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Abstract: The SECD machine approach to providing an operational semantics for call-

by-value applicative languages is well established in the literature. Our goal is to provide 

a similar operational semantics for a call by name applicative language called PCF. The 

definition of PCF available in the literature is given by another operational semantics, and 

we show that our SECD operational semantics agree with the given operational semantics. 

We actually define two different SECD machines for PCF and compare their merits. 



Introduction 

The language PCF is defined in iP1o771 and an operational semantics is given. We will 

review those semantics later in the paper. One important feature of the semantics of PCF 

is that PCF has call by value semantics. This means that the argument to a function is not 

evaluated unless that argument is actually used by the function. Note that since PCF is an 

purely functional applicative language, the semantics do not specify exactly when something 

is evaluated, but they can specify whether something is evaluated. In particular, if some 

interpreter for PCF could prove that a particular function actually used its argument, that 

interpreter could evaluate the argument. to the function before interpreting the body of the 

function. Correspondingly, if the interpreter could prove that the evaluation of the argument 

to a function was always well defined (i.e. the evaluation terminated), then the interpretor 

could arrange to evaluate the argument before looking at the body of the function, and the 

semantics would be preserved. Call by value semantics merely requires that if an argument 

to a function is never used, and the evaluation of the argument is not well defined, then the 

interpretor must not get stuck trying to evaluate the argument. 

One approach to defining the operational semantics of a programming language is called 

the SECD machine. A SECD machine is an automaton which interprets a language. (The 

acronym stands for the initials of the register names in the automaton, and the name survives 

for the same sort of reasons that the names CAR and CDR survive in LISP.) The "original" 

SECD machine given in ILan631 is a machine to interpret a language with call by value 

semantics. For such a language, the arguments to functions are always evaluated. This means 

that even if the argument is never used, the result of evaluating the application of a function 

to a "runaway" argument is undefined. Many programming languages in use today use call 

by value. We will show a SECD machine for PCF, which means that we will have to modify 

the SECD machine idea to implement call by name instead of call by value. 

Another approach to defining an operational semantics is to provide a set of rewrite rules 

for the language. The rewrite rules show how to transform a given expression into some other 
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expression which is hopefully closer to the final answer. In particular after enough rewrites, 

we hope that the expression has been translated into a numeral which we read as an integer. 

Much of grade school algebra consists of these sorts of rewrite rules. An example of such a 

rewrite rule for grade school algebra is: 

(ki + k) —0 kJ+, 

where ki is the numeral which represents the integer i. 

The definition of PCF which can be found in (P1o771 has an operational semantics based 

on rewrite rules. The particular rewrite rules given in 1131o771 were shown to have the property 

that at most one of the rewrite rules can be applied at any time. This means that the "rewrite 

operator" (which we write as pcf) is a mathematical partial function from expressions in 

PCF to expressions in PCF. (Some expressions in PCF can not be rewritten as anything 

under those rewrite rules in which case we think of the computation as having completed.) 

The definition of EVAL on an expression is to apply the —*pcf  operator as many times as 

possible until the expression can not be rewritten any more. For some expressions, the rewrites 

go on forever, and EVAL is undefined on such expressions. 

In this paper, we first review the definition of PCF. We will show two SECD machines 

for evaluating PCF expressions. The first SECD machine will look a lot like the rewrite rules 

for PCF and will use fairly complex primitive operations (in particular substitution of an 

expression for a variable in another expression is a primitive for our first SECD machine). 

We will then show a second SECD machine which uses primitive operations which are less 

complex. The tradeoff is that it is a little harder to show that the second SECD machine 

agrees with the rewrite rules for PCF. We will also compare the relative performance of the 

two machines when implemented in a typical programming language such as LISP. 
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The Programming Language, PCF 

In this paper, we assume that the reader is familiar with the first few pages of [P1o771, (in 

particular the definition of PCF). We will ignore type information in this paper, since if one is 

given a PCF program without type annotations, and if there is some type annotation for the 

PCF program, then that type annotation is unique. We will assume that all the programs we 

deal with are in fact type correct in the sense that there is a "typing" for the program, and 

that the reader understands how to give an arbitrary program type information by a type 

inference algorithm. 

As a concession to making this paper self contained, we include a brief restatement of the 

constants and the rewrite rules for PCF. 

We consider the language LA for arithmetic with the following constants: 

it: the true boolean, 

if: the false boolean, 

D: the "conditional' or "IF-THEN-ELSE" operator, 

Y: the fixed point operator, 

k„ (for n E N): the nth numeral (i.e. the numeral which denotes integer n), 

(+1): the integer increment operator, 

(-1): the integer decrement operator, and 

Z: the zero test (which translates integers into booleans). 

