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Abstract: iWarp is Intel's implementation of CMU's WARP (systolic) 
architecture. Apparently, Intel decided to add some architectural 
features to make iWarp into a real computer :-). This paper is a 
summary of the 'First Annual iWarp Forum: A Direct Dialog with 
Technical Developers'. 

Introduction 

The iWarp (which stands for 'integrated Warp' or 'Intel Warp') parallel 
computing system is being developed by Carnegie Mellon Unisversity and 
Intel Corporation. Intel is responsible for implementing hardware and 
CMU is responsible for implementing software. The funding is provided 
by SPAWAR (Space and Naval Warfare Systems Command) through DARPA. 
Apparently the original iWarp contract called for a straightforward 
integration and speedup of the WARP architecture, but Intel has done 
some things, beyond the specifications of the contract, to extend the 
architecture. 

Intel went to great pains to state that this meeting not a product 
announcement. This meeting is a status report. The implementation 
status of the project is that the chip is going to tape-out this week. 

Technical Overview 

The iWarp component is a 600,000 transisistor, 0.9 micron CMOS, custom 
VLSI chip, packaged in a 271 pin PGA. The die size is 551 mils square 
(14.0mm square). The hardware clock is 40Mhz. 

It is expected that the chip can be mil-spec'ed (e.g., it uses the same 
process as the 80386, which is on the list of 'approved' parts for the 
space station - that means that it is pretty rad-hard). 

Everything in the chip is static logic (except for the register read 
lines, which are precharged and then pulled down by the presense of a 
'0'.) 

The local memory bus has 64. bit wide data bus and a 23 bit wide address 
bus. (The bus addresses are to 64-bit values, giving a 67 megabyte 
local address space) 

The local memory is implemented with 25ns SRAM. 

The communications network can do systolic communication with 
arbitrary interconnection patterns, and it is possible to do message 
passing pretty well. All communications is done through registers 
(e.g., to send a word to a reighbor, one writes that word to a 
register). 

The floating point units operate at 10MHZ for 32 bit operations and 
5MHZ for 64 bit operations. 

The iWarp system's performance is about 1 GFLOPS per cubic foot. 

Processor Architecture 

Instruction set: 	(See Figure 1) 
RISC-like instructions (32 bit instructions) 

(running at 20Mhz for integer operations, 10Mhz for single 
precesion floating point, 5Mhz for double precision floating 
point.) 



plus 
Long instruction word (96 bit instructions) capable of 

1 floating point add 
1 floating point multiply 
loop decrement, test, and branch 
and either 

2 memory address calculations (offset+base) 
1 memory read (of a 64 bit value) 
1 (additional) memory read or write (of a 64 bit value) 

or 
an ILU operation (including branch) 

The long instruction runs at 10MHz if it is the fadd an fmul are 
single precision, 

5MHz if either the fadd or the fmul are double precision. 

The floating point units are not pipelined, and the result of the 
floating point operation can be used immediately in the next 
instruction. On the other hand, the floating point units slow the chip 
down. 

They implemented floating point DIVIDE, REMAINDER, and SQRT directly 
in hardware because it was easier to do it right in hardware than to 
provide the hooks for software. (E.g., to do IEEE rounding and 
denormalized numbers correctly is tricky, so they just did it in 
hardware.) By 'easier' they said it actually took fewer gates just to 
implement the logic to do these operations in hardware than to provide 
the control lines for software. This is easy to understand, since the 
control lines would have just haired up the ILU's design. 

Event support: One can explicitly test events e.g., with a busy-wait 
(polling the event flags), or one can set up an interupt vector for 
implicit event testing. 

Registers: The register file is 128 32-bit words, accessable as 64 
bit, 32 bit, 16 bit or 8 bit registers. The register file has many 
ports. Most of the registers (numbered 0 through 119) are just data 
registers that do not interact with the communications network; Those 
registers have 6 read ports and 3 write ports. 

There are some registers wtich are 'special' (numbered 120 through 127) 
They are the interface to tte communcations network and have 9 read 
ports and 6 write ports (for those registers there are presence bits or 
something; if a processor reads a register associated with a 
communications channel, and there is no data, the processor stalls. 
There is a timeout mechanism (configurable by the user)). 

