
Communications-Efficient Multithreading on Wide-Area Networks
Michael S. Bernstein and Bradley C. Kuszmaul
Yale University Department of Computer Science

bradley@cs.yale.edu

Abstract

This paper shows how to run multithreaded programs on a DRAM (Distributed Random Access Memory)
parallel computer and demonstrates that such programs can run efficiently on a collection of machines
distributed across thousands of miles over the internet. Suppose we have a fully strict multithreaded program
has work

���
and critical-path length

���
, and we have a � processor DRAM machine with � an upper bound

to the cost of routing any permutation. This paper presents a deterministic conservative DRAM scheduling
algorithm that runs in time �	�
���������������� � ��� ��� � � �
� and a randomized conservative DRAM scheduling
algorithm that runs in time

� ��� �����	�
����������� ��� � � � . We have modified the Cilk multithreaded runtime
system to use our randomized conservative DRAM scheduler. Surprisingly the modified system, called
TreeCilk, often achieves a performance improvement when one 2000-mile-away machine is added to a
tightly-bound cluster of machines.

1

1 Introduction

Cilk is a multithreaded language for parallel programming that generalizes the semantics of C by introduc-
ing linguistic constructs for parallel control. Versions of Cilk previously released by MIT use a provably
efficient, randomized, work-stealing scheduler suitable for machines with plenty of bandwidth, such as su-
percomputers and contemporary symetric multiprocessors (SMP’s) [BJK � 96, FRL]. It consumes subtantial
bandwidth, since when running that algorithm, virtually every processor in the machine can send a message
to a randomly chosen other processor frequently. This paper shows how to run a multithreaded scheduler on
networks with limited bandwidth.

To understand why we need a new scheduling algorithm for limited bandwidth machines let us first
examine the algorithm used by Cilk on a high-bandwidth machine, and then consider what happens on
machines with limited bandwidth. High-bandwidth Cilk uses a randomized work-stealing strategy, in which
an idle processor sends a message to randomly chosen processor to try to find work to steal. Each processor
has its own pool of threads to work on. If a processor’s pool becomes empty, it tries to find a thread in
another processor that it can steal. It searches for such a thread by choosing another processor at random.
The first processor is known as a thief, and the second processor is known as a victim. The thief sends the
victim a message. If the victim has any extra threads in its thread pool, it replies by sending one of the
threads back to the thief, which starts working on the thread. Otherwise, if the victim has no extra threads,
then it sends back a message indicating that the attempt to steal has failed, at which point the thief picks
another victim at random and tries again. This algorithm is both provably good and demonstrates good
performance empirically [BJK � 96].

Consider what happens if we use randomized work stealing on the internet, a network with very limited
bandwidth compared to a supercomputer. Let us suppose that we are using a million processors spread across
the internet. A problem occurs when there are only a few processors which have work to do. This actually
occurs regularly in some Cilk programs 1 In fact, those few working processors need to communicate with
each other in order to get past a nearly serial part of the search so that more parallelism can be found again.
If one of the processors happens to be on the west coast and one happens to be on the east coast, and there are
a million idle processors, then the internet backbone would be flooded with steal/fail message pairs crossing
the Mississippi river. The program has trouble getting its work done, because the two active processors
cannot communicate with each other efficiently. Furthermore the internet’s performance for other users
might collapse under the resulting traffic. The internet authorities might be within their rights to kick us
off.2

To first order, we will accept the network being completely clogged up if our program is getting some
useful work done. Given the grab-all-the-bandwidth-you-can nature of the current internet, we will not
try to solve the problem faced by the internet authorities, except to try to make sure we actually use the
bandwidth to do something useful. Here we focus on using bandwidth productively, rather on the problems
of governing the internet.

In this paper we show how to achieve algorithmic work-scheduling while using the network as efficiently
as possible. The internet is quite difficult to understand, so we attack this problem for dynamic random
access memory (DRAM) machines [LM88]. In a DRAM, communications performance can be predicted by
cutting the network and measuring the cut. One measures the bandwidth provided by the network across the
cut, and the amount of information that must be sent across that cut. The ratio of information to bandwidth is
the load of the cut. Each such load is a lower-bound to the amount of time it will take to run the program. The
key to a DRAM is that the worst-case cut (the one with the highest load) actually predicts the performance
of the communications operation.

1For example, the � Socrates massively parallel chess program gets into this situation [JK97], and the Cilk knarymultithreading
benchmark both contain into “mostly serial” portions of the code.

2For a discussion of techniques to avoid swamping high-bandwidth networks with work-stealing requests, see [Kus94].

2

In the context of a DRAM machine, our goal is to design a conservative DRAM work-scheduling algo-
rithm. A conservative DRAM algorithm is one which induces a load on the network not much greater than is
absolutely necessary. It is clear what is meant by the “absolutely necessary load” for the for the conservative
DRAM algorithms presented in [LM88]. But what do we mean by “the absolutely necessary” load for work
stealing? The thieves and victims are changing constantly. At one instant in time, the only available thieves
may be far away from the only available victims. Perhaps if we wait a little while, there will be some thieves
and victims nearer each other so we won’t have to use as much bandwidth for them to communicate. We
define this problem away by considering a snapshot at some moment in time. In this situation the processors
are either thieves, or they are busy, and if they are busy they may have work available to steal. Now we wish
to match up the thieves and the victims in such way to allow us to prove a good performance bound and
without using too much bandwidth.

