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Everyone Loves File: Oracle File Storage Service

BRADLEY C. KUSZMAUL, MATTEO FRIGO, JUSTIN MAZZOLA PALUSKA, and
ALEXANDER (SASHA) SANDLER, Oracle

Oracle File Storage Service (FSS) is an elastic filesystem provided as a managed NFS service. A pipelined Paxos

implementation underpins a scalable block store that provides linearizable multipage limited-size transac-

tions. Above the block store, a scalable B-tree holds filesystem metadata and provides linearizable multikey

limited-size transactions. Self-validating B-tree nodes and housekeeping operations performed as separate

transactions allow each key in a B-tree transaction to require only one page in the underlying block transac-

tion. The filesystem provides snapshots by using versioned key-value pairs. The system is programmed using

a nonblocking lock-free programming style. Presentation servers maintain no persistent local state making

them scalable and easy to failover. A non-scalable Paxos-replicated hash table holds configuration information

required to bootstrap the system. An additional B-tree provides conversational multi-key minitransactions

for control-plane information. The system throughput can be predicted by comparing an estimate of the net-

work bandwidth needed for replication to the network bandwidth provided by the hardware. Latency on

an unloaded system is about 4 times higher than a Linux NFS server backed by NVMe, reflecting the cost

of replication. FSS has been in production since January 2018 and holds tens of thousands of customer file

systems comprising many petabytes of data.
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1 INTRODUCTION

This article describes Oracle’s File Storage Service (FSS), a managed, multi-tenanted NFS service
in Oracle’s Cloud Infrastructure. FSS, which has been in production for over two years, provides
customers with an elastic NFSv3 file service [17]. Customers create filesystems that are initially
empty, without specifying how much space they need in advance, and write files on demand. The
performance of a filesystem grows with the amount of data stored. We promise customers a convex
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combination of 100 MB/s of bandwidth and 3,000 operations per second for every terabyte stored.
Customers can mount a filesystem on an arbitrary number of NFS clients. The size of a file or
filesystem is essentially unbounded, limited only by the practical concerns that the NFS protocol
cannot cope with files bigger than 16 EiB and that we would need to deploy close to a million
hosts to store multiple exabytes. FSS provides the ability to take a snapshot of a filesystem using
copy-on-write techniques. Creating a filesystem or snapshot is cheap, so that customers can create
thousands of filesystems, each with thousands of snapshots. The system is robust against failures,
since it synchronously replicates data and metadata five-ways using Paxos [50].

We built FSS from scratch. We implemented a Paxos-replicated block store, called DASD, with
a sophisticated multipage transaction scheme. On top of DASD, we built a scalable B-tree with
multikey transactions programmed in a lockless nonblocking fashion. Like virtually every B-tree in
the world, ours is a B+-tree. We store the contents of files directly in DASD and store file metadata
(such as inodes and directories) in the B-tree.

Why not do something simpler? One could imagine setting up a fleet of storage appliances. Each
appliance would be responsible for some filesystems, and we could use a replicated block device to
achieve reliability in the face of hardware failure. Examples of replicated block devices abound [2,
4, 29, 61, 68]. We have such a service in our cloud, so why not use it? It is actually more complicated
to operate such a system than a system that is designed from the beginning to operate as a cloud
service. Here are some of the problems you would need to solve:

• How do you grow such a filesystem if it gets too big to fit on one appliance?
• How do you partition the filesystems onto the appliance? What happens if you put sev-

eral small filesystems onto one appliance and then one of the filesystems grows so that
something must move?

• How do you provide scalable bandwidth? If a customer has a petabyte of data, then they
should get 100 GB/s of bandwidth into the filesystem, but a single appliance may have only
a 10 Gbit/s network interface (or perhaps two 25 Gbit/s network interfaces).

• How do you handle failures? If an appliance crashes, then some other appliance must mount
the replicated block device, and you must ensure that the original appliance does not restart
and continue to perform writes on the block device, which would corrupt the filesystem.

This article describes our implementation. Section 2 provides an architectural overview of
FSS. The article then proceeds to explain the system from the top down. Section 3 describes the
lock-free nonblocking programming style we used based on limited-size multipage transactions.
Section 4 shows how we organize metadata in the B-tree. Section 5 explains how we implemented
a B-tree key-value store that supports multikey transactions. Section 6 explains DASD, our scalable
replicated block storage system. Section 7 describes our pipelined Paxos implementation. Section 8
discusses congestion management and transaction-conflict avoidance. Section 9 describes the
performance of our system. Section 10 describes some of the foundations of our control plane.
Sections 11 and 12 conclude with a discussion of related work and a brief history of our system.

2 FSS Architecture

This section explains the overall organization of FSS. We provision many hosts, some of which
act as storage hosts and some as presentation hosts. The storage hosts, which include local NVMe
solid-state-drive storage, store all filesystem data and metadata replicated five-ways,1 and provide
a remote-procedure-call (RPC) service using our internal FSS protocol. The presentation hosts
speak the standard NFS protocol and translate NFS into the FSS protocol.

1Data are erasure coded, reducing the cost to 2.5, see Section 3.
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Fig. 1. FSS architecture. The NFS clients are on the lef and belong to various customers. Hosts are shown as
boxes with solid edges and processes are shown with dashed lines. The presentation hosts are in the middle,
each running several Orca processes. The Orca processes are connected to the various customer virtual cloud
networks (VCNs) on the left. The IP addresses of each Orca’s mount target is shown. The Orca process are
also connected to our internal VCN, where they can communicate with the storage hosts. The storage hosts
contain NVMe drives and run both the Dendron and DASD processes.

A customer’s filesystems appear as exported filesystems on one or more IP addresses, called
mount targets. A single mount target may export several filesystems, and a filesystem may be
exported by several mount targets. A mount target appears as a private IP address in the customer’s
virtual cloud network (VCN), which is a customizable private network within the cloud. Most
clouds provide VCNs in which hosts attached to one VCN cannot even name hosts in another
VCN. Each mount target terminates on one of our presentation hosts. A single mount target’s
performance can be limited by the network interface of the presentation host, and so to get more
performance, customers can create many mount targets that export the same filesystem.

Figure 1 shows how the FSS hosts and processes are organized. The customer sets up NFS clients
in their VCN. Our presentation hosts terminate NFS connections from the clients in per-mount-
target Orca processes. The Orca processes translate NFS requests into the FSS protocol and send the
FSS to our storage hosts. In the future, the presentation hosts might speak other client protocols,
such as SMB [62] or NFSv4 [76].

To ensure isolation between filesystems we depend on a combination of process isolation on
our servers, VCN isolation, and encryption. All data stored at rest in the storage hosts or in flight
in the FSS protocol is encrypted with a file-specific encryption key that derives from a filesystem
master key. The NFSv3 protocol is not encrypted, however, so data arriving at an Orca is potentially
vulnerable. To mitigate that vulnerabilty, we rely on VCN isolation while the data are in flight from
the NFS client to the presentation host and use the presentation host’s process isolation to protect
the data on the presentation host. All data and file names are encrypted as soon as they arrive at
an Orca, and each Orca process serves only one mount target.

Each storage host contains NVMe drives and runs two processes, DASD and Dendron. DASD,
described in Section 6, provides a scalable block store. Dendron implements a B-tree (Section 5)
in which it maintains the metadata (Section 4) for the filesystem.

We chose to replicate filesystems within a data center rather than across data centers within a
metropolitan area or across a long distance. There is a tradeoff between latency and failure toler-
ance. Longer-distance replication means the ability to tolerate bigger disasters but incurs longer
network latencies. We chose local replication so that all of our operations can be synchronously
replicated by Paxos without incurring the latency of long-distance replication. It turns out that
most of our customers rely on having a functional disaster-recovery plan, and so they are more
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Fig. 2. Each module is built on the modules below.

interested in single-data center file system performance than synchronous replication. In the
future, however, we may configure some filesystems to be replicated more widely.