The operational semantics of PCF is given by a partial function, EVAL, which gives 

constants from programs. The EVAL function is defined by means of an immediate reduction 

relation (which we are calling a rewrite rule), —*pd. between terms by: 

EVAL(M) = C if M—+pcf‘e, 
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where M is a program and c is a constant. 

The definition of ---,pcf is given by some rules: 

(I1): (D tt M N) —, pcf  M, (D ff M N) —, pc f N 

(I2): (YM) pcf  (M(YM)), 

(I3): ((AceM)N) —, pcf  IN ledM , 

(14): ((+1)km ) —. pc f km+i (for m 0), 

(15): ((-1)km+1) --4pcf km  (for m 0), 

(I6): 	(Z1f0) —+pcf tt, (Zicyn+i) 

M —4pcf  

(MN) —, pcf  (M'N) 

M—  pcf  (II2): 
(D M) —, pcf  (D M') 

N —,Pcf  N' 
(I13):   (if M is (+1), (-1), or Z). 

(MN) pd. (MN') 

The relation —,pcf  is actually a partial function, which is undefined on constants and so 

EVAL is well defined as a partial function. (Note that EVAL is undefined on those expressions 

which "run forever".) 

Note that rule 13 uses the notation EN/]M. This means to substitute N for all free 

occurences of a in the expression M. To do that may require changing the bound variables 

of M so that no free variables of M become bound. We could define [NI odM by a recursive 

definition as follows: 

IN/alc = c for c a constant, 

IN/aj(MIM2) = (IN/a1Mi IN/a1M2), 

IN/al(0M) = (A/IN/al(Vi/AM)) where / is a variable which does 

not occur in M or N. 

We can make this definition be well defined by always choosing to be the first variable (in 

the canonical enumeration of all variables) which does not occur in either M or N. If we 
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were writing a computer program to implement this substitution operator we might be more 

careful and not change things unless they actually had to be changed. For example if 0 is not 

free in N then we could have defined IN leel(AfiM) to be ()t0[Aricx1M). 

Our First SECD Machine for PCF 

The problem with the rewrite rules given by —Ppcf  is that they do not give a good idea about 

how an automaton could go about reducing a PCF program to a constant. The goal of a 

SECD machine is to change the rewrite rules so that each state change is "local". Our first 

SECD machine comes closer to meeting this goal by getting rid of the recursive definitions 

that are used in the definition of 	but it still uses the variable substition operator 

as a primitive operation. As we saw in the last section the variable substition operator is 

itself fairly complex. One could imagine building a SECD-like machine just to do variable 

substitution, and merging it into our SECD machine. Later (in the next section), we will 

define a different SECD machine which does not do variable substitution in the same way at 

all. 

Our first SECD machine uses two registers to hold its state: The V (value) register, 

which holds an expression which is being evaluated, and the D (dump) register, which holds 

information about how to use that value when there are no more "rewrites" to apply to it. 

The transformations of our SECD machine will correspond closely to the rewrite rules given 

above. To make this work, we have chosen to make substitution of an expression for a variable 

in another expression a primitive operation for our SECD machine. 

The D register on our machine can be thought of as a stack. It is possible to "push" 

things onto the D register and to look at the top few things on the D register. In particular, 

when rule Ill, 112, or 113, is applicable as a rewrite rule to the expression in the V register, 

the rewrite rule calls for rewriting a subexpression and replacing it in the original expression. 

That is too much for our little machine to do all in one step, so the machine pushes enough 

information onto the D register in order to get back to its original state. 
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To get an idea of what we need to remember on the D stack, consider each rule 111, 112, 

and 113: 

Thus for rule Ill, which states that if M —,pcf M' then (MN) pcf(MIN),  we need to 

save N plus the fact that we were on rule Ill, and then put M onto the V register for the 

machine to evaluate. We save the fact that we were on rule Ill by pushing a special pair 

(arg, N) onto the D stack. If the machine gets stuck evaluating something, we look on the D 

register, and if we see (arg, M) as the top element of the D stack, then we can try to apply 

the V value to the M value. We will be more specific on how to perform this application 

later. We can think of rule 111 as corresponding to pushing an unevaluated argument onto 

the D stack. 

For rule 112, which states that if M„ pcfM(')  then (Du  Mo ) —.pcf  (cr, M„ we merely 

need to remember that we were on rule 112, and put M„ on the V register. We do this by 

pushing a special token, if, onto the D stack. If we get stuck evaluating V and notice if on 

top of the D stack, then we check to make sure that V is tt or if,  and that there are enough 

"arguments" on the D stack to try to apply rule I1. 

For rule 113, which states that if N 	N' and M is +1, —1, or Z, then (MN) 	(M N'), 

then we need to remember M, and the fact that we are working on rule 113 onto the stack. 

We do this by pushing the pair (op, M) onto the D stack. 

Now, that is not exactly how our SECD machine works. The actual rules for our SECD 

machine are as follows: 

We write the state of our SECD machine as an ordered pair, (V, D). 

