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Abstract—In a multistage network, hotspots induce tree sat-
uration. The known solutions employ a variety of techniques,
including combining (which works only for certain kinds of
messages), feedback damping (which appears to provide low
utilization in the absence of hot spots), and large numbers of
buffers. In practice, the approach used today is to provide large
numbers of buffers: in a P -processor system, the rule of thumb
appears to be to provide 10P buffers, but 10P buffers may be
too expensive for systems containing 105 or more processors.
Even employing Ω(P ) buffers does not appear to provide any
guarantees, however. We show that by organizing the switches
so that the messages addressed to a particular processor can
use only certain of the buffers, many hotspots can be tolerated
with few buffers. For example, a switch with O(logP ) buffers
can tolerate a single hotspot with probability 1, and allows the
first few hotspots to have a large number of buffers before being
declared a hotspot. A switch with B buffers can be organized so
that it blocks a particular non-hotspot message with probability
less than O(1/s) if there are O(B/ log s) hotspots, and can
handle a factor of O(B(log log s)/ log s) more hotspots before
the probability becomes a constant. A similar approach can also
be used to improve caching behavior in a multithreaded system
in which one of the threads tries to consume all of the cache.

I. INTRODUCTION

Large-scale computing systems typically employ multistage
interconnection networks to interconnect their processors.
These systems can suffer from hotspot contention, how-
ever [1]. Hotspots arise when source processors collectively
send too many messages to a particular destination processor—
the destination processor falls behind trying to receive mes-
sages, and the messages back up into the network filling up
buffers in the switches leading to the destination. Then the
switches leading to those switches fill up, and eventually the
congestion propagates backward through the network, forming
a tree rooted at the hot destination of routing nodes with
full buffers. This saturation pattern is sometimes called tree
saturation [1]. Hotspots require very little nonuniform traffic
and onset can be very fast and can take a long time to
alleviate [2]. Data center and supercomputer switches urgently
need effective congestion management to avoid performance
problems [3].

Tree saturation becomes a bigger problem as a system
grows to encompass more and more processors. Tree saturation
originally was understood as a problem even on networks
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containing as few as 100 processors [1], but a series of
techniques has mitigated tree saturation, at least on networks
with as many as thousands of processors.

Several techniques have been proposed to solve hotspot con-
tention. These techniques can be divided into four categories:
combining, feedback, buffering, and counting.

The combining solution involves organizing the system so
that switches find two messages that are destined for the same
processor, and combine them into one message. Although the
rules for combining messages have been worked out for certain
cases (e.g., to implement shared memory [4]), many kinds
of messages cannot combine. Even for combinable messages,
one problem that shows up is that messages going to the
same address might not ever meet each other, even if there
is a hotspot. Ranade showed a theoretically effective way to
implement shared-memory on a butterfly [5], but combining
has yet to be implemented in any large-scale or commercially
important systems.

The feedback approach aims to stop messages destined to
a hotspot at their sources (e.g., [6], [7]). Feedback schemes
notice that there is a hotspot, and provide information back
to the sources to slow them down. This kind of negative-
feedback control system seems to require difficult tuning
to avoid oscillation, and even when successful, appears to
underutilize the network [8].

The buffering approach involves adding more buffering
to the internal nodes of the routing network. It has been
long known that organizing the switches as a collection of
FIFO’s on input ports gives poor performance, due to head-
of-line blocking. By using buffers, which allow an unblocked
message to pass a blocked message, good performance can be
achieved, however (e.g., see [9]). Systems that avoid head-of-
line blocking require only a few buffers per input port to get
good performance on random routing patterns.

Today’s network architects appear to be doubling down on
the buffering approach. For example, Bechtolsheim [3], [10]
indicates that for a network containing P processors, a switch
should contain enough buffering to hold 10P messages, but
that the implied memory requirements seem too large to be
practical.

One reason the use of many buffers does not necessarily
solve the hotspot problem is that networks perform flow



control on the wrong units. For example, TCP performs flow-
control on an individual flow, which is the set of packets going
in one direction as part of a single TCP connection. It takes a
collusion of several flows to create a hotspot, however. On the
other hand, the DCE standard [11] performs link-level flow
control, and provides no way to stop a particular subset of
messages: it’s all or nothing across a link. This paper assumes
that a fine-grained link-level flow control can be employed to
stop particular messages.

The counting approach is exemplified by Dias and Kumar
[12], who provide a guarantee against hotspots via careful
buffer management. Their scheme enforces a rule that each
input port may buffer only one message destined to a given
processor. They simulated 4 buffers per input port with a 2×2
switch, and found in the face of a single hot spot, the network
behaved reasonably well. Although they simulated only one
hot spot, their approach can clearly handle more than one hot
spot. Given B buffers per input port, a network can tolerate
up to B hot spots before non-hotspot traffic is blocked. Our
simulation results indicate that it can tolerate O(B) hot spots
with good performance, which is not surprising, since it is
known that for random routing, only a few buffers are needed
per input port.

Our approach can be thought of as a variant on the counting
approach. We limit the number of buffers that hotspot mes-
sages can occupy, but with more flexibility to achieve better
performance.

Given some buffering and flow control, we can provide
two different guarantees under hotspot contention: a strong
guarantee and a weak guarantee. To define these guarantees,
we need to first define two classes of processors:

A hotspot is a processor that is receiving messages too
slowly, causing messages to back up into the network. Usually
a hotspot stems from too many messages being sent to a
processor, but for our analysis we assign the blame to the
recipient rather than the senders. We can model a hotspot
processor as though it has stopped and fully saturated the tree
of buffers that are available to the messages.

A coolspot is any processor that is not a hotspot.
Furthermore, we define
A complicit processor is one that has sent a message to a

hot processor, and the message has not yet been delivered.
An innocent processor is any non-complicit processor. All

the undelivered messages that it has sent are addressed to
processors which are not hotspots.