Within a data center, hosts are partitioned into groups called fault domains. In a small data
center, a fault domain might be a single rack. In a large data center, it might be a group of racks.
Hosts within a fault domain are likely to fail at the same time (because they share a power supply or
network switch). Hosts in different fault domains are more likely to fail independently. We employ
five-way Paxos replicated storage that requires at least three of each group of five Paxos instances
to access the filesystems. We place the Paxos instances into different fault domains. When we
need to upgrade our hosts, we can bring down one fault domain at a time without compromising
availability. Why five-way replication? During an upgrade, one replica at a time is down. During
that time, we want to be resilient to another host crashing. If we employed five fault domains,
then all the fault domains would need to be exactly the same size. Instead, we employ nine fault
domains, which allows us to accommodate different fault domains being different sizes.

We also use the same five-way-replicated Paxos machinery to run a non-scalable hash table
that keeps track of configuration information, such a list of all the presentation hosts, needed for
bootstrapping the system.

All state (including NLM locks, leases, and idempotency tokens) needed by the presentation
servers is maintained in replicated storage rather than in the memory of the presentation hosts.
That means that any Orca can handle any NFS request for the filesystems that it exports. The view
of the filesystem presented by different Orcas is consistent.

All memory and disk space is allocated when the host starts. We never run malloc() after
startup. By construction, the system cannot run out of memory at runtime. It would likely be
difficult to retrofit this memory-allocation discipline into old code, but maintaining the discipline
was relatively straightforward, since the entire codebase is new.

3 MULTI-PAGE STORE CONDITIONAL

FSS is implemented on top of a distributed B-tree, which is written on top of a a distributed block
store with multipage transactions (see Figure 2). This section describes the programming interface
to the distributed block store and how the block store is organized into pages, blocks, and extents.

The filesystem is a concurrent data structure that must not be corrupted by conflicting opera-
tions. There can be many concurrent NFS calls modifying a filesystem: One might be appending to
a file, while another might be deleting the file. The filesystem maintains many invariants. One im-
portant invariant is that every allocated data block is listed in the metadata for exactly one file. We
need to avoid memory leaks (in which an allocated block appears in no file), dangling pointers (in
which a file contains a deallocated block), and double allocations (in which a block appears in two
different files). There are many other invariants for the filesystem. We also employ a B-tree that
has its own invariants. We live under the further constraint that when programming these data
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structures, we cannot acquire a lock to protect these data structures, since if a process acquired a
lock and then crashed, then it would be tricky to release the lock.

To solve these problems, we implemented FSS using a nonblocking programming style similar to
that of transactional memory [39]. We use a primitive that we call multi-page store-conditional

(MPSC) for accessing pages in a distributed block store. An MPSC operation is a “mini-transaction”
that performs an atomic read-and-update of up to 15 pages. All page reads and writes follow this
protocol:

(1) Read up to 15 pages, receiving the page data and a slot number (which is a form of a
version tag [44, p. A-44]). A page’s slot number changes whenever the page changes. You
can read some pages before deciding which page to read next, or you can read pages in
parallel. Each read is linearizable [40].

(2) Compute a set of new values for those pages.
(3) Present the new page values, along with the previously obtained slot numbers, to the

MPSC function. To write a page requires needs a slot number from a previous read.
(4) The update will either succeed or fail. Success means that all of the pages were modified

to the new values and that none of the pages had been otherwise modified since they were
read. A successful update linearizes with other reads and MPSC updates. A failure results
in no changes.

In addition to reading and writing pages, an MPSC can allocate or free space in the distributed
block store.

An MPSC could fail for many reasons. For example, if, between reading a page and attempting
an MPSC, some other transaction wrote the page, the MPSC will fail. Even if there is no conflict,
an MPSC may fail due to, e.g., packet loss or Paxos leadership changes. Even if a transaction suc-
ceeds, the caller may receive an error indication, e.g., if network fails between the update’s commit
and the caller notification. Our implementation deliberately introduces failures (sometimes called
fuzzing [63]) with a small probability rate, so that all of the error-handling code paths are exercised
frequently, even in production.

3.1 Pages and Blocks

We subdivide the distributed block store into a hierarchy of pages, blocks, and extents, as shown in
Figure 3. MPSC performs an atomic update on a set of pages. A block includes one or more pages
and is the unit on which we do bookkeeping for allocation. To reduce bookkeeping overheads on
small pages, we allocate relatively large blocks. To keep transactions small, we update relatively
small pages. An extent is an array of pages, up to 256 GiB total and is implemented by a replicated
Paxos state machine.

For example, one kind of extent contains 256 GiB of disk-resident data, organized in 2 MiB blocks
with 32 KiB pages and is replicated five ways using 5:2 erasure coding (an erasure-coding rate of
2/5) [70]. Thus the 256 GiB of disk-resident data consumes a total of 640 GiB of disk distributed
across five hosts.

An extent’s geometry is defined by its page size, block size, extent size, replication factor, and
erasure-coding rate. Once an extent is created, its geometry cannot change. Figure 4 shows the
extent geometries that we use for file data and metadata. All of our extents are five-way replicated
within a single data center. The pages in extents used for file contents are erasure coded using a
5:2 erasure coding rate, so that the overhead of storing a page is 2.5 (each replica stores half a page,
and there are five replicas). The B-tree data are mirrored, which can be thought of as 5:1 erasure
coding.
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Fig. 3. Pages, blocks, and extents. Three extents are shown, each with an array of pages. Each page has a
slot, e.g., page 0 of extent 1 has slot 19. Each block has ownership. The first block of extent 1 is owned by
customer 80 (“C80”), is read-write (“RW”), and is on its 9th allocation generation (“G9”). Extents 1 and 2 each
have 2 pages per block and 4 blocks, whereas extent 20 has 4 pages per block and only 2 blocks.

Fig. 4. Extent geometries. The B-tree extents contain metadata organized as a B-tree. The other extents
contain file contents and are identified by their block size. For each extent, the page size, block size, extent
size, replication factor (RF), and erasure-coding (EC) are shown.

We size our extents so there are hundreds of extents per storage host to ease load balancing. We
use parallelism to recover the missing shards when a host crashes permanently—each extent can
recover onto a different host.

3.2 Block Ownership

When operating a storage system as a service, it is a great sin to lose a customer’s data. It is an even
greater sin to give a customer’s data to someone else, however. To avoid the greater sin, blocks
have ownership information that is checked on every access.

A block’s ownership information includes a version tag, called its generation, a 64-bit customer
identifier, and a read-only bit. When accessing a block, the generation, customer id, and read-only
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bit must match exactly. This check is performed atomically with every page access. When a block
is allocated or deallocated its generation changes. A tagged pointer to a page includes the block
ownership information, as well as the extent number and page number. A block’s pointer is simply
the tagged pointer to the block’s first page.

The problem that block ownership solves can be illustrated as follows. When data are being
written into a new file, we allocate a block and store the block’s pointer in the B-tree as a single
transaction. To read data from a file, Orca first obtains the block pointer by asking Dendron to
read the B-tree. Orca caches that block pointer, so that it can read the data without the overhead
of checking the B-tree again on every page access. Meanwhile, another thread could truncate the
file, causing the block to be deallocated. The block might then be allocated to a file belonging to
a different customer. We want to invalidate Orca’s cached pointers in this situation, so we change
the block ownership. When Orca tries to use a cached pointer to read a deallocated page, the
ownership information has become invalid, and the access fails, which is what we want.

Each of our read operations is linearizable, meaning that they are totally ordered with respect
to all MPSC operations and the total ordering is consistent with real time. Although our read
operations linearize, if you perform several reads, then they take place at different times, meaning
that the reads may not be mutually consistent. It is easy to trick a transactional-memory-style
program into crashing, e.g., due to a failed assertion. For example, if you have two pages in a
doubly linked list, then you might read one page, and then follow a pointer to the second page,
but by the time you read the second page it no longer points back to the first page. Getting this
right everywhere is an implementation challenge, leading some [12, 19] to argue that humans
should not program transactional memory without a compiler. We have found this problem to be
manageable, however, since an inconsistent read cannot lead to a successful MPSC operation, so
the data structure is not corrupted.

