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Abstract
The Bε -tree File System, or BetrFS, (pronounced

“better eff ess”) is the first in-kernel file system to use a
write-optimized index. Write optimized indexes (WOIs)
are promising building blocks for storage systems be-
cause of their potential to implement both microwrites
and large scans efficiently.

Previous work on WOI-based file systems has shown
promise but has also been hampered by several open
problems, which this paper addresses. For example,
FUSE issues many queries into the file system, su-
perimposing read-intensive workloads on top of write-
intensive ones, thereby reducing the effectiveness of
WOIs. Moving to an in-kernel implementation can ad-
dress this problem by providing finer control of reads.
This paper also contributes several implementation tech-
niques to leverage kernel infrastructure without throttling
write performance.

Our results show that BetrFS provides good perfor-
mance for both arbitrary microdata operations, which in-
clude creating small files, updating metadata, and small
writes into large or small files, and for large sequen-
tial I/O. On one microdata benchmark, BetrFS pro-
vides more than 4× the performance of ext4 or XFS.
BetrFS is an ongoing prototype effort, and requires ad-
ditional data-structure tuning to match current general-
purpose file systems on some operations such as deletes,
directory renames, and large sequential writes. Nonethe-
less, many applications realize significant performance
improvements. For instance, an in-place rsync of the
Linux kernel source realizes roughly 1.6–22× speedup
over other commodity file systems.

1 Introduction

Today’s applications exhibit widely varying I/O patterns,
making performance tuning of a general-purpose file sys-
tem a frustrating balancing act. Some software, such
as virus scans and backups, demand large, sequential
scans of data. Other software requires many small writes

(microwrites). Examples include email delivery, creat-
ing lock files for an editing application, making small
updates to a large file, or updating a file’s atime. The un-
derlying problem is that many standard data structures in
the file-system designer’s toolbox optimize for one case
at the expense of another.

Recent advances in write-optimized indexes (WOI) [4,
8–10, 23, 27, 28] are exciting because they have the po-
tential to implement both efficient microwrites and large
scans. The key strength of the best WOIs is that they can
ingest data up to two orders of magnitude faster than B-
trees while matching or improving on the B-tree’s point-
and range-query performance [4, 9].

WOIs have been successful in commercial key-value
stores and databases [2,3,12,17,20,33,34], and previous
research on WOIs in file systems has shown promise [15,
25, 31]. However, progress towards a production-quality
write-optimized file system has been hampered by sev-
eral open challenges, which we address in this paper:
• Code complexity. A production-quality WOI can eas-

ily be 50,000 lines of complex code, which is difficult
to shoehorn into an OS kernel. Previous WOI file sys-
tems have been implemented in user space.

• FUSE squanders microwrite performance.
FUSE [16] issues a query to the underlying file
system before almost every update, superimposing
search-intensive workloads on top of write-intensive
workloads. Although WOIs are no worse for point
queries than any other sensible data structure, writes
are much faster than reads, and injecting needless
point queries can nullify the advantages of write
optimization.

• Mapping file system abstractions onto a WOI. We
cannot realize the full potential performance benefits
of write-optimization by simply dropping in a WOI
as a replacement for a B-tree. The schema and use
of kernel infrastructure must exploit the performance
advantages of the new data structure.
This paper describes the Bε -tree File System, or

BetrFS, the first in-kernel file system designed to take
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full advantage of write optimization. Specifically,
BetrFS is built using the mature, well-engineered Bε -
tree implementation from Tokutek’s Fractal Tree index,
called TokuDB [33]. Our design is tailored to the perfor-
mance characteristics of Fractal Tree indexes, but other-
wise uses them as a black-box key-value store, so many
of our design decisions may be applicable to other write-
optimized file systems.

Experiments show that BetrFS can give up to an order-
of-magnitude improvement to the performance of file
creation, random writes to large files, recursive directory
traversals (such as occur in find, recursive greps, back-
ups, and virus scans), and meta-data updates (such as up-
dating file atime each time a file is read).
The contributions of this paper are:
• The design and implementation of an in-kernel, write-

optimized file system.
• A schema, which ensures both locality and fast writes,

for mapping VFS operations to a write-optimized in-
dex.

• A design that uses unmodified OS kernel infrastruc-
ture, designed for traditional file systems, yet mini-
mizes the impact on write optimization. For instance,
BetrFS uses the OS kernel cache to accelerate reads
without throttling writes smaller than a disk sector.

• A thorough evaluation of the performance of the
BetrFS prototype. For instance, our results show
almost two orders of magnitude improvement on a
small-write microbenchmark and a 1.5× speedup on
applications such as rsync
Our results suggest that a well-designed Bε -tree-based

file system can match or outperform traditional file sys-
tems on almost every operation, some by an order of
magnitude. Comparisons with state-of-the-art file sys-
tems, such as ext4, XFS, zfs, and btrfs support this
claim. We believe that the few slower operations are not
fundamental to WOIs, but can be addressed with a com-
bination of algorithmic advances and engineering effort
in future work.

2 Motivation and Background

This section summarizes background on the increasing
importance of microwrites, explains how WOIs work,
and summarizes previous WOI-based file systems.

2.1 The microwrite problem

A microwrite is a write operation where the setup time
(i.e. seek time on a conventional disk) exceeds the data-
transfer time. Conventional file-system data structures
force file-system designers to choose between optimizing
for efficient microwrites and efficient scans.

Update-in-place file systems [11, 32] optimize for
scans by keeping related items, such as entries in a di-
rectory or consecutive blocks in a file, near each other.
However, since items are updated in place, update per-
formance is often limited by the random-write latency of
the underlying disk.

B-tree-based file systems store related items logically
adjacent in the B-tree, but B-trees do not guarantee that
logically-adjacent items will be physically adjacent. As
a B-tree ages, leaves become scattered across the disk
due to node splits from insertions and node merges from
deletions. In an aged B-tree, there is little correlation be-
tween the logical and physical order of the leaves, and the
cost of reading a new leaf involves both the data-transfer
cost and the seek cost. If leaves are too small to amor-
tize the seek costs, then range queries can be slow. The
seek costs can be amortized by using larger leaves, but
this further throttles update performance.

At the other extreme, logging file systems [5,7,26,29,
30] optimize for writes. Logging ensures that files are
created and updated rapidly, but the resulting data and
metadata can be spread throughout the log, leading to
poor performance when reading data or metadata from
disk. These performance problems are particularly no-
ticeable in large scans (recursive directory traversals and
backups) that cannot be accelerated by caching.