It appears that the register file serves partly as part of the memory 
heirarchy (i.e., things from registers are faster than things from 
memory), and partly as the synchronization namespace (e.g., all logical 
connections are named (at the source and destination processors) by 
registers. Synchronization is done on a word-by-word basis on the data 
in a logical connection. This seems to greatly increase the difficulty 
of defining the 'context' tat might need to be swapped out in some sort 
of multi-threaded programming model (or even worse, for a multi-user 
operating system, since there are no protection mechanisms on memory, 
the communications network, and there is no automatic address 
translation (except for doing in the user software). 

I understand that the 9 read-port, 6 write-port register takes about 
three times the area of a single-ported register. They were clever 
about the use of the bit-lines. To write a register, they use 
double-railed logic, but to read a register they use a single precharged 
bit line (and then they can use the BIT and BIT-BAR drivers to drive 
different bit lines). 



Memory architecture: 
The local memory is implemented using static RAM. 	They can put 6 
Mbytes/board now using 256K SRAM (64K by 4) They expect to use 1M 
SRAM in 1990, and 4M SRAM in 1994. With 4 cells/board that is 1.5 
megabytes/cell. With 1 cell/board that is 6 megabytes/cell. The 
SRAM is 25ns access time, allowing it to keep up with the 20Mhz 
processor with no wait states or interleaving. The local memory 
bandwidth is 160Mbytes/second. There is no ECC (it is not really 
needed for SRAM), but there is parity (parity exceptions can be 
handled by software in the on-chip ROM). 

For power-consumption reasons, they run each of the four processors 
on the board out of phase, so that only one of the memory banks will 
be active at any given time. This reduces the peak instantaneous 
power requirements substantially. 

Instruction cache: 
There is a 1Kbyte I-cache. It is organized as 4 sections of 4 blocks 
of 16 words. I think this means each memory address is direct-mapped 
to one of 4 sections, and within a section, the cache is fully 
associative. The cache line size is 16 words. The cache does `next 
instruction' prefetch (even across block boundaries). The cache also 
automagically aranges for the long instructions (3 words each) to be 
aligned correctly (again, even across block boundaries). 

The communications network 

Overview of communications protocol 
When two computation agents want to communicate, there are three phases: 
* Send a `connection header' 
- which reserves unidirectional routing resources from one cell 

to some other cell in the array (like "dialing the 
telephone") 

- Contains the pat 7 for source to destination (expressed as 
`streetsign routing'. 

- hardware allocatEs routing resources here. 
* send messages. Eact message has a head and a tail which are 

interpreted by thE computation agent rather than by the 
communications agEnt. (I don't understand what this is used for) 
The header may contain some sort of `virtual processor' 
address. 
A message is like `a sentence spoken over the open line'. 

* Send a `connection tail' frees the resources and terminates the 
connection (`like hanging up the telephone). 

It appears that, for a 2D interconnect topology, there is a 96 bit 
(three word) overhead for establishing and closing a connection. 

It appears that there is a (4 bit (two word) overhead for the message 
header and tail. 

In typical systolic computing, the connections are established once at 
the begining of the computation, and then a bunch of messages are sent 
during the computation, and when the task is done, the connections are 
terminated. 

For message passing, the connections contain exactly one message, and 
there appears to be a 5 word overhead for sending a message. All of the 
examples that were `shown' indicate that they believe that for message 
passing there are at least 5 or 10 words of data per message. 

Streetsign routing: 
Every node in the communications network has a collection of 20 bit 
`streetsigns' (I don't know how many streetsigns can be stored at a 
given node). From a node, there are five directions a message can 



go to and come from: Left, right, up, down, and to the 
communications agent. 

Every word of the connection-header contains a 20-bit streetsign and 
an 'action' which is interpreted as "go straight until you find a 
matching streetsign and then take the action". The implementation 
of this is that when a .3onnection-header arrives at a node, the node 
checks to see if the streetsign mentioned in the connection-header 
matches any of the streetsigns held by the node. If not, the 
connection goes straight (e.g., left->right, top->bottom, 
right->left, bottom->toc). If the streetsigns match, then the 
action is taken (the action can say `go left', `go right', `go up', 
`go down', `go to the computation agent'.) 

Logical Pathways: 
There are 20 logical pathways available in each node of the network. 
The 20 logical pathways are dynamically allocated to the 5 
'directions'. Each of the five physical channels are multiplexed 
among the logical pathways allocated to that channel (they are 
multiplexed smartly enough that if only one of the logical pathways 
actually has any data to send, then that logical pathway gets the 
full bandwidth of the physical channel) Every word transmitted 
across a communications channel (from a intermediate-source to an 
intermediate-destination) is sent along with the logical pathway 
number (in the intermediate-source). 