We will write the D stack as a list (a, b, c,d, .), which means that a is on the top of the 

stack, b is the second element of the stack, and so on. We sometimes use a LISP-like "DOT" 

notation for lists, so for example (a, b . c) is the list with first element a, second element b, and 

the "rest" of the stack is c. Another example is that (a, b, . (cd)) is the same as (a, b, c, d). 

Our operational semantics are going to assume that the original program is type correct, 

and we are going to ignore the type checking issues. Most readers should be able to annotate 
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our SECD machine with type information. 

Here is the definition of —4a, which maps SECDa  machine state pairs into state pairs: 

(Il-a) 	(it, (if, (arg, 	(arg, M2) . D')) —0 a  (A I , D'), 

(HA)) (if,  (if, (arg, 	(arg, M2) . rY)) --*a (M2 13`), 

(I2) (Y, ((arg, Al) . D')) 	„, ((M (Y M)), D'), 

(I3) ((AaM), ((arg, N) . D')) —• a  (IN I alM , 

(14) 	(km , ((op, +1) . D')) 	(km+ 1 , D') 	 (for in ? 0), 

(I5) 	 ((€013, — 1) • D')) 	a (km , D') 	 (for m ? 0), 

(I6-a) 	(1c0, ((op, Z) . D')) 	(it, D'), 

(I6-1)) 	(km+ I, ((OP, Z) • D')) —*a  (ff, D') 	 (for M 	0), 

(Ill) 	((MN), D) 	(Ad, ( (arg, N) . D)), 

(II2) (D, ((arg, Ad) . D')) — „ (M , (if. 

(II3) (M, ((arg, N) . D')) — • a  (N, ((op, Al) . D')) 	(if Al is (+1), (-1), or Z). 

We observe that given any state (V, D), there is at most one —.a  rule that applies, so in 

fact the —.a  relation is a partial function for state pairs to state pairs. 

Define the function SECDa  from PCF programs to PCF constants to be 

SECDa(M) = c if (M, 0) 	(c, 0), 

where c is a constant in PCF, and M is a program in PCF (and of course 0 is the empty 

list). 

Here —47i  is the transitive reflexive closure of —4a. For this definition to make sense it is 

necessary that if (M, 	(c, ()) and (M, 0) 	(c', ()) then c and c' are identical, but this 

follows from the easy observation that the —.a  relation is really a function, so (M, ()) must 

be mapped into some well defined sequence of intermediate states by 	and since there is 

no (V, D) such that (c, ()) —.a  (V, E), then (c, 0) is the "end of the line" and it follows that 

C = c'. 

In a sense SECDa  is the function which applies the —.„ rule to an expression and an empty 

D register over and over until it can not any more. Note that for pairs (V, 0) which "run 



forever", the value of SECD„(V) is undefined. 

We need a proof that this two register SECD machine correctly interprets PCF. In par-

ticular we will show that it agrees with the rewrite rules for PCF as stated by the following 

theorem: 

Theorem 1 Given any expression E of ground type, EVAL(E) is well defined if and only if 

SECDAE) is well defined, and if they are well defined, then EVAL(E) = SECD„(E). 

Our proof is by induction on the structure of the expression to be evaluated (i.e. structural 

induction). We prove some property for all the constants in PCF, and then we assume that 

if the property holds for M and N we show that it holds for (M N) and ()ce M). 

Lemma 1 If V ,pcf  V' then for all stack values D, 3n, m, V", D" where n and m are 

non-negative integers, V" is a PCF expression, and D" is a stack value, such that 

	

(V , D) 	(V " , D") , and 

	

(V , D) 	(V " , D") 

Since we are assuming the results of1P1o771, we know that for any PCF expression E 

of ground type, EVAL(E) is a constant (of that ground type) if and only if EVAL(E) is 

well defined. (This follows since if EVAL(E) is well defined and is not a constant then by 

Theorem 3.1 of[Plo771 the semantical meaning of E is not denoted by a constant which means 

that the semantical meaning of E must be 1 but then EVAL(E) is not well defined which is 

a contradiction.) 

This means that Lemma 1 proves Theorem 1 for all E of ground type since if E 	c 

for some constant c (of ground type), then letting V = E, V' = c, and D = 0 (the empty 

list) we have some n, m, V", D" such that 

(E, 0) 	(V", D"), and 

(c, 0) -47,1 (V", 1;'"). 
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But note that (c, ()) does not transform to anything under 	so m must be zero, and 

so we must have that V" = c, and D" = (), so we know that (E, 0) 	(c, . 

Now for the proof of Lemma 1: This proof uses structural induction on V. 

Suppose we have that V --+ pcf  V'. This means that one of the rewrite rules for PCF 

applies. We do a case analysis: Suppose the rewrite rule that transforms V to V' is 

rule 11: Then V is of the form (j UM'  M2 ) or (D tt Mt  M2). 

