
1390

..
XY&= 0 . 5 i i I

0. i 0 i S z1t.-1w[41=

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1 1 , NOVEMBER 1990

0 0 0 1 1.331 d.dnu

x =0.1101011~= 0.311% y =0.110101112=0.31134 = 1.712

P

w[O]=
9, =

Z,+4-~w[ll=
w[l l= H

0.
3.
-
-

1 1 2
j i i l
i o l l
5 . 0 1 5

I I xyt= 0.3112 I I I I

1 I Z3+4-L[31= 5. 0 2 1 0 15

check: 0.311wO.3113 = O . g l O + O.ooOOi0~.

Fig. 5. Example of LRCF multiplication.

IV. SUMMARY
The reported multiplication scheme (LRCF) eliminates the need

for a carry-propagate adder. The scheme performs the multiplica-
tion most-significant digit first and produces a conventional sign-
and-magnitude product (most significant half) by means of an on-
the-fly conversion, performed concurrently with the generation of
accumulated (redundant) partial products. The scheme is presented
for general radix r and a radix-4 signed-digit implementation is de-
scribed. We estimate that, for a multiplier of 64 bits, the scheme we
described produces a reduction of about ten gate levels with respect
to a conventional scheme using a carry-look-ahead adder. The speed
can be improved by increasing the radix. In [6], we present a radix-
16 implementation in which odd and even partial products [l 11 are
computed concurrently.

REFERENCES
K . Hwang, Computer Arithmetic.
M. Uya, K . Kaneko, and J. Yasui, “A CMOS floating-point multi-
plier,” IEEE J. Solid-State Circuits, vol. SC-19, no. 5, pp. 697-701,
Oct. 1984.
A. Avizienis, “On a flexible implementation of digital computer arith-
metic,” in Information Processing 1962, C. M. Popplewell, Ed.
New York: North Holland, 1963, pp. 664-670.
A. D. Booth, “A signed binary multiplication technique,” Quart. J .
Mech. Appl. Math., vol. 4, part 2, pp. 236-240, 1951.
M. D. Ercegovac and T. Lang, “On-the-fly conversion of redundant
into conventional representations,” IEEE Trans. Comput., vol. C-36,
no. 7, pp. 895-897, July 1987.
- , “Fast multiplication without carry-propagate addition,” UCLA
Comput. Sci. Dep. Rep., 1986.
A. Avizienis, “Signed-digit number representation for fast parallel
arithmetic,” IEEE Trans. Electron. Cornput., vol. EC-10, pp.
389-400, Sept. 1961.
J. T. Coonen, “An implementation guide to a proposed standard for
floating-point arithmetic,” IEEE Comput. Mag., pp. 68-79, Jan.
1980.
Annon, “Cray X-MP Computer Systems,” Four-Processor Main-
frame Reference Manual, HR-0097, Cray Research, Inc., 1985.
M. D. Ercegovac and T. Lang, “Alternative on-the-fly conversion
of redundant into conventional representations,” UCLA Comput. Sci.
Dep. Rep. CSD-860027, Nov. 1986.
J. Iwamura et al., “A 16-bit CMOS/SOS multiplier-accumulator,” in
Proc. ICCC82, 1982, pp. 151-154.
S. Kuninobu et al., “Design of high-speed MOS multiplier and divider
using redundant binary representation,” in Proc. 8th. Symp. Comput.
Arithmet., 1987, pp. 80-86.
Y. Harata et al., “High-speed multiplier using a redundant binary
adder tree,” in Proc. 1984 IEEE Int. Conf. Comput. Design, 1984,

J. E. Robertson, “A systematic approach to the design of structures
for arithmetic,” in Proc. 5th Symp. Comput. Arithmet., 1981.
M. D. Ercegovac and T. Lang, ”Radix4 multiplication without carry-
propagate addition,” in Proc. IEEE Int. Conf. Comput. Design:
VLSI Comput. Processors, Oct. 5-8, 1987, pp. 654-658.

New York: Wiley, 1978.

pp. 165-170.

Fast, Deterministic Routing, on Hypercubes,
Using Small Buffers

Bradley C. Kuszmaul

Abstract- We propose a deterministic routing scheme for a communi-
cations network based on the k-dimensional hypercube. We present two
formulations of the scheme. The first formulation delivers messages in
O(kz) bit times using O(k) bits of buffer space at each node in the hy-
percube. The second formulation assumes that there are several batches
of messages to be delivered, and makes certain assumptions about the
cost of sending messages along the various dimensions of the cube. In
this case, the latency for delivery time is still O(k2) bit times, hut the
throughput is increased to one set of messages every O(k) bit times. For
the first formulation, we restrict ourselves to routings which are subsets
of permutations (i.e., every node sends at most one message and re-
ceives at most one message). The second formulation indicates a way to
perform routings which are subsets of H-permutations (i.e., every node
sends at most H messages and receives at most H messages).

