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Abstract
We present AUTOGEN — an algorithm that for a wide class of dy-
namic programming (DP) problems automatically discovers highly
efficient cache-oblivious parallel recursive divide-and-conquer al-
gorithms from inefficient iterative descriptions of DP recurrences.
AUTOGEN analyzes the set of DP table locations accessed by the
iterative algorithm when run on a DP table of small size, and auto-
matically identifies a recursive access pattern and a corresponding
provably correct recursive algorithm for solving the DP recurrence.
We use AUTOGEN to autodiscover efficient algorithms for several
well-known problems. Our experimental results show that several
autodiscovered algorithms significantly outperform parallel loop-
ing and tiled loop-based algorithms. Also these algorithms are less
sensitive to fluctuations of memory and bandwidth compared with
their looping counterparts, and their running times and energy pro-
files remain relatively more stable. To the best of our knowledge,
AUTOGEN is the first algorithm that can automatically discover
new nontrivial divide-and-conquer algorithms.

Keywords AutoGen, automatic discovery, dynamic program-
ming, recursive, divide-and-conquer, cache-efficient, parallel, cache-
oblivious, energy-efficient, cache-adaptive

1. Introduction
AUTOGEN is an algorithm for automatic discovery of efficient
recursive divide-and-conquer dynamic programming (DP) algo-
rithms for multicore machines from naı̈ve iterative descriptions of
the dynamic programs. DP (Bellman 1957; Sniedovich 2010; Cor-
men et al. 2009) is a widely used algorithm design technique that
finds optimal solutions to a problem by combining optimal solu-
tions to its overlapping subproblems, and explores an otherwise
exponential sized search space in polynomial time by saving so-
lutions to subproblems in a table and never recomputing them. DP
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is extensively used in computational biology (Bafna and Edwards
2003; Durbin et al. 1998; Gusfield 1997; Waterman 1995), and in
many other application areas including operations research, com-
pilers (Lew and Mauch 2006), sports (Romer 2002; Duckworth and
Lewis 1998), games (Smith 2007), economics (Rust 1996), finance
(Robichek et al. 1971) and agriculture (Kennedy 1981).

Dynamic programs are described through recurrence relations
that specify how the cells of a DP table must be filled using already
computed values for other cells. Such recurrences are commonly
implemented using simple algorithms that fill out DP tables iter-
atively. These loop-based codes are straightforward to implement,
often have good spatial cache locality1, and benefit from hardware
prefetchers. But looping codes suffer in performance from poor
temporal cache locality2. Iterative DP implementations are also of-
ten inflexible in the sense that the loops and the data in the DP table
cannot be suitably reordered in order to optimize for better spa-
tial locality, parallelization, and/or vectorization. Such inflexibility
arises because the codes often read from and write to the same DP
table, and thus imposing strict read-write ordering of the cells.

Recursive divide-and-conquer DP algorithms (see Table 1) can
often overcome many limitations of their iterative counterparts. Be-
cause of their recursive nature such algorithms are known to have
excellent (and often optimal) temporal locality. Efficient implemen-
tations of these algorithms use iterative kernels when the problem
size becomes reasonably small. But unlike in standard loop-based
DP codes, the loops inside these iterative kernels can often be eas-
ily reordered, thus allowing for better spatial locality, vectorization,
parallelization, and other optimizations. The sizes of the iterative
kernels are determined based on vectorization efficiency and over-
head of recursion, and not on cache sizes, and thus the algorithms
remain cache-oblivious3 (Frigo et al. 1999) and more portable than
cache-aware tiled iterative codes. Unlike tiled looping codes these
algorithms are also cache-adaptive (Bender et al. 2014) — they
passively self-adapt to fluctuations in available cache space when
caches are shared with other concurrently running programs.

For example, consider the dynamic program for solving the
parenthesis problem (Galil and Park 1994) in which we are given
a sequence of characters S = s1 · · · sn and we are required to

1 Spatial locality — whenever a cache block is brought into the cache, it contains as
much useful data as possible.
2 Temporal locality — whenever a cache block is brought into the cache, as much
useful work as possible is performed on this data before removing the block from the
cache.
3 Cache-oblivious algorithms — algorithms that do not use the knowledge of cache
parameters in the algorithm description.



compute the minimum cost of parenthesizing S. Let C[i, j] denote
the minimum cost of parenthesizing si · · · sj . Then the DP table
C[0 : n, 0 : n] is filled up using the following recurrence:

C[i, j] =


∞ if 0 ≤ i = j ≤ n,
vj if 0 ≤ i = j − 1 < n,
min

i≤k≤j
{(C[i, k] + C[k, j]) + w(i, k, j)} if 0 ≤ i < j − 1 < n;

(1)
where the vj’s and function w(·, ·, ·) are given.

Figure 1 shows a serial looping code LOOP-PARENTHESIS im-
plementing Recurrence 1. Though the code is really easy to under-
stand and write, it suffers from poor cache performance. Observe
that the innermost loop scans one row and one column of the same
DP table C. Assuming that C is of size n × n and C is too large
to fit into the cache, each iteration of the innermost loop may incur
one or more cache misses leading to a total of Θ

(
n3
)

cache misses
in the ideal-cache model (Frigo et al. 1999). Such extreme ineffi-
ciency in cache usage makes the code bandwidth-bound. Also this
code does not have any parallelism as none of the three loops can
be parallelized. The loops cannot also be reordered without making
the code incorrect4 which makes the code difficult to optimize.

Figure 1 shows the type of parallel looping code PAR-LOOP-
PARENTHESIS one would write to solve Recurrence 1. We can ana-
lyze its parallel performance under the work-span model ((Cormen
et al. 2009), chapter 27) which defines the parallelism of a code as
T1/T∞, where Tp (p ∈ [1,∞)) is the running time of the code on p
processing cores (without scheduling overhead). Clearly, the paral-
lelism of PAR-LOOP-PARENTHESIS is Θ

(
n3
)
/Θ
(
n2
)

= Θ (n).
If the size M of the cache is known the code can be tiled to im-
prove its cache performance to Θ

(
n3/

(
B
√
M
))

, whereB is the
cache line size. However, such rigid cache-aware tiling makes the
code less portable, and may contribute to a significant loss of per-
formance when other concurrently running programs start to use
space in the shared cache.

Finally, Figure 1 shows the type of algorithm AUTOGEN would
generate from the serial code. Though designing such a parallel
recursive divide-and-conquer algorithm is not straightforward, it
has many nice properties. First, the algorithm is cache-oblivious,
and for any cache of size M and line size B it always incurs
Θ
(
n3/

(
B
√
M
))

cache misses which can be shown to be op-

timal. Second, its parallelism is Θ
(
n3−log2 3

)
= ω

(
n1.41

)
which

is asymptotically greater than the Θ (n) parallelism achieved by
the parallel looping code. Third, since the algorithm uses recursive
blocking, it can passively self-adapt to a correct block size (within
a small constant factor) as the available space in the shared cache
changes during runtime. Fourth, it has been shown that function
Cloop-par is highly optimizable like a matrix multiplication algo-
rithm, and the total time spent inside Cloop-par asymptotically dom-
inates the time spent inside Aloop-par and Bloop-par (Tithi et al.
2015). Hence, reasonably high performance can be achieved sim-
ply by optimizing Cloop-par .

We ran the recursive algorithm and the parallel looping algo-
rithm from Figure 1 both with and without tiling on a multicore
machine with dual-socket 8-core 2.7 GHz Intel Sandy Bridge pro-
cessors (2 × 8 = 16 cores in total), per-core 32 KB private L1
cache and 256 KB private L2 cache, and per-socket 20 MB shared
L3 cache, and 32 GB RAM shared by all cores. All algorithms were
implemented in C++, parallelized using Intel Cilk Plus extension,
and compiled using Intel C++ Compiler v13.0. For a DP table of
size 8000 × 8000, the recursive algorithm without any nontrivial
hand-optimizations ran more than 15 times faster than the non-tiled
looping code, and slightly faster than the tiled looping code when

4 compare this with iterative matrix multiplication in which all 6 permuta-
tions of the three nested loops produce correct results

each program was running all alone on the machine. When we ran
four instances of the same program (i.e., algorithm) on the same
socket each using only 2 cores, the non-tiled looping code slowed
down by almost a factor of 2 compared to a single instance running
on 2 cores, the tiled looping code slowed down by a factor of 1.5,
and the recursive code slowed down by a factor of only 1.15. While
the non-tiled looping code suffered because of bandwidth satura-
tion, the tiled looping code suffered because of its inability to adapt
to cache sharing.