4 A FILESYSTEM SCHEMA

This section explains how we represent the filesystem metadata in our B-tree. FSS implements
an inode-based write-in-place filesystem using a single B-tree to hold its metadata. What does
that mean? Inode-based means that each filesystem object (each file, directory, symlink, and so
forth) is represented by an polymorphic object called an inode. Inodes comprise a fixed-size data
record that holds the fixed-size metadata about the object, and for some inode types, the inode
further comprises additional information that is unbounded in size (the mapping from offsets to
data blocks, for example). An object’s inode contains all of the object’s metadata. That is, the inode
contains all the information about the object except for the file contents (the “data” of the file). In
NFS file systems, each inode is named by an identifier called its handle. Every RPC in NFS takes in
at least one handle to identify what filesystem objects are involved in the operation. In traditional
unix filesystems, each inode has a number, sometimes called the inumber. Write-in-place means
that updates to data and metadata usually modify the data or metadata in the same location on disk
as the old version was stored. (As we shall see, snapshots introduce copy-on-write behavior.) Single

B-tree to hold the metadata means there is only one B-tree per data center. Our service provides
many filesystems to many customers, and they are all stored together in one B-tree. We are taking
the space to explain how to implement filesystem metadata in a B-tree, because, although there
are many filesystems that use B-trees [10, 21, 26, 45, 46, 59, 71, 72, 74, 75, 82, 84, 85], there are few
places to learn how they do it except to read their source code and internal design documents.

The inode represents everything the filesystem knows about a filesystem object. For example,
every filesystem object contains “stat()” data, which include the type of the object (e.g., regular,
directory, symlink), permissions bits (rwxrwxrwx), owner, group, file size, link count, and times-
tamps. Beyond the “stat()” data, the inode of each object type contains type-specific information.
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A regular file’s inode contains a data structure to translate between between file offsets and the
filesystem blocks where data resides. Symlinks contain the text of the link. Directories contain
directory entries, which name other filesystem objects. Device nodes contain major and minor
device numbers indicating the type of device the node represents.

In traditional filesystems such as the Unix Fast File System [60] and the ext family of filesys-
tems [18, 59], for each inode there is a particular page on disk where the fixed-size part of the inode
is stored. The variable-sized part of the inode use additional dynamically allocated pages. The on-
disk inode structures are designed to make common file system operations fast. For example, each
directory inode contains directory entries that map file names to other inodes. The directory entry
list is organized so that it is possible to both lookup a directory by name (the LOOKUP call in NFS
or the open() system call locally) as well as iterate through directory entries using a cursor that
can be represented by a single number (the READDIR call in NFS or the readdir() system call
locally).

One could imagine a system that adds new entries to the end of long list, making READDIR simple
at the cost of making LOOKUP slow. Or a system that uses a per-inode B-tree mapping file names to
inumbers so that LOOKUP is quick, even for huge directories, at the cost of making iteration with
READDIR more complicated. The challenge is to make both READDIR and LOOKUP fast.

We store all metadata in the B-tree, so we must represent all inode data as key-value pairs. How
does one represent inodes as key-value pairs in a B-tree? To keep the explanation simple, we will
employ a three-step approach. First, we will review inodes as an abstract data struture. Second,
we will organize inodes as tables. Then, third, we will show how to represent the inode tables as
B-tree key-value pairs.

A typical inode structure for part of a filesystem is shown in Figure 5. The root inode is numbered
0 and is a directory. It has two subdirectories /home and /usr. In turn /home contains a regular
file /home/README that contains three 8 KiB blocks (numbered A, B, and C, respectively.) Thus, the
pointers in the abstract data structure are represented by inumbers and block numbers.

Now consider how to represent the inode data structure as a set of tables. Since all filesystem
objects contain fixed-size “stat()” data, we can employ a table that contains a row for every inode.
This table contains a column for the filesystem number (fsnum) (to distinguish different filesystems
in the same B-tree), a column for inumber (to identify the specific file in the filesystem), a column
for the snapshot range (which we will discuss below), as well as a column for each entry in the
stat structure. For example, if the four inodes in Figure 5 were all created in filesystem 42 for
Snapshot 12, then the tabular representation would look like Figure 6.

Each row stores a snapshot range [a,b) that covers all epochs r such that a ≤ r < b. It turns out
that we store the beginning of the range (a) in the B-tree key and the end of the range (b) in the
B-tree value.

To represent type-specific metadata, we must create type-specific tables. There will be rows in
the type-specific table only for inodes of that type. To form our B-tree schema, we will assign some
columns of the table to the B-tree key and the rest to the value.

Figure 7 shows how the directory metadata needed for LOOKUP operations can be represented
in a table. For LOOKUP we are given the inumber of a directory and a name, and must return the
inumber of the object named in the directory. Directories contain named directory entries, so the
key comprises the fsnum, the inumber of the directory, and the name. The value comprises the
inumber of the object referred to by the the name. (It turns out that the directory names and the
data are encrypted by Orca, so the actual key is the encrypted name.)

Figure 8 shows how to represent the metadata for READDIR. Since a directory can contain too
many entries to return in a single NFS call, NFS employs a single 64-bit value (called the cookie)
as a cursor to indicate where to continue on a subsequent READDIR. Given a inumber and a cookie,
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Fig. 5. The abstract inode structure for part of a filesystem. Each green box is an inode. The purple rounded
box attached to the inode is the pathname of the inode. This pathname is not part of the data struture:
It is an annotation to help understand the data structure. Each inode has a number (for example, “Inode
0”) and a small fixed-sized table of metadata shown in yellow (the type, owner, group, and permissions are
shown). Directory inodes have a mapping (that can be large) mapping names to inumbers. Regular fles have
a (potentially large) mapping of file offsets to blocks. In the figure, blocks are shown as yellow boxes labeled
A, B, and C.

Fig. 6. Table of “stat” information for the inodes shown in Figure 5. All of the inodes belong to the same
filesystem (number 42). Each row can be thought of as having a key and a value (which are separated by a
vertical line). The filesystem number (“fsnum”), inumber, and snapshot number are the unique key for each
row of the table, and we imagine that the table is kept in sorted order. The type, owner, group, and perm are
all part of the value. The snapshot provides a range, and it turns out that the exclusive upper bound of the
range is storedin the value, whereas the lower bound is stored in the key.

ACM Transactions on Storage, Vol. 16, No. 1, Article 3. Publication date: March 2020.



3:10 B. C. Kuszmaul et al.

Fig. 7. Table of LOOKUP directory entries for the inodes shown in Figure 5.

Fig. 8. Table of READDIR directory entries for the inodes shown in Figure 5.

Fig. 9. Table of file block information for select inodes of Figure 5.

a READDIR implementation must return the next several directory entries, so we put the fsnum,
directory inumber, and cookie in the B-tree key and the directory entry in the value.

Figure 9 shows how the block mapping information for a regular file can be represented in a
table. Regular files contain a mapping from offsets to block numbers, so this table’s key is the
fsnum, the inumber, and the offset. The value comprises a tagged pointer that identifies the block
containing the data.

Since we employ different sized blocks at different offsets, it is convenient that the block map
is kept in sorted order: We can easily find the block map entry that holds the data for an arbitrary
offset rather than requiring a lookup for exactly the right offset. For example, if we want to know
which block holds byte 10,000 in the README file in this example, then we can discover that it is
Block B, since its offset, 8,192, is the largest offset that is less than or equal to 10,000 whose length
covers byte 10,000.

So far we have not explained snapshots. A read-only copy of a filesystem is called a snapshot.
We employ copy-on-write to implement snapshots so that the cost of a snapshot is only the cost
of whatever changes are subsequently made to the filesystem. Snapshots have names and appear
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Fig. 10. We started with the fixed-sized data of Figure 6 which was created in Epoch 12, and then in Epoch 13
we changed the owner and permissions of Inode 57. The original row for Inode 57 is unchanged, and a new
row for Epoch 13 has been created.

in a special .snapshots directory. Users can create snapshots by creating a subdirectory in the
.snapshots directory (e.g., with mkdir .snapshots/foo) or via the control-plane. Snapshots can
be deleted, which will end up freeing blocks. Users might create snapshots using a cron job (e.g., for
backups) or as part of other administrative activity (e.g., just before installing a software upgrade).

Snapshots work as follows. Each of the tables shown above has a column in the key for the
snapshot range. We maintain a snapshot number, called the epoch of each filesystem. If a client
takes a snapshot of the filesystem, then we increment the epoch. We never modify rows that have
snapshot numbers less than the epoch. Instead, we copy the relevant row with a new snapshot
number and modify that row. In our example, all the files and data were created in Epoch 12. If we
take a snapshot, then we are now in Epoch 13. If we now modify the permissions on the README
file so that it is owned by justinmp and not world readable, then the fixed size table ends up as
shown in Figure 10.

