
Branch-Prediction in a Speculative Dataflow Processor
�

Bradley C. Kuszmaul
�

and Dana S. Henry
�

Abstract

A processor with an explicit dataflow instruction-set architec-
ture may be able to achieve performance comparable to a su-
perscalar RISC processor, even on serial code. To achieve this,
the dataflow processor must support speculative operation, es-
pecially speculative branches, and a pipeline with bypassing
for serial code. This paper outlines a set of mechanisms to im-
plement speculative operation with a bypassing pipeline, in a
paper design called the Speculative Dataflow Processor (SDP).

The SDP uses several novel ideas as compared to tradi-
tional dataflow processors. Branches are predicted and specu-
lated using a new branch firing rule. Several branch statements
are grouped together so that they use a single branch predic-
tion. The scheduling and bypass logic is similar to, but simpler
and faster than, the corresponding logic in a superscalar RISC
processor.

Speculation introduces some new compiler issues. Addi-
tional care must be taken by the compiler to prevent specula-
tive tokens from Iteration ����� from overrunning the nonspec-
ulative tokens from Iteration � of a loop.

1 Introduction

Processors with explicit dataflow instruction-set architectures
(for example [PC90, GKW85]) have generally not been as fast
as contemporary von Neumann processors. They have per-
formed especially poorly on programs that have little paral-
lelism. One approach to solve this problem is to design proces-
sors that are a hybrid of dataflow and traditional RISC proces-
sors to obtain the best of both worlds, executing both serial and
parallel code efficiently. (See for example P-RISC [NA88] and
simultaneous multithreading [TEL95] at the RISC end of the
spectrum and EM-5 [SKY91] and the Tera MTA [ACC � 95] at
the dataflow end.) This paper argues that a “pure” dataflow
processor can also compete effectively if two problems are
solved: It must have speculative branch execution, and the
pipeline must be very efficient for serial code. We present here
a paper design of a processor, called the Speculative Dataflow
Processor (SDP), that we believe will work reasonably well
based on our analysis and also on the intution we have gained
from several compiler and processor VLSI projects. We have
not yet implemented a compiler, simulator, or a circuit design
for SDP, although we are working on the compiler and simu-
lator.

Our goal is to design a dataflow processor that competes
effectively with a superscalar microprocessor. This means that
we are not interested in high processor utilization, for example.
Contrast this approach with, for example, the Tera MTA archi-
tecture [ACC � 95]), which attempts to achieve high processor
	
This research was partially supported by NSF CAREER Grant 9702980

(Kuszmaul) and NSF CAREER Grant 9702281 (Henry.)

Akamai Technologies and Yale University. http://eecs.yale.edu/

˜bradley�
Yale University. http://eecs.yale.edu/˜dana

utilization and is willing to use a very expensive memory sys-
tem to achieve it. A processor does not need to achieve high
utilization of its ALU or VLSI, since VLSI is cheap. Since
the memory system dominates the cost of a high-performance
machine, it would suffice to achieve high memory-subsystem
utilization.

In addition to branch prediction, a dataflow processor
should speculate on load/store conflicts, but there is not space
here to discuss that mechanism.

Figure 1 illustrates the mechanisms needed to implement
branch speculation in our dataflow architecture. (Here we are
describing the state of the machine with tokens drawn on arcs,
but as we shall see later, we use an explicit-token store de-
sign in which the tokens correspond to entries in an activation
frame.) Figure 1(a) shows a C code segment that we compiled
to the dataflow graph in Figure 1(b). The graph contains arith-
metic operators, such as “+”, together with switch operators
(which implement branches), identified by diamonds. Switch
operators have two inputs: a predicate (shown entering from
the left of the diamond) and a datum (shown entering from
above the diamond.)

Several switches may share the same predicate. In Fig-
ure 1(b), two switches share the same predicate, “ � ”. To help
remind the reader that the switches are related we draw the
switches with the same shared predicate on the same horizon-
tal row. In our implementation, we will take advantage of their
shared predicate to reduce their speculation costs. We distin-
guish between switches and branches as follows: A switch can
route a single token according to a predicate. A branch is the
collection of switches that implement a single branch in the
original program. That is, a branch is the set of switches shar-
ing the same predicate.

