
Ultrascalar Memo 3

The Ultrascalar Processor
An Asymptotically Scalable Superscalar
Microarchitecture
or How I Learned to Stop Worrying and Love Out-of-Order Executiona

Dana S. Henry, Bradley C. Kuszmaul, and Vinod Viswanath
Yale University�
dana,bradley,vinod � @ee.yale.edu

December 30, 1998
aTo appear in The Twentieth Anniversary Conference on Advanced Research in VLSI

(ARVLSI’99), Atlanta, GA, March 21–24, 1999.

1 Introduction

Today’s superscalar processors rename registers, bypass registers, checkpoint state so that they can recover from spec-
ulative execution, check for dependencies, allocate execution units, and access multi-ported register files. The circuits
employed are complex and irregular, requiring much effort and ingenuity to implement well. Furthermore, the delays
through many of the circuits grow quadratically with issue width (the maximum number of simultaneously fetched or
issued instructions) and window size (the maximum number of instructions within the processor core), making future
scaling of today’s designs problematic [11, 4, 5]. With billion transistor chips on the horizon,1 this scalability barrier
appears to be one of the most serious obstacles for high-performance uniprocessors in the next decade. Surprisingly,
it is possible to extract the same instruction-level parallelism (ILP) with a regular circuit structure that has only loga-
rithmic gate delay and linear wire delay (speed-of-light delay) or even sublinear wire delay, depending on how much
memory bandwidth is required for the processor. This paper describes a new processor microarchitecture, called the
Ultrascalar processor, based on such a circuit structure.

The goal of this paper is to illustrate that processors can scale well with issue width and window size. We have
designed a new microarchitecture and layed out its datapath. We have analyzed the asymptotic growth and empirically
computed its area and critical-path delays for different window sizes. We have not optimized the Ultrascalar archi-
tecture to be competitive with today’s designs. Although we outline design choices that could make the Ultrascalar
competitive, an optimized processor design is outside the scope of this paper. This paper also does not evaluate the
benefits of larger issue widths and window sizes. Some work has been done showing the advantages of high-issue-
width and high-window-size processors. Lam and Wilson suggest that ILP of ten to twenty is available with an infinite
instruction window and good branch prediction [7] . Patel, Evers and Patt demonstrate significant parallelism for a
16-wide machine given a good trace cache [13]. Patt et al argue that a window size of 1000’s is the best way to use
large chips [14]. The amount of parallelism available in a thousand-wide instruction window with realistic branch
prediction, for example, is not well understood however. The ultimate value of the Ultrascalar microarchitecture will
depend on careful engineering for specific window size and on the available parallelism in programs.

Microprocessor Performance

The standard model for modeling the performance of a microprocessor [6] says that the time to run a program is�������
CPI

�	�
where
 � is the number of instructions needed to run the program,
 CPI is the number of clock periods per instruction, and
 � is the length of a clock period in seconds, i.e. the cycle time.

1Texas Instruments announced recently a 0.07 micron process with plans to produce processor chips in volume production in 2001 [19].

1

The value of
�

is determined by the critical-path length through any pipeline stage, that is the longest propagation
delay through any circuit measured in seconds. Propagation delay consists of delays through both gates and wires, or
alternately of delays through transistors driving ��� networks. We are not changing

�
or directly changing CPI, but

rather we aim to reduce the clock cycle by redesigning the processor to use circuits with reduced critical-path length.
An alternate way to avoid slowing down the clock is by breaking down the processor into more pipeline stages.

Increasing the number of pipeline stages offers diminishing returns, however, as pipeline registers begin to take up a
greater fraction of every clock cycle and as more clock cyles are needed to resolve data and control hazards. In contrast,
shortening the critical path delay of the slowest pipeline stage translates directly into improved program speed as the
clock period decreases and the other two parameters remain unchanged.

The critical-path delays of many of today’s processor circuits do not scale well. For example, Palacharla, Jouppi,
and Smith [11] find that many of the circuits in today’s superscalars have asymptotic complexity �������
	��
��� , where
� is the issue width and � is the window size of the processor. For today’s processors, optimized for � equal to
four, and � in the range of ��� to ��� , the delays appear to be practically linear, however, although the quadratic
terms appear to become important for slightly larger values of � and � .2 Increasing issue widths and increasing
window sizes are threatening to explode the cycle time of the processor. In contrast, all of the Ultrascalar processor
circuits grow much more slowly with gate delays of ���������
��	�� �!�"�#� and wire delays of ���%$ �&	'$ �#� for memory
bandwidth comparable to today’s processors. Due to the constants involved, the Ultrascalar may not be as fast as
today’s quadratic-time superscalars for today’s values of � and � . We believe that with some engineering effort the
crossover point where Ultrascalar becomes faster may be as low as � �)(

and � � ��� , however. The asymptotic
advantage of the Ultrascalar over today’s circuits translates to perhaps an order-of-magnitude or more advantage when
� is on the order of several hundreds or thousands, a design point advocated by [14].

The Ultrascalar processor breaks the scalability barrier by completely restructuring the microarchitecture of the
processor. The Ultascalar turns the processor’s datapath into a logarithmic depth network that efficiently passes data
from producer instructions to consumer instructions within the reordering window. The network eliminates the need
for separate renaming logic, wake-up logic, bypass logic, and multi-ported register files.

The rest of this paper is organized as follows. Section 2 explains the mechanisms within the Ultrascalar processor
core and analyzes the circuits’ performance in terms of gate delays. Section 3 briefly explores the space of memory
subsystems that can be attached to the Ultrascalar processor core. Section 4 analyzes the performance of the Ul-
trascalar circuitry in more detail, taking into account the layout to produce wire delay and area bounds. Section 5
presents empirical delay and area data derived from our layouts and suggests ways to improve the constants. Section 6
concludes by comparing the Ultrascalar to other work exploiting large ILP and discussing other applications of the
Ultrascalar circuits.

2 The Ultrascalar Core

This section describes the core of the Ultrascalar processor. The Ultrascalar processor core performs the same func-
tions as a typical superscalar processor core. It renames registers, analyses register and memory data dependencies,
executes instructions out of order, forwards results, efficiently reverts from mispredictions, and commits and retires
instructions. The Ultrascalar processor core is much more regular and has lower asymptotic critical-path length than
todays superscalars, however. In fact, all the scaling circuits within the processor core are instances of a single algo-
rithm, parallel prefix, implemented in VLSI. Because of the core’s simplicity, it is easily apparent how the number of
gates within a critical path grows with the issue width and window size.

