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Abstract
SuperMalloc is an implementation of malloc(3) orig-
inally designed for X86 Hardware Transactional Memory
(HTM). It turns out that the same design decisions also make
it fast even without HTM. For the malloc-test benchmark,
which is one of the most difficult workloads for an allocator,
with one thread SuperMalloc is about 2.1 times faster than
the best of DLmalloc, JEmalloc, Hoard, and TBBmalloc;
with 8 threads and HTM, SuperMalloc is 2.75 times faster;
and on 32 threads without HTM SuperMalloc is 3.4 times
faster. SuperMalloc generally compares favorably with the
other allocators on speed, scalability, speed variance, mem-
ory footprint, and code size.

SuperMalloc achieves these performance advantages us-
ing less than half as much code as the alternatives. Su-
perMalloc exploits the fact that although physical memory is
always precious, virtual address space on a 64-bit machine
is relatively cheap. It allocates 2 MiB chunks which con-
tain objects all the same size. To translate chunk numbers
to chunk metadata, SuperMalloc uses a simple array (most
of which is uncommitted to physical memory). SuperMal-
loc takes care to avoid associativity conflicts in the cache:
most of the size classes are a prime number of cache lines,
and nonaligned huge accesses are randomly aligned within a
page. Objects are allocated from the fullest non-full page in
the appropriate size class. For each size class, SuperMalloc
employs a 10-object per-thread cache, a per-CPU cache that
holds about a level-2-cache worth of objects per size class,
and a global cache that is organized to allow the movement
of many objects between a per-CPU cache and the global
cache using O(1) instructions. SuperMalloc prefetches ev-
erything it can before starting a critical section, which makes
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the critical sections run fast, and for HTM improves the odds
that the transaction will commit.

Categories and Subject Descriptors D.4.2 Operat-
ing Systems [Storage Management] Allocation/deallocation
strategies

Keywords Memory Allocation Library, malloc, Virtual
Memory

1. Introduction
C/C++ dynamic memory allocation functions (malloc(3)
and free(3)) can impact the cost of running applications.
The cost can show up in several ways: allocation operations
can be slow for serial programs, they can fail to scale with
the number of cores in a multithreaded multicore environ-
ment, they can be occasionally slow, and they can induce a
large memory footprint. Furthermore, if the allocator itself
is too complex, it can inhibit improvements. We can divide
these problems roughly into three categories: speed, foot-
print, and complexity.

The rest of this section explores this space in the context
of several allocators. The allocators include DLmalloc [29];
Hoard [4]; JEmalloc [14]; TBBmalloc [27]; and our alloca-
tor, SuperMalloc. Figure 1 shows the code size for the allo-
cators.

Many modern allocators take advantage of the fact that
the operating system allocates memory in two steps corre-
sponding to virtual allocation and physical allocation: First
a system call such as mmap() allocates a contiguous range
of virtual addresses. At this point, no physical memory has
been allocated. Later, when the application actually touches
the virtual addresses, a page fault occurs, and the operating
system allocates physical memory. A page of virtual mem-
ory that has physical memory associated with it is called
a committed page, whereas if no physical memory is allo-
cated, the page is uncommitted. An application or library
can use madvise() to uncommit a committed page, re-
turning the underlying physical memory back to the operat-
ing system.

DLmalloc [29] is the default allocator in Linux. DLmal-
loc is relatively simple and has been stable for decades. DL-
malloc employs per-object boundary tags (which are due to
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Knuth [25]). On a 64-bit machine, each allocated object is
immediately preceded by 8 bytes which indicate the size of
the object (and hence the address of the next object), as well
as whether the object is allocated or free, and whether the
previous object is allocated or free. When the previous ob-
ject is free, the last 8 bytes of that object also indicate the
size. When DLmalloc frees an object, it can immediately
coalesce the object with the next object (if it is free) since it
knows the size of the newly freed object. If the previous ob-
ject is freed, it can also coalesce the newly freed object with
the previous one. The boundary tags can contribute up to a
50% space overhead when allocating small (8-byte) objects.
DLmalloc employs a first-fit heuristic and has no provision
for multithreading beyond using a single lock to protect the
entire allocation data structure. For example, DLmalloc has
no per-thread caching.

This study used DLmalloc 2.8.6, which has been placed
in the public domain.

Hoard [4] was introduced during the era of the first mul-
tithreaded allocators. The original Cilk allocator [5] and the
STL allocator of the time [39] provided per-thread alloca-
tion, which was very fast (no locking was required), but
also produced unbounded memory blowups. The problem
can occur, for example when one thread allocates objects
and a second thread frees them. The thread cache for the
second thread can end up with an unbounded number of ob-
jects. Some allocators, such as PTmalloc [19] and LKmal-
loc [28] exhibit memory blowup bounded by P , the number
of processors. Hoard provides a provable bound on its space
blowup by moving objects out of its per-thread caches un-
der certain conditions. Hoard organizes small objects into
chunks, which contain objects all the same size.1 Large ob-
jects are dealt with using heavier-weight mechanisms. Hoard
puts metadata at the beginning of each superblock indicating
the size of the objects in the superblock. Since the objects
within a superblock are all the same, Hoard does not need
boundary tags.

Hoard uses an allocate-fullest heuristic. Hoard some-
times finds itself in a situation where an object could be allo-
cated out of any one of several superblocks. Hoard allocates
the object out of the fullest such superblock. By allocating
into the fullest superblock, Hoard improves the chances that
a superblock will completely empty and become available to
be uncommitted or reused for other purposes.

This study used Hoard 3.10, which is licensed under
GPLv2.

JEmalloc [14] is, in my experience, one of the best al-
locators now available for production. JEmalloc ships with
BSD and Mozilla, as well as with MariaDB in recent Red
Hat distributions. JEmalloc strives to minimize footprint
in long-running processes such as browsers and database

1 Chunks are called “superblocks” in [4]. They are called “chunks” in [14]
and [27].

Allocator Bytes LoC
DLmalloc [29] 221K 6,280
Hoard [4] 429K 17,056
JEmalloc [14] 624K 22,230
TBBmalloc [27] 350K 9,705
SuperMalloc 127K 3,934

Figure 1. Code sizes measured in bytes and in Lines of
Code (LoC). Note: TBBmalloc is tough to measure since it’s
mixed into TBB. SuperMalloc could end up with more code
as it becomes production-quality.

servers. Like Hoard, JEmalloc allocates large chunks of
memory containing objects all the same size.

Whereas Hoard uses an allocate-fullest heuristic, JEmal-
loc uses a lowest-address heuristic: Of all the possible ob-
jects to allocate, JEmalloc allocates the one with the lowest
address. This strategy is something akin to a first-fit strat-
egy, except that all the objects are the same size. Although
fullest fit seems, in principle, to allow more blocks to be un-
committed, first fit for fixed-size objects is generally pretty
good at freeing up entire blocks, and in practice seems to
be just as good as fullest fit. In an earlier version of JEmal-
loc, Evans used fullest fit on groups of equal-sized objects,
but later abandoned it. When JEmalloc returns memory to
the operating system it unmaps an entire chunk — there are
several groups per chunk — and fullest fit on groups does
not correspond to fullest fit on chunks. Evans found that, al-
though individual groups of equal-sized regions might ben-
efit from fullest fit, chunks as a whole did not drain as well
because a single “fullest” page could keep a chunk mapped
indefinitely [16].

JEmalloc uses a thread-local cache, and eventually re-
turns objects from the thread-local cache into the globally
accessible data structure. JEmalloc seems slightly faster than
Hoard in practice, and although JEmalloc does not provide
any explicit bounds on memory blowup, it seems to be the
allocator of choice for long-running multithreaded processes
that need to keep their footprint under control.

