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Fig. 5. Example of LRCF multiplication. 

IV. SUMMARY 
The reported multiplication scheme (LRCF) eliminates the need 

for a carry-propagate adder. The scheme performs the multiplica- 
tion most-significant digit first and produces a conventional sign- 
and-magnitude product (most significant half) by means of an on- 
the-fly conversion, performed concurrently with the generation of 
accumulated (redundant) partial products. The scheme is presented 
for general radix r and a radix-4 signed-digit implementation is de- 
scribed. We estimate that, for a multiplier of 64 bits, the scheme we 
described produces a reduction of about ten gate levels with respect 
to a conventional scheme using a carry-look-ahead adder. The speed 
can be improved by increasing the radix. In [6], we present a radix- 
16 implementation in which odd and even partial products [l 11 are 
computed concurrently. 
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Fast, Deterministic Routing, on Hypercubes, 
Using Small Buffers 

Bradley C. Kuszmaul 

Abstract- We propose a deterministic routing scheme for a communi- 
cations network based on the k-dimensional hypercube. We present two 
formulations of the scheme. The first formulation delivers messages in 
O(kz) bit times using O(k) bits of buffer space at each node in the hy- 
percube. The second formulation assumes that there are several batches 
of messages to be delivered, and makes certain assumptions about the 
cost of sending messages along the various dimensions of the cube. In 
this case, the latency for delivery time is still O(k2) bit times, hut the 
throughput is increased to one set of messages every O(k) bit times. For 
the first formulation, we restrict ourselves to routings which are subsets 
of permutations (i.e., every node sends at most one message and re- 
ceives at most one message). The second formulation indicates a way to 
perform routings which are subsets of H-permutations (i.e., every node 
sends at most H messages and receives at most H messages). 

Index Terns-Buffers, complexity theory, deterministic routing, hy- 
percubes, interconnection networks, parallel processing, routing. 

I. INTRODUCTION 
Several routing schemes based on the hypercube have been pro- 

posed [7], [5 ] ,  [15], [17], [12]. We discuss hypercubes with kdimen- 
sions and 2k = N vertices (which we call nodes). A nondeterministic 
O(k2) bit time algorithm with O(kz )  bits of storage at each node is 
described in [17]. In this paper, we describe a deterministic O(k2)  
bit time algorithm with O(k) bits of storage at each node. We go on 
to describe an alternative deterministic algorithm, based on a slightly 
modified network, with O(k2) bit time latency for messages travel- 
ing through the network, O(k)  throughput (i.e., one message every 
O(k) bit times), and O(k2) bits of storage at each node. 

When describing hypercube networks we define a node to be a 
vertex on the hypercube. When describing multiprocessor computer 
systems, we define a processor to be the hardware which sends and 
receives messages. In some computer systems (e.g., the connection 
machine [9]), the processors are associated with the nodes of the 
hypercube routing network. 

In general, we assume that messages are at O(k)  bits long (be- 
cause, for example, it should be possible to transmit a node address 
in a message). This gives a lower bound for routing of o(k)  bit 
times. 
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A bit time is the amount of time it takes to send one bit across 
one wire. 

11. SPECIAL CASE ROUTINGS 
This section presents several algorithms and theorems that we will 

use in our routing algorithm. We will only consider message sets in 
which every node sends at most one message and receives at most 
one message. We can thus think of a routing as a partial function f 
from nodes to nodes. 

We identify nodes with integers by using the standard numbering 
scheme for a hypercube. (Le., node i is connected to node i @ 2 J ,  
where a @ b is the bitwise logical XOR of the nonnegative integers a 
and b represented in binary.) 

A .  Semi-Contractions 

First we will consider a special class of routings called semi- 
contractions, and prove that we can route semi-contractions quickly. 

Definition 1: An injective routing is a routing where no two 
nodes are sending a message to the same node. Le., f is injective. 

The rest of this paper will assume that a routing is an injective 
routing. 

Definition 2: A packing is a monotonic routing onto a single 
interval. Le., 3,  j such that Vx, y in the domain o f f ,  x < y iff 
i 5 f (x )  < f ( y )  5 j ,  and the range off is exactly [i, j]. 