Except for switches, each operator in Figure 1(b) uses
the traditional dataflow firing rule—the operator fires once a
value, called token, arrives at each input. Switch operators
may fire twice, however. A switch can fire whenever its data
token (vertical input) arrives. If the switch’s predicate token
(left input) has not yet arrived, the switch may predict the pred-
icate’s value and passes the data token to the T output or the F
output accordingly. The switch fires again once the predicate
token arrives. If the predicate token’s value does not agree
with the prediction, the switch initiates branch recovery.

To illustrate how a switch recovers from misprediction,
Figure 1(b) and Figure 1(c) show the runtime state immedi-
ately before and after a misprediction. We assume that, ini-
tially, one input token was inserted along each input arch x,
y, z, and w. Solid tokens within each graph indicate data
that has not yet been consumed. In Figure 1(b), the compar-
ison operators, “ � ” and “ 2”, have not yet consumed their
input tokens. At the same time, however, all switches have al-
ready predicted their outcomes. The predicted outcomes are
shown in bold inside each diamond. Based on these predic-
tions, tokens have already propagated all the way to the multi-
ply operation.

To enable recovery from misprediction, we must remem-

if (x > y)
�

t = x;
x = y;
y = t;�

if (y > 2)
�

y = y + z;
y = y - w;�

x = x * y;

T F

T F

T F

� 2

�

�

�

x

�

z wx y

() ()

(�)
()

()
(���	� 2)

(���	� 2)

(���	� 2)(���	� 2)

(�)

()()

T F

T F T F

� 2

�

�

x

�

�

z wx y

()

()

()
()

(a) C Code (b) Speculative Execution (c) Speculation resolved

Figure 1: An example of how speculation works. (a) A fragment of C code. (b) The runtime state with the “ � ” test predicted true,
and the “ 2” test predicted false. (c) The restored graph after the “ � ” test resolves to false.

ber some tokens even after they have been consumed. These
tokens are illustrated with dashed lines in Figure 1(b). The
dashed lines show the input tokens of every operator that has
fired speculatively. We keep track of which operators have
fired speculatively by marking each token with the list of pred-
icates on which it is speculating. For example, we remember
the input tokens of the “+” operator because the operator’s left
input token is speculating on the outcome of both predicates.

Figure 1(c) illustrates recovery from misprediction. In this
example, the “ � ” operator has resolved to False; the affected
switches have fired again and detected a misprediction. As
a result, every operator that speculated on the predicate “ � ”
undoes its computation, restoring any input token that it should
not have consumed.

The rest of this paper is organized as follows. Sec-
tion 2 describes the SDP instruction-set architecture. Section 3
sketches how to implement branch speculation in SDP. Sec-
tion 4 argues that SDP should compare well to a superscalar
processor. Section 5 discusses compilation issues raised by
speculation. Section 6 shows how to support provably effi-

cient multithreaded scheduling, and Section 7 concludes with
a discussion of related and future work.

2 Instruction Architecture

Having outlined the idea behind the mechanism in Section 1,
in this section we describe the instruction set architecture
(ISA) for the SDP. The rest of the paper will then describe
the implementation issues for this ISA.