When a connection is established, a logical pathway is allocated to 
the connection. If they run out of logical pathways that is like 
'running out of registers' or `running out of memory'. It all 
sounds pretty dangerous to me. 

spooling, streaming, and systolic communication 
Spooling: Incoming(outgoing) data can be received(sent) directly 
to(from) memory to the communications network without processor 
intervention; There is a finite state machine to interface the memory 
with the router. The memory is accessed via `cycle stealing', but I 
do not know whether the 7outer has higher priority than the 
processor. There are 8 F.pool registers. 
Streaming (Systolic): Incoming(outgoing) data can be received(sent) 
directly to(from) procesEor registers via registers reads (writes) 
When a processor reads a stream register, the processor stalls until 
a single word of data becomes available from the connection. If the 
processor reads the stream register, then the flow control mechanism 
backs up the message into the router. (Corespondingly for writes, if 
the processor tries to write a message and the flow control mechanism 
is saying "stop", then the processor stalls.) There is a user 
configurable timeout mechanism for the stalls (so that the processor 
can recover from the case that a message `never' comes.). This 
mechanism is the 'systolic' computation mechanism, because the 
processors produce and consume data out of 'infinitely long' streams. 
Note that in streaming mode, the arrival of a word of data can also 
be implicitly or explicitly tested by setting up an event handler 
(i.e., an interupt) rather than stalling on read. There are 4 stream 
registers. 

Note: The processor can combine spooling and streaming, effectively 
using memory as a buffer for a stream, by spooling data from the 
router into memory, and then streaming it from memory into the 
processor. (I.e., there is some mechanism to stream from memory as 
well as directly from the router). I asked about how they keep the 
consumer from overtaking the producer in that scheme, and it turns 
out that they use a single word of data (32 or 64 bits?) to represent 
the 'fifo' pointers, and there is a special condition code which 
checks to see if the `read' pointer has overtaken the 'write' 
pointer. This condition code can be tested explicitly (polling) or 
implicitly (interupts). 



Note: If my understanding of the router is correct, I know how to 
deadlock the router. 	They are providing an iPSC compatability package, 
and I know what program to write to deadlock the router. 

Physical Channel: 

A physical channel between two iWarp chips is implemented as follows: 
(I use many terms which the iWarp people don't use, e.g 	'flit' is the 
smallest unit of data physically transmitted.) 

Physical Channel Data Format: 
There are (See Figure 2.) 
8 data signals 
2 enqueue signals 
1 parity signal 
1 data-clock signal 
2 dequeue signals (going back to the source) 

for a total of 14 signals. 

The handshaking is done on a 32-bit basis; and the 2 enqueue bits 
actually provide a total of 8 bits of data per handshaking. It takes 
four flit-times to send a word. 

The enqueue bits say which logical path the word is associated with. 
The dequeue bits are used to say when a word from a logical path has 
been consumed. 

The flit time is 25ns. 	(40 Mhz) 

There is a 200ns latency through the chip for straight-through routing, 
250ns latency to turn a corner (this appears to be true for every 
word of the message: It seems as though the connection-header 
is even slower, e.g., by at least another 100ns for the turns because 
the header is consumed at the turn, so it takes at least another 
10Ons before the next word of the connection-header can be sent to 
the next chip. 

The sender keeps track of how many free spots are in the receiver (the 
FIFO is four words deep, but there is apparently one FIFO for each 
logical path: If I understand this correctly, that means there are 80 
FIFO's (because each of the four physical inter-chip channels may have 
20 logical paths on it). 	Note that this protocol means that even if 
the time delay between two chips becomes huge, the protocol is correct 
(with reduced effective bandwidth): The protocol would allow for four 
words to be sent from source to dest, and then it might take a while 
for the words to be consumed at the destination and for the 'dequeue' 
signal to come back. Then more data could be sent, but in the 
meanwhile, nothing can be sent.) They believe that they can build 
systems with 15 foot wires (50 ns propogation delays) before suffering 
any degradation with this problem. The reason they didn't build the 
FIFO's deeper may be related to the issue of there being 80 FIFO's 
(remember that the 80 FIFO's is guesswork on my part.) 