Suppose V = (D tt M 1  M2): Then since V -- pcf• V' we have that V' = M I . First we 

need to curry the expression so that it makes sense in PCF: 

V = (D tt 	M2) 

— (((D tt)M1)M2) 

Note that for any D we have 

tt)Mi )M2), (((D tt)Mi ), ((arg,M2) . D)) (by SECD,,, rule 111) 

((D tt), ((arg, 	), (arg, M2) . D)) (by SECDa rule I11) 

(D, ((arg, tt), (arg, 	(arg, M2 ) . D)) (by SECD„ rule 111) 

(tt, (if, (arg,Mt), (arg, M2) • D)) (by SECD„ rule 112) 

D) (by SECDa  rule 11-a). 

So letting n = 5, 771 = 0, V"  = V I , D" = D does the job. 

Suppose V = (D if M1  M2 ): This is similar to the previous case except that at the 

last step instead of applying applying rule I1-a, we apply rule I1-b. 

rule 12: Then V = (YM) for some M and V' = (M(Y M)). Note that for any D we have 

((YM),D) 	(Y, ((arg, M) . D)) (by SECD„ rule Ill) 

((M(YM)), D) (by SECD„ rule 112). 

Thus n = 2, in = 0, V" = V', D" = D does the job. 
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rule 13: Then V = ((ActM)N) for some M and N, and V' = IN/a)M. Thus for any D we 

have 

(((AaM)N), D) 	((AaM), ((arg, N) . D)) (by SECD. rule 112) 

((NI ajM , D) (by SECD„ rule 13). 

Thus n = 2, m = 0, V" = V', D" = D does the job. 

rule 14: Then V = (+1)k,„ for some m > 0 and V' = k, +1 . Then for any D we have 

((+1)k,, D) --,a (+1, ((arg, km ) . D)) 

---,a (km, ((op, +1) . D)) (by SECD(, rule 113) 

(krn+1) D) (by SECD„ rule 114). 

Thus n = 3, m = 0, V" = V', D" = D does the job. 

rule 15 or 16: This is similar to rule 14 except that in the last step we apply SECD„ rule 15 

or 16 respectively. 

rule III.: We have V = (MN), M pcfM',  and V' = (M' N). For any D we have 

((MN), D) —,„ (M, ((arg, N) . D)), and 

((M' N), D) ---,a  (M', ((arg, N) . D)). 

. But by inductive hypothesis, since M 	M' we have that there are some m", n", V", D" 

such that 

(M, ((arg, N) . D)) ---t•n"  (V" , D"), and 

(Al', ((arg, N) . D)) 	(V", D"). 

So we have 

((M N), D) 	 (V", D"), and 

((M I  N), D) --q-7411  (V", D"), 

10 



which covers rewrite rule M. 

rule 112: We have V = (D M), 1/1  = (D M') with M —.pcf  M'. For any D we have 

((3 M), D) --+„ (D, ((arg, M) . D)) 

(M (if • D)) (by SECD„ rule 112), and similarly 

((D M'), D) —.a  (D, ((arg, M') . D)) 

(Mi , (if . D)). 

But by inductive hypothesis, since M pcf  M' we have that there are some m", n", V", D" 

such that 

(AI, (if . D)) —01" (V", D"), and 

(Al', (if . D)) —kr:" (V", .D"). 

So we have 

	

M), D) 
	

(V" , D"), and 

	

((p MI)) D) 	1+m"' 
	

(V", D"). 

which covers rewrite rule 112. 

rule 113: We have V = (MN), 	= (M N'), N 	, and M is + 1 , —1, or Z. For any 

D we have 

((M N), D) 	(M , ((arg, N) . D)) 

—.a 	(N, ((op, M) . D)) (by SECD(1  rule 113), and 

((M N'), D) 	a  (M, ((arg, N') . D)) 

—od 	(N', ((op, M) . D)). 

But by inductive hypothesis, since N pcf  N' we have that there are some m", n", V " , D" 

such that 

	

(N, ((op, Al) . D)) 	(V", D"), and 
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(N1  , ((op, Al) . D)) 	(V", D"). 

Thus we have 

((MN), D) --0,2z+n"  (V"7  D"), and 

((M Ns ), D)--*!+ m" (V"7  D"). . 

That covers all the rewrite rules for PCF, thus proving Lemma 1, and thus proving The-

orem 1. 