Except for switches, the SDP processor’s instruction set ar-
chitecture is analogous to the explicit token store architecture
pioneered by Monsoon [PC90]. Figure 2 illustrates the archi-
tected state using the code segment and execution graph from
Figure 1. The state consists of set of frames, such as the one
shown in Figure 2(a), and instruction memory The instruction
memory holds the static information about the program (the
“text” of the program), whereas the frames hold dynamic in-
formation for the procedure’s outstanding instructions. Each
frame corresponds to one procedure invocation or one thread,

framemask:T F

nextreadyframe:...

nextdeferredreadyframe:...

ndeferredready:0

d0:

d1:

f8 LT ����� -3 7

f9 BR ����� 1 -3

f10 BR ����� 1 7

f11 MV ����� -3 T

f12 2 ����� -3 T

f13 BR ����� -3 T

f14 ADD ����� -3 T F 11

f15 SUB ����� 9 T F 5

f42 MULT ����� 7 T F 14 T F

Op Offset 1st-output 2nd-output b
0:

92990: LT f8 (+1,f9,L) (+2,f10,L)
92991: BR f8 (+1,f9,L) (+2,f10,L) 0
92992: BR f10 (+99,f42,L)(+1,f11,) 0
92993: MV f11 (+1,f12,) (+2,f13,R)
92994: 2 f12 (+1,f13,L)
92995: BR f13 (+96,f42,R)(+1,f14,L) 1
92996: ADD f14 (+1,f15,L)
92996: SUB f15 (+94,f42,R)

93092: MULT f42 �����

(a) One frame (of many.) (b) Instruction Memory.

Figure 2: Architected State.

typically.

2.1 The Frame

A frame is a contiguous region of memory which is used as the
backing store for state that is normally kept in the processor
core. When there are many active frames, the processor will
need to move some of the frame state out of the core to the
memory.

The frame includes

� a framemask which is used in branch speculation,

� a collection of frame entries (f0, f1,
���
	���

),

� fields to implement ready-to-execute instructions, and

� fields to implement another set of deferred instructions.

Each of these are described below.

The Frame Mask

The framemask keeps track of all of the outstanding unre-
solved branches for a frame. Switches that use the same predi-
cate share one branch-mask entry. In Figure 2, the first entry in

the mask lists the prediction made by the “ � ” predictor in Fig-
ure 1; the second entry in the mask lists the prediction made
by the “ �� ” predictor in Figure 1.

The frame mask is part of the architected state because
the compiler must manage the allocation of the frame mask
entries.

The Frame Entries

For each instruction that has a token on one of its inputs, the
frame keeps track of the instructions arguments and state. In
Figure 2(a), arguments that have not yet been consumed ap-
pear inside a shaded token, and arguments that have been spec-
ulatively consumed appear inside a dashed token. There is
an additional argument mask stored with each argument token
which is part of our impleentation and will be described in the
following section.

The Ready-to-Execute Set

Each frame keeps in its state the set of all instructions that are
ready fire. More than one frame may have instructions which
are ready to execute, however. The frame provides storage,
called nextreadyframe, to build a linked list of all such
frames.

The Deferred Set

Another set of instructions, called the deferred set, is also
kept by the system. In the frame the nextdeferre-
dreadyframe, ndeferredready, and d � locations store
a per-frame list of deferred instrutions. This deferred set
supports a provably efficient scheduler for multithreaded pro-
grams, and its rationale and behavior is described below in
Section 6.

2.2 The Instruction Memory

The assembly format of an arithmetic instruction consists of:

address: opcode
��� ����� � �����	��
 � ���� � ��������

where address is the instruction’s address in instruction
memory,

�
is an index into the frame, � is an offset in instruc-

tion memory starting from the current instruction, and � is an
instruction’s input port (Right or Left.) The individual instruc-
tion fields are

opcode: the operation,
�

: the index of the instruction’s frame entry,

address � ��� : the address of the first output’s instruction,
� � : the index of the first output frame entry,

� � : the input port of the first output,

and similarly for the second output’s address, index, and port.
In addition, switch instructions name an entry, � , in the

branch mask that holds their prediction while they speculate:

address: BR
��� ����� � �����	��
 � ����� � ��������
�� �

Branches that share the same predictor share the same mask
entry. In addition, static switches that never dynamically co-
exist within the frame may also name the same mask entry.

3 Implementing Branch Speculation

Section 2 described the SDP instruction set architecture (ISA),
which is the programmer-visible behavior of the machine.
This section sketches an implementation, and Section 4 argues
that the implementation should be at least as fast as a super-
scalar pipeline.

