
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 8,169- 179 (1990)

NAP (No ALU Processor): The Great Communicator
BRADLEY C. KUSZMAUL*

Massachusetts Institute of Technology. Laboratoryfor Computer Science, Cambridge, Massachusetts 02139

A N D

JEFF FRIED+

Massachusetts Institute ofTechnology, Laboratoryfor Computer Science, Cambridge, Massachusetts 02139:
and GTE Laboratories, Waltham, Massachusetts 02254

Message routing networks are acknowledged to be one of the
most critical portions of massively parallel computers. This pa-
per presents a processor chip for use in a massively parallel com-
puter. The programmable approach used in this processor pro-
vides enough f lexibi l i ty to make i t a “universal” part for bui lding
a wide variety of interconnection networks and routing algo-
rithms. A SIMD control scheme is used to make programming
and synchronizing large numbers of processors simple. In the
course of designing this processor, we were faced with the deci-
sion of which logic operations to implement in an Arithmetic-
Logic Unit (ALU); informal design studies showed that it was
best to provide none. The processor performs al l computations
by a sophist icated table lookup mechanism, and has no ALU; i t
is thus called the No ALU Processor (NAP). Using tables rather
than an ALU provides a very flexible instruction set , and in real
programs often allows more than one “operation” to be done in
one cycle. Benchmarks written for the NAP show that indirect
addressing mechanisms can speed many common operations by
a factor of about log N on an N-processor machine. We have
therefore provided hardware to support indirect addressing, or
a Multiple Address Multiple Data operation. In addition, the
NAP contains local storage used for flexible instruction
decoding: the same instruction can result in different operat ions
on different chips. These two mechanisms allow programmers
to write programs for NAP machines easily using SIMD style,
and also provide the power of different computations happening
simultaneously in different parts of the machine. It is possible
to build and eff iciently simulate, using NAP chips, a wide variety
of communications networks, including hypercubes, butterf l ies ,
fat-trees, and networks for computing parallel prefix operations.
By this informal measure, the NAP architecture is a universal
part for building interconnection networks and running network
algorithms. 0 1990 Academic Press, Inc.

* Partially supported by ONR, Reference Number NO00 14-83-K-O 125,
and by ONR, Reference Number NO00 14-84-K-0099.

t Supported by GTE Laboratories, DARPA Contract NOOO14-87-K-
0825, and ONR Contract NOOO14-86-K-0593.

I. INTRODUCTION

Message routing networks for parallel supercomputers
occupy a unique place in the spectrum from specialized to
general-purpose machines. Although these routing net-
works can be used to build general-purpose parallel com-
puters (as well as specialized computers), they themselves
are usually built out of very specialized hardware. This pa-
per presents a single processor design which is useful for
building a variety of different networks; in this sense it is a
general-purpose element within the specialty of intercon-
nection networks. This processor is an experimental design
incorporating several novel architectural features which
make it simple to program, general purpose, and efficient.
Specifically, no Arithmetic-Logic Unit (ALU) is provided
in the processor. The arithmetic functions normally per-
formed by an ALU are instead performed by table lookups
into memory. In addition, a very flexible programming
model is provided, which supports indirect addressing and
multiple concurrent instructions while operating in a Sin-
gle-Instruction Multiple-Data (SIMD) mode or Multiple
SIMD (MSIMD) mode.

The No ALU Processor (NAP) chip described in this pa-
per is the result of a design experiment which explores archi-
tectures for communication network support. The experi-
ment has three main design goals:

l Act as a “universal” element for routing networks. By
universal we mean both general purpose and efficient. The
performance of the NAP when used as a node within a net-
work should be as close as possible to the performance of a
special-purpose chip designed especially for that network.

l Provide communications control which is as flexible as
possible.

l Keep the processor’s input-output channels (which
connect to other NAP chips) and memory as busy as possi-
ble performing useful work.

1 6 9 0743-7315/90$3.00
Copyright 0 1990 by Academic Press, Inc.

All rights of reproduction in any form reserved.

170 KUSZMAUL AND FRIED

In the course of designing the NAP, we were faced with
the decision of which logic operations to implement in an
ALU; informal design studies showed that it was best to pro-
vide none. Using tables rather than an ALU provides a very
flexible instruction set, and in real programs often allows
more than one “operation” to be done in one cycle. One of
the most interesting lessons from the design of the NAP was
that table lookup is a very powerful mechanism.

It is interesting to note that there are two other examples
of ALU-less processors, both from the early 1960s. One of
these, called the CADET, was built and marketed by IBM
[11. The other was proposed by Ferroxcube Corp. [91, a
manufacturer of core memory. Both of these machines were
explored because the cost and performance of memory had
been greatly improved with the invention of core memory.
As the density of memory compared to logic continues to
increase, a somewhat similar situation exists today.

A collection of NAP chips can be wired together and can
be programmed to simulate many things. We have pro-
grammed our simulators to perform several important par-
allel algorithms, including reduction and parallel prefix in
a tree network [21, connection-machine style routing on a
cube-connected cycle [5 1, and cellular automata programs
(such as Conway’s game of Life) [111. We are able to sup-
port any network with a large number of nodes (up to about
2 32 nodes) of constant degree, including fat-trees [6, 41,
butterfly networks [12,8, lo], cube-connected cycles, trees,
and meshes.