The core does not include the memory and branch prediction subsystems. Instead the core presents the same
interface to the instruction fetch unit and the data cache as today’s superscalar processor cores. Predicted instruc-
tion sequences enter the core, and data load and store requests are initiated by the core. We briefly discuss possible
memory subsystems in Section 3, but the Ultrascalar core will benefit from the any advances in effective instruc-
tion fetch rate and in data memory bandwidth that can be applied to traditional superscalar processors. In particular,
since the Ultrascalar processor core performs the same functions as the core of today’s superscalars, it achieves the
same CPI performance as existing superscalars when attached to a traditional 4-instruction-wide fetch unit using tradi-
tional branch prediction techniques and a traditional cache organization. As effective fetch rates and data bandwidths

2Note that for today’s processors with large * the window is typically been broken in half with a pipeline delay being paid elsewhere. An HP
processor sets *,+�-/. [5]. The DEC 21264 sets *0+'132 [4]. Those systems employ two windows, each half size, to reduce the critical-path
length of the circuits. Communicating between the two halves typically requires an extra clock cycle.

2

Oldest

��������������	 ��	
����������

����� 	
�����
� �
� �
�

� 	
� �

� 	 ���
�� � �

����� 	
�����
� �
� �
�

� 	
� �

��������	�����

Execution
Station 0

Execution
Station 1

Execution
Station 2

Execution
Station 3

Figure 1: A linear-time datapath for the Ultrascalar processor. This simplified network shows execution stations
connected by a pipelined ring network: the signals labeled ��� at the right are connected to the corresponding signals
on the left.

increase, the Ultrascalar core can scale gracefully, raising the CPI without exploding the cycle time.

A Datapath with Linear Gate Delays

One way to think of the Ultrascalar processor is that it uses a circuit-switched network to compile at runtime the
dataflow graph for a dynamic sequence of unrenamed instructions. The circuit switched network connects producer
instructions with consumer instructions. The structure and the layout of this network are the key to the Ultrascalar’s
scalable performance.

Before we introduce the Ultrascalar, let us briefly consider a simpler datapath in which the network connecting
producer instructions to consumer instructions consists of a simple ring. We will refer to this datapath as the linear-
time datapath. Figure 1 illustrates. The ring network routes the values of

�
logical registers3 through a pipelined series

of execution stations. Each execution station holds and eventually executes one instruction from a dynamic sequence
of instructions. Executing an instruction may take only one clock cycle (e.g., for integer addition) or many clock cycles
(e.g., for division.) The number of execution stations corresponds to the number of outstanding instructions within
the processor much like the instruction window in today’s superscalars. As in today’s superscalars, the fetch width is
independent of the number of outstanding instructions. Newly fetched instructions simply refill execution stations in
a wrap-around fashion, starting with the oldest instruction. In the figure, the oldest instruction in the current sequence
resides in Execution Station 1, the youngest in Execution Station 0. Note that the pipeline registers of Execution
Station 1 hold the committed state of the register file. Throughout the datapath, each register value has a ready bit.
The ready bit is associated with the wires carrying the register value and indicates whether the value has already been
computed. As instructions complete, they retire from the datapath and new instructions enter the datapath. Eventually,
the output wires of Execution Station 0 hold the new state of the register file, with all of their ready bits set to high.

Consider the performance of the linear-time datapath example in Figure 1. The complete sequence of instructions
currently in the datapath (with the corresponding execution station shown to the right) is:

Instruction Execution Station
��� � � �

� � � (1)
�!� � �#" 	'�$� (2)
��� � �#% 	'� � (3)

3The value of & is determined by the instruction set architecture. For example, for many RISC architectures &�+('�) .

3

� " � � � 	'� � (0)

Suppose that division takes 24 clocks and addition takes one.
 On Clock 0, we assume that all the registers become valid at Station 1. Station 1 begins executing.
 On Clock 1, all the registers except for � � become valid at Station 2. Station 2 waits for � � .
 On Clock 2, all the registers except for � � and � � become valid at Station 3. Station 3 executes and produces a
new value of � � .
 On Clock 3, all the registers except for � � become valid at Station 0. Station 0 executes and produces a new
value of � " .
 On Clock 23, Station 1 finishes executing.
 On Clock 24, Station 2 executes.
 On Clock 26, all the registers become valid at Station 0.

Note that the instructions executed out of order. The last two instructions completed long before the first two. More-
over, the datapath automatically renamed registers. The last two instructions did not have to wait for the divide to
complete and write � � .

Our linear-time datapath bears similarities to the counterflow pipeline [18]. Like counterflow, the linear-time data-
path automatically renames registers and forwards results. Counterflow provides a mechanism for deep pipelining,
rather than large issue width, however. The counterflow pipeline is systolic, with instructions flowing though succes-
sive stages of the datapath. Since instructions serially enter the pipeline in the first pipeline stage, the CPI is limited
by the rate at which instructions can enter the pipeline. It is not clear how counterflow could be modified to increase
its issue width. In contrast, in our linear-time datapath, all execution stations can refill with new instructions simulta-
neously. (We will discuss how to implement simultaneous refill in Section 3.) Thus, whereas our linear datapath has
no corresponding limit on CPI (and is limited by the clock period), the counterflow can push the clock period down
but is limited to one CPI.

Another difference between our linear datapath and counterflow is that counterflow uses less area to route data. It
only passes results and arguments down its pipeline, not the entire register file. In Section 5 we will discuss a similar
modification to reduce the number of wires used in the Ultrascalar.

One weakness shared by counterflow as well as our linear-time datapath is the speed of routing. In a synchronous
implementation our linear-time datapath, if a producer and a consumer of a register value are separated by � instruc-
tions in the dynamic instruction sequence, it takes � clocks to serially route the value through all � intermediate
execution stations. For example, it took 3 clocks to route � � from Station 1 to Station 0. (In a counterflow pipeline,
it typically would take �

���
clocks to perform this operation.) This linear delay can be intolerably high compared to

today’s superscalars that forward values within one clock cycle.

The Ultrascalar Datapath with Logarithmic Gate Delays

The Ultrascalar datapath replaces the linear-time ring network of Figure 1 with a faster logarithmic-depth network
performing the same function. Figure 2 illustrates the Ultrascalar datapath. The logarithmic-depth network forms a
bidirectional tree that routes the values of all

�
logical registers among the execution stations. The execution stations

are the same as for the linear-time datapath, except that they produce an additional one-bit “modified” output for each
logical register. This “modified” bit will be explained shortly. As before, instructions are assigned to execution stations
in a wrap-around sequence.