To implement branch speculation, we added a � -bit frame
mask register to the frame. The register uses 2-bits to encode
the state of each entry in the frame mask. There are three
states, which we notate as

: the entry is not in use,
T : the entry’s predicate is predicted taken, and
F : the entry’s predicate is predicted not-taken.

Each entry’s value is set the first time a switch fires speculating
on the entry’s predicate. Each entry’s value is cleared when-
ever a switch fires for the second time, confirming or refuting
that prediction.

We also maintain a � -bit argument mask with each argu-
ment field in the frame. Each argument mask lists a subset
of the frame mask on which the corresponding argument is
speculating. Figure 2 shows the setting of all the argument
masks for the program state described in Figure 1(b). For ex-
ample, the ADD instruction’s left argument is speculating on

both predicates from Figure 1 while its right argument is not
speculating on either.

A dedicated � -bit broadcast bus ties the frame mask to
the argument masks. Whenever a predicate resolves, the bus
communicates the resolved value to each argument mask. If
the predicate was correctly predicted, each dependent argu-
ment simply clears the predicate’s entry in its mask since it is
no longer speculating on that predicate. If the predicate was
incorrectly predicted, each dependent argument deletes itself
and possibly reinstates its sibling to implement branch recov-
ery.

We considered using a scheme in which mispredicted
branches create “kill tokens” that follow the paths of the orig-
inal speculated tokens, but we were concerned that the kill
tokens might not catch up in time to avoid certain race con-
ditions. In fact, under some conditions the kill tokens might
never catch up with the tokens that they are trying to kill.

4 Performance: SDP vs. Superscalar

Now that we have discussed the implementation of branch
speculation in the SDP, in this section we argue that the SDP
pipeline should be as fast as a superscalar pipeline. In Sec-
tion 5 we will discuss compilation issues. In this section, we
describe briefly the rest of the SDP core and argue that the SDP
circuitry is no more difficult to implement than a standard su-
perscalar processor’s circuitry with some parts of the circuitry
simpler and faster than superscalar’s. The key observation is
that each entry in the SDP’s frame corresponds is a superset of
an entry in the superscalar’s reordering buffer.

Unlike a superscalar processor, the SDP explicitly names
the children of each instruction in the frame. As a result, the
SDP does not have to broadcast each result to the entire frame.
Instead, it can directly write each result into each child’s frame
entry. This optimization replaces area-intensive associative
writes into the superscalar reordering buffer with faster and
smaller direct writes into the SDP’s frame.

However, explicitly naming each instruction’s children
also has its costs. If there are many destinations for an instruc-
tion, and the instruction has limited fan-out, then extra fanout
instructions will be needed. In our architecture, we used in-
structions with fanout of two, but it may make sense to use
instructions with a fanout of three or four to reduce the need
for extra fanout instructions.

Also appearing in a frame entry but not in a reordering
buffer entry is the argument mask described in the previous
section. This mask supports selective recovery from mispre-
diction in the SDP. Unlike a traditional superscalar processor,
the SDP can back out of exactly those instructions that depend
on a mispredicted branch. In contrast, a superscalar undoes
all instructions following a mispredicted branch, whether they
actually depend on the mispredicted branch or not.

The SDP does not need renaming logic since the compiler
explicitly manages the reuse of frame entries. Explicitly man-
aging storage reuse puts pressure on the size of the frame,
however. It remains to be seen how large a frame is needed
to achieve good performance.

The critical-path length of a program may be longer us-
ing SDP than using a serial instruction set, because in a su-
perscalar, correctly predicted branches do not appear in the
critical path of the program at all. In the SDP, even correctly
predicted branches add the cost of the switch instruction to the
critical path. The number of instructions can be greater in SDP
than in superscalar processors as well, since a single branch in

while (x > i)
�

i = i+1;
x = x/2;�

T F T F

/2 +1

x i

x i

�

T F T F

b=0 b=0

/2 +1

wait
b=0

wait
b=0

x i

x i

�

(a) C code. (b) Compiled for traditional firing rule. (c) Compiled for speculation.