The underlying goal of Cilk’s randomized work-stealing is to match up victim and thief processors. This
kind of matching problem is known as the rendezvous problem.3 In the rendezvous problem there are two
sets of processors victims, and thieves, The goal is to find a maximal bipartite degree-one graph beteen the
victims and the thieves. That is, we wish to give every thief the name of at most one victim so that no victim
is named by more than one thief. Also, we want either all the thieves to receive a name, or all the victims
to be named, (or both if there are the same number of thieves and victims.) A rendezvous algorithm can
be used to implement a work-stealing scheduler, as follows. Run the rendezvous algorithm, and then every
thief that received a victim’s name steals from that victim.

Our strategy is to superimpose a tree data structure onto the network, so that we can perform operations
such as reduction and prefix summation. Internal nodes of the tree are implemented by processors at the
leaves of the tree. We place the internal nodes of the tree to try to maximize the ability to communicate with
processors below it in the tree. A left-to-right numbering scheme identifies the processors. (See Figure 1 for
an example tree.)

In this paper we describe and analyze four rendezvous algorithms. The first, Algorithm DPR, is a deter-
ministic algorithm that uses parallel prefix, and is based on Christman’s rendezvous algorithm [Chr83]. The
second, Algorithm RPR is a randomized rendezvous algorithm that achieves tighter theoretical bounds. The
third and fourth algorithms are conservative DRAM algorithms. The third, Algorithm DDR is a determin-
istic DRAM rendezvous. The fourth, Algorithm RDR is a randomized DRAM rendezvous. Our bounds for
the conservative DRAM algorithms are the same as the parallel prefix rendezvous algorithms, but we argue
both theoretically and empirically that the conservative DRAM have significantly better preformance.

We have implemented Algorithm DDR for the Cilk multithreaded programming system. (As of writing
this paper we have not implemented Algorithm RDR, but we hope to have it running in time for the final
paper. The required changes to our Cilk implementation appear to be straightforward.) Figure 1 shows an
example of 25 processors spread across the USA, and along each edge of the tree, it shows the bandwidth
used (in bytes per second.) The accounting of bandwidth works as follows. When a message is sent directly
from one processor to another, we record that bandwidth is consumed along every edge of the tree. We record
it this way, even though, for example, messages from Cleveland to Cambridge take a shortcut and never
actually enter the Moffett Field cluster (where the root of the tree is situated.) This method of accounting
shows more bandwidth being used along some links than are actually necessary. Leiserson and Maggs
showed [LM88] that such a shortcut does not change a conservative DRAM algorithm into a nonconservative
algorithm, however.

The remainder of this paper is organized as follows: Section 2 explains and analyzes the parallel pre-
fix rendezvous algorithms (Algorithms DPR and RPR.) Section 3 presents and analyzes our conservative
DRAM rendezvous algorithms (Algorithms DDR and RDR.) Section 4 provides an empirical performance

3The earliest version of the rendezvous algorithm that we know of was described by Christman [Chr83] in the context of parallel
memory allocation.

3

analysis of the TreeCilk system using Algorithm DDR. Section 5 concludes with a discussion of the un-
solved problems of wide-area Cilk.

2 Parallel-Prefix Rendezvous

This section shows how to implement a rendezvous without concern for network load induced by the al-
gorithm. The algorithms presented in this section do not try to produce a local matching, and they are use
substantial bandwidth while computing the matching. We shall describe and analyze two algorithms: Al-
gorithm DPR (which stands for “Deterministic Prefix Rendezvous”) and Algorithm RPR (which stands for
“Randomized Prefix Rendezvous”.) In the next section we shall describe algorithms that are more parsimo-
nious with the network bandwidth.

The prefix rendezvous algorithms presented here use a parallel prefix enumeration primitive. The enu-
meration problem is as follows: Given a machine in which a subset

�
of the processors have a certain

property, give each such processor a unique number between 0 (inclusive) and � � � (exclusive.) Enumer-
ation can be implemented in logarithmic time using a parallel-prefix operation, even on machines with
relatively little bandwidth. For more details on how to implement parallel prefix and how it can be used, see
[CLR90, Ble90].
Algorithm DPR (Deterministic Prefix Rendezvous):4

1. Enumerate the thieves.

2. Enumerate the victims.

3. The � th victim sends a message to Processor � , and the � th thief sends a message to Processor � (both
messages contain the identity of their sender). Processor � is called the rendezvous processor for
Victim � and Thief � .

4. The rendezvous processor then sends a message to the thief that contains the victim’s identity.

5. When a thief recieves a message from the rendezvous processor, it knows the identity of a victim from
which it should steal.

Algorithm DPR’s performance at multithreaded computations can be analyzed as follows. See [BL94]
for a complete technical definition of the term fully strict multithreaded computation, and the performance
measures critical-path length and work. Informally, a fully strict multithreaded computation is well-formed.
The work is the time it takes one processor to execute the computation. The critical-path length is the time
it would take an infinite-processor machine to execute the program with no scheduling or communications
consts.