Thus processors are either hot or cool and they are either
complicit or innocent. All four cases are possible: for example
a hot processor could be innocent if it is receiving messages
too slowly but is not sending messages to a hot processor.

The strong guarantee is that any message addressed to
a coolspot will be delivered efficiently. By “delivered effi-
ciently”, we mean that the message will be delivered about
as quickly as if there were no hotspots. Since we need only
a few buffers for random traffic, our goal is to keep a few
buffers open for random traffic, even in the face of hotspot
traffic. Since buffers used by coolspots are not problematic, in

our analysis of results in this paper we will consider buffers
to be full only if they are being used by a hotspot (and ignore
buffer usage by coolspots).

The weak guarantee is that any message sent by an innocent
processor to a coolspot will be delivered efficiently. On the
other hand, a complicit processor may have its unrelated
messages slowed down by the hotspot.

To begin, we introduce a way to implement a strong hotspot
guarantee that can handle an arbitrary collection of hotspots,
using P buffers in each switch.

The P -buffer strategy: Assign buffer i to processor i, and
allow only messages addressed to processor i to be stored
in buffer i. This approach requires some bookkeeping inside
each switch, as well as fine-grained flow control so that we
can stop the messages from one processor without stopping
other messages. This approach also requires a buffer design
that allows a switch to select an unblocked message to be
forwarded to the next switch.

To get good performance, we may want to allocate 2P
buffers or more, to facilitate the pipelining of messages and
flow control. Given a link with a transmitter and a receiver, by
the time the receiver sends flow control information back to
the sender indicating that the messages for a processor should
be stopped, the transmitter may have sent more messages for
the same processor. Furthermore, we may want to be able
to absorb several messages destined to a particular processor,
since even under uniform random workloads, we often see
several messages with the same destination in the network
at the same time. For example, if every processor sends a
message to a random processor, then we have a system that can
be analyzed by P balls being thrown into P bins, and we know
that some processor is likely to receive Θ(logP/ log logP )
messages.

Using Ω(P ) buffers per switch seems expensive and ineffi-
cient. It seems expensive, since with, say 106 processors and
Ethernet jumbo frames of 10, 240 bytes, each switch requires
10GB of memory for P buffers per switch, or perhaps 100GB
if we want 10P buffers per switch. It seems inefficient since
most of those buffers will not be in use most of the time.

The approach we present in this paper is a variation of
the P -buffer strategy: we restrict the messages destined for
a particular processor to particular buffers, but we use fewer
than P buffers. Define the number of buffers per switch as B.
Assuming that hotspots persist for a while, then we expect
that all the buffers that a processor can use will become
filled up with messages. How many buffers should we allow
each processor to use? We present systems that can provide
one of two different answers to this question by following
different approaches: The first approach is that each hotspot
may consume up to a constant number, j, of buffers. In this
case, we can provide a guarantee that the system can route if
there are fewer than B/j hotspots.

In an alternative approach, we allow hotspots to consume
more buffers when there are few hotspots than when there are
many hotspots. We can provide a guarantee that if there are h
hotspots, then there are expected to be Bch buffers available



for coolspot traffic for some number c < 1. We call switches
that behave this way dampening switches.

We describe two different mechanisms to achieve these
goals: Counters and Randomized buffer assignment.

The counter mechanism works as follows. Each switch
maintains a counter counting how many messages in its buffers
are destined to each processor. The switch requires only space
O(B) to maintain these counters, since it needs not maintain
counters for processors that do not have messages present.
When the counter reaches its limit, the switch sends flow
control information stopping messages from that processor
from entering the switch.

The idea for randomized buffer assignment is as follows.
The destination processor of a message is hashed to produce
a set of buffers that the message is allowed to use. If there no
such buffers are available, then that processor is blocked.

With either mechanism, if all the buffers fill up, the link-
level flow control stops all new messages from arriving.

The rest of this paper is organized as follows. Section II
describes how to implement a weak guarantee for a butterfly
network with O(

√
P ) buffers. Section III describes a simple

counter system that allows for one to use fewer buffers
than one would use in the P -buffer strategy, if one expects
there to be under some number of hotspots. Section IV
describes how to implement dampening switches, which are
switches that give the first few hotspots more buffers, and
later hotspots fewer buffers. Section V describes how to build
a dampening switch using randomized buffer assignment that
gets a strong guarantee against one hotspot using a hashing
scheme and O(logP ) buffers. Section VI describes how to
get a strong guarantee against many hotspots using randomized
buffer assignment. Section VII shows that most hash functions
can tolerate quite a few hotspots (under certain conditions).
Section VIII describes the flow control for randomized buffer
assignment. Section IX presents a few simulation results that
show that dampening switches can provide substantial benefits
over simple counting switches. Section X concludes with a
discussion of how these ideas can be applied to caches.

II. BUTTERFLY NETWORKS

To get warmed up, let’s examine how to use only O(
√
P )

buffers to provide an arbitrary weak hotspot guarantee for an
obliviously-routed butterfly. Recall that the weak guarantee
states that if any set of processors has stopped, then processors
who aren’t sending messages to any of those processors can
continue. This arbitrary weak guarantee can be useful in a
space-shared computing environment, in which disjoint sets of
processors work on different tasks: we don’t want one task to
slow down another. The Connection Machine CM-5 [13] was
an example of a commercial machine that provided this kind
of guarantee as long as the different tasks were given disjoint
subtrees in the fat tree network. In contrast, this result allows
an arbitrary assignment of processors (instead of subtrees).

To illustrate how it works, we focus on a binary butterfly.
A binary butterfly comprises P lgP two-input two-output
switches. The switches are numbered with pairs (i, j) where

0 ≤ i < P and 0 < j < lgP , where switch (i, j) has outputs
connected to the inputs of switch (i, j+1) and (i⊕2j , j+1).