Section II of this paper describes the instruction set archi-
tecture of the NAP. Section III gives three examples of the
programming and operation of the NAP. Section IV dis-
cusses the implementation of the NAP chip. Finally, Sec-
tion V evaluates the NAP in the light of our design goals,
and summarizes the lessons learned from this project.

II. INSTRUCTION SET ARCHITECTURE

We adopt the (M)SIMD model, where one or more mi-
crocontrollers broadcast microinstructions to sets of proces-
sors; each set of processors is controlled by one microcon-
troller. The microcontroller handles all instruction se-
quencing (e.g., loops and branches) and, as such, must be
as powerful as a conventional computer. In this SIMD
model all processors are globally synchronized at the in-
struction level.

A top-level view of a NAP computer system is shown in
Fig. 1. Global microcontrollers broadcast instructions (a
single microcontroller is shown at the left) to collections of
NAP chips (shown at the right). Each NAP is connected to
its neighbors through up to eight bidirectional data chan-
nels. Each bidirectional data channel is capable of sending
1 bit and receiving 1 bit per clock cycle. The NAP proces-
sors also have an off-chip static random access memory
(SRAM).

FIG. 1. System-level view of a NAP-based computer. Global micro-
controllers broadcast instructions to sets of NAP chips. Each NAP chip is
connected to an off-chip SRAM, a SIMD instruction broadcast bus, and
eight bidirectional network lines.

The bidirectional channels may be connected in any fash-
ion to form an interconnection network; the NAP chips
form the nodes of that network, and may do computations
in parallel to perform routing, do actual computing for the
system, or both. Examples of networks which can be built
using NAPS are butterfly or fat-tree networks, banyan or
flip-type networks, hypercubes (more than 2 8 processors re-
quire multiple NAPS per node), cube-connected cycles,
shuffle-exchange networks; torus and mesh networks, re-
structurable networks, and trees. One restriction is that the
networks are regular enough to have fewer than 16 distinct
types of nodes; most practical networks have 1 or 2.

A. Indirect Addressing and MIMD

One very important mechanism provided by the NAP
which is not found in conventional SIMD computers is in-
direct addressing. We support indirect addressing because
of the wave nature of the computations performed by many
routing networks. Consider, for example, parallel prefix
[2 1, which is a class of parallel algorithms which use a tree
interconnection structure between processors to perform
many operations (such as addition) in log N time on Npro-
cessors. At any stage of a parallel prefix computation,
different levels of the tree may be accessing bits at different
addresses. Conventionally, this would be handled by en-
abling or disabling the processors at different levels of the
tree, and running the computation on different levels at
different times, thus slowing down the overall computation
to time log* N. Indirect addressing provides a mechanism
for different processors to access different memory ad-
dresses at the same time under SIMD control. The result is

NAP: THE GREAT COMMUNICATOR 171

that parallel programming can be done more flexibly and
more efficiently (by a factor of log N).

In addition to indirect addressing, there are three means
of differentiating processors within the SIMD control struc-
ture and hence making programming more flexible and
efficient:

1. Conditional execution: the instructions broadcast on
the SIMD bus can conditionally load a local instruction
store called the nanostore, conditionally load the memory,
conditionally load configuration bits within the NAP
(called Input-or-State-Select or ISS bits), and conditionally
execute sequences of instructions. An instruction may be
conditionally executed depending on a combination of
state bits and data from the input channel.

2. The instructions stored within the nanostore of each
NAP may be different, so that different processors may per-
form totally different operations in response to the same
broadcast instruction.

3. Processors can have different tables at the same ad-
dress in local memory, and thus perform different functions
even while they are accessing the same address.

These three mechanisms, which are explained in more de-
tail below, provide a large degree of flexibility to NAP pro-
grammers.

B. Instruction Philosophy

We assume that off-chip wire delays are large compared
to on-chip cycle times and local memory access time, since
we are implementing systems with long wires (we use a ca-
pacitive model for the wires). Therefore, we chose an ap-
proach where there is a slow clock for operations between
processors (the microcycle) and a fast clock for operations
within a processor (the nanocycle). During one microcycle,
the microcontroller broadcasts a microinstruction, which is
executed by the processors. Each processor can read or write
from each of its eight single-bit input-output channels. Dur-
ing one microcycle, there are four minor cycles called nano-
cycles. During one nanocycle, a nanoinstruction is exe-
cuted. A nanoinstruction may access the external memory
with a read-modify-write (which gives the processor the old
value in memory and allows the processor to modify 1 bit
of memory or to write a complete different value back to
memory). The nanoinstruction also updates some internal
processor state. The memory address may be changed once
per nanocycle.

The NAP depends heavily on memory. As we have seen,
a nanocycle may involve a complex memory access, so that
the performance of the NAP is driven by memory perfor-
mance. Most programs written for the NAP are also very
memory-oriented. Operations are performed using tables in
memory under the control of broadcast microinstructions.
Typically, these table-based operations take as operands an

arbitrary combination of state and input channel values, an
integer, or an address. Each table (called a function table)
requires 256 words (8 bits each). An example function ta-
ble for adding two 2-bit numbers is shown in Fig. 2. Note
that multiple functions can be combined in one table; the
table shown in Fig. 2 has a number of unused bits (denoted
by “X”) that could be used for another function. Our proto-
type supports up to 2K words of external SRAM, so that up
to eight different tables can be stored in memory at once;
additional tables are downloaded as needed. Tables may be
accessed using either direct or indirect addressing.

