
VIM NOTES
Uotes of the VIM meeting of I.:arch 13, 1985

Submitted by Bradley C. Kuszmaul

Present: Dennis, I:ikhil, BC, Si, Kuszmaul, Earl

"..e decided to let me (Brad) make outrageous statements, so I got up and started making them.
Then Si insisted that I should be the one to take the notes, so now I get to write my
outrageous statements down on paper. (Hee hee)

I presented my thoughts as a decision tree:

(I) Suppose we allow generalized letrec. (je did not discuss the alternative in this
meeting)

(1.A) Suppose we try to get as much bang as we can by adding only early completion
structures (ECS's) and no suspensions, but without committing ourselves as to whether all
structures should be ECS' s.

(I.A.1) Suppose :e assume that not all structures should be ECS's (possibly based on
the idea that ECS's are more expensive that regular structures, or possibly based on other
reasons) .

have

letrec x = E in 	. endletrec

Claim I.A.1.a: Every structure built in the dynamic scope of E must be an ECS.

Proof of I.A.1.a: x's value may depend an arbitrary access of some part of itself.

For example:

letrex x = cons(1, car (x)) in x endletrec

is perfectly well defined, and is equivalent to

cons (1 , 1)

and to go even further:

letrec x = cons (cons (1 , car (car (x)) , car (x)) in x endletrec

which is equivalent to

cons(cons(1,1), cons(1,1))

Claim I.A.1.b: The decision as to ...:hether to construct an ECS or a regular structure must
be made dynamically.

Proof of I.A.1.b: Since by assumption I.A.1 we need to avoid creating too many ECS's.
Because user defined functions may create structures, which depending on the dynamic object
creation context (i.e. •whether the structure is being built for the E part of a LETREC or

1

not) must create ECS's or regular structures, :e need a way to decide how to build objects.
Since the function may have been passed as an argument, we can not make the decision
statically, and thus we need an extra implicit argument telling the function how to create
objects.

For example:

foo = function (f) returns(something) is
letrec x = f (x)

in x endletrec
end function foo

foo (lambda (x). cons(1, car (x)))

Conclusion of I.A.1: I believe that this decision is too expensive. i.e have to modify
all functions, pass extra arguments, and change the instruction set of the base language,
just so that we can make LETREC work. That is probably too expensive a choice.

(I.A.2) All structures must be ECS's.

Claim I.A.2.a: That ain't so bad.

Observation: (Handwaving) :.lost early completion queues (ECQ's) (they really should be
called early completion sets, since we do not care about ordering the instructions in the
queue, let alone insuring FIFO behavior) never contain more than one element. (Bhaskar
claims that most code already meets this criteria, and that the compiler can generate code
which trys to do a single select and then distributes the value to the consumers, rather
than allo./Ang each consumer perform a select.) Admittedly, not all cases are this simple
(e.g. in matrix multiplication, the ECQ's often contain four or five elements) .

Implementation Hack: (Reality) Ho.....ever. re can observe that the space needed to keep the
ECQ is already present in the instructions which are about to be enqueued. The location
where the token will be placed when it is delivered is guaranteed not to be used for
anything else until we are ready to deliver that token. Thus the "input box" for the
instruction can serve as part of the storage for the ECQ. See the accompanying figure for a
mapping from abstract ECS's and ECQ's into our hacked up version.

:lote that adding an element to the ECQ is cheap (just munging two pointers, see the
enclosed figure) , but that we have lost potential concurency when it comes time to deliver
the token to the instructions on the ECQ. (It is necessary to get the first instruction
into primary memory before the fetch request for the second element can be initiated.)

Hacking up APPEND: ie discussed the implementation of APPED under this scheme, and a
mechanism using forward pointers was proposed in lieu of the currently proposed mechanism
which uses back,..:ard pointers. (The forward pointers live inside the ECQ's of the old array,
and when an ASET is done on the old array, the value is passed on to the new array.
could construct another ASET instruction for the new array, or we can hack up ECQ's a little
more to allow values to be delivered (ASET'ed) directly to another structure instead of
restricting the forward pointers to point to instructions)

Stoy 's argument that backward pointers are more efficient because many of the values may
never actually get used becomes less strong because we have generalized LETREC. Stoy argued

2

that the programmer ill be creating intermediate arrays in 	only a fe.. values ill
actually be accessed. Bhaskar and I claimed, (and people seemed to believe us) that the
LETREC makes this problem go away.

Conclusion I.A.2: People seemed to think that this scheme is a good way to do ECQ ' s , and
that since using this scheme ECS's are no more expensive than normal arrays, that there is
no reason not to always use ECS's instead of regular structure objects. (In fact sometimes
ECS's are much cheaper, because we can create a large structure with no copying, and without
worrying about trying to keep the reference count at 1.

(LB) 7:e need suspensions sometimes. (Suspensions are claimed to be expensive enough to
slow things do,...n if used indiscriminatly) 	discussed conditions under which we can avoid
using suspensions in a LETREC. I argued that the suspensions are only needed in code which
is lexically inside the E part of

LETREC x = E in ... endletrec .

And made some claims about how it is not al'.•:ays needed, and that the compiler might be able
to make some optimizations. (It is probably not really needed anyway since we have
restricted the suspensions to a small amount of code anyway: the code in the E.)

Here is a formalization of the handwaving I did during the meeting:

Definition: An expression is safe iff
- It is not in the E part of a LETREC, or
- It is a compile time constant (e.g. a numeric literal)
- It is a composition of safe expressions with a built in operator or a forall

statement, or
- it is a structure value (this can be determined by type checking) , or
- it is suspended.

The trick is to decide on a minimal set of expressions to suspend so that every expression
and subexpression in the program is safe.

Claim: A safe program has enough suspensions in it.
Proof: Inductively:

base case: 11e know that expressions which are not involved in letrec are do not need
suspensions, and that expressions '.';hich are compile time constants do not need suspensions.
Furthermore, structure values are early completion structures, so they already behave as if
they are suspensions. Anything which is already suspended does not need to be further
suspended.

inductive case: The composition of safe expressions with a built in operator or forall
does not need to be suspended, because all the "free expressions" in are known to not need
suspensions in order to compute their values.

Claim: (unproved) A safe program does not have more suspensions than it needs.

Algorithm: It is trival to see that everything comes out safe. It is also trivial to see
that the algorithm is linear in the size of the program.

Algorithm: Start at the leaves of the parse tree for the program, working up, decide if the
expression you are looking at is safe, if it is not, then suspend it, and then continue up
the parse tree.

EndDecisionTree

Miscellaneous stuff: I pointed out that the design rationale for choosing RELEASE vs.
reference count on application records (i.e.instructions) has not been documented. I can't
flame about the design unless I kno..., what the reasons for choosing it are.

Next Week: There are cycles (e.g. LETREX X = cons(1,x) in X EI:DLETREC) : i.'hat do we do
for

- reference counts
- garbage collection
- debugging
- aborting
- compilers (optimizations?)

4

	Page 1
	Page 2
	Page 3
	Page 4