Physical Channel Electrica:_ Characteristics: 
The wires are connected point-to-point (i.e. there is only one writer 
and one reader on each wire). Each wire only sends signal in one 
direction. Within a card-cage, the wires are single-ended (not 
differential pairs). If a signal leaves the backplane it goes through 
a converter and is transmitted as a differential signal on twisted 
pair. The converter sits on a card about 2 by 3 inches in size. The 
converter does its conversion in about 7ns. The converter chip, which 
requires only a 5V power supply, is made by AT&T. Thus, at the chip 
level, the number of signals equals the number of pins, however, they 
need a tremendous number of ground pins to avoid ground-bounce (the 
phenomena where the ground voltage locally (in space and time) pulled 
up (e.g., by as much as one volt) because of all current it is 



sinking; this phenomena is much less of a problem for differential 
pairs because the current always goes right back where it came from.) 

They send a data-clock along with the data. They did not understand 
my question about synchronization failure with the asynchronous clocks 
writing and reading from the 4 word FIFO. (Review: There is always 
the possiblity that, given asynchronous reads and writes out of a 
FIFO, that the system will enter a meta-stable state, causing the 
machine to fail. The standard solution is to somehow reduce the 
probability of such failuce to an acceptable level. However, in the 
iWarp scheme, the read and write events are not asynchronous; they are 
just out of phase. For a naive implementation of this FIFO, there is 
some phase of skew that always produces a metastable state. The 
question is: How did the designers avoid the case where the write 
always happens at 'just the wrong time'? 

speed and voltage 
The iWarp channels run at 40Mhz (25ns), but they allow the wires to be 
up to 50ns long. They stack bits on the wires to make this work. The 
reason it can't be longer is because their FIFO's are shallow, and if 
the channel was longer, they would not achieve receive the "flow" 
acknowledgement soon enough to keep the channel busy. (Note: Their 
flow protocol will still work correctly, since it is a 
"consumed-the-word" signal rather than a "flow") 

The channels run with 3.8 volt swings (according to everything I have 
seen). (It looks like high-out is $V_{cc}-0.8$ volts and low-out is 
$0.4 $ volts. $V_fccl=5$ volts. 

However this voltage swing seems inconsistent with the chip power 
budget (5 to 7 watts) and the board-level power budget (50 watts). 
They are using 50 ohm parallel terminated (terminated at the driver) 
transmission lines. 

The best guess that I can come up with to make this work is that the 
50 ohm termination resistcr built into the driver must sink no power 
at 2.3 volts, and when driving a logic 1 (at 4.2 volts) or a logic 0 
(at 0.4 volts) the termination resistor sees a 1.9 volt drop. The 
power disipated by that resistor is then 72.2mW. There are 56 driven 
pins for the communicatio:s networks, giving 4.04W. However, now I 
still have not accounted for the power disipated by the driver itself. 
There is a 0.8V drop from the power supply to high-out, so each driver 
is disipating (via resistive heating) at least 12.8mW, for a total of 
0.71W, and during switching the resistive load through the driver is 
somewhat higher. I don't neccessarily understand where the power is 
disipated in these systems, but at the minimum I can count up 4.75W 
just to drive the pins to the communications network. If the memory 
pins are also using some sort of tranmission line, then there are 
another 100 pins worth of stuff to drive, and if the memory wires are 
capacitors, the power is :ike CV^2f, and since f is so high there must 
be significant power disipated there. 

They have invented a 50 Ohm driver which automatically compensates for 
voltage, tempurature, and process variation. They claim to have a 
patent-pending on this driver. They said something about a 
charge-pump type circuit to control the Vref (the reference bias 
voltage) on the output driver. (Note: This sounds very similar to 
Tom Knight's low-voltage self-terminating output-driver. The reference 
bias is being used to control the resistance of the termination 
resistor). 

Clock Skew (see Figure) 
2ns on a board 
4.4ns between components inside a card cage 
28.4ns between anything (this is done with the differential signals 
etc.) Most of this clock skew seems to come from unmatched cable 



length. The main constraint they have is to keep the hold-time in 
good shape. Apparently they are right on the edge in the worst case. 
(Note, hold time is hurt when the clock skew makes the sender change 
state before the receiver has sampled the input. Slowing down the 
clock does not fix this problem (slowing down the clock can improve 
the setup-time), so it is really important to get this right. This is 
a symptom of using edge-triggered clocks instead of level-sensitive 
logic. Maybe it never occured to these guys to use level-sensitive 
logic. 