Since the routing of each of the
�

registers is independent, it is often easier to consider a single slice, responsible
for the routing of one register, of the network. Thus the network in Figure 2 can be broken into

�
network slices such

as the one in Figure 3. To make the example more interesting, we have increased the number of execution stations
in Figure 3 to eight. Each slice routes the values of one register, say ��� , among the eight execution stations. The
slice hands each execution station the value of � � and its ready bit. The execution station hands back to the slice a
potentially new value of � � , its ready bit, and an additional “modified” bit telling the slice whether the station modifies
� � . The additional modified bit tells the network how to route register values efficiently. For example, if Execution
Station 5 holds the oldest instruction and Execution Station 1 modifies � � then the values of � � will be routed as
indicated in Figure 3. The value of � � held by Station 5 appears at the inputs of Stations 6, 7, 0, and 1. The value
of ��� produced by Station 1 appears at the inputs of Stations 2–5. Notice that Station 5 which is holding the oldest
instruction also set its modified bit to 1, telling the network that it has in effect modified � � .

4

E
xe

cu
tio

n
St

at
io

n
3

E
xe

cu
tio

n
St

at
io

n
1

E
xe

cu
tio

n
St

at
io

n
2

E
xe

cu
tio

n
St

at
io

n
0

Switch Switch

Switch

Figure 2: A high-level view of the logarithmic-depth network connecting all the execution stations of the Ultrascalar.

Switch
Slice

Register Value (32 bits)

Ready (1 bit)

Register Value (32 bits)

Ready (1 bit)

Register Value (32 bits)

Ready (1 bit)

Modified (1 bit)

E
xe

cu
tio

n
St

at
io

n
3

E
xe

cu
tio

n
St

at
io

n
4

E
xe

cu
tio

n
St

at
io

n
6

E
xe

cu
tio

n
St

at
io

n
7

E
xe

cu
tio

n
St

at
io

n
0

E
xe

cu
tio

n
St

at
io

n
1

E
xe

cu
tio

n
St

at
io

n
2

E
xe

cu
tio

n
St

at
io

n
5

Switch
 Slice

SliceSwitch

Switch
SliceSlice

Switch

Switch
Slice

Switch
Slice

Modified (1 bit)

OldestModifies � �

Figure 3: One slice of the logarithmic-depth network. One slice propagates the value of one register, say � � , from
producer instructions to consumer instructions.

Figure 4a shows the circuit within each switch slice of Figure 3. The thick lines carry 33 bits (32 for register value
and 1 to indicate that the register is ready.) The thin lines carry the “modified” bit up the tree. Note that the critical path
through through each slice of the network consists of � � ��� � � � � multiplexers, where � is the number of execution
stations.

The network slice of Figure 3 may appear familiar to some because the slice is an instance of an important parallel
algorithm—namely, segmented parallel prefix. In general, a segmented parallel prefix circuit computes for each node
of the tree the accumulative result of applying an associative operator to all the preceding nodes up to and including
the nearest node whose segment bit is high. The associative prefix operator4 in this case is ����� � � . Figure 4b shows
the generalized circuit within each node of a segmented parallel prefix circuit. The function � can be any associative
operator. In addition, we have turned the segmented parallel prefix (spp) into a cyclic, segmented parallel prefix (cspp)
circuit by tying together the data lines at the top of the tree and discarding the top segment bit. In a cyclic, segmented
parallel prefix circuit the preceding nodes wrap around until a node is found whose segment bit is high.

The Ultrascalar datapath shown in Figure 3 routes all available register values to all instructions in ��������� � � gate
delays, at the end of each clock cycle. Specifically, it takes � � � � � � � � multiplexer delays to route a register value
all the way up and down the prefix tree, where � is the number of execution stations. For example, if the number of
outstanding instructions is 32, comparable to today’s superscalars, than it takes at most 9 multiplexer delays to route
data. Some of this delay can be masked further since the select lines to the multiplexers are available earlier than the

4See [2] for a discussion of parallel prefix trees, including the definition of the associative operator.

5

to left
subtree

to right
subtree

Modified (1 bit)

Ready (1 bit)
Register Value (32 bits)

Ready (1 bit)
Register Value (32 bits)

to parent

0 1

0 1

 Segment

 Segment

Data

Data

DataData

Data

Data Segment 0

0 1

(a) (b)

1

SegmentData DataSegmentDataData

DataData Segment

Figure 4: (a) The circuitry inside each switch slice. (b) The cicuitry inside each node of any segmented parallel prefix
tree. � can be any associative operation.

values.

Memory Operations

For simplicity, we have avoided showing any memory operations (loads or stores) in the example of Figure 1. Although
we will present a more optimized data memory subsystem in Section 3, it is important to point out that the Ultrascalar
datapath can use the same memory subsystem as any superscalar processor. From the viewpoint of the memory, the
executions stations are indistinguishable from a traditional instruction window.

An execution station cannot read or write the data cache until its memory dependencies have been met. For
example, if there are several load instructions between two store instructions, then the loads can run in parallel. But
the loads must often wait for at least some previous store operations to complete to get the right data.5 We first present
the design for a conservative strategy, which is to wait for all previous store instructions to complete, then we show
how to relax this constraint to exploit more parallelism. For the conservative design, we follow the our exposition
of the datapath: we first show a linear-delay design for the serializing design, and then convert the design to parallel
prefix with log-delay.

Figure 5 shows a linear-time circuit that computes when all previous stores have completed. Each execution station
provides a signal O which indicates that the station is the oldest unfinished instruction and a signal T which is true if
the station’s instruction is not a store, or if it is a completed store (i.e., it is not an uncompleted store). Each station
receives a signal P indicating that all previous writes have completed. Note that at all times there must be an execution
station providing O

� �
, to break the cycle in the priority chain.

Figure 6 shows a log-delay circuit that computes when all previous stores have completed. Again, we are using a
cyclic segmented parallel-prefix circuit. The associative prefix operator in this case is � � � � � � � .

Now that we have shown how to serialize memory operations without paying very much for computing when
the serialization constraint has been satisified. Here we show how to avoid serializing on the completion of memory
operations. We observe that in order for a memory operation to execute, it is enough to know that no previous
incomplete store is using the same address. Thus, as soon as all previous store memory addresses have resolved, we

5Note that if we speculate on the data then the loads need not necessarily wait for the previous stores. Below, we discuss branch speculation,
which has similar issues to data speculation.