Definition 1 The value � is the worst-case cost of routing a permuation on the parallel computer being
used.

Theorem 2 Consider the execution of any fully strict multithreaded computation with critical-path length� �
and work

� �
using the (nonrandomized) prefix rendezvous. The running time on � processors, including

scheduling overhead, is
����� � �
��� � ����� ����� � ��� � � � � � .

Proof: Every successful steal can be amortized against either work or the critical-path length in the manner
of Brent’s theorem [Bre74]. The overhead of a steal is � ��� � � ������� since the enumerations cost time � �����

4Algorithm DPR is due to Christman [Chr83].

4

and the data that is sent for the rendezvous consists of three subpermutations, each of which costs no more
than � time.

Algorithm DPRcan be improved by modifying it so that every victim has an equal chance of being
stolen. (If there are more thieves than victims, then there is no trouble, but if there are more victims than
thieves, we want to make sure they all get a chance.)
Algorithm RPR (Randomized Prefix Rendezvous):

1. Choose a random number � and broadcast it to all the processors.

2. Enumerate the thieves, and also broadcast the total count of the thieves,
�

.

3. Enumerate the victims, and also broadcast the total count of the victims � .

4. Renumber the victims by adding their � to enumeration index (modulo � .)

5. The � th victim (using the new enumeration index) sends a message to Processor � , but only if ��� � .
The � th thief sends a message to Processor � . (both messages contain the identity of their sender).

6. The rendezvous processor then sends a message to the thief that contains the victim’s identity.

7. When a thief recieves a message from the rendezvous processor, it knows the identity of a victim from
which it should steal.

Thus, each victim has an equal chance of being matched with a thief. In this algorithm the probabilities of
adjacent victims being stolen are not independent, but that independence is not needed for the Cilk results
to go through if there is enough bandwidth.

Theorem 3 Consider the execution of any fully strict multithreaded computation with critical-path length� �
and work

� �
using the randomized prefix rendezvous. The expected running time on � processors,

including scheduling overhead, is
� � � ��� � � � �	�
����� � ��� ��� ��� � . Moreover, for any ����� , with

probability at least 	�
�� , the execution time is
� � � � ��� � ��� �
��� � ����� ����� � � ����� ��	 � � �
�
� .

Proof: The proofs of Blumofe and Leiserson [Blu95, BL94] work with some simplifications and minor
modifications. In those proofs, an accounting scheme is used where processor time is accounted for by
putting a dollar in one of three buckets on every time unit. The first bucket, the work bucket gets a dollar
whenever a processor is actually working. The second bucket, the steal bucket gets a dollar every time
a processor initiates a steal. The third bucket, the waiting bucket, gets a dollar for every time unit that a
processor is waiting for a response to a steal request. On every time unit � dollars are distributed among the
3 buckets, since every processor is either working, stealing, or waiting. As with Blumofe and Leiserson’s
proof, the work bucket ends up with exactly

� �
dollars. The steal bucket will have an expected � � � � � �

dollars in it, since on every global rendezvous, we have a good chance of stealing the critical threads. The
wait bucket has an expected � � � � � � ����� � � � �
� since each rendezvous takes time � � � ����� � � � : It takes
time � � ����� ��� to perform the enumerates, and it takes time � ��� � to send the messages, since they are all
subpermutations.

Thus the randomized prefix-rendezvous algorithm has large costs associated with critical-path length,
but the costs associated with the work are small, which is an improvement over the deterministic prefix-
rendezvous algorithm.

There are several problems with the prefix-rendezvous algorithms:

5

� These algorithms do not even try to produce a matching that preserves locality. It may be possible to
find a matching that incurs no stealing across the root of tree, but these algorithms make no effort to
find such a matching.

� Even if the matching happens to have a high degree of locality, the prefix rendezvous algorithms
themselves use a great deal of bandwidth to find the matching. In particular, sending data to and from
the rendezvous processors may incur much higher loads than the matching itself incurs. (This can
happen, for example, if all the victims and the thieves are in the rightmost part of the tree, but the
rendezvous processors are always at the leftmost part of the tree.)

On bandwidth-limited networks, Algorithm RPR has a big advantage over randomized work stealing, in
that the slowdowns are limited by the cost, � , of routing a worst-case permutation. Beyond the small load
induced by computing the enumerations, every message sent is associated with actually getting some work
stolen. In the randomized work-stealing algorithm, messages can saturate the network with no useful work
getting done. For networks with plenty of bandwidth, however, randomized work-stealing is much faster
than the randomized prefix-rendezvous algorithm.

3 Conservative Rendezvous

We have now explained and analyzed two prefix-rendezvous schedulers that do not take care to minimize
network load. This section shows a conservative DRAM algorithm for rendezvous, which gives qualita-
tively better performance for the rendezvous. We have not been able to relate this improved rendezvous
performance to an improvement on our bounds for work-scheduling, since as far as we know, in the worst
case, it may actually require time � to match thieves with victims. Empirically, we have found that the
bandwidth used by our conservative rendezvous algorithm is substantially less than that used by the stan-
dard rendezvous algorithms, however. First we will more carefully define the goals we are trying to achieve,
and then we will present and analyze two conservative DRAM algorithms, one deterministic and one ran-
domized, which have the same bounds respectively as the deterministic and randomized prefix-rendezvous
algorithms.