Definition 3: A semi-contraction is a routing which has the 
property that the distance between the destinations of two packets 
is no greater than the distance between their initial locations. I.e., 

Note that by li - jl we mean the difference between i and j as 
integers rather than, say, the Hamming distance between i and j .  

Theorem 1 is due to [ 141 which originally proved it for packings. 
The proof for semi-contractions is due to [13]. A packing is a semi- 
contraction so we present the stronger theorem for semi-contractions 
even though we will only need it for packings. 

Theorem I: It is possible to route semi-contractions in bit time 
O(k)  with O(k)  bits of storage at each node by Algorithm 1. 

Algorithm 1: (Note that we number cube dimensions from 
zero to k - 1): 
for i = 0 to k - I do 

li -jl 2 !f(i) -.f(j)l. 

for each node n in parallel 
If ( 3  message m at node n which wants to cross 

send m across the ith dimension. 
the ith dimension) 

Proof: The proof is based on the following lemma. 
Lemma 1: At any point in time, and at every node, there is at 

most one message at node n which wants to cross the ith dimension. 
Clearly, if Lemma 1 holds then the algorithm terminates because 

there are no collisions. 
Proof of Lemma 1: Inductively on i (the loop variable men- 

tioned in the algorithm for Theorem 1). Clearly, Lemma 1 is true 
before the algorithm begins since there is at most one message at 
any node. Consider just before the loop for which i = /, and a 
message which is being routed from j to f ( j )  where f is a semi- 
contraction. We assume (by induction) that there have been no “col- 
lisions,” which means that the relative addresses of the message’s 
destinations are all zero in the low order I - 1 bits (since the mes- 
sages have been able to cross every dimension that they wanted to 
so far). So the address field of a message looks like (writing the low 
order bits on the right, and denoting bits y through x of a field R 
where x 2 y as R[x: y], and bit x of R by R[x]) 

(INITIAL[ k - 1 : I  + 11 INITIAL[ I] FINAL[ / - 1 :0] ) 

where the INITIAL bits are the bits in the original relative address 
(since the message has not crossed any of the high-order dimensions, 
the high-order bits of the relative address have not changed), and the 
FINAL bits are all zero (by inductive hypothesis). 

Now assume that there is to be a collision on this cycle through 
the loop (i.e., there is a node n with two messages m l  and m2 both 

of which want to cross dimension I ) .  We thus know that the low order 
I + 1 bits of m l  and m2 must be the same (i.e., the INITIAL[o bits 
must be the same because both want to cross dimension I, and the low 
order / - 1 bits (the FINAL bits) are all zero). We know that since 
the messages are not going to the same location that the high-order 
bits must differ; thus, the final destinations of the two messages must 
differ by at least 2‘+’ . But because f is a semi-contraction, we know 
that the starting locations of the two messages must differ by at least 
2‘+’.  This means that the bits INITIAL[k - 1: I + 11 must differ for 
m l  and m2, a contradiction to our assumption that they arrive at the 
same node, n .  

Now we need to show that the algorithm presented in Theorem 1 
can run in bit time O(k)  with O(k)  bits of storage at each node. The 
naive approach to the implementation of this algorithm would require 
O(k2)  bit time: send complete messages across the ith dimension 
before sending them across the i + lth dimension. However, we can 
pipeline the bits through the router to achieve O(k)  bit time the 
way the Thinking Machines connection machine does [9]: note that 
only one bit of the address is needed in order to make the decision 
about how to route the messages along any given dimension. We 
need to arrange that the relevant bit of the address is available at 
the right time. To do this we send bit number 0 of the address into 
the hardware logic which decides how to route dimension 0 of the 
hypercube. While dimension zero is being “switched,” we send bit 
number 1 into the hardware. As soon as possible, the bit number 
one of the address is forwarded through the hardware on to the next 
level of logic. Each level of the switch can “consume” one bit of the 
message, and send the rest of the message on as soon as possible. 
The pipeline thus built is of depth k ,  and it will take O(k)  bit times 
to perform the switching. The rest of the message can then be sent 
through the switches (continuing the pipelining) in O(k)  additional 
time (since the message data size is about the same as the message 
address size). 

B .  Enumerating 

The next important algorithm we need is an enumeration algorithm 
which gives selected processors unique numbers. We will use the 
enumeration to generate addresses for a packing. The algorithm for 
performing an enumeration in O(k2)  bit time appears in [6], and was 
improved to O(k)  bit time in [3], [4], [ I l l ,  and [8]. 