In this paper, we present AUTOGEN — an algorithm that for
a very wide class of DP problems can automatically discover ef-
ficient cache-oblivious parallel recursive divide-and-conquer algo-
rithms from naı̈ve serial iterative descriptions of DP recurrences
(see Figure 2). AUTOGEN works by analyzing the set of DP ta-
ble locations accessed by the input serial algorithm when run on a
DP table of suitably small size, and identifying a recursive fractal-
like pattern in that set. For the class of DP problems handled by
AUTOGEN the set of table locations accessed by the algorithm is
independent of the data stored in the table. The class includes many
well-known DP problems such as the parenthesis problem, pair-
wise sequence alignment and the gap problem as well as problems
that are yet to be encountered. AUTOGEN effectively eliminates
the need for human involvement in the design of efficient cache-
oblivious parallel algorithms for all present and future problems in
that class.

Our contributions. Our major contributions are as follows:

(1) [Algorithmic] We present AUTOGEN — an algorithm that
for a wide class of DP problems automatically discovers
highly efficient cache-oblivious parallel recursive divide-and-
conquer algorithms from iterative descriptions of DP recur-
rences. AUTOGEN works by analyzing the DP table accesses
(assumed to be independent of the data in the table) of an itera-
tive algorithm on a table of small size, finding the dependencies
among different orthants of the DP table recursively, and con-
structing a tree and directed acyclic graphs that represent a
set of recursive functions corresponding to a parallel recursive
divide-and-conquer algorithm. We prove the correctness of the
algorithms generated by AUTOGEN.

(2) [Experimental] We have implemented a prototype of AUTOGEN
which we have used to autogenerate efficient cache-oblivious
parallel recursive divide-and-conquer algorithms (pseudocodes)
from naı̈ve serial iterative descriptions of several DP recur-
rences. We present experimental results showing that several
autogenerated algorithms without any nontrivial hand-tuning
significantly outperform parallel looping codes in practice, and
have more stable running times and energy profiles in a mul-
tiprogramming environment compared to looping and tiling
algorithms.

Related work. Systems for auto-generating fast iterative DP im-
plementations (not algorithms) exist. The Bellman’s GAP compiler
(Giegerich and Sauthoff 2011) converts declarative programs into
optimized C++ code. A semi-automatic synthesizer (Pu et al. 2011)
exists which uses contraint-solving to solve linear-time DP prob-
lems such as maximal substring matching, assembly-line optimiza-
tion and the extended Euclid algorithm.

There are systems to automatically parallelize DP loops. EasyPDP
(Tang et al. 2012) requires the user to select a directed acyclic graph
(DAG) pattern for a DP problem from its DAG patterns library.
New DAG patterns can be added to the library. EasyHPS (Du et al.
2013) uses the master-slave paradigm in which the master sched-
uler distributes computable sub-tasks among its slaves, which in
turn distribute subsubtasks among slave threads. A pattern-based
system exists (Liu and Schmidt 2004) that uses generic program-
ming techniques such as class templates to solve problems in bioin-



PAR-LOOP-PARENTHESIS(C, n)

1. for t← 2 to n− 1 do
2. parallel for i← 1 to n− t do
3. j ← t + i
4. for k ← i + 1 to j do
5. C[i, j]← min (C[i, j], C[i, k] + C[k, j] + w(i, k, j))

Parallel looping code

LOOP-PARENTHESIS(C, n)

1. for i← n− 1 to 0 do
2. for j ← i + 2 to n do
3. for k ← i to j do
4. C[i, j]← min (C[i, j], C[i, k] + C[k, j] + w(i, k, j))

AUTOGEN

Apar(〈X,X,X〉)

1. if X is a small matrix then Aloop-par(〈X,X,X〉)
2. else
3. par: Apar(〈X11, X11, X11〉), Apar(〈X22, X22, X22〉)
4. Bpar(〈X12, X11, X22〉)

Bpar(〈X,U, V 〉)

1. if X is a small matrix then Bloop-par(〈X,U, V 〉)
2. else
3. Bpar(〈X21, U22, V11〉)
4. par: Cpar(〈X11, U12, V21〉), Cpar(〈X22, X21, V12〉)
5. par: Bpar(〈X11, U11, V11〉), Bpar(〈X22, X22, V22〉)
6. Cpar(〈X12, U12, X22〉)
7. Cpar(〈X12, X11, V12〉)
8. Bpar(〈X12, U11, V22〉)

Cpar(〈X,U, V 〉)

1. if X is a small matrix then Cloop-par(〈X,U, V 〉)
2. else
3. par: Cpar(〈X11, U11, V11〉), Cpar(〈X12, U11, V12〉),

Cpar(〈X21, U21, V11〉), Cpar(〈X22, U21, V12〉)
4. par: Cpar(〈X11, U12, V21〉), Cpar(〈X12, U12, V22〉),

Cpar(〈X21, U22, V21〉), Cpar(〈X22, U22, V22〉)

Figure 1. Left upper half: A parallel looping code that evaluates Rec. 1. Left lower half: AUTOGEN takes the serial parenthesis algorithm as input and au-
tomatically discovers a recursive divide-and-conquer cache-oblivious parallel algorithm. Initial call to the divide-and-conquer algorithm is Apar(〈C,C,C〉),
where C is an n × n DP table and n is a power of 2. The iterative base-case kernel of a function Fpar is Floop-par . Right: Pictorial representation of the
recursive divide-and-conquer algorithm discovered by AUTOGEN. Data in the dark red blocks are updated using data from light blue blocks.

AUTOGEN

analyze the trace
of the input algorithm
on a small DP table

Input

serial
iterative
DP algorithm

Output

parallel recursive DP algorithm:
cache-efficient, cache-oblivious,
cache-adaptive, energy-efficient

Figure 2. Input and output of AUTOGEN.

formatics. Parallelizing plugins (Reitzig 2012) use diagonal fron-
tier and row splitting to parallelize DP loops.

To the best of our knowledge, there has been no previous
attempt to automate the process of discovering efficient cache-
oblivious and cache-adaptive parallel recursive algorithms by an-
alyzing the memory access patterns of naı̈ve serial iterative algo-
rithms. The work that is most related to AUTOGEN, but completely
different in many aspects is Pochoir (Tang et al. 2011a,b). While

Pochoir tailors the implementation of the same cache-oblivious al-
gorithm to different stencil computations, AUTOGEN discovers a
(possibly) brand new efficient parallel cache-oblivious algorithm
for every new DP problem it encounters.

Compiler technology for automatically converting iterative ver-
sions of matrix programs to serial recursive versions is described
in (Ahmed and Pingali 2000). The approach relies on heavy ma-
chineries such as dependence analysis (based on integer program-
ming) and polyhedral techniques. AUTOGEN, on the other hand, is
a much simpler stand-alone algorithm that analyzes the data access
pattern of a given naı̈ve (e.g., looping) serial DP code when run
on a small example, and inductively generates a provably correct
parallel recursive algorithm for solving the same DP.



I-DP R-DP

Work Serial cache Span Parallelism Serial cache Span Parallelism
Problem (T1) comp. (Q1) (T∞) (T1/T∞) comp. (Q1) (T∞) (T1/T∞)

Parenthesis problem (Chowdhury and Ramachandran 2008) Θ
(
n3

)
Θ

(
n3

)
Θ

(
n2

)
Θ (n) Θ

(
n3/(B

√
M)

)
Θ

(
nlog 3

)
Θ

(
n3−log 3

)
Floyd-Warshall’s APSP 3-D (Chowdhury and Ramachandran 2010) Θ

(
n3

)
Θ

(
n3/B

)
Θ (n log n) Θ

(
n2/ log n

)
Θ

(
n3/B

)
O

(
n log2 n

)
Θ

(
n2/ log2 n

)
Floyd-Warshall’s APSP 2-D (Chowdhury and Ramachandran 2010) Θ

(
n3

)
Θ

(
n3/B

)
Θ (n log n) Θ

(
n2/ log n

)
Θ

(
n3/(B

√
M)

)
Θ

(
n log2 n

)
Θ

(
n2/ log2 n

)
LCS / Edit distance (Chowdhury and Ramachandran 2006) Θ

(
n2

)
Θ

(
n2/B

)
Θ (n) Θ (n) Θ

(
n2/(BM)

)
Θ

(
nlog 3

)
Θ

(
n2−log 3

)
Multi-instance Viterbi (Chowdhury et al.) Θ

(
n3t

)
Θ

(
n3t/B

)
Θ (nt) Θ

(
n2

)
Θ

(
n3t/(B

√
M)

)
Θ (nt) Θ

(
n2

)
Gap problem (Chowdhury 2007) Θ

(
n3

)
Θ

(
n3

)
Θ

(
n2

)
Θ (n) Θ

(
n3/(B

√
M)

)
Θ

(
nlog 3

)
Θ

(
n3−log 3

)
Protein accordion folding (Tithi et al. 2015) Θ

(
n3

)
Θ

(
n3/B

)
Θ

(
n2

)
Θ (n) Θ

(
n3/(B

√
M)