The key observation is that for messages traveling in the
second half of the network, there are at most

√
P different

destinations to which a message can get. So we allocate
√
P

buffers in each node, and assign at least one buffer exclusively
to each possible destination.

In the first half of the network, there are at most
√
P

different sources that could have gotten to that node, so we
assign buffers according to the source.

Now if any innocent processor sends a message to a
coolspot, the message will be able to make forward progress:
In the first half of the network, the message will make forward
progress because all of the source processor’s previous mes-
sages can make progress. In the second half of the network,
the message will make forward progress because all of the
destination’s messages will make progress.

This scheme can be extended to many other oblivious
routers, but the number of buffers used cannot be reduced by
much. Borodin and Hopcroft show that any oblivious router
for a P node network with degree d must have worst-case
routing time of Ω(

√
P/d3) [14]. This also provides a lower

bound on the number of buffers needed to provide an arbitrary
weak hot-spot guarantee. On the other hand, oblivious routers
seem to be seldom employed, possibly because the same result
states that oblivious routing can be slow. For the rest of this
paper we consider solutions that can work even on adaptive
routers in which there may be switches that can receive a
message from any processor and forward it to any processor.

III. THE COUNTER METHOD

Suppose that we want each destination (or conversely, each
arrival) processor to have up to j messages present before we
declare the processor as a hotspot (for some constant j). When
we did this in the previous section in the context of butterfly
networks, we j assigned specific buffers to each destination
processor. If there are D destination processors, this requires
jD buffers. But suppose we are confident that there will never
be more than k hotspots, or that we are willing to block all
traffic through a switch if there are k hotspots present at the
switch. In this case, we can use the following protocol and get
away with jk buffers instead.

For each switch, we maintain a hash table tracking how
many messages are at the switch that are destined for a given
processor. In order to save space, we only keep track of the
processors towards which at least one message at the switch is
destined. (So the hash table is of size at most O(jk).) When
a message arrives or departs, we increment or decrement the
appropriate element of the hash table.

When all jk buffers are full, we declare an interdiction on
all senders connected to the switch; they are no longer allowed
to send any messages.

When the jk buffers are not all full, we maintain that
the processors declared as hotspots are exactly the ones that
have j messages present at the switch. Observe that flow
control requires at most one communication between switches



per arrival or departure. Also, observe that if a message can
be forwarded directly to an output port upon routing (with
cut-through routing), then no bookkeeping is needed for the
message.

IV. DAMPENING SWITCHES

Suppose we design switches such that when there are k
hotspots at a switch, we expect B((B− j)/B)k buffers not to
be claimed by any of those hotspots. Such a switch design is
called a dampening switch.

The idea of a dampening switch is that as hotspots appear,
each one is allowed to use fewer and fewer buffers. The first
hotspots get to use a lot of buffers, but the switch can also
handle a lot of hotspots. Since multiple hotspots can appear
at once, a dampening switch cannot actually assign a given
amount of hotspots to the nth hotspot that appears. Hence the
definition of a dampening switch provided above.

It is worth noting why one might want to give hotspots many
buffers when one has the resources to afford doing so. One
example of when doing so is helpful is when switches near
a processor go through brief periods of heavy traffic due for
that processor. Suppose these switches accept, for example,
B/2 of those messages as outstanding messages instead of
declaring the processor as a hotspot after, for example, 3
of those messages. Then those messages may start clearing
up before the traffic jam has a chance to cascade up the
network to other switches farther away from the processor.
As a consequence, one might want to make switches that are
near a destination processor be dampening switches.

We introduce two ways to build a dampening switch, the
modified counter method and the randomized method. The
Modified Counter Method operates as follows. At each switch,
we keep a sorted array of how many buffers are being used
by each of the processors that have at least one outstanding
message at the switch. (Each element in the array consists
of a processor number and the value by which the list is
sorted. This value is referred to as the element’s value) We
call this list the processor impact array, PIA. Then each time
we add or subtract an outstanding message to our switch, we
do the following. We update the processor impact array. If
every buffer is full, we declare every processor as a hotspot.
Otherwise, we find the largest k such that the first k elements
in the processor array list sum to at least B−B((B−j)/B)k.
(Note that k may be zero.) We call this k the hotspot counter.
We then make sure that the processors that we have declared as
hotspots are the ones corresponding to those first k elements.

The Randomized Method operates as follows. For each
processor, we hash it to a random j-tuple of integers from
1 to B. We then allow each processor to use only the buffers
named in the j-tuple. It all such buffers are full, we declare
the processor to be a hotspot.

The modified counter method requires (B/j) lnB time for
flow control (discussed later in this section) while the ran-
domized method requires j time (discussed in Section VIII).
Thus if j2 < B lnB, then one will likely prefer the ran-
domized method. The modified counter method can also be

implemented to run in P time, which may be useful if for
some reason P is very small (for example, in the context of
caching which we discuss in Section X).

In Section VIII, we describe a flow control scheme for a
slightly modified version of the randomized method. One of
the strengths of the scheme is that upon receiving or sending
an outstanding message, it only ever declares or undeclares one
processor as a hotspot. On the other hand, the modified counter
method appears to require one to be constantly declaring and
undeclaring processors as hotspots. Indeed, suppose that a
outstanding message destined for a hotspot processor is sent.
Then that hotspot, along with all of the other hotspots that are
using fewer buffers (of which it turns out there may be order
(B/j) lnB; this is the maximum number of hotspots before
all buffers are full), are immediately undeclared as hotspots.
Then, when a message comes in for one of them, they may
all immediately be redeclared as hotspots. One would sort of
expect that fairly often, the sending of a single message that
is destined for a processor that has been declared a hotspot
would change the number of hotspots by a factor of two
for the modified counter method. On the other hand, even
without clever flow control, one would expect that the number
of hotspots under the randomized method to change only by
j/B times the number of hotspots.