The microwrite bottleneck creates problems for a
range of applications. HPC checkpointing systems gen-
erate so many microwrites that a custom file system,
PLFS, was designed to efficiently handle them [5] by
exploiting the specifics of the checkpointing workload.
Email servers often struggle to manage large sets of
small messages and metadata about those messages, such
as the read flag. Desktop environments store prefer-
ences and active state in a key-value store (i.e., a reg-
istry) so that accessing and updating keys will not re-
quire file-system-level microdata operations. Unix and
Linux system administrators commonly report 10–20%
performance improvements by disabling the atime op-
tion [14]; maintaining the correct atime behavior in-
duces a heavy microwrite load, but some applications re-
quire accurate atime values.

Microwrites cause performance problems even when
the storage system uses SSDs. In a B-tree-based file sys-
tem, small writes trigger larger writes of entire B-tree
nodes, which can further be amplified to an entire erase
block on the SSD. In a log-structured file system, mi-
crowrites can induce heavy cleaning activity, especially
when the disk is nearly full. In either case, the extra write
activity reduces the lifespan of SSDs and can limit per-
formance by wasting bandwidth.

2
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2.2 Write-Optimized Indexes
In this subsection, we review write-optimized indexes
and their impact on performance. Specifically, we de-
scribe the Bε -tree [9] and why we have selected this data
structure for BetrFS. The best WOI can dominate B-trees
in performance rather than representing a different trade-
off choice between reads and writes.

Bε -trees. A Bε -tree is a B-tree, augmented with per-
node buffers. New items are inserted in the buffer of the
root node of a Bε -tree. When a node’s buffer becomes
full, messages are moved from that node’s buffer to one
of its children’s buffers. The leaves of the Bε -tree store
key-value pairs, as in a B-tree. Point and range queries
behave similarly to a B-tree, except that each buffer on
the path from root to leaf must also be checked for items
that affect the query.

Bε -trees are asymptotically faster than B-trees, as
summarized in Table 1. To see why, consider a B-
tree with N items and in which each node can hold B
keys. (For simplicity, assume keys have constant size
and that the data associated with each key has negli-
giable size.) The tree will have fanout B, so its height
will be O(logB N). Inserts and lookups will therefore re-
quire O(logB N) I/Os. A range query that returns k items
will require O(logB N + k/B) I/Os.

For comparison, a Bε -tree with nodes of size B will
have Bε children, where 0 < ε ≤ 1. Each node will store
one “pivot key” for each child, consuming Bε space per
node. The remaining B−Bε space in each node will be
used to buffer newly inserted items. Since the fanout of
the tree is Bε , its height is O(logBε N) = O( 1

ε logB N).
Consequently, searches will be slower by a factor of 1

ε .
However, each time a node flushes items to one of its
children, it will move at least (B−Bε)/Bε ≈ B1−ε ele-
ments. Since each element must be flushed O( 1

ε logB N)
times to reach a leaf, the amortized cost of inserting
N items is O( 1

εB1−ε logB N). Range queries returning k
items require O( 1

ε logB N + k/B) I/Os. If we pick, for
example, ε = 1/2, the point and range query costs of a
Bε -tree become O(logB N) and O(logB N + k/B), which
are the same as a B-tree, but the insert cost becomes
O(logB N/

√
B), which is faster by a factor of

√
B.

In practice, however, Bε -trees use much larger nodes
than B-trees. For example, a typical B-tree might
use 4KB or 64KB nodes, compared to 4MB nodes in
Tokutek’s Fractal Tree indexes. B-trees must use small
nodes because a node must be completely re-written each
time a new item is added to the database, unlike in Bε -
trees, where writes are batched. Large nodes mean that,
in practice, the height of a Bε -tree is not much larger than
the height of a B-tree on the same data. Thus, the perfor-
mance of point queries in a Bε -tree implementation can
be comparable to point query performance in a B-tree.

Large nodes also speed up range queries, since the data
is spread over fewer nodes, requiring fewer disk seeks to
read in all the data.

To get a feeling for what this speedup looks like,
consider the following example. Suppose a key-value
store holds 1TB of data, with 128-byte keys and records
(key+value) of size 1KB. Suppose that data is logged for
durability, and periodically all updates in the log are ap-
plied to the main tree in batch.

In the case of a B-tree with 4KB nodes, the fanout of
the tree will be 4KB/128B= 32. Thus the non-leaf nodes
can comfortably fit into the memory of a typical server
with 64GB of RAM, but only a negligible fraction of the
1TB of leaves will be cached at any given time. During a
random insertion workload, most updates in a batch will
require exactly 2 I/Os: 1 I/O to read in the target leaf and
1 I/O to write it back to disk after updating its contents.

For comparison, suppose a Bε -tree has branching fac-
tor of 10 and nodes of size 1MB. Once again, all but the
last level fit in memory. When a batch of logged updates
is applied to the tree, they are simply stored in the tree’s
root buffer. Since the root is cached, this requires a sin-
gle I/O. When an internal node becomes full and flushes
its buffer to a non-leaf child, this causes two writes: an
update of the parent and an update of the child. There
are no reads required since both nodes are cached. When
an internal node flushes its buffer to a leaf node, this re-
quires one additional read to load the leaf into memory.

There are 1TB/1MB=220 leaves, so since the tree has
fanout 10, its height is 1+ log10 220 ≈ 7. Each item is
therefore involved in 14 I/Os: it is written and read once
at each level.

However, each flush moves 1MB/10 = 100kB of data,
in other words, 100 items. Thus, the average per-item
cost of flushing an item to a leaf is 14/100. Since a B-
tree would require 2 I/Os for each item, the Bε -tree is
able to insert data 2/(14/100) = 14.3 times faster than a
B-tree. As key-value pairs get smaller, say for metadata
updates, this speedup factor grows.

In both cases, a point query requires a single I/O to
read the corresponding leaf for the queried key. Range
queries can be much faster, as the Bε -tree seeks only
once every 1MB vs once every 4KB in the B-tree.

Because buffered messages are variable length in our
implementation, even with fixed-size nodes, B is not con-
stant. Rather than fix ε , our implementation bounds the
range of pivots per node (Bε ) between 4 and 16.