Packaging: The packaging vvis very impresive. The whole system seemed 
rugged and clean. 

The chip is a 271 pin PGA (die facing downward, huge heat sink on 
top). -100 pins are memory, -100 pins are communication, -70 pins 
are power and ground. The power budget for the chip is 7W. 

Each card is 9" by 11" and can hold either one or four processors and 
a total of 6 Megabytes of memory (divided among the one or four 
processors). They indicated that they plan to mostly use the 
four-processor cards. 

There is a daughter board to hold extra surface mounted memory. 
Intel has developed a 132 pin surface mount connector to connect the 
daughter board to the mother board. (They have 3.5 signals for every 
power or ground connection). 

The power budget for the card is 50W. 

The cardcage holds 16 cards (16 to 64 processors), and has its own 
fans and power supply. The cardcage can sit in any 19" rack or on a 
tabletop, and it will run fine. The cardcage is UL approved (but 
not FCC certified). 

The power supply is mounted behind the backplane on a roll-out chasis 
to provide room to get into the space behind the backplane and 
reconfigure it. The powEr supply uses a 220 volt 3-phase supply (to 
keep the AC current down for UL approval), and produces 5 Volts at 
300 Amps on the board si?e (you could do some serious arc welding if 
you pulled a board out w3th the power on). They said something about 
using a "power factored" power supply instead of a "linear" power 
supply (I don't know what that means). 

For signals leaving a cardcage, there is a specal differential 
converter board (mentioned above) mounted behind the card cage. 

They use a 50 Ohm controlled impedence ribbon cable to rewire the 
backplane. (Apparently the backplane can be reconfigured away from 
the 'standard toroidal configuration'. 

The connectors for plugging the card into the back plane are 'through 
connectors', so one can plug things directly into the backplane and 
they end up connected to the cards. They plug the 50 ohm ribbon 
cable here, and they plug the differential convert card here. The 
back-plane connector has 480 pins. 

The back-plane is 12 layE:r 50 Ohm strip-line (controlled impedence). 
There are 3 ground planes and 2 VCC planes. They have measured less 
than 30mV drop across the backplane (under some test to measure 
ground bounce and so forth.) They use a bus-bar to stiffen the 
back-plane (in the 

They are extremely worried about ground-bounce (which they wouldn't 
have had as much of if they had used differential signals 
everywhere). 



The cards are mounted vertically and air flow is from bottom-to-top 
in the card cage. The air (for cooling) is passed through the bottom 
card cage then the next card cage and so forth (so the last card cage 
has a warmer air source). They move the air at 300 linear feet per 
minute. 

The container holds 4 cardcages. The container is all metal (making 
it easy to satisfiy FCC requirements and simplify the problems 
associated with electro-static-discharge (ESD, aka lightning). The 
front door has an LED panel on it. There is a serial processor (an 
8251?) somewhere in the ffichine that sequentially polls the status 
line of every iWarp chip and updates the LED display at 10Khz. There 
is a yellow and green LED for every iWarp chip, and a red 'error' LED 
for every card cage. They have been careful to leave space to route 
the cables cleanly; One will not see masses of cables hanging out 
anywhere (conversely, they did not really push the cabling density). 
The container is the same one used for the iPSC (except the iPSC is 
grey and the iWarp is black). 
The power budget for the container is 5KW. 

The biggest system that they are advertising is a 4-container system 
(i.e. 256 to 1024 processors). This size limit is really a result of 
the clock distribution board rather than anything else, so they could 
probably easily make it bigger. 
Clock distribution: Amazing chips (see Figure) to keep clock skew 
below a few nanoseconds inside the same cardcage. I don't understand 
how they lose so badly between cardcages (28 ns) 
Sun interface board (See Figure 5) This is a VME master or slave board. 
In master mode the iWarp cell is the bus master (for an array-centric 
configuration). The board can also be a bus slave (for a 
host-centric configuratin) It is a big board (the standard 'sun' 
size rather than the sholter 'VME' size). This holds one 
processor which can be hooked into an array via its communications 
paths. 