We adopted the principle that the implementation
should allow as much flexibility as possible, unless that
flexibility would be expensive. For example, we tried to
avoid making any of the state bits special, but we needed 2
state bits to control the conditionalization. We decided that
adding a multiplexor or increasing the width of the CC field
to allow full generality would be too expensive. The condi-
tionalization of processors is very general, since it is done
by table lookup in the 4-bit CC field.

C. The NAP Microword

Table I shows the format of the NAP microword. This
word is the instruction broadcast from a microcontroller to
a number of NAP chips in (M)SIMD fashion each micro-
cycle. The 39 bits of the microword are common to all the
NAPS in a set. Each microword contains distinct operation
codes for every nanocycle, as well as condition codes, a di-
rect memory address, and two table offsets used for indirect
addressing or table-based logical operations. The mi-

Word Address
xxxx 00 00
xxxx 00 01
xxxx 00 10
xxxx 00 11
xxxx 01 00
xxxx 01 01
xxxx 01 10
xxxx 01 11
xxxx 10 00
xxxx 10 01
xxxx 10 10
xxxx 10 11
xxxx 11 00
xxxx 11 01
xxxx 11 10
xxxx 11 11

output
xxxxx 000
xxxxx 001
xxxxx 010
xxxxx 011
xxxxx 001
xxxxx 010
xxxxx 011
xxxxx 100
xxxxx 010
xxxxx 011
xxxxx 100
xxxxx 101
xxxxx 011
xxxxx 100
xxxxx 101
xxxxx 110

FIG. 2. Example function table for two-input 2-bit addition. The word
address is composed of some unused high-order bits (which could be used
for another function), and two binary 2-bit inputs. The output consists of
5 unused high-order bits, and a 3-bit result. Unused bits are denoted by
“x”. Note that each line of this description specifies 16 words of the func-
tion table.

172 KUSZMAUL AND FRIED

TABLE I ent processors. The OP fields give the “address” of the
The Microinstruction Word Format Shows the Mnemonics, nanoinstruction within the nanostore. This approach re-

Functions, and Width of Each Instruction Field duces the number of bits broadcast to the processors and
thus economizes on chip pins. In addition, it provides a

Width
Mnemonic Function (bits)

mechanism for different processors to perform different
work under the control of the same microinstruction, since

INIT Initialization and download control 2
different processors may have different nanoinstructions

OPO Four-bit indexes into the nanostore which loaded into the same address in the nanostore.
OPI specify which nanoinstruction to perform

4

OP2 in each nanocycle; OPs share one address
4
4 D. Processor Organization

OP3 and condition code 4
c c Condition code; this decodes to 16 conditions 4

A block diagram of the NAP processor is shown in Fig.
MIP Memory address (for direct addressing) II

3. Table II shows the mnemonics used in the datapaths of

FA Function table offsets (for direct addressing) 3 the NAP processor, and Table III shows the fields of the
FB normally contain the start address of a table 3 nanoinstruction. An instruction latch (shown on the left in

Total number of microword bits 39 Fig. 3) is used to hold each microinstruction from the
SIMD instruction stream. It operates once per microcycle.
There are multiple NAP processors per chip; our imple-
mentation has four processors per chip. Only one instruc-

croword is also very memory-oriented; 17 of its 39 bits are tion latch is needed per chip, although in our implementa-
used for memory addressing. tion we provided one latch per processor for expediency.

The microword does not contain the actual nanoinstruc- The nanocontrol (shown at upper left) sequences through
tions executed each nanocycle by the NAPS. Rather, it con- the four OPs, one per nanocycle, translating each OP into
tains four 4-bit OP codes which specify an address in an on- control signals. This translation must be provided on an in-
chip memory called the nanostore. The nanostore contains dividual processor basis, since different processors should
the nanoinstructions in the form of a bit for every control be able to execute different nanoinstructions while execut-
line needed by the NAP hardware. The nanoinstructions ing the same OP. The nanocontrol also reduces the number
are loaded under program control and may differ for differ- of bits in the microinstruction (and hence reduces the num-

OS

- 8

- 1 6

FIG. 3. The block diagram of the NAP chip shows (in clockwise order) the SIMD instruction latches (left), the nanocontrol, the input-output-state,
the MDL, and the selector-logic. The RAM interface is shown at the bottom.

NAP: THE GREAT COMMUNICATOR 173

TABLE II logic produces the address to memory (ATM), data to
Mnemonics Used in the Datapaths of the NAP Processor memory (DTM), and data to the input-output-state (OS).

Mnemonic Description

ATM Address To Memory
DFM Data From Memory
DTM Data To Memory
BITADDR BIT ADDRess
BITVAL BIT VALue
I data from Input channels
0 data to Output channels
S State data
IS combined Input-State data
OS combined Output-State data
M M Mix-and-Match value
ISS Input-State-Select (register)
MDL Memory-Data-Latch (register)

Width
(bits)

II
8
8
3
1
8
8
8
8
8
8
8
8

ber of pins per chip) since each of the four nanoinstructions
is encoded into 4 rather than 28 bits.