The following result is relevant for dampening switches.
Theorem 1: When a dampening switch has (B/j) lnB

hotspots, one expects it to have only one of its buffers not
in use.1

Proof. It suffices to show that logB/(B−j)B ≈ (B/j) lnB.
logB/(B−j)B = lnB/ ln(B/(B − j))

= lnB/ ln

B
j

B
j − 1

≈ (B/j) lnB.

Now we will briefly discuss flow control for the modi-
fied counter method (because of how it ends up relating to
Theorem 1). First, observe that the processor impact array
requires only O(1) time to keep up to date each time a message
arrives or departs. One keeps two additional data structures in
memory: a hash table tracking the positions in the processor
impact array of each processor that has messages at the switch;
and an array I which in index i keeps track of the element of
highest valued position that has value i in the processor impact
array. Note that we only ever change values of elements of the
processor impact array by 1. For example, when we increment
the value of PIA[t], where a is the old value, we swap PIA[t]
with PIA[I[a]], decrement I[a], give I[a + 1] a value if it
previously had none (because no element of PIA had value
a+ 1), and update the hash table.

The remaining computational work takes (B/j) lnB time
(or P time if P < (B/j) lnB). This is because we do not
need to compute the hotspot counter except for when it will
be valued at no more than (B/j) lnB. Indeed, by Theorem 1,
when it is greater than (B/j) lnB, all buffers at the switch
are full; in this case, we’ve told all of our neighbors to stop

1Note that [15] provides a formula which can be used to reach Theorem 1.



sending any messages to us, and we don’t need to explicitly
compute the hotspot counter. Observing this, one can easily
calculate the hotspot counter (when necessary) in (B/j) lnB
time (or P time when P < (B/j) lnB), and then declare or
undeclare hotspots as needed in (B/j) lnB time.

The following sections will be devoted to studying the
randomized method.

V. ONE HOTSPOT, O(logP ) BUFFERS

The next two sections show how to solve the tree satura-
tion problem for arbitrary networks using randomized buffer
assignment. This approach could be used, for example, on Fat
trees [16], which are now used widely in data center networks.
This section shows how to provide a strong hotspot guarantee
against a single hotspot with O(logP ) buffers per processor.

The idea is illustrated by this small example. Consider a
machine containing 6 processors numbered 0 through 5 with
switches containing 4 buffers each, named A, B, C, and D.
We allow each processor to use only two switches, as shown
in this table:

Processor Allowed Buffers
0 A B
1 A C
2 A D
3 B C
4 B D
5 C D

Since
(
4
2

)
= 6 we can arrange that each processor has a distinct

set of buffers attached to it. Now if any single processor stops
receiving, all other processors still have at least one buffer
they can use, so their messages continue to make progress.

We denote by Si the set of buffers assigned to processor i.
Observe that if, at a switch, Si 6= Sj then even if processor
j stops, then processor i will be able to continue to send
messages through the switch. We could make all the switches
use the same mapping (in which case, knowing that a processor
can get through one switch means that it can get through all the
switches), or different switches could use different mappings.

We can apply this idea to a system with P processors by
using just enough buffers B so that

(
B
B/2

)
≥ P . In this case,

each processor can be assigned a unique subset of B/2 buffers.
It turns out that B is a little bit larger than lgP . One bound
for the central binomial coefficient is(

2n

n

)
=

4n√
πn

(
1− cn

n

)
,

where 1/9 < cn < 1/8 for all n ≥ 1. This implies(
lgP

0.5 lgP

)
≈ P√

(π/2) lgP
,

and we need just about lg lgP more buffers. If we use 1 +

dlgP + lg lgP e buffers we get(
d1 + lgP + lg lgP e
d(1 + lgP + lg lgP )/2e

)
≈ 4(1+lgP+lg lgP )/2√

π(1 + lgP + lg lgP )/2

=
21+lgP+lg lgP√

π(1 + lgP + lg lgP )/2

=
2P lgP√

π(1 + lgP + lg lgP )/2
.

We want (
d1 + lgP + lg lgP e
d(1 + lgP + lg lgP )/2e

)
?
≥ P.

Since
2 lgP/

√
π(1 + lgP + lg lgP )/2 ∈ o(1),

the approximation is swamped for large P . For small P ,
we can calculate, and it turns out that there are enough
combinations of buffers to give every processor a distinct set.

One way to statically assign buffers to processors numbered
from 0 to P −1 is as follows. We use a twice as many buffers
to make the calculation easier: using B = 2dlgP e buffers,
we use the following buffer assignment. Given a processor
number from 0 to P − 1, we look at its binary representation
b. If the ith digit of b is zero, then we assign buffer number 2i
to the processor, and otherwise we assign the buffer number
2i+ 1. Each processor gets a unique set of buffers, so we are
guaranteed to be able to handle any single hotspot.

That approach provides P unique combinations of distinct
buffers, and that works fine if we want to precompute the
unique subset of buffers for each processor to use. One can
imagine that the routing switch does not know how many
processors there are or what their identities are in advance,
however. For example, the switch might discover ethernet
MAC addresses dynamically. Even in this situation, the switch
could maintain a table of the MAC’s that it has seen, and use
the precomputed buffers. This kind of system would require a
table big enough to hold P MACs, and since a MAC is only
6 bytes, storing P MACs could be perfectly reasonable.

For some systems, it might make sense to avoid a processor
table, however. Such a system could use randomly chosen
subsets of buffers, employing a hash of the MAC address.
Borrowing an idea from Bloom filters, we could compute two
hashes a and b, and then choose buffer numbers the form
a+ ib. Since we are choosing subsets of buffers randomly, we
need more than P distinct subsets. The birthday paradox tells
us that roughly P 2 distinct sets is enough.