To interface a new device (e.g., a disk drive) to their machine, one 
uses the local memory bus. The memory bus is very simple (one Intel 
engineer said it was 'embarassing' . One can build a 
memory-mapped I/O device (they showed a typical SCSI interface). One 
could also use a dual-ported memory to interface to their device 	They 
do not recomend trying to interface directly to the communications 
network; use the iWarp comp:snent to go from the communications network 
to the memory bus format. 

software: I did not attend the software session (because it 
conflicted with the hardware session - what a lose). The software guys 
from CMU seemed to be not nearly as excited about their work as the 
hardware guys from Intel, so I went with the hardware session (to learn 
about the packaging and electrical characteristics). The software looks 
pretty bad - they claim to be compiler driven, but the general 
impression I got from the CPU guys was that the software could be made a 
lot better - they believe in program generators, and if their compiler 
can't analyse your program, I guess you can't run it... Basically they 
are talking about AL and APPLY and all the standard iWarp software, 
which to me looks hard to program in. The model of all that software is 
that you build a special purpose machine 'in the shape of your problem'. 
The hardware supports that model by allowing the logical connections to 
be interesting. 

They claim to have a C compiler (you can run C in any cell of the 
iWARP), a FORTRAN 77 compiler (again, this is a serial compiler). The 
compilers do the long instruction word optimization, you can call C from 
FORTRAN, you can call assembly language from C, you can access the 
communications primitives from C and FORTRAN. (E.g., communications 
code is just as fast in C as in assembly language). 



They are providing an iPSC compatability package (to allow iPSC 
programs to run on the iWarp). Except for the message deadlocking 
issue, this looks like a very fast implementation of iPSC. 

Future trends 

Intel and CMU both talked about future trends. The intel stuff was 
interesting; they had specific goals and issues. The CMU stuff, with a 
few exceptions, was generally more abstract, like "we have got to work 
on software". 

HTK said they will hook up iWarp into the Nectar network (100Mbyte/sec 
fiber optimic with 16x16 crcssbars). 	They will also develop an HSC 
interface (800 to 1600 Mbits/sec). (is 800 megabits the same as 
100Mbytes? I may have this wrong...) 

GWC said intel would probably 
- implement quad-flat-pack & mil-specify the part (maybe in about 18 

months) 
- iWarp is the lead project in the Intel Multi-chip-module research. 

They hope to get the 1.5 Megabytes of memory plus the iwarp chip all 
onto a 2-inch square footprint (maybe 18 months to 2 years) 

- Component shrink (iWarp 1.5) 
- The next process is a 3-layer CMOS process, with a factor of 2.5 

to 4 improvement in density. 
- Same instruction set 
- 64 bit floating point directly supported (at the same speed as 32 

bit floating point) 
- FP pipelining 
- big data and instruction cache 
- bigger busses (e.g. to the cache-line width to the local memory) 
- 50 to 80 Mhz clock 
- 100 to 160 MFLOPS pel cell (maybe in 24 to 30 months) 

- iWarp 2 
- More unification of communications models (e.g., currently they 

do message passing and systolic communication 'well'. They hope 
to do small-talk styJe things too (ala Dally), and 
global-shared-memory things too. 

- heterogeneious nodes 
- locally shared memory (e.g , several nodes with physically shared 

memory and then outside of that they do message passing) 
- 3d packaging 

They hope to make iWarp into an industry standard 'backplane' for 
connecting computers and processors together. 
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Operand for 1st Read Access 
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Operand for 2nd Read / Write Access 
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Full ILU (Integer Logical Unit) Instruction or general Branch operation 
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Compute and Access "Long" Instruction 

96-bit Instruction Format 

Word-1 

3 
1 

3 
0 

2 
9 

2 
8 

—(4)— 2 
5 

2 
4 

—(4)— 2 
1 

2 	 1 1 
3 

0 0 	 0 
(7) 0 	 4 (7) 	7 (7) 6 	 0 

J 1 1 Data Mode FADD B operand Reg A operand Reg K operand Reg 

Word-2 

3 2 2 	2 
2 	1 

2 	 1 1 
3 

0 0 	 0 
1 (9) 3 0 	(7) (7) 	7 (7)4 6 	 0 

Memory Control FMUL M operand Reg N operand Reg 
— 

R operand Reg 



General Purpose "RISC-like" Instruction Summary 

32-bit Instruction Format 

Integer/Logical Operations 

Floating-point Operations 

Data Conversion Operations 

Memory Access Operations 

Flow Control 

Extended Flow Control 

Literal Loads 

Communication Support 

General Control 

Logical ops, Arithmetic ops, Bit ops, 
Shift & Rotate, Find MSB 

Add, Sub, Compare, Max, Min, Logb,Scale 
Mult, Div, Sq Root, Remainder 

Integer to Floating-point, 
Floating-point to Integer 

Byte, Half-word, Word, Double-word 

Call, Return, Branch, Push, Pop, Break, 
Enter loop (Implicit Loops), Stack control 