Within each nanocycle the NAP processor behaves as fol-
lows (refer to Fig. 3) . The data flow through the NAP cir-
cuitry as follows. Each nanocycle, the selector-logic uses the
MIP, FA, and FB fields of the microinstruction, the current
value of the MDL, and the current IS value (derived from
the S-bit state register and the data input pads) to compute
a memory address (ATM, shown leaving downward from
the selector logic). The memory responds with data from
memory (DFM, shown arriving at the lower right). The
value of DFM is supplied to the MDL and the selector-logic.
The selector-logic then uses the previously available data
plus the value of DFM to compute new DTM. The value of
DTM may be written to the same memory location indexed
by the memory address generated earlier in the nanocycle.
Whether DTM is actually written to memory is controlled
by the memory-write-enable (MWE, which is a 1 -bit nano-
instruction field). The DTM and MWE signals are shown
leaving at bottom center.

The input-output-state (shown at upper right) controls
all the input-output data channels (i.e., wires) for the pro-
cessor. Each input-output-state unit can be individually
programmed to act as a bidirectional input-output channel
or as a single bit of internal state.

The nanocontrol (shown in Fig. 4) generates all of the
control signals for the other parts of the NAP processor.
Generally, the control signals are not shown leaving the
nanocontrol in the figures. The nanocontrol consists of a
nanostore (a 16 by 28 SRAM, shown center right) and a

The memory-data-latch (MDL, shown at middle right in
Fig. 3) holds a word from memory. The MDL is simply
a latch with write-enable. The nanoinstruction determines
whether the MDL retains its old value or latches the current
value being read from memory.

OPS (4 x 4)

The selector-logic provides address calculations (for indi-
rect addressing) and data selection. These calculations are
performed by a combinational circuit that computes the
function described in Subsection E, below. The selector-

TABLE III
Fields of the Nanoinstruction

nanoaddressor ‘I* 1 6 x 2 8
nanostore

>

T
WE

Mnemonic Description

MMM Mix-and-Match M UX

BDAS Bit-Direct-Address-Select
FAS Function-Address-Select
MAS Middle-Address-Select
LAS Index-Address-Select
MWBS Memory-Write-Bit-Select
MWS Memory-Write-Select
RMWBIT Read-Modify-Write BIT
MWE Memory-Write-Enable
OSWE Output-State-Write-Enable
LMDL Latch MDL
Total number of nanostore bits

Width
(bits)

8
1
2
1
1
3
1
1
1
8
1

28

-yccc4q) I
Li- I I

control signals

FIG. 4. The nanocontrol consists of a nanoaddressor (left center), a
mux to select the appropriate OP for each nanocycle (top), the nanostore
(a RAM, at right center), a mux to select the condition code (bottom left),
and a mux (bottom right) to conditionally turn off the processor by select-
ing either the control signals from the nanostore or the constant encoding
for a no-operation.

174 KUSZMAUL AND FRIED

nanoaddressor (shown center left) , which is essentially a 2-
bit counter with some extra control logic. The value of the
2-bit counter is used to select which of the four OPs to use.
The selected OP (a 4-bit value) is used to address 1 of the
16 words of the nanostore (shown center right). One of the
four CC bits from the microinstruction is selected by the
low-order 2 bits of IS to conditionalize the processor. If the
processor is disabled (the CC bit is zero), then the control
signals are set to values which result in no state change, and
if the processor is active (the CC bit is one), the outputs of
the nanostore are the control bits used directly by the logic
in the processor.

SIMD instruction stream (rather than, e.g., through a diag-
nostic scan path) so that the initialization can be done in
parallel. The details of the initialization circuitry are not de-
scribed in this paper.

E . The Function Computed by the Selector-Logic

A number of memory addressing modes and data selec-

The input-output-state (shown in Fig. 5) consists of input
pads, output pads, some latches, and some selectors. The
OS signal comes from the selector-logic and is conditionally
latched into the S bits (shown as the top row of boxes). The
write-enables for the S bits, named OSWE[O] through
OSWE [71, are part of the nanoinstruction. The ISS bits
(part of the nanoinstruction) select between the I bits (from
the input pads) and the S bits to generate the IS bits. On
nanocycle 3, the output-latch latches the S bits and sends
the value to the output pads for transmission during the
next microcycle.

tion operations are supported by the NAP. Bit-read, bit-
write, word-read, and word-write modes are supported
(with g-bit words). To achieve the effect of these various
addressing modes, the programmer must carefully write
code to generate the address, modify the bits, and write val-
ues back when appropriate. The hardware supports these
operations so that they can be done quickly, but the pro-
grammer is still aware of the hardware.

Every nanoinstruction, a new memory address is con-
structed. This address is used in a read-modify-write opera-
tion. To read the memory without changing it one inhibits
the write-enable to the memory. To modify 1 bit of mem-
ory, one reads the memory, computes a new byte with 1 bit
modified, and writes the modified byte back to memory. To
perform a write, one ignores the data being read.

There are provisions in the NAP chip to conditionally Input, Output, and State. An g-bit state register, called S,
initialize the ISS, the nanostore, and other internal state. and an g-bit input signal, called I, are available on every
The INIT field of the microinstruction is used to distinguish NAP processor. Those 16 bits are combined into an g-bit
between a normal operation and an initialization opera- value, called IS. Another g-bit register, called ISS, controls
tion. It is important that such initialization be through the which 8 of the input-output and state bits are available to

from input pads

O S W E 8 OSIOl I[01 Wll VI
I

I \ V
. . .

microcycle clock
8

8

to output pads

FIG. 5. The input-output-state consists of eight l-bit latches, with individual write-enables (controlled by OSWE shown coming from the left), eight
muxes (below the boxes) individually controlled by ISS (shown coming from the left), the eight input pads (the data from the input pads is shown at
top left), and the eight output pads (not shown).