Thus we know that our SECD„ machine behaves correctly when given expressions of 

ground type. If we wanted to talk about the behavior of our SECD„ machine when given 

expressions of higher type we would want to talk about computational adequacy and full 

abstractness. One approach to making that work is to assign a "semantics" to the state of the 

SECD„ machine: Assign to every pair, (V, D), an expression M according to the following 

recursive definition. The function E(M) is 

= V 

E((V, ((arg, AT), .D'))) = E(((V N), D')) 

E((V, (if . D'))) = E(((p V), D')) 

E((V, ((op, M) .D'))) = EMMV), D')) 

Having done that we observe that —+„ is sound in the sense that it preserves the meaning 

of pairs: I.e. if (V, D) 	a  (V' , D') then A A llE((V, E))1(p) = A AllE((V 1  , E1 ))1(p). (The 

observation that 	is sound is another case analysis.) 

Our Second SECD Machine 

The problem with the rewrite rules given by —.a  is that rule number 13 is not the sort of rule 

that we expect as a primitive operation for a computer. I.e., we would not really expect to see 
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the variable substitution operation [NlalM to be implemented in hardware. We could fix up 

the rewrite rules given by 	to do one step of an implementation of 1.1V1a)M at a time; That 

is not what this section does. This section describes a completely different way of dealing with 

variables. We use environments to implement substitution. Using environments is very much 

in the style of the original SECD machine described in[Lan631, and in the interpreters that 

are used in MIT's course 6.001, so students may be more familiar with this kind of rewrite 

rule than the kind we described in the previous section. 

Our environments are partial functions from variables to pairs of expressions and environ-

ments. I.e. the type of an environment can be thought of as 

ENV ::= VAR ENV. 

That notation does not make sense as a mathematical object, but it will turn out to be ok, 

since we will never have an environment contained in itself. In fact, 

Claim 1 all of the environments that we will use can be built Buil of a finite number of - 7'05821d 

defined by 

1(x' p') 	if y is the same variable as x, 
P"(Y) =  

p(y) 	otherwise, 

is an environment. We denote p" by pl(M,p1 )1x1. 

The reader can check that all of the environments that we use are of this form. 

One implementation of environments that we could use would be a list of pairs of variables 

and pairs of expressions and environments. I.e. an  association list mapping variables to pairs 

of expressions and environments. Thus, pi , the empty environment is represented by the 

empty list O. 
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We can represent environments by finite data structures, since all environments are finite. 

If the list E represents p then we can represent pI(M, p') I xi by the list with first element 

(x, (M, p')) and with the rest of the list equal to E. I.e. we represent pi(M, I)) I xj by the list 

((x, (M, p')) . E). To evaluate p(x), all we need to do is look through the list E representing 

p until we find the first pair (y, (M, p')) in E such that y is the same variable of x. Thus, 

looking things up in an environment, and creating new environments out of old environment 

seem to be "primitive enough" to be part of a SECD machine without our having to work 

too hard to argue that this really is something that corresponds to hardware. 

Our second machine takes triples consisting of expressions (the V register), dumps (the D 

register) and environments (the E register). Our new rewrite rules (which we write as ,b) 

will map from such triples to such triples. The V and D registers will serve approximately 

the same purpose as they did in the SECD„ machine (the D register will have slightly more 

complex things pushed onto it). The E register will contain an environment which describes 

how to interpret the free variables of V. 

Now we define the function SECD6  in terms of 	in the same way we defined SECD„ in 

terms of 	We define 

SECM,(M) = c if (M, (), pi ) 	(c, 

where c is a constant in PCF, M is a program in PCF, 0 is the empty list, and p is an 

environment. 

Now we define the relation of —.1)  from state triples to state triples, where (V, D, E) contains 

the V, D, and E registers respectively: 
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if p(a) is not defined, 

c if c is a constant, 
l

((p(a)) if p(a) is defined, 

(Il-a) 

(Il-b) 

(12) 

(I3-a) 

(tt, (if, (arg, 	(arg, M27 P2) • -01)) P) 	WI) P1) rY) 

(if,  (if, (arg, M1 , Pi), (arg, M2, P2) • D'), P) 	b 	(M2) P2) Di ), 

(Y, ((arg, MI , pi) . D'), p) 	b 	((1 1 (11  M 1)) D' ,p1 ),  

((AaM),((arg,N,p1 ) . D'), p2 ) 	(Al,D', P2[(N , Pi) I al) , 

(I3-b) (a, D, PO) 	—kb (141, D P1) (if P(a) = (V1, Pi)), 

(14)  (km, ((op,  +1) . D'), p) 	(k„,+1, D', p) (for m .? 0), 

(15)  (km+i, ((013, —1) • Dr ), P) 	--°6 	(km, 	1)) (for in 	0), 

(I6-a) ()co, ((op, Z) . D'), 	(ti, D', p), 

(16-13) (km.- 	Z) • Di ), P) 	(if, 	P) (for in? 0), 

(Ill) ((M N), D, p) 	(Al, ((arg, N, p) . D), p), 

(II2)  (D, ((arg, 	pi ) . D'), 	—.1, 	(MI , (if. D'), pi ), 

(II3)  , ((arg, Al1 , Pi) • D'), Po) 	—Pt. 	(Al 1, ((013, Itif) • D'), Pi) (if Al is (+1), (-1), or Z). 