Index Terns-Buffers, complexity theory, deterministic routing, hy-
percubes, interconnection networks, parallel processing, routing.

I. INTRODUCTION
Several routing schemes based on the hypercube have been pro-

posed [7], [5] , [15], [17], [12]. We discuss hypercubes with kdimen-
sions and 2k = N vertices (which we call nodes). A nondeterministic
O(k2) bit time algorithm with O(kz) bits of storage at each node is
described in [17]. In this paper, we describe a deterministic O(k2)
bit time algorithm with O(k) bits of storage at each node. We go on
to describe an alternative deterministic algorithm, based on a slightly
modified network, with O(k2) bit time latency for messages travel-
ing through the network, O(k) throughput (i.e., one message every
O(k) bit times), and O(k2) bits of storage at each node.

When describing hypercube networks we define a node to be a
vertex on the hypercube. When describing multiprocessor computer
systems, we define a processor to be the hardware which sends and
receives messages. In some computer systems (e.g., the connection
machine [9]), the processors are associated with the nodes of the
hypercube routing network.

In general, we assume that messages are at O(k) bits long (be-
cause, for example, it should be possible to transmit a node address
in a message). This gives a lower bound for routing of o(k) bit
times.

Manuscript received October 6, 1987; revised January 28, 1988.
The author is with the Massachusetts Institute of Technology, Cambridge,

IEEE Log Number 9035138.
MA 02139.

0018-9340/90/1100-1390$01.00 0 1990 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 11, NOVEMBER 1990 1391

A bit time is the amount of time it takes to send one bit across
one wire.

11. SPECIAL CASE ROUTINGS
This section presents several algorithms and theorems that we will

use in our routing algorithm. We will only consider message sets in
which every node sends at most one message and receives at most
one message. We can thus think of a routing as a partial function f
from nodes to nodes.

We identify nodes with integers by using the standard numbering
scheme for a hypercube. (Le., node i is connected to node i @ 2 J ,
where a @ b is the bitwise logical XOR of the nonnegative integers a
and b represented in binary.)

A . Semi-Contractions

First we will consider a special class of routings called semi-
contractions, and prove that we can route semi-contractions quickly.

Definition 1: An injective routing is a routing where no two
nodes are sending a message to the same node. Le., f is injective.

The rest of this paper will assume that a routing is an injective
routing.

Definition 2: A packing is a monotonic routing onto a single
interval. Le., 3, j such that Vx, y in the domain o f f , x < y iff
i 5 f (x) < f (y) 5 j , and the range off is exactly [i, j].

Definition 3: A semi-contraction is a routing which has the
property that the distance between the destinations of two packets
is no greater than the distance between their initial locations. I.e.,

Note that by li - jl we mean the difference between i and j as
integers rather than, say, the Hamming distance between i and j .

Theorem 1 is due to [141 which originally proved it for packings.
The proof for semi-contractions is due to [13]. A packing is a semi-
contraction so we present the stronger theorem for semi-contractions
even though we will only need it for packings.

Theorem I: It is possible to route semi-contractions in bit time
O(k) with O(k) bits of storage at each node by Algorithm 1.

Algorithm 1: (Note that we number cube dimensions from
zero to k - 1):
for i = 0 to k - I do

li -jl 2 !f(i) -.f(j)l.

for each node n in parallel
If (3 message m at node n which wants to cross

send m across the ith dimension.
the ith dimension)

Proof: The proof is based on the following lemma.
Lemma 1: At any point in time, and at every node, there is at

most one message at node n which wants to cross the ith dimension.
Clearly, if Lemma 1 holds then the algorithm terminates because

there are no collisions.
Proof of Lemma 1: Inductively on i (the loop variable men-

tioned in the algorithm for Theorem 1). Clearly, Lemma 1 is true
before the algorithm begins since there is at most one message at
any node. Consider just before the loop for which i = /, and a
message which is being routed from j to f (j) where f is a semi-
contraction. We assume (by induction) that there have been no “col-
lisions,” which means that the relative addresses of the message’s
destinations are all zero in the low order I - 1 bits (since the mes-
sages have been able to cross every dimension that they wanted to
so far). So the address field of a message looks like (writing the low
order bits on the right, and denoting bits y through x of a field R
where x 2 y as R[x: y], and bit x of R by R[x])

(INITIAL[k - 1 : I + 11 INITIAL[I] FINAL[/ - 1 :0])

where the INITIAL bits are the bits in the original relative address
(since the message has not crossed any of the high-order dimensions,
the high-order bits of the relative address have not changed), and the
FINAL bits are all zero (by inductive hypothesis).