JEmalloc uses three size categories: small, large, and
huge, and implements them differently. For small and large
objects, JEmalloc carves a chunk into page runs using a
red-black tree to track arbitrary contiguous page runs2 and
maintains metadata at the beginning of the chunk. By storing
metadata at the beginning of the chunk, the pages themselves
can remain untouched and uncommitted.

JEmalloc directly maps huge objects using mmap().
Huge objects are chunk-aligned. JEmalloc maintains another
red-black tree mapping huge chunk addresses to metadata.

2 Previously JEmalloc employed a buddy algorithm to track runs within a
chunk, but changed to red-black trees in 2006–2007. More recent versions,
which I haven’t benchmarked, switched to employing a lock-free radix tree
rather than a red-black tree to track huge allocations [16].
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This study used JEmalloc 3.6.0, which is licensed under
a variant of the modified BSD license.

TBBmalloc [27] is the allocator shipped with Intel’s
Threading Building Blocks (TBB) and is based on ideas
developed in McRT-malloc [21]. TBBmalloc is about as fast
as SuperMalloc, but has an unbounded space blowup in the-
ory and in practice. TBB uses a thread-private heap, and
never returns space for small objects to the operating sys-
tem. TBBmalloc always allocates out of a per-thread pool
with no locking. If the same thread returns the object as al-
located it, then no locking is needed. Otherwise the object
is returned to a foreign block and requires lightweight syn-
chronization to place the object into a linked list that will
be dealt with the next time the owner of the foreign block
tries to allocate. Like JEmalloc and Hoard, TBBmalloc uses
chunks each containing objects of homogeneous size, and
places metadata at the beginning of each chunk.

TBBmalloc can have an unbounded footprint. One case
was documented by [40]. In this case, one thread allocates
a large number of objects, and a second thread then frees
them, placing them into the first threads foreign block. If the
first thread then does not call free(), then the memory will
never be removed from the foreign block to be reused. There
appears to be no easy fix to this problem in TBBmalloc,
since the thread-local locking policy assumes, deep in its
design, that every thread calls free() periodically.

This study used TBBmalloc 4.3, which is licensed under
GPLv2.

Other allocators: Many other allocators exist.
For example, [34] describes a lock-free allocator based

on Hoard. Streamflow [38] is also lock-free. I cannot handle
the complexity of lock-free programming for anything com-
plicated: I can write reliable lock-free code to push an object
onto a linked list, but popping a list is trickier.

The VAM allocator [17] attempts to improve cache lo-
cality, especially on long-running jobs. Although VAM and
Hoard share an author, the VAM paper does not compare
VAM to Hoard, nor does the VAM software appear to be on
the web, so I could not compare SuperMalloc to VAM.

2. SuperMalloc
Section 1 reviewed the competition, and this section explains
how SuperMalloc works.

Like the other chunk-oriented allocators (Hoard, JEmal-
loc, and TBBmalloc), SuperMalloc allocates large chunks
of homogeneous-sized objects for small objects and uses
operating-system-provided memory mapping for larger ob-
jects. SuperMalloc’s chunks are multiples of 2 MiB and are
2 MiB-aligned, which corresponds to huge pages on x86.
In operating systems that support huge-pages, chunks align
properly with the paging system. For small objects, Su-
perMalloc puts several objects per chunk. For larger objects,
the allocation is backed by one or more contiguous chunks.

Unlike the other chunk-oriented allocators, SuperMalloc
does not divide its chunks into smaller pieces. For exam-
ple, JEmalloc divides its chunks into runs, and each run can
contain objects of a different size. In SuperMalloc, the en-
tire chunk is the same size. The rationale for this decision
is that on a 64-bit machine, virtual-address space is rela-
tively cheap, while physical memory remains dear. The other
allocators’ approach of dividing up a chunk saves virtual-
address space by requiring fewer chunks to be allocated.
In the case where that strategy actually does save space, it
is because the application did not actually allocate a whole
chunk’s worth of objects of a given size. In that case, in Su-
perMalloc, the rest of the block is an untouched uncommit-
ted “wilderness area” (a term apparently coined by [26]) us-
ing no physical memory.

Like JEmalloc, SuperMalloc employs several object
sizes. The sizes are organized into bins. In SuperMalloc,
there are small, medium, large, and huge objects. The first
45 bins are specific sizes, and larger bin numbers encode the
number of pages that the application actually allocated (so
that when SuperMalloc maps a 2 MiB chunk to support a
1.5 MiB request, it can properly track the amount of physi-
cal memory that the application has asked for). A 4-byte bin
number allows us to allocate objects of up to just under 232

pages (244 bytes).
Given a pointer to an object, a chunk-based allocator must

be able to determine which chunk an object belongs to, and
what the size of the objects in that chunk are. For example,
in JEmalloc, depending on the size of the object, the object
might be looked up in a global red-black tree (for huge
objects), or in a local red-black tree at the beginning of a
chunk.

SuperMalloc adopted a simpler strategy. An entire chunk
is all the same size objects, and SuperMalloc can look up
the chunk number in a table. Instead of using a tree, Su-
perMalloc uses an array to implement that table, however.
Since the usable x86 address space is 248 bytes and chunks
are 221 bytes, there are only 227 entries in the table. Each en-
try is a 4-byte bin number. The SuperMalloc table consumes
512 MiB of virtual address space, but since the operating
system employs a lazy commit strategy, it typically needs
only a few of pages physical memory for the chunk table.
This is another instance of the design principle for 64-bit
software that “it is OK to waste some virtual address space.”

3. Small Objects
Small objects are as small as 8 bytes, and increase in size
by at most 25% to limit internal fragmentation. Small object
sizes are regularly spaced: the sizes are 8, 10, 12, 14, 16, 20,
24, . . . , 224, and their sizes take the form k · 2i for 4 ≤ k ≤
7 and 1 ≤ i ≤ 5. In other words, a small object size, when
written in binary is a 1, followed by two arbitrary digits,
followed by zeros. Thus bin 0 contains 8-byte objects, bin 1
contains 10-byte objects, and so forth. To compute the bin
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int size_2_bin(size_t s) {
if (s <= 8) return 0;
if (s <= 320) {

// Number of leading zeros in s.
int z = clz(s);
// Round up to the relevant
// power of 2.
size_t r = s + (1ul<<(61-z)) -1;
int y = clz(r);
// y indicates which power of two.
// r shifted and masked indicates
// what the low-order bits are.
return 4*(60-y)+ ((r>>(61-y))&3);

}
if (s <= 448) return 22;
if (s <= 512) return 23;
...
if (size <= 1044480) return 45;
return 45 + ceil(size-1044480, 4096);

}

Figure 2. Code to convert a size to a bin number. The first
22 bins are handled by bit hacking. The clz() function
returns the number of leading 0 bits in its argument. Bins 22–
45 are handled by a case statement (the elided sizes are 704,
832, 1024, 1088, 1472, 1984, 2048, 2752, 3904, 4096, 5312,
7232, 8192, 10048, 14272, 16384, 32768, 65536, 131072,
258048, and 520192.) Huge bins are computed as a constant
plus the number of pages used by the object.

number from a small size can be done with bit hacking in
O(1) operations using the code shown in Figure 2.

For small objects, SuperMalloc makes no particular ef-
fort to avoid false sharing [6]. Like JEmalloc, SuperMalloc
assumes that users who care about false sharing will explic-
itly ask for cache-line alignment, using e.g., memalign().
This decision stands in contrast to allocators, such as Hoard,
that try to use temporal locality to induce spatial local-
ity: Hoard has heuristics that try to place objects that were
allocated at the same time by the same thread onto the
same cache line, and objects that were allocated by differ-
ent threads on different cache lines. As explained below, Su-
perMalloc takes a different tack on avoiding false sharing,
focusing on objects that are larger than a cache line.