As stated earlier, we superimpose a tree onto the network. We designate the internal vertices as switches
and the leaves are designated processors. When they do not need to be distinguished, switches and proces-
sors are called nodes. A switch may have an arbitrary number of children. All computational work is done
by processors, and the scheduling work is distributed among the switches. Processors in the tree are in a
one-to-one correspondence with the physical processors involved in the DRAM. Switches are virtual objects
whose function is fulfilled by one of the physical processors in the subtree rooted in the switch. The com-
putational requirements of scheduling are small compared to the requirements of the actual computation, so
the selection of the host processor is somewhat arbitrary.

The notion of ownership is the foundation of Algorithm DDR. Each thief and each victim is logically
owned by a node. When a processor becomes a thief or a victim, it creates a logical ownership, which it
can transfer to its parent. Switches transfer ownership of thieves and victims upwards until a switch owns
both a set of thieves and a set of victims; this switch is called the matching switch. The matching switch
arranges a match between the thieves and victims, which signifies that each member of the thief set will
steal from one of the members of the victim set. The matching switch does not actually make the one-to-one
mapping; once a match is made, the switches in the subtree beneath the matching switch are responsible for
constructing mappings, splitting the block of thief and victim ownerships into smaller blocks and distributing
those blocks to their children. Match messages are sent only down subtrees which include thieves; since
thieves steal from victims, the match messages are ultimately destined for thief processors. When a thief
processor receives a single match pair containing its own ownership and the ownership of a victim, it steals
from that victim and then destroys the pair of ownerships, since the thief is no longer a thief and the victim

6

is no longer a victim. If the thief becomes idle once again, or the victim has more stealable work, they
re-create ownership rights and the process begins anew.

Algorithm DDR maintains locality by performing matches in subtrees before performing matches be-
tween subtree. A switch

�
performs all possible matches between thieves and victims in the subtree whose

root is
�

, and then sends the residue up to its parent. This process assures that matches between relatively
local processors are made before matches between relatively remote processors, assuming that the tree is
designed so that subtrees correctly reflect locality. The idea of organizing processors into a tree is not new;
Keith Randall’s distributed Cilk effectively uses a tree of height one with one switch and � leaves where
� is the number of processors. The difference is that Algorithm DR does the matching conservatively,
assuring that all intra-subtree matches are made before inter-subtree matches are attempted.

To help explain Algorithm DDR, we have illustrated several stages. The initial state of a hypothetical tree
is illustrated in Figure 2. Switches are represented by rectangles and named with Greek letters. Processors
are represented by rounded rectangles; thief processors are denoted

���
, while victim processors are denoted

� � . The notation
� � ������� � signifies that the node owns � thieves and � victims. (The letter

�
stands for

“Mine.”) Thus, the thief processors own one thief each and the victim processors own one victim each.

3.1 Indirect Ownership Passing

The goal of making work scheduling a conservative algorithm requires that the scheduling algorithm pass
no more information than necessary between nodes, particularly if that information is of variable size. This
rules out an implementation which passes the ownership rights of thieves and victims by name, because the
size of the messages containing those rights would grow linearly in the number of ownerships being passed.
In the worst case, the size of a message could be proportional to the total number of thieves or the total
number of victims in the tree. This is not a problem for small trees, and a scheduler using a name-passing
scheme might even be better for small trees, but it has bad asymptotic behavior.

To make the passing of ownership a constant-size message, we pass ownerships anonymously. When a
node owns

�
thieves, that ownership consists only in the node’s thief ownership count being set to

�
. To

pass ownership, a node creates a message which signifies the transfer of � thieves, sends the message, and
subtracts � from its thief ownership count. When a node receives a transfer message, it adds the transfer
count to its ownership count. The same process is used to transfer victims. The transfer message is therefore
a constant-size message. This covers the messages which travel up from the processors to the root, carrying
ownerships until a match is made. Figure 3 illustrates the tree after all ownerships have been transferred to
the root switch 	 .

Match messages, which travel downward from the matching switch to the thief processors, are similar
to transfer messages except that they include a match pointer. Match messages are ultimately destined for
thief processors, and those thieves cannot steal without the address of a victim processor. Nevertheless,
we established that the matching message must not include a full list of victim processors, since this could
conceivably include all the victim processors in the tree. To solve this dilemma, we introduce the concept of
a match pointer, which is either the name of a victim processor or a pointer to a switch which can provide
a set of match pointers. When a switch or a processor requires actual victim names, it “dereferences” the
match pointer by sending a match query to the referenced node, which responds with either a set of victim
processor names or a set of match pointers. This allows us to pass names only when required, which keeps
the algorithm conservative. Note that a match message always transfers the same number of thieves and
victims; this is logical, since it would be impossible to match unequal numbers of thieves and victims.

7

3.2 Reservations

We introduce the concept of a reservation to make match queries work properly. There is a problem with
the system described above: when a switch is asked to deference a match pointer, it is not clear how the
switch can avoid returning the same victim processors to multiple queriers. To handle this problem, we use
a system of reservations. When a node transfers ownership of victims to its parent, it keeps track of how
many ownerships were passed as a reservation. The node no longer owns those processors, but it still must
reserve them until the owner claims them. The state of the tree with reservation counts is shown in Figure 4.
The notation “R=(t,v)” indicates that the node is reserving � thieves and � victims. Note that the sum of the
“mine” and the “reserved” pairs for a given node is the count of thieves and victims which the node has been
informed of.

