
Generating a Table-of-Contents

S.R.K. Branavan, Pawan Deshpande and Regina Barzilay
Massachusetts Institute of Technology

{branavan, pawand, regina}@csail.mit.edu

Abstract

This paper presents a method for the auto-
matic generation of a table-of-contents. This
type of summary could serve as an effec-
tive navigation tool for accessing informa-
tion in long texts, such as books. To gen-
erate a coherent table-of-contents, we need
to capture both global dependencies across
different titles in the table and local con-
straints within sections. Our algorithm ef-
fectively handles these complex