Figure 3: Loop barrier example. This code computes i+=lg(x);x=1.

a superscalar may correspond to many switch instructions in
SDP.

In other aspects, the SDP is essentially identical to a super-
scalar reordering buffer entry, and executes in the same way.
For example, the same bypassing techniques used by the su-
perscalar processor can be used in the SDP.

5 Compiler Support

This section discusses compiler issues for SDP, which are im-
portant even for serial programs. The next section will dis-
cuss the hardware support needed for highly concurrent mul-
tithreaded programs. In addition to the hardware issues de-
scribed in Sections 3 and 4, the compiler needs to take extra
care when compiling for a speculative dataflow processor.

First, as we saw in Figure 1, the compiler must group to-
gether switches that use the same predicate. Such grouping
reduces the number of outstanding predictions to the number
of unresolved predicates rather than unresolved switches. In
addition, the compiler must understand our new firing rule for
switches. Without the compiler’s cooperation, the speculative
firing of a switch could yield multiple tokens along one arch
in violation of our explicit-token-store dataflow architecture.

Figure 3 illustrates the effect of the new switch firing rule.
It shows a simple serial C code loop compiled with the tradi-
tional single-firing rule (Figure 3(b)) and with our new spec-
ulative firing rule for switches (Figure 3(c)). In Figure 3(b)
the compiler has used the traditional rule, assuming that each
switch will fire only once, after both inputs have arrived. Un-
der this assumption, all initial inputs to the loop will be con-
sumed before the next iteration’s inputs are generated. If the
switches were to fire speculatively instead, without waiting for
their predicate tokens, the program would fail. As Figure 3(b)

illustrates, the next speculative value of x could reach the pred-
icate operator “ ” before the first value has been consumed.

To avoid multiple tokens along the input arch to the pred-
icate operator, the compiler must introduce explicit specula-
tion barrier instructions as in Figure 3(c). We have shown
the branches with branch masks (“b=0”), and the speculatiion
barrier is denoted by “wait b=0.” A speculation barrier will
not fire until the branch mask mentioned has resolved.

One optimization for this kind of code would be to unroll
the loop. Figure 4(a) shows the code unrolled once by hand,
and Figure 4(b) shows the resulting code. Note that the first set
of wait instructions waits on the second branch to resolve, and
the second set of wait instructions waits on the first branch
to resolve. (Initially both branches start in a resolved state,
which gets the loop started.) This means that the first iteration
and the second (of the original loop) can execute concurrently.
And then when the first iteration finishes, the third iteration
can start and run concurrently with the second. Then when the
second iteration finishes, the fourth iteration can start, running
concurrently with the third. Thus, if the compiler unrolls

�
it-

erations of the loop, every contiguous sequence of
�

iterations
will be able to run concurrently, even if they do not align with
the unrolling.

6 Support for Parallel Programs

So far we have explained how to run serial programs on a spec-
ulative dataflow processor, taking advantage of the parallelism
within one subroutine of an otherwise serial program. This
section outlines how a dataflow processor can be designed
to support provably efficient scheduling of highly concurrent
multithreaded programs. Section 7 will then discuss the re-
lated and future work.

while (x > i)
�

i = i+1;
x = x/2;
if (!(x > i)) break;
i = i+1;
x = x/2;�

(a) C code unrolled once.

T F T F

b=0 b=0

T F T F

b=1 b=1

/2 +1

wait
b=1

wait
b=1

/2 +1

wait
b=0

wait
b=0

x i

�

x i

�

(b) Compiled for speculation

Figure 4: An unrolled version of the code from Figure 3.
When we unroll the loop we can use split-phase speculation
barriers so that the two iterations of the loop can run concur-
rently..