The situation for READDIR directory entries is also more complicated due to snapshots. Given a
key that has everything but the snapshot, we can employ a “find-next” or “find-prev” operation to
find the right record for a given snapshot, and this even works for block maps. But for READDIR,
we need to do a “find-next,” but we do not know the cookie part of the key. If, for example, there are
a lot of directory entries that existed during Epoch 12, but have been deleted in Epoch 13, then we
could end up looking through a lot of table entries to find a suitable entry. To provide a guarantee
that we can return at least one READDIR result per B-tree operation we maintain a doubly linked
list of READDIR entries.

Figure 11 shows an example of a series of operations in the home diretory (the directory inumber
is 46). Whenever a row’s next or prev records need to be updated, it may split a row into two rows
to cover two different snapshot ranges. For example, in the transition from (b) to (c), the row for
B was split, because in Snapshot 13, there is no next element after B, but in Snapshot 14, there is a
next element. Similarly, in (d) we have deleted B so the next link of A and the prev link of C depends
on which snapshot we are operating in.

At this point, we are done except for one consideration: scale. In all of the above pairs, we use
inode numbers to identify specific files. Every inode number must be unique. For busy filesystems
that create many files per second, the inode number allocator could become a bottleneck. Rather
than represent inode numbers as a single number, we use a pair of numbers consisting of a unique
directory identifier pulled from a global allocation pool and a sequence number within the direc-
tory where the file was created. This scheme lets us allocate non-directory inode “numbers” using
a per-directory sequence number allocator. While directories still require FSS to allocate directory
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Fig. 11. READDIR directory with doubly linked list for each snapshot. In each row, the “prev” (and “next”)
values are the previous (and next) cookie that is appropriate for the snapshot described by the row. The figure
shows a series of states.

ids from a filesystem-wide allocator, most workloads create orders of magnitude fewer directo-
ries than files. Similarly, rather than using a filesystem-wide READDIR cookie, we allocate READDIR
cookies out of a per-directory sequence number. Both per-directory sequence numbers are stored
in the “stat()” metadata of the inode B-tree values.

Figure 12 shows the schema for representing our filesystems. We encode the B-tree keys in a
way that disambiguates the different kinds of key value pairs and sorts the key-value pairs in a
convenient order. For example, all the pairs for a given filesystem F appear together, with the su-
perblock appearing first because of the “0” in its key. Within the filesystem, all the non-superblock
pairs are sorted by D, the directory number. For a directory, the directory inode sorts first, then
come the name map entries for the directory, and then the cookie map, then come all the inodes
for the files that were created in that directory. In that set for each file, the file inode sorts first, fol-
lowed by the block maps for that file. Finally, two entries that are the same except for the snapshot
number are sorted by snapshot number.
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Fig. 12. Filesystem schema showing key→ value pair mappings. The small numbers (e.g., “1”) are literal
numbers inserted between components of a key to disambiguate key types and force proper B-tree sort
ordering. For directories, C = 0.

We implement snapshots using copy-on-write at the key-value pair level rather than doing copy-
on-write in the B-tree data structure or at the block level [15, 33, 41, 49, 55, 71, 73, 74, 81]. One effect
of this decision is that our B-tree is update-in-place, which makes it easy to maintain a linked list
of all the leaves.

Our key-value scheme achieves locality in the B-tree. When a file is created it is lexicographically
near its parent directory, and the file’s block maps and fixed-sized metadata are near each other.
(If the file is later moved, then it still appears near the original parent directory.) This means that
if you create a file in a directory that has only a few files in it, then it is likely that the whole
transaction to update the directory inode, add directory entries, and create the file inode will all
be on the same page, or at least in the same extent, since the B-tree maintains maintains block as
well as page locality (see Section 5).

We use multiple block sizes (which are shown in Figure 4) to address the tension between frag-
mentation and metadata overhead. Small blocks keep fragmentation low for small files. Big blocks
reduce the number of block map entries and other bookkeeping overhead for big files. In our
scheme the first few blocks of a file are small, and as the file grows the blocks get bigger. For files
larger than 16 KiB, the largest block is no bigger than 1/3 the file size, so that even if the block is
nearly empty, we have wasted no more than 1/3 of our storage. We sometimes skip small-block al-
location entirely. For example, if the NFS client writes 1 MiB into a newly created file, then we can
use 256 KiB blocks right away. This block allocation scheme is 1.5-competitive for any file larger
than 10.7 KiB.

Using a B-tree provides us a great deal of flexibility. The best-known alternative to B-tree storage
is to store metadata in specialized data structures (an array of inodes; trees of direct blocks, indirect
blocks, and doubly indirect blocks; and hash tables of directory entries). But such specialized data
structures are difficult to extend. For example, implementing snapshots was fairly straightforward.
We can easily extend the schema to store extended file attributes, complex access control lists (e.g,
for NFSv4 [76]), or resource forks [79].
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5 THE B-TREE

To hold metadata, we built a B-tree [9] on top of MPSC. MPSC provides transactions that can
update up to 15 pages, but we want to think about key-value pairs, not pages, and we want B-tree
transactions to be able include non-B-tree pages and blocks, e.g., to allocate a data block and store
its tagged pointer in a B-tree key-value pair. The B-tree can perform transactions on a total of 15
values, where a value can be a key-value pair or a non-B-tree page write or block allocation.

Consider the simple problem of executing a B-tree transaction to update a single key-value pair.
How many pages must be included in that transaction? The standard B-tree algorithm starts at the
root of the tree and follows pointers down to a leaf page where it can access the pair. To update the
leaf we need to know that it is the proper page, and the way we know that is by having followed a
pointer from the leaf’s parent. Between reading the parent and reading the leaf, however, the tree
might have been rebalanced, and so we might be reading the wrong leaf. So we we need to include
the parent in the transaction. Similarly, we need to include the grandparent and all the ancestors
up to the root. A typical B-tree might be five or six levels deep, and so a single key-value pair
update transaction involves five or six pages, which would limit us to two or three key-value pairs
per transaction. Furthermore, every transaction ends up including the root of the B-tree, creating
a scalability bottleneck.

Our solution to this problem is to use self-validating pages, which contain enough information
that we can determine if we read the right page by looking at that page in isolation. We arrange
every page to “own” a range of keys, for the page to contain only keys in that range, and that every
possible key is owned by exactly one page. To implement this self-validation, we store in every
page a lower bound and upper bound for the set of keys that can appear in the page (sometimes
called “fence keys” [31, 53]), and we store the height of the page (leaf pages are height 0). When we
read a page to look up a key, we verify that the page we read owns the key and is the right height, in
which case we know that if that page is updated in a successful transaction, that we were updating
the right page. Thus, we do not need to include the intermediate pages in the MPSC operation and
we can perform B-tree transactions on up to 15 keys.

We usually skip accessing the intermediate B-tree nodes altogether by maintaining a cache that
maps keys to pages. If the cache steers us to a wrong page, then either the page will not self-
validate or the transaction will fail, in which case we simply invalidate the cache entry and try
again. If a key is missing from the cache, then we can perform a separate transaction that walks
the tree to populate the cache. It turns out that this cache is very effective, and for virtually all
updates we can simply go directly to the proper page to access a key-value pair.

Another problem that could conceivably increase the transaction size is tree rebalancing. In a B-
tree, tree nodes must generally be split when they get too full or merged when they get too empty.
The usual rule is that whenever one inserts a pair into a node and it does not fit, one first splits the
node and updates the parent (possibly triggering a parent split that updates the grandparent, and
so on). Whenever one deletes a pair, if the node becomes too empty (say less than 1/4 full), then
one merges nodes, updating the parent (which can possibly trigger a parent merge that updates
the grandparent, and so on). This means that any insertion or deletion can add as many pages to
a transaction as the height of the tree. Those rebalancings are infrequent so they do not introduce
a scalability bottleneck, but they do make our MPSC operations too big.