We observe that, similarly to --Pa , the —+1, relation is a partial function from state triples 

to state triples. We can prove that our new three register SECD machine correctly interprets 

PCF programs by a theorem which is very similar to Theorem 1. 

Theorem 2 Given any expression E of ground type, EVAL(E) is well defined if and only if 

SECD1,(E) is well defined, and if they are well defined then EVAL(E) = SECDh(E). 

To prove Theorem 2 we will use the Theorem 1 which gives a relationship between SECD. 

and EVAL. To do this we need a way to think of SECD/, state triples as SECD,, state pairs. 

We do this by means of two functions e and D which are defined as follows: 

Definition 1 The function e maps from pairs of expressions and environments into expres-

sions. We define e recursively as follows: 

e ( 	) = 

e ((c,P)) = 

e (((m N), p)) =((((Al,  p)) ((iv, p))), 
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£(((AaM),p)) = (Aai e((la7a1M,p))) where a' is a variable such that 

p(a') is not defined and a' does 

not appear in M. 

Definition 2 The function D maps from stack values for the SECD“ machine to stack values 

for the SECM, machine. We deifne D recursively as follows: 

D(0) = 0 (the empty stack maps to the empty stack), 

Marg, M , p) . 13)) = ((arg, NAM) . D(D)). 

Then we show the relationship between SECD1, state triples and SECD„ state pairs in the 

following lemma: 

Lemma 2 	1. For every closed expression M (i.e. M has no free variables), and for every 

non-negative integer n, if 

(M, 0, P±) 	(AP , 	P'), 

then there is a non-negative integer m such that 

KM, 0) —7:  

2. For every closed expression M and every integer m, if 

(M, 0) '711  (M", D"), 

then there is an n such that 

(m, 01) -111, (0) DI , /1), 

and M" = e((M', II)) and D"  

The proof for Lemma 2 is postponed for a moment while we use Lemma 2 to prove 

Theorem 2. We first need another lemma which tells us the conditions under which (((M, p)) 

can be a constant: 
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Lemma 3 If e ((Ad, p)) = c for a constant c then (M,O, p) 	(c, ),p') for some p'. 

The reason that Lemma 2 proves Theorem 2 is that if we know that EVAL(M) = c for a 

constant, then we know that SECD„(M) = c. I.e. (M, 0) 	(c, ()) for some m. Thus there 

is an n such that (M, pi) --q; (M', D', p') and e(04-,,p'n= c and D(D) = (). This means 

that D = () since the only stack that D takes to the empty stack is the empty stack. If we 

know that e((m,,ps)) = c, by Lemma 3 we have that (M, pi) 	(c,(),p") for some p", 

in which case SECDb(M) c. 

Proof of Lemma 3: According to Claim 1, the set of all environments that we use has a 

lot of structure. There is a partial ordering on those environments induced by the transitive 

closure of "immediately smaller", where we say that p is "immediately smaller" than p' if for 

some variable a and some expression M, p'(a) = (M, p). Thus p is "smaller" than p' if it 

p is "mentioned" somewhere inside p'. This partial ordering has the property that there are 

no infinite decreasing sequences of environments (pi , 	with pi.i. i  smaller than pi  for all 

i > 1. Thus we can do a proof by induction on environments using this structure. 

Note that if M is of the form (Ni N2 ) or (AaN) then there is no way that £ ((M, p)) could 

be equal to c. Thus we can assume that M is either a constant or a variable. If M is a 

constant c then (((M, p)) = c so we have (M, 0,p) --q), (c,(), p) so the lemma is true. We will 

assume from here that M is a variable. We know that p(M) must be well defined, or else we 

would have e (114, p) = M which is not a constant. Thus p(M) = (M' , p') where p' is smaller 

than p. But 

e((m,p))= e(p(m)) = (((w ,p')) = c, 

and so by inductive hypothesis, 

for some p". But note that 



so we have 

	

(m, 0, P) 	(c, 0, P") 

for some p", which proves Lemma 3. 

To prove Lemma 2 we need a lemma to tell us something about how £ and D interacts 

with 	and a lemma that tells us how e interacts with variable substitution in expressions 

and environments. 

Lemma 4 Given expressions N and N', and a variable a, and and environments p and p', 

and a variable a' not defined by p or p' and not appearing in N or N', we have 

e((N, pl(N` ps)10,1)) = '(( NP , p1)) I ale ((fa' I alN P)). 

Proof of Lemma 4: This proof is by structural induction on N: 

• The first base case is for when N is a constant. In this case e ((c, p[(111' , pi) I al)) = c and 

It ((N',  pi)) 1 ale ((fa' I «lc, p)) = le ((N' , p'))/ 	((c, p)) 

= [(((N',ps))1alc 

= C. 