The SDP can support highly concurrent programs by exe-
cuting several frames concurrently. One of the problems with
such programs is that if the call tree is expanded breadth-first
or randomly, then the system can run out of memory eas-
ily. Many Monsoon programs had this difficulty: either they
would run too slowly because they lacked parallelism, or they
had plenty of parallelism but needed huge amounts of mem-
ory, and it was very difficult to tweak the program to get it to
run “just right.”

Our approach is to provide support for a provably efficient
scheduler, such as the one used in Cilk [BJK � 95]. To be con-
crete, we will discuss the support needed for the Cilk sched-
uler.

The trick is to prevent the system from allocating new
frames when there are already enough frames to keep the pro-
cessor busy. Figure 5 shows an example of this idea at work.
A Cilk program that spawns a total of eight children (the root
node spawns two children, each of which spawn to grandchil-
dren, each of which spawn two great grandchildren) could re-
quire up to 15 frames to run if the frame allocation is not con-
strained. A better situation is shown We in Figure 5(c), in
which part of the tree has been completed, and part of the tree
is waiting to be spawned, and part of the tree is begin worked
on. The part of the tree that is being worked on has at most 2
active leaves in this case, and the part of the tree that is waiting
to be spawned is deferred.

To be more specific about the allocation rule, we provide
here a brief review of the Cilk system, from the perspective of
a multithreaded processor architect. In Cilk, the computation
is structured into a call tree, in which a vertex corresponds to a
subroutine instance, and in which certain subtrees can execute
in parallel. To execute several subtrees in parallel, the pro-
grammer writes a collection of “spawn” procedure calls, and
then a “sync” operation that waits for all the children to com-
plete. An ordinary procedure call is simply a spawn of a single
subtree, followed by a sync.

Cilk achieves optimal time and space bounds simultane-
ously. The time bounds are expressed using the time to exe-
cute on one processor,

� � , and the critical path length of the
program,

���
, which is the time it would take to run on an in-

finite number of processors. On � processors, Cilk can run a
program in time that is

� ����� ��� � ���
 . If the space bound on
one processor is 	 � , then the space bound on � processors is� � 	 � . These bounds are optimal under certain assumptions.

Cilk programs must be strict in order for the scheduler to
achieve these bounds. Informally, a strict program is one in
which, once a subtree starts, it is able to finish without waiting
for other subtrees to finish.

Cilk achieves these time and space bounds by guaranteeing
that at most � “leaves” of the call tree exist at any given time.
Another way to say this is that in the tree, at most � forks are
expanded at any gien time.

When the system has fewer than � leaves running, every
spawn actually starts up a new subtree in parallel. When the
system has � leaves active, then no new subtrees are spawned.
That is, the system runs in a serial, depth-first, order on each
of the extant branches of the tree. That means that only one
spawned child of a frame is actually started at a time. The
others wait until the first one completes, and then another
spawned child can run.

For the discussion here, we are interested in supporting
Cilk on a single speculative dataflow processor that may have
a limited number of frames. So � , instead of referring to the
number of processors, refers to the number of leaf frames we
can support in the processor core. The speedup bounds work

int recurse (int n)
�

if (n==0) serially work();
else

�
spawn recurse(n-1);
spawn recurse(n-1);
sync;�

�

active leaves

deferred

deferred
finished

(a) The program. (b) The entire call tree for
recurse(3);

(c) Only two leaves are al-
lowed to exist at a time.

Figure 5: In Cilk, a limited number of forks in the dynamic call tree are allowed. Each node of the call tree shown in (b) represents
one invocation of the procedure named recurse. The whole call tree includes eight leaf nodes, but if on a two-processor system
we only want there to be two leaves enabled. Parts of the tree have already finished executing, and so their frame memory is
deallocated, and part of the tree is waiting to execute, but we do not actually allocate memory until one of the leaves finishes.

out differently as well, since there are not actually � ALUs
and other computational units, but the system still has a sound
theoretical basis.

Thus, to make this dataflow-oriented Cilk work requires
that the runtime system be able to distinguish between two
cases when spawning a child. The “serial case” is when a child
is being spawned and there are no other children currently in
existance. The “parallel case” is when there is already a child
running for a particular frame, and we must be careful not to
start another child unless there are idle processing resources.