SuperMalloc employs a fullest-fit algorithm; when allo-
cating an object, it finds the fullest non-full page that holds
objects of that size.3 In theory this should help empty out
nearly empty pages so that they can be returned to the op-
erating system. As mentioned above, JEMalloc abandoned
fullest fit on subchunks because it was not conducive to un-
mapping an entire chunk. The decision to try to unmap an

3 As we’ll discuss in Section 4, these ‘pages’ are in some cases more than
4 KiB, but for now it suffices to imagine that they are ordinary 4 KiB
pages.

entire chunk makes sense on a 32-bit machine, where virtual
memory space is about as expensive as physical memory,
but on a 64-bit machine, uncommitting the group without
unmapping the chunk would be good enough. In contrast,
SuperMalloc was simplified by the decision to support only
64-bit machines — SuperMalloc only uncommits pages and
chunks, and never unmaps or changes the size of the objects
in a chunk.

To implement fullest fit, SuperMalloc provides, for each
object size, a heap-like data structure to sort pages by how
full they are. This data structure solves a simpler problem
than the general priority-queue problem because pages have
a bounded number of different fullness states. For example,
pages containing 64-byte objects can be in only one of 65
different states corresponding to 0 objects free, 1 object free,
and so forth up to 64 objects free. For each size class, Su-
perMalloc simply maintains an array of length 65 containing
linked lists of pages, along with a bitmap to indicate which
sizes have nonempty linked lists. The linked list cells are
kept outside the pages so that the pages can be uncommitted
when they become empty.

SuperMalloc reserves the first few pages of each 2 MiB
chunk for bookkeeping. The bookkeeping comprises a bitmap
of the free objects for each page and the heap-like data struc-
ture for implementing the fullest-fit heuristic (including the
list cell for each page). A metaprogram generates the data
structures so that, for example, the interal arrays are properly
sized for each object-size class.

SuperMalloc’s small objects are not all suitably aligned,
and in an upcoming release I expect to remove the objects
of size 10, 12, 14, 20, and 28 (leaving small sizes 8, 16, 24,
32, and then continuing with the current scheme that limits
internal fragmentation to 25%). The disadvantage of doing
so is that it increases internal fragmentation. For example,
currently, when allocating a string of size 9, SuperMalloc
returns an object of size 10, but after making this change Su-
perMalloc will return an object of size 16. Here I will discuss
the rationale for this decision, starting with a discussion of
what the standards require and of the current practice.

The C11 standard [23] is widely interpreted to mean that
malloc()must return objects aligned suitably for any data
type. On modern x86-64 processors, this appears to mean
that all objects must be 32-byte aligned, since the _m256
data type is 32-byte aligned [33]. Arguably, small objects
could use less alignment. For example, any object less than
16 bytes long would need to be only 8-byte aligned, since
all the objects that require 16-byte alignment are at least 16
bytes long. DLmalloc, the most commonly used allocator
in Linux, returns only 8-byte-aligned objects, necessitating
the use of memalign() when using SSE and AVX data
types. A long discussion of this issue and how Linux works
around the 8-byte-aligned practice, can be found at [37].
Some allocators, such as JEmalloc, return 16-byte aligned
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struct line {
int length;
char contents[0];

};

struct line *thisline =
malloc(sizeof(struct line) +
this_length;

thisline->length = this_length;

Figure 3. A frequently-seen non-standards-compliant id-
iom is to allocate a structure with a string at the end, and
then call malloc() with the size of the structure plus the
size of the string.

objects for objects of size 16 or larger. As far as I know, no
Linux allocator returns 32-byte aligned objects.

On careful reading, the standards [23, 33] do not actually
appear to require 8-byte alignment for a 9-byte allocation,
however. It turns out that “alignment” is not actually defined
in the standard. No compliant C program can determine
the alignment of a pointer. The x86-64 ABI specification
[33] states that all structures are aligned according to the
highest alignment required by any of their elements, and
all structures’ sizes are a multiple of their alignment. So
according to these standards, it is fishy to cast an 11-byte
alignment to a pointer to a 2-byte-aligned structure; such
usage is probably not compliant. If all codes followed these
standards, it would be OK to return a completely unaligned
pointer when an application called for a 9-byte alignment.

Real codes do not follow the rules, however. For exam-
ple, one common idiom is to write something like the code
shown in Figure 3. This example is taken from the GCC
manual [18]. This code uses a zero-length array as the last
element of a structure, where the structure is really a header
for a variable-length object. Since the length field is a
4-byte-aligned integer, the whole structure must be 4-byte
aligned, and we might see a call to malloc(11) specify-
ing 11 bytes (4 for the integer, and 7 more for the array).
Because of this idiom, malloc() must return objects that
are aligned to fit the biggest object that could fit inside.

Thus there are three possible options for a mallocator.

• Follow the standards strictly, which appear to allow 10-
byte objects to be packed tightly. This will break id-
iomatic codes however.

• Follow the standards strictly, which appears to require
any 8-byte-and-larger objects to be 8-byte aligned, 16-
byte-and-larger objects to be 16-byte aligned, and 32-
byte-and-larger objects to be 32-byte aligned. This ap-
proach wastes memory space, but allows all x86-64 ABI-
compliant codes to run without using memalign().

• Follow the Linux practice of providing 8-byte alignment.

I plan to switch SuperMalloc from the first option to the last
option.

4. Medium Objects
Medium objects are all sized be a multiple of 64 (the cache
line size). The smallest is 256 bytes, and the largest is 14272
bytes. The sizes chosen for SuperMalloc include powers of
two and prime multiples of cache lines. The powers of two
(256, 512, 1024, 2048, 4096, 8192) are used only when the
application explicitly asks for aligned data. The prime mul-
tiples of cache lines are used for all other requests to reduce
the contention in the low-associativity processor caches. For
example, recent Intel processors provide 8-way associative
level 1 cache. Following the lead of [1], who propose punc-
tuated arrays to reduce associativity conflicts, I wanted to
avoid aligning objects into the same cache associativity set.
(Apparently punctuated arrays are appearing in most of the
Solaris 12 allocators [11].) SuperMalloc, however, took the
more “radical” approach mentioned by [10] of making all
the size classes a prime multiple of the cache line, which not
only reduces conflicts within a class size but reduces inter-
size cache-index conflicts.

This approach introduces one big gap between 7 and
11 cache lines introducing internal fragmentation of up to
57% for an allocation of 449 bytes, and slightly smaller gap
between 13 cache lines and 17 cache lines (31% fragmenta-
tion for 833-byte allocations). To close these gap, SuperMal-
loc added two more bins at 9 cache lines and 15 cache lines,
with the rationale that a little bit of inter-size associativity
conflict is better than internal fragmentation.

One aspect that becomes relatively more important for
medium objects than small objects is what happens when
the page size is not a multiple of the object size. Consider
for example the 832-byte size bin (832 bytes corresponds to
13 cache lines). If we fill up a 4096-byte page with these
objects, we would be able to fit 4 objects into a page wasting
768 bytes at the end.

Supermalloc avoids this internal fragmentation by using
larger logical pages, called folios, for allocation bookkeep-
ing. For example, in the 832-byte bin, rather than wasting
those 768 bytes, SuperMalloc allocates objects out of a folio
containing 13 pages (53,248 bytes). When SuperMalloc al-
locates an 832-byte object, it finds the fullest 13-page folio
(among all folios holding 832-byte objects) that has a free
slot, and allocates that slot. When a folio becomes empty,
SuperMalloc uncommits the entire folio, rather than trying to
uncommit individual pages of a folio. There is still fragmen-
tation at the end of the 2 MiB chunk (5 unused pages in this
case), but that fragmentation comprises whole pages which
are never touched and remain uncommited. Once again, I do
not mind wasting a little virtual address space.

