
Brief Announcement: Few Buffers, Many Hot Spots, and
No Tree Saturation (with High Probability)

Bradley C. Kuszmaul
MIT CSAIL

bradley@mit.edu

William Kuszmaul
MIT PRIMES

william.kuszmaul@gmail.com

ABSTRACT
In a multistage network, hotspots induce tree saturation.
The known solutions employ a variety of techniques, in-
cluding combining (which works only for certain kinds of
messages), feedback damping (which appears to provide low
utilization in the absence of hot spots), and large numbers
of buffers. In practice, the approach used today is to pro-
vide large numbers of buffers: in a P -processor system, the
rule of thumb appears to be to provide 10P buffers, but 10P
buffers may be too expensive for systems containing 105 or
more processors. Even employing Ω(P ) buffers does not ap-
pear to provide any guarantees, however. This paper shows
that by organizing the switches so that the messages ad-
dressed to a particular processor can use only certain of the
buffers, many hotspots can be tolerated with few buffers.
For example, a switch with O(logP ) buffers can tolerate a
single hotspot with probability 1, and allows the first few
hotspots to have a large number of buffers before being de-
clared a hotspot. A switch with B buffers will block a given
non-hotspot message with probability less than O(1/s) if
there are O(B/ log s) hotspots, and can handle a factor of
O(ln ln s) more hotspots before the probability becomes a
constant. A similar approach can also be used to improve
caching behavior in a multithreaded system in which one of
the threads tries to consume all of the cache.

Large-scale computing systems typically employ multi-
stage interconnection networks to interconnect their proces-
sors. These systems can suffer from hotspot contention ,
however [7]. Hotspots arise when source processors collec-
tively send too many messages to a particular destination
processor—the destination processor falls behind trying to
receive messages, and the messages back up into the net-
work filling up buffers in the switches leading to the desti-
nation. Then the switches leading to those switches fill up,
and eventually the congestion propagates backward through
the network, forming a tree rooted at the hot destination of
routing nodes with full buffers. This saturation pattern is
sometimes called tree saturation [7]. Hotspots require very
little nonuniform traffic and onset can be very fast and can
take a long time to alleviate [4]. Data center and supercom-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
ACM 978-1-4503-2821-0/14/06.
http://dx.doi.org/10.1145/2612669.2612708.

puter switches urgently need effective congestion manage-
ment to avoid performance problems [1].

Tree saturation becomes a bigger problem as a system
grows to encompass more and more processors. Tree satu-
ration originally was understood as a problem even on net-
works containing as few as 100 processors [7], but a series
of techniques has mitigated tree saturation, at least on net-
works with as many as thousands of processors. These tech-
niques can be divided into three categories: message com-
bining [3], feedback [9] , and buffering [2, 11]. None of
these approaches appear to be in use in modern switches.
Combining does not solve the problem for general messages.
Feedback is difficult to tune [12]. Here we focus on buffering
approaches.

Dias and Kumar [2] do provide a guarantee against
hotspots via careful buffer management. Their scheme en-
forces a rule that each input port may buffer only one mes-
sage destined to a given processor. They simulated 4 buffers
per input port with a 2 × 2 switch, and found in the face
of a single hot spot, the network behaved reasonably well.
Although they simulated only one hot spot, their approach
can clearly handle more than one hot spot. Given B buffers
per input port, a network can tolerate up to B hot spots
before non-hotspot traffic is blocked. Our simulation results
indicate that it can tolerate O(B) hot spots with good per-
formance, which is not surprising, since it is known that
for random routing, only a few buffers are needed per input
port.

Today’s networks simply employ many buffers, and offer
no guarantees in the face of hotspots. For example, Bechtol-
sheim [1, 6] indicates that for a network containing P pro-
cessors, a switch should contain enough buffering to hold
10P messages. He also points out that the implied mem-
ory requirements seem too large to be practical for the next
generation of switches.

Using Ω(P ) buffers per switch seems expensive and ineffi-
cient. It seems expensive, since with, say 106 processors and
Ethernet jumbo frames of 10, 240 bytes, each switch requires
10GB of memory for P buffers per switch, or perhaps 100GB
if we want 10P buffers per switch. It seems inefficient since
most of those buffers will not be in use most of the time.

We propose a new buffer management technique called
a dampening switch . The idea of a dampening switch is
that if there are few hotspots, then each hotspot can use
many buffers, but as the number of hotspots increases, the
switch reduces the number of buffers that each hotspot may
use. This is in contrast to the switch of [2], which permits a
hotspot to use only one buffer per switch.

67



For the purposes of analyzing these switches, we model a
hotspot as a processor that has stopped receiving messages.
We model the switching network as a store-and-forward net-
work, so that we can think of each in-transit message resid-
ing in exactly one buffer. Real hotspots come and go, and
real networks employ cut-through routing, but that does
not qualitatively change our results. Any buffer containing
a message destined to a hotspot is said to be claimed by
that hotspot.