Upserts. Bε -trees support “upserts,” an efficient method
for updating a key-value pair in the tree. When an ap-
plication wants to update the value associated with key
k in the Bε -tree, it inserts a message (k,( f ,∆)) into the
tree, where f specifies a call-back function that can be
used to apply the change specified by ∆ to the old value

3
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associated with key k. This message is inserted into the
tree like any other piece of data. However, every time
the message is flushed from one node to a child C, the
Bε -tree checks whether C’s buffer contains the old value
v associated with key k. If it does, then it replaces v with
f (v,∆) and discards the upsert message from the tree. If
an application queries for k before the callback function
is applied, then the Bε -tree computes f (v,∆) on the fly
while answering the query. This query is efficient be-
cause an upsert for key k always lies on the path from
the root of the Bε -tree to the leaf containing k. Thus, the
upsert mechanism can speed up updates by one to two
orders of magnitude without slowing down queries.

Log-structured merge trees. Log-structured merge
trees (LSM trees) [23] are a WOI with many vari-
ants [28]. They typically consist of a logarithmic num-
ber of indexes (e.g., B-trees) of exponentially increasing
size. Once an index at one level fills up, it is emptied by
merging it into the index at the next larger level.

LSM trees can be tuned to have the same insertion
complexity as a Bε -tree, but queries in a naı̈vely im-
plemented LSM tree can be slow, as shown in Table 1.
Implementers have developed methods to improve the
query performance, most notably using Bloom filters [6]
for each B-tree. A point query for an element in the data
structure is typically reported as improving to O(logB N),
thus matching a B-tree. Bloom filters are used in most
LSM tree implementations (e.g., [3, 12, 17, 20]).

Bloom filters do not help in range queries, since the
successor of any key may be in any level. In addition, the
utility of Bloom filters degrades with the use of upserts,
and upserts are key to the performance of BetrFS. To see
why, note that in order to compute the result of a query,
all relevant upserts must be applied to the key-value pair.
If there are many upserts “in flight” at different levels of
the LSM tree, then searches will need to be performed on
each such level. Bloom filters can be helpful to direct us
to the levels of interest, but that does not obviate the need
for many searches, and since the leaves of the different
LSM tree B-trees might require fetching, the search per-
formance can degrade.

BetrFS uses Bε -trees, as implemented in Tokutek’s
Fractal Tree indexes, because Fractal Tree indexes are
the only WOI implementation that matches the query
performance of B-trees for all workloads, including
the upsert-intensive workloads generated by BetrFS. In
short, LSMs match B-tree query times in special cases,
and Bε -trees match B-tree query times in general.

3 BetrFS Design

BetrFS is an in-kernel file system designed to take full
advantage of the performance strengths of Bε -trees. The

Data Insert Point Query Range Query
Struct. no Upserts w/ Upserts

B-tree logB N logB N logB N logB N + k
B

LSM logB N
εB1−ε

log2
B N
ε

log2
B N
ε

log2
B N
ε + k

B

LSM+BF logB N
εB1−ε logB N log2

B N
ε

log2
B N
ε + k

B

Bε -tree logB N
εB1−ε

logB N
ε

logB N
ε

logB N
ε + k

B

Table 1: Asymptotic I/O costs of important operations in
B-trees and several different WOIs. Fractal Tree indexes
simultaneously support efficient inserts, point queries
(even in the presence of upserts), and range queries.

Applications

User
Kernel VFS

BetrFS

TokuDB
Inode
Index Index

Data

VFS
ext4
Disk

klibc

BetrFS Schema

Figure 1: The BetrFS architecture.

overall system architecture is illustrated in Figure 1.
The BetrFS VFS schema transforms file-system opera-

tions into efficient Bε -tree operations whenever possible.
The keys to obtaining good performance from Bε -trees
are (1) to use upsert operations to update file system state
and (2) to organize data so that file-system scans can be
implemented as range queries in the Bε -trees. We de-
scribe how our schema achieves these goals in Section 4.

By implementing BetrFS as an in-kernel file system,
we avoid the performance overheads of FUSE, which can
be particularly deleterious for a write-optimized file sys-
tem. We also expose opportunities for optimizing our file
system’s interaction with the kernel’s page cache.

BetrFS’s stacked file-system design cleanly separates
the complex task of implementing write-optimized in-
dexes from block allocation and free-space management.
Our kernel port of TokuDB stores data on an underlying
ext4 file system, but any file system should suffice.

Porting a 45KLoC database into the kernel is a non-
trivial task. We ported TokuDB into the kernel by writ-
ing a shim layer, which we call klibc, that translates
the TokuDB external dependencies into kernel functions
for locking, memory allocation, and file I/O. Section 6
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/home

/home/alice

/home/bob

/home/alice/betrfs.pdf

/home/alice/betrfs.tex

/home/bob/betrfs.c

/home/bob/betrfs.ko

Figure 2: Example of the sort order used in BetrFS.

describes klibc and summarizes our experiences and
lessons learned from the project.

4 The BetrFS File-System Schema

Bε -trees implement a key-value store, so BetrFS must
translate file-system operations into key-value opera-
tions. This section presents the BetrFS schema for per-
forming this translation and explains how this schema
takes advantage of the performance strengths of Bε -trees.

4.1 BetrFS Data and Metadata Indexes
BetrFS stores file system data and metadata using two
indexes in the underlying database: a metadata index and
a data index. Since both keys and values may be variable-
sized, BetrFS is able to pack many index entries into each
Bε -tree node.

The metadata index. The BetrFS prototype maintains
an index mapping full pathnames (relative to the mount
point) to file metadata (roughly equivalent to the contents
of struct stat):

path → (size,owner, timestamps,etc . . .)

The metadata index is designed to support efficient file
creations, deletions, lookups, and directory scans. The
index sorts paths first by the number of slashes, then lex-
icographically. Thus, items within the same directory are
stored consecutively as illustrated in Figure 2. With this
ordering, scanning a directory, either recursively or not,
can be implemented as a range query.

The data index. Though keys and values may be
variable-sized, the BetrFS prototype breaks files into
4096-byte blocks for better integration with the page
cache. Thus, the data index maps (file, offset) tuples to
blocks:

(path,block-number)→ data[4096]

Keys in the data index are also sorted lexicographically,
which guarantees that the contents of a file are logically
adjacent and therefore, as explained in Subsection 2.2,
almost always physically adjacent on disk. This enables

FS Operation Bε -tree Operation

Mkdir Upsert
Rmdir Upsert
Create Upsert
Unlink Upsert + Delete data blocks
Truncate Upsert + Delete data blocks
Setattr (e.g. chmod) Upsert
Rename Copy files
Symlink Upsert
Lookup (i.e. lstat) Point Query
Readlink Point Query
Readdir Range Query
File write Upsert
File read Range Query
MMap readpage(s) Point/Range Query
MMap writepage(s) Upsert(s)

Table 2: BetrFS implementation strategies for basic file-
system operations. Almost all operations are imple-
mented using efficient upserts, point queries, or range
queries. Unlink, Truncate, and Rename currently scale
with file and/or directory sizes.

file contents to be read sequentially at near disk band-
width. BetrFS implements sparse files by simply omit-
ting the sparse blocks from the data index.