Definition 4: The enumeration of a set of nodes S = 
{ n ,  , n2, . . ,nisi} where nj < n, iff i < j is the mapping Es: 
S -+ {l , . . . , ISI} whereEs(n,)  = i .  

In order to use the enumeration of a set S of nodes we will need 
to arrange that every node n E S knows Es(n). We call this the 
computation of Es . We need to be able to perform this computation 
quickly. 

DeJinition 5: For i an integer in {O;.., k - 1) we define an 
i-subcube of the network to be a set of nodes which whose 

addresses in the hypercube are the same in bits 0 through i - 1 .  
In the case of i = 0, a 0-subcube is the set of all the nodes. Note 

that there are 2‘ i-subcubes, each containing 2 k - i  nodes. Thus, 
a 1-subcube is a set of nodes whose addresses are same in all but 
bit 0, and there are two 1-subcubes, while there are 2k k-subcubes, 
each containing exactly one node. 

Theorem 2: Given S, a set of nodes in a hypercube, we can 
compute Es in time O(k) .  

Proof: First we will sketch an algorithm for computing E s .  
Then we will prove that an enumeration can be done in O(k)  bit times 
on a butterfly; and then extend the result to apply to hypercubes. 

We define a complete butterfly to be a butterfly network with the 
ability to do certain computations on the internal vertices of the but- 
terfly. The computations needed will be small, and the amount of 
hardware for each butterfly node is a constant (i.e., the amount of 
hardware needed for each hypercube node is linear in k) .  In a but- 
terfly network of dimension k ,  there are k2k of these internal nodes. 
Using the notation of [16], where the vertices of the butterfly net- 
work are given ranks 0 through k - 1 and there are 2k vertices on 
each rank, we define p , , ;  to be the ith node of the rth rank. We 
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assume that at the begining of the algorithm, all the vertices of the 
form P O , ;  are the nodes which need to be enumerated. Let s(i) be 
the characteristic function of S ,  i.e., s(i)  is one if i E S (i.e., p a , ;  
wants to be counted in the enumeration), and zero otherwise. 

We will go from rank 0 to rank k - 1 serially, with the invariant 
that at the end of the computation of rank r,  vertex p r , ;  “knows” 
two numbers: 

0 t r ,  , is the total number of processors which want to be counted 
in the ( k  - r)-subcube containing PO, ; . More precisely, 

tr,i = c s ( j ) .  
j €  the (k-r)-subcube containing i 

0 o, , i  is the “offset” of processor i among those which want to 
be counted in the ( k  - r)-subcube containing pa ,  i . More precisely, 

O r , i  = c s ( j ) .  
j €  the (k-r)-subcube containing i ,  where j < i  

The following recursion relations will compute Es : 

to, i = s ( i )  

00,; = 0 

I.. 1 . i  - t .  - J - i , i  + t , - i , ; e 2 J  i f j  > 0 

0. J . 1  . -0. - J - l , i  i f j  > O a n d i  < i @ 2 j  

0 . .  -0. - , - i , ; + t , - l , i ~ ~ ,  i f j > O a n d i > i @ 2 J  

where a @ b is the integer which in base two is the bitwise Exclusive 
OR of the two integers a and b .  

The proof that these relations are correct is inductive on j :  
0 The base case is j = 0 which is clearly true since the ( k  - 0)- 

subcube containing i is just i itself. The total number of processors 
which want to be counted in any ( k  - 0)-subcube is just s(i)  and the 
offset is zero. 

The inductive case is as follows. The number of the processors 
which want to be counted in the ( k  - j)-subcube containing i is 
independent of whether i < i @ 2’, and is just the sum of the 
number of processors in each of the two k - ( j  - 1)-subcubes 
which make up the two halves of the ( k  - j)-subcube containing i ,  
namely the k - ( j  - 1)-subcube containing i and the k - ( j  - 1)- 
subcube containing i @ 2/ .  The offset of the processors in the 
“low” half of the ( k  - j)-subcube is not changed when the “high” 
half of the ( k  - j)-subcube is thrown in, which shows that oj, ; is 
computed correctly for the case where i < i @ 2 I .  The offset of the 
processors in the “high” half is incremented by the total number of 
processors in the ‘‘low’’ half. 