Thief reservations are redeemed when a parent sends a match message to its child. Since it is thief
processors which ultimately steal, the match messages for a given set of matches cascade down the thief
subtree to the thief processors named in the set. Match messages transfer ownership of both thieves and
victims; the owned victims are in an adjacent subtree, but since a node � originally transferred ownership
of � thieves to its parent, it must eventually receive a match message for � thieves, redeeming its own
reservation. Upon receipt of the match message, the ownership rights of � thieves are transferred from the
reserved pool to the “mine” pool, and � then proceeds to set up matches as described below.

Victim reservations are redeemed by match queries. When the matching switch sends a match message
to a switch, it sends the rights to a number of thieves and victims, as described above; it also sends a set of
match pairs. A match pair consists of a match pointer and a victim count; together they describe the right
to a reservation of a given size on the named node. A thief switch holding a match pair can send a match
query to the node named by the match pair. A node � receiving a match query redeems the reservation
by returning a set of match pairs whose match pointers point to a subset of � ’s children and whose victim
counts sum to the victim count in the original reservation. In other words, � swaps a match pair on itself for
a set of match pairs on its children. � then decrements its reservation count and adjusts information about
its children so that it does not allocate the same victim processor to two queriers.

To continue our example, we show the state of the tree after the root switch 	 has sent a match message
for two thieves and two victims to � and while � is in the midst of querying � in Figure 5. Switch 	 has
decremented its thief and victim ownership counts by two, since it transferred ownership to � via a match
message, along with a match pair for two victims from � . Switch � has decided to redeem this reservation,
so it has sent a match query to � , which has responded with two match pairs naming its two children, � 	
and ��� . Notice that the sum of the victim counts in � ’s response is equal to the victim count in � ’s query,
and that � has decremented its reservation count, since it no longer holds the reservations on its children.
Once � receives the response, it holds the reservations on � 	 and ��� .

3.3 The Knife Algorithm

The Knife algorithm is used to actually match up victims and thieves. When a switch prepares to send match
messages to its children, it must make sure that the match messages transfer equal numbers of thieves and
victims. To minimize communication costs, a switch should send only one match message to a given child
for a given matching cycle. To satisfy these goals, we use the Knife algorithm. It executes on a node in the
thief subtree which owns a number of thieves and victims and holds a set of match pairs. The algorithm,
running on a node � , is the following:

1. Attempt to find a subset of � ’s owned match pairs, the sum of whose sizes is exactly equal to the
number of thieves in one of � ’s children � .

2. If this fails, it fails because one of the match pairs is too large. Send a match query to the switch

8

named by the overly large match pair to exchange it for a set of smaller match pairs.

3. If the Step 1 attempt succeeds, compose a match message containing a transfer of thief and victim
ownership rights and the subset of match pairs and send it to � .

This algorithm is repeated until we finish matching all the thieves and victims.
An example of a simple execution of the Knife algorithm is illustrated in Figure 5. Switch � is unable

to send any match messages before it queries � because it holds a match pair of size 2, whereas its children
are all thieves of size 1. Switch � needs a match pair of size 1. To obtain such a match pair, it sends a match
query to � . If, hypothetically, � returned a match pair of size 2, � would then query on that pair; it continues
this process into it obtains a match pair of the correct size. The querying switch essentially attempts to “cut”
off a slice of the tree of the correct size, and continues “cutting” until it succeeds. For a balanced tree, no
more than ����� � queries are necessary where � is the number of processors.

While it seems as if an alternative algorithm could avoid this loop, such an algorithm causes a message
explosion. Consider the alternative algorithm where a switch performs only one match query, querying its
sibling or cousin. If it still holds an overly large match pair � � ��� � , the switch trivially divides it into two
match pairs � � ��� � and � � ��	 � where � � � �
	 . This is a legitimate operation, since the node � can fulfill
two reservations just as easily as one, and appears to allow a switch to send match messages to its children
while doing only one match query. The problem occurs in trees like Figure 6. Since Switch � is not willing
to look ahead into � ’s children, it just splits the match pair for � into four pieces and sends them on to its
children; � therefore gets queried four times, creating a communication hotspot in the network. The Knife
algorithm does one extra query to � and thus avoids the message explosion and the hotspot.

Once a thief processor receives a match pair naming a real victim processor, it is able to steal. The
Knife algorithm does not guarantee that a thief processor will receive a match pair with a real victim name;
it may be given a match pointer, in which case the thief processor uses match queries to follow the chain
of match pointers until it reaches the real victim processor. The thief processor steals work from the victim
processor, and then destroys the ownership rights to both the thief and the victim. At this point, since the
thief processor held and destroyed the ownership rights and reservations for both the thief and the victim,
no node owns or reserves either one.

This set of procedures is the essence of the algorithm. Within a given subtree, ownership rights rise to
the subtree root, which composes and sends match messages to its children. These match messages cascade
down the thief subtree, arranging the appropriate work steals. In the meantime, the subtree root has sent
residual thieves or victims to its parent, so that this same process is taking place on the next level.