NAP: THE GREAT COMMUNICATOR 175

the user as the IS value, according to the following function:
ForeachiE{0,...,7},

IS[i] :=
I[i] ifISS[i] = 0,

S [i] otherwise.

The ISS is set under program control.
The MDL and the Mix-and-Match Value. An 8-bit regis-

ter called the MDL can be loaded with the DFM on every
nanocycle. Whether the MDL latches a new value or keeps
its old value is determined by LMDL, a l-bit field in the
nanoinstruction.

An 8-bit intermediate value, called MM (for mix-and-
match), is a combination of MDL and IS. A programmer
can use MM to combine some bits from memory, some bits
from input data channels, and some bits from internal state,
in order to compute the next state through a table lookup.
The value of MM is determined by the following equation:
ForeachiE{O,...,7},

MM[i] =
IS[i] ifMMM[i] = 0,

MDL [i] otherwise,

where MMM is an 8-bit field in the nanoinstruction.
Generating the Memory Address. The memory address is

used to provide computation via a function table, or to load
and store data from memory. It is an 11 -bit value, generated
as follows:

ATM[O : 41 :=
MM[O:4] ifIAS= 1,

MIP [0 : 41 otherwise.

ATM[5 : 7]:=
MM[5 : 71 ifMAS = 1,

MIP[5 : 71 otherwise.

if FAS = 0,

ATM[8: lo] := ifFAS = 1,

if FAS = 2.

The definition of MM is given above. The microinstruction
provides MIP, FA, and FB. The nanoinstruction provides
IAS, MAS, and FAS. A new memory address is generated
every nanocycle, although the values of MIP, FA, and FB
are held constant for the whole microcycle.

An additional 3 -bit intermediate value called the
BITADDR is computed according to the function

BITADDR = I MDL[O : 21 ifBDAS = 1,

FA otherwise,

where BDAS is a l-bit nanoinstruction field. The value of

BITADDR is used to index a single bit inside a byte to im-
plement bit-read and bit-write operations.

Generating the Data to Memory (DTM). Every nano-
cycle, a byte of data is written back to memory. That byte
is computed by the function

1

DFM [BITADDR + BITVAL]
if RMWBIT = 1,

DTM = MM if RMWBIT = 0 and MWS = 0,

OP2 11 OP3 otherwise.

In words, if RMWBIT = 1, we modify the BITADDRth bit
of DFM to be BITVAL and store the modified value back
to memory. Otherwise we may store the mix-and-match
value to memory, or we may store an immediate value (e.g.,
for a function table initialization).

A l-bit intermediate value, BITVAL, is computed by

BITVAL = IS [MWBS] .

The nanoinstruction provides RMWBIT (1 bit), MWS (1
bit), and MWBS (3 bits). Except during initialization,
MWS is always zero. In one of the initialization modes
(indicated by the INIT microinstruction field), only OPO is
allowed to execute. In that case, OP2 and OP3 can be used
as immediate data to memory.

Generating OS. The value of OS, which is supplied to the
input-output-state, is computed as

OS =

i

fanout (DFM [BITADDR])
if MWE = 1 and RMWBIT = 1,

DFM otherwise,

where the fanout function produces an 8-bit value from a
1 -bit value according to

fanout(0) = 0

fanout(1) = 255

and where MWE and RMWBIT are both 1 -bit nanoinstruc-
tion fields.

F. Providing a Global “OR ” Tree

A global “or” line to the microcontroller (the computer
which broadcasts the SIMD instruction stream) can be de-
rived from any of the output channel bits by ORing one
data output wire from each chip together to compute a
global “or”. This capability is extremely useful for checking
a global condition (e.g., whether any processor contains
zero, or whether any processor’s memory contains a pattern
which matches the broadcast pattern). One such global

176 KUSZMAUL AND FRIED

“or” can be returned to the global microcontroller every
microcycle, although the time between when the microcon-
troller broadcasts the microinstruction to when the corre-
sponding global “or” arrives back at the microcontroller
may be several microcycles due to pipelining. The distance
from the microcontroller to the NAP chips through the
SIMD bus and back through the global “or” tree might be
farther than can be achieved during one microcycle (200
ns), so that programmers using the global “or” mechanism
must take account of the pipelining effect. Any data output
pin on the NAP may be used to construct a global “or” tree.
In fact, it is possible to have several global “or” trees, by
devoting several data output pins on each NAP to the global
“or” tree.

III. PROGRAMMING EXAMPLES

One of the best ways to appreciate the programming
mechanisms provided by the NAP is to study some example
programs. Three examples are presented in this section. For
each example, some tables have been preloaded into the ex-
ternal SRAM and some nanoinstructions have been pre-
loaded into the nanostore. Each program is one microcycle
in length, and the four OPs are bracketed by (OP). The
notation M[a]jbj]]c in the following programs indicates
that a memory reference is being made using an address
built by concatenating bits a, b, and c, where c is the low-
order bit.

In our notation, “Mwrite” is the symbol for a memory
write cycle, and “RMW” indicates a read-modify-write cy-
cle (to modify a bit). The latter consists of a read from a
given address in the first phase of a nanocycle, followed by
a write of different bits to the same memory address in the
second phase of the same nanocycle. Finally, the values of
the condition codes, the MIP field, and the FA and FB
pointers are specified.

