algorithm described above on G to build the layout. Since each
vertex of G has constant degree bound b, its size is bounded by a constant. Consider
a row of nodes Gp1 ,Gp2 ,Gp3, . . . in TG at a level such that each node Gpi

uses
�(M) < M space and therefore fits in a constant fraction of memory.

In the mesh update, the nodes of G are updated in the order of the layout, which
means that first the vertices in Gp1 are updated, then vertices of Gp2 , then vertices of
Gp3 , etc. To update vertices of Gpi

, the vertices must be brought into memory, which
uses at most O(1 + M/B) memory transfers. In the mesh update, when we update
a vertex u, we access u’s neighbors. If the neighbor v of u is also in Gpi

, i.e., edge
(u, v) is internal to Gpi

, then accessing this neighbor uses no extra memory transfers.
On the other hand, if the neighbor v is not in Gpi

, then following this edge requires
another transfer hence an extra block to be read into memory.

We now show that outer(Gpi
) = O(|Gpi

|1−1/d). Since all subgraphs at the same
level of the fully-balanced decomposition tree are of the same size within one, and
outgoing edges of any subgraph are evenly split, each Gpi

has roughly the same
number of outer edges. Suppose Gpi

is in level j . The total number of their outer
edges are at most

|G|1−1/d + 2

(|G|
2

)1−1/d

+ 4

(|G|
4

)1−1/d

+ · · · + 2j

(|G|
2j

)1−1/d

≤
(

2j

21/d − 1

)(|G|
2j

)1−1/d

.

Hence, outer(Gpi
) = O((|G|/2j)1−1/d) = O(|Gpi

|1−1/d) = O(M1−1/d). There-
fore the total size of memory that we need to perform a mesh update of the vertices
in Gpi

is �(M + BM1−1/d).

286 Theory Comput Syst (2011) 48: 269–296

By the tall-cache assumption that Bd ≤ M , i.e., B ≤ M1/d , and for a proper choice
of constants, the mesh update for Gpi

only uses �(M) < M memory. Since updating
each node Gpi

of size �(M) uses O(1 + M/B) memory transfers, and there are a
total of O(|G|/M) such nodes, the update cost is O(1 + |G|/B), which matches the
scan bound of G, and is optimal. �

Thus, for dimension d = 2, we have the “standard” tall-cache assumption [17],
and for higher dimensions we have a more restrictive tall-cache assumption. We now
analyze the tradeoff between cache height and complexity. Suppose instead of a cache
with M = �(Bd), the cache is of M = �(Bd−ε). We assume ε < d − 1. We show
that the cache performance of mesh update is Bε/d away from optimal.

Corollary 11 Every well shaped mesh G in d dimensions has a vertex ordering that
allows the mesh to be updated cache-obliviously with O(1 + |G|/B1−ε/d) memory
transfers on a system with block size B and cache size M = �(Bd−ε).

Proof We apply similar analysis to that in Theorem 10 on G. From Theorem 10, the
total size of memory that we need to update mesh Gpi

is �(M + BM1−1/d). Since
M = �(Bd−ε), we have

O(M + BM1−1/d) = O

(
M + M

B

M1/d

)

≤ O

(
M + M

B

B1−ε/d

)

= O(M + MBε/d).

Thus, updating Gpi
uses O(1 + (M + MBε/d)/B) memory transfers, which simpli-

fies to O(1 + |G|/B1−ε/d) memory transfers. �

5 Relax-Balanced Decomposition Trees and Faster Cache-Oblivious Layouts

In this section we give the main result of this paper, a faster algorithm for finding a
cache-oblivious mesh layout of a well-shaped mesh. The main idea of the algorithm
is to construct a new type of decomposition tree, which we call a relax-balanced de-
composition tree. The relax-balanced decomposition tree is based on what we call
a relax-balanced partition. We give an algorithm for building an relax-balanced de-
composition tree whose performance is nearly a logarithmic factor faster than the
algorithm for building a fully-balanced decomposition tree. We prove that an asymp-
totically optimal cache-oblivious mesh layout can be found by traversing the leaves
of the relax-balanced decomposition tree.