Except for the way their sizes are chosen, medium and
small objects are managed exactly the same way (with folios
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and the fullest-fit heuristic, for example) by exactly the same
code.

5. Large Objects
Large objects start at 16 KiB (4 pages) and go up to half a
chunk size. Large objects are all a multiple of a page size,
and the code is a little bit simpler than for small and medium
objects, since it mostly does not matter which large object
is returned by malloc(); when a large object is freed its
pages can be uncommitted, so SuperMalloc does not need to
keep track of anything for a fullest-fit heuristic.

In order to avoid associativity issues, SuperMalloc adds a
random number of cache lines, up to a page’s worth, to the
allocation, and adjusts the returned pointer by that random
number. For example when asked to allocate 20, 000 bytes,
SuperMalloc picks a random number from 0 to 63 and adds
that many cache lines to the request. If, for example, Su-
perMalloc picked 31 for the random number, it would allo-
cate 21, 984 = 20, 000 + 31 · 64 bytes. That would be allo-
cated out of bin 40, which contains 32 KiB objects. Instead
of returning a pointer to the beginning of the 32 KiB ob-
ject, SuperMalloc returns the pointer plus 1984 bytes. This
strategy wastes at most an extra page per object, and since
this strategy is employed only on objects that are 4 pages
or larger, it can result in at most 25% internal fragmentation
(which matches the fragmentation we were willing to toler-
ate for the small objects), and on average wastes only 12.5%.
If the application explicitly asks for a page-aligned alloca-
tion, SuperMalloc skips the random rigamarole. Adding a
random-offset to what would otherwise be a page-aligned
allocation appeared in [31] for a page-per-object allocator,
and is applied in a more systematic fashion by [1].

6. Huge Objects
Huge objects start at half a chunk (about 1 MiB) and get
larger. The SuperMalloc huge object allocation primitive is
straightforward, and is similar to many other allocators. Su-
perMalloc use operating system primitives such as mmap()
to create new huge chunks, and never gives the memory back
using unmap(). SuperMalloc again takes advantage of the
virtual-addresses-are-cheap observation, as follows.

SuperMalloc rounds up huge objects to the nearest power
of two. For example to allocate a 5 MiB object, it allocates
an 8 MiB region (which is 2 MiB-aligned) of virtual mem-
ory using mmap().

SuperMalloc keeps a linked list for each such power of
two, so that when we free() a huge chunk, it add the
chunk to the linked list. SuperMalloc actually threads the
linked list through the chunk table so that the chunk itself
does not need to be in committed memory. To free a huge
object SuperMalloc explicitly uncommits the memory using
madvise().

SuperMalloc uses madvise() to ask the kernel to map
the huge chunk using huge pages (recent Linux kernels sup-

port 2 MiB pages, which can reduce TLB pressure and re-
duces the cost of walking the page table in the case of a
TLB miss [7]). If the object is not a multiple of 2 MiB in
size, the last fractional part of the huge page is mapped
only with normal 4 KiB page table entries. Some users
do not like transparent huge pages, and if a user wants
fine-grained commitment within a huge object, they must
call madvise(MADV_NOHUGEPAGE) to ensure the small
pages.

Thus, although SuperMalloc allocated 8 MiB to imple-
ment a 5 MiB allocation, only 5 MiB would actually ever
be committed to memory (and then only when the applica-
tion code touches it.

For small, medium, and large objects, SuperMalloc makes
no explicit use of huge pages, meaning that on most systems
huge pages are not used for those non-huge objects. On most
Linux systems, huge pages are enabled only when explicitly
asked for with madvise, e.g., with

$ echo madvise > /sys/kernel/mm/\
transparent_hugepage/enabled

and on such systems the non-huge chunks will all be mapped
with 4 KiB pages. I hope to make better use of huge pages
in the future for SuperMalloc. One idea is to do the book-
keeping to keep track of when a chunk becomes, say, 90%
allocated, and then enable huge pages on that chunk. Part
of the problem is that as soon as we uncommit a single
4 KiB page using madvise(MADV_DONTNEED), then the
entire chunk becomes ineligible for huge pages. The alloca-
tor would need to defer the uncommit operations, and then
when, say, only 80% of the pages are in use, run all the de-
ferred uncommit operations. The system would need some
hysteresis so that it would not bounce between huge-page
and no-huge-page mode too frequently.

7. Arithmetic
One common operation in SuperMalloc is to calculate in-
dexes in a bitmap. For example, given a pointer p, the code
must perform calculation in Figure 4(a) to calculate to which
folio and which object in the folio p refers.

Since the chunk size is a power of two, computing the
chunk number is easy. Computing the folio number requires
dividing by the folio size, which isn’t a power of two, and
isn’t known at compile time, however. Division is slow, so
SuperMalloc follows the approach of [32] to convert division
to multiplication and shift. For example, for 32-bit values of
x, we have

x / 320 == (x*6871947674lu)>>41.

Figure 4(b) shows the faster code. SuperMalloc uses metapro-
gramming to generate all the object sizes and magic num-
bers, for example, to find prime numbers that are spaced no
more than 25% apart, and to calculate the multiplication and
shift constants to implement division..
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1 C = p / chunksize; // Compute chunk number.
2 B = chunkinfos[C]; // What is the bin?
3 FS = foliosizes[B]; // What is the folio size?
4 FN = (p%chunksize)/FS; // Which folio in the chunk?
5 OS = objectsizes[B]; // How big are the objects?
6 ON = ((p%chunksize)%FS)/OS; // Which object number in the folio?

(a)

1 C = p / chunksize;
2 B = chunkinfos[C];
3 FS = foliosizes[B];
4 FN = ((p%chunksize)*magic0[B]) >> magic1[B]; // magic
5 OS = objectsizes[B];
6 ON = ((p%chunksize-FN*FS)*magic2[B]) >> magic3[B]; // magic

(b)

Figure 4. The calculation to compute the folio number in the chunk, FN, and the object number in the folio ON, so that the
bitmap for the free objects in the folio can be updated. (a) shows the code with expensive divisions in lines 4 and 6. (b) shows
the code with the divisions replaced by multiplication and shift.

8. Caching
Like other multithreaded allocators, SuperMalloc employs
per-thread caching. In addition to the per-thread cache, Su-
perMalloc also employs a per-CPU cache, as well as a global
cache in front of the true data structures. Each cache is size-
segregated (that is, there is a cache for each size bin), but we
will describe it here as though there were only one size. Each
cache comprises a small number of doubly-linked lists of ob-
jects that belong in its bin. A single doubly-linked list can be
moved from one level of the cache to the other in O(1) op-
erations, which reduces the length of the critical section that
moves the list.

The cost of locking and accessing a shared data structure
turns out to be mostly due to cache coherence traffic from ac-
cessing the object, rather than the locking instructions. Fig-
ure 5 shows the overheads for incrementing a global variable
protected by a global lock when multiple threads are run-
ning. For example on our E5-2665, that was 485.5 ns. One
alternative is to use a thread-local variable which costs only
3.1 ns. Most modern allocators use a thread-local cache of
global values. But it turns out that a per-CPU data structure
costs only 34.1 ns to access. The difference is that the per-
CPU data structure mostly resides in the right cache (it’s in
the wrong cache only when the operating system migrates
a thread to a different processor), and the lock instruction
is mostly uncontended (contention happens only when the
operating system preempts a thread). So instead of paying
for all the cache-coherence traffic, one pays only the cost
of executing the lock instruction and the increment instruc-
tion. For the per-CPU cache the system also must determine
which CPU is running which SuperMalloc determines using
a call to sched_getcpu(). If we factor out the cost of
sched_getcpu(), the per-CPU data structure costs only

13.3 ns. Even with the call to sched_getcpu(), the per-
CPU structure is fast. Based on these numbers, I concluded
that a per-CPU cache gets most of the advantage of a per-
thread cache, but that SuperMalloc still needs a small per-
thread cache. Uncontended locking is not so bad.