A butterfly network can compute these relations because the re- 
cursion relation has the form that the values needed to compute t and 
o for some vertex x of rank j are just the values stored at the vertices 
of rank j - 1 adjacent to x in the butterfly. We use pipelining to get 
that the enumeration can be done in O ( k )  bit times, because at each 
rank j ,  as soon as the Ith bit of o and t are received from rank j - 1 ,  
the Ith bit of o and t can be computed and sent on to rank j + 1 .  

III. THE ALGORITHM UPON WHICH ALL IS ROUTED 
Now we can perform our arbitrary routing using Algorithm 2, 

given below. First we need a bit of notation. 
Definition 6: For every i in [0 . . . k - I], and for every node x 

define I* ,  i to be the lowest numbered node in the i-subcube containing 
X .  

Algorithm 2: The routing algorithm. 

for each dimension i in [0 . . . k - 11 serially 
1) All messages which want to cross dimension i do  so. 

Note: Now we have invariant that every message is in the 
same i-subcube as its destination. Also, every node has ei- 
ther zero, one, or two messages. Furthermore, there are at 
least as many nodes with zero messages as there are nodes 

with two messages, since all of the messages must be routed 
within that i-subcube. 
For each i-subcube C in parallel 

Enumerate all nodes in C with two messages, 
EC , 2  messuges . 

Every node x which has two messages sends one of the 
two messages to node l x ,  i + Ec,  2 . m e s s a g e s ( ~ ) .  Note that 
within each i-subcube, this is a packing and that the mes- 
sages will not ever leave the i-subcube they started in, so 
the routing will happen in time O(k) .  
For each i-subcube C in parallel 

Enumerate all nodes in C with zero messages, 
Ec ,  0-messages . 

Every node x which has zero messages sends its own 
address to node 

l x ,  i + Ec,  O-messuges(X). 

Every node which received a message in Step 3 sends 
the message received in Step 3 to  the processor whose 
address was received in Step 5 .  Note that every node which 
received a message in Step 3 above will also have received 
a message in Step 5 as noted in the invariant in Step 1 .  Now 
we have the invariant that every message is in the correct 
i-subcube and no node has more than one message. 

This algorithm has the invariant that at the begining of loop number 
i, every message is in the correct i-subcube and there is at most one 
message at every node, as noted in Step 6. 

The running time of Algorithm 2 is as follows: In loop number i:  
Step 1 takes O(k)  bit times (since the messages must be sent 

completely across dimension 0. 
Steps 2 and 4 each take O(i) bit times (since an enumerate can 

be done in O ( i )  bit times on a cube of dimension i) .  We can round 
up to O(k)  bit times without losing anything since Step 1 has already 
used up O(k)  bit times. 

Steps 3 and 5 each take O(k)  bit times because they are pack- 
ings. 

Step 6 takes O(k)  bit times because its routing is simply the 
routing of Step 5 run backwards in time. The fact that this routing 
must be run backwards from the other routings is important for hard- 
ware designers. The earliest known appearance of this “rendezvous” 
operation is in [6]. 

Thus, the running time of Algorithm 2 is O(k)  bit times each time 
around the loop, and there are k times around the loop for a total 
running time of O(k2) .  

The amount of storage required at each node is O(k)  bits, since 
the maximum number of messages which ever are at one processor 
in Step 1 is two. To perform an enumeration requires O(k)  bits of 
storage and k serial adders. To perform a packing we note that in the 
proof that semi-contractions can be routed quickly, we proved that 
nodes never need to store more than one message for the unpipelined 
case. In the pipelined version, we may be storing one bit from each 
of k messages at any time, and we will need routing hardware which 
can perform a “switching” in O( 1) bit time, and can push k bits out 
the k cube wires in O( 1 )  bit time. 