6

P O T P O T P O TP O T

POTPOTPOT POT

Figure 5: A linear-time circuit that computes when all previous stores have been completed. Each execution station
provides a two outputs and one input. Output O (“oldest”) indicates that the execution station is the oldest unfinished
instruction. Output T (“this write done”) indicates that this instruction is not an uncompleted store. Input P (“previous
done”) indicates that all previous writes have completed.

OP T OP T OP T OP T OP T OP T OP T OP T

Figure 6: A log-time circuit that computes the same function as the circuit of Figure 5.

can determine whether a particular write may proceed. To do this we let the memory network tell each execution
station when its memory operation may proceed.

For the network to compute the memory dependencies, each execution station provides an address and an indication
of whether its instruction is a load, a store, or neither. (If the execution station does not yet know, then it should be
treated as a store.) The network then informs every execution station when all previous stores that use the same
memory address are complete. This works by sending the memory addresses up the network. The memory addresses
are kept sorted as they go up the network. At each switch, the two sorted sublists are merged together to a big sorted
sublist. If there are any duplicates, then the right child is informed of the duplicate (thus inhibiting the right child from
running) using a path that is established during the merging. The duplicates are removed. If a switch higher in the tree
notices a conflict, and if there were duplicate users of that address, then both must be notified of the conflict.

Control Flow

A traditional fetch unit can be used to feed instructions to the Ultrascalar datapath. The fetch unit has a write port into
every execution station and writes serially predicted instruction blocks into successive execution stations. The fetch
unit stops writing when it reaches the oldest execution station.

Which execution station is the oldest can change on every clock cycle, as instructions finish. We can compute
which executions station is the oldest, again using the parallel-prefix circuit of Figure 6: In this instance of the circuit,
the O bit is the old “oldest” bit (just as for the store completion tree), the T bit indicates that this particular execution
station has completed its processing, and the P bit indicates that all previous execution stations have completed. An

7

execution station knows it is the oldest in the next cycle, if it has not finished its own instruction and its incoming P
bit is true.

It is very simple to implement speculative execution in the Ultrascalar datapath. When an execution station discov-
ers that its branch instruction has mispredicted, it notifies the fetch unit. The fetch unit starts sending to that unit again,
along the right program path. Since each execution station holds the entire register state of the computation, nothing
needs to be done to roll back the computation except cause later executions stations execute the correct instructions.
Speculation can also be performed on memory operations (speculating that a later load does not depend on an earlier
store) or data values using similar mechanisms.

The Ultrascalar datapath described so far exploits exactly the same instruction-level parallel parallelism as one
of today’s superscalar processors. The Ultrascalar datapath implements renaming, register forwarding, speculation,
and dependency checking without requiring multiported register files or other circuits with superlinear critical-path
length. Surprising, parallel-prefix trees can perform all the work done by traditional superscalar circuits, with only a
logarithmic number of gate delays. Thus, the datapath scales, providing at least as much ILP as today’s superscalar
processors.

3 Scaling the Memory System

The previous section described a processor core that scales well with increasing numbers of outstanding instructions.
In order to exploit ILP, the memory bandwidth too must scale, however. In particular, the processor must be able
to issue more loads and stores per clock cycle (i.e. sustain a higher data bandwidth) and the fetch unit must supply
more instructions along a correctly predicted program path per clock cycle (i.e. sustain a higher effective instruction
bandwidth.) Fortunately, much active research is going on in these areas and the Ultrascalar can benefit from its
results. In this section, we review some of the recent work on improving memory bandwidth and suggest additional
promising approaches.

Of the two bandwidths, data bandwidth is perhaps less troublesome. To accomodate more loads and stores per
clock cycle without scaling up the number of data cache read and write ports, we can resort to the well known mecha-
nism of interleaving. This is the mechanism that we are currently implementing in our layout. The memory subsystem
consists of an on-chip level-one cache and an on-chip butterfly network connecting the cache to the execution stations.
Much like the main memory in traditional supercomputers [16], the cache is interleaved among a number of banks. In
this example, the number of cache banks is the same as the number of execution stations. The � th cache bank holds
every � th cache line.6 The cache banks are connected to the execution stations via a butterfly network and to off-chip
memory directly. The butterfly network allows � load and store requests to proceed in parallel if they form a rotation
or other conflict-free routing. For example, a vector fetch loop will run without any conflicts if the address increment
equals the cache block size. But in general, multiple memory accesses may compete for the same bank, or they may
suffer from contention in the butterfly, thus lowering the memory bandwidth, We believe that the same programming,
compiler, and hardware techniques used to alleviate bank conflicts in an interleaved main memory will apply to an
interleaved data cache.

Another promising approach to increasing data memory bandwidth is to duplicate the data cache. We could
allocate a copy of the cache to different subtrees of the Ultrascalar datapath or, in the extreme, to every execution
station. Duplicate caches introduce the problem of maintaining coherence between the caches. It is possible that these
problems can be resolved in the future using variants of scalable SMP cache-coherence protocols.

Increasing the effective fetch bandwidth poses perhaps a greater problem. To fetch at a rate of much more than
one basic block, the fetch unit must correctly predict and supply instructions from several non-consecutive blocks
in memory. The mechanisms found in the literature fall into two categories. They either precompute a series of
predictions and fetch from multiple blocks or they dynamically precompute instruction traces. In the first category,
branch address caches [22] produce several basic block addresses, which are fetched through a highly interleaved
cache. In the second category, trace caches [15] allow parallel execution of code across several predicted branches by
storing the instructions across several branches in one cache line.

6To illustrate, let us assume that the number of banks and execution stations is sixteen, that the cache is direct mapped with block size of one
word and total size of 1MB, and that the instruction set architecture uses 32-bit byte addresses. A memory access to address A will then be routed to
bank A[5–2]. Bank A[5–2] will lookup entry A[19–6] and compare its tag against address bits A[31-20]. Should the comparison fail, the level-one
cache will access off-chip memory.

8

We propose a parallelized trace cache for the Ultrascalar processor. The on-chip parallelized trace cache is inter-
leaved word by word across cache banks and connected to the execution station by a butterfly network just like the data
cache’s.7 The � th cache bank holds the � th word of every trace. An instruction within a trace is accessed by specifying
the PC of the first instruction in the trace, the offset within the trace, and some recent branch history information.