We have designed two kind of dampening switches:
counting dampeners and hashed dampeners. The idea
of a counting dampener is to count the number of messages
destined to each processor and limit the total number of
buffers claimed by by hotspots. The idea of a hashed damp-
ener is restrict each destination processor to a set of buffers
using a hash function. In this case, the total number of
buffers claimed by a hotspot is limited by the combinatorics
of the hashing.

The switch operates by accepting messages across its in-
put links. If messages to particular destination processor
exceed their buffer quota, then the switch sends link-level
flow control information stopping messages destined to that
processor. If all the buffers fill up, then the switch sends
link-level flow control stopping all messages.

Dampening Switches
Suppose we design switches containing B buffers such that
when there are k hotspots at a switch, we expect Bαk buffers
not to be claimed by any of those hotspots (for some α <
1). Such a switch design is called a dampening switch .
The idea of a dampening switch is that as hotspots appear,
each one is allowed to use fewer and fewer buffers. The first
hotspots get to use a lot of buffers, but the switch can also
handle a lot of hotspots. Since multiple hotspots can appear
at once, a dampening switch cannot actually assign a given
amount of hotspots to the nth hotspot that appears. Hence
we define it in terms of the number or buffers not being
claimed by a hotspot.

Dampening switches are appealing because we want to
give a hotspot many buffers if there is only one hotspot to
give better performance. But we want to be able to handle
many hotspots. For example when switches near a proces-
sor go through brief periods of heavy traffic, we would like
to allocate many buffers to a processor that appears hot.
Suppose these switches accept, for example, B/2 of those
messages as outstanding messages instead of declaring the
processor as a hotspot after, for example, 3 of those mes-
sages. Then those messages may start clearing up before
the traffic jam has a chance to cascade up the network to
other switches farther away from the processor. These brief
periods of traffic can occur randomly. For example if every
processor sends a message to a randomly chosen processor,
a standard balls-and-bins argument states that we expect
that some processor to receive Θ(logP/ log logP ) messages.

Counting Dampeners
The counting dampener method operates as follows. At each
switch, we keep a sorted array of how many buffers are be-
ing used by each of the processors that have at least one
outstanding message at the switch. Each element in the ar-
ray consists of a processor number and the value by which
the list is sorted. This value is referred to as the element’s
value) We call this list the processor impact array , PIA.

Then each time we receive (or transmit) a message from (to)
our switch, we update the PIA. If every buffer is full, we
stop all new messages from arriving. Otherwise, we find the
largest k such that the first k elements in the PIA sum to
at least B(1 − αk). Note that k may be zero. We call this
k the hotspot counter . We then adjust the flow control so
that we block messages destined to all processors in the first
k elements.

It turns out that one can maintain the PIA in O(1) time
per operation. Calculating the new value of k is also rea-
sonably quick. The arrival or departure of a single message
can result in substantial flow-control traffic, however.

Hashed Dampeners
The hashed dampener operates as follows. For each proces-
sor, we hash it to a random j-tuple of buffer numbers (that
is, integers from 1 to B). We then allow each processor to
use only the buffers named in the j-tuple. (We’ll discuss
how to choose j below.) If all such buffers are full, we block
messages destined to that processor. Maintaining the data
structure is straightforward, and it turns out that the flow
control can be performed by blocking and unblocking O(1)
messages per message arrival or departure. As a result, the
flow-control overhead can be kept small compared to the
message traffic. It also turns out that the protocol, which
performs O(j) work per message, can be added to IEEE
P802.1p priority-based flow control packet format with very
little change. Note that any flow-control mechanism appears
to require, in the worst case, Ω(j) probes into a table since
it must look into the j possible buffer locations to find a free
location.

To help choose j, the following result is relevant for hashed
dampeners.

Theorem 1. When a hashed dampener has (B/j) lnB
hotspots, we expect O(1) of the buffers to be not in use.

Proof. It suffices to show that logB/(B−j)B ≈
(B/j) lnB.

logB/(B−j)B = lnB/ ln(B/(B − j))

= lnB/ ln

B
j

B
j
− 1
≈ (B/j) lnB.

The analysis of this scheme is similar to analysis for Bloom
filters. For example [10] provides a formula estimating the
number of elements in a bloom filter of size B with j posi-
tions hashed to each element and a given number of bits set
which can also be used to reach Theorem 1.

One Hotspot, O(logP ) buffers
We can tolerate a single hotspot with O(logP ) buffers per
switch.

The idea is illustrated by this small example. Consider a
machine containing 6 processors numbered 0 through 5 with
switches containing 4 buffers each, named A, B, C, and D.
We allow each processor to use only two switches, as shown
in this table:

68



Processor Allowed Buffers
0 A B
1 A C
2 A D
3 B C
4 B D
5 C D

Since
(
4
2

)
= 6 we can arrange that each processor has a

distinct set of buffers attached to it. Now if any single pro-
cessor stops receiving, all other processors still have at least
one buffer they can use, so their messages continue to make
progress.

The probability that a hot spot will block the network
falls quickly as the number of buffers increase.

Theorem 2. O(log(P/ε)) buffers yields less than ε prob-
ability of collision.