Now assume that there is to be a collision on this cycle through
the loop (i.e., there is a node n with two messages m l and m2 both

of which want to cross dimension I) . We thus know that the low order
I + 1 bits of m l and m2 must be the same (i.e., the INITIAL[o bits
must be the same because both want to cross dimension I, and the low
order / - 1 bits (the FINAL bits) are all zero). We know that since
the messages are not going to the same location that the high-order
bits must differ; thus, the final destinations of the two messages must
differ by at least 2‘+’ . But because f is a semi-contraction, we know
that the starting locations of the two messages must differ by at least
2‘+’. This means that the bits INITIAL[k - 1: I + 11 must differ for
m l and m2, a contradiction to our assumption that they arrive at the
same node, n .

Now we need to show that the algorithm presented in Theorem 1
can run in bit time O(k) with O(k) bits of storage at each node. The
naive approach to the implementation of this algorithm would require
O(k2) bit time: send complete messages across the ith dimension
before sending them across the i + lth dimension. However, we can
pipeline the bits through the router to achieve O(k) bit time the
way the Thinking Machines connection machine does [9]: note that
only one bit of the address is needed in order to make the decision
about how to route the messages along any given dimension. We
need to arrange that the relevant bit of the address is available at
the right time. To do this we send bit number 0 of the address into
the hardware logic which decides how to route dimension 0 of the
hypercube. While dimension zero is being “switched,” we send bit
number 1 into the hardware. As soon as possible, the bit number
one of the address is forwarded through the hardware on to the next
level of logic. Each level of the switch can “consume” one bit of the
message, and send the rest of the message on as soon as possible.
The pipeline thus built is of depth k , and it will take O(k) bit times
to perform the switching. The rest of the message can then be sent
through the switches (continuing the pipelining) in O(k) additional
time (since the message data size is about the same as the message
address size).

B . Enumerating

The next important algorithm we need is an enumeration algorithm
which gives selected processors unique numbers. We will use the
enumeration to generate addresses for a packing. The algorithm for
performing an enumeration in O(k2) bit time appears in [6], and was
improved to O(k) bit time in [3], [4], [I l l , and [8].

Definition 4: The enumeration of a set of nodes S =
{ n , , n2, . . ,nisi} where nj < n, iff i < j is the mapping Es:
S -+ {l , . . . , ISI} whereEs(n,) = i .

In order to use the enumeration of a set S of nodes we will need
to arrange that every node n E S knows Es(n). We call this the
computation of Es . We need to be able to perform this computation
quickly.

DeJinition 5: For i an integer in {O;.., k - 1) we define an
i-subcube of the network to be a set of nodes which whose

addresses in the hypercube are the same in bits 0 through i - 1 .
In the case of i = 0, a 0-subcube is the set of all the nodes. Note

that there are 2‘ i-subcubes, each containing 2 k - i nodes. Thus,
a 1-subcube is a set of nodes whose addresses are same in all but
bit 0, and there are two 1-subcubes, while there are 2k k-subcubes,
each containing exactly one node.

Theorem 2: Given S, a set of nodes in a hypercube, we can
compute Es in time O(k) .

Proof: First we will sketch an algorithm for computing E s .
Then we will prove that an enumeration can be done in O(k) bit times
on a butterfly; and then extend the result to apply to hypercubes.

We define a complete butterfly to be a butterfly network with the
ability to do certain computations on the internal vertices of the but-
terfly. The computations needed will be small, and the amount of
hardware for each butterfly node is a constant (i.e., the amount of
hardware needed for each hypercube node is linear in k) . In a but-
terfly network of dimension k , there are k2k of these internal nodes.
Using the notation of [16], where the vertices of the butterfly net-
work are given ranks 0 through k - 1 and there are 2k vertices on
each rank, we define p , , ; to be the ith node of the rth rank. We

1392 IEEE TRANSACTlONS ON COMPUTERS, VOL. 39, NO. 11, NOVEMBER 1990

assume that at the begining of the algorithm, all the vertices of the
form P O , ; are the nodes which need to be enumerated. Let s(i) be
the characteristic function of S , i.e., s(i) is one if i E S (i.e., p a , ;
wants to be counted in the enumeration), and zero otherwise.