Our solution to the rebalancing problem is to rebalance in a separate transaction. When insert-
ing, if we encounter a page overflow, then we abort the transaction, split the page in a separate
transaction, and restart the original transaction. We split the page even if it is apparently nearly
empty: As long as there are two keys we can split the page. For merges, we delete keys from the
page, and then do a separate transaction afterward to rebalance the tree. It is possible that a page
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Fig. 13. The B-tree comprises blocks (in blue) and pages (in pink). The pages form a tree. The leaf pages,
where the key-value pairs are stored, form a doubly linked list (shown with dashed green lines). Each leaf
page is responsible for a range of keys, e.g., [C, F ) means the keys fromC inclusive to F exclusive. Each block
holds a key range of pages for one level. For example, Block 5 has all the leaf pages in the range [G, P ).

could end up empty, or nearly empty, and that due to some crash or packet loss, we forget to
rebalance the tree. That is OK, because we fix it up the next time we access the page.

To improve locality, we exploit both the page and block structure of MPSC. Figure 13 shows how
the B-tree is organized to exploit block locality as well as page locality. Each page is responsible for
a key range, and the union of the key ranges in a block is a single key range. When splitting a page,
we place the new page into the same block as the old page, and if the block is full, then we insert
a new block. If the B-tree schema strives to keep keys that will appear in the same transaction
lexicographically near each other, then locality causes those keys to likely be in the same page, or
at least the same block. Our MPSC implementation optimizes for the case where some pages of a
transaction are in the same extent. With the schema described in Section 4, this optimization is
worth about a 20% performance improvement for an operation such as untarring a large tarball.

The choice of 15 pages per transaction is driven by the B-tree implementation. There is one
infrequent operation requiring 15 pages. It involves splitting a page in a full block: A new block is
allocated, block headers are updated, and the pages are moved between blocks. Most transactions
touch only one or two pages.

6 DASD: NOT YOUR PARENT’S DISK DRIVE

This section explains how we implemented MPSC using Paxos state machines (which we discuss
further in Section 7). MPSC is implemented by a distributed block store, called DASD.2 A single
extent is implemented by a Paxos state machine, so multipage transactions within an extent are
straightforward. To implement transactions that cross extents, we use 2-phase commit.

Given that Paxos has provided us with a collection of replicated state machines, each with an
attached disk, each implementing one extent, we implement two-phase commit [34, 52, 56] on top
of Paxos. The standard problem with two-phase commit is that the transaction coordinator can fail
and the system gets stuck. Our extents are replicated, so we view the participants in a transaction
as being unstoppable.

It would be easy to implement two-phase commit with 3n messages. One could send n “prepare”
messages that set up the pages, then n “decide” messages that switch the state to commited, and
then n “release” messages that release the resources of the transaction. (Each message drives a
state transition, which is replicated by Paxos.) The challenge is to implement two-phase commit
on n extents with only 2n messages and state changes. Every filesystem operation would benefit
from the latency being reduced by 1/3.

2Direct-Access Storage Device (DASD) was once IBM’s terminology for disk drives [43].
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Fig. 14. Three extents performing a DASD transaction. Each column is an extent, and each row is a point
in time, with time moving downward. A double-arrowed line shows two extents pointing at each other. A
single-arrowed line shows one extent pointing at the other, with no pointer back. Ground represents a null
pointer.

To perform an atomic operation with only 2n messages, for example on three pages, the system
progresses through the states shown in Figure 14. The system will end up constructing and tearing
down, in the Paxos state machine, a doubly linked (not circular) list of all the extents in the trans-
action. Each of these steps is initiated by a message from a client, which triggers a state change in
one Paxos state machine (which in turn requires several messages to form a consensus among the
Paxos replicas). The client waits for an acknowledgment before sending the next message.

(1) Extent A receives a prepare message. A enters the prepared state, indicated by “P(data)”,
and records its part of the transaction data and its part of the linked list (a null back pointer,
and a pointer to B).

(2) Extent B receives a prepare message, enters the prepared state, and records its data and
pointers to A and C .

(3) ExtentC receives a prepare-and-decide message, enters the decided state (committing the
transaction), and records its data (indicated by “D(wrote)”) and the back pointer to B.

(4) Extent A receives a decide-and-release message, notes that the transaction is committed,
and releases its resources (such as memory) associated with the transaction, indicated by
“R(wrote).” The head of the linked list is now gone.

(5) Extent B receives a decide-and-release message, notes the commit, and releases its
resources.

(6) Extent C receives a release message (it had already decided) and releases its resources.

Thus we implement two-phase commit in exactly 2n messages with 2n state transitions. Note that
the final transition of state C does not actually need to be done before replying to the client, and
could be piggybacked into the prepare step of the next transaction, potentially reducing the latency
to 2n − 1 messages.

The system maintains the invariant that either a prefix or a suffix of the linked list exists, which
is useful if the transaction is interrupted. There are two ways that the system can be interrupted,
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before the commit (in which case the transaction will abort), or after (in which case the cleanup is
incomplete). The prefix-suffix property helps in both of these cases. If the transaction gets aborted
(at or before step 3), then a prefix exists. If we encounter a prepared state, then we can follow the
linked list forward until we either find a dangling pointer or a decided state. If we find a dangling
pointer, then we can delete the prepare record that contained the dangling pointer, preserving a
prefix. (At the final point, C , of the linked list, we must extract a promise that C will never decide
that the transaction commits. This can be accomplished by introducing a conflict on the read slot
for the page.) If we find a decided state, then the cleanup was interrupted, so it can proceed back
along the linked list until we find the beginning or a dangling pointer and move the state forward
to released.

Our scheme relies on the fact that each state transition occurs one after the other, and hence
the critical path of the transition is also 2n messages. There are schemes in which one can move
the states forward in parallel. For example, one could broadcast “prepare” messages to all the
extents, then have one extent decide, and then broadcast decide messages to them all, then release
messages, so that the critical path would be only 4 long. This results in 3n state transitions (minus
one or two, depending on how clever you are). If you think that big transactions are common,
then that is valuable, but we have found that most transactions are short so it is better to do the
transaction serially.

We optimize the case when there are several pages in a single extent to use fewer messages.

7 PIPELINED PAXOS

In this section, we explain our Paxos implementation, and in particular how we pipeline Paxos
operations.

Lamport-Paxos [50, 51] is an algorithm to achieve consensus on a single value. Lamport-Paxos
requires two phases, called phase 1 and phase 2 by Lamport.

To achieve consensus on a log (as opposed to one value), one common algorithm is Multi-Paxos
[20], which treats the log as an array indexed by slot, running Lamport-Paxos independently on
each array element. It turns out that you can run a “vector” phase 1 for infinitely many elements
of the array with a single pair of messages and that you can reuse the outcome of phase 1 for as
many phase 2 rounds as you want. In this setup, people tend to call phase-1 “master election” and
infer all sorts of wrong conclusions, e.g., that there is only one master at any time and that phase 1
is some kind of “failover.”

In Multi-Paxos, if the operation on slot S + 1 depends on the state after slot S , then you must
wait for slot S (and all previous slots) to finish phase 2. (We do not say “commit” to avoid confusion
with two-phase commit, which is a different protocol.) This Multi-Paxos is not pipelined.

You can pipeline Multi-Paxos with a small modification. You tag each log entry with a unique
log sequence number (LSN) and you modify Paxos so that an acceptor accepts slot S + 1 only if
it agrees on the LSN of slot S . Thus, the Paxos phase 2 message is the Lamport phase 2 plus the
LSN of the previous slot. By induction, two acceptors that agree on a LSN agree on the entire past
history.

Now you can issue phase 2 for S + 1 depending on S without waiting for S to complete, because
the acceptance of S + 1 retroactively confirms all speculations that you made.

The pipelined Multi-Paxos state, per slot, is the Lamport-Paxos state (a ballot B and the slot’s
contents) plus the LSN. You can use whatever you want as LSNs, as long as they are unique, but a
convenient way to generate LSNs is to use the pair 〈E, S〉 where the epoch E must be unique. As
it happens, Lamport phase 1 designates a single winner of ballot B, so you can identify E with the
winner of ballot B in phase 1 and be guaranteed that nobody else wins that ballot. In the E = B case,
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you can reduce the per-slot state to the single-value E, with the dual-role of LSN for pipelining
and of ballot for Lamport-Paxos.

Our Paxos algorithm is almost isomorphic to Raft [67]. Essentially Raft is Multi-Paxos plus con-
ditional LSNs plus E = B. However, Raft always requires an extra log entry to make progress and
cannot be done in bounded space. If you recognize that you are just doing good-old Paxos, then
you can make progress by storing a separate ballot B in constant space.