A. Example 1: Queuing Data in Memory
Data queuing is a good example of a need for indirect

addressing; for example, each processor may wish to receive
or send a message at a locally specified address. This pro-
gram takes one data input and buffers it in a queue in mem-
ory. The input is the bit at IO, and the queue’s tail pointer
is at location Q.

OPS=(M[MIP], LatchMDL),

(M[MIP[5:10] llMDL[3:7]],

RMW(IO,MDL[O:2])),

(M[FAIIMDL], LatchMDL),

(MwriteMDLintoM[MIP])

CC=true,MIP=Q,FA=(theINCtable),
FB=don't-care

The way this program works is that word Q contains an
8-bit “bit pointer” to a bit on the same 256-bit page as Q.
During OPO, the MDL is loaded with that bit pointer. Dur-
ing OPl, the NAP uses the high-order bits of MIP and the
high-order bits of that bit pointer (in MDL) to address the
word containing the bit which needs to be written. It then
does a read-modify-write on that word, modifying the bit
specified by the low-order 3 bits of MDL. The new bit is IO.
The modified word is written back to memory. During
OP2, the program uses FA and MDL to look up 1 + MDL
(i.e., the increment of MDL) and latches that value into
MDL. This is the new queue pointer. Finally, the NAP
stores the new queue pointer back to M [MIP] during OP4.

This program requires four words of the nanostore to
have been preloaded, and it requires one function table (the
increment table). It could be used as an instruction within
another program, or could be generalized to other applica-
tions. For example, to move N different input bits to differ-
ent buffers in memory requires N more preloaded nanoin-
structions and would take N more microcycles to execute.
(Note the nanoinstructions addressed by OPO, OP2, and
OP3 could be reused in the other microcycles; only the
nanoinstruction corresponding to OPl would have to be
changed.)

B. Example 2: Circuit Switching Using Permutations

We want to take four inputs, from I, and put them to the
four outputs, 0, by some permutation which is specified in
memory. When this is done repetitively, it provides four
circuit-switched channels through the NAP, which operate
at 1 -bit per microcycle. This permutation could be a differ-
ent one for each microcycle, so that the circuit-switched
connections set up could be as short as 1 bit time.

We will use the low-order bits of word 0 to specify the
routing for 04 and 05, and we will use the low-order bits
of word #x 100 to specify the routing for 06 and 07. (Note
that #x 100 is hexadecimal notation, so that #x 100 = 256.)

OPS=(M[MIP], Latch(S0, Sl, S2, S3)),

(M[FA II Is], latch04, OS),

(M[FBI~MIP[O:~] 1,

Latch(S0, Sl, S2, S3)),

(M[FAII1S],latch06,07)

CC=true,MIP=O, FA=(permutationtable),
FB=l

In this program, 2 bits of the permutation are computed
every two nanoinstructions. During OPO, the NAP uses
MIP = 0 to load word 0 and latch the low-order 4 bits into

NAP: THE GREAT COMMUNICATOR 177

SO, S 1, S2, S3. During OP 1, FA is used to name a function
table, and IS is the index into the table. The table gives us
two useful outputs (from bits 4 and 5) which are latched
into 04 and 05. During OP2, the NAP uses FB = 1 and
MIP = 0 to load word #x 100 and latch the low-order 4 bits
into SO, S 1, S2, S3. Finally, during OP3, FA is used to name
the same function table as in OP 1, which provides another
two useful outputs (on bits 6 and 7) which are latched into
06 and 07.

This example uses four nanostore locations and one func-
tion table (which could even be stored on page 0 or 1 since
we only use the high-order bits of any word for the table,
and the permutations only use the low-order bits of the
table). Since the permutations could also depend on the
bits, this example also generalizes to some cases of sorting
or packet switching.

C . Example 3: Parallel Pre$x Addition

This program does the inner loop of a global reduction
using addition for a tree machine (i.e., to sum up the values
stored in all the processors to get a global total). This is one
example of the class of parallel prefix programs (for a more
detailed treatment of parallel prefix, see Borodin and Hop-
croft [2]) . The program uses one nanocycle per microcycle,
and calculates 1 bit of the sum per microcycle. The perfor-
mance of this algorithm is to sum bits at 5 megabits per
second (with our 200-ns microcycle clock period). One im-
provement on this program would be to speed things up by
using four different input-output channels to effectively
ship 1 bit of data up the tree every nanocycle instead of ev-
ery microcycle so that the data rate for this program could
be 20 megabits per second.

OPS=(M[FAII IS], latch0, SO),

(nap), (nap), (nap)
CC=true,MIP=(don't-care),FA=(full-addertable),FB=(don't-care)

The single nanoinstruction takes two l-bit inputs, has 1
bit of state (the carry bit), and writes 1 bit of output. Only
one table is needed (a full adder table, similar to the one
shown in Fig. 2).

IV. IMPLEMENTATION

The NAP is designed using a fully static CMOS circuit
methodology in MOSIS scalable CMOS design rules. A
two-phase nonoverlapping clocking approach is used; ap-
proximately half of the circuitry on the chip (and exactly
half of the control lines) is “active” on phase 1, while the
other half is active on phase 2. The MAGIC layout system
was used for the layout of the chip. Each chip contains four
NAPS, although only one of these processors is fully con-
nected to the pins of the chip. The other three processors are
accessible through scan path circuitry. The overall circuit is
7900 by 9200 Frn in a 3-pm CMOS process. The complete
simulation and layout are complete, but the chip has not
yet been fabricated.