)
Θ (n log n) Θ

(
n2/ log n

)
Spoken-word recognition (Sakoe and Chiba 1978) Θ

(
n2

)
Θ

(
n2/B

)
Θ (n) Θ (n) Θ

(
n2/(BM)

)
Θ

(
nlog 3

)
Θ

(
n2−log 3

)
Function approximation Θ

(
n3

)
Θ

(
n3/B

)
Θ

(
n2

)
Θ (n) Θ

(
n3/(B

√
M)

)
Θ

(
nlog 3

)
Θ

(
n3−log 3

)
Binomial coefficient (Levitin 2011) O

(
n2

)
O

(
n2/B

)
Θ (n) Θ (n) Θ

(
n2/(BM)

)
Θ

(
nlog 3

)
Θ

(
n2−log 3

)
Bitonic traveling salesman (Cormen et al. 2009) Θ

(
n2

)
Θ

(
n2/B

)
Θ (n) Θ (n) Θ

(
n2/(BM)

)
Θ (n log n) Θ (n/ log n)

Matrix multiplication (Frigo et al. 1999) Θ
(
n3

)
Θ

(
n3/B

)
Θ (n) Θ

(
n2

)
Θ

(
n3/(B

√
M)

)
Θ (n) Θ

(
n2

)
Bubble sort (Chowdhury and Ganapathi) Θ

(
n2

)
Θ

(
n2/B

)
Θ

(
n2

)
Θ (1) Θ

(
n2/(BM)

)
Θ (n) Θ (n)

Selection sort (Chowdhury and Ganapathi) Θ
(
n2

)
Θ

(
n2/B

)
Θ

(
n2

)
Θ (1) Θ

(
n2/(BM)

)
Θ (n) Θ (n)

Insertion sort (Chowdhury and Ganapathi) O
(
n2

)
O

(
n2/B

)
O

(
n2

)
Θ (1) O

(
nlog 3/(BM log 3−1)

)
O (n) Ω (n)

Table 1. Work (T1), serial cache complexity (Q1), span (T∞), and parallelism (T1/T∞) of I-DP andR-DP algorithms for several DP problems. Here,
n = problem size, M = cache size, B = block size, and p = #cores. By Tp we denote running time on p processing cores. We assume that the DP table
is too large to fit into the cache, and M = Ω

(
Bd
)

when Θ
(
nd
)

is the size of the DP table. On p cores, the running time is Tp = O (T1/p + T∞) and
the parallel cache complexity is Qp = O (Q1 + p(M/B)T∞) with high probability when run under the randomized work-stealing scheduler on a parallel
machine with private caches. The problems in the lower section are non-DP problems. For insertion sort, T1 forR-DP isO

(
nlog 3

)
.

2. The AUTOGEN Algorithm
In this section, we describe the AUTOGEN algorithm.

Definition 1 (I-DP/R-DP/AUTOGEN). Let P be a given DP
problem. An I-DP is an iterative (i.e., loop-based) algorithm for
solving P. AnR-DP is a cache-oblivious parallel recursive divide-
and-conquer algorithm (if exists) for P. AUTOGEN is our algo-
rithm for auto-generating anR-DP from a given I-DP for P.

AUTOGENI-DP R-DP

We make the following assumption about anR-DP.

Assumption 1 (Number of functions). The number of distinct
recursive functions in an R-DP is upper bounded by a constant
(e.g., theR-DP in Figure 1 has 3 distinct recursive functions).

Algorithm. The four main steps of AUTOGEN are:

(1) [Cell-set generation.] A cell-set (i.e., set of cell-dependencies
representing DP table cells accessed) is generated from a run of
the given I-DP on a DP table of small size. See §2.1.

(2) [Algorithm-tree construction.] An algorithm-tree is con-
structed from the cell-set in which each node represents a subset
of the cell-set and follows certain rules. See §2.2.

(3) [Algorithm-tree labeling.] The nodes of the tree are labeled
with function names, and these labels represent a set of recur-
sive divide-and-conquer functions in anR-DP. See §2.3.

(4) [Algorithm-DAG construction.] For every unique function of
the R-DP, we construct a directed acyclic graph (DAG) that
shows both the order in which the child functions are to be
executed and the parallelism involved. See §2.4.

Example. AUTOGEN works for arbitrary d-D (d ≥ 1) DP prob-
lems under the assumption that each dimension of the DP table is
of the same length and is a power of 2. For simplicity of expo-
sition, we explain AUTOGEN by applying it on an I-DP for the
parenthesis problem, which updates a 2-D DP table. The solution is
described by Recurrence 1 which is evaluated by the serial I-DP.
In the rest of the section, we show how AUTOGEN discovers the
R-DP shown in Figure 1 from this serial I-DP.

2.1 Cell-set generation
A cell is a spatial grid point in a DP table identified by its d-D
coordinates. A d-D DP table C is called a level-0 region. The
orthants of identical dimensions of the level-0 region are called
level-1 regions. Generalizing, the orthants of level-i regions are
called level-(i+ 1) regions.

We assume that each iteration of the innermost loop of the given
I-DP performs the following update:

C[x]← f(C1[y1], C2[y2], . . . , Cs[ys]) or

C[x]← C[x]⊕ f(C1[y1], C2[y2], . . . , Cs[ys]),

where s ≥ 1; x is a cell of table C; yi is a cell of table Ci; ⊕ is an
associative operator (such as min, max, +,×); and f is an arbitrary
function. We call the tuple 〈C[x], C1[y1], . . . , Cs[ys]〉 a cell-tuple.
Let C[X], C1[Y1], . . . , Cs[Ys] be regions such that x ∈ X, and
yi ∈ Yi. Then we call the tuple 〈C[X], C1[Y1], . . . , Cs[Ys]〉 a
region-tuple. In simple words, a cell-tuple (resp. region-tuple) gives
information of which cell (resp. region) is being written by reading
from which cells (resp. regions). The size of a cell-/region-tuple is
1 + s. For any given I-DP, the set of all cell-tuples for all cells in
its DP table is called a cell-set.

Given an I-DP, we modify it such that instead of comput-
ing its DP table, it generates the cell-set for a problem of suit-
ably small size, generally n = 64 or 128. For example, for the
parenthesis problem, we choose n = 64 and generate the cell-set
{〈C(i, j), C(i, k), C(k, j)〉}, where C is the DP table, 0 ≤ i <
j − 1 < n, and i ≤ k ≤ j.

2.2 Algorithm-tree construction
Given an I-DP, a tree representing a hierarchy of recursive divide-
and-conquer functions which is used to find a potential R-DP
is called an algorithm-tree. The way we construct level-i nodes
in an algorithm-tree is by analyzing the dependencies between
level-i regions using the cell-set. Every node in the algorithm-
tree represents a subset of the cell-set satisfying certain region-
tuple dependencies. Suppose the algorithm writes into DP table C,
and reads from tables C1, . . . , Cs (they can be same as C). The
algorithm-tree is constructed as follows.



{〈C,C,C〉}

〈C11,C11,C11〉 〈C12,C11,C12〉 〈C12,C12,C22〉 〈C22,C22,C22〉

(a) Before applying Rule 1.

{〈C,C,C〉}

{〈C11,C11,C11〉} {〈C12,C11,C12〉,〈C12,C12,C22〉} {〈C22,C22,C22〉}

(b) After applying Rule 1.

Figure 3. First two levels of the algorithm-tree for the parenthesis prob-
lem before and after applying Rule 1.

At level 0, the only regions possible are the entire tables
C,C1, . . . , Cs. We analyze the cell-tuples of the cell-set to iden-
tify the region-tuples at this level. As all the write cells belong to
C and all the read cells belong to C1, . . . , Cs, the only possible
region-tuple is 〈C,C1, . . . , Cs〉. We create a node for this region-
tuple and it forms the root node of the algorithm-tree. It represents
the entire cell-set. For example, for parenthesis problem, as all the
write and read cells belong to the same DP table C, the root node
will be {〈C,C,C〉}.

The level-1 nodes are found by distributing the cell-tuples
belonging to the root node among region-tuples of level 1. The
level-1 regions are obtained by dividing the DP table C into four
quadrants: C11 (top-left), C12 (top-right), C21 (bottom-left), and
C22 (bottom-right). Similarly, each Ci for i ∈ [1, s] is divided
into four quadrants: Ci

11, C
i
12, C

i
21, and Ci

22. The cell-tuples of
the cell-set are analyzed to find all possible nonempty region-
tuples at level 1. For example, if a cell-tuple 〈c, c1, . . . , cs〉 is
found to have c ∈ Ck and ci ∈ Ci

ki
for i ∈ [1, s] and

k, ki ∈ {11, 12, 21, 22}, then we say that 〈c, c1, . . . , cs〉 belongs
to region-tuple 〈Ck, C

1
k1
, . . . , Cs

ks
〉. Different problems will have

different nonempty region-tuples depending on their cell dependen-
cies. For the parenthesis problem, there are four nonempty level-
1 region-tuples and they are 〈C11, C11, C11〉, 〈C22, C22, C22〉,
〈C12, C11, C12〉, and 〈C12, C12, C22〉.