BetrFS uses variable-sized values to avoid zero-
padding the last block of each file. This optimization
avoids the CPU overhead of zeroing out unused regions
of a buffer, and then compressing the zeros away before
writing a node to disk. For small-file benchmarks, this
optimization yielded a significant reduction in overheads.
For instance, this optimization improves throughput on
TokuBench (§7) by 50–70%.

4.2 Implementing BetrFS Operations
Favoring blind writes. A latent assumption in much
file system code is that data must be written at disk-
sector granularity. As a result, a small write must
first bring the surrounding disk block into the cache,
modify the block, and then write it back. This pat-
tern is reflected in the Linux page cache helper func-
tion block write begin(). BetrFS avoids this read-
modify-write pattern, instead issuing blind writes—
writes without reads—whenever possible.

Reading and writing files in BetrFS. BetrFS imple-
ments file reads using range queries in the data index.
Bε -trees can load the results of a large range query from
disk at effectively disk bandwidth.

BetrFS supports efficient file writes of any size via up-
serts and inserts. Application writes smaller than one 4K
block become messages of the form:

UPSERT(WRITE,(path,n),offset,v, �),

which means the application wrote � bytes of data, v, at

5
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the given offset into block n of the file specified by path.
Upsert messages completely encapsulate a block modifi-
cation, obviating the need for read-modify-write. Writes
of an entire block are implemented with an insert (also
called a put), which is a blind replacement of the block,
and behaves similarly.

As explained in Subsection 2.2, upserts and inserts are
messages inserted into the root node, which percolate
down the tree. By using upserts for file writes, a write-
optimized file system can aggregate many small random
writes into a single large write to disk. Thus, the data can
be committed to disk by performing a single seek and
one large write, yielding an order-of-magnitude boost in
performance for small random writes.

In the case of large writes spanning multiple blocks,
inserts follow a similar path of copying data from the
root to the leaves. The Bε -tree implementation has some
optimizations for large writes to skip intermediate nodes
on the path to a leaf, but they are not aggressive enough
to achieve full disk bandwidth for large sequential file
writes. We leave this issue for future work, as a solu-
tion must carefully address several subtle issues related
to pending messages and splitting leaf nodes.

File-system metadata operations in BetrFS. As shown
in Table 2, BetrFS also converts almost all metadata up-
dates, such timestamp changes, file creation and sym-
bolic linking, into upserts.

The only metadata updates that are not upserts in
BetrFS are unlink, truncate, and rename. We now ex-
plain the obstacles to implementing these operations as
upserts, which we leave for future work.

Unlink and truncate can both remove blocks from a
file. BetrFS performs this operation in the simplest pos-
sible way: it performs a range query on the blocks that
are to be deleted, and issues a TokuDB delete for each
such block in the data index. Although TokuDB delete
operations are implemented using upserts, issuing O(n)
upserts can make this an expensive task.

Second, keying by full path makes recursive directory
traversals efficient, but makes it non-trivial to implement
efficient renames. For example, our current implementa-
tion renames files and directories by re-inserting all the
key-value pairs under their new keys and then deleting
the old keys, effectively performing a deep copy of the
file or directory being renamed. One simple solution is
to add an inode-style layer of indirection, with a third
index. This approach is well-understood, and can sacri-
fice some read locality as the tree ages. We believe that
data-structure-level optimizations can improve the per-
formance of rename, which we leave for future work.

Although the schema described above can use upserts
to make most changes to the file system, many POSIX
file system functions specify preconditions that the OS

must check before changing the file system. For exam-
ple, when creating a file, POSIX requires the OS to check
that the file doesn’t already exist and that the user has
write permission on the containing directory. In our ex-
periments, the OS cache of file and directory information
was able to answer these queries, enabling file creation
etc., to run at the full speed of upserts.

Crash consistency. We use the TokuDB transaction
mechanism for crash consistency. TokuDB transactions
are equivalent to full data journaling, with all data and
metadata updates logged to a file in the underlying ext4

file system. Log entries are retired in-order, and no up-
dates are applied to the tree on disk ahead of the TokuDB
logging mechanism. Entries are appended to one of two
in-memory log buffers (16 MB by default). These buffers
are rotated and flushed to disk every second or when a
buffer overflows.

Although exposing a transactional API may be pos-
sible, BetrFS currently uses transactions only as an in-
ternal consistency mechanism. BetrFS generally uses
a single transaction per system call, except for writing
data, which uses a transaction per data block. In our
current implementation, transactions on metadata exe-
cute while holding appropriate VFS-level mutex locks,
making transaction conflicts and aborts vanishingly rare.

Compression. Compression is important to perfor-
mance, especially for keys. Both indexes use full
paths as keys, which can be long and repetitive, but
TokuDB’s compression mitigates these overheads. Us-
ing quicklz [24], the sorted path names in our experi-
ments compress by a factor of 20, making the disk-space
overhead manageable.

The use of data compression also means that there
isn’t a one-to-one correspondence between reading a file-
system-level block and reading a block from disk. A leaf
node is typically 4 MB, and compression can pack more
than 64 file system blocks into a leaf. In our experience
with large data reads and writes, data compression can
yield a boost to file system throughput, up to 20% over
disabling compression.

5 Write-Optimization in System Design

In designing BetrFS, we set the goal of working within
the existing Linux VFS framework. An underlying chal-
lenge is that, at points, the supporting code assumes
that reads are as expensive as writes, and necessary for
update-in-place. The use of write optimization violates
these assumptions, as sub-block writes can be faster than
a read. This section explains several strategies we found
for improving the BetrFS performance while retaining
Linux’s supporting infrastructure.

6
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5.1 Eternal Sunshine of the Spotless Cache

BetrFS leverages the Linux page cache to implement ef-
ficient small reads, avoid disk reads in general, and facil-
itate memory-mapped files. By default, when an appli-
cation writes to a page that is currently in cache, Linux
marks it as dirty and writes it out later. This way, several
application-level writes to a page can be absorbed in the
cache, requiring only a single write to disk. In BetrFS,
however, small writes are so cheap that this optimization
does not always make sense.

In BetrFS, the write system call never dirties a clean
page in the cache. When an application writes to a clean
cached page, BetrFS issues an upsert to the Bε -tree and
applies the write to the cached copy of that page. Thus
the contents of the cache are still in sync with the on-disk
data, and the cached page remains clean.