IV. HIGHER THROUGHPUT OR LOWER COST 

If we make certain assumptions about the cost of sending bits 
across dimension i (namely that dimension 0 is more expensive than 
dimension k)  we can achieve higher throughput by using the higher 
numbered dimensions more heavily. We note that Algorithm 2 only 
uses dimension 0 during the first iteration of the loop, and it uses 
dimension 1 only during the first two iterations of the loop, and 
in general it uses dimension i only during the first i + 1 iterations 
of the loop. This means that if we have redundant wires for the 
higher dimensions, we can achieve higher throughput. To make this 
modification work out the best, we will assume that there are i + 1 
wire across dimension i. For this to be cost effective, we require 
that for i > 0 the cost of adding a wire to dimension i is a factor of 
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i / ( i  + 1) more expensive than the cost of adding a wire to dimension 
i - 1. We could call this a quadratic hypercube since the number of 
connections at each vertex of the cube grows quadratically instead of 
linearly. 

If we add more buffers at each node of the hypercube, we can 
then pipeline several batches of messages by running the successive 
iterations of the loop in parallel on different batches of messages, 
achieving a throughput of one batch of messages every O(k) bit 
times. 

V. COMPLETE BUTTERFLYS VERSUS CUBE CONNECTED CYCLES 

Another feature of most machines currently being proposed is that 
since hypercubes are so expensive to wire, designers often fudge 
by putting several processors at each network node (e.g., in a cube 
connected cycles network there are k processors at each vertex). This 
has two effects. 

It means that we can assume O(k)  units of hardware at each 
vertex (which makes the pipelined enumeration run quickly). 

It increases the contention for network ports, and makes care- 
fully planned algorithms such as the routing of semi-contractions lose 
a factor of k in time. Even the “quadratic hypercube” strategy men- 
tioned above does not completely deal with this problem, since it is 
possible that routings which are injective with respect to processors 
are not injective with respect to the hypercube vertices. 

VI. CONCLUSION 

Thus, we have demonstrated an O(k2)  bit time algorithm for rout- 
ing messages on a hypercube, and proposed a modified cost function 
which allows us to achieve throughput of one message set every O(k)  
bit times. The basic algorithm uses O(k)  bits of storage at each node 
of the hypercube and O(k)  serial adders at each node to perform the 
computation required to route messages. The high throughput algo- 
rithm needs O(k2)  bits of memory and O(k2) serial adders at each 
node. 

Several other O(k2) bit time algorithms which are related to this 
one appear in the literature, many of them presented in the guise of 
sorting algorithms. 

If we assume that we can sort data in a certain amount of time 
(say O(k2) or O(k) bit times), then we can perform a sort on the 
destination addresses, pack the resulting sorted messages into the 
low numbered processors, and then run a pack backwards in time to 
deliver the messages to their actual destinations. Thus, in only O(k)  
additional bit times we can do routing. 

Either a bitonic sort or a radix sort can be pipelined to run time 
O(k2)  on a complete butterfly [lo, pp. 232-2371 and [4]. Both the 
bitonic sort and the radix sort have the property that they use the first 
dimension once, the second dimension twice, and so on, so that the 
high-throughput modification noted above will work. Other sorting 
algorithms, such as are described in [5 ] ,  [2], and [15] may also be 
applied routing permutations, by first sorting and then packing. 

There are some recent O(k)  bit time sorting networks (notably [l]) 
which might be applied to the routing problem, but those networks 
suffer from very large constant factors in the time and size of the 
network. Furthermore, those algorithms do not use a hypercube to 
perform the sorting, and are thus outside the scope of this paper. 

It is not clear whether the algorithms described here are practical 
for machines currently proposed due to the constant factors involved. 
Furthermore, none of these strategies behave better for lightly loaded 
networks than they do for the worst case, while many of the currently 
proposed routing strategies (e.g., the router on the connection ma- 
chine, and the randomization strategy given in [17]) seem to behave 
better for lightly loaded networks than for heavily loaded networks. 
If it is the case that the random message routings tend to lightly load 
the network, while most heavy loads on the network are regular and 
easy to route (e.g., for fast Fourier transform [16]), then the argu- 

ment seems even stronger that the strategies given in this paper are 
not practical for machines currently being proposed. 

As larger machines are built (e.g., with a billion processors), the 
asymptotic behavior of the time bounds for routing will become more 
important. On the other hand, it is very hard to build hypercubes of 
very large numbers of nodes, which indicates that we may never 
reach the point where the constants involved become unimportant. 
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Abstract-Distributed computations may be viewed as a set of com- 
municating processes. If such a computation is to be executed by a 
multiprocessor system, the processes have to be distributed over the 
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