Sometimes two or more region-tuples are combined into a node.
The region-tuples that write to and read from the same region
depend on each other for the complete update of the write region.
The following rule guarantees that such region-tuples are processed
together to avoid incorrect results.

Rule 1 (Combine region-tuples). Two region-tuples at the same
level of an algorithm-tree that write to the same region X are
combined into a single node if they also read from X .

For example in Figure 3, for the parenthesis problem, at level
1, the two region-tuples 〈C12, C11, C12〉 and 〈C12, C12, C22〉 are
combined into a single node {〈C12, C11, C12〉, 〈C12, C12, C22〉}.
The other two nodes are {〈C11, C11, C11〉} and {〈C22, C22, C22〉}.
The three nodes represent three mutually disjoint subsets of the
cell-set and have different region-tuple dependencies. Once we
find all level 1 nodes, we recursively follow the same strategy to
find the nodes of levels ≥ 2 partitioning the subsets of the cell-set
further depending on their region-tuple dependencies.

2.3 Algorithm-tree labeling
Two nodes of the algorithm-tree are given the same function name
provided they have the same output fingerprints as well as the same
input fingerprints as defined below.

The output fingerprint of a node is the set of all output finger-
prints of its region-tuples. The output fingerprint of a region-tuple
is defined as the set of all its subregion-tuples present in the child
nodes. A subregion-tuple of a region-tuple 〈W,R1, . . . , Rs〉 is de-

fined as a tuple 〈w, r1, . . . , rs〉 where w, ri ∈ {11, 12, 21, 22}
such that 〈Ww, Rr1 , . . . , Rrs〉 is a region-tuple, where ∀i ∈ [1, s].

The input fingerprint of a node is the set of all input finger-
prints of its region-tuples. The input fingerprint of a region-tuple
〈X1, . . . , X1+s〉 is a tuple 〈p1, . . . , p1+s〉, where ∀i ∈ [1, 1 + s],
pi is the smallest index j ∈ [1, i] such that Xj = Xi.

For example, in the parenthesis problem, nodes {〈C12, C11, C12〉,
〈C12, C12, C22〉} and {〈C1221, C1122, C1221〉, 〈C1221, C1221, C2211〉}
are given the same function name because they have the same out-
put and input fingerprints.

A

A AB

B B B B C C C C

C C C C C C C C

A

A A

B

B B

C C

B B

CC

B

C

C C C C

C C C C

(a) (b)

Figure 4. (a) A small part of the labeled algorithm-tree for the paren-
thesis problem. Due to space constaints, only three nodes are expanded.
(b) Algorithm-DAGs for the three functions A,B, and C in the parenthesis
problem showing the order of execution of functions.

In an algorithm-tree, at least one new function is invoked at
every level starting from level 0 till a certain level l, beyond which
no new functions are invoked. We call l the threshold level and it
is upper bounded by a constant as per Assumption 1. The labeled
algorithm-tree for the parenthesis problem is given in Figure 4(a).

2.4 Algorithm-DAG construction
In this step, we construct a directed acyclic graph (DAG) for every
function. An algorithm-tree does not give information on (a) the
sequence in which a function calls other functions, and (b) the
parallelism involved in executing the functions. The DAGs address
these two issues using the rules that follow.

We define a few terms before listing the rules. Given a func-
tion F, we define W(F) and R(F) as the write region and the
set of read regions of the region-tuples in F, respectively. For a
region-tuple T = 〈W,R1, . . . , Rs〉, we define W(T ) = W and
R(T ) = {R1, . . . , Rs}. A region-tuple T is called flexible pro-
vided W(T ) /∈ R(T ), i.e., the region-tuple does not write to a
region it reads from. A function is called flexible if all of its region-
tuples are flexible. If a function F calls two functions F1 and F2,
then the function ordering between F1 and F2 will be one of the
following three: (a) F1 → F2 i.e., F1 is called before F2, (b)
F1 ↔ F2 i.e., either F1 → F2 or F2 → F1, and (c) F1||F2 i.e., F1

can be run in parallel with F2.
If a function F calls two functions F1 and F2, then the order in

which F1 and F2 are executed is determined by the following rules.
Rule 2. If W(F1) 6= W(F2) and W(F1) ∈ R(F2), then F1 → F2.
Rule 3. If W(F1) = W(F2), F1 is flexible but F2 is not, then
F1 → F2.
Rule 4. If W(F1) = W(F2) and both F1 and F2 are flexible, then
F1 ↔ F2.
Rule 5. If F1 and F2 satisfy none of the rules 2, 3 and 4, then
F1||F2.

We modify the constructed DAGs by deleting redundant edges
from them following a specific set of rules (omitted due to space
constraints). The set of all modified DAGs for all functions repre-
sents an R-DP for the given I-DP. The algorithm-DAGs for the
parenthesis problem is given in Figure 4(b).



3. Correctness & Cache Complexity
In this section, we give a proof of correctness for AUTOGEN and
analyze the cache complexity of the autodiscoveredR-DPs.

3.1 Correctness of AUTOGEN

We prove that if an I-DP satisfies the following properties, then
AUTOGEN can be applied on the I-DP to get a correctR-DP.
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1 3 3 3 3 T1 = T2 − T1 = T2
2 3 3 3 7 T1 → T2 2 T1 → T2
3 3 3 7 3 − − −
4 3 3 7 7 T1 ‖ T2 5 T1 ‖ T2
5 3 7 3 3 − − −
6 3 7 3 7 T1 → T2 2 T1 → T2
7 3 7 7 3 T2 → T1 3 T2 → T1
8 3 7 7 7 T1 ‖ T2 5 T1 ‖ T2
9 7 3 3 3 T1 → T2 3 T1 → T2
10 7 3 3 7 T1 → T2 2 T1 → T2
11 7 3 7 3 − − −
12 7 3 7 7 T1 ‖ T2 5 T1 ‖ T2
13 7 7 3 3 − − −
14 7 7 3 7 T1 → T2 2 T1 → T2
15 7 7 7 3 T1 ↔ T2 4 T1 ↔ T2
16 7 7 7 7 T1 ‖ T2 5 T1 ‖ T2

Table 2. T1 and T2 are two cell-tuples.
Columns 2-5 represent the four conditions
for the two cell-tuples. Columns I and R
show the ordering of the cell-tuples for I
and R algorithms, respectively. The order
of cell updates ofR is consistent with I.

Property 1 (One-way
sweep). An I-DP for
a DP table C is said
to satisfy the one-
way sweep property if
the following holds:
∀ cells x, y ∈ C, if x
depends on y, then y
is fully updated before
x reads from y.
Property 2 (Fractal
property). An I-DP
satisfies the fractal
property if the follow-
ing holds. Let Sn and
S2n be the cell-sets of
the I-DP for DP ta-
bles [0..n − 1]d and
[0..2n − 1]d, respec-
tively, where n ≥ 2k

(k is the problem-
specific natural num-
ber). Generate the

cell-set S′n from S2n by replacing every coordinate value j with
bj/2c and then retaining only the distinct tuples. Then, Sn = S′n.

Definition 2 (FRACTAL-DP class). An I-DP is said to be in the
FRACTAL-DP class if the following conditions hold: (a) the I-
DP satisfies the one-way sweep property (Prop. 1), (b) the I-DP
satisfies the fractal property (Prop. 2), and (c) The cell-tuple size
(1 + s) is upper-bounded by a constant.

Theorem 1 (Correctness). Given an I-DP from the FRACTAL-
DP class as input, AUTOGEN generates anR-DP that is function-
ally equivalent to the given I-DP.

Proof. Let the I-DP and R-DP algorithms for a problem P be
denoted by I and R, respectively. We use mathematical induction
to prove the correctness of AUTOGEN in d-D, assuming d to be a
constant. We first prove the correctness for the threshold problem
size (see Section 2.3), i.e., n = 2q for some q ∈ N and then show
that if the algorithm is correct for n = 2r , for any r ≥ q then it is
also correct for n = 2r+1.
Basis. To prove that AUTOGEN is correct for n = 2q , we have to
show the following three: (a) Number of nodes in the algorithm-
tree is O (1), (b) Both I andR apply the same set of cell updates,
and (c)R never violates the one-way sweep property (Prop. 1).
(a) The size of the algorithm-tree is O (1).
A node is a set of one or more region-tuples (see Rule 1). Two
nodes with the same input and output fingerprints are given the
same function names. The maximum number of possible functions
is upper bounded by the product of the maximum number of pos-
sible nodes at a level

(
≤ 2d((2d − 1)s + 1)

)
and the maximum

number of children a node can have
(
≤ 22d((2d−1)s+1)

)
. The

height of the tree is O (1) from Assumption 1 and the threshold
level definition. The maximum branching factor (or the maximum

number of children per node) of the tree is also upper bounded by
a constant. Hence, the size of the algorithm-tree is O (1).
(b) Both I andR perform the same set of cell updates.
There is no cell-tuple of I that is not considered by R. In §2.2,
we split the entire cell-set into subsets of cell-tuples, subsubsets of
cell-tuples and so on to represent the different region-tuples. As per
the rules of construction of the algorithm-tree, all cell-tuples of I
are considered byR.