A related approach used by some systems is to hash
or otherwise map the thread identifier to a cache num-
ber instead of using a per-CPU cache (e.g., [14, 28]). The
cache number is then used to index a collection of not-
quite-thread-and-not-quite-per-CPU caches. This hashing-
or-mapping approach typically requires more caches than
there are CPU’s, however, and can be analyzed as follows.
If there are P threads running,4 P processors, and P caches,
we still expect quite a bit of contention on some of the
caches. In fact, we expect only about P/e threads to op-
erate without contention due to a standard balls-and-bins
argument (and some cache will have contention about as
bad as logP/ log logP ). Since the cost of contention is so
high, this would reduce the cost of access to no less than

485.5 ns/e+ 34.1 ns · (1− 1/e) = 212 ns,

which is still an order of magnitude slower than the uncon-
tended per-CPU operation. To get the contention close to
zero, we can apply the birthday paradox and conclude that
we might need P 2 caches. That’s probably overkill, since if
we got the contention down to, say 1/20 of the accesses, we
would get rid of enough contention to get to within about
half of optimal. To get the contention to 1/20 requires ap-
proximately 3P caches. (JEmalloc uses 4P caches.) One ad-
vantage of using only P per-CPU caches instead of 3P (or
P 2) caches indexed by a hash of the thread index, is that

4 There may be more threads actually running, but at least for a scheduling
quantum, only P of them are actually scheduled.
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i7-4600U i7-4770 E5-2665
2 cores 4 cores 16 cores

2 sockets
2.1 GHz 3.4 GHz 2.4 GHz

Global 149.0 ns 120.6 ns 485.5 ns
Per-CPU 29.6 ns 18.0 ns 34.1 ns
Per-CPU no getcpu 17.2 ns 10.6 ns 13.3 ns
Per-thread 3.3 ns 2.1 ns 3.1 ns

Figure 5. Lock vs. contention overhead. “Global” is the
cost of accessing a global lock and incrementing a global
counter. “Per-CPU” is the cost of call sched_getcpu()
and accessing a per-cpu lock and increment a counter.
“Per-CPU no getcpu” is same thing without the call to
sched_getcpu(). Per-thread is the cost of incrementing
a thread-local variable without a lock .

the cache takes less space. All the objects in the caches are
likely to be using committed memory, and we want to waste
as little physical memory as possible. Another advantage
is that the software cache is likely to be in the right hard-
ware cache to allow the processor to access it without cache
misses. The biggest disadvantage of per-CPU caches is call-
ing sched_getcpu(), which is not very expensive, and
can be reduced by calling it less frequently (say, only 1/16th
of the time): if malloc() is being called frequently, it will
be using the right CPU most of the time, and if called infre-
quently, the performance will not matter much.

The SuperMalloc per-thread cache needs to be just big
enough to amortize the 34 ns uncontended locking overhead
compared to the 3.1 ns unlocked overhead, so we want about
10 objects in the per-thread cache. I decided to store two
linked lists each containing up to 8 KiB worth of objects for
each bin in the thread cache.

I tried to tune the per-CPU cache to be just big enough
to fill up the processor’s data cache. I reasoned that that if
the working set of a thread is bigger than the data cache, the
thread will be incurring cache misses anyway. In this case,
there is no point in working hard to avoid a few more cache
misses. In contrast, many allocators keep many megabytes in
their per-thread caches. Because there are many per-thread
caches (thousands of threads in a typical database server, for
example), their footprint is larger. I chose to store two linked
lists each containing up to 1 MiB for each bin in the per-
CPU cache.

There is also a global cache containing P linked lists of
up to 1 MiB each.

The logic for allocating an object is as follows:

1. If the thread cache has an item, use it. This requires no
locking.

2. Otherwise if the CPU cache contains a non-empty linked
list, move it to the thread cache, and proceed to step 1.
Moving an item from the CPU cache requires mutual
exclusion, which is implemented with a transaction on

chips that support transactions (such as Haswell) other-
wise with locking. There is a lock for each cpu-bin pair.

3. Otherwise if the global cache contains a non-empty
linked list, move it to the thread cache, and proceed to
step 1. This step also requires mutual exclusion (with a
transaction or a lock), and there is a lock for each bin.

4. Otherwise access the global data structures, which re-
quires mutual exclusion (with a transaction or a lock),
and there is a lock for each bin.

The logic for deallocating an object is similar:

1. If one of the linked lists in the thread cache isn’t “full”,
then add the object to that list.

2. Otherwise, if one of the CPU caches is empty, move one
of the linked lists from the thread cache to the CPU cache
(add the object to that list while we are at it.)

3. Otherwise, if one of the global caches is empty, move
one of the linked lists from the thread cache to the global
cache (add the object to that list while we are at.)

4. Otherwise access the global data structures to free the
object.

Dynamically, most of the critical-sections are on the CPU
cache, and since there is no guarantee that we stay on the
same CPU for the duration of a critical section, we need
locks. The CPU cache employs a lock for each CPU-bin
pairing. Since there are 45 bins and 32 CPU’s on the biggest
machine I measured, that’s 1,440 locks in use. I placed each
lock on its own cache line. I considered placing the locks
and the doubly-linked list heads into the same cache line,
but concluded that that might cause performance trouble. For
example, on the HTM hardware, the code spins on the lock
before starting the transaction. But that spin could cause a
transaction to fail if the lock were on the same cache line as
the data being modified. Without HTM, spinning on the lock
could interfere with the updates being made to the linked
lists by causing the cache line to bounce around.

For the global data structure, SuperMalloc has a lock for
each bin. Since the code accesses the global data structure
relatively infrequently, the lock is mostly uncontended.

When running on hardware that supports HTM, Su-
perMalloc uses transactions. If the transaction fails enough,
it falls back to locking code using the original lock struc-
tures. To make the HTM transactions interact properly with
the lock-protected transactions, the HTM transaction must
look at the lock state, and verify that it is unlocked. This lock
examination is called subscribing to the lock. One decision
to make is whether to subscribe to the lock early or late in
the transaction. Subscribing late sounds enticing because it
reduces the time during which the lock is contended (when
in fact we might not conflict on the data structure). Subscrib-
ing late can be dangerous, however, since it can be difficult
to prove that your code does not get tricked into commit-
ting [12]. SuperMalloc subscribes to the lock early in the
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transaction for three reasons. (1) I do not feel confident that
I can guarantee that the code avoids all the pitfalls of late
subscription. (2) SuperMalloc’s data structures are closely
related to its locks. It’s unlikely that the lock conflicts but
that the data does not conflict. (3) SuperMalloc’s transac-
tions are all so short that the performance impact is small;
the performance advantage of late lock subscription appears
to be about half a percent for high-threadcount runs of the
malloc-test benchmark. In the future, I hope to show that
late lock subscription is correct for SuperMalloc, since I do
not want to leave half a percent on the table.

In order to make the critical sections short, both for HTM
and locking, SuperMalloc tries to prefetch everything that
will be accessed, then waits for the lock to become free (and
if the lock wasn’t free, it prefetches everything again, and
checks the lock again.) The goal is to make it so that while
the lock is held (or the transaction is running), as few cache
misses as possible are incurred. This prefetching improves
performance by a few percent, as shown below.