• Another base case is when N is the variable a. In this case 

le ((lv , 4)1 ale (([a' 1 	p)) = le ((lv , p'))/a'  ((a' p)) 

	

= 	EI((N',"))/alai  (since p(a1 ) is undefined), 

	

= 	e ((Iv , pi)) 

	

= 	(a , pl(N1  p1)1 al). 

• Another base case is when N = 0 is a different variable from a and p(0) is defined. We 

have 

le ((N', p'))/aile((laValfi, p)) = le ((N' 4)1 aile((fi p)) 
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= 

= 	e (p()) (since a' is new), 

= e(P,P1(N1,P1)Icti). 

• The last base case is when N = 13 a different variable from a and p(0) is not defined. 

We have 

le ((N' pi)) I ale ((la' I al19,10)) = [(((N' , p'))I 	((fi, p)) 

= 	Et ((N' pi))1,1110 

= fi 

• The first inductive case is when N = (M1 , M2 ): In this case we have (using (...) to 

parenthesize) 

((((N', *2 ct((MIM2), P))) = le ((N' ,"))10,11(e (Was I salmi la' I alm2), p))) 

(((((N',p5) I atife 	aim p))1 

It ((N P')) I 	e ((ia7 alM2, P) )}) 

(e((1idi,p[e((N',d))1a11)) 

((m2, pie ((N' ,p1))14))) 

(by inductive hypothesis) 

= 	e(((m1m2), pie ((N', Pi )) I al* 

• The next inductive case is when N is of the form AaM. We have 

1(((N',pg))1,1'lfe Noe' 1 al(Aam), p))} = fe ((N' , p'))10,11{e(q)tam), p))) 

= 	le (OP, P1)) ctil(Act" e (((a" alM,P))) 

= (Aa'le((ke/a1M,p))) (since a' is new) 
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= 	MAcyM), p)) (clef'n of e) 

= 

• The last inductive case is when N is of the form Ai3M. (I.e. the variable /3 is not the 

same as the variable a.) In this case we have 

[(((N', PI )) I a'lle ((fal / '21(43  M), 

which finishes the case analysis. 

Lemma 5 If M is a closed term and  

= 	((N' P1))/ aii{e(((APIckYalM),P))} 

= 	((N` P1 ))1ai i{e (Pfirai  alM), 

= 	le ((N' P')) I cli l(A131  e (([137 Ina' I a]M 0)) 

= 	fe ((N' P1 ))14(A81  e ((laY a11151/ PIM P))) 

= 	(Afi"le((N',d))10ell{e((laVallell9IM, PM) 

= (Atre((1/67betalM,PRN',P')/a1))) 

= 	MAI3  M), PI(N% P1 )1(11)) 

(Al P 	 131' 

then e ((M , p')) is closed and if D' = (d 1 , d2 , 	, dk) (i.e. D' has k elements in it) then 

(D') = (el, • • • ek) for some ei , 	, ek and 

• if di  is of the form (arg, M, pi ) then e 1  = (arg, (((Me , po)) is closed, 

• if di is of the form (op, M) or if then ei  = di . 

Proof of Lemma 5: The interesting part of this proof is that ((M', p') is closed and that 

for the c/,'s of the form (arg, M,, p2 ) that e ((Mi, pi)) is closed, since the rest follows directly 

from the definition of e and P. We prove the interesting part by induction on n and leave 

the rest of the proof to the reader. 
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• For n = 0, Lemma 5 is just the statement that if M is closed then ((M, pl)) is closed, 

since D' = 0. But e((M,p1 )) is closed since the only thing that E does when its 

environment argument is pi is rename bound variables. 

• Forn > 0, we assume that Lemma 5 is true for n — 1, i.e. when we have 

(Al,0, )0 ) —q; (Al',,  )9') 

we know that e((mi, p')) is closed and that the entries of D (D') which are of the form 

(arg, Ali) have Mi  closed. There are two cases. If (M', D', p') does not transform to 

anything under 	then we are done. Otherwise we have 

ow D I dr )  __,10 ow 	pit )  

for some M", D", and p". We do a case analysis on which rule it was that made this 

transition happen. 

— Most of the cases are fairly simple. We do the example of when rule Il-a was the 

one that made the nth transformation happen. In this case we have 

(Al', D', p') = (ti, (if, (arg, Al1 , Pi), (arg, M2) P2) • D'''), 

We know that e((m1,P1)) closed and the entries of D (Dil)'s which are of the form 

(arg, N,) all have closed Ni by inductive hypothesis. But. in this case 

(M 1  , 	, P') 	= 
	

(tt, (if, (arg, Mi , pi), (arg, M2, p2) . D'"), p') 

(M1, Du  P1) 

which shows that rule Il-a of —+1, preserves the properties of Lemma 5. 