There is no cell-tuple of R that is not considered by I. Let
there be a cell-tuple T in R that is not present in I. As the cell-
tuples in R are obtained by splitting the cell-set into subsets of
cell-tuples, subsubsets of cell-tuples and so on, the original cell-
set should include T . This means that I should have generated the
cell-tuple T , which contradicts our initial assumption. Hence, by
contradiction, all the cell tuples ofR are considered by I.
(c)R never violates the one-way sweep property (Prop. 1).
We prove that for any two cell-tuples T1 and T2, the order of
execution of T1 and T2 in R is exactly the same as that in I if
changing the order may lead to violation of the one-way sweep
property. The relationship between the tuples T1 and T2 can be
defined exhaustively as shown in Tab. 2 with the four conditions:
W(T1) ∈ (or /∈) R(T1), W(T2) ∈ (or /∈) R(T2), W(T1) ∈ (or /∈)
R(T2), and W(T1) = (or 6=) W(T2). A few cases do not hold as the
cell-tuples cannot simultaneously satisfy paradoxical conditions,
e.g., cases 3, 5, 11 and 13 in Tab. 2. The relation between T1 and
T2 can be one of the following five: (i) T1 = T2, (ii) T1 → T2 i.e.
T1 is executed before T2, (iii) T2 → T1 i.e. T2 is executed before
T1, (iv) T1||T2 i.e. T1 and T2 can be executed in parallel, and (v)
T1 ↔ T2 i.e. either T1 → T2 or T2 → T1.

Columns I and R represent the ordering of the two cell-tuples
in I and R algorithms, respectively. Column I is filled based on
the one-way sweep property (Prop. 1) and columnR is filled based
on the four rules 2, 3, 4, and 5. It is easy to see that for every case in
which changing the order of execution of T1 and T2 may lead to the
violation of the one-way sweep property, both R and I apply the
updates in exactly the same order. Hence, R satisfies the one-way
sweep property.
Induction. We show that if AUTOGEN is correct for a problem
size of n = 2r for some r ≥ q ∈ N, it is also correct for n = 2r+1.

From the previous arguments we obtained a correct algorithm
R for r = q. Algorithm R is a set of DAGs for different func-
tions. Let Cn and C2n represent two DP tables of size nd and
(2n)d, respectively, such that n ≥ 2q . According to Prop. 2, the
dependencies among the regions Cn

11, C
n
12, C

n
21, C

n
22 must be ex-

actly same as the dependencies among the regionsC2n
11 , C

2n
12 , C

2n
21 ,

C2n
22 . If they were different, then that would violate Prop. 2. Hence,

the region-tuples for the two DP tables are the same. Arguing sim-
ilarly, the region-tuples remain the same for the DP tables all the
way down to the threshold level. In other words, the algorithm-
trees for the two problem instances are exactly the same. Having
the same algorithm-trees with the same dependencies implies that
the DAGs for DP tables Cn and C2n are the same. Therefore, if
AUTOGEN is correct for n = 2r for some r ≥ q ∈ N, it is also
correct for n = 2r+1.

3.2 Cache complexity of anR-DP

A recursive function is closed provided it does not call any other
recursive function but itself, and it is semi-closed provided it only
calls itself and other closed functions. A closed (resp. semi-closed)
function G is dominating provided no other closed (resp. semi-
closed) function of the given R-DP makes more self-recursive
calls than made by G and every non-closed (resp. non-semi-closed)
function makes strictly fewer such calls.



Theorem 2 (Cache complexity). If anR-DP includes a dominat-
ing closed or semi-closed function Fk that calls itself recursively
akk times, then the serial cache complexity of the R-DP for a DP
table of size nd is
Q1(n, d,B,M) = O

(
T1(n)/

(
BM (lk/d)−1

)
+ S(n, d)/B + 1

)
under the ideal-cache model, where lk = log2 akk, T1(n) = total
work = O

(
nlk
)
, M = cache size,B = block size,M = Ω

(
Bd
)
,

and S(n, d) = space complexity = O
(
nd
)
.

Proof. Suppose the R-DP algorithm consists of a set F of m
recursive functions F1,F2, . . . ,Fm. For 1 ≤ i, j ≤ m, let aij
be the number of times Fi calls Fj . Then for a suitable constant
γi > 0, the cache complexity QFi of Fi on an input of size nd can
be computed recursively as follows:

QFi(n) =

{
O
(
nd−1 + nd/B

)
if nd ≤ γiM,∑m

j=1 aijQFj (n/2) +O (1) otherwise.

If Fk is a closed function, then QFk
(n) = akkQFk

(n/2) +
O (1) for nd > γkM . Solving the recurrence, we get the overall
(for all values of nd) cache complexity as QFk

(n) =

O
(
nlk/(BM (lk/d)−1) + nd/B + 1

)
, where lk = log2 akk.

If Fk is a dominating semi-closed function, then QFk
(n) =

akkQFk
(n/2) + o

(
nlk/(BM (lk/d)−1)

)
for nd > γkM . For all

sizes of the DP table this recurrence also solves to
O
(
nlk/(BM (lk/d)−1) + nd/B + 1

)
.

If Fk is a dominating closed (resp. semi-closed) function then
(i) akk ≥ aii for every closed (resp. semi-closed) function Fi,
and (ii) akk > ajj for every non-closed (resp. non-semi-closed)
function Fj . The algorithm-tree must contain at least one path
P = 〈Fr1 ,Fr2 , . . . ,Fr|P |〉 from its root (= Fr1) to a node cor-
responding to Fk (= Fr|P | ). Since |P | is a small number inde-
pendent of n, and by definition ariri < ar|P |r|P | holds for every
i ∈ [1, |P | − 1], one can show that the cache complexity of ev-
ery function on P must be O (QFk

(n)). This result is obtained by
moving upwards in the tree starting from Fr|P |−1

, writing down the
cache complexity recurrence for each function on this path, substi-
tuting the cache complexity results determined for functions that
we have already encountered, and solving the resulting simplified
recurrence. Hence, the cache complexity QFr1

(n) of the R-DP

algorithm is O (QFk
(n)). This completes the proof.

It is important to note the serial cache complexity and the total
work of an R-DP algorithm are related. Let Fk be a dominating
closed function that calls itself akk number of times and let P =
〈Fr1 ,Fr2 , . . . ,Fr|P |〉 be a path in the algorithm-tree from its root
(= Fr1) to a node corresponding to Fk (= Fr|P | ). Let q out of
these |P | functions call themselves akk times and q is maximized
over all possible paths in the algorithm-tree. The work can be
found by counting the total number of leaf nodes in the algorithm-
tree. Using Master theorem repeatedly we can show that T1(n) =
O
(
nlog akk logq−1 n

)
.

4. Extensions of AUTOGEN

In this section, we briefly discuss how to extend AUTOGEN to (i)
handle one-way sweep property (Prop. 1) violation, and (ii) some-
times reduce the space usage of the generatedR-DP algorithms.

4.1 Handling one-way sweep property (Prop. 1) violation
The following three-step procedure works for dynamic programs
that compute paths over a closed semiring in a directed graph
(Ullman et al. 1974). Floyd-Warshall’s algorithm for finding all-

pairs shortest path (APSP) (Floyd 1962) belongs to this class and
is shown in Figure 5.

(i) Project I-DP to higher dimension. Violation of the one-
way sweep property means that some cells of the DP table are
computed from cells that are not yet fully updated. By allocating
space to retain each intermediate value of every cell, the problem
is transformed into a new problem where the cells depend on fully
updated cells only. The technique effectively projects the DP on to
a higher dimensional space leading to a correct I-DP that satisfies
the one-way sweep property.

(ii) Autodiscover R-DP from I-DP. AUTOGEN is applied on
the higher dimensional I-DP that satisfies Prop. 1 to discover an
R-DP in the same higher dimensional space.

(iii) Project R-DP back to original dimension. The autogen-
erated R-DP is projected back to the original dimensional space.
One can show that the projected R-DP correctly implements the
original I-DP (Cormen et al. 2009; Chowdhury and Ramachan-
dran 2010).

4.2 Space reduction
AUTOGEN can be extended to analyze and optimize the functions
of an autogeneratedR-DP for a possible reduction in space usage.
We explain through an example.