Note that BetrFS’ approach is not always better than
absorbing writes in the cache and writing back the entire
block. For example, if an application performs hundreds
of small writes to the same block, then it would be more
efficient to mark the page dirty and wait until the appli-
cation is done to write the final contents back to disk. A
production version of BetrFS should include heuristics to
detect this case. We found that performance in our proto-
type was good enough without this optimization, though,
so we have not yet implemented it.

The only situation where a page in the cache is dirt-
ied is when the file is memory-mapped for writing. The
memory management hardware does not support fine-
grained tracking of writes to memory-mapped files —
the OS knows only that something within in the page of
memory has been modified. Therefore, BetrFS’ mmap

implementation uses the default read and write page
mechanisms, which operate at page granularity.

Our design keeps the page cache coherent with disk.
We leverage the page cacahe for faster warm-cache
reads, but avoid unnecessary full-page writebacks.

5.2 FUSE is Write De-Optimized

We implemented BetrFS as an in-kernel file system be-
cause the FUSE architecture contains several design de-
cisions that can ruin the potential performance benefits
of a write-optimized file system. FUSE has well-known
overheads from the additional context switches and data
marshalling it performs when communicating with user-
space file systems. However, FUSE is particularly dam-
aging to write-optimized file systems for completely dif-
ferent reasons.

FUSE can transform write-intensive into read-
intensive workloads because it issues queries to the user-
space file system before (and, in fact, after) most file sys-
tem updates. For example, FUSE issues GETATTR calls

(analogous to calling stat()) for the entire path of a
file lookup, every time the file is looked up by an ap-
plication. For most in-kernel file systems, subsequent
lookups could be handled by the kernel’s directory cache,
but FUSE conservatively assumes that the underlying file
system can change asynchronously (which can be true,
e.g. in network file systems).

These searches can choke a write-optimized data
structure, where insertions are two orders of magnitude
faster than searches. The TokuFS authors explicitly cite
these searches as the cause of the disappointing perfor-
mance of their FUSE implementation [15].

The TableFS authors identified another source of
FUSE overhead: double caching of inode information in
the kernel [25]. This reduces the cache’s effective hit
rate. For slow file systems, the overhead of a few ex-
tra cache misses may not be significant. For a write-
optimized data structure working on a write-intensive
workload, the overhead of the cache misses can be sub-
stantial.

5.3 Ext4 as a Block Manager

Since TokuDB stores data in compressed nodes, which
can have variable size, TokuDB relies on an underlying
file system to act as a block and free space manager for
the disk. Conventional file systems do a good job of stor-
ing blocks of large files adjacently on disk, especially
when writes to the file are performed in large chunks.

Rather than reinvent the wheel, we stick with this de-
sign in our kernel port of TokuDB. BetrFS represents
tree nodes as blocks within one or more large files on
the underlying file system, which in our prototype is un-
modified ext4 with ordered data mode and direct IO.
We rely on ext4 to correctly issue barriers to the disk
write cache, although disabling the disk’s write cache did
not significantly impact performance of our workloads.
In other words, all BetrFS file system updates, data or
metadata, generally appear as data writes, and an fsync

to the underlying ext4 file system ensures durability of
a BetrFS log write. Although there is some duplicated
work between the layers, we expect ordered journaling
mode minimizes this, as a typical BetrFS instance spans
11 files from ext4’s perspective. That said, these re-
dundancies could be streamlined in future work.

6 Implementation

Rather than do an in-kernel implementation of a
write-optimized data structure from scratch, we ported
TokuDB into the Linux kernel as the most expedient way
to obtain a write-optimized data structure implementa-
tion. Such data structure implementations can be com-
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Component Description Lines
VFS Layer Translate VFS hooks to TokuDB queries. 1,987
TokuDB Kernel version of TokuDB. 44,293

(960 lines changed)
klibc Compatibility wrapper. 4,155
Linux Modifications 58

Table 3: Lines of code in BetrFS, by component.

Class ABIs Description
Memory 4 Allocate buffer pages and heap objects.
Threads 24 Pthreads, condition variables, and mutexes.
Files 39 Access database backend files on underly-

ing, disconnected file system.
zlib 7 Wrapper for kernel zlib.
Misc 27 Print errors, qsort, get time, etc..
Total 101

Table 4: Classes of ABI functions exported by klibc.

plex, especially in tuning the I/O and asymptotic merging
behavior.

In this section, we explain how we ported a large por-
tion of the TokuDB code into the kernel, challenges we
faced in the process, lessons learned from the experience,
and future work for the implementation. Table 3 summa-
rizes the lines of code in BetrFS, including the code in-
terfacing the VFS layer to TokuDB, the klibc code, and
minor changes to the Linux kernel code, explained be-
low. The BetrFS prototype uses Linux version 3.11.10.

6.1 Porting Approach

We initially decided the porting was feasible because
TokuDB has very few library requirements and is written
in a C-like form of C++. In other words, the C++ features
used by TokuDB are primarily implemented at compile
time (e.g., name mangling and better type checking), and
did not require runtime support for features like excep-
tions. Our approach should apply to other WOIs, such as
an LSM tree, inasmuch as the implementation follows a
similar coding style.

As a result, we were able to largely treat the TokuDB
code we used as a binary blob, creating a kernel module
(.ko file) from the code. We exported interfaces used by
the BetrFS VFS layer to use C linkage, and similarly de-
clared interfaces that TokuDB imported from klibc to
be C linkage.

We generally minimized changes to the TokuDB code,
and selected imported code at object-file granularity. In
a few cases, we added compile-time macros to eliminate
code paths or functions that would not be used yet re-
quired cumbersome dependencies. Finally, when a par-
ticularly cumbersome user-level API, such as fork, is
used in only a few places, we rewrote the code to use
a more suitable kernel API. We call the resulting set of
dependencies imported by TokuDB klibc.

6.2 The klibc Framework

Table 4 summarizes the ABIs exported by klibc. In
many cases, kernel ABIs were exported directly, such as
memcpy, or were straightforward wrappers for features
such as synchronization and memory allocation. In a few
cases, the changes were more complex.

The use of errno in the TokuDB code presented a
particular challenge. Linux passes error codes as neg-
ative return values, whereas libc simply returns nega-
tive one and places the error code in a per-thread variable
errno. Checks for a negative value and reads of errno
in TokuDB were so ubiquitous that changing the error-
handling behavior was impractical. We ultimately added
an errno field to the Linux task struct; a production
implementation would instead rework the error-passing
code.