9. Performance
We are interested in three aspects of performance: speed,
footprint, and complexity.

Speed: A poor allocator can be slow even on serial appli-
cations, and the situation can get far worse on multithreaded
codes where the allocator can become a serial bottleneck. On
a multicore with a multithreaded workload the speed differ-
ence between the default allocator in Linux [29] and a state-
of-the-art allocator such as JEmalloc [14] can be more than
a factor of 30. If the cost of allocation varies significantly
it can be difficult to meet the soft real-time constraints of a
server. I have seen JEmalloc causing a 3 s pause about once
per day on a database server, which would be too slow for
a social-networking site, for example. (I traced the problem
in JEmalloc to the code inside free() which occasionally
gathers together a large number of unused pages and un-
commits them using madvise(). The delay is not inside
the madvise() call, rather it is in the code that gathers to-
gether the unused pages. But I do not understand why it takes
3 s.) It was this 3 s pause that got me interested in building
SuperMalloc. (I do not yet have any evidence that SuperMal-
loc actually solves the 3 s-pause problem.)

One of the best benchmarks for a multicore allocator is
malloc-test [30]. (Malloc-test results are also reported in
[14], and the cross-test of [27] is essentially the same test.)
The malloc-test benchmark runs K producer threads and K
consumer threads. Each producer thread allocates objects as
fast as possible, and each consumer frees them. Malloc-test
offers one of the most difficult workloads for multithreaded
allocators that employ per-thread caching, since the per-
thread caches can quickly become unbalanced. Malloc-test
is a tough benchmark because per-thread caches often do
not work well. The producer’s caches are always empty, and
the consumer’s caches are always overflowing. I obtained

malloc-test from XMALLOC repository [13]. It turns out
that the malloc-test benchmark is showing its age: it is racy
and exhibits a huge amount of variance even if the alloca-
tor being tested runs infinitely quickly. Malloc-test operates
by creating an array of 4096 pointers which is shared be-
tween a producer and a consumer. The producer repeatedly
looks for an NULL value in the array, an if it finds one, allo-
cates an object and stores it. The consumer repeatedly looks
for a non-NULL value in the array, and if it finds one, frees
it, and sets the slot to NULL. It turns out that for fast al-
locators, the producers and consumers both can spend a lot
of time spinning around looking for interesting slots. I im-
proved malloc-test by having each producer create a batch
of 4096 objects in a structure, which is placed into a queue
protected by a pthread condition variable. If the queue gets
full, the producers wait. Each consumer waits for the queue
to be non-empty, dequeues one of the batches, and frees all
4096 objects. These changes not only made malloc-test run
more evenly, but they also made it run much faster. Malloc-
test was so slow and noisy that I could not tell the difference
between any of the allocators except for DLmalloc. Some-
times benchmarks need work so that they can run fast.

As mentioned above, the cost of early lock subscrip-
tion inside transactions is about half a percent for a high-
threadcount run of our improved implementation of malloc-
test; that is almost unmeasurable, since the standard devia-
tion of the runtime is also about half a percent. This situ-
ation illustrates the importance of reducing the variation in
runtime for benchmarks. With the original version of malloc-
test the variance is more than ten percent, and we would be
unable to see the advantage of late lock subscription.

Figure 6 compares the performance of SuperMalloc
against DLmalloc, Hoard, and JEmalloc on the malloc-test
benchmark running on a machine with transactional mem-
ory. This is a 4-core single-socket Haswell server with 8
hardware threads. The x axis is the number of producer
threads, so when there are 8 producer threads, there are also
8 consumer threads and the 8 hardware threads are oversub-
scribed by a factor of two. DLmalloc is so slow compared
to the others that it is hard to distinguish from zero—it actu-
ally slows down as the number of threads increases. Hoard
holds up pretty well, especially considering its age, but starts
falling behind JEmalloc when there is one pthread per hard-
ware thread. TBBmalloc starts out scaling better than Hoard
or JEmalloc, but ends up at about the same place as JEmal-
loc. SuperMalloc starts out faster than the others on one pro-
ducer thread—simpler data structures run faster—and scales
nearly linearly up to four producer threads, which is eight
total threads, and the hardware runs out of parallelism.

This is one workload for which Intel’s Hyperthreading
technology essentially gives perfect speedup, because the
code is not bound by the arithmetic performance of the
CPU nor by the memory subsystem. Instead the performance
appears to be limited by the rate at which the processor
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Figure 6. A comparison of SuperMalloc, DLmalloc, Hoard,
JEmalloc, and TBBmalloc running malloc-test on a 4-core
(1 socket + hyperthreading) 3.4GHz i7-4770 (Haswell-DT)
The lines are the average of 8 trials, and the error bars show
the fastest and slow trial.
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Figure 7. A comparison of SuperMalloc, DLmalloc, Hoard,
and JEmalloc running malloc-test on a 16-core (2 sockets +
hyperthreading) 2.4GHz E5-2665 (Sandy Bridge). The lines
are the average of 8 trials, and the error bars show the fastest
and slow trial.

issues memory operations that miss cache. Hyperthreading
doubles that rate.

I measured SuperMalloc with the per-transaction prefetch-
ing disabled, and can see that prefetching the data needed by
a transaction before the transaction starts is worth a few per-
cent.

It turns out that the transactions fail, executing the lock-
based fallback code about 0.03% of the time.

I originally designed the SuperMalloc for machines with
HTM hardware. I wanted to make it highly likely that the
transactions would commit. How well does the code run us-
ing pthread mutexes? It turns out that Glibc pthread mutexes
are using hardware transactional memory on our machine.
The performance with pthread mutexes is slightly slower
than running transactional memory, but the slowdown may
not be significant. I tried running the code using pthread mu-
texes on a Sandy Bridge machine which does not have HTM.
Figure 7 shows the results. This machine has 32 hardware
threads, and so SuperMalloc saturates the hardware at about
16 producer threads. It turns out that the same decisions that
make HTM run fast also make lock-based code run fast.

Mean Fastest Slowest Diff
DLmalloc 340.8 ns 277.5 ns 428.8 ns 151.4 ns
Hoard 53.6 ns 41.8 ns 92.9 ns 51.2 ns
JEmalloc 31.1 ns 30.9 ns 31.5 ns 0.6 ns
TBBmalloc 28.7 ns 28.4 ns 29.2 ns 0.8 ns
SuperMalloc 10.6 ns 10.4 ns 10.7 ns 0.4 ns

Figure 8. The speed of the each allocator, measured in time,
for the 8-thread case of Figure 6.

I ran the experiments compiled with gcc 4.8.3 running
on Linux 3.15.7 with glibc 2.18 on Fedora 20. I com-
pared SuperMalloc to Hoard 3.10, jemalloc 3.6.0, and
tbb43_20140724.

Figure 8 explores the variance of the allocators I mea-
sured on the same experiment as for Figure 6. I use the differ-
ence between the slowest run and the fastest run as a measure
of the variance. Not only are the newer allocators faster than
DLmalloc, but their variance is less. In fact, the mean time
to allocate for the others is less than the variance of DLmal-
loc. For JEmalloc, TBBmalloc and SuperMalloc, the worst-
case time to allocate is less than the variance of DLmalloc.
For all three of JEmalloc, TBBmalloc, and SuperMalloc, the
variance is similar, but since SuperMalloc runs about three
times faster, the relative variance is correspondingly three
times less.

The second important benchmark measured by [14] is
Super Smack, which appears to be suffering from code
rot. I cloned https://github.com/winebarrel/
super-smack into https://github.com/kuszmaul/
super-smack and got it working. The performance is
shown in Figure 9. The performance was not as interesting
for these allocators as it was when Evans measured it in
2006 (in which phkmalloc looked quite bad), since all five
allocators are essentially the same speed with a few percent
variance. The memory footprint is interesting: DLmalloc ap-
pears to have use a few percent less memory, and TBBmal-
loc uses a few percent more memory. (TBBmalloc appears
to suffer a memory leak; every time I run the benchmark,
the footprint grows by about a megabyte.) The other allo-
cators were about the same, each showing a few megabytes
variation in the footprint.