Example. The LCS problem (Hirschberg 1975; Chowdhury and
Ramachandran 2006) asks one to find the longest of all common
subsequences (Cormen et al. 2009) between two strings. In LCS, a
cell depends on its three adjacent cells. Here, we are interested in
finding the length of the LCS and not the LCS itself. Starting from
the standard Θ

(
n2
)

space I-DP, we generate an R-DP for the
problem that contains four recursive functions. The autogenerated
R-DP still uses Θ

(
n2
)

space and incursO
(
n2/B

)
cache misses.

AUTOGEN can reason as follows in order to reduce the space
usage of thisR-DP and thereby improving its cache performance.

The autogeneratedR-DP has two functions of the form F(n) 7→
{F(n/2),F(n/2),G(n/2)}, where G is of the form G(n) 7→
{G(n/2)}. Given their dependencies, it is easy that in G, the top-
left cell of bottom-right quadrant depends on the bottom-right cell
of the top-left quadrant. Also, in F, the leftmost (resp. topmost)
boundary cells of one quadrant depends on the rightmost (resp.
bottommost) quadrant of adjacent quadrant. When there is only
a dependency on the boundary cells, we can copy the values of
the boundary cells, which occupies O (n) space, between different
function calls and we no longer require quadratic space. At each
level of the recursion tree O (n) space is used, and the total space
for the parallel R-DP algorithm is O (n logn). This new R-DP
algorithm will have a single function and its cache complexity im-
proves to O

(
n2/(BM)

)
. Space usage can be reduced further to

O (n) by simply reusing space between parent and child functions.
Cache complexity remains O

(
n2/(BM)

)
.

5. Experimental Results
This section presents empirical results showing the performance
benefits and robustness of AUTOGEN-discovered algorithms.

5.1 Experimental setup
All our experiments were performed on a multicore machine with
dual-socket 8-core 2.7 GHz5 Intel Sandy Bridge processors (2 ×
8 = 16 cores in total) and 32 GB RAM. Each core was connected

5 All energy, adaptivity and robustness experiments were performed on a
Sandy Bridge machine with a processor speed 2.00GHz.



LOOP-FLOYD-WARSHALL-APSP-3D(D,n)

1. for k ← 1 to n
2. for i← 1 to n
3. for j ← 1 to n

4. D[i, j, k]←− min (D[i, j, k − 1], D[i, k, k − 1] + D[k, j, k − 1])

A3D
FW (〈X,Y,X,X〉)

1. if X is a small matrix then A3D
loop-FW (〈X,Y,X,X〉)

else
2. A3D

FW (〈X111, Y112, X111, X111〉)
3. par: B3D

FW (〈X121, Y122, X111, X121〉), C3D
FW (〈X211, Y212, X211, X111〉)

4. D3D
FW (〈X221, Y222, X211, X121〉)

5. A3D
FW (〈X222, X221, X222, X222〉)

6. par: B3D
FW (〈X212, X211, X222, X212〉), C3D

FW (〈X122, X121, X122, X222〉)
7. D3D

FW (〈X112, X111, X122, X212〉)

B3D
FW (〈X,Y, U,X〉)

1. if X is a small matrix then B3D
loop-FW (〈X,Y, U,X〉)

else
2. par: B3D

FW (〈X111, Y112, U111, X111〉), B3D
FW (〈X121, Y122, U111, X121〉)

3. par: D3D
FW (〈X211, Y212, U211, X111〉), D3D

FW (〈X221, Y222, U211, X121〉)
4. par: B3D

FW (〈X212, X211, U222, X212〉), B3D
FW (〈X222, X221, U222, X222〉)

5. par: D3D
FW (〈X112, X111, U122, X212〉), D3D

FW (〈X122, X121, U122, X222〉)

C3D
FW (〈X,Y,X, V 〉)

1. if X is a small matrix then C3D
loop-FW (〈X,Y,X, V 〉)

else
2. par: C3D

FW (〈X111, Y112, X111, V111〉), C3D
FW (〈X211, Y212, X211, V111〉)

3. par: D3D
FW (〈X121, Y122, X111, V121〉), D3D

FW (〈X221, Y222, X211, V121〉)
4. par: C3D

FW (〈X122, X121, X122, V222〉), C3D
FW (〈X222, X221, X222, V222〉)

5. par: D3D
FW (〈X112, X111, X122, V212〉), D3D

FW (〈X212, X211, X222, V122〉)

D3D
FW (〈X,Y, U, V 〉)

1. if X is a small matrix then D3D
loop-FW (〈X,Y, U, V 〉)

else
2. par: D3D

FW (〈X111, Y112, U111, V111〉), D3D
FW (〈X121, Y122, U111, V121〉),

D3D
FW (〈X211, Y212, U211, V111〉), D3D

FW (〈X221, Y222, U211, V121〉)
3. par: D3D

FW (〈X112, X111, U122, V212〉), D3D
FW (〈X122, X121, U122, V222〉),

D3D
FW (〈X212, X211, U222, V212〉), D3D

FW (〈X222, X221, U222, V222〉)

(a)

LOOP-FLOYD-WARSHALL-APSP(D,n)

1. for k ← 1 to n
2. for i← 1 to n
3. for j ← 1 to n
4. D[i, j]← min (D[i, j], D[i, k] + D[k, j])

AFW (〈X,X,X〉)

1. if X is a small matrix then Aloop-FW (〈X,X,X〉)
else

2. AFW (〈X11, X11, X11〉)
3. par: BFW (〈X12, X11X12〉), CFW (〈X21, X21, X11〉)
4. DFW (〈X22, X21, X12〉)
5. AFW (〈X22, X22, X22〉)
6. par: BFW (〈X21, X22, X21〉), CFW (〈X12, X12, X22〉)
7. DFW (〈X11, X12, X21〉)

BFW (〈X,U,X〉)

1. if X is a small matrix then Bloop-FW (〈X,U,X〉)
else

2. par: BFW (〈X11, U11, X11〉), BFW (〈X12, U11, X12〉)
3. par: DFW (〈X21, U21, X11〉), DFW (〈X22, U21, X12〉)
4. par: BFW (〈X21, U22, X21〉), BFW (〈X22, U22, X22〉)
5. par: DFW (〈X11, U12, X21〉), DFW (〈X12, U12, X22〉)

CFW (〈X,X, V 〉)

1. if X is a small matrix then Cloop-FW (〈X,X, V 〉)
else

2. par: CFW (〈X11, X11, V11〉), CFW (〈X21, X21, V11〉)
3. par: DFW (〈X12, X11, V12〉), DFW (〈X22, X21, V12〉)
4. par: CFW (〈X12, X12, V22〉), CFW (〈X22, X22, V22〉)
5. par: DFW (〈X11, X12, V21〉), DFW (〈X21, X22, V12〉)

DFW (〈X,U, V 〉)

1. if X is a small matrix then Dloop-FW (〈X,U, V 〉)
else

2. par: DFW (〈X11, U11, V11〉), DFW (〈X12, U11, V12〉),
DFW (〈X21, U21, V11〉), DFW (〈X22, U21, V12〉)

3. par: DFW (〈X11, U12, V21〉), DFW (〈X12, U12, V22〉),
DFW (〈X21, U22, V21〉), DFW (〈X22, U22, V22〉)

(b)

Figure 5. (a) An autogenerated R-DP algorithm from the cubic space Floyd-Warshall’s APSP algorithm. In the initial call to A3D
FW (〈X,Y,X,X〉), X

points to D[1..n, 1..n, 1..n] and Y points to an n3 matrix whose topmost plane is initialized with D[1..n, 1..n, 0]. (b) An R-DP algorithm obtained by
projecting the 3D matrix D[1..n, 1..n, 0..n] accessed by the algorithm in column (a) to its 2D base D[1..n, 1..n, 0].

to a 32 KB private L1 cache and a 256 KB private L2 cache. All
cores in a processor shared a 20 MB L3 cache. All algorithms were
implemented in C++. We used Intel Cilk Plus extension to paral-
lelize and Intel R© C++ Compiler v13.0 to compile all implemen-
tations with optimzation parameters -O3 -ipo -parallel -AVX
-xhost. PAPI 5.3 (PAP) was used to count cache misses, and the
MSR (Model-Specific Register) module and likwid (Treibig et al.
2010) were used for energy measurements. We used likwid for the
adaptivity (Figure 8) experiments. All likwid measurements were
end-to-end (i.e., captures everything from the start to the end of the
program).