— The one other case that calls for proof is rule IS-a. In this case we have 

	

PaM1),((arg,M2,P2) • Di),P.1) -4 1) (A11) 	I(M2,P2)/a]). 

But by Lemma 4 we have 

e((mi,piRm2,p2)10,D)=1“(m2,povaleNsavaimi, Pi)) 
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but 

e(((AaMi),P1)) = (A 1t e((fal/a1M, P2))) 

is closed by inductive hypothesis, so (Nal alM, p2)) has no free variables except 

for possibly a', and we know by inductive hypothesis that e ((N1 , pi )) is closed, 

so if we replace all free occurences of a' in £ ((la' 1 celM, p2)) by ((Ni , pi)) then 

we get a closed term and we conclude that rule I3-a preserves the properties of 

Lemma 5. 

Thus proving Lemma 5. 

Now we prove Lemma 2 using Lemma 4 and Lemma 5. This proof is by induction: If we 

have 

(Al,, P.1.) '7, (Al',P') 

and by induction 

	

Km , 0) 	((((&f', 	D (DM 

then we consider the next transformation under 

If there is no such transformation, then we argue that there is no next transformation of 

—Pi, by looking at the the expressions which could end up not being transformed and how they 

are acted on by £. Since there is no next transformation of 	we must have ((MI , p1 )) = c, 

a constant (by Theorem 1). But by Lemma 3 that means that (M', D', p') must go to (c, (), p") 

for some p", but since there is no next transformation, we must have SECD1,(M) = c which 

is what we wanted. 

If there is a next transformation, then we do a case analysis on which rule is used to make 

the transformation 

	

(M', 	'1, (Al" D" P"). 

And then we show that there is some Mt  < 1 such that 

(e ((Al',p')), P(E)')) 	(e ((M" P")), ) (D"D • 
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If we show that such m' exists and is less than or equal to one, then part 2 of Lemma 2 is 

true since there will be no way to "skip" rn's without "skipping" n's. 

Our case analysis of the rule which is used is as follows: 

rule (11-a) We have 

- (u, (if, (arg, 	(arg, M2, P2) • DI ), P) 

- (Mi , Di , pi), and 

(M, 	- 	(ti, (if, (arg, e ( (MI , PO)), (arg, (((M2, p2))) • D (V))) 

- t 
	((((m1, PO), 49(V)). 

So the number of extra steps is exactly one and things match up. 

Any other rule except for ill, 13-a, or 13-b: These are very similar to the case for rule 

I1-a, and are left to the reader. 

rule ill: In this case we have 

	

(M '0, P 	((M M2), D, 

(AI 	((arg, M2, p) . D) , p) , and 

(M, 0) a (e(((mim2),P)),D(D)) 

((e((mi,p)) e((m2,p))),D(D)) 

—„ 	(e(mi,p), ((arg, ((m2, p))) • D (D)))- 

So the number of steps is exactly one to match things up. 

rule 13-a: We have 

(M, (),P1.) 	((AceMi ), ((arg, M2, P2) • I)), PI) 

P21(M2, P2)/a1), and 

(e ((()aMi),P1)),((arg, (((M2, PO)) • ND))) 
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((Ace'e(([atia]Mi,P1))), Carg, e ((M2 , p2 ))) . D(D))) 

(le((m2,P2))/ale((ta7aA, P1)), D(D)) 

	

= 	(e ((M2, P201.1, PO/ al)), D(D)) (by Lemma 4). 

So things match up after one step. 

rule 13-1): We have 

	

(M,O)P-L) 	(a, P) 

(M2, D, P2) (where p(a) = (M2, P2)), and 

( 4 , 0) -.fa" (I ((a, P)), D(D)) 

So everything matches up after no more transformations of —*a. I.e. there is an 

transformation which is just "part of" an —4„ transformation. Thus we have Lemma 2. 

Conclusion 

We have shown two SECD style machines for interpreting PCF. The first machine, SECD,„ 

is in some sense closer to the original pcf rewrite rules and we proved that SECDAM) 

EVAL(M). The second machine, SECD,, is in some sense more the sort of thing we expect 

from a SECD machine, and we proved that SECDb(M) = SECD„(M). Readers who are 

familiar with the SECD machines in the litarture should feel more familiar with the second 

SECD machine than with the first since most of th SECD machines in the literature use 

environments in a way similar to the way we use environments. As a last note, we have 

implemented both of these SECD machines in Common Lisp, and the SECD, , machine is 

orders of magnitude better (in terms of speed and the amount of consing) than the SECD„ 

machine in our implementation. We believe that this reflects something fundamental about 

the different machines rather than that we might have done a better job implementing the 
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SECD1, machine than the SECDa  machine. Of course if one were really interested in getting 

even better performance out of a practical implementation of PCF, one might try to do away 

with the variables per se at run time and compile the PCF code into something which can be 

run even faster (e.g. combinator code). 
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