I tried running a few of the other benchmarks mentioned
by [14]. Some of the benchmarks are difficult to reproduce,
and like Evans, I concluded that many of these benchmarks
are not very informative. Here I discuss the ghostscript
benchmark, as an example.

gs: The gs benchmark was fairly easy to replicate, at least
in spirit. There is a long history of running Ghostscript: [8]
ran it on an unspecified 126 page manual. [14] ran it on an
unspecified file named “ps3.ps”. So I ran an unspecified file5

and ran it through Ghostscript 9.14 as

5 If you really want to know, I used the 3251-page, 16,819,944-byte [22].
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Max RSS speed (queries per second)
DLmalloc 131M 104K
Hoard 133M 104K
JEmalloc 137M 104K
TBBmalloc 140M 104K
SuperMalloc 135M 103K

$ super-smack -d mysql \
smacks/select-key.smack 50 20000

Figure 9. Performance of various allocators running super-
smack. The smallest footprint of five measurements is
shown, and the fastest of the five measurements is shown.
The Max RSS varies by several percent, but DLmalloc ap-
pears to be consistently a few megabytes smaller than the
other allocators, and TBBmalloc appears to be consistently
larger. The time of the various allocators also varies, and the
differences appear not to be significant.

Time±σ Max RSS
DLmalloc 195.3± 1.0 s 150 MiB
Hoard 212.9± 0.6 s 135 MiB
JEmalloc 207.9± 0.8 s 129 MiB
TBBmalloc 194.5± 1.2 s 158 MiB
SuperMalloc 197.3± 1.4 s 161 MiB

Figure 10. The run time and maximum resident memory
of running Ghostscript on [22]. The run time is the average
over eight runs with the standard deviation shown as a ±.
The maximum resident memory is the maximum over the
four runs.

$ gs -dBATCH -dNODISPLAY manual-325462.pdf

on a 4-core i7-4770 and saw the performance and maxi-
mum resident memory (RSS) shown in Figure 10. GS ap-
parently allocates large objects and runs its own allocator
internally, mostly measuring the behavior of large-object al-
location. The difference between DLmalloc and TBBmal-
loc is small, less than one standard deviation. SuperMal-
loc is slightly slower, and the difference appears to be just
larger than the measurement error. JEmalloc and TBBmal-
loc are significantly slower; it is surprising that memory al-
location can have such a large performance impact, given
that Ghostscript manages its own memory. SuperMalloc is,
by a small margin the most wasteful of space. Interestingly,
JEmalloc and Hoard, which are the slowest, also exhibit the
smallest memory footprint.

Larson: I ran the Larson benchmark [28], which is in-
cluded in the Hoard distribution. The Larson benchmark
simulates a server in which each thread allocates objects,
keeps some of them, eventually freeing them, and passes
some objects to other threads where they will be freed. I
ran

Mean Time/op σ Max RSS
DLmalloc 1.72 µs 50 µs 6.6 MiB
Hoard 1.57 µs 38 µs 7.0 MiB
JEmalloc 1.47 µs 40 µs 8.7 MiB
TBBmalloc 1.52 µs 42 µs 9.9 MiB
SuperMalloc 1.42 µs 39 µs 7.3 MiB

Figure 11. The performance of the Larson benchmark. The
time per operation is the mean over four runs, with the stan-
dard deviation. The maximum resident memory is shown.
The malloc standard deviation is the variation among calls
to malloc().

./larson 10 7 500 1000 10000 1 8

on a 4-core i7-4770 and saw the performance shown in Fig-
ure 11. Instead of reporting throughput (which is operations
per second), I report time per operation, so that we can more
easily compare averages and standard deviations. I also re-
port standard deviation of the time to call malloc(), and
observe that the standard deviation is much larger than the
mean. This means there are some very slow allocations (the
slowest allocations we measured took 81 ms, and it wasn’t
clear that any of the allocators has any particular advantage
on this metric). I was motivated by the desire to reduce the
slowest allocations, but it looks like I’ll have to embark on a
study of much longer-running jobs to determine whether I’ve
made progress. SuperMalloc was fastest by a small margin.
This margin is much less than a standard deviation, but it
appears to be repeatable.

SuperServer: I wrote another server benchmark, inspired
by Larson, in which the object sizes are distributed over
a wide range of sizes. For each allocation, conceptually
flips coin several times and counts how many tails in a row
came up, calling that number k. So k = 1 is chosen with
probability 1/2, and k = 2 is chosen with probability 1/4,
and so forth with k = m chosen with probability 1/2m.
(To avoid giving SuperMalloc an unfair advantage for small
objects, which SuperMalloc aligns less rigorously than do
the other allocators, I set k to a minimum value of 4.) Having
picked k, the benchmark picks a random number chosen
uniformly from the range 2k (inclusive) to 2k+1 (exclusive).
Each object’s expected lifetime is proportional to its size.
The object will, at the end of its life, be freed by a randomly
chosen other thread. (This benchmark can be found in the
SuperMalloc distribution.)

Figure 12 shows the results of this SuperServer bench-
mark on the five allocators tested. The fastest allocators are
Hoard and TBBmalloc, with JEmalloc running close behind,
followed by SuperMalloc and DLmalloc. SuperMalloc has
the smallest footprint by a significant margin, with Hoard
and DLmalloc off by a factor of two. TBBmalloc and DL-
malloc both have an occasionally slow allocation that takes
more than a millisecond, whereas the others keep the slow-
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User System Elapsed Max RSS Slowest Allocation Slowest Free
DLmalloc 38.43 s 4.15 s 13.01 s 1833 MiB 2.534 ms 0.007 ms
Hoard 36.24 s 4.95 s 11.68 s 1853 MiB 0.534 ms 0.045 ms
JEmalloc 37.36 s 4.15 s 11.95 s 1437 MiB 0.546 ms 0.009 ms
TBBmalloc 36.45 s 4.62 s 11.52 s 1525 MiB 1.149 ms 0.025 ms
SuperMalloc 41.81 s 0.95 s 12.81 s 941 MiB 0.532 ms 0.040 ms

Figure 12. The performance of the SuperServer benchmark running on the same 4-core Haswell as in Figure 6. The numbers
present the data from the run, of five runs, with the fastest elapsed time.

est allocation down to about half a millisecond. All of the
allocators are pretty fast at calling free().

Footprint: The memory footprint of an application, the
amount of physical memory that the application consumes
while running, can also vary by more than an order of mag-
nitude — even a factor of two can be too much on something
like a database server where memory is used as a cache for
disk, and an increased footprint results in either a reduced
effective cache size or excessive I/O’s due to paging. I devel-
oped a benchmark based on the idea of [40], which operates
by Thread 0 allocating data and giving it to Thread 1 which
frees the data. Thread 1 then allocates data and gives it to
Thread 2, which frees the data. Thread 2 then allocates and
gives to Thread 3. I configured the Vyukov benchmark to
allocate 50,000 random objects per thread, each object cho-
sen to be a random size less than 4 KiB, and 200 threads.
The application thus never asked for more than 100 MiB
at a time. The results are shown in Figure 13. Interestingly,
DLmalloc and TBBmalloc both blew up memory substan-
tially, TBBmalloc nearly crashing our benchmark machine
in the process. DLmalloc used 2.3 GiB of RSS, and TBB-
malloc used 4.1 GiB. Also interesting is that JEmalloc used
a great deal of system time, apparently aggressively calling
madvise() to uncommit memory.