By using 3 lgP buffers per processor in each switch we
can get more than P 2 different sets. The number of of such
possible sets is(

3 lgP

1.5 lgP

)
≈ 41.5 lgP

√
π1.5 lgP

=
P 3

√
π1.5 lgP

.

With nearly O(P 3) distinct combinations of buffers, the
chance that two processors would pick the same buffer set
is vanishingly small. And by adding a few more buffers, the
odds can be made arbitrarily small.

Theorem 2: O(log(P/ε)) buffers yields less than ε proba-
bility of collision.



Proof sketch: The number of combinations is exponential in
the number of buffers, and the probability of collision is less
than P 2/C where C is the number of combinations.

Thus, even switches with o(P ) storage can provide a
guarantee that a single hotspot will not stop messages from
being delivered to any other processor, with high probability.

VI. MANY HOTSPOTS WITH HIGH PROBABILITY

Section V showed how to tolerate a single hotspot with a
logarithmic number of buffers. This section shows that we
can tolerate many hotspots if we have a few more buffers.
For example, we can tolerate Θ(B/ log s) hotspots with any
particular coolspot processor being blocked with probability
O(1/s). Or, assigning j buffers to each processor, we can
tolerate (B/j)(ln(j)−t) hotspots with any particular coolspot
processor being blocked with probability 1/ee

t

.
Suppose we have P processors and B total buffers. Let j

represent the number of buffers assigned to each processor. In
assigning buffers to processors, suppose that we simply pick
a j-tuple of random integers for each assignment (possibily
picking the same buffer more than once). Let k be the number
of hotspots.

Let g(B, j, k, P ) be the expected number of buffers that
are not assigned to any hotspot. Let β(B, j, k, P ) be the
probability that a given coolspot processor is blocked by a
given k hotspots. Let f(B, j, k, P ) be the probability that there
are no coolspots blocked.

Lemma 3:
β(B, j, k, P ) ≈ (1− e−jk/B)j .

Proof. The probability that a given buffer is not assigned to
any hotspot is (

1− 1

B

)jk
≈ e−jk/B .

Thus g(B, j, k, P ) ≈ Be−jk/B .
Observe that β(B, j, k, P ) = (B−g(B, j, k, P ))j/Bj . Thus

β(B, j, k, P ) ≈ (1− e−jk/B)j .
Lemma 4: Let ε > 0. For B sufficiently large,

β(B, j, k, P ) ≤ (1− (e+ ε)−jk/B)j .

Proof. The probability that a given buffer is not assigned to
any hotspot is

(
1− 1

B

)jk
.

For B sufficiently large,
(
1− 1

B

)B ≥ (e+ ε)−1. Therefore,
for B sufficiently large,(

1− 1

B

)jk
=

(
1− 1

B

)B(jk/B)

≥ (e+ ε)−jk/B .

Consequently, for such B, g(B, j, k, P ) > B(e+ ε)−jk/B .
Observe that β(B, j, k, P ) = (B−g(B, j, k, P ))j/Bj . Thus

β(B, j, k, P ) < (1− (e+ ε)−jk/B)j .
Recall that using the counter method, one can handle B/j

hotspots before all processors, hotspots or not, are blocked
by flow control. What if we have B/j hotspots using the
hashing method? By Lemma 4, we have β(B, j,B/j, P ) ≈
(1− e−1)j ≈ .632j ≈ 1/2.66j .

Another natural question is, for what k does β(B, j, k, P )
start to get large, and how quickly does it do so? To answer

this question, we prove the following result, which is the most
important result in this section.

Theorem 5: Let ε > 0. Let k = (B/j)(loge+ε(j)− t) where
t < loge+ε j and B is sufficiently large. Then β(B, j, k, P ) <

1/e(e+ε)
t

< 1/ee
t

.
Proof. By Lemma 4, β(B, j, k, P ) < (1− (e+ε)−jk/B)j =
(1 − (e + ε)− loge+ε(j)+t)j . It follows that β(B, j, k, P ) <

1/ej(e+ε)
− loge+ε j+t

= 1/e(e+ε)
t

.
This high-probability result implies that we can tolerate

many hotspots with even with many buffers per assignment.
For example, if j = ln2 P and t = ln lnP (note that ln j =
2 ln lnP = 2t), then the Theorem 5 yields β(j, k, P,B) = 1/p
when k = B/(2j) ln j. In fact, if j ∈ Ω(log2 P ) we can toler-
ate O((B/j) log j) hotspots. Also, note that regardless of our
choice for j, we can tolerate k = (B/j) ln j hotspots, getting
β(j, k, P,B) = 1/e. Although 1/e is only an expectation, not
a high-probability bound, it says that the hash method is still
pretty functional even when we give it a factor of ln j more
hotspots than we can give the counter method.

There is one additional interesting case to consider, that
where we pick j as the value that for a fixed P,B, k minimizes
β(B, j, k, P ) ≈ (1−e−jk/B)j . Taking the derivative, we want

∂(1− e−jk/B)j

∂j
= 0,

which implies
jk + (−1 + e(jk)/B)B ln(1− e−(jk)/B) = 0,

which in turn implies
j = (B/k) ln 2.

Thus we have β(B, j, k, P ) ≈ (1− e−jk/B)j = 1/2j .2

Given this, it is interesting to note the following results.
In particular, Theorem 9 will be useful when proving the
existence and frequency of optimal hash functions in the
Section VII.

Lemma 6: Let j = (B/k) ln 2. Then β(B, j, k, P ) ≈ 1/2j .
Proof. By Lemma 4, β(B, j, k, P ) ≈ (1− e−jk/B)j = (1−
1/2)j = 1/2j .

Here’s the second most important result in this section: It
provides a high-probability bound for how many hotspots we
can tolerate with a given probability.