We will go from rank 0 to rank k - 1 serially, with the invariant
that at the end of the computation of rank r, vertex p r , ; “knows”
two numbers:

0 t r , , is the total number of processors which want to be counted
in the (k - r)-subcube containing PO, ; . More precisely,

tr,i = c s (j) .
j € the (k-r)-subcube containing i

0 o, , i is the “offset” of processor i among those which want to
be counted in the (k - r)-subcube containing pa , i . More precisely,

O r , i = c s (j) .
j € the (k-r)-subcube containing i , where j < i

The following recursion relations will compute Es :

to, i = s (i)

00,; = 0

I.. 1 . i - t . - J - i , i + t , - i , ; e 2 J i f j > 0

0. J . 1 . -0. - J - l , i i f j > O a n d i < i @ 2 j

0 . . -0. - , - i , ; + t , - l , i ~ ~ , i f j > O a n d i > i @ 2 J

where a @ b is the integer which in base two is the bitwise Exclusive
OR of the two integers a and b .

The proof that these relations are correct is inductive on j :
0 The base case is j = 0 which is clearly true since the (k - 0)-

subcube containing i is just i itself. The total number of processors
which want to be counted in any (k - 0)-subcube is just s(i) and the
offset is zero.

The inductive case is as follows. The number of the processors
which want to be counted in the (k - j)-subcube containing i is
independent of whether i < i @ 2’, and is just the sum of the
number of processors in each of the two k - (j - 1)-subcubes
which make up the two halves of the (k - j)-subcube containing i ,
namely the k - (j - 1)-subcube containing i and the k - (j - 1)-
subcube containing i @ 2/ . The offset of the processors in the
“low” half of the (k - j)-subcube is not changed when the “high”
half of the (k - j)-subcube is thrown in, which shows that oj, ; is
computed correctly for the case where i < i @ 2 I . The offset of the
processors in the “high” half is incremented by the total number of
processors in the ‘‘low’’ half.

A butterfly network can compute these relations because the re-
cursion relation has the form that the values needed to compute t and
o for some vertex x of rank j are just the values stored at the vertices
of rank j - 1 adjacent to x in the butterfly. We use pipelining to get
that the enumeration can be done in O (k) bit times, because at each
rank j , as soon as the Ith bit of o and t are received from rank j - 1 ,
the Ith bit of o and t can be computed and sent on to rank j + 1 .

III. THE ALGORITHM UPON WHICH ALL IS ROUTED
Now we can perform our arbitrary routing using Algorithm 2,

given below. First we need a bit of notation.
Definition 6: For every i in [0 . . . k - I], and for every node x

define I* , i to be the lowest numbered node in the i-subcube containing
X .

Algorithm 2: The routing algorithm.

for each dimension i in [0 . . . k - 11 serially
1) All messages which want to cross dimension i do so.

Note: Now we have invariant that every message is in the
same i-subcube as its destination. Also, every node has ei-
ther zero, one, or two messages. Furthermore, there are at
least as many nodes with zero messages as there are nodes

with two messages, since all of the messages must be routed
within that i-subcube.
For each i-subcube C in parallel

Enumerate all nodes in C with two messages,
EC , 2 messuges .

Every node x which has two messages sends one of the
two messages to node l x , i + Ec, 2 . m e s s a g e s (~) . Note that
within each i-subcube, this is a packing and that the mes-
sages will not ever leave the i-subcube they started in, so
the routing will happen in time O(k) .
For each i-subcube C in parallel

Enumerate all nodes in C with zero messages,
Ec , 0-messages .

Every node x which has zero messages sends its own
address to node

l x , i + Ec, O-messuges(X).

Every node which received a message in Step 3 sends
the message received in Step 3 to the processor whose
address was received in Step 5 . Note that every node which
received a message in Step 3 above will also have received
a message in Step 5 as noted in the invariant in Step 1 . Now
we have the invariant that every message is in the correct
i-subcube and no node has more than one message.

This algorithm has the invariant that at the begining of loop number
i, every message is in the correct i-subcube and there is at most one
message at every node, as noted in Step 6.

The running time of Algorithm 2 is as follows: In loop number i:
Step 1 takes O(k) bit times (since the messages must be sent

completely across dimension 0.
Steps 2 and 4 each take O(i) bit times (since an enumerate can

be done in O (i) bit times on a cube of dimension i) . We can round
up to O(k) bit times without losing anything since Step 1 has already
used up O(k) bit times.