The idea of the acceptance conditional on the previous LSN appeared in viewstamped replication
[65] (which did not discuss pipelining). It is used specifically for pipelining in Zookeeper, except
that Zookeeper tries to reinvent Paxos but incorrectly assumes TCP is an ideal pipe [8]. Conditional
acceptance is also used in Raft in the same way as in viewstamped replication, except that Raft
lost the distinction between proposer and acceptor, which prevents it from having a speculative
proposer state that runs ahead of acceptors.

7.1 Recovery

Here we explain how our Paxos system recovers from failures.
The on-disk state of a Paxos acceptor has two main components: the log (of bounded size, a

few MB) and a large set of page shards (tens of GB). A shard comprises an erasure-coded frag-
ment of a page and some header information such as a checksum. To write a shard, the Paxos
proposer appends the write command to the log of multiple acceptors. When a quorum of accep-
tors has accepted the command, the write is considered done (or “learned” in Paxos terminology).
The proposer then informs acceptors that a command has been learned, and acceptors write the
erasure-coded shard to disk.

As long as all acceptors receive all log entries, this process guarantees that all acceptors have an
up-to-date and consistent set of shards. However, acceptors may temporarily disappear for long
enough that the only way for the acceptor to make progress is to incur a log discontinuity. We
now must somehow rewrite all shards modified by the log entries that the acceptor has missed, a
process called recovery.

The worst-case for recovery is when we must rewrite the entire set of shards, for example,
because we are adding a new acceptor that is completely empty. In this long-term recovery, as
part of their on-disk state, acceptors maintain a range of pages that need to be recovered, and they
send this recovery state back to the proposer. The proposer iterates over such pages and overwrites
them by issuing a Paxos read followed by a conditional Paxos write, where the condition is on the
page still being the same since the read. When receiving a write, the acceptor subtracts the written
page range from the to-be-recovered page range and sends the updated range back to the proposer.

Long-term recovery overwrites the entire extent. For discontinuities of short duration, we use
a less-expensive mechanism called short-term recovery. In addition to the long-term page range,
acceptors maintain a range of log slots that they have lost, they update this range when incurring
a discontinuity and communicate back this slot range to the proposer. The proposer, in the Paxos
state machine, maintains a small pseudo-LRU cache of identifiers of pages that were written re-
cently, indexed by slot. If the to-be-recovered slot range is a subset of the slot range covered by the
cache, then the proposer issues all the writes in the slot range, in slot order, along with a range R
whose meaning is that the present write is the only write that occurred in slot range R. When
receiving the write, the acceptor subtracts R from its to-be-recovered slot range and the process
continues until the range is empty. If the to-be-recovered slot range overflows the range of the
cache, then the acceptor falls into long-term recovery.

In practice, almost all normal operations (e.g., software deployments) and unscheduled events
(e.g., power loss, network disruption) are resolved by short-term recovery. We need long-term
recovery when loading a fresh replica and (infrequently) when a host goes down for a long time.
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The time it takes to run short-term recovery is roughly bounded by the amount of time that the
replica was off line: A replica simply needs to catch up on any updates that it missed while it was
down. Long-term recovery is proportional to the extent size and runs at a few hundred megabytes
per second, which is throttled to avoid slowing down the continuing workload.

7.2 Checkpointing and Logging

Multi-Paxos is all about attaining consensus on a log, and then we apply that log to a state machine.
All memory and disk space in FSS is statically allocated, and so the logs are of a fixed size. The
challenge is to checkpoint the state machine so that we can trim old log entries. The simplest
strategy is to treat the log as a circular buffer and to periodically write the entire state machine
into the log. Although for DASD extents, the state machine is only a few MB, some of our other
replicated state machines are much larger. For example we use a five-way replicated hash table,
called Minsk, to store configuration information for bootstrapping the system: Given the identity of
the five Minsk instances, a Dendron instance can determine the identity of all the other Dendron
instances. If the Paxos state machine is large, then checkpointing the state machine all at once
causes a performance glitch.

Here is a simple scheme to deamortize checkpointing. Think of the state machine as an array of
bytes, and every operation modifies a byte. Now, every time we log an update to a byte, we also
pick another byte from the hash table and log its current value. We cycle through all the bytes of
the table. Thus, if the table is K bytes in size, then after K update operations we will have logged
every byte in the hash table, and so the most recent 2K log entries have enough information to
reconstruct the current state of the hash table. We do not need to store the state machine anywhere,
since the log contains everything we need.

This game can be played at a higher level of abstraction. For example, suppose we think of
the hash table as an abstract data structure with a hash_put operation that is logged as a logical
operation rather than as operations on bytes. In that case every time we log a hash_put we also log
the current value of one of the hash table entries and take care to cycle through all the entries. If
the hash table contains K key-value pairs, then the entire hash table will be reconstructable using
only the most recent 2K log entries. This trick works for a binary tree, too.

8 AVOIDING CONFLICTS

This section outlines three issues related to transaction conflicts: avoiding too much retry work,
avoiding congestion collapse, and reducing conflicts by serializing transactions that are likely to
conflict.

In a distributed system, one must handle errors in a disciplined fashion. The most common
error is when a transaction is aborted, because it conflicts with another transaction. Retrying
transactions at several different places in the call stack can cause an exponential amount of retry-
ing. Our strategy is that the storage host does not retry transactions that fail. Instead, it attempts
to complete one transaction, and if it fails, then the error is returned all the way back to Orca,
which can decide whether to retry. Orca typically sets a 59 s deadline for each NFS operation and
sets a 1 s deadline for each MPSC. Since the NFS client will retry its operation after 60 s, it is OK
for Orca to give up after 59 s. One special case is handing READ and WRITE requests, in which
case a partial result can be returned if the full request times out.

Some errors, such as transaction conflicts, impute congestion. In some situations the request
transaction did not complete, because some “housekeeping” operation needed to be run first (such
as to rebalance two nodes of the B-tree). Doing the housekeeping uses up the budget for a sin-
gle transaction, so an error must returned to Orca, but in this case the error does not impute
congestion.
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When two transactions conflict, one aborts, which is inefficient. We use in-memory locking
to serialize transactions that are likely to conflict. For example, when Orca makes an FSS call to
access an inode, it sends the request to the storage host that is likely to be the Paxos leader for the
extent where that inode is stored. That storage host then acquires an in-memory lock so that two
concurrent calls accessing the same inode will run one after another. Orca maintains caches that
map key ranges to extent numbers and extent numbers to the leader’s IP address. Sometimes one of
the caches is wrong, in which case, as a side effect of running the transaction, the storage host will
learn the correct cache entries, and inform Orca, which will update its cache. The in-memory lock
is used for performance and is not needed for correctness. The technique of serializing transactions
that are likely to conflict is well known in the transactional-memory literature [54, 83].

To avoid performance collapse, Orca employs a congestion-control system similar to TCP’s
window-size management algorithm [80]. Every Orca process maintains two congestion windows
per back-end server. One window applies to Dendron and the other to DASD. A window’s state
comprises one real number, w , the window size.

The window size is expressed in terms of the number of requests that can be sent to the server in
one round trip time (RTT) period. We initialize the window size 1. If a reply from a server indicates
congestion, then we decrease the window size to w ′ as

w ′ =

{
w − 1/(2C ) if w ≥ 1, and
w −w/(2C ) otherwise.

If a reply indicates “no congestion,” then we increase window size as

w ′ =

{
w + 1/(wC ) if w ≥ 1, and
w +w/C otherwise.

The constant C is a tuning parameter, which we set to 200 based on empirial measurements.
The meaning of w is as follows. If w ≥ 1, then we allow up to w requests to be outstanding.

If w < 1, then we delay requests so that only one request is sent every 1/w as often so that on
average onlyw requests are outstanding. For example, if the window size is 1/2, then a thread will
wait 2 RTT periods before sending the request.

The congestion indicator from the server depends on a combination of latency and explicit
congestion notification (ECN) [69]. If an acceptor or a disk I/O takes too long to respond to a
request, then we set the congestion indicator. If any queue length becomes too full, then we set
the congestion indicator (specifically if a queue length approaches the number of threads in the
Dendron or DASD server the queue is “too full”). This approach reduces the chance of congestion
collapse and keeps the system operating in a domain where latency is low.