The nanostore is an on-chip 16 by 28 SRAM with decod-
ers, write amps, and sense amps. This SRAM has an access
time goal of 25 ns, and is 1974 by 1620 pm in area.

The speed of the NAP processor is primarily determined
by the speed of the off-chip SRAM (which must do a read-
modify-write operation every nanocycle) and by the speed
of the nanostore (which must do a read every nanocycle).
It would otherwise be possible to speed up the rest of the
NAP chip by at least a factor of two. In a future implemen-
tation, it would make sense to move this memory on-chip.
This would increase the speed of the processor, reduce the

number of pins per chip, and reduce the system cost by
eliminating the relatively expensive off-chip high-speed
SRAM. In our implementation, we chose to use external
SRAM in order to reduce the complexity of the design. We
chose 2K by 8 high-speed SRAM with 35 ns access time
because they were the fastest affordable memory compo-
nents available at the time of the original design (spring of
1987). This provides eight full function tables. We have
found that eight tables is enough to avoid reloading func-
tion tables during the computation in most applications.

All latches within the design have been built with scan
paths incorporated within them. Generally, neighboring
latches will scan on alternate phases. The external clock sig-
nals are thus converted on-chip to two nonoverlapping ac-
tive-high clock signals if the scan pin is low, or to scan clocks
if the scan pin is high.

Our layout approach for NAP is straightforward: we run
first-level metal horizontally to distribute power, ground,
and clocks, and second-level metal vertically for data sig-
nals. Data signals are routed horizontally on either first-
level metal or polysilicon. The Magic [71 router is used to
route power and ground connections, connections between
subcircuits, and connections between the NAPS and the
padframe.

The NAP was simulated at the functional and the circuit
level using simulators written in LISP. A high-level simula-
tor, which includes some programming tools for defining
function tables and nanocode, allowed programs to be writ-
ten as the design of the NAP was progressing, which stimu-
lated a number of design changes.

178 KUSZMAUL AND FRIED

An RTLlike language was also constructed on top of
LISP; this language allows us to compose parts to make
larger parts, and to generate test vectors for ESIM, which
we can use to drive the circuit extracted from the layout. A
register transfer-level simulation was written in this lan-
guage, which allowed the verification of individual cells and
the composition of cells, all the way up to a full chip-level
simulation. The results of this simulation were compared
with the results of ESIM simulations to verify the layout.
The RTL simulator generates test vectors to drive ESIM
and it generates a file which contains the outputs that ESIM
should generate if the layout is correct.

Although we have not implemented a controller, we be-
lieve that the microcycle-nanocycle approach would sim-
plify its design. This is because the microcontroller is re-
quired to produce microinstructions at only 5 MHz (rather
than at the 20-MHz nanocycle rate). The latency from the
microcontroller to the NAP chip is not critical.

V. EVALUATION AND CONCLUSIONS

We have shown that it is feasible to design a processor
chip which supports a variety of bit-serial routing networks
efficiently. This type of chip is a step toward understanding
how to build and operate interconnection networks for
massively parallel computers. The NAP chip we have de-
signed provides very flexible addressing mechanisms, and
allows indirect addressing so that MAMD operation is pos-
sible. This chip also supports three distinct means of multi-
thread operation, so that different processors operating off
the same instruction stream can do different things. Finally,
this processor chip has no ALU; table lookup is used for all
operations. We have found all of these mechanisms useful
in writing example programs, and believe that the NAP ap-
proach can teach designers about how to provide addressing
and processor selection mechanisms in SIMD processors,
and about the issues involved in providing flexible and high-
performance interconnection networks.

How well has the NAP design stood up to its original de-
sign goals? Let us examine those goals one by one:

l Provide communications control which is as flexible as
possible. The operation of the processor is completely pro-
grammable at both the microinstruction and the nanoin-
struction level. Processors have considerable flexibility in
addressing modes, and indirect addressing at both the bit
and the word level is well supported. In addition, there are
three distinct means for processors operating from the same
instruction stream to do different things: in addition to the
standard conditional execution (which is made very general
in the NAP), they can have different nanoinstructions in
their nanostore, or use different operation tables in their
memory. In practice, this allows programmers to write pro-
grams with the simplicity implicit in SIMD control and syn-
chronization, yet keep processors efficiently utilized doing

different things at the same time. Essentially, one can pro-
gram a machine built of NAPS as sets of processors, even if
those processors share the same microcontroller.

l Keep the input-output channels and memory as busy
as possible performing useful work. Each microinstruction
may make up to four memory references, each of a read-
modify-write nature. Every microinstruction executed by
the processor can be able to read from and write to up to
eight input-output channels on the processor. All of the pro-
grams written on NAP to date have been able to keep the
input-output channels active at least 1 bit per microcycle,
which corresponds to our assumptions about wire latency.
Similarly, most of these programs use most of the nano-
cycles in a microcycle to perform useful work, so that mem-
ory is well utilized. The cycle time of the NAP is also in
good agreement with the speed available from state-of-the-
art commercial SRAMs or on-chip dRAM.

l The NAP should serve as a universal element for routing
networks. To date, we have written NAP programs for mes-
sage routing using algorithms designed for butterfly net-
works [lo] using the same number of cycles as a node de-
signed specifically for that purpose. We have also written
NAP programs for parallel prefix [21 which execute in one
microcycle per bit. Although these examples are not suffi-
cient evidence to prove that NAP is in fact a universal com-
munication element, they do indicate that NAPS would be
useful in a number of different networks.

l Experiment with an ALU-less processor. Our experi-
ence in writing NAP programs using tables for operations
is that “compressed tables,” which do more than one thing
in one operation, are immediately of use. For example, one
portion of the table might be used to increment a pointer
while another part might perform a Boolean operation on
a few bits from input channels. We had hoped that experi-
menting with table-based operations might lead us to a
choice of which operations to put into an ALU; instead, we
discovered that the generality offered by these tables was
just the right thing for programming.