Most of the support for Cilk-scheduling within the SDP
can be implemented in software, with a very small amount
of hardware support. The system must maintain a separate
“deferred” execution queue for the instructions that allocate
new frames. Instructions are executed via the regular window-
scheduling mechanism whenever possible. The rule for when
a deferred frame allocation instruction can run is more com-
plex, however.

The idea is that frame allocation instructions in the de-
ferred queue should not be run if there are too many spawned
children in the system. To make this work the processor keeps
a global count of how many leaf children are running. The pro-
cessor might be designed to allow, say, 16 concurrent leaves in
the call tree to be executing. If the global count is less than
16, then the processor executes a frame allocation instruction
out of the deferred queue (putting the resulting tokens into the
regular execution pipeline) and increments the global counter.
If the global count is greater than 16, then the processor does
not execute instructions from the deferred queue.

Here is how the system can compute how many active
leaves exist in the call tree. In software, a Cilk program sets
up a counter in the activation frame to keep track of how many
children are running (the “active-child count.”) Initially the
counter is set to zero. When spawning a child subroutine, if the
active-child count is zero, the spawn is treated like a serial call
(the frae allocation instruction is executed normally), and the
local counter is incremented. If the active-child count is pos-
itive, then the token that starts the frame allocation is placed
into the deferred queue, and the count is not incremented.

When a forked child completes, the system must decre-
ment the parent frame’s counter, and if that goes from two to
one, it must decrement the global leaf counter, which will then
allow some deferred instruction (if there is one) to run, allo-
cating a new frame.

The effect of all this is to implement a provably efficient
scheduler by providing the mechanisms needed to prove the
Cilk results for SDP.

We could have taken the decision to perform Cilk-style
scheduling in software, but we wanted to be able to write
Cilk-style programs in which the spawn and procedure call
instruction-sequence are the same. We wanted the “serial
case” to run as fast as possible, and so we provide hardware
support for the Cilk-style scheduling.

7 Related and Future Work

The biggest difference between our machine and previous
pure dataflow machines, such as Monsoon [PC90] and the
Manchester dataflow machine [GKW85] is that we make ex-
tensive use of speculation to achieve high performance on
single-threaded code. In contrast Monsoon could only use
one eighth of a single processor’s cycles on single threaded
code. The speculation we propose is possible because of ad-
vances in VLSI technology since the previous generation of
pure dataflow machines.

Among the hybrids, the two machines that look the most
like our proposed machine are the Tera (now known as Cray)
MTA, and the EM-5. Beyond the fact that our machine is a
pure dataflow machine, and makes extensive use of specula-
tion their are some other interesting differences.

The Tera MTA [ACC � 95] allows very restricted out-of-
order execution within a single thread (called a stream). Each
instruction specifies how many successive instructions can be
issued before this instruction completes, and this is limited by
7. So in effect, a single stream has a window size of 8 or less.
The pipeline depth for the MTA is about 70 clock ticks, and
so at least 9 streams are required to achieve 100% processor

utilization. The MTA relies on the compiler detecting many
streams of parallel instructions (of the order of a few tens per
processor) to get high throughput. In contrast, our approach
is to implement bypasses so that, a dependant instruction can
run on the next cycle immediately after the completion of its
predecessor. Even so, our processor would require high par-
allelism to achieve 100% utilization because some operations,
such as memory, take a long time, and that would require a
highly parallel memory subsystem, which seems infeasible for
a microprocessor using today’s memory technology.

In the EM-5 [SKY91], the scheduling unit is a “strongly-
connected component”, which may be one or more instruc-
tions. The instructions within a component are executed in
sequence. Instructions in the same strongly-connected com-
ponent can be run in successive cycles, but dependent instruc-
tions in different components cannot.