The execution stations start fetching from a new trace whenever the old trace ends or a branch within the trace
mispredicts. Since each execution station fetches its own instruction from the trace cache, it must know the starting
PC of the trace and its instruction’s offset within that trace. To propagate the starting PC of the trace, we use a cyclic
segmented parallel-prefix circuit with associative operator � � � � � . To compute the offset into the trace, we use a
cyclic segmented parallel-prefix circuit with associative operator � � � � �
	 � . The addition inside the parallel-prefix
nodes is performed by carry-save adders in order to keep the total gate delay down to ����� �!� � � . The execution stations
holding the oldest instruction or the beginning address of a trace raise their segment bits and supply their trace offset.
All other execution stations supply the constant 1.

In addition to its trace address, an execution station may also need to know the PC of its instruction. This is the
case when an execution station detects a mispredicted branch and must generate the initial PC of a new trace. We can
store the PC of every instruction within a trace and hand the PC to the execution station together with the instruction.
Alternately, we can compute the PC of every execution station’s instruction using another parallel prefix tree, just as
we did for the trace offset. The only difference is the input to the tree. An execution station executing a relative branch
that is predicted taken will send in the offset and a false segment bit. An execution station executing an absolute branch
will send in the target address, once known, and a true segment bit.

Traces can be written into the instruction cache by the memory or the execution stations. If the instruction cache
misses, then the trace must be created serially by fetching a predicted path from an instruction cache, much like in
today’s superscalars. The execution stations can also generate traces, however. Every time a trace fails to run to com-
pletion, a new trace is written into the instruction cache starting with the mispredicted branch. Each execution station
writes its instruction into the trace, once its instruction commits. The starting PC of the new trace and the instruction’s
offset within the trace are computed by yet another prefix tree. This provides a small amount of parallelism for creating
trace entries in the cache.

The trace caches in the literature, as well as ours, suffer from several problems. Both branch address caches and
trace caches refill serially. We do not know how quickly our parallel trace cache refills in practice. Another concern
is the amount of redundant data stored in the cache. Trace caches can keep exponentially many copies of particular
instructions in the worst case. We have designed, and plan to describe elsewhere, a “pointer-jumping trace cache” that
can quickly compute a trace while storing each instruction only a logarithmic number of times in the worst case.

4 Layout

We have so far concentrated on gate delays to understand the performance of the Ultrascalar. To accurately model
critical-path delay we must not only consider the number of traversed gates, but also the length of traversed wires. The
overall chip area is another important complexity measure as well. The critical-path delay and the area depend on a
particular layout. In this section we show the Ultrascalar processor’s layout using H-tree layouts for the datapath and
for a fat-tree network that accesses an interleaved memory system. We compute the area and the lengths of the longest
wires from that layout.

To lay out the Ultrascalar, we observe that all of the Ultrascalar interconnections consist entirely of cyclic seg-
mented parallel prefixes connecting together the execution stations, plus fat-tree networks connecting the execution
stations to memory. Both parallel-prefix circuits and fat-tree networks can be layed out using an H-tree layout. Fig-
ure 7 shows the floorplan of an Ultrascalar processor consisting of sixteen execution stations connected to interleaved
on-chip caches via fully-fattened fat-trees (which are isomorphic to butterfly networks.) The nodes of the prefix trees
are marked with DP. The stages of the butterfly are marked with MP (with the nodes of the butterfly inside the MP
box.) Whereas the number of wires between any two DP nodes is constant, the number of nodes between two MP
stages doubles at each level of the tree. The layout is called an H-tree layout because it consists of recursive H-shaped
structures. Note that the four quadrants of the layout forms the tips of the letter “H”, with the switches forming the
intersections of the horizontal and vertical lines of the “H” and the internode connections forming the lines of the “H”.
Recursively, the four quadrants form another H-tree.8

7In fact, we can use the same network and memory modules as we used earlier.
8See [21, Section 3.1] for an introduction to layout of H-trees. See [9] for the layout of butterflies and fat-trees.

9

DP

ES

ES

MP

DP

ES

ES

MP

DP

MP

DP

ES

ES

MP

DP

ES

ES

MP

DP

MP

DP

DP

MP

DP

ES

ES

MP

DP

ES

ES

MP

DP

MP

DP

ES

ES

MP

DP

ES

ES

MP

DP

MP

DP

DP

MP

������������ � � � ����� � � �� �	�
�������

Banked Cache

Oldest

RDP

MP

M-wires
 � �
 � �

D-wires	 � �
�

�
 � �

Figure 7: The floor plan for the VLSI layout of the Ultrascalar microprocessor with memory bandwidth linear in the
window size, and a a simple serializing memory dependency checker. This version provides ��� ��� memory bandwidth
through the MP modules.

To demonstrate the scaling properties of the Ultrascalar, we are currently designing the processor in VLSI using the
Magic design tool [10]. We have a complete processor core corresponding to the DP and ES modules in Figure 7. Our
processor core executes a simple RISC instruction set architecture without floating point instructions. Figure 8 shows
the plot of the second and third metal layers of a 64-station processor core.9 To speed up our design time, we designed
the datapath using CMOS standard cells. We did not worry about the optimal size of our gates or the thickness of our
wires since these factors, once optimized, will remain constant for any size implementation. Because of the regularity
of the Ultrascalar datapath, the design has so far taken less than four man months for a graduate student, including the
time to learn the tools.

Area

The datapath’s area is determined by the layout, as shown in Figure 7. We can compute the area of the circuit by
observing that it is a recursive structure. To determine the area, we first determine the size of the bounding box for
an � -wide Ultrascalar. As can be seen at the top of Figure 7, the width

� � � � of an � -wide Ultrascalar is equal to
twice the width of an �

� � -wide Ultrascalar plus the width of the wires. If we we provide bandwidth � � � � memory
operations per clock cycle to a subtree of size � then there are � ��� � � � � wires. (The wires for the datapath and other
bookkeeping are only ��� � � .) Thus we have the following recurence:� � � � ��� � ��� � � � � 	 � � � � � ��� if ��� � ,

��� � � otherwise.