Complexity: A simple memory allocator can operate us-
ing only a few hundred lines of code [24]. Since allocator
performance is so important, however, most allocators have
been tuned to run faster at the cost of increased complexity.
The code sizes of Figure 1 show that SuperMalloc is smaller,
but where does the code complexity come from in these al-
locators?

Figure 14 shows the largest modules in SuperMalloc. The
biggest module is for managing the cache. The interface to
make the standard POSIX calls is second biggest (including
functions such as reallocation, and testing). The code for
actually performing allocation in the three size classes (small
objects, medium/large objects, and huge objects) together is
just a little larger than the cache management code. The code
for invoking locks or hardware transactional memory, and
the metaprogram that computes the bin sizes and sets up all
the constants are each also about 350 lines of code. The code
for interfacing to mmap to get chunk-aligned memory is 123
lines.

User System Elapsed MaxRSS
DLmalloc 15.5 s 5.8 s 26.5 s 2375 MiB
Hoard 14.7 s 0.3 s 20.1 s 284 MiB
JEmalloc 16.2 s 10.3 s 30.6 s 228 MiB
TBBmalloc 17.3 s 5.3 s 111.3 s 4214 MiB
SuperMalloc 16.0 s 0.2 s 21.3 s 219 MiB

Figure 13. The performance of the Vyukov benchmark,
showing measurements of user time, system time, elapsed
time, and max RSS.

Module Characters LoC
mmap-interface 5,066 123
huge objects 7,312 189
medium & large objects 10,203 302
metaprogram 14,791 332
atomicity and locks 9,296 357
small objects 17,096 461
Front end (API) 17,256 536
Cache management 25,340 841

Figure 14. The sizes of the significant modules of Su-
perMalloc, sorted by size.

For JEmalloc, the biggest module manages their “arenas”
at 2,577 LoC, which implements the meat of their code, basi-
cally implementing the functionality of our objects modules
and the cache management (which for us adds up to 1,793
LoC). One significant module in JEmalloc, in terms of lines
of code, manages the tuning parameters (giving the user con-
trol, for example, of the number of arenas and providing ac-
cess to various counters). Although that code has many lines
of code, it is not complex. It’s just long because there are
many tuning parameters. I do not want tuning parameters in
SuperMalloc, preferring instead that the code work well in
all cases. It may turn out that our determination to avoid tun-
ing parameters will fade away when faced with the demands
of production — we should chalk up this part of JEmalloc’s
complexity to the fact that it’s production-quality code.

Hoard contains a huge number of modules, each of which
is only a few hundred lines of code, which can be used to
build good special-purpose and general-purpose allocators
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[2]. SuperMalloc isn’t trying to enable to construction of
special-purpose allocators, so our code is smaller.

10. An Operating-System Wish List
There are two features that Linux does not provide which
are provided by some other operating systems: a cheaper
way to uncommit memory, and a hook to reduce the odds
that a thread is preempted while holding a lock. A third
desirable feature, subscribable mutexes, does not appear in
any operating system, as far as I know.

Cheap uncommit: The first problem is to uncommit
memory cheaply. Linux provides a function

madvise(ptr, len, MADV_DONTNEED)

which informs the operating system that the len bytes of
memory starting at address ptr are no longer needed. For
anonymously mapped memory (the kind that malloc()
uses), this removes the page from the page table, freeing
the physical page. The next time the process touches the
page it will cause another page fault, at which point the
operating system will allocate and zero-fill a physical page.
That is a fairly expensive operation — it takes 1800 ns to
call madvise(MADV_DONTNEED) to uncommit a page,
whereas if the page is already uncommited it costs only
240 ns to make the same system call.

One potential alternative is to use

madvise(ptr, len, MADV_FREE),

which is provided by FreeBSD and Solaris. The semantics
of this call is to give the kernel freedom to uncommit the
page the way MADV_DONTNEED does at any time until the
process writes the page again.6

The kernel also has the freedom not to touch the page, so
that the data could still be the same data. Since the kernel is
in a position to understand memory pressure as well as the
overall system load, it can decide when and whether to spend
the CPU cycles to reclaim memory.

Evans notes [15]

MADV_FREE is way nicer than MADV_DONTNEED
in the context of malloc. JEmalloc has a really dis-
couraging amount of complexity that is directly a re-
sult of working around the performance overhead of
MADV_DONTNEED.

I agree with Evans’ sentiments, although the SuperMal-
loc caches reduce the impact of the madvise() calls.
Although SuperMalloc would not get much simpler with
MADV_FREE, it would speed up and exhibit less perfor-
mance variance.

An alternative approach would be for the kernel to deliver
an event to a process indicating that it should use less mem-

6 Evans notes [16] that the page-table bit that tracks whether a page is
reclaimable gets cleared only during a write, whereas the BSD and Solaris
manual pages refer to “the next time the page is referenced”. This subtle
difference can result in difficult-to-debug application errors.

ory. The allocator generally has a big list of empty pages
lying around that it could quickly return to the kernel. Both
CRAMM [41] and Bookmarking Garbage Collection [20]
discussed a modified Linux kernel that can indicate memory
pressure or that a page is being scheduled for eviction, which
can improve the performance garbage-collected systems un-
der memory pressure.

Lock-aware scheduling: The second problem shows up
when running in locking mode (that is, without transactional
memory). Sometimes while a lock is held by a thread, the
kernel preempts the thread and schedules something else.
Since the thread holds a lock, any other threads that try
to acquire that lock suspend too, which can lead to lock
convoying and other performance problems.

Solaris provides one way to fix this using the schedctl()
system call, which tells the kernel not to, if possible, preempt
a thread for a little while[9]. The mechanism includes two
steps: (1) the thread says it is about to enter a critical section,
and (2) the thread indicates that it has left the critical section.
Step (1) is accomplished by setting a bit in a thread-specific
structure. Meanwhile the kernel, if it wanted to preempt the
thread, sets a bit in the structure. Step (2) is accomplished
by checking to see if the “wanted-to-preempt” bit is set, and
if so, politely yielding. The kernel must take some care to
downgrade threads that abuse the mechanism.

The Linux maintainers seem skeptical of this feature. For
example, see [3], which proposed the patch and claimed that
it improves TPC-C performance by 3%–5%, but the ker-
nel maintainers dismissed as “a feature for a real-time ker-
nel” and suggested a voluntary preemption model instead,
and noted that they were “skeptical about the whole idea”.
One proposed [35, 36] that a user-space mechanism to set
the priority of a thread would solve the problem. As an
implementer of malloc(), I do not see how it would —
malloc() is in a library, and I do not know what, if any,
thread priority schemes the application may be using.

I would like to see a hook in Linux to avoid preempting
threads that are briefly holding a lock.

Subscribable mutexes: When running with HTM, Su-
perMalloc waits until the lock used for the fallback path is
not held, then subscribes to the lock. It is not difficult to sub-
scribe to the pthread mutex lock in Linux, if you are willing
to violate the POSIX abstraction. There is a single field in
the mutex object that indicates whether the lock is held. It
would better if the mutex provided a way to subscribe to the
lock abstractly.

A more difficult problem is what the code should do when
waiting for a mutex to become free. We do not want to spin
indefinitely, but there is no way to wait ask the operating
system to wake us up when the mutex becomes unlocked,
except to lock the mutex. What we need is a way to wait for
the mutex to become free without locking the mutex.
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11. Conclusion
SuperMalloc compares well to the other scalable allocators.
Hoard and JEmalloc do pretty well under all loads, whether
you measure time, variance, or maximum RSS. Under dif-
ficult high-contention workloads or workloads in which the
objects vary in size, SuperMalloc appears to scale better, use
less physical memory, all while using less code.

SuperMalloc is available from https://github.
com/kuszmaul/SuperMalloc, licensed under either
the Apache 2.0 or GPLv3 license.
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