We are currently building a C compiler and simulator for
the SDP. Several other researchers have shown that it is pos-
sible to systematically compile serial programs for dataflow
machines [BP89, NHSB94, WA95]. Given that it is possible to
compile serial programs, our compiler work is directed to sup-
porting the thesis that a pure dataflow processor can compete
with a von Neumann processor. We hope to soon have results
about the effectiveness of our branch prediction scheme and of
our fetch prediction scheme, and of the SDP in general.

As a possible improvement to the ideas of the SDP, we
are considering a dataflow processor with a very different ap-
proach to managing data and tokens. Instead of using tokens
that carry data, we are considering a dataflow processor that
uses explicit registers, and in which the tokens carry only syn-
chronization information. This would reduce the number of
switches to be comparable to a superscalar processor. Instead
of one switch for every data value, it would be more like one
switch per branch. That would allow us to remove the branch
masks from the ISA because the branch masks can be dynam-
ically assigned to the instructions. This approach would also
reduce the number of instructions in the code.

Acknowledgments

Yale graduate student Rahul Sami helped with the analysis of
the related work, and has been examining the problem of com-
piling C for a dataflow machine.

References

[ACC � 95] Robert Alverson, David Callahan, Daniel Cum-
mings, Brian Koblenz, Allan Porterfield, and Burton Smith.
The Tera Computer System. ftp://www.net-serve.com/

tera/arch.ps.gz, 1995.

[BJK � 95] Robert D. Blumofe, Christopher F. Joerg, Brad-
ley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. In Proceedings of the Fifth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP ’95), pages 207–216, Santa Barbara, California, July
1995. (http://theory.lcs.mit.edu/pub/cilk/PPoPP95
.ps.Z).

[BP89] Micah Beck and Keshav Pingali. From control flow
to dataflow. Technical Report TR 89-1050, Department of
Computer Science, Cornell University, Ithaca, NY 14853-
7501, October 1989.

[GKW85] J. R. Gurd, C. C. Kirkham, and I. Watson. The
manchester prototype dataflow computer. Communications
of the CACM, 28(1):34–52, January 1985.

[NA88] Rishiyur S. Nikhil and Arvind. Can dataflow sub-
sume von Neumann computing? CSG Memo 292, MIT Lab-
oratory for Computer Science, November 1988. See [NA89].

[NA89] Rishiyur S. Nikhil and Arvind. Can dataflow sub-
sume von Neumann computing? In The 16th Annual Inter-
national Symposium on Computer Architecture, pages 262–
272, Jerusalem, Israel, May 1989. ACM SIGARCH Com-
puter Architecture News, Volume 17, Number 3, June 1989.

[NHSB94] Mark H. Nodine, James E. Hicks, Cotton Seed,
and Michael J. Beckerle. Generating parallelism profiles
from C programs. Technical Report MCRC-TR-43, Motorola
Cambridge Research Center, One Kendall Square, Building
200; Cambridge, MA 02139, September 1994. (Available
as http://csg-www.lcs.mit.edu:8001/mcrctr/tr43/ppg

.html).

[PC90] Gregory M. Papadopoulos and David E. Culler. Mon-
soon: An explicit token store architecture. In Proc. 17th. Intl.
Symp. on Computer Architecture, Seattle, WA, May 1990.

[SKY91] Shuichi Sakai, Yuetsu Kodama, and Yoshinori Ya-
maguchi. Architectural design of a parallel supercomputer
em-5. In Proc. Japan Soc. Parallel Proc., Kobe Japan, pages
149–156, May 14–16 1991.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M.
Levy. Simultaneous multithreading: Maximizing on-chip
parallelism. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture (ISCA ’95), pages
392–403, Santa Margherita Ligure, Italy, 22–24 June 1995.
Computer Architecture News, 23(2), May 1994.

[WA95] S. F. Wail and D. Abramson. Can dataflow ma-
chines be programmed with an imperative language. In
G. Gao, L. Bic, and J.-L. Gaudiot, editors, Advanced Topics
in Dataflow Computing and Multithreading, pages 229–265.
IEEE Computer Society Press, 1995.