The assumptions that were used in designing the NAP
system should be carefully examined. In particular, our mi-
crocycle-nanocycle approach is implicitly based on the as-
sumption that long-distance communication (e.g., between
NAP chips) is much slower than short-distance communi-
cation (e.g., between the NAP processor and the function
table memory). This assumption may be incorrect. It is true
that the latency for long-distance communication is higher
than for short-distance communication, but research done
since the implementation of the NAP processor indicates
that the clock rate for long wires might be substantially the
same as the clock rate for short wires [31. It may be difficult
to use a NAP-like chip to effectively emulate special-pur-
pose chips that treat their long-distance wires as transmis-
sion lines.

NAP: THE GREAT COMMUNICATOR 179

We hope that the NAP chip will eventually serve as a test-
bed for experimentation with new interconnection net-
works and parallel algorithms. We plan to test the NAP de-
sign using a variety of “benchmark” programs and net-
works to test its utility as a general-purpose network
element. Measurement of effect of indirect addressing and
our processor differentiation mechanisms on processor uti-
lization will tell us something about the efficiency of our
approach. Finally, these mechanisms may lead to insights
about how to write effective parallel programs for commu-
nication networks.

ACKNOWLEDGMENTS

The authors thank Tom Cormen and Elliot Kolodner for their hard
work on the design, layout, and programming of the NAP; Bill Dally for his
direction and feedback during the course of the NAP project; and Charles
Leiserson for his insightful comments, direction, and consultation in the
early stages of the NAP design.

REFERENCES

I. Bashe, C. J., Johnson, L. R., Palmer, J. H., and Pugh, E. W. IBM’s
Early Computers. MIT Press Series in the History of Computing,
Cambridge, MA, 1986.

2. Borodin, A., and Hopcroft, J. E. Routing, merging, and sorting on
parallel models of computation. In Proc. 14th Annual ACM Sympo-
sium on the Theory of Computing, 1982, pp. 338-344.

3. Knight, T., et al. Self terminating low voltage swing CMOS output
driver. In Proc. Custom Integrated Circuits Conference, 1987.

4. Greenberg, R. I., and Leiserson, C. E. Randomized routing on fat-
trees. In Proc. 26th Annual IEEE Symposium on the Foundations of
ComputerScience, Nov. 1985.

5. Hillis, W. D. The Connection Machine. MIT Press, Cambridge, MA,
1985.

6. Leiserson, C. E. Fat-trees: Universal networks for hardware-efficient
supercomputing. IEEE Trans. Comput. C-34,10 (Oct. 1985).

7. Osterhout, J. K. Mugic User’s Manual. U.C. Berkeley, Berkeley, CA,
1986.

8. Pippenger, N. Parallel communication with limited buffers. In Proc.
25th Annual IEEE Symposium on the Foundations of Computer Sci-
ence, Oct. 1984.

9. Private correspondence. Ferroxcube/Amperex Electronic Corp.
10. Ranade, A. G. How to emulate shared memory. In Proc. 28th Annual

IEEE Symposium on the Foundations of Computer Science, Oct.
1987, pp. 185-194.

1 I. Toffoli, T., and Margolus, N. Cellular Autonoma Machines. MIT
Press. Cambridge, MA, 1987.

12. Valiant, L. G., and Brebner, G. J. Universal schemes for parallel com-
munication. In Proc. 13th Annual ACM Symposium on the Theory of
Computing, May 198 I.

BRADLEY C. KUSZMAUL received two S.B. degrees (in mathematics
and in computer science and engineering) from MIT in 1984. He received
a S.M. degree in computer science from MIT in 1986, and is now a Ph.D.
candidate in the MIT Department of Electrical Engineering and Computer
Science. His research interests include all aspects of parallel computing,
including processor architecture, interconnection networks, algorithms,
and programming methodologies. He worked on interconnection net-
works and parallel processing at Thinking Machines, in Cambridge, Mas-
sachusetts, during the summers of 1984 through 1987, and worked full-
time at Thinking Machines during the 1987-1988 academic year. He is a
member of ACM and IEEE.

JEFF FRIED is a founder and director of hardware development for
Connect Telemanagement Systems Corp. From 1983 to I989 he worked at
GTE Laboratories, where his research on advanced switching architectures
included building prototypes of broadband switches and developing sys-
tem-level modeling and analysis tools. He received the B.S., M.S., and E.E.
degrees from MIT, where he is a Ph.D. candidate in the Department of
Electrical Engineering and Computer Science. His research interests in-
clude computer and telecommunication system architecture, VLSI and
WSI design, optical interconnects, and parallel and distributed algorithms.
He is a member of the ACM, IEEE, SPIE, and SIAM, has published over
25 technical papers, and holds three patents.

Received February 1, 1989; revised July I, I989