Although wrapping pthread abstractions in kernel ab-
stractions was fairly straightforward, static initialization
and direct access to pthread structures created problems.
The primary issue is that converting pthread abstractions
to kernel abstractions replaced members in the pthread
structure definitions. Static initialization would not prop-
erly initialize the modified structure. Once the size of
pthread structures changed, we had to eliminate any code
that imported system pthread headers, lest embedded in-
stances of these structures calculate the wrong size.

In reusing ext4 as a block store, we faced some chal-
lenges in creating module-level file handles and paths.
File handles were more straightforward: we were able
to create a module-level handle table and use the pread
(cursor-less) API to ext4 for reads and writes. We
did have to modify Linux to export several VFS helper
function that accepted a struct file directly, rather
than walking the process-level file descriptor table. We
also modified ext4 to accept input for reads with the
O DIRECT flag that were not from a user-level address.

When BetrFS allocates, opens, or deletes a block store
on the underlying ext4 file system, the module essen-
tially chroots into an ext4 file system disconnected
from the main tree. Because this is kernel code, we
also wish to avoid permission checks based on the cur-
rent process’s credentials. Thus, path operations include
a “context switch” operation, where the current task’s file
system root and credentials are saved and restored.

6.3 Changes to TokuDB

With a few exceptions, we were able to use TokuDB in
the kernel without major modifications. This subsection
outlines the issues that required refactoring the code.

The first issue we encountered was that TokuDB
makes liberal use of stack allocation throughout. One
function allocated a 12KB buffer on the stack! In con-
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trast, stack sizes in the Linux kernel are fixed at compile
time, and default to 8KB. In most cases, we were able
to use compile-time warnings to identify large stack al-
location and convert them to heap allocations and add
free functions. In the case where these structures were
performance-critical, such as a database cursor, we mod-
ified the TokuDB code to use faster allocation methods,
such as a kernel cache or per-CPU variable. Similarly,
we rewrote several recursive functions to use a loop.
Nonetheless, we found that deep stacks of more modest-
sized frames were still possible, and increased the stack
size to 16 KB. We plan to reign in the maximum stack
size in future work.

Finally, we found a small mismatch between the
behavior of futexes and kernel wait queues that re-
quired code changes. Essentially, recent implemen-
tations of pthread condition variables will not wake
a sleeping thread up due to an irrelevant interrupt,
making it safe (though perhaps inadvisable) in user
space not to double-check invariants after returning
from pthread cond wait. The Linux-internal equiv-
alents, such as wait event, can spuriously wake up a
thread in a way that is difficult to distinguish without
re-checking the invariant. Thus, we had to place all
pthread cond wait calls in a loop.

6.4 Future Work and Limitations

The BetrFS prototype is an ongoing effort. The effort
has reached sufficient maturity to demonstrate the power
of write optimization in a kernel file system. However,
there are several points for improvement in future work.

The most useful feature currently missing from the
TokuDB codebase is range upserts; upserts can only be
applied to a single key, or broadcast to all keys. Cur-
rently, file deletion must be implemented by creating a
remove upsert for each data block in a file; the ability to
create a single upsert applied to a limited range would
be useful, and we leave this for future work. The pri-
mary difficulty in supporting such an abstraction is tun-
ing how aggressively the upsert should be flushed down
to the leaves versus applied to point queries on demand;
we leave this issue for future work as well.

One subtle trade-off in organizing on-disk placement
is between rename and search performance. BetrFS keys
files by their path, which currently results in rename
copying the file from one disk location to another. This
can clearly be mitigated by adding a layer of indirection
(i.e., an inode number); however, this is at odds with the
goal of preserving data locality within a directory hierar-
chy. We plan to investigate techniques for more efficient
directory manipulation that preserve locality. Similarly,
our current prototype does not support hard links.

Our current prototype also includes some double

caching of disk data. Nearly all of our experiments
measure cold-cache behavior, so this does not affect
the fidelity of our results. Profligate memory usage is
nonetheless problematic. In the long run, we intend to
better integrate these layers, as well as eliminate emu-
lated file handles and paths.

7 Evaluation

We organize our evaluation around the following ques-
tions:
• Are microwrites on BetrFS more efficient than on

other general-purpose file systems?
• Are large reads and writes on BetrFS at least competi-

tive with other general-purpose file systems?
• How do other file system operations perform on

BetrFS?
• What are the space (memory and disk) overheads of

BetrFS?
• Do applications realize better overall performance on

BetrFS?
Unless otherwise noted, benchmarks are cold-cache

tests. All file systems benefit equally from hits in the
page and directory caches; we are interested in measur-
ing the efficiency of cache misses.

All experimental results were collected on a Dell Op-
tiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4
GB RAM, and a 250 GB, 7200 RPM ATA disk. Each
file system used a 4096-byte block size. The system ran
Ubuntu 13.10, 64-bit, with Linux kernel version 3.11.10.
Each experiment compared with several general purpose
file systems, including btrfs, ext4, XFS, and zfs. Er-
ror bars and ± ranges denote 95% confidence intervals.

7.1 Microwrites
We evaluated microwrite performance using both meta-
data and data intensive microbenchmarks. To exercise
file creation, we used the TokuBench benchmark [15] to
create 500,000 200-byte files in a balanced directory tree
with a fanout of 128. The results are shown in Figure 3.
TokuBench also measures the scalability of the file sys-
tem as threads are added; we measured up to 4 threads
since our machine has 4 cores.

BetrFS exhibited substantially higher throughput than
the other file systems. The closest competitor was zfs at
1 thread; as more threads were added, the gap widened
considerably. Compared to ext4, XFS, and btrfs,
BetrFS throughput was an order of magnitude higher.

This performance distinction is attributable to both
fewer total writes and fewer seeks per byte written—i.e.,
better aggregation of small writes. Based on profiling
from blktrace, one major distinction is total bytes writ-
ten: BetrFS writes 4–10× fewer total MB to disk, with

9
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Figure 3: Total time to create 500,000 200-byte files, us-
ing 1, 2, and 4 threads. We measure the number of files
created per second. Higher is better.

File System Time (s)
BetrFS 0.17 ± 0.01
ext4 11.60 ± 0.39
XFS 11.71 ± 0.28
btrfs 11.60 ± 0.38
zfs 14.75 ± 1.45

Table 5: Time in seconds to execute 1000 4-byte mi-
crowrites within a 1GiB file. Lower is better.

an order of magnitude fewer total write requests. Among
the other file systems, ext4, XFS, and zfs wrote roughly
the same amount of data, but realized widely varying un-
derlying write throughput. The only file system with a
comparable write throughput was zfs, but it wrote twice
as much data using 12.7× as many disk requests.