Absolute call/branch, Indirect call/branch 

Load literal 

Pathway control, Spool control 

Event control, Timer op, Pointer cntrl 
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System Clock Distribution 

Cell Board 

Cable 

• 01.410 

Custom Clock 
Chip 

+ 200 psec 

Clock /Sync Board :lackplanei AS1804 

Other 
CCA's 

iWarp Component to Component Clock Skew 

Same Board < 2ns' 
Different Boards, Same Cardcage Assembly < 4.4ns' 

Different Cardcage Assemblies < 28.4ns' 

iWarp 
Component 

Other 
iWarp 

Components 

Signal Distribution 
Unit 

Mhz 

80 Mhz 

; Matched 
I i Traces 

lOther Cell 
Boards 

12 Sept. 89, RH11 
	

Session V 
	

Slide 31 



_ [0:7] 

-NQ[0:1] 

4'Parity 

[8:15] 	_ [16:23] 

-NQ[2:3] - NQ[4], 

Mrk[0] 

4-Parity 4"Parity 

[24:31] 

LM

rk[ 1 :2] 

Parity 

	/--- 

External Pathway Pins and Handshake 

 

Data 8 

 

  

    

Cell A 
XR out 

Enqueue (NQ) 	/2 

01-  
Parity 	2

1  

1 
Data Clk 
Dequeue (DQ) 

Cell B 
XL in 

  

One Word Transfer 

  

    

    

 

4) 1 

50 ns 	ns 	 

Clock 1 
(1) 2 

Clock 2 
2 

  

Data 

NQ 

Parity 

Data Clk 

DQ 
	

DQ[0:1] DQ[2:31 IDQ[4],DB1 Parity[0:1]I 
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Cardcage Assembly 

Backplane 

17 Slot 
Cardcage 

12.25" 

External Interface 
Boards 

1.5 KW 
Power Supply 

Slide Out 
P/S Tray 

19" 
20" 

Base (with fans) 

• 	• 	• 
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29 Rack Units (1 Rack Unit = 1.75") 
5K WATTS 
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Max Single Container Array 

                     

                     

                     

              

I 

     

                   

                     

       

Card Cage 
Assembly 

  

Card Cage 
Assembly 

     

              

                     

                     

       

Card Cage 
Assembly 

  

Card Cage 
Assembly 

     

              

                     

                     

                     

                     

8 Cables (typ 8 plcs) 

16 x 16 Quad Cell Array (5.12GFlops) 
8 x 8 Single Cell Array (1.28GFlops) 
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Sun Interface Board Block Diagram 

iWarT Cell 

0 
— 

0 
4.1 

e 
> E 
8 t cr 

XR 
YR 
XL 
YL 

High 
Speed 
RAM 

Warp 
Parity 411( 

..., Data 
Ai 	 

Address 

Buffer 

Parity 
	A 

Generator 

.411111-- Slave 
Interface 

Logic 

31m* Dual 
Port 
RAM 

V CLK2 

CLK/Reset 
Logic 

- 
	-1 
	 Buffer EEPROM 

L. 

EEPROM 

2 
J 

Buffer 

Local 
Registers 

Master 
Interface 
Logic 

Interrupt 
Logic 

Master Interface 
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The external connection to the iWarp array can be made at any of the loops in 
either the X or the Y direction. 

The iWarp System 

Flexibility is the key characteristic of the iWarp system. From one to four iWarp 
Cardcage Assemblies reside in a single System Cabinet, and up to four cabinets 
can be connected to form even larger arrays. With a system of four cabinets, an 
iWarp system can be extended to a 32 by 32 array of 1024 iWarp cells. Figure 
2-21 shows the iWarp System Cabinet, which contains up to four Cardcage 
Assemblies. 

Figure 2-21: iWarp System Cabinet 

The front door of the System Cabinet contains an LED display that shows status 
conditions for each iWarp cell housed in the cabinet. The LED display consists of 
four 8 by 8 LED arrays, with each array corresponding to one of the cardcages in 
the cabinet. Each pair of LEDs in the array corresponds to the status of a specific 
cell. There is also an error LED and a power LED for each array. 
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