9 PERFORMANCE

In the introduction we promised customers a convex combination of 100 MB/s of bandwidth and
3,000 IOPS for every terabyte stored. Those numbers are throughput numbers and to achieve those
numbers the NFS clients may need to perform operations in parallel. This section first explains
where those throughput numbers come from and then discusses FSS latency.

To make concrete throughput statements, we posit a simplified model in which the network
bandwidth determines performance. The network bottleneck turns out to be on the storage hosts.
If the virtual network interfaces (VNICs) on the NFS clients are the bottleneck, then the customer
can add NFS clients. If the presentation host is the bottleneck, then additional mount targets can
be provisioned. The performance of the NVMe is fast compared to the several round trips required
by Paxos (in contrast to, e.g., Gaios, which needed to optimize for disk latency instead of network
latency, because disks were so slow [13]).
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We define performance in terms of the ratio of bandwidth to storage capacity. There are four
components to the performance calculation: raw performance, replication, scheduling, and over-
subscription. The raw performance is the network bandwidth divided by the disk capacity, with-
out accounting for replication, erasure coding, scheduling, or oversubscription.

Replication consumes both bandwidth and storage capacity. Using 5:2 erasure coding, for each
page of data, half a page is stored in each of five hosts. This means we can sell only 40% of the
raw storage capacity. The network bandwidth calculation is slightly different for writes and reads.
For writes, each page must be received by five different storage hosts running Paxos. That data
are erasure coded by each host then written to disk. Thus, for writes, replication reduces the raw
network bandwidth by a factor of 5.

For reads we do a little better. To read a page we collect all five erasure-coded copies, each of
which is half a page and reconstruct the data using two of the copies. We could probably improve
this further by collecting only two of the copies, but for now our algorithm collects all five copies.
So for reads, replication reduces the bandwidth by a factor of 5/2.

Scheduling further reduces the bandwidth but has a negligible effect on storage capacity. Queue-
ing theory tells us that trying to run a system over about 70% utilization will result in unbounded
latencies. We do not do quite that well. We find that we can run our system at about 1/3 of peak
theoretical performance without affecting latency. This factor of 3 is our scheduling overhead.

Since not all the customers are presenting their peak load at the same time, we can sell the
same performance several times, a practice known as oversubscription. In our experience, we can
oversubscribe performance by about a factor of 5.

The units of performance simplify from MB/s/TB to s−1, so 100 MB/s/TB is one overwrite per
10,000 s.

For input-outputs per second (IO/s) we convert bandwidth to IOPS by assuming that most IOs
are operations on 32 KiB pages, so we provide 3,000 IO/s/TB. The cost of other IOs can be expressed
in terms of reads: A write costs 2.5 reads, a file creation costs 6 reads, an empty-file deletion costs
8 reads, and a file renaming costs about 10 reads.

This performance model appears to work well on every parallel workload we have seen. To test
this model, we measured how much bandwidth a relatively small test fleet can provide. (We are
not allowed to do these sorts of experiments on the big production fleets.) We measured on multi-
ple clients, where each client has its own mount target on its own Orca. This fleet has 41 storage
instances each with a 10 Gbit/s VNIC for a total raw performance of 51.25 GB/s. After replica-
tion that is 10.25 GB/s of salable bandwidth. Dividing by 3 to account for scheduling overhead is
3.4 GB/s. Those machines provide a total of 200 TB of salable storage, for a ratio of 17 MB/s/TB.
According to our model, with fivefold oversubscription, this fleet should promise customers
85 MB/s/TB.

Figure 15 shows measured bandwidth. The variance was small so we measured only six runs
at each size. The measured performance is as follows. When writing into an empty file, block
allocation consumes some time, and a single client can get about 434 MB/s, whereas 12 clients
can get about 2.0 GB/s. When writing into an existing file, avoiding block allocation overhead, the
performance is about 536 MB/s and 2.4 GB/s for 1 and 12 clients, respectively.

We hypothesized that we could model this data as a simple-speedup curve [11] (a variant of
Amdahl’s law or of Brent and Graham’s Theorem [7, 14, 32]). In a simple-speedup scenario, as
we increase the number of clients, we see a linear speedup that eventually flattens out to give an
asymptotic speedup. The curve is parameterized by two numbers l and a. The first value, l , is the
linear-speedup slope that applies when the number of clients C is small where the performance
will be l ·C . The second value, a, is the asymptotic speed, and indicates the performance for large
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Fig. 15. Measured bandwidth. The X-axis is the number of NFS clients. The Y-axis is the cumulative band-
width achieved. The crosses (in black) show measured performance writing into a preallocated file. The x’s (in
blue) show measured performance including block allocation. The functions S are the curves fit to a simple-
speedup model, with the corresponding linear-speedup shown as lines passing through the origin and the
asymptotic speedups shown as horizontal lines. The number of clients at the intercepts are also shown.

numbers of clients. The simple speedup curve,

Sl,a (C ) = 1/(1/lC + 1/a),

is simply half the harmonic mean of the linear-speedup curve lC and the asymptotic speed a.
We fitted of our data to the simple-speedup model and plotted the resulting curves in Figure 15.

The asymptotic standard error for the curve fit is less than 1.7%. Visually, the curves fit the data
surprisingly well.

We can interpret these curves as follows: When writing to an empty file (which includes block
allocation), a few clients can each achieve about 0.52 GB/s, and many clients can achieve a total of
2.98 GB/s. The cutover between “few” and “many” is about 6 clients for this fleet. When writing
to a preallocated file, a few clients can each achieve 0.70 GB/s, and many clients can achieve a
total of 3.31 GB/s, which is close to our estimate of 3.4 GB/s. The intercept of the speedup curve
lines tells us the half-power points, where half the peak capacity is consumed: The amount of 4.7
clients consume half of the fleet’s allocate-and-write capacity, and 5.8 clients consume half of the
write-without-allocation capacity.

Low latency is hard to achieve in a replicated distributed system. Latency is the elapsed time
from an NFS client’s request to response in an otherwise unloaded system. For serial workloads,
latency can dominate performance. For example, when running over NFS, the tar program cre-
ates files one at a time, waiting for an acknowledgment that each file exists on stable storage
before creating the next file. After looking at various benchmarks, we concluded that we should
simply measure tar’s runtime on a well-known tarball such as the Linux 4.19.2 source code dis-
tribution, which is 839 MB and contains 65,825 objects. Untarring Linux onto local NVMe device
takes about 10 s. The same NVMe served over NFS finishes in about 2.5 minutes. FSS finishes
in about 10 minutes. Amazon’s EFS, which replicates across a metropolitan region, finishes in
about an hour. According to this limited experiment, NFS costs a factor of 15, replication within a
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datacenter costs another factor of 4, and synchronous replication over metropolitan-scale distances
costs another factor of 6. Achieving local-filesystem performance in a replicated distributed fault-
tolerant filesystem appears ... difficult.

10 THE IVY CONTROL-PLANE STORE

Most cloud services are organized into two parts: a data plane, and a control plane. Often the
way these two parts evolve is that the cloud service provider takes an open-source program, puts
it into their cloud, and calls it a “service.” The open-source program might not be cloud native, and
typically does not include facilities for setting up a customer’s instance of the service. So whatever
needs to be added to provision the service, do billing, do health telemetry, and so forth, is lumped
together into the control plane. This situation is much cleaner than that for a file storage service:
Anything that the NFS protocol can express is data plane, and anything else is control plane. So, for
example, NFS provides no way to create or delete a file system, create, or maintain mount targets,
attach a mount target to the customer’s VCN, calculate usage-based bills, add presentation hosts
or storage hosts, failover Orca processes when a presentation host fails, or delete snapshots. These
functions are handled by the FSS control plane.

To perform its function, the control plane needs a data store, which we implement with a second
B-tree running an RPC protocol that we call Ivy. We use a second B-tree, because control-plane
keys turn out to be much larger than the keys in the data-plane B-tree. The largest keys in the data
plane are filenames, which including all their overhead max out at about 300 bytes per key. But
the largest control-plane keys are several thousand bytes. Since our B-tree balancing algorithms
work well only if the keys are less than about 1/8 of a page, we end up needing larger pages for
the control-plane store than for the data-plane store. For the data plane, we want the pages to be
as small as possible, because large pages induce a performance penalty. So we chose 8 KiB pages
for the data plane and 64 KiB pages for the control plane. Thus the Ivy B-tree employs a different
extent type than the data-plane B-tree.