Theorem 7: Given B buffers, one can pick j such that one
can handle k = O(B/ log s) hotspots with β(B, j, k, P ) ≈
1/s.
Proof. Let j = log s. By Lemma 6, we can handle k =
(B/j) ln 2 ∈ O(B/ log s) hotspots with β(B, j, k, P ) ≈ 1/s.

Lemma 8: Let j = (B/k) ln 2. Then f(B, j, k, P ) ≈
1/e(P−B ln 2)/2j .
Proof. Since f(B, j, k, P ) = (1 − β(B, j, k, P ))P−jk,
we have f(B, j, k, P ) ≈

(
1− 1/2j

)P−B ln 2
. In turn,

f(B, j, k, P ) ≈ 1/e(P−B ln 2)/2j .
Theorem 9: For a given value of s, let k = B ln2 2/(ln(P −

B ln 2) + ln s) and j = (B/k) ln 2. Then, f(B, j, k, P ) ≈
(1− 1/s).

2Note that [17] shows, in the context of Bloom filters, that if you know
that you are inserting k items into a Bloom filter of size B, then the optimal
number of bits to set is j = (B/k) ln 2, achieving false-positive probability
1/2j .



Proof. Pick a d. If we want the largest k such that
f(B, j, k, P ) gets as small as d (when we pick j = (B/k) ln 2)
then, by Lemma 8, we want

1/d = e(P−B ln 2)/2(B/k) ln 2

,

2(B/k) ln 2 ln(1/d) = P −B ln 2, and

(B/k) ln 2 + lg ln(1/d) = lg(P −B ln 2).

If d = (1− 1/s), then
(B/k) ln 2− lg s = lg(P −B ln 2), and

k =
B ln 2

lg(P −B ln 2) + lg s
=

B ln2 2

ln(P −B ln 2) + ln s
.

VII. PICKING AN OPTIMAL HASH SETUP

In Section VI we presented high-probability results stating
that a random hash function keeps coolspot processors from
being blocked, even when many hotspots exist. However, it
would be nice to have a 100% guarantee for some number
of hotspots. We say a hash function is k-perfect if, assigning
buffers with that hash function, no choice of k hotspots blocks
any coolspot processor. In this section, we provide a result on
the frequency of k-perfect hash functions and a construction
for a (j− 1)-perfect hash function (under certain constraints).

Theorem 10: Suppose k(k + t+ 1) = B ln2 2/ lnP . Then,
picking j = (B/k) ln 2, out of all the hash functions at most
1 out of P t hash functions are not k-perfect.
Proof. Recall that the hash functions map processors to j-
tuples containing not necessarily distinct numbers.

By Theorem 9, given a choice of a hash function and a
choice of k hotspots, there is approximately a 1/s chance that
the hotspots block any coolspot processor when k satisfies
k = B ln2 2/(ln(P − B ln 2) + ln s). Observe that given a
choice of a hash function, there are no more than P k ways
to choose k hotspots. Therefore, if s = P k+t, then only 1/P t

of the choices for hash functions can be not k-perfect. In this
case, k = B ln2 2/(ln(P−jk)+lnP s+t). If we pick a slightly
smaller k = B ln2 2/(lnP + lnP s+t), then this yields k(k +
t+ 1) = B ln2 2/ lnP .

A simple and important implication of Theorem 10 is that
we can pick j and k both in Θ(

√
B/ lnP ), with fewer than

1 in P hashes not being k-perfect.
In the remainder of the section, we construct a (j − 1)-

perfect hash function, the main constraint for which is that
P ≤ B2/(j2 ln(B/j)). Observe that given P and B (meeting
certain easy constraints), we can thus construct a (j − 1)-
perfect hash function for j = B/

√
P lnB. In order to

construct such a hash function, we design its range such that
any two distinct j-tuples in the range overlap in at most one
value, and such that each value in a given j-tuple is distinct.

Let j, B ∈ N such that j|B. Let Qj,B be a set of integers
such that

1) LCM(q, q′) > qj for all q, q′ ∈ Qj,B ;
2) q ≤ B/j and GCD(q,B) = 1 for all q ∈ Qj,B .

Let
Hj,B = {{rqj + tq mod B|t ∈ [1..j]}|q ∈ Qj,B , r ∈ [0, B/j]} .

Observe that |Hj,B | = |Qj,B |B/j.
Given j and B, we can pick Hj,B as the range of a hash

function with domain [1, |Hj,B |].
Theorem 11: If a, b ∈ Hj,B are distinct then |a ∩ b| ≤ 1.

Proof. We have
a = {rq(j − 1) + tq|r ∈ [0, B/j]},
b = {rq′(j − 1) + tq′|r ∈ [0, B/j]},

where q, q′ ∈ Qj,B . If q = q′, then since GCD(q,B) = 1 and
j|B, |a∩ b| = 0. Suppose q 6= q′. Then since LCM(q, q′) and
B are greater than both qj and q′j, |a ∩ b| ≤ 1.

The next natural question to ask is how large we can
construct Qj,B to be. For simplicity, we pick B to be a power
of two. One simple construction is to pick Qj,B to contain
• for each odd prime q satisfying

√
j < q ≤ B/j, q;

• for each odd prime q ≤
√
j, the smallest power of q

greater than
√
j.

Since any two elements of the proposed Qj,b are relatively
prime, each greater than

√
j, and each relatively prime to B,

it follows that this set of elements does indeed satisfy the
requirements of Qj,B . Note that |Qj,b| = π(B/j) − 1 ≈
B/(j ln(B/j)). (Recall that π(x) is the number of primes
less than or equal to x, and π(x) ≈ x/ lnx.) Thus |Hj,b| =
|Qj,B |B/j ≈ B2/(j2 ln(B/j)). So, we have a hash function
allowing at most one overlap between the buffers assigned to
any two distinct processors; and the main requirement for this
hash function is that P ≤ B2/(j2 ln(B/j)).