To measure microwrites to files, we wrote a custom
benchmark that performs 1,000 random 4-byte writes
within a 1GiB file, followed by an fsync(). Table 5
lists the results. BetrFS was two orders of magnitude
faster than the other file systems.

These results demonstrate that BetrFS improves mi-
crowrite performance by one to two orders of magnitude
compared to current general-purpose file systems.

7.2 Large Reads and Writes

We measured the throughput of sequentially reading and
writing a 1GiB file, 10 blocks at a time. We created
the file using random data to avoid unfairly advantaging
compression in BetrFS. In this experiment, BetrFS bene-
fits from compressing keys, but not data. We note that
with compression and moderately compressible data,
BetrFS can easily exceed disk bandwidth. The results
are illustrated in Figure 4.

In general, most general-purpose file systems can read
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Figure 4: Large file I/O. We sequentially read and write
1GiB files. Higher is better.

and write at disk bandwidth. In the case of a large se-
quential reads, BetrFS can read data at roughly 85 MiB/s.
This read rate is commensurate with overall disk uti-
lization, which we believe is a result of less aggressive
read-ahead than the other file systems. We believe this
can be addressed by re-tuning the TokuDB block cache
prefetching behavior.

In the case of large writes, the current BetrFS proto-
type achieved just below half of the disk’s throughput.
The reason for this is that each block write must percolate
down the interior tree buffers; a more efficient heuristic
would detect a large streaming write and write directly
to a leaf. As an experiment, we manually forced writes
to the leaf in an empty tree, and found write throughput
comparable to the other file systems. That said, applying
this optimization is somewhat tricky, as there are a num-
ber of edge cases where leaves must be read and rewrit-
ten or messages must be flushed. We leave this issue for
future work.

7.3 Directory Operations
In this section, we measure the impact of the BetrFS de-
sign on large directory operations. Table 6 reports the
time taken to run find, grep -r, mv, and rm -r on the
Linux 3.11.10 source tree, starting from a cold cache.
The grep test recursively searches the file contents for
the string “cpu to be64”, and the find test searches for
files named “wait.c”. The rename test renames the entire
kernel source tree, and the delete test does a recursive
removal of the source.

Both the find and grep benchmarks demonstrate the
value of sorting files and their metadata lexicographically
by full path, so that related files are stored near each other
on disk. BetrFS can search directory metadata and file
data one or two orders of magnitude faster than other file
systems, with the exception of grep on btrfs, which is
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FS find grep dir rename delete
BetrFS 0.36 ± 0.06 3.95 ± 0.28 21.17 ± 1.01 46.14 ± 1.12
btrfs 14.91 ± 1.18 3.87 ± 0.94 0.08 ± 0.05 7.82 ± 0.59
ext4 2.47 ± 0.07 46.73 ± 3.86 0.10 ± 0.02 3.01 ± 0.30
XFS 19.07 ± 3.38 66.20 ± 15.99 19.78 ± 5.29 19.78 ± 5.29
zfs 11.60 ± 0.81 41.74 ± 0.64 14.73 ± 1.64 14.73 ± 1.64

Table 6: Directory operation benchmarks, measured in seconds. Lower is better.

FS chmod mkdir open read stat unlink write
BetrFS 4913 ± 0.27 67072 ± 25.68 1697 ± 0.12 561 ± 0.01 1076 ± 0.01 47873 ± 7.7 32142 ± 4.35
btrfs 4574 ± 0.27 24805 ± 13.92 1812 ± 0.12 561 ± 0.01 1258 ± 0.01 26131 ± 0.73 3891 ± 0.08
ext4 4970 ± 0.14 41478 ± 18.99 1886 ± 0.13 556 ± 0.01 1167 ± 0.05 16209 ± 0.2 3359 ± 0.04
XFS 5342 ± 0.21 73782 ± 19.27 1757 ± 0.12 1384 ± 0.07 1134 ± 0.02 19124 ± 0.32 9192 ± 0.28
zfs 36449 ± 118.37 171080 ± 307.73 2681 ± 0.08 6467 ± 0.06 1913 ± 0.04 78946 ± 7.37 18382 ± 0.42

Table 7: Average time in cycles to execute a range of common file system calls. Lower is better.

comparable.
Both the rename and delete tests show the worst-case

behavior of BetrFS. Because BetrFS does not include a
layer of indirection from pathname to data, renaming re-
quires copying all data and metadata to new points in
the tree. We also measured large-file renames, and saw
similarly large overheads—a function of the number of
blocks in the file. Although there are known solutions
to this problem, such as by adding a layer of indirec-
tion, we plan to investigate techniques that can preserve
the appealing lexicographic locality without sacrificing
rename and delete performance.

7.4 System Call Nanobenchmarks

Finally, Table 7 shows timings for a nanobenchmark
that measures various system call times. Because this
nanobenchmark is warm-cache, it primarily exercises the
VFS layer. BetrFS is close to being the fastest file sys-
tem on open, read, and stat. On chmod, mkdir, and
unlink, BetrFS is in the middle of the pack.

Our current implementation of the write system call
appears to be slow in this benchmark because, as men-
tioned in Section 5.1, writes in BetrFS issue an upsert to
the database, even if the page being written is in cache.
This can be advantageous when a page is not written of-
ten, but that is not the case in this benchmark.

7.5 Space Overheads

The Fractal Tree index implementation in BetrFS in-
cludes a cachetable, which caches tree nodes. Cachetable
memory is bounded. BetrFS triggers background flush-
ing when memory exceeds a low watermark and forces
writeback at a high watermark. The high watermark is
currently set to one eighth of total system memory. This

Total BetrFS Disk Usage (GiB)
Input After After After
Data Writes Deletes Flushes

4 4.14 ± 0.07 4.12 ± 0.00 4.03 ± 0.12
16 16.24 ± 0.06 16.20 ± 0.00 10.14 ± 0.21
32 32.33 ± 0.02 32.34 ± 0.00 16.22 ± 0.00
64 64.57 ± 0.06 64.59 ± 0.00 34.36 ± 0.18

Table 8: BetrFS disk usage, measured in GiB, after writ-
ing large incompressible files, deleting half of those files,
and flushing Bε -tree nodes.

is configurable, but we found that additional cachetable
memory had little performance impact in our workloads.

No single rule governs BetrFS disk usage, as stale data
may remain in non-leaf nodes after delete, rename, and
overwrite operations. Background cleaner threads at-
tempt to flush pending data from 5 internal nodes per
second. This creates fluctuation in BetrFS disk usage,
but overheads swiftly decline at rest.