This recurence has solution10

� � � � ���� � � � � ��� ��� if � � � � is ��� � ��� � �"!%� for #$� � , [Case 1 (optimal)]� � � ��� � � �!� � � if � � � � is � � � ��� ��� , and [Case 2 (near optimal)]� ��� � � �%� if � � � � is ��� � ��� �&%'! � for #(� � . [Case 3 (optimal)]

9We obtained the plot of Figure 8 by taking a snapshot of a Magic X Window. Unlike our design, our plotting tools do not scale. Even a
16-station plot overflows virtual memory. We are rewriting the tool and hope to have a good 64-station plot by the time of the publication.

10We assume for Case 3 that) meets a certain “regularity” requirement, namely that)+*-,/. 1 0213)+*4,506.) for all sufficiently large , . See [2]
for techniques to solve these recurence relations and for a full discussion of the requirements on) .

10

Figure 8: The VLSI layout of a 64-station Ultrascalar datapath corresponding to the DP and ES modules in Figure 7.

Thus, the area is �

� � � � � � � � � � � � �� � � � � � for Case 1,� � � ����� � � � for Case 2, and� �%��� � � �%� � � for Case 3.

These bounds are optimal for a two-dimensional VLSI technology. In Case 1 the issue width is � , so the chip must
hold at least � instructions, and thus the area must be ��� � � . In Case 2 the area must be ��� � � and we have added at
worst a ����� � � blowup.11 In Case 3, the memory bandwidth requires that the edge of the chip be at least ����� � � �%� in
order to get the memory bits in and out, giving an area of ��� ��� � � � � � � . For a three-dimensional technology, there are
analogous layouts with optimal bounds.

Wire Length

Given the size of the bounding box for an � -wide Ultrascalar, we can compute the longest wire length as follows.
We observe that the total length of the wires from the root to an execution station is independent of which execution
station we consider. Let

� � � � be the wire length from the root to the leaves of an � -wide Ultrascalar. The wire length
is the sum of
 the distance from the edge of the Ultrascalar to its internal switch (distance

� � � � ���), plus
 the distance through the switch (the switch is � ��� � � � � on a side), plus
 the distance from the root of an �
���

-wide Ultrascalar to its leaves (distance
� � � ��� �).

Thus we have the following recurence for
� � � � :

� � � � � � � � � � � � 	 � ��� � � � � 	 � � � ��� � if � � � ,
��� � � otherwise.

In all three cass, this recurence has solution � � � � � � � � � � � ���
That is, the wire lengths are the same as the side lengths of the chip to within a constant factor. We observe that every
datapath signal goes up the tree, and then down (it does not go up, then down, then up, then down, for example.) Thus,
the longest datapath signal is

� � � � � . The memory signals only go up the tree so the longest memory signal is
� � � � .

The same optimality arguments that applied to area above apply to wire length here.12

11For Case 2 the bounds are nearly optimal. We will ignore Case 2’s slight suboptimality for the rest of this paper.
12We assume that any processor must have a path from one end of the processor to the other.

11

Note that the switch above a subtree of � execution stations has area at least ����� � � �/� � and so has plenty of area
to implement all the switching and computation performed by the network. (For example, a merging network on �
values can be embedded in area � � � ��� [20] with gate delay � ������� � � [2]. Such a sorting network can perform the hard
work of the memory disambiguation of Section 3 with an overall gate delay of � ������� � � � .)

The wire length depends primarily on how much memory bandwidth is needed. If we can reduce the required
memory bandwidth, e.g. by using a cache in every execution station running a distributed coherency protocol, then we
can reduce the area and the wire length of the processor. A brute-force design would provide memory bandwidth of� � � � for every � instructions, but it is reasonable to think that the required memory bandwidth for a sequence of �
instructions may only be ��� � ��� ��� , reducing the wire lengths from � � � � to � � � ��� � ����� � � . This asymptotic reduction
in VLSI chip area underscores the importance of effective caching. We plan to study, in the future, how to build
effective caches for Ultrascalar processors.

Critical Path Delay

Having analyzed the Ultrascalar’s layout, it is now easy to see how its critical-path delays grow with the number of
execution stations.13 This is because the delay along any path in our implementation is simply linear in the number of
gates plus the length of wires along that path. To achieve this linearity, we limit the fan-in and fan-out of each gate
and insert repeater gates at constant intervals along wires. Since we stick exclusively to gates with a small, constant
fan-in (the number of input wires) and fan-out (the number of output wires), each gate in our design drives a constant
number of gate capacitances with a constant gate resistance. By breaking long wires into constant size segments
connected by repeater gates, we make the capacitance and resistance of each wire segment also constant. Wire delays,
including repeater delays, effectively become some constant fraction of the speed of light. Since the delay of each
VLSI component is proportional to its resistance times its capacitance and since the resistances and capacitances of
our gates and wire segments do not change with the size of our designs, the total delay along any path grows linearly
with the number of gates and wire segments (i.e. wire length) traversed along that path. Specifically, the Ultrascalar’s
critical path delays due to gates grow logarithmically with the number of execution stations and its critical path delays
due to wires grow at most linearly with the number of execution stations, giving

��� � ����� �!� � 	 � � � �%���
which is optimal.

5 Practical Performance Issues

Although the Ultrascalar has excellent scaling properties, much work remains to make the Ultrascalar practical. In this
paper, we have presented a simple microarchitecture that is easy to analyze. We have shown that the microarchitecture
scales well, but we have not optimized our microarchitecture for practical window sizes or issue widths. In fact, the
Ultrascalar as we have presented it so far, cannot compete with today’s superscalars using today’s technology. The
microarchitecture suffers from performance weaknesses brought about mostly by its inefficient passing of the entire
register file to every instruction. In this section, we analyze the performance implications of this inefficiency and out-
line microarchitectures that avoid Ultrascalar’s inefficiencies while still maintaining Ultrascalar’s scaling properties.

The absolute area and critical path wire delays for a moderate size Ultrascalar datapath are infeasible even in
today’s best technology. Figure 9 lists area and critical path wire delays for different size Ultrascalars. We computed
these data by scaling our layout to a 0.35 micron technology. We assumed a signal velocity of

��� � � mm
�
ns achieved

with optimal repeater placement as described in in [3].14

The Ultrascalar’s large wire delays and area stem mostly from its wide datapath. Although a typical RISC instruc-
tion only reads two registers and writes one, The Ultrascalar passes the entire register file to and from every instruction.
Passing the entire register file does not compromise the Ultrascalar’s scaling properties since a register file contains a
constant number of registers, but it does introduce large constants hiding in the � .

One way to reduce the constants is by combining the best properties of the superscalar processor with the Ultra-
scalar. Although, so far, we have described each execution station as holding a single instruction, there is no reason

13The number of execution stations is the same as the issue width, the fetch width, and the instruction window size of the Ultrascalar processor.
14Our wire delay estimates are pessimistic by a small constant factor because the Ultrascalar datapath is layed out in the metal-3 and metal-2

layers, whereas the delay calculations in [3] are for the metal-1 layer.

12

Number of Area Critical-Path
Execution Stations Wire Delay

64 10.5cm � 7.6cm 12.4 ns
32 8.1cm � 4.9cm 8.9 ns
16 4.2cm � 3.8cm 5.8 ns
4 1.6cm � 1.4cm 1.9 ns

Figure 9: Area and critical path wire delays for different size Ultrascalars in a 0.35 micron technology. (This layout
provides for 1 memory operation per clock cycle.) In TI’s proposed 0.07 micron technology [19] the wire lengths and
delays would presumably be about reduced by about a factor of 5.

why an execution station cannot hold and execute a sequence of instructions instead. The sequence of instructions
within an execution station can be executed using, for example, a traditional superscalar processor core. Since, for
small enough window size, a superscalar processor has smaller critical path delay and smaller area than an Ultrascalar
processor, placing superscalar processor cores at the leaves of the Ultrascalar datapath can shorten the overall critical
path delay and reduce area. At the same time, the Ultrascalar datapath can provide time- and area-efficient routing
among the many superscalar cores.

The hybrid microarchitecture just described bears resemblence to clustering [4, 11, 5]. Clustering avoids some
of the circuit delays associated with large superscalar instruction windows by assigning ALUs and outstanding in-
structions to one of several smaller clusters with a smaller window. Instructions that execute in the same cluster can
communicate quickly, but when dependent instructions execute in different clusters, an extra clock delay is introduced
to resolve the dependency. The reported schemes are limited to two clusters. Decoded and renamed instructions are
assigned to one of the two clusters using simple heuristics. It is not clear how well these heuristics will scale to large
numbers of clusters. In addition, other slow components of the superscalar processor, such as the renaming logic,
are not addressed by clustering. Like clustering, our hybrid microarchitecture also separates outstanding instructions
into clusters. The heuristic used to assign instructions to clusters is their proximity within the dynamic instruction se-
quence. Thus, instructions that are near each other in the serial execution order are likely to be in the same superscalar
core or the same subtree. Instructions that are far from each other communicate via the Ultrascalar’s logarithmic depth
network. The Ultrascalar placement heuristic is probably not as good as the clustering heuristic when there are two
clusters or two execution stations. It is not clear how to build larger clusters, however, whereas the hybrid Ultrascalar
does scale up.

The second enhancement that can reduce the Ultrascalar’s wide datapath is tagging. Fundamentally, there is no
reason why the Ultrascalar needs to pass the entire register file to and from every execution station. Much like the
counterflow pipeline [18], the Ultrascalar datapath can pass each execution station only two arguments tagged with
their register numbers and accept one result tagged with its register number. The Ultrascalar datapath can merge these
incremental register file updates as they propagate through the tree. The resulting tree can be layed out as a tree that
fattens as it ascends towards the root for the lower ��� � levels of the tree, where

�
is the number of logical registers.

We plan to describe this mechanism elsewhere.
An additional way to mitigate the wire delays introduced by the Ultrascalar’s wide datapath, is through the design’s

timing discipline. For example, we can improve the average-case routing delay by pipelining the datapath network
of Figure 3. We can separate every subtree containing

�
execution stations from the rest of the datapath network by

registers. The instructions within a subtree can then route in the same clock cycle in which they compute. Instructions
in two separate subtrees communicate using an additional clock cycle. Since in a tree, most connections are local, the
slowdown may not be very great in the typical case.15 The Ultrascalar also appears lends itself well to an asynchronous
self-timed logic methodology.

Aside from the Ultrascalar’s wide datapath, another issue of practical concern is the relatively large number of
ALUs. The Ultrascalar assigns an ALU to every instruction. We believe that the large number of ALUs will not be a
problem in the future, because in a billion-transistor chip, a full ALU will probably require only about 0.1% of the chip
area.16 Even if ALUs become a serious bottleneck, the ALUs can be shared. A cyclic segmented parallel-prefix tree
can schedule an ALU among � execution stations with only � ��� �!��� � gate delays, and with relatively small area.17

15Note that the CM-5 control network uses a pipelined parallel-prefix tree [8].
16Our standard-cell ALU uses only about 13,000 transistors, but it includes no floating point support.
17Palacharla et al [11] also show how to schedule ALUs with only � *����
	�� 0 gate delays. But their scheduler does not wrap around. It statically

13

6 Summary

Other recent work has addressed the scalability of superscalar processor microarchitecture. In Section 3, we outlined
current research on improving the effective instruction bandwidth that could benefit the Ultrascalar as well as tradi-
tional superscalars. In Section 5, we compared the Ultrascalar to existing and proposed clustering schemes that cluster
instructions around smaller instruction windows, but do not address the scalability of broadcasting or renaming. In
Section 2, we pointed out the counterflow which deeply pipelines long chains of instructions, but refills instructions
serially and routes using a linear depth rather than logarithmic depth network. Several additional approaches to scaling
today’s uniprocessors rely on course-grained instruction-level parallelism. MultiScalar processors [17] take course-
grained threads that must be executed serially, and speculatively execute them, noticing after the fact when a data
dependency has been violated. MultiScalar processors do not address the problem of exploiting fine-grained ILP.
DataScalar processsors [1] execute instructions redundantly, and require an efficient broadcast mechanism, which
appears to limit its scalability.

One often-heard slogan states that “the computer is the network” (or vice versa.) To scale to greater and greater
issue widths the processor too must become a network. We have presented a processor implementation that dramat-
ically differs from today’s designs, scaling efficiently, and with low design effort, to large issue widths by converting
the processor’s datapath into several logarithmic-depth networks. Although the Ultrascalar’s implementation differs
dramatically from today’s processors, the Ultrascalar exploits the same parallelism as more traditional processors, by
providing out-of-order issue, register renaming, and speculation. To exploit even more parallelism, we have proposed
improvements to the data and instruction memories. Several improvements to the Ultrascalar datapath are possible to
reduce the constants.

Although much work remains in making the Ultrascalar practical, we envision the Ultrascalar circuits improv-
ing processor performance in the near term as well as the distant future. For example in the short term many of the
parallel prefix circuits introduced in Section 2 can efficiently compute dynamic properties of instructions for a tradi-
tional superscalar processor. For instance, a cyclic, segmented parallel prefix can determine which instructions have
committed, select the oldest instruction, or assign instructions to available resources. In the medium term, a hybrid
superscalar-Ultrascalar design (outlined in Section 5) can extend the clustering concept to four or eight clusters. In the
longer term, if instruction-level parallelism allows, an optimized Ultrascalar processor can harvest instruction-level
parallelism from sequences of hundreds or even thousands of instructions. With its attractive scaling properties, the
Ultrascalar highlights a promising direction for the next decade of processors.

Finally, the Ultrascalar processor demonstrates that VLSI algorithms and analysis are an important tool for pro-
cessor architects.

References
[1] Doug Burger, Stefanos Kaxiras, and James R. Goodman. DataScalar architectures. In Proceedings of the

24th Annual International Symposium on Computer Architecture (ISCA ’97), Denver, Colorado, 2–4 June 1997.
ACM SIGARCH and IEEE Computer Society TCCA. ftp://ftp.cs.wisc.edu/galileo/papers/ISCA97 ds

.psftp://ftp.cs.wisc.edu/galileo/papers/ISCA97 ds.ps.

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT Electrical Engineering
and Computer Science Series. MIT Press, Cambridge, MA, 1990.

[3] William J. Dally and John W. Pulton. Digital Systems Engineering. Cambridge University Press, 1998.

[4] James A. Farrell and Timothy C. Fischer. Issue logic for a 600-mhz out-of-order execution microprocessor. IEEE Journal of
Solid-State Circuits, 33(5):707–712, May 1998.

[5] Bruce A. Gieseke et al. A 600MHz superscalar RISC microprocessor with out-of-order execution. In IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC’97), pages 176–177, February 1997.

[6] John L. Hennessy and David A. Patterson. Computer Architecture A Quantitative Approach. Morgan Kaufmann, 1990.

[7] Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism. In The 19th Annual International Symposium on
Computer Architecture (ISCA ’92), pages 46–57, Gold Coast, Australia, May 1992. ACM SIGARCH Computer Architecture
News, Volume 20, Number 2.

assigns the highest priority to the left-most request. It also uses relatively larger area than is required by a parallel prefix tree.

14

[8] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kusz-
maul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S.-W. Yang, and R. Zak. The network architecture of the Connection
Machine CM-5. Journal of Parallel and Distributed Computing, 33(2):145–158, 1996. ftp://theory.lcs.mit.edu

/pub/bradley/jpdc96.ps.Zftp://theory.lcs.mit.edu/pub/bradley/jpdc96.ps.Z.

[9] Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Transactions on Computers,
C-34(10):892–901, October 1985.

[10] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor. Magic: A VLSI layout system. In ACM IEEE
21st Design Automation Conference, pages 152–159, Los Angeles, CA, USA, June 1984. IEEE Computer Society Press.

[11] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In Pro-
ceedings of the 24th Annual International Symposium on Computer Architecture (ISCA ’97), pages 206–218, Den-
ver, Colorado, 2–4 June 1997. ACM SIGARCH and IEEE Computer Society TCCA. http://www.ece.wisc.edu

/˜jes/papers/isca.ss.pshttp://www.ece.wisc.edu/˜jes/papers/isca.ss.ps. See also [12].

[12] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Quantifying the complexity of superscalar processors. Tech-
nical Report CS-TR-96-1328, University of Wisconsin, Madison, 19 November 1996. ftp://ftp.cs.wisc.edu/sohi/

complexity.report.ps.Zftp://ftp.cs.wisc.edu/sohi/complexity.report.ps.Z.

[13] Sanjay Jeram Patel, Marius Evers, and Yale N. Patt. Improving trace cache effectiveness with branch promotion and
trace packing. In Proceedings of the 25th Annual International Symposium on Computer Architecture, pages 262–271,
Barcelona, Spain, 27 June–1 July 1998. IEEE Computer Society TCCA and ACM SIGARCH, IEEE Computer Soci-
ety, Los Alamitos, CA, published as Computer Architecture News, 26(3), June 1998. http://www.eecs.umich.edu

/HPS/pub/promotion isca25.pshttp://www.eecs.umich.edu/HPS/pub/promotion isca25.ps.

[14] Yale N. Patt, Sanjay J. Patel, Marius Evers, Daniel H. Friendly, and Jared Stark. One billion transistors, one
uniprocessor, one chip. Computer, 30(9):51–57, September 1997. http://www.computer.org/computer/co1997/

r9051abs.htmhttp://www.computer.org/computer/co1997/r9051abs.htm.

[15] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: A low latency approach to high bandwidth in-
struction fetching. In Proceedings of the 29th Annual International Symposium on Microarchitecture (MICRO 29),
pages 24–34, Paris, France, 2–4 December 1996. IEEE Computer Society TC-MICRO and ACM SIGMICRO. http:

//www.cs.wisc.edu/˜ericro/TC micro29.pshttp://www.cs.wisc.edu/˜ericro/TC micro29.ps.

[16] Richard M. Russell. The CRAY-1 computer system. Communications of the ACM, 21(1):63–72, January 1978.

[17] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture (ISCA ’95), pages 414–425, Santa Margherita Ligure, Italy, 22–24 June
1995. ACM SIGARCH and IEEE Computer Society TCCA. Computer Architecture News, 23(2), May 1994.

[18] Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar. The counterflow pipeline processor architecture. IEEE Design
& Test of Computers, 11(3):48–59, Fall 1994.

[19] TI prepares to build chips based on smallest announced transistors. http://www.ti.com/corp/docs/pressrel/1998/
c98048.htmhttp://www.ti.com/corp/docs/pressrel/1998/c98048.htm, 26 August 1998.

[20] Clark D. Thompson. The VLSI complexity of sorting. IEEE Transactions on Computers, C-32:1171–1184, December 1983.

[21] J. D. Ullman. Computational Aspects of VLSI. Principles of Computer Science Series. Computer Science Press, 1984.

[22] T.-Y. Yeh, D. T. Marr, and Y. N. Patt. Increasing the instruction fetch rate via multiple branch prediction and a branch address
cache. In Conference Proceedings, 1993 International Conference on Supercomputing, pages 67–76, Tokyo, Japan, 20–22
July 1993. ACM SIGARCH.

15