The use of anonymous ownership and match pointers is basic to the distributed nature of the scheduling
algorithm. If we were to use a name-passing algorithm, then the matching switch would be doing most of
the scheduling work for a given set of matches. In our system, the scheduling work is distributed among
all the switches in the thief and victim subtrees. A given switch in the thief subtree is only responsible for
executing the Knife algorithm. A given switch in the victim subtree simply has to fulfill match queries with
match pairs. The apparent inconvenience of having to do match queries and deal with match pointers is
balanced by better distributed behavior for the scheduling algorithm.

3.4 Analysis

Algorithm DDR has the same performance bounds as Algorithm DPR, but Algorithm DDR is conservative.

Lemma 4 If the processor-tree is balanced of depth at most ������� , then the DRAM rendezvous algorithm is
conservative with respect to the tree and the permutation induced by the matching.

Proof: The messages that go up the tree induce only a constant load on the tree. The downward-going
messages are of size contain at most �	� ��������� node identifiers, since each matching names a contiguous

9

region of processors by naming the maximal roots of the subtrees containing those processors. The node
names and counts require at most � � ����� � � bits since there are only � processors to identify or count. Each
subtree may receive at most one match message from each of its ancestors. The knife algorithm is used
to split any particular node at most once per match message, and are only handled by the ancestors of the
victims that will eventually be stolen.

Theorem 5 Consider the execution of any fully strict multithreaded computation with critical-path length���
and work

���
using the (nonrandomized) DRAM rendezvous. The running time on � processors, includ-

ing scheduling overhead, is
��� � � �
��� � ����� ����� � ��� � � � � � .

Proof: The same as for Theorem 2.

3.5 Randomized DRAM Rendezvous

Algorithm RDR uses a slight twist on the nonrandomized DRAM algorithm. In Algorithm DDR, a matching
switch tries to match as many of its children as possible to maximize locality, without regard to whether
far-away victims will ever be stolen. To make sure that each victim has a fair chance of being stolen requires
global knowledge of how many thieves and victims there are. To do this, we first calculate the total number
of thieves and victims by summing up the tree and broadcasting down. At this point every switch knows
how many thieves and victims are below it in the tree, and how many are in the entire tree. Let

�
be

the total number of thieves in the entire tree, and � be the total number of victims. If
��� � then each

switch matches locally as before. Otherwise, in a completely fair scheme, each victim should have chance
� � � � � of being stolen.

We will define a “fairness coefficient”, � , which tells us how fair we want to be. If � � 	 then the
algorithm will be completely fair. If � � 	 � � then the algorithm will guarantee each victim a chance � �
of being stolen. If � � � the algorithm reverts to Algorithm DDR. Each switch uses � to determine how
much matching it may perform locally. If a switch has

���
thieves and � � victims in its subtree, then it knows

that there are
�
 ��� thieves and �
 � � victims in the rest of the world. The switch must guarantee that

the rest of the world will have � � � �
 � � � thieves available for its victims. Thus it must contribute at least
� � � �
 � � �
 � �
 ��� � thieves, and it can use up to

�
�� � � �
 � � � of its thieves for local matching. We
can thus adjust � to make a tradeoff between provably good performance and improved locality.

Theorem 6 Consider the execution of any fully strict multithreaded computation with critical-path length� �
and work

� �
using the randomized DRAM rendezvous with � a positive constant. The expected running

time on � processors, including scheduling overhead, is
��� � � ��� � � � �
����� ����� ��� � � � . Moreover, for

any � � � , with probability at least 	
 � , the execution time is
� � � � ��� � � �	�
��� � ����� ����� � � �	� � ��	 � � �
�
� .

Proof: The same as for Theorem 6.

4 Empirical Results

We implemented Algorithm DDR in the Cilk multithreaded runtime system. We call the DRAM version
of Cilk TreeCilk. We found that the system is not very predictable, whether we run on a controlled envi-
ronment, such as the NASA Ames Whitney cluster, or on an uncontrolled environment such as the internet.
Surprisingly the internet is not much worse than the local-area network.

To measure the performance of TreeCilk, we ran applications, and measured the critical path, work, and
runtime. Currently TreeCilk can only run a few Cilk applications. Our version does not support dynamic
memory allocation or Cilk’s abort protocol. We plan to address both of these shortcomings in the near

10

future. Because of these limitations, we only have a few programs running, including the doubly recursive
fibonacci program and the synthetic knary benchmark [BJK � 96].

We ran the knary program with a variety of parameters and on a variety of machine configurations. In
order to plot different computations on the same graph, we normalized the machine size and the speedup
by dividing these values by the average parallelism � � � � � � �

, as was done in [BJK � 96]. Figures 7
and 8 show the outcomes of these experiments. Figure 7 includes only data from running in the Whitney
ethernet-connected Pentium-Pro cluster. Figure 8 shows data from running on the internet using several
whitney machines plus one Yale machine, communicating from Connecticut to California.