Given an iterative description of a DP in the FRACTAL-DP
class, our AUTOGEN prototype generates pseudocode of the cor-
responding R-DP algorithm in the format shown in Figure 1.
We implemented such autodiscovered R-DP algorithms for the
parenthesis problem, gap problem, and Floyd-Warshall’s APSP (2-
D). In order to avoid overhead of recursion and increase vector-
ization efficiency the R-DP implementation switched to an it-
erative kernel when the problem size became sufficiently small

(e.g., when problem size reached 64 × 64). All our R-DP imple-
mentations were the straightforward implementation of the pseu-
docode with only trivial hand-optimizations. With nontrivial hand-
optimizations R-DP algorithms can achieve even more speedup
(see (Tithi et al. 2015)). Trivial optimizations include: (i) copy-
optimization – copying transpose of a column-major input matrix
inside a basecase to a local array, so that it can be accessed in unit
stride during actual computation, (ii) using registers for variables
that are accessed many times inside the loops, (iii) write optimiza-
tion in the basecase – if each iteration of an innermost loop updates
the same location of the DP table we perform all those updates in a
local variable instead of modifying the DP table cell over and over
again, and update that cell only once using the updated local vari-
able after the loop terminates, and (iv) using #pragma directives
to auto-vectorize / auto-parallelize code. Nontrivial optimizations
that we did not apply include: (i) using Z-morton row-major lay-
out (see (Tithi et al. 2015)) to store the matrices, (ii) using pointer
arithmetic and converting all multiplicative indexing to additive in-
dexing, and (iii) using explicit vectorization.
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Figure 6. Performance comparison of I-DP,R-DP and tiled I-DP: (a) Giga updates per second achieved by all algorithms, (b) L2 cache
misses for each program, (c) strong scalability with #cores, p when n is fixed at 8192 (in this plot T l

1 denotes the running time of I-DP
when p = 1), and (d) ratios of total joule energy consumed by Package (PKG) and DRAM. Here, tiled I-DP is an optimized version of the
parallel tiled code generated by Pluto (Bondhugula et al. 2008).

The major optimizations applied on I-DP codes include the
following: parallelization, use of pragmas (e.g., #pragma ivdep
and #pragma parallel), use of 64 byte-aligned matrices, write
optimizations, pointer arithmetic, and additive indexing.

We used Pluto (Bondhugula et al. 2008) – a state-of-the-art
polyhedral compiler – to generate parallel tiled iterative codes for
the parenthesis problem, gap problem, and Floyd-Warshall’s APSP
(2-D). Optimized versions of these codes are henceforth called tiled
I-DP. After analyzing the autogenerated codes, we found that the
parenthesis implementation had temporal locality as it was tiled
across all three dimensions, but FW-APSP and gap codes did not
as the dependence-based standard tiling conditions employed by
Pluto allowed tiling of only two of the three dimensions for those
problems. While both parenthesis and FW-APSP codes had spatial
locality, the gap implementation did not as it was accessing data in
both row- and column-major orders. Overall, for any given cache
level the theoretical cache-complexity of the tiled parenthesis code
matched that of parenthesis R-DP assuming that the tile size was

optimized for that cache level. But tiled FW-APSP and tiled gap
had nonoptimal cache complexities. Indeed, the cache complexity
of tiled FW-APSP turned out to be Θ

(
n3/B

)
matching the cache

complexity of its I-DP counterpart. Similarly, the Θ
(
n3
)

cache
complexity of tiled gap matched that of I-DP gap.

The major optimizations we applied on the parallel tiled codes
generated by Pluto include (i) use of #pragma ivdep, #pragma
parallel, and #pragma min loop count(B) directives; (ii)
write optimizations (as was used for basecases ofR-DP); (iii) use
of empirically determined best tile sizes, and (iv) rigorous opti-
mizations using pointer arithmetic, additive indexing, etc. The type
of trivial copy optimization we used inR-DP did not improve spa-
tial locality of the autogenerated tiled I-DP for the gap problem
as the code did not have any temporal locality. The code generated
for FW-APSP had only one parallel loop, whereas two loops could
be parallelized trivially. In all our experiments we used two par-
allel loops for FW-APSP. The direction of the outermost loop of
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Figure 7. The plots show the L1 and L3 cache misses incurred by
the three algorithms for solving the parenthesis problem. L2 cache
misses are shown in Figure 6(b).

the autogenerated tiled code for the parenthesis problem had to be
reversed in order to avoid violation of dependency constraints.

All algorithms we have tested are in-place, that is, they use only
a constant number of extra memory/register locations in addition
to the given DP table. The copy optimization requires the use of a
small local submatrix per thread but its size is also independent of
the input DP table size. None of our optimizations reduces space
usage. The write optimization avoids directly writing to the same
DP table location in the memory over and over again by collecting
all those updates in a local register and then writing the final value
of the register to the DP cell.

In the following part of the section, we first show performance
of R-DP, I-DP and tiled I-DP implementations for all three
problems when each of the programs runs on a dedicated machine.
We show that R-DP outperforms I-DP in terms of runtime, scal-
ability, cache-misses, and energy consumption. Next, we show the
how the performance of R-DP, I-DP and tiled I-DP implemen-
tations change in a multiprogramming environment when multiple
processes share cache space and bandwidth.

5.2 Single-process performance
Figure 6 shows detailed performance results of I-DP, tiled I-DP
and R-DP implementations. For each of the three problems, our
R-DP implementations outperformed its I-DP counterpart, and
for n = 8192, the speedup factors w.r.t. parallel I-DP on 16
cores were around 18, 17 and 6 for parenthesis, gap and Floyd-
Warshall’s APSP, respectively. For pathenthesis and gap problems
I-DP consumed 5.5 times more package energy and 7.4 times
more DRAM energy than R-DP when n = 8192. For Floyd-
Warshall’s APSP those two factors were 7.4 and 18, respectively.
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Figure 9. The plots show how changes in the available shared L3
cache space affect (a) the number of L3 cache misses, and (b) the
serial running time of the tiled looping code and the recursive code
solving the parenthesis problem for n = 213. The code under test
was run on a single core of an 8-core Intel Sandy Bridge processor
with 20MB shared L3 cache. A multi-threaded Cache Pirate
(Eklov et al. 2011) was run on the remaining cores.

For the parenthesis problem tiled I-DP (i.e., our optimized ver-
sion of Pluto-generated parallel tiled code) and R-DP had almost
identical performance for n > 6000. For n ≤ 6000, R-DP was
slower than tiled I-DP, but for larger n, R-DP was marginally
(1 - 2%) faster on average. Observe that though tiled I-DP and
R-DP had almost similar L2 cache performance, Figure 7 shows
that R-DP incurred noticably fewer L1 and L2 cache misses than
those incurred by tiled I-DP which helped R-DP to eventually
fully overcome the overhead of recursion and other implementa-
tion overheads. This happened because the tile size of tiled I-DP
was optimized for the L2 cache, but R-DP being cache-oblivious
was able to adapt to all levels of the cache hierarchy simultaneously
(Frigo et al. 1999).

As explained in Section 5.1 for the gap problem tiled I-DP
had suboptimal cache complexity matching that of I-DP. As a
result, tiled I-DP’s performance curves were closer to those of I-
DP than R-DP, and R-DP outperformed it by a wide margin.
Similarly for Floyd-Warshall’s APSP. However, in case of gap
problem tiled I-DP incurred significantly fewer L3 misses than I-
DP (not shown in the plots), and as a result, consumed less DRAM
energy. The opposite was true for Floyd-Warshall’s APSP.

5.3 Multi-process performance
R-DP algorithms are more robust than both I-DP and tiled I-DP.
Our empirical results show that in a multiprogramming environ-
ment R-DP algorithms are less likely to significantly slowdown
when the available shared cache/memory space reduces (unlike
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Figure 8. The plots show how the performances of standard looping, tiled looping and recursive codes for the parenthesis problem (for
n = 213) are affected as multiple instances of the same program are run on an 8-core Intel Sandy Bridge with 20MB shared L3 cache.

tiled code with temporal locality), and less likely to suffer when the
available bandwidth reduces (unlike standard I-DP code and tiled
I-DP without temporal locality). Figures 8 and 9 show the results.
For lack of space we have included only results for the parenthe-
sis problem. We have seen similar trends for our other benchmark
problems (e.g., FW-APSP).

We have performed experimental analyses of how the perfor-
mance of a program (R-DP, I-DP, and tiled I-DP) changes if
multiple copies of the same program are run on the same multi-
core processor (Figure 8). We ran up to 4 instances of the same
program on an 8-core Sandy Bridge processor with 2 threads (i.e.,
cores) per process. The block size of the tiled code was optimized
for best performance with 2 threads. With 4 concurrent processes
I-DP slowed down by 82% and tiled I-DP by 46%, but R-DP
lost only 17% of its performance (see Figure 8). The slowdown of
the tiled code resulted from its inability to adapt to the loss in the
shared cache space which increased its L3 misses by a factor of 4
(see Figure 8). On the other hand, L3 misses incurred byR-DP in-
creased by less than a factor of 2.5. Since I-DP does not have any
temporal locality, loss of cache space did not significantly change
the number of L3 misses it incurred. But I-DP already incurred
90 times more L3 misses than R-DP, and with 4 such concurrent
processes the pressure on the DRAM bandwidth increased consid-
erably (see Figure 8) causing significant slowdown of the program.

We also report changes in energy consumption of the processes
as the number of concurrent processes increases (Figure 8). En-
ergy values were measured using likwid-perfctr (included in
likwid) which reads them from the MSR registers. The energy
measurements were end-to-end (start to end of the program). Three
types of energy were measured: package energy which is the en-
ergy consumed by the entire processor die, PP0 energy which
is the energy consumed by all cores and private caches, and fi-
nally DRAM energy which is the energy consumed by the directly-
attached DRAM. We omitted the PP0 energy since the curves al-
most always look similar to that of package energy. A single in-
stance of tiled I-DP consumed 5% less energy than an R-DP in-
stance while I-DP consumed 9 times more energy. Average pack-
age and PP0 energy consumed by tiled I-DP increased at a faster
rate than that byR-DP as the number of processes increased. This
happened because both its running time and L3 performance de-

graded faster thanR-DP both of which contribute to energy perfor-
mance. However, since for I-DP L3 misses did not change much
with the increase in the number of processes, its package and PP0
energy consumption increased at a slower rate compared to R-
DP’s when number of processes is less than 3. However, as the
number of processes increases, energy consumption increases for
I-DP at a faster rate, and perhaps because of the DRAM band-
width contention its DRAM energy increased significantly.

We have measured the effect on running times and L3 cache
misses of serial R-DP and serial tiled I-DP6 when the available
shared L3 cache space is reduced (shown in Figure 9). In this case,
the serial tiled-I-DP algorithm was running around 50% faster
than the serial R-DP code. The Cache Pirate tool (Eklov et al.
2011) was used to steal cache space7. When the available cache
space was reduced to 50%, the number of L3 misses incurred by the
tiled code increased by a factor of 22, but for R-DP the increase
was only 17%. As a result, the tiled I-DP slowed down by over
50% while for R-DP the slowdown was less than 3%. Thus R-
DP automatically adapts to cache sharing (Bender et al. 2014), but
the tiled I-DP does not. This result can be found in the second
column of Figure 8.

Acknowledgments
Chowdhury and Ganapathi were supported in part by NSF grants
CCF-1162196 and CCF-1439084. Kuszmaul and Leiserson were
supported in part by NSF grants CCF-1314547, CNS-1409238, and
IS-1447786, NSA grant H98230-14-C-1424, and FoxConn. Solar-
Lezama’s work was partially supported by DOE Office of Science
award #DE-SC0008923. Bachmeier was supported by MIT’s Un-
dergraduate Research Opportunities Program (UROP).

Part of this work used the Extreme Science and Engineering
Discovery Environment (XSEDE) (XSE; Towns et al. 2014), which
is supported by NSF grant ACI-1053575.

We thank Uday Bondhugula and anonymous reviewers for valu-
able comments and suggestions that have significantly improved
the paper.

6 with tile size optimized for best serial performance
7 Cache Pirate allows only a single program to run, and does not reduce
bandwidth.



References
Performance Application Programming Interface (PAPI). http://icl.

cs.utk.edu/papi/.

XSEDE: Extreme Science and Engineering Discovery Environment. http:
//www.xsede.org/.

N. Ahmed and K. Pingali. Automatic generation of block-recursive codes.
In Euro-Par, pages 368–378, 2000.

V. Bafna and N. Edwards. On de novo interpretation of tandem mass spectra
for peptide identification. In Proc. RCMB, pages 9–18, 2003.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

M. Bender, R. Ebrahimi, J. Fineman, G. Ghasemiesfeh, R. Johnson, and
S. McCauley. Cache-adaptive algorithms. In SODA, 2014.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. ACM SIGPLAN
Notices, 43(6):101–113, 2008.

R. Chowdhury. Cache-efficient Algorithms and Data Structures: Theory
and Experimental Evaluation. PhD thesis, Department of Computer
Sciences, The University of Texas, Austin, Texas, 2007.

R. Chowdhury and P. Ganapathi. Divide-and-conquer variants of bubble,
selection, and insertion sorts. Unpublished manuscript.

R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic program-
ming. In Proc. SODA, pages 591–600, 2006.

R. Chowdhury and V. Ramachandran. Cache-efficient dynamic program-
ming algorithms for multicores. In Proc. SPAA, pages 207–216, 2008.

R. Chowdhury and V. Ramachandran. The cache-oblivious Gaussian elim-
ination paradigm: theoretical framework, parallelization and experimen-
tal evaluation. TOCS, 47(4):878–919, 2010.

R. Chowdhury, P. Ganapathi, V. Pradhan, J. J. Tithi, and Y. Xiao.
An efficient cache-oblivious parallel viterbi algorithm. Unpublished
manuscript.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, third edition, 2009.

J. Du, C. Yu, J. Sun, C. Sun, S. Tang, and Y. Yin. EasyHPS: A multilevel
hybrid parallel system for dynamic programming. In Proc. IPDPSW,
pages 630–639, 2013.

F. C. Duckworth and A. J. Lewis. A fair method for resetting the target in
interrupted one-day cricket matches. JORS, 49(3):220–227, 1998.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cam-
bridge University Press, 1998.

D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache pi-
rating: Measuring the curse of the shared cache. In Proc. ICPP, pages
165–175, 2011.

R. W. Floyd. Algorithm 97: shortest path. CACM, 5(6):345, 1962.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Proc. FOCS, pages 285–297, 1999.

Z. Galil and K. Park. Parallel algorithms for dynamic programming recur-
rences with more than O(1) dependency. JPDC, 21(2):213–222, 1994.

R. Giegerich and G. Sauthoff. Yield grammar analysis in the Bellman’s
GAP compiler. In Proc. LDTA, page 7, 2011.

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge
University Press, 1997.

D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. CACM, 18(6):341–343, 1975.

J. O. S. Kennedy. Applications of dynamic programming to agriculture,
forestry and fisheries: Review and prognosis. Rev Market Agr Econ, 49
(03), 1981.

A. Levitin. Introduction to the Design and Analysis of Algorithms. Pearson,
third edition, 2011.

A. Lew and H. Mauch. Dynamic Programming: A Computational Tool,
volume 38. Springer, 2006.

W. Liu and B. Schmidt. A generic parallel pattern-based system for bioin-
formatics. In Proc. Euro-Par, pages 989–996. Springer, 2004.

Y. Pu, R. Bodik, and S. Srivastava. Synthesis of first-order dynamic pro-
gramming algorithms. ACM SIGPLAN Notices, 46(10):83–98, 2011.

R. Reitzig. Automated parallelisation of dynamic programming recursions.
Masters Thesis: University of Kaiserslautern, 2012.

A. A. Robichek, E. J. Elton, and M. J. Gruber. Dynamic programming
applications in finance. JF, 26(2):473–506, 1971.

D. Romer. It’s fourth down and what does the Bellman equation say? A
dynamic programming analysis of football strategy. Technical report,
National Bureau of Economic Research, 2002.

J. Rust. Numerical dynamic programming in economics. Handbook of
Computational Economics, 1:619–729, 1996.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Trans Acoust Speech, 26(1):43–49,
1978.

D. K. Smith. Dynamic programming and board games: A survey. EJOR,
176(3):1299–1318, 2007.

M. Sniedovich. Dynamic Programming: Foundations and Principles. CRC
press, 2010.

S. Tang, C. Yu, J. Sun, B.-S. Lee, T. Zhang, Z. Xu, and H. Wu. EasyPDP:
An efficient parallel dynamic programming runtime system for compu-
tational biology. TPDS, 23(5):862–872, 2012.

Y. Tang, R. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson.
The Pochoir stencil compiler. In Proc. SPAA, pages 117–128, 2011a.

Y. Tang, R. Chowdhury, C.-K. Luk, and C. E. Leiserson. Coding stencil
computations using the Pochoir stencil-specification language. In Proc.
HotPar, 2011b.

J. Tithi, P. Ganapathi, A. Talati, S. Agarwal, and R. Chowdhury. High-
performance energy-efficient recursive dynamic programming with
matrix-multiplication-like flexible kernels. In Proc. IPDPS, 2015.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R.
Scott, and N. Wilkens-Diehr. Xsede: Accelerating scientific discovery.
Computing in Science and Engineering, 16(5):62–74, 2014. ISSN 1521-
9615. doi: http://doi.ieeecomputersociety.org/10.1109/MCSE.2014.80.

J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments. In Proc. ICPPW,
pages 207–216, 2010.

J. D. Ullman, A. V. Aho, and J. E. Hopcroft. The design and analysis of
computer algorithms. Addison-Wesley, Reading, 4:1–2, 1974.

M. S. Waterman. Introduction to Computational Biology: Maps, Sequences
and Genomes. Chapman & Hall Ltd., 1995.