VIII. FLOW CONTROL

The previous sections showed that switches can perform
local management of messages using hashing to assign mes-
sages to buffers. When a switch determines that a processor
can no longer be accommodated in its buffers, it must stop
further messages from arriving. This section explains how to
perform the bookkeeping and interswitch communication for
flow control.

The flow control and buffer management should satisfy
these requirements:

1) Perform O(j) work per message, when each processor
hashes to j buffers. (Any flow-control mechanism will
take, in the worst case, Ω(j) probes into a table since it
must look into the j possible buffer locations to find a
free location.)

2) Don’t incur latency: (that is, if there is little or no
contention, then the switch must not delay messages.)

3) Send flow-control information across a communication
link only when the arrival (or departure) of a message
makes a processor into a hotspot (or coolspot).

4) Provide a single buffer pool, rather than one for every
input port.

A. Sender calculates

We first present a simple scheme which satisfies only the
first two requirements above. This scheme is simple to imple-
ment and easy to understand. In this scheme, we will send
a little more flow-control information and we have a buffer



pool for every input port. Consider a communication link
connecting a sender switch to a receiver switch. In this case,
the sender will do all the calculations of buffer management
for the receiver.

What the receiver does: The receiver receives a mes-
sage, buffers it, and later forwards it (or possibly forwards
it immediately without buffering, e.g., to effect cut-through
routing [18]). Whenever the receiver forwards a message it
informs the sender of the processor number of the forwarded
message.

What the sender does: Keep a bitmap tracking which
buffers are allocated to each message held by the receiver, and
also keep a table tracking for each processor, which buffers
are being used by messages destined to the processor.

It turns out that by having the receiver perform the book-
keeping, and using a slightly more complex scheme, we can
reduce the flow control information and use a single buffer
pool for the entire switch, reducing the number of buffers
required by a factor of Ω(∆), the degree of the switch.

B. Receiver calculates

Here we present a second scheme which satisfies all four
requirements. In this scheme, we have only a single set of
buffers shared among all input ports. We have an extra set
of B buffers called emergency-backup buffers. Hence this
system employs a total of 2B buffers instead of B buffers.

At any given point the receiver has declared a subset of
the processors to be embargoed. An embargoed processor is
one whose assigned buffers are all full (possibly of unrelated
messages) and is using an emergency-backup buffer. The
sender does not transmit messages destined to embargoed
processors. The list of embargoed processors is known by the
receiver, and the sender must be kept up to date every time the
list changes. In our implementation, the list size changes by
at most one element whenever a message arrives or departs.

When all the emergency-backup buffers fill, the receiver
declares an interdiction on all the senders connected to it,
which stops all messages from being sent across the respective
communication links.

When a message arrives destined to a processor, we put the
message into one of the buffers assigned to the processor.
If all those buffers are full, then we place the message
into an emergency-backup buffer and embargo the processor,
informing the senders.

When a message departs from an emergency-backup buffer,
we unembargo the processor, informing the senders.

When a message departs from an assigned buffer, we
must find whether any embargoed processors have that buffer
assigned to them, and move one of their emergency-backup-
buffered messages into the assigned buffer. In that case, we
unembargo the processor of the moved message, and inform
the senders.

Why do we employ emergency-backup buffers? When a
message is placed into a buffer, potentially many processors
no longer have any regular buffers available in which to put
their messages. We don’t even know who those processors are.
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Fig. 1: The bookkeeping data structure comprises buffers, waiting
lists, and emergency backup buffers. Each buffer can be empty or
hold a message. In the figure, the first four buffers are shown holding
messages destined to processors 9, 2, 5, and 8 respectively. Each
nonempty buffer also points to a doubly-linked waiting list. For
example, the first buffer has a waiting list that includes processors
7, 5, and 3. The double links within a waiting list are shown as
horizontal double-ended arrows. Each waiting list element is threaded
in a linked list of waiting-list nodes for the same processor. Here we
show only the processor links for processor 5, which has a node
waiting in buffers 0, 1, and 3. The processor links are shown as
double-ended arrows going from one row of waiting list nodes to
another. The last waiting list node for a processor points to the
emergency backup buffer containing the message for that processor.

So instead of tracking which is a hotspot and which isn’t, we
accept one extra message from each processor and embargo
only the processor to which that message is destined.

The rest of this section shows how to implement this scheme
to run in time O(j). The trickiest part is for the receiver to
determine what needs to be unembargoed; determining when
to embargo a processor is easy, and the senders’ jobs are easy
too.

The bookkeeping data structure is shown in Figures 1 and 2.
For each nonempty buffer, we maintain a pointer to a doubly-
linked list, called the waiting list, containing all the identities
of all the embargoed processors that could use the buffer. (In
the worst case, the expected length of the waiting list is j, since
there are at most B embargoed processors, each processor
is assigned j buffers, and there are B lists. It turns out we
never traverse a waiting list, anyway.) Each waiting list node
is also linked in a doubly-linked list of all the waiting list nodes
for the same embargoed processor. The last node in that list
contains a pointer to the emergency-backup buffer being used
by the processor.

Given the bookkeeping data structure, it is straightforward to
handle the arrival or departure of a message. When a message
arrives, the receiver does the following:

1) Determine if the message can be forwarded directly to
an output port (with cut-through routing) (thus achieving
goal 2). If so, then the message is sent and no buffering
work is performed.
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Fig. 2: After removing the message in buffer 1 destined to processor 2
(as shown in Figure 1), we have this state. The message that was in
the second emergency-backup buffer has moved to buffer 1, and the
waiting lists no longer include processor 5. Processor 5 now has
messages in buffers 1 and 2, and is no longer embargoed. The empty
emergency-backup buffer has been placed in a linked list (not shown)
of all the empty emergency-backup buffers.