Steps 3 and 5 each take O(k) bit times because they are pack-
ings.

Step 6 takes O(k) bit times because its routing is simply the
routing of Step 5 run backwards in time. The fact that this routing
must be run backwards from the other routings is important for hard-
ware designers. The earliest known appearance of this “rendezvous”
operation is in [6].

Thus, the running time of Algorithm 2 is O(k) bit times each time
around the loop, and there are k times around the loop for a total
running time of O(k2) .

The amount of storage required at each node is O(k) bits, since
the maximum number of messages which ever are at one processor
in Step 1 is two. To perform an enumeration requires O(k) bits of
storage and k serial adders. To perform a packing we note that in the
proof that semi-contractions can be routed quickly, we proved that
nodes never need to store more than one message for the unpipelined
case. In the pipelined version, we may be storing one bit from each
of k messages at any time, and we will need routing hardware which
can perform a “switching” in O(1) bit time, and can push k bits out
the k cube wires in O(1) bit time.

IV. HIGHER THROUGHPUT OR LOWER COST

If we make certain assumptions about the cost of sending bits
across dimension i (namely that dimension 0 is more expensive than
dimension k) we can achieve higher throughput by using the higher
numbered dimensions more heavily. We note that Algorithm 2 only
uses dimension 0 during the first iteration of the loop, and it uses
dimension 1 only during the first two iterations of the loop, and
in general it uses dimension i only during the first i + 1 iterations
of the loop. This means that if we have redundant wires for the
higher dimensions, we can achieve higher throughput. To make this
modification work out the best, we will assume that there are i + 1
wire across dimension i. For this to be cost effective, we require
that for i > 0 the cost of adding a wire to dimension i is a factor of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 11, NOVEMBER 1990 1393

i / (i + 1) more expensive than the cost of adding a wire to dimension
i - 1. We could call this a quadratic hypercube since the number of
connections at each vertex of the cube grows quadratically instead of
linearly.

If we add more buffers at each node of the hypercube, we can
then pipeline several batches of messages by running the successive
iterations of the loop in parallel on different batches of messages,
achieving a throughput of one batch of messages every O(k) bit
times.

V. COMPLETE BUTTERFLYS VERSUS CUBE CONNECTED CYCLES

Another feature of most machines currently being proposed is that
since hypercubes are so expensive to wire, designers often fudge
by putting several processors at each network node (e.g., in a cube
connected cycles network there are k processors at each vertex). This
has two effects.

It means that we can assume O(k) units of hardware at each
vertex (which makes the pipelined enumeration run quickly).

It increases the contention for network ports, and makes care-
fully planned algorithms such as the routing of semi-contractions lose
a factor of k in time. Even the “quadratic hypercube” strategy men-
tioned above does not completely deal with this problem, since it is
possible that routings which are injective with respect to processors
are not injective with respect to the hypercube vertices.

VI. CONCLUSION

Thus, we have demonstrated an O(k2) bit time algorithm for rout-
ing messages on a hypercube, and proposed a modified cost function
which allows us to achieve throughput of one message set every O(k)
bit times. The basic algorithm uses O(k) bits of storage at each node
of the hypercube and O(k) serial adders at each node to perform the
computation required to route messages. The high throughput algo-
rithm needs O(k2) bits of memory and O(k2) serial adders at each
node.

Several other O(k2) bit time algorithms which are related to this
one appear in the literature, many of them presented in the guise of
sorting algorithms.

If we assume that we can sort data in a certain amount of time
(say O(k2) or O(k) bit times), then we can perform a sort on the
destination addresses, pack the resulting sorted messages into the
low numbered processors, and then run a pack backwards in time to
deliver the messages to their actual destinations. Thus, in only O(k)
additional bit times we can do routing.

Either a bitonic sort or a radix sort can be pipelined to run time
O(k2) on a complete butterfly [lo, pp. 232-2371 and [4]. Both the
bitonic sort and the radix sort have the property that they use the first
dimension once, the second dimension twice, and so on, so that the
high-throughput modification noted above will work. Other sorting
algorithms, such as are described in [5] , [2], and [15] may also be
applied routing permutations, by first sorting and then packing.

There are some recent O(k) bit time sorting networks (notably [l])
which might be applied to the routing problem, but those networks
suffer from very large constant factors in the time and size of the
network. Furthermore, those algorithms do not use a hypercube to
perform the sorting, and are thus outside the scope of this paper.