The linear-speedup plus critical-path model of [BJK � 96] does not appear to work very well for our
implementation, even when we run in the controlled environment of the Whitney cluster. The data from
Figure 9, which includes only runs for which the work is at least 18 seconds is a little better, but it still
appears that we do not fully understand this system. We tried a curve fit of the performance against a model
of the form � � � 	 � � ��� � � 	 � � � � 	�� � ����� � �
and fits that included the ������� � � basis function are a little better than fits that include only the

� �
basis

function, but we do not consider the curves to fit well enough to be predictive.
We suspect that the part of the system we do not understand is the synchronization. Perhaps our al-

gorithm is “too synchronous”. We plan to try some modifications to the algorithm that make it less syn-
chronous.

We found that taking a cluster computation and adding a far-away processor often improved the speed.
One would not be surprised if the overhead of adding a far-away processor overcame any additional pro-
cessing power added by the processor. Sometimes adding a processor helps, and sometimes it does not.
Surprisingly, we found that in situations where the addition of a local processor improves performance, the
addition of a processor located across the internet also improves performance.

Link Loads

We can measure link loads on our tree structure very easily. Since our abstraction of the internet is that it is a
tree-structured DRAM, there is a unique path between each source and destination. If we record the number
of bytes sent to each source and each destination, we can reconstruct the bandwidth actually used. Figure 1
shows the link loads for one run of TreeCilk on 25 processors distributed across the USA. The loads across
the root of the tree are an order of magnitude less than what a ordinary modem provides.

5 The Future

In time for the final paper, we hope to get the following done:
� Implement Algorithm RDR, the randomized DRAM rendezvous, for TreeCilk. Perhaps the improved

theoretical behavior over Algorithm DDR will translate to improved empirical behavior.
� Loosen the synchronization requirements of the algorithm to allow different parts of the machine to

perform their work more independently.
� Support the full Cilk-5 language. For dynamic memory allocation Keith Randall has already made

many of the needed changes in his Distributed Cilk, and we simply need to patch our implementation
with his improvements. We also hope to get the abort protocol running eventually. With these two
changes we will be able to run much more interesting applications, such as blocked matrix multipli-
cation, LU decomposition, Barnes-Hut, and the CilkChess parallel chess program.

In the medium-term we hope to improve TreeCilk. Our strategies include the following:

11

� Use the higher-performance networks available on the Whitney cluster. (We are using UDP on the
ethernet. We hope to try these experiments on a machine with a high-performance system-area net-
work.

� We hope to merge the fault-tolerant Cilk of Blumofe and Lisiecki [BL97] with our system so that
TreeCilk will be able to tolerate processor failures.

In the longer term, internet applications such as TreeCilk will become more common, and the internet
will need to provide a way to control the bandwidth consumption of these applications. It is becoming
clear how one controls the bandwidth consumed by a point-to-point connection, but is still not clear how to
control the bandwidth consumed by a collection of processors working on one application without slowing
them down unnecessarily. Perhaps one day, we will see applications such as CilkChess running on millions
of processors over the internet.

Acknowledgments

This work was supported by an NSF CAREER Grant, contract CCR-9702980 (6/1/97–5/31/99.) Mike Bern-
stein was supported during the summer of 1997 by a grant from the Hughes Foundation to the Perspectives
on Science program at Yale College.

The NASA Ames Research Center provided access to their Whitney distributed Linux computing clus-
ter. Whitney is supported by NASA contract NAS 2-14303 administered by MRJ Corporation at NASA
Ames Research Center, Moffett Field, California. (Christopher Kuszmaul of MRJ served as the principal
investigator at Ames for this collaboration.) The NASA Lewis Research Center provided access to their
network of SMP processors. (Thanks to Tad Kollar and Isaac Lopez for handling our needs at Lewis Re-
search Center.) Additional high-performance computing facilities were provided by the MIT Laboratory for
Computer Science, including equipment donated by Sun Microsystems and Intel Corporation.

Thanks to Keith Randall of MIT for releasing his preliminary version of distributed Cilk to us so we
could implement our algorithms. Thanks to Robert Blumofe and Charles Leiserson for helpful discussions.

References

[BJK
�

96] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Journal of Parallel and Distributed Com-
puting, 37(1):55–69, August 25 1996. (An early version appeared in the Proceedings of the Fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’95), pp. 207–216, Santa
Barbara, California, July 1995.) (ftp://theory.lcs.mit.edu/pub/cilk/cilkjpdc96.ps.gz).

[BL94] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work stealing. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS ’94), November
1994. To appear.

[BL97] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable parallel computing on networks of
workstations. In USENIX 1997 Annual Technical Symposium, Anaheim, California, 6–10 January 1997.
(ftp://theory.lcs.mit.edu/pub/cilk/USENIX97.ps.gz).

[Ble90] Guy E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, 1990.

[Blu95] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis, Massachusetts In-
stitute of Technology, Department of Electrical Engineering and Computer Science, September 1995.
(http://www.cs.utexas.edu/users/rdb/papers/PhDthesis.ps.gz).

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM,
21(2):201–206, April 1974.

12

[Chr83] David Park Christman. Programming the connection machine. Master’s thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, January 1983. Also available
as Xerox PARC Technical Report ISL-84-3, April, 1984.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT
Electrical Engineering and Computer Science Series. MIT Press, Cambridge, MA, 1990.