Proof sketch: The number of combinations is exponential in
the number of buffers, and the probability of collision is less
than P 2/C where C is the number of combinations.

Thus, even switches with o(P ) storage can provide a guar-
antee that a single hotspot will not stop messages from being
delivered to any other processor, with high probability.

Many Hotspots with High Probability
It turns out that we can tolerate many hotspots if we have a
few more buffers. For example, we can tolerate Θ(B/ log s)
hotspots with any particular non-hotspot processor being
blocked with probability O(1/s). Or, assigning j buffers to
each processor, we can tolerate (B/j)(ln(j) − t) hotspots
with any particular coolspot processor being blocked with

probability 1/ee
t

.

Space Sharing
The trick of assigning restricting messages to particular
buffers can also address space-sharing in an obliviously-
routed butterfly network. In a butterfly network, we can
use O(

√
P ) buffers to get an interesting space-sharing iso-

lation property. The problem is to divide a machine into
disjoint sets of processors that work on different tasks. We
want to avoid the messages from one partition from interfer-
ing with another. This kind of space sharing isolation was
provided, for example, in the Connection Machine CM-5 [5]
if the partitions of the machine employed disjoint subtrees
of the fat-tree network. In contrast, we can provide a sim-
ilar property with an arbitrary assignment of processors in
a butterfly.

To illustrate how it works, we focus on a binary butterfly.
A binary butterfly comprises P lgP two-input two-output
switches. The switches are numbered with pairs (i, j) where
0 ≤ i < P and 0 < j < lgP , where switch (i, j) has outputs
connected to the inputs of switch (i, j+1) and (i⊕2j , j+1).

Observe that for messages traveling in the second half of
the network, there are at most

√
P different destinations

to which a message can get. So we allocate
√
P buffers in

each node, and assign at least one buffer exclusively to each
possible destination. In the first half of the network, there
are at most

√
P different sources that could have gotten to

that node, so we assign buffers according to the source
Any message traveling within a partition is guaranteed

not to use any buffer used by a message from another par-

tition, because in first half of the network, the message will

employ buffers dedicated to the message’s source, and in the
second half, the message will employ buffers dedicated to the
message’s destination.

Cache Partitioning
In multithreaded programs one thread can sometimes grab
all the cache lines in a shared cache, slowing down other
threads. Dampening effectively change the buffer from a
fully associative cache to a randomized j-way associative
cache. By reducing the associativity, the behavior of the
system is improved against processors that receive too many
messages. To adapt this idea to solve the cache partitioning
problem, we similarly restrict the associativity of the cache.
(See [8] for a survey of cache partitioning.)

For caching, there is a clear advantage to allowing a large
number of cache lines to be assigned to one thread. There-
fore we might adjust the parameters so that, for example, a
single uncontended thread can get half the cache.

Acknowledgments
Michael Bender observed that these ideas can be applied to
cache partitioning.

This work was supported in part by NSF grants CCF-
0937860, CCF-1162148, CNS-1017058, and CCF-1314547.

1. REFERENCES
[1] A. Bechtolsheim. Reinventing datacenter networking. In

HPTS, Asilomar, Pacific Grove, CA, Sept. 2013.

[2] D. M. Dias and M. Kumar. Preventing congestion in
multistage networks in the presense of hotspots. In ICPP,
volume 1, pages 9–13, Aug. 1989.

[3] A. Gottlieb. An overview of the NYU Ultracomputer
project. Ultracomputer Note 100, NYU, July 1986.

[4] M. Kumar and G. F. Pfister. The onset of hot spot
contention. In ICPP, pages 28–34, 1986.

[5] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R.
Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C.
Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong,
S.-W. Yang, and R. Zak. The network architecture of the
Connection Machine CM-5. J. Parallel Distrib. Comput.,
33(2):145–158, 1996.

[6] R. Merrit. Bechtolsheim brainstorms on next networking
wave. EE Times, Oct. 17 2012.

[7] G. F. Pfister and V. A. Norton. “hot spot” contention and
combining in multistage interconnection networks. IEEE
Trans. Comput., C-34(10):943–948, Oct. 1985.

[8] D. Sanchez and C. Kozyrakis. Scalable and efficient
fine-grained cache partioning with vantage. IEEE Micro,
32(3):26–37, May 2012.

[9] S. L. Scott and G. S. Sohi. The use of feedback in
multiprocessors and its application to tree saturation
control. IEEE Trans. Parallel Distrib. Syst., 1(4):385–398,
Oct. 1990.

[10] S. J. Swamidass and P. Baldi. Mathematical correction for
fingerprint similarity measures to improve chemical
retrieval. J. Chem. Inf. Model., 47:952–965, 2007.
http://www.igb.uci.edu/~pfbaldi/publications/journals/
2007/ci600526a.pdf.

[11] Y. Tamir and G. L. Frazier. High-performance multi-queue
buffers for VLSI communication switches. In ISCA, pages
343–354, Honolulu, HI, 1988.

[12] N.-F. Tzeng. Alleviating the impact of tree saturation on
multistage interconnection network performance. J.
Parallel Distrib. Comput., 12(2):107–117, June 1991.

69