To evaluate the BetrFS disk footprint, we wrote sev-
eral large incompressible files, deleted half of those files,
and then initiated a Bε -tree flush. After each operation,
we calculated the BetrFS disk usage using df on the un-
derlying ext4 partition.

Writing new data to BetrFS introduced very little over-
head, as seen in Table 8. For deletes, however, BetrFS
issues an upsert for every file block, which had little im-
pact on the BetrFS footprint because stale data is lazily
reclaimed. After flushing, there was less than 3GiB of
disk overhead, regardless of the amount of live data.

7.6 Application Performance
Figure 5 presents performance measurements for a vari-
ety of metadata-intensive applications. We measured the
time to rsync the Linux 3.11.10 source code to a new di-
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Figure 5: Application benchmarks

rectory on the same file system, using the --in-place

option to avoid temporary file creation (Figure 5a). We
performed a benchmark using version 2.2.13 of the
Dovecot mail server to simulate IMAP client behavior
under a mix of read requests, requests to mark messages
as read, and requests to move a message to one of 10
other folders. The balance of requests was 50% reads,
50% flags or moves. We exercised the git version control
system using a git-clone of the local BetrFS source
tree and a git-diff between two milestone commits
(Figure 5c). Finally, we measured the time to tar and
un-tar the Linux 3.11.10 source (Figure 5d).

BetrFS yielded substantially higher performance on
several applications, primarily applications with mi-
crowrites or large streaming reads or writes. In the case
of the IMAP benchmark, marking or moving messages
is a small-file rename in a large directory—a case BetrFS
handled particularly well, cutting execution time in half
compared to most other file systems. Note that the IMAP
test is a sync-heavy workload, issuing over 26K fsync()

calls over 334 seconds, each forcing a full BetrFS log
flush. rsync on BetrFS realized significantly higher
throughput because writing a large number of modestly
sized files in lexicographic order is, on BetrFS, aggre-
gated into large, streaming disk writes. Similarly, tar
benefited from both improved reads of many files in
lexicographic order, as well as efficient aggregation of
writes. tar on BetrFS was only marginally better than
btrfs, but the execution time was at least halved com-
pared to ext4 and XFS.

The only benchmark significantly worse on BetrFS
was git-clone, which does an lstat on every new file
before creating it—despite cloning into an empty direc-
tory. Here, a slower, small read obstructs a faster write.
For comparison, the rsync --in-place test case illus-
trates that, if an application eschews querying for the ex-
istence of files before creating them, BetrFS can deliver
substantial performance benefits.

These experiments demonstrate that several real-
world, off-the-shelf applications can benefit from exe-
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cuting on a write-optimized file system without appli-
cation modifications. With modest changes to favor
blind writes, applications can perform even better. For
most applications not suited to write optimization, per-
formance is not harmed or could be tuned.

8 Related Work

Previous write-optimized file systems. TokuFS [15] is
an in-application library file system, also built using Bε -
trees. TokuFS showed that a write-optimized file system
can support efficient write-intensive and scan-intensive
workloads. TokuFS had a FUSE-based version, but the
authors explicitly omitted disappointing measurements
using FUSE.

KVFS [31] is based on a transactional variation of
an LSM-tree, called a VT-tree. Impressively, the per-
formance of their transactional, FUSE-based file sys-
tem was comparable to the performance of the in-kernel
ext4 file system, which does not support transactions.
One performance highlight was on random-writes, where
they outperformed ext4 by a factor of 2. They also used
stitching to perform well on sequential I/O in the pres-
ence of LSM-tree compaction.

TableFS [25] uses LevelDB to store file-system meta-
data. They showed substantial performance improve-
ments on metadata-intensive workloads, sometimes up to
an order of magnitude. They used ext4 as an object store
for large files, so sequential I/O performance was com-
parable to ext4. They also analyzed the FUSE overhead
relative to a library implementation of their file system
and found that FUSE could cause a 1000× increase in
disk-read traffic (see Figure 9 in their paper).

If these designs were ported to the kernel, we expect
that they would see some, but not all, of the performance
benefits of BetrFS. Because the asymptotic behavior is
better for Bε -trees than LSMs in some cases, we expect
the performance of an LSM-based file system will not be
completely comparable.

Other WOIs. COLAs [4] are an LSM tree variant that
uses fractional cascading [13] to match the performance
of Bε -trees for both insertions and queries, but we are
not aware of any full featured, production-quality COLA
implementation. xDict [8] is a cache-oblivious WOI with
asymptotic behavior similar to a Bε -tree.

Key-Value Stores. WOIs are widely used in key-value
stores, including BigTable [12], Cassandra [20], HBase
[3], LevelDB [17], TokuDB [33] and TokuMX [34].
BigTable, Cassandra, and LevelDB use LSM-tree vari-
ants. TokuDB and TokuMX use Fractal Tree indexes.
LOCS [35] optimizes LSM-trees for a key-value store
on a multi-channel SSD.

Instead of using WOIs, FAWN [1] writes to a log and

maintains an in-memory index for queries. SILT [22]
further reduces the design’s memory footprint during the
merging phase.

Alternatives to update-in-place. The Write Anywhere
File Layout (WAFL) uses files to store its metadata, giv-
ing it incredible flexibility in its block allocation and lay-
out policies [19]. WAFL does not address the microwrite
problem, however, as its main goal is to provide efficient
copy-on-write snapshots.

Log-structured File Systems and their derivatives [1,
21, 22, 26] are write-optimized in the sense that they
log data, and are thus very fast at ingesting file system
changes. However, they still rely on read-modify-write
for file updates and suffer from fragmentation.

Logical logging is a technique used by some databases
in which operations, rather than the before and after im-
ages of individual database pages, are encoded and stored
in the log [18]. Like a logical log entry, an upsert mes-
sage encodes a mutation to a value in the key-value store.
However, an upsert is a first-class storage object. Upsert
messages reside in Bε -tree buffers and are evaluated on
the fly to satisfy queries, or to be merged into leaf nodes.

9 Conclusion

The BetrFS prototype demonstrates that write-optimized
indexes are a powerful tool for file-system developers.
In some cases, BetrFS out-performs traditional designs
by orders of magnitude, advancing the state of the art
over previous results. Nonetheless, there are some cases
where additional work is needed, such as further data-
structure optimizations for large streaming I/O and effi-
cient renames of directories. Our results suggest that fur-
ther integration and optimization work is likely to yield
even better performance results.
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