2) Otherwise, hash the processor number, to compute the
set of buffers that can be used. This is a set of j buffers.
Look up each of the j buffers to find a free one.

a) If there is a free buffer, store the message in the
buffer.

b) Otherwise, store the message in an emergency
backup buffer, embargo the processor, and inform
the sender of the embargo.

c) Update the bookkeeping structure, adding the mes-
sage’s processor into the waiting lists of each of the
j buffers.

3) If all the buffers fill up, then interdict the senders.
When we clear a buffer by forwarding a message from it to

an output port, we must check to see if there is an embargoed
message that wants to use that buffer. When forwarding a
message from a receiver to its output port do the following:

1) We look at the buffer’s waiting list. If that list is
nonempty, then we pick an embargoed message (prob-
ably we pick the oldest such message to reduce worst-
case latency through the switch).

a) Move the embargoed message into the buffer, free-
ing the emergency-backup buffer.

b) Remove the processor from all the waiting lists of
all the buffers it wants to use (that’s O(j) work,
since we have a linked list of the relevant waiting-
list nodes).

c) Inform the sender that the processor is no longer
embargoed.

2) Lift the interdiction on the sender, if there is one.
It’s not actually necessary to move messages from one

buffer to another: it’s just bookkeeping to make sure that not
too many messages from each processor appear.
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Fig. 3: Simulation results for Dias-Kumar style counting [12] com-
pared to hash dampening. The subfigures show hotspots of various
durations D. The horizontal axis of each figure is the cycle time (a
message can be fowarded from one switch to another in a single
cycle). The vertical axis shows the number of messages delivered
per cycle. The hotspot starts after 5, 000 messages has been sent,
and can been observed as drop in the number of messages delivered
per cycle.

The senders maintain a collection of up to B FIFO’s indexed
by processor number, to implement virtual output queues
which allow it to avoid sending messages destined to particular
processors.

Thus for the cost of a constant factor in the number of
buffers, we can reduce the flow control information down to
at most one stopped or started processor for each message that
arrives or departs. Note that due to the latency of communica-
tion, a message destined for a hotspot may occasionally arrive
even after the processor has been declared as a hotspot by a
switch. Our flow control protocol is easy to modify in order
take this into account. We can assign the extra message to an
emergency-backup buffer; then the processor is only declared
as a coolspot once all of the messages it has in emergency-
backup buffers have cleared out. (We can have a few extra
emergency-backup buffers than we would have had otherwise
in order to make up for the fact that some hotspots may be
using several.)

Suppose we wanted to employ our scheme in Ethernet.
Our flow protocol is not quite compatible with DCE Ethernet.
The Ethernet DCE standard provides for flow control, but it
provides flow control for only 8 priorities. To make our scheme
work, we want flow control for each processor. We don’t need
to change the Ethernet adapters on the motherboards: it’s good
enough to do hotspot flow control inside the network, and shut
off the whole link from a processor. Since the DCE messages
are extendable, it may be acceptable to employ non-standard
protocols only between switches, if the motherboards remain
unchanged.

IX. SIMULATION

The main advantage of our dampening switches over the
counting scheme of Dias and Kumar [12] is performance. Here



we present some simulation results showing that this advantage
can sometimes be substantial.

Figure 3 compares the performance of a hashed dampening
switch with a Dias-Kumar style counting switch in which each
input port is allowed to hold only one message destined to a
given processor. We simulated a store-and-forward butterfly
switch containing 1, 000 processors. Each input port of each
switch has 13 buffers. The simulation sends 5,000 random
messages from each processor, then D messages all to pro-
cessor zero (creating a hotspot of “duration” D), then 5,000
more random messages. The four subfigures show different
hotspot durations. As the figure shows, before the hotspot
starts, the two schemes are essentially indistinguishable. For
for a relatively short-lived hotspot (D = 1) the Dias scheme
shows a slight performance drop, and then recovers. As the
duration of the hotspot gets longer, the Dias scheme suffers
more and more compared to the dampening switch. When
D = 20, the hotspot is still hurting performance long after the
processors have stopped injecting messages into the network,
but the dampening switch finishes the job sooner.

X. CACHING

If we think of the buffer pool of a switch as a kind of cache,
it is interesting to note that we have effectively changed the
buffer from a fully associative cache to a randomized j-way
associative cache. By reducing the associativity, the behavior
of the system is improved against processors that receive too
many messages.

One problem that shows up in multithreaded programs is
when one particular thread grabs all the cache lines in a shared
cache, slowing down other threads. Some approaches to this
problem include static partitioning [19]; dynamic partitioning
based on identifying program phases [20]; dynamically par-
titioning to minimize the global hit rate [21], or maximize
instructions per cycle [22]. See [19] for a survey of cache
partitioning.

In the caching context, a cache line that was brought
in by one thread can be evicted by another thread without
compromising correctness. One approach is to keep track of
which threads are hot and which are cool using one of the
schemes described here. A cool thread, when it needs to evict
a cache line, can evict any cache line (for example, it might
evict the globally least recently used cache line). A hot thread,
on the other hand, is allowed to evict only certain cache lines.
It might be allowed to evict only cache lines that are were
brought in by threads that are at least as hot as it is (when
using a counting method), or it might be allowed to evict only
cache lines from a certain assigned set of cache lines (when
using a hash assignment method).

For caching, there is a clear advantage to allowing a large
number of cache lines to be assigned to one thread, whereas
in switching, the advantage is second-order.

Furthermore, caching is different from switching in that for
caching there are relatively few processors P compared to the
number of cache lines B. It would probably make sense to

employ the modified counter method described in Section IV,
further modified to run in time O(P ). The parameters can be
adjusted so that, for example, a single uncontended thread can
get half the cache.
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