[FRL] Matteo Frigo, Keith H. Randall, and Charles E. Leiserson. The implementation of the Cilk-5 mul-
tithreaded language. Extended abstract submitted for publication. (ftp://theory.lcs.mit.edu
/pub/cilk/cilk5.ps.gz).

[JK97] Christopher F. Joerg and Bradley C. Kuszmaul. The � socrates massively parallel chess program. In
Sandeep N. Bhatt, editor, Parallel Algorithms: Third DIMACS Implementation Challenge, pages 117–140.
American Mathematical Society, 1997. Published in the DIMACS Series in Discrete Mathematics, Volume
30, as a result of the Third DIMACS Implementation Challenge held at Rutgers University, October 17–19,
1994. (An early version is at ftp://theory.lcs.mit.edu/pub/cilk/dimacs94.ps.Z).

[Kus94] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Computer Science, May 1994. Available as Technical
Report MIT/LCS/TR-645 and as ftp://theory.lcs.mit.edu/pub/bradley/phd.ps.Z.

[LM88] C. E. Leiserson and B. M. Maggs. Communication-efficient parallel algorithms for distributed random-
access machines. Algorithmica, 3:53–77, 1988.

13

stern (MIT)

Cambridge, MA
4 processors

23k

23k

23k

23k

580 530

496 467

417

108

290

192

3.7k 3.7k3.4k

2.3k 2.3k

2.3k

3.4k 3.4k

3.4k

3.7k 3.7k

3k
3k

3k
3k

55k

55k

55k

160

55k

2.3k

sallys (Yale)
1 processor
New Haven, CT

363

whitney cluster (NASA-Ames)
16 processors
Moffett Field, CA

ALR (NASA-Lewis)
4 processors
Cleveland, OH

Figure 1: The bandwidths used in a big TreeCilk computation. A total of 25 processors spread across the
USA were used. These data come from running the knary with parameters (1,5,30000,8). (See
[BJK � 96] for an explanation of the parameters to knary). The dotted lines show where the internal tree
nodes were physically placed. The numbers on the tree edges show the bandwidth consumed over the
computation (measured in bytes per second.) The MIT and ALR machines are both 4-processor Pentium
Pro 200Mhz SMP computers (represented as a subtree with four leaves). The Whitney site provided 16
one-processor Pentium Pro 200Mhz computers (represented as a mixed binary/4-ary tree of depth 3.) The
Yale machine is a Pentium Pro 200Mhz computer. This computation ran for 112 seconds and achieved a
speedup of about 9 on 25 processors.

14

α

β γ

T3

M=(0,1) M=(0,1) M=(1,0) M=(1,0) M=(1,0)

V1 V2 T1 T2

Figure 2: A tree of switches and processors before the matching process has commenced. Rectangles
represent switches and rounded rectangles represent thieves. The notation

� � ��� ��� � signifies that the node
owns � thieves and � victims.

α

β γ

T3

M=(0,0) M=(0,0) M=(0,0) M=(0,0)

V1 V2 T1 T2

M=(0,0)

M=(0,0) M=(0,0)

M=(3,2)

Figure 3: The state of the tree after all ownerships have been transferred up to the root.

α

β γ

T3V1 V2 T1 T2

M=(0,0) M=(0,0) M=(0,0) M=(0,0) M=(0,0)

M=(0,0)M=(0,0)

M=(3,2)

R=(0,1) R=(0,1) R=(1,0) R=(1,0) R=(1,0)

R=(0,2) R=(3,0)

R=(0,0)

Figure 4: The state of the tree after ownership transfer with reservations illustrated. The notation “R=(t,v)”
indicates that the node is reserving � thieves and � victims.

15

α

γ

T3V1 V2 T1 T2

M=(0,0) M=(0,0) M=(0,0) M=(0,0) M=(0,0)

M=(2,2)M=(0,0)

M=(1,0)

R=(0,1) R=(0,1) R=(1,0) R=(1,0) R=(1,0)

R=(0,0) R=(1,0)

R=(0,0)

β
(V1,1)
(V2,2)

(,2)β

Figure 5: The state of the tree after 	 sent a match message to � and while � is in the midst of querying � .
A single match pair is being exchanged for two inferior match pairs.

V V V V

T T T T

B

C

A

Figure 6: The message explosion which occurs if the Knife algorithm is not used. Switch � does not realize
that by doing one extra query it could save � from being queried four times.

16

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1e-05 0.0001 0.001 0.01 0.1 1 10

N
or

m
al

iz
ed

 S
pe

ed
up

Normalized Machine Size

x
1

T_1/P+T_inf
T_1/P+3000T_inf

Figure 7: Various knary data running on the Whitney cluster.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1e-05 0.0001 0.001 0.01 0.1 1 10

N
or

m
al

iz
ed

 S
pe

ed
up

Normalized Machine Size

x
1

T_1/P+T_inf
T_1/P+3000T_inf
T_1/P+6000T_inf

Figure 8: Various knary data running on the internet (Whitney plus one Yale machine.)

17

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1e-05 0.0001 0.001 0.01 0.1 1 10

N
or

m
al

iz
ed

 S
pe

ed
up

Normalized Machine Size

x
1

T_1/P+T_inf
T_1/P+3000T_inf
T_1/P+6000T_inf

Figure 9: The Whitney and internet data with only data points for which
� � � 	 �

.

18