It is not clear whether the algorithms described here are practical
for machines currently proposed due to the constant factors involved.
Furthermore, none of these strategies behave better for lightly loaded
networks than they do for the worst case, while many of the currently
proposed routing strategies (e.g., the router on the connection ma-
chine, and the randomization strategy given in [17]) seem to behave
better for lightly loaded networks than for heavily loaded networks.
If it is the case that the random message routings tend to lightly load
the network, while most heavy loads on the network are regular and
easy to route (e.g., for fast Fourier transform [16]), then the argu-

ment seems even stronger that the strategies given in this paper are
not practical for machines currently being proposed.

As larger machines are built (e.g., with a billion processors), the
asymptotic behavior of the time bounds for routing will become more
important. On the other hand, it is very hard to build hypercubes of
very large numbers of nodes, which indicates that we may never
reach the point where the constants involved become unimportant.

ACKNOWLEDGMENT

Thanks to G. Blelloch for explaining to me how to do enumeration
in O(k) bit time, and J. Rose for many helpful comments on this
paper.

I would 1ike.to thank the referees for their helpful comments.

REFERENCES
M. Ajtai, J . Komlos, and E. Szemeredi, “An o(n log n) sorting net-
work,” in Proc. 15th ACM Symp. Theory Comput., Boston, MA,
Apr. 1983, pp. 1-9.
K. E. Batcher, Sorting networks and their applications, in AFZPS
Proc. Spring Joint Comput. Conf., Atlantic City, NJ, Apr. 1968,
pp. 307-314.
G. E. Blelloch, “Parallel prefix vs. concurrent memory access,” Tech.
Rep., Thinking Machines Corp., Oct. 1986.
- , “Scans as primitive parallel operations,” in Proc. 1987 Znt.
Conf. Parallel Processing, Aug. 1987, pp. 355-362.
A. Borodin and J. E. Hopcroft, “Routing, merging and sorting on
parallel models of computation,” in Proc. 14th Annu. ACM Symp.
Theory Comput., San Francisco, CA, May 1982, pp. 338-344.
D. P. Christman, “Programming The Connection Machine,” Master’s
thesis, Dep. Elec. Eng. Comput. Sci., Massachusetts Institute of Tech-
nology, Jan. 1983.
W. J. Dally and C. L. Seitz, “Deadlock-free message routing in mul-
tiprocessor interconnection networks,” ZEEE Trans. Comput., vol.
C-36, no. 5 , pp. 547-553, May 1987.
F. E. Fich, “New bounds for parallel prefix circuits,” in Proc. ACM
Symp. Comput., Apr. 1983, pp. 100-109.
W. D. Hillis, The Connection Machine. Cambridge, MA: MIT
Press, 1985.
D. E. Knuth, Sorting and Searching. Vol. 3 The Art of Computer
Programming. Reading, MA: Addison-Wesley, 1973.
C. E. Leiserson, “Area efficient layouts (for VLSI),” in Proc. Symp.
Foundations Comput. Sei., 1980.
G . Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm
for routing in permutation networks,” ZEEE Tmns. Comput., 1981.
J. Rose, Personal communication, 1985. J. Rose is currently employed
at Thinking Machines Corporation, 245 First Street, Cambridge, MA.
J . T. Schwartz, “Ultracomputers,” ACM Trans. Progmmming Lon-
guages Syst., vol. 2, no. 4, pp. 484-521, Oct. 1980.
C. D. Thompson, “The VLSI complexity of sorting,” IEEE Trans.
Comput., vol. C-32, pp. 1171-1184, Dec. 1983.
J. D. Ullman, Computational Aspects of VLSZ. Rockville, MD:
Computer Science Press, 1984.
L. G. Valiant and G. J . Brebner, “Universal schemes for parallel com-
munication,” in P m . 13th Annu. symp. Theory Comput., 1981,
pp. 263-277.

An Interconnection Network for Distributed
Recursive Computations

Alain J. Martin and
Jan L. A. van de Snepscheut

Abstract-Distributed computations may be viewed as a set of com-
municating processes. If such a computation is to be executed by a
multiprocessor system, the processes have to be distributed over the

Manuscript received July 23, 1984; revised July 20, 1990.
The authors are with the Department of Computer Science, California

IEEE Log Number 9038765.
Institute of Technology, Pasadena, CA 91 125.

0018-9340/90/1100-1393$01.00 O 1990 IEEE