5.1 Relax-Balanced Partitions

We first define the relax-balanced partition of a subgraph Gp of G. A relax-balanced
f -partition of Gp ⊆ G is a partitioning of Gp into two subgraphs Gp0 and Gp1 such
that

Theory Comput Syst (2011) 48: 269–296 287

• |crossing(Gp)| ≤ f (|Gp|),
• |Gp0| = |Gp1| ± O(1 + |Gp|/ log3 |G|), and
• |outgoing(Gp0)| = |outgoing(Gp1)| ± O(1 + |outgoing(Gp1)|/ log2 |G|).

We next present an algorithm, RelaxBalancedPartition, for computing balanced
partitions. Given Gp ⊆ G, and a (f (N) = O(Nα),β)-partitioning geometric sep-
arator, RelaxBalancedPartition(Gp) computes a relax-balanced (f (N) = O(Nα))-
partition Gpx and Gpy of Gp .

We find the relax-balanced partition by building what we call a relax partition
tree TGp . We call the top 3 log1/β log |G| levels of TGp the upper tree of TGp and the
remaining levels the lower tree of TGp .

We build the upper tree by building the top 3 log1/β log |G| levels of a decomposi-
tion tree of Gp . By construction, all leaves of the upper tree (subgraphs of Gp) con-
tain at most |Gp|/ log3 |G| vertices. Outer edges of Gp are distributed among these
leaves. By a counting argument, there are at most log2 |G| leaves that can contain
more than |outer(Gp)|/ log2 |G| outer edges of Gp .

For each upper-tree leaf having more than |outer(Gp)|/ log2 |G| outer edges, we
refine the leaf by building a decomposition tree on it. We do not refine the other leaves
of the upper tree. The union of these decomposition trees comprise the lower tree.

Relax partition tree TGp has leaves at different depths. Some leaves are subgraphs
having a single vertex while others may have up to |G|/ log3 |G| vertices. The tree
is stored in the same format as a standard decomposition tree. Thus, leaves of the
relax partition tree that are not refined contain vertices stored in an arbitrary order.
The relax partition tree TGp of Gp is just a decomposition tree if there are fewer than
log3 |G| vertices.

RelaxBalancedPartition(Gp)

1. Build TGp —Build the relax partition tree TGp from Gp recursively.
2. Build red-blue array—Build an array of vertices by an in-order traversal of leaves

of TGp . Vertices in leaves that are not refined are laid out arbitrarily. Build a red-
blue array and find a subarray in the red-blue array as described in FullyBalanced-
Partition.

3. Modify red-blue array – Modify the subarray to satisfy the following constraint.
All vertices in an (unrefined) leaf must stay together, either within or without the
subarray. If any cut separates the vertices, then move the cut leftward or rightward
to be in between the leaf node and a neighbor. Now partition the vertices in Gp

based on this modified subarray. Put the vertices representing blue elements that
are in the subarray into set Vpx and put the vertices representing blue elements
that are outside of the subarray into set Vpy .

4. Partition Gp—Compute Gpx and Gpy from Vpx and Vpy . This computation also
means scanning edges to determine which edges are internal to Gpx and Gpy and
which have now become external.

We first establish the running time of RelaxBalancedPartition(Gp).

Lemma 12 Given a subgraph Gp of a well shaped mesh G, |Gp| ≥ log3 |G|,
RelaxBalancedPartition(Gp) runs in time O(|Gp| log log |G|) on a RAM and

288 Theory Comput Syst (2011) 48: 269–296

(a) An example subgraph Gp of mesh G. Subgraph Gp has eight vertices, ten edges, and eight outer
edges (i.e., |outer(Gp)| = 8)

(b) A relax partition tree of the subgraph Gp from (a). Building this decomposition tree is the first step
for RelaxBalancedPartition(Gp). Observe that each edge in Gp is a crossing edge for at most one node in
the decomposition tree. Some edges, such as (2,4), are not crossing edges for any node. The top three
levels of the decomposition tree are the upper tree. We refine a leaf of the upper tree if only it has many
(at least three) edges from outer(Gp). Upper tree leaf (Gp)00 has 4 edges from outer(Gp). Upper tree
leaf (Gp)01 has 1 edge from outer(Gp). Upper tree leaf (Gp)10 has 1 edge from outer(Gp). Upper tree
leaf (Gp)11 has 2 edges from outer(Gp). Thus, only (Gp)00 is further refined

(c) The red-blue array for Gp . The blue elements have a dark shade. The red elements have a light
shade. There is one blue element for each vertex in Gp . There is one red element for each outgoing edge
in Gp . The figure indicates a subarray containing half of the blue elements and half of the red elements to
within one. However, this subarray separates element 8 from element 2. This cut is not allowed because 8
and 2 are in the same leaf of the relax partition tree. Instead the cut is moved left to the first valid position.
The new cut separates element 5 from element 8, which is allowed because 5 and 8 are in different leaves
of the relax partition tree. Thus, Gpx will contain vertices 5, 6, and 7, and Gpy will contain vertices 1, 2,
3, 4, and 8

Fig. 3 The steps of the algorithm RelaxBalancedPartition(Gp) run on a sample graph

Theory Comput Syst (2011) 48: 269–296 289

O(1 + (|Gp|/B)min{log log |G|, log(|Gp|/M)}) memory transfers in the DAM
and cache-oblivious models in expectation. With high probability, it runs in
O(|Gp| log |Gp|) on a RAM and O(1 + |Gp| log |Gp|/B) memory transfers in the
DAM and cache-oblivious models.

Proof We establish that the construction algorithm runs in expected time
O(|Gp| log log |G|) on a RAM. The upper tree of TGp takes expected time
O(|Gp| log log |G|). There are at most log2 |G| leaves of the upper tree to be refined.
For each of these leaves, we build a decomposition tree, and this takes expected time

O((|Gp|/ log3 |G|) log(|Gp|/ log3 |G|)) ≤ O(|Gp|/ log2 |G|).
Thus, the total expected time to refine all leaves is O(|G|). Steps 2–4 takes linear
time. Thus, RelaxBalancedPartition(Gp) finds a relax-balanced partition in expected
time O(|Gp| log log |G|).

We next establish that the construction algorithm uses O(1 +
(|Gp|/B)min{log log |G|, log(|Gp|/M)}) expected memory transfers in the
DAM and cache-oblivious models. There are two cases. The first case is when
M ≥ |Gp|/ log3 |G|. Then some of nodes in the top 3 log1/β log |G| levels of the
TGp may be a constant fraction smaller than M . Such small nodes require no
memory transfers to build, because they are already stored in memory. Only the top
O(log(|Gp|/M)) levels use memory transfers. The rest of the decompositions are
free of memory transfers because all necessary memory blocks already reside in
memory. When a subgraph Gp has size �(M), then the partition of a subgraph takes
expected �(|Gp|/B) memory transfers, because this is the cost of a linear scan.
Hence, the total cost is O(1 + (|Gp|/B) log(|Gp|/M)).

The second case is when M < |Gp|/ log3 |G|. Then, the upper tree of TGp

takes O(1 + |Gp| log log |G|/B) memory transfers in expectation. There are at most
log2 |G| leaves of the upper tree of TGp that need further refinement, and the leaf sizes
are at most |Gp|/ log3 |G|. Building a decomposition tree on one of these leaves takes

O(1 + (|Gp|/ log3 |G|) log(|Gp|/ log3 |G|)/B) ≤ O(1 + |Gp|/B log2 |G|)
memory transfers in expectation. Since there are at most log2 |G| leaves, the total ex-
pected number of memory transfers to construct the lower tree of TGp is O(|Gp|/B),
which is dominated by the cost to build the upper tree.

Combining the two cases, we obtain that the expected number of memory transfers
to build TGp is O(1 + (|Gp|/B)min{log logG, log(|Gp|/M)}).

We next establish the high-probability bounds. We first consider all nodes that have
size �(|Gp|/ log |Gp|). There are O(log |Gp|) such nodes. Building these nodes
uses time O(|Gp| log |Gp|) and O(1+|Gp| log |Gp|/B) memory transfers with high
probability by Theorem 4.

For the rest of the upper tree of TGp , each level contains �(log |Gp|) nodes. Thus,
the number of memory transfers with high probability matches the number of mem-
ory transfers in expectation, which is O(1+(|Gp|/B)min{log logG, log(|Gp|/M)}).
The cost to build the rest of the upper tree is dominated by the cost to build the largest
O(log |Gp|) nodes in the upper tree.

290 Theory Comput Syst (2011) 48: 269–296

As described above, the expected cost to build the lower tree is O(|Gp|) time
and O(|Gp|/B) memory transfers. The high-probability bounds are at most a
O(log |Gp|) factor greater and hence are dominated by the cost to build the upper
tree. Thus, we establish the high probability bounds on time and memory transfers. �

We next establish the correctness of RelaxBalancedPartition(Gp). In the follow-
ing, let b represent the maximum degree of mesh G.

Lemma 13 Given a well shaped mesh G and a subgraph Gp ⊆ G,
RelaxBalancedPartition(Gp) generates a relax-balanced partition of Gp .

Proof By the way we construct the relax partition tree TGp , nodes that are not re-
fined contain O(|outer(Gp)|/ log2 |G|) outer edges of Gp , and their sizes differ by
O(|Gp|/ log3 |G|). Thus, by the way we generate Gpx and Gpy , the number of
outgoing edges of Gpx and Gpy differ by O(|outer(Gp)|/ log2 |G|) and |Gpx | and
|Gpy | differ by O(|Gp|/ log3 |G|). Recall that outgoing(Gpx) ∪ outgoing(Gpy) =
outer(Gp). Thus, we have

|outgoing(Gpx)| = |outgoing(Gpy)| ± O(|outgoing(Gpy)|/ log2 |G|).

As shown in (2) from Lemma 7, the number of crossing edges satisfies
|crossing(Gp)| ≤ f (|Gp|). �

5.2 Relax-Balanced Decomposition Trees

A relax-balanced decomposition tree of a well shaped mesh G is a decomposition
tree of G where every partition of every node Gp in the tree is relax-balanced.

We construct a relax-balanced decomposition tree of G recursively. First we apply
the algorithm RelaxBalancedPartition on the root G to get the left and right children,
G0 and G1. We next recursively build the (left) subtree rooted at G0 and then the
(right) subtree rooted at G1.

Theorem 14 (Relax-Balanced Decomposition Tree for a Mesh) A relax-
balanced decomposition tree of a well shaped mesh G of constant dimen-
sion can be computed in time O(|G| log |G| log log |G|) on a RAM both
in expectation and with high probability. The relax-balanced decomposi-
tion tree can be computed in the DAM and cache-oblivious models using
O(1 + (|G|/B) log (|G|/M)min{log log |G|, log(|G|/M)}) memory transfers in ex-
pectation and O(1 + (|G|/B)(log (|G|/M)min{log log |G|, log(|G|/M)} + log |G|))
memory transfers with high probability.

Proof When |G| ≤ M , the construction algorithm takes O(|G|) time and O(|G|/B)

memory transfers, both in expectation and with high probability. We consider
O(|G|) = �(M) in the following analysis.

Theory Comput Syst (2011) 48: 269–296 291

We first analyze the expected running time of the algorithm on a RAM. The con-
struction time of each node Gp is O(|Gp| log log |G|), and there are O(log |G|) lev-
els in the relax-balanced decomposition tree. Thus, by linearity of expectation, the
expected running time is O(|G| log |G| log log |G|).

We show that the construction algorithm uses O(1 +
(|G|/B) log(|G|/M)min{log log |G|, log(|G|/M)}) memory transfers in the DAM
and cache-oblivious models. We analyze large and small nodes in the relax-balanced
decomposition tree differently. There are two cases. The first case is when a tree
node Gp is large, i.e., |Gp| ≥ log3 |G|. In this case, RelaxBalancedPartition(Gp)

uses expected O(1 + (|Gp|/B)min{log log |G|, log(|Gp|/M)}) memory transfers
by Lemma 12. Since all nodes a constant factor smaller than M can be constructed
with no memory transfers, we only need consider nodes of size �(M). There are
O(log(|G|/M)) levels of nodes of size �(M). So the construction of all nodes
larger than log3 |G| takes O(1 + (|G|/B) log(|G|/M)min{log log |G|, log(|G|/M)})
expected memory transfers.

The second case is when |Gp| < log3 |G|. In this case, we build a complete de-
composition tree at each node. Therefore by Lemma 6, the cost to build one of these
nodes is O(1 + (|Gp|/B) log (|Gp|/M)) in expectation. As before, nodes a constant
factor smaller than M can be constructed with no memory transfers. Therefore, the
number of levels containing nodes of size between �(M) and less than log3 |G| is
at most O(log (log3 |G|/M)). Thus, the construction of all nodes of size O(log3 |G|)
uses O(1 + (|G|/B) log2(log3 |G|/M)) memory transfers in expectation, which is
dominated by the first case.

Now we establish the high probability bounds. We analyze the largest �(log |G|)
nodes and the remaining nodes of the relax-balanced decomposition tree separately.
Any level of the relax-balanced decomposition tree below the largest �(log |G|)
nodes has �(log |G|) nodes. Hence, for each level, the construction cost with high
probability matches the construction cost in expectation, which is O(|G| log log |G|)
expected time and O(1 + (|G|/B)min{log log |G|, log(|G|/M)}) expected mem-
ory transfers. Since the construction algorithm is recursive, a relax-balanced par-
tition of nodes a constant fraction smaller than M uses no memory transfers.
Hence, all levels of the relax-balanced decomposition tree other than the largest
�(log |G|) nodes can be constructed in O(|G| log |G| log log |G|) time in a RAM and
O(1 + (|G|/B) log(|G|/M)min{log log |G|, log(|G|/M)}) memory transfers with
high probability.

For the largest �(log |G|) nodes of the relax-balanced decomposition tree, we
establish the high probability bounds using a different approach. Similar to the proof
of Theorem 8, we examine each relax partition tree that is used to build each node of
the relax-balanced decomposition tree, and we examine all nodes within all of these
relax partition trees. However, now there are upper trees and lower trees; we examine
the nodes within upper and lower trees separately.

We look at the upper trees of the relax partition trees of the largest �(log |G|)
nodes of the relax-balanced decomposition tree. There are �(log |G|) upper trees,
which are complete binary trees. Following a similar analysis to that in the proof
of Theorem 8, the construction of the largest �(log |G|) nodes from among the
�(log |G|) upper trees takes O(|G| log |G|) time and uses O(1 + |G| log |G|/B)

memory transfers with high probability.

292 Theory Comput Syst (2011) 48: 269–296

For the rest of the nodes in the upper trees, the high probability bounds match
the expectation bounds, both in time and memory transfers by Theorem 8. There-
fore building the nodes in the rest of the upper trees takes O(|G| log2 log |G|) time
and uses O(|G| log2 log |G|/B) memory transfers with high probability. This cost is
dominated by the construction cost of the largest �(log |G|) nodes of the upper trees.

We now focus on the lower trees of the relax partition trees of the largest
�(log |G|) nodes of the relax-balanced decomposition tree. We show that the cost to
build all of the lower trees takes time O(|G| log |G|) and uses O(1 + |G| log |G|/B)

memory transfers with high probability (i.e., probability 1 − 1/poly(|G|)). With high
probability, the lower tree of a partition tree TGp of a subgraph Gp can be computed
in O(|Gp|) on a RAM and with O(|Gp|/B) memory transfers in the DAM and the
cache-oblivious models. Given a node Gp and its relax partition tree TGp , there are
two cases. The first case is when there are �(log |G|) leaves of the upper tree of TGp

that need to be refined. Thus, with high probability, the construction cost of the lower
tree of TGp matches the expected construction cost, which is in O(|Gp|) time and
O(|Gp|/B) memory transfers, as analyzed in Lemma 12.

The second case is when there are O(log |G|) leaves of the upper tree of TGp

that need to be refined. The construction cost of a single leaf is O(|Gp|/ log2 |G|)
time and O(|Gp|/B log2 |G|) memory transfers in expectation. Thus, the construc-
tion cost to refine a single leaf with high probability is O(|Gp|/ log |G|) time and
O(|Gp|/B log |G|) memory transfers and the construction cost to refine all leaves
with high probability is O(|Gp|) time and O(|Gp|/B) memory transfers. Thus, all
lower trees of the relax partition trees of the largest �(log |G|) nodes of the relax-
balanced decomposition tree can be constructed in O(|G|) time and O(|G|/B) mem-
ory transfers with high probability, which is dominated by the construction of all
upper trees.

Hence, with high probability, the construction algorithm runs in
O(|G| log |G| log log |G|) time on a RAM and uses O(1 + (|G|/B)(log(|G|/M) ×
min{log log |G|, log(|G|/M)} + log |G|)) memory transfers in the DAM and the
cache-oblivious models. �

We now show that a relax-balanced decomposition tree can serve the same purpose
as a fully-balanced decomposition tree in giving cache-oblivious layout. The crucial
property is the following.

Lemma 15 Given a relax-balanced decomposition tree of graph G, all nodes on any
level of the relax-balanced decomposition tree contain the same number of vertices
to within an o(1) factor and all outgoing degrees are the same size to within an o(1)

factor.

Proof From the definition of relax-balanced, for any subgraph Gp and
its two children Gp0 and Gp1 |outgoing(Gp0)| = |outgoing(Gp1)| ±
O(|outgoing(Gp1)|/ log2 |G|), and |Gp0| = |Gp1| ± O(|Gp|/ log3 |G|). Thus,
for constant c, the ratio of the outgoing degree or the size between any two subgraphs
at depth i is at most (1 + c/ log2 |G|)i and (1 + c/ log3 |G|)i . Since there are
O(log |G|) levels, these quantities differ by at most an o(1) factor, as promised. �

Theory Comput Syst (2011) 48: 269–296 293

Similar to Sect. 4, to find a cache-oblivious layout of a well shaped mesh G, we
build a relax-balanced decomposition tree of G. The in-order traversal of the leaves
gives the cache-oblivious layout. Lemma 15 guarantees that we can apply the same
analysis from Sect. 4 to show that we have a cache-oblivious layout.

We thus obtain the following result:

Theorem 16 A cache-oblivious layout of a well shaped mesh G can
be computed in time O(|G| log |G| log log |G|) on a RAM both in ex-
pectation and with high probability. The cache-oblivious layout can
be computed in the DAM and cache-oblivious models using O(1 +
(|G|/B) log (|G|/M)min{log log |G|, log(|G|/M)}) memory transfers in expec-
tation and O(1 + (|G|/B)(log (|G|/M)min{log log |G|, log(|G|/M)} + logG))

memory transfers with high probability.

6 Applications and Related Work

6.1 Applications of Mesh Update

The mesh update problem appears in many scientific computations and ranks among
most basic primitives for numerical computations. In finite-element and finite-
difference methods, one must solve very large-scale sparse linear systems whose
underlying matrix structures are meshes [27]. In practice, these linear systems
are solved by conjugate gradient or preconditioned conjugate gradient methods
[15, 31]. The most computational intensive operation of conjugate gradient is a
matrix-vector multiplication operation [6, 15, 36, 37] which amounts to a mesh up-
date in finite-element applications. The iterative conjugate gradient method repeat-
edly performs mesh updates. Mesh update is also the key operation in fast multipole
methods (FMM) for N-body simulation [19, 20], especially when particles are not
uniformly distributed [32]. The partitioning and layout techniques presented here also
apply to the adaptive quadtrees or octtrees used in non-uniform N-body simulation.

6.2 Related Work

The cache-oblivious memory model was introduced in [17, 30], and cache-oblivious
algorithms have been developed for many scientific problems such as matrix multipli-
cation, FFT, and LU decomposition [8, 17, 30, 35]. Now the area of cache-oblivious
data structures and algorithms is a lively field.

There are other approaches to achieving good locality in scientific computations.
One alternative to the cache-oblivious approach is to write self-tuning programs,
which measure the memory system and adjust their behavior accordingly. Exam-
ples include scientific applications such as FFTW [16], ATLAS [39], and self-tuning
databases (e.g., [38]). The self-tuning approach can be complementary to the cache-
oblivious approach. For example, some versions of FFTW [16] begin optimization
starting from a cache-oblivious algorithm.

Methods exploiting locality for both sequential (out-of-core) and parallel imple-
mentation of iterative methods for sparse linear systems have long history in scientific

294 Theory Comput Syst (2011) 48: 269–296

computing. Various partitioning algorithms have been developed for load balancing
and locality on parallel machines [21, 22, 27, 31], and algorithms that have good
temporal locality have been proposed and implemented for the out-of-core sparse
linear solvers [34]. A mesh update can be viewed as a sparse matrix-dense vector
multiplication, and there exist upper and lower bounds on the I/O complexity of this
primitive [6]. However, these bounds apply to any type of matrix, whereas special
structure of well-shaped meshes enables more efficient mesh updates.

Since the mesh-update problem is reminiscent of graph traversal, we briefly sum-
marize a few results in external-memory graph traversal. The earliest papers in this
area apply to general directed graphs [1, 12, 13, 29] and others focus on more spe-
cialized graphs, such as planar directed graphs [3] or undirected graphs perhaps of
bounded degree [4, 14, 25, 26, 28]. The problem of cache-oblivious graph traversal
and related problems is addressed by [5, 10]. There are also external-memory and
cache-oblivious algorithms for other common graph problems, but such citations are
beyond the scope of this paper.

The problem of cache-oblivious mesh layouts is first described in [40]. This paper
gives no theoretical guarantees either on the traversal cost or the cost to generate
the mesh layout, however. It does propose heuristics for mesh layout that give good
running times, in practice, for a range of types of mesh traversals.

References

1. Abello, J., Buchsbaum, A.L., Westbrook, J.: A functional approach to external graph algorithms. In:
Proc. of the 6th Annual European Symposium on Algorithms (ESA), pp. 332–343 (1998)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun.
ACM 31(9), 1116–1127 (1988)

3. Arge, L., Brodal, G.S., Toma, L.: On external-memory MST, SSSP, and multi-way planar graph sep-
aration. In: Proc. of the 7th Scandinavian Workshop on Algorithm Theory (SWAT), pp. 433–447.
Springer, Berlin (2000)

4. Arge, L., Meyer, U., Toma, L.: External memory algorithms for diameter and all-pair shortest-paths on
sparse graphs. In: Proc. of 31st International Colloquium on Automata Languages and Programming
(ICALP), pp. 146–157 (2004)

5. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An optimal cache-
oblivious priority queue and its application to graph algorithms. SIAM J. Comput. 36(6), 1672–1695
(2007)

6. Bender, M.A., Brodal, G.S., Fagerberg, R., Jacob, R., Vicari, E.: Optimal sparse matrix dense vector
multiplication in the I/O-model. In: Proceedings of the 19th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pp. 61–70 (2007)

7. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems. J. Comput. Syst.
Sci. 28(2), 300–343 (1984)

8. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: an effi-
cient multithreaded runtime system. J. Parallel Distrib. Comput. 37(1), 55–69 (1996)

9. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweeping. In: Proc. of 29th International
Colloquium on Automata Languages and Programming (ICALP). LNCS, vol. 2380, pp. 426–438.
Springer, Berlin (2002)

10. Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data structures and algorithms for
undirected breadth-first search and shortest paths. In: Proc. of the 9th Scandinavian Workshop on
Algorithm Theory (SWAT), vol. 3111, pp. 480–492 (2004)

11. Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-oblivious sorting algorithm. ACM J.
Exp. Algorithmics 12, 1–23 (2008)

Theory Comput Syst (2011) 48: 269–296 295

12. Buchsbaum, A.L., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.R.: On external mem-
ory graph traversal. In: Proc. of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 859–860 (2000)

13. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-
memory graph algorithms. In: Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 139–149 (1995)

14. Chowdhury, R.A., Ramachandran, V.: External-memory exact and approximate all-pairs shortest-
paths in undirected graphs. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pp. 735–744 (2005)

15. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Antoine Petitet, R.V., Whaley, R.C., Yelick, K.:
Self-adapting linear algebra algorithms and software. Proc. IEEE 93(2), 293–312 (2005). Special
Issue on Program Generation, Optimization, and Adaptation

16. Frigo, M., Johnson, S.G.: F.F.T.W.: an adaptive software architecture for the FFT. In: Proceedings of
the Acoustics, Speech, and Signal Processing, vol. 3, pp. 1381–1384. IEEE Press, New York (1998)

17. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proc. of
the 40th IEEE Annual Symp. on Foundation of Computer Science (FOCS), pp. 285–297 (1999)

18. Goldberg, C., West, D.: Bisection of circle colorings. SIAM J. Algebr. Discrete Methods 6(1), 93–106
(1985)

19. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348
(1997)

20. Hackney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw Hill, New York
(1981)

21. Hendrickson, B., Leland, R.: The Chaco user’s guide—version 2.0. Technical Report SAND94-2692,
Sandia National Laboratories (1994)

22. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput. 20(1), 359–392 (1998)

23. Kiwi, M., Spielman, D.A., Teng, S.-H.: Min-max-boundary domain decomposition. In: Theoretical
Computer Science, vol. 261, pp. 253–266 (2001)

24. Leighton, F.T.: A layout strategy for VLSI which is provably good. In: Proc. of the 14th Ann. ACM
Symp. on Theory of Computing (STOC), pp. 85–98 (1982)

25. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear I/O. In: Proc. of the
10th Annual European Symposium on Algorithms (ESA), pp. 723–735. Springer, Berlin (2002)

26. Meyer, U.: External memory BFS on undirected graphs with bounded degree. In: Proc. of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 87–88 (2001)

27. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.: Geometric separators for finite element meshes.
SIAM J. Sci. Comput. 19, 364–386 (1995)

28. Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proc. of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 687–694 (1999)

29. Nodine, M.H., Goodrich, M.T., Vitter, J.S.: Blocking for external graph searching. Algorithmica
16(2), 181–214 (1996)

30. Prokop, H.: Cache-oblivious algorithms. Master’s Thesis, MIT EECS, June 1999
31. Simon, H.D.: Partitioning of unstructured mesh problems for parallel processing. Comput. Syst. Eng.

2, 125–148 (1991)
32. Teng, S.-H.: Provably good partitioning and load balancing algorithms for parallel adaptive n-body

simulation. SIAM J. Sci. Comput. 19(2), 635–656 (1998)
33. Teng, S.-H., Wong, C.W.: Unstructured mesh generation: theory, practice, and perspectives. Int. J.

Comput. Geom. Appl. 10(3), 227–266 (2000)
34. Toledo, S.A.: Quantitative performance modeling of scientific computations and creating locality in

numerical algorithms. Ph.D. Thesis (1995). Supervisor: Charles E. Leiserson
35. Toledo, S.A.: Locality of reference in LU decomposition with partial pivoting. SIAM J. Matrix Anal.

Appl. 18(4), 1065–1081 (1997)
36. Vudac, R., Demmel, J.W., Yelick, K.A.: The optimized sparse kernel interface (OSKI) library: user’s

guide for version 1.0.1b. Berkeley Benchmarking and OPtimizationBeBOP) Group, 15 March 2006
37. Vuduc, R.W.: Automatic performance tuning of sparse matrix kernels. Ph.D. Thesis, University of

California, Berkeley (2003)

296 Theory Comput Syst (2011) 48: 269–296

38. Weikum, G., Moenkeberg, A., Hasse, C., Zabback, P.: Self-tuning database technology and informa-
tion services: from wishful thinking to viable engineering. In: Proceedings of International Conference
on Very Large Data Bases (VLDB), pp. 20–31 (2002)

39. Whaley, R.C., Dongarra, J.: Automatically tuned linear algebra software. In: SuperComputing, pp. 1–
27 (1998)

40. Yoon, S.-E., Lindstrom, P., Pascucci, V., Manocha, D.: Cache-oblivious mesh layouts. In: ACM SIG-
GRAPH and Transactions on Graphics, pp. 886–893 (2005)

	Optimal Cache-Oblivious Mesh Layouts
	Abstract
	Introduction
	Results

	Geometric Separators and Decomposition Trees
	Geometric Separators
	Decomposition Trees

	Fully-Balanced Decomposition Trees for Meshes
	Fully-Balanced Partitions
	Fully-Balanced Decomposition Trees
	k-Way Partitions

	Cache-Oblivious Layouts
	Relax-Balanced Decomposition Trees and Faster Cache-Oblivious Layouts
	Relax-Balanced Partitions
	Relax-Balanced Decomposition Trees

	Applications and Related Work
	Applications of Mesh Update
	Related Work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