We will briefly discuss Orca failover, which is one of the more interesting problems faced by the
control-plane. One of our requirements is that mount targets should exhibit high availability.

It turns out that creating a new IP endpoint is relatively slow using our VCN infrastructure, and
so if an Orca server fails it would take too long to remove the existing endpoint and create a new
one connected to a different Orca server. But our VCN provides the ability to create an IP alias
for an existing endpoint, and we can quickly move the alias. So our strategy is to create two IP
endpoints attaching particular Orca servers to the VNC and then use a third IP that the customer
uses and that IP can quickly change when an Orca fails.

We use a separate set of servers, called Orca Managers (ORMA), whose job is to monitor and,
when necessary, failover mount targets to a different server. We want to tolerate the failure of a
entire fault domain, so we run a set of ORMA servers in different fault domains, usually three in
each data center. To achieve concensus on the state of an Orca server and to serve various other
control plane functions we use the Ivy B-tree.

Ivy’s keys and values are array of bytes that can be of length up to about 8 KiB. Ivy supports
four RPC methods: GET, COMMIT, ITERATE, and CONFIRM.

GET Takes up to seven keys and returns their corresponding values along with a sequence
number. The Ivy sequence numbers are a little different from the Paxos LSNs or the MPSC
slot numbers, but they serve much the same function: If a value changes, then the sequence
number returned for that value will change. If a key-value pair is not present, then Ivy
will return a NULL value along with a sequence number.
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In contrast to the data-plane B-tree, the control-plane B-tree does not allow inconsistent
reads. In the data plane, performance is so important that the client programmer must
program around inconsistent reads. Control-plane performance is less critical so we made
it easier to program by providing only consistent reads. To provide consistent reads on
subsequent GET operations in the same transaction, the client also provides the set of keys
and sequence numbers that it has read so far. If any of those keys have had their values
modified (which can be determined by examining the sequence numbers), then the GET
operation will return an error code.

COMMIT allows the client to modify up to seven key value pairs. The client provides a set of
key-value-sequence-number triples. That is, for each key the client provides a value and
the sequence number that was used to read that value. Only if none of those values have
changed can the commit succeed.

ITERATE allows client to iterate over keys in lexicographic order. The ITERATE function re-
turns keys with no values or sequence numbers. The ITERATE function is not transac-
tionally consistent, and so the client must perform a GET on any keys it wants to use in a
transaction.

CONFIRM allows client to confirm that value of up to seven key value pairs did not change
after their respective sequence numbers were obtained. Compared to GET and COMMIT,
CONFIRM is light weight.

We do not store a sequence number on every key-value pair. Instead we use ownership records

[35]. We maintain a collection of N = 1,000,000 ownership records in the Ivy B-tree (they are
spread around in the key space so that they are likely to be on different pages to reduce contention).
Each ownership record contains a sequence number that is just a number that monotonically
increases over time. We employ a hash function, h, mapping each key k to a number in the range
[0,N ), and the sequence number stored in record h(k ). This allows us to compute a sequence
number even for keys that are not present in the tree.

An alternative design would have been to put a sequence number in each key-value pair and
use that sequence number for any lookup between that key and the next present key.

We partition Ivy key space into tables. Every key belongs to one of the tables and single COMMIT
call can modify key-value pairs from different tables.

Since Ivy keys and values can have relatively long length (up to 8 KiB), we can encode various
complex data structures into key names.

Orca servers can break in various different ways, but we assume that as long as an Orca server
can write to Ivy it is still live. A process runs on every Orca server that periodically writes heartbeat
values to its key in Ivy.

When one of the ORMA servers detects that an Orca server did not post a heartbeat we start a
failover process. The failover process has multiple steps, some of which are outside of our control
(for example, moving the IP alias for an endpoint is a call to the VCN system.) We organize the
steps so that they are idempotent and so it is safe repeat them multiple times. The decision to fail
over an Orca host is recorded in Ivy along with which of the idempotent steps have completed.
This workflow of small transactions can be used to effect a large operation that we sometimes
call a second order transaction (SOT). All three ORMA servers are allowed to make progress on
one of the SOTs, but because of Ivy’s COMMIT semantics, only one of them will succeed. If one of
the ORMA servers is not available to make progress with one of the SOTs, then any other ORMA
server will continue to make progress. We use a similar mechanism to implement various other
control plane workflows.
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11 RELATED WORK

MPSC is a variation of load-link/store-conditional [47] and seems less susceptible to the ABA
problem (in which the same location is read twice and has the same value for both reads, trick-
ing the user into thinking that no transaction has modified the location in the meanwhile) than
compare-and-swap [24, 25, 38]. Version tagging and the ABA problem appeared in Reference [44,
p. A-44].

Sinfonia has many similarities to our system. Sinfonia minitransactions [1] are similar to MPSC.
Sinfonia uses uses primary-copy replication [16] and can suffer from the split-brain problem, where
both primary and replica become active and lose consistency [23]. To avoid split-brain, Sinfonia
remotely turns off power to failed machines, but that is just another protocol that can, e.g., suffer
from delayed packets and does not solve the problem. We employ Paxos [50], which is a correct
distributed consensus algorithm.

Many filesystems have stored at least some their metadata in B-trees [10, 26, 45, 59, 71, 74, 75]
and some have gone further, storing both metadata and data in a B-tree or other key-value store
[21, 46, 72, 84, 85]. Our B-tree usage is fairly conventional in this regard, except that we store many
filesystems in a single B-tree.

ZFS and HDFS [36, 77, 78, 81] support multiple block sizes in one file. Block suballocation and
tail merging filesystems [3, 71, 74] are special cases of this approach.

Some filesystems avoid using Paxos on every operation. For example, Ceph [48] uses Paxos
to run its monitors but replicates data asynchronously. Ceph’s crash consistency can result in
replicas that are not consistent with each other. Some systems (e.g., References [27, 28, 58]) use
other failover schemes that have not been proved correct. Some filesystems store all metadata in
memory [28, 37, 42, 48, 64], resulting in fast metadata access until the metadata gets too big to fit
in RAM. We go to disk on every operation, resulting in no scaling limits.

Two-phase commit on top of Paxos-based transaction coordinators seems to have first been
implemented by Google Spanner [22]. Apparently Amazon’s elastic file system (EFS) [5] (which
provides a similar product to our service, and precedes our service by a few years) also uses two-
phase commit on top of Paxos. For a more complete history of layering transactions on top of
replicated storage see the related work section in the Spanner paper.

Some cloud providers offer managed storage appliance services [6, 30]. These services provi-
sion a virtual machine per filesystem and run specific filesystem stacks on top of pre-provisioned
storage. This approach can provide excellent latency, since it operates directly on local storage.
Some offerings also provide specialized filesystem stacks (such as Lustre) for specialized use cases.
Some customers need the low latency and are willing to tolerate the resulting filesystems that
have some combination of being nonscalable, nonelastic, less durable, less consistent, and harder
to manage, because they require users to to pre-provision and partition appliances of the right size
and throughput.

12 CONCLUSION

We conclude with a brief history of FSS. The team started with Frigo and Kuszmaul, and the first
code commit (comprising mostly CRC subroutines) was on July 4, 2016. Paxos and DASD were
implemented by the end of July. At that time Paxos was 500 lines of code (LOC), and DASD was
3,100 LOC. The B-tree was working by November 2016. At that time the B-tree was 3,000 LOC
Paxos was 10,000 LOC, and DASD was 9,000 LOC. Sandler joined and started Orca implementation
on August 3, 2016. Mazzola Paluska joined on September 15, 2016 and implemented the filesystem
schema in the B-tree. Control-plane work started in spring 2017. The team grew to about a dozen
people in January 2017 and is about two dozen people in fall 2019. As of fall 2019, the B-tree is
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9,000 LOC, Paxos is 16,000 LOC, DASD is 21,000 LOC, and Orca is 15,000 LOC. Limited availability
was launched on July 7, 2017, less than one year after first commit (but without a control plane—
all configuration was done manually). General availability started January 29, 2018. As of Spring
2019, FSS hosted over 10,000 filesystems containing several petabytes of paid customer data and
is growing at an annualized rate of 8- to 60-fold per year (there is some seasonal variation).
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