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Abstract
We propose a class of query, called a derange query, that
maps a function over a set of records and lazily aggre-
gates the results. Derange queries defer work until it is
either convenient or necessary, and, as a result, can re-
duce total I/O costs of the system.

Derange queries operate on a view of the data that is
consistent with the point in time that they are issued, re-
gardless of when the computation completes. They are
most useful for performing calculations where the re-
sults are not needed until some future deadline. When
necessary, derange queries can also execute immediately.
Users can view partial results of in-progress queries at
low cost.

1 Introduction

Queries on production databases have varying require-
ments for response time and data timeliness. Some trans-
actions service end-user requests, and must minimize la-
tency in order to minimize user-perceived delays. Other
queries are not urgent, and hence can be scheduled op-
portunistically, but nonetheless need a specific point-in-
time-consistent view of the data. Examples of the second
class of queries include periodic reports and summary
computations, such as issuing monthly bills, identifying
patterns in online purchases, and monitoring trends in so-
cial media.

Long-running summary computations can starve other
high-priority, latency-sensitive tasks, if both classes of
operations are run on the same machine. To alleviate
resource contention on production databases, it is com-
mon to maintain replicas or additional databases where
summary computations are performed [2]. This may re-
quire additional physical resources, management effort,
and/or licenses, and requires keeping multiple databases
in sync.

We propose a new class of query for summary com-
putations that can minimally impact other operations. A
derange query maps a function over a range of records,

and incrementally aggregates the result. Derange queries
defer work until it is necessary (e.g., the result of the
query is needed), or convenient (e.g., other necessary
work has read the required data into memory). Thus, de-
range queries are most useful for calculations whose re-
sults are needed at some future deadline. However, once
issued, derange queries can be scheduled immediately.

A key idea underlying the derange query model is to
integrate background work with I/O scheduling. The
goal of a derange query is to make maximum use of all
I/Os in the system; when any query executes, we want to
amortize the I/O cost of that query across as many active
queries as possible. At the same time, we do not want
background tasks to impact latency-sensitive operations
negatively. The derange query model allows one to inte-
grate these goals into one I/O scheduler.

Derange queries can be easily implemented as mes-
sages in a write-optimized dictionary (WOD), such as a
Bε -tree [7], a log-structured merge tree [15], or a log-
structured merge tree variant [5, 18, 19, 21]. As the
name implies, WODs are popular for high-performance
databases and file systems [4, 9, 10, 11, 12, 13, 14, 16, 17,
19, 20] because of the very high insertion performance—
typically less than 1 I/O per insertion or deletion. WODs
are so fast because they buffer and batch writes. The pri-
mary focus of write-optimization has been on improving
the efficiency of writes through batching.

This paper identifies an opportunity to integrate write
batching in a WOD with background queries that access
the same data. There are several benefits to implement-
ing a derange query as a message in a WOD:
• Derange queries on overlapping input ranges can be

transparently batched and processed together, requir-
ing each input value be read only once.

• Repeated derange queries at multiple points in time on
the same input range may complete by reading every
version of the data exactly once.

• I/O required to ingest new data can contribute to com-
pleting a derange query, and I/O required to process a
derange query can accelerate ingesting new data.



Derange queries can significantly reduce the cost of
summary computations on highly volatile data sets, and
could make data analytics possible on high performance
production databases without harming update perfor-
mance. In fact, the higher a data set’s update rate, the
faster a derange query would complete.

The remainder of this paper is organized as follows.
Section 2 discusses WODs, and explains how the prop-
erties of Bε -trees apply to derange query design. Sec-
tion 3 outlines the proposed derange query implementa-
tion using a concrete example. Section 4 reasons about
derange query performance. Section 5 presents scenarios
where derange queries are particularly beneficial. Sec-
tion 6 summarizes related work, and Section 7 discusses
opportunities for future exploration.

2 Write-Optimized Dictionaries

This section explains Bε -trees [7], an example of a write-
optimized dictionary (WOD). Derange queries could be
implemented in other WODs, including LSM-trees [15]
and their variants [18, 19, 21]. However, our pro-
posed implementation relies heavily on upsert opera-
tions, and Bε -trees have asymptotically superior upsert
performance.

We limit our discussion to the features of Bε -trees that
are most relevant to derange query design. Bender et
al. [6] offer a more complete description of Bε -trees, in-
cluding comparisons with other WODs.

2.1 Bε -Trees

A Bε -tree, like a B-tree, is a search tree for organizing
persistent data. Internal nodes store pivot keys and child
pointers, and leaf nodes store key-value pairs. What sets
a Bε -tree apart from a standard B-tree is that internal Bε -
tree nodes also allocate a buffer to store messages. The
structure of a Bε -tree is illustrated in Figure 1.

Messages encode updates to key-value pairs. All mes-
sages are inserted into the Bε -tree root, and when the
message buffer fills in a root or other non-leaf node, mes-
sages in the full buffer are flushed to one or more chil-
dren. Flushing moves messages from a parent to a child’s
buffer; flushes may cascade down the tree; and messages
are ultimately applied to key-value pairs at a leaf. The
flushing process estimates the children that would re-
ceive enough messages to amortize the cost of rewriting
the parent and child buffers. Thus, messages make their
way down a root-to-leaf path in batches, until they are
eventually applied at a Bε -tree leaf.

Upserts. Bε -trees can effectively implement blind
operations—operations on a key-value pair without first
reading it—using upsert messages.
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Figure 1: A Bε -tree. Internal nodes store pivot keys
and child pointers, and leaf nodes store key-value pairs.
Internal nodes also allocate a buffer to store messages,
which are flushed down the tree in batches.

An upsert message specifies a key, a function, and a set
of function arguments. When a key-value pair is queried,
all upsert messages along the pair’s root-to-leaf path are
gathered, and their functions are applied in order.

Upserts can be used to compactly encode updates to
ranges of bytes within a object, modifications to fields
of structured data, or data-dependent computations. The
flexibility of upsert messages is essential to the imple-
mentation of derange queries; as described in Section 3,
upserts allow derange queries to incrementally and lazily
aggregate the results of deferred work.

Temporal ordering. The relative position of messages
within buffers of a Bε -tree preserves the temporal order
of updates. At any point in time, multiple versions of a
key-value pair may exist in the tree (e.g. an insert mes-
sage overwrites an existing key-value pair), and multiple
in-flight messages may contain updates to a given value
(e.g. two upserts target the same key-value pair). Node
flushing preserves the message ordering until messages
are applied to key-value pairs at Bε -tree leaves.

Queries. All messages needed to answer a query reside
in buffers on the root-to-leaf search path. Because non-
leaf messages may contain outstanding updates, all mes-
sages along the root-to-leaf path must be searched, and
updates are applied in reverse chronological order.

Message targets. A single message may apply to one
key-value pair, all key-value pairs (broadcast), or a range
of key-value pairs (rangecast). A rangecast message [22]
is addressed to a contiguous range of keys, specified by
a beginning and ending key, inclusive.

Since broadcast and rangecast messages may apply to
many key-value pairs, these messages may split during
a node flush. When a message splits, the original mes-
sage is discarded, and new messages with appropriate
subranges are created in its place.
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3 Derange Query Design

A derange query can be implemented as a rangecast up-
sert message. A derange query has the form

DERANGE(R,FILTER,MAP,FOLD,k)

where
1. R is an input range.
2. FILTER is a predicate to remove records that do not

meet appropriate criteria.
3. MAP is a function to apply to each record in the

input range that meets the filter criteria.
4. FOLD is a function to propagate the results.
5. k is a key specifying where results are accumulated.

The aggregation record associated with key k is incre-
mentally updated as a derange query lazily completes.
After each application of MAP to an input record, out-
puts are accumulated by inserting a message of the form:

UPSERT(k,FOLD, resultMAP)

Upsert messages offer a flexible means to propa-
gate MAP results. Upserts can encode complex data-
dependent operations as well as simple operations like
incrementing a counter. Inserting small upsert messages
into the root of a Bε -tree imposes little I/O overhead.

3.1 Derange Query Example

To get a feel for how a derange query works, we will
show how a fictional online retailer, called “Market-
place”, could use derange queries for data analytics.

Suppose Marketplace manages its inventory using a
product database with records of the form:

Item {
productId : num
warehouse : address
quantity : num
value : num
price : num

}
Every hour, Marketplace would like to calculate the

cumulative value of all products in its New York ware-
houses in order to identify trends and make inventory de-
cisions. Marketplace could perform these calculations
with a derange query where:

R = (−∞,∞)
FILTER = return Item.warehouse == NY
MAP = return Item.quantity * Item.value
FOLD = totalValue += result
k = InventoryAt||TIMESTAMP

Marketplace would first start by initializing its aggre-
gation record, k. In this example, the value of k is a sim-
ple integer, totalValue, initialized to 0.

The range R = (−∞,∞) means that this query will ex-
amine every record in the database. But since the query
should only track items in warehouses located in NY, the
FILTER function is used to exclude records that do not
match this criteria. Note that, if the primary index for
the database used geography, the range could select for
only records in NY warehouses and avoid reading irrel-
evant data; the FILTER function can select data based on
criteria that is not included in the indexing schema.

When a derange query message reaches a leaf of the
tree, the value of each record it observes is the value that
existed when the derange query was first issued. At that
point, the MAP function is called on all records that fall
within R and satisfy the FILTER function. The output
of each MAP function—here the total value of a sin-
gle product in the warehouse’s inventory—is propagated
to the aggregation record, k, using an upsert where the
FOLD function updates k’s running total.

This simple example demonstrates the utility that de-
range queries provide. Marketplace’s inventory calcula-
tions are performed on views of the data at fixed times-
tamps, but query results are not needed right away. If
a particular region of the tree remains unchanged be-
tween two derange queries, then a single I/O will sat-
isfy both operations. However, even when the tree is up-
dated frequently, all derange queries see a point-in-time-
consistent view of the data, regardless of when the actual
calculation is performed.

3.2 Query Completion

One challenge that arises when lazily executing indepen-
dent, distributed computations is determining what frac-
tion of the total work has completed. To solve this prob-
lem, we add a small amount of bookkeeping to the aggre-
gation record: one required field, outstandingMessages,
and one optional field, recordsProcessed.

The outstandingMessages field is a simple counter. A
derange query message may apply to many records in
the tree, and as explained in Subsection 2.1, a node flush
may cause a rangecast message to split. Each time a de-
range query message splits, we issue an upsert message
to the derange query’s aggregation record to increment
the outstandingMessages counter. To complete the book-
keeping, we issue an upsert message that decrements the
counter when a derange query message reaches a Bε -tree
leaf. The outstandingMessages counter is initialized to 1
in order to account for the initial derange query message
inserted at the root of the Bε -tree.

The recordsProcessed field counts the number of key-
value pairs that have folded their MAP results to the ag-
gregation record. Due to the laziness of flushing and
the opacity of the internal Bε -tree structure, an applica-
tion has no control over the progress of a derange query
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without manually triggering message flushes. By query-
ing the recordsProcessed field, an application can reason
about the meaningfulness of a partially completed result.

4 Derange Query Cost

This section explains how derange queries improve the
performance of summary computations in much the
same way that WODs improve the performance of in-
serts and updates.

As explained in Subsection 2.1, a Bε -tree node is
only dirtied when a substantial amount of new data is
written—enough to amortize the cost of rewriting the
parent and child nodes. For a tree with a node size of
B, a branching factor of Bε , and a buffer size of B−Bε ,
the amount of new data written during each node flush is
at least B−Bε

Bε = B1−ε . We call this the batching factor.
Batching is why inserts and upserts in a Bε -tree are B1−ε

times faster than in a B-tree.
Derange queries bring the benefits of batching to

queries. A derange query spanning a range of ` items
touches O(

logB N
ε

+ `
B ) nodes during its execution. De-

range query messages are flushed along with other mes-
sages in batches of size at least B1−ε . Hence the amor-
tized I/O cost of a derange query spanning ` items is
O(

logB N
εB1−ε +

`
B2−ε ). In contrast, a normal range query span-

ning ` items requires O(
logB N

ε
+ `

B ) I/Os. The batching
factor divides the cost; as a result, derange queries have
the potential to provide as much speedup for queries as
write optimization provides for inserts.

5 Derange Query Opportunities

In this section, we discuss the types of environments
where derange queries would be particularly useful.

Mixed workload environments. A typical web-scale
database serves at least two kinds of queries: small ran-
dom queries that must be answered quickly, and large
analytic queries that might take several hours in the best
case but can be delayed by many more hours without
hurting their value to the business. An example might
be a credit-card database where customer purchases cre-
ate many high-priority inserts, and large queries are per-
formed overnight to find new fraud patterns.

If most of the I/O’s needed by the big query can be
piggybacked onto the small queries, then both types of
queries can be performed without increasing the cost of
the database or slowing down the small queries.

Point-in-time computations. In the common case, in-
stances of the same derange query, repeated at multiple
points in time, would be satisfied by reading each ver-
sion of the data exactly once. Thus, derange queries can

be used to increase the granularity of reporting.

Queries on overlapping ranges. Derange queries can
make it easy to batch otherwise unrelated queries. For
example, consider a system that performs one summary
computation every 24 hours, and another summary com-
putation ever 12 hours. Manually batching these com-
putations would essentially require writing two versions
of the 12-hour computation—one that runs on its own
and another that runs as part of the 24-hour computation.
With derange queries, developers need to write only one
version of each computation, and the system will batch
them automatically when possible.

6 Related Work

Amvrosiadis et al. observed that common file system
maintenance tasks (e.g. backup, defragmentation, virus
scanning, etc.) are frequently executed independently
despite their largely overlapping working sets. The
Duet [3] framework places hooks in the page cache to no-
tify processes when requested data is available. This lets
background tasks leverage the I/O performed by fore-
ground work. Derange queries similarly leverage the in-
ternal work done by the Bε -tree when it flushes messages
to apply updates, piggybacking on I/O.

In the MapReduce [8] programming model, users fil-
ter and sort input data, independently process the filtered
data, and combine the computations’ outputs into a final
result. MapReduce makes these types of operations easy
to program for distributed data sets. Derange queries
provide a similar programming model, but can option-
ally defer execution. The motivating use cases of this pa-
per have been single-node, high performance, production
databases, but derange queries could also be extended to
work on a distributed storage system.

LINQ [1] features deferred execution, which delays
the evaluation of an expression until its value is required.
However, from the time an expression tree is created to
the time the query is executed, the database may change.
A derange query defers execution until the message is
applied, but the message is always applied to the value
of the data at the time the message is inserted.

7 Future Work

Even when derange queries cannot be delayed arbitrarily,
they can provide significant speedups. Part of our future
work is to analyze and empirically evaluate the perfor-
mance opportunities created by derange queries.

When executing a derange query with a fixed dead-
line, the ability to systematically execute portions of the
query would be useful. Otherwise, a burst of deferred
work might need to be scheduled at the query deadline,
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eroding the benefits of batching. Derange queries create
opportunities for I/O scheduling and workload manage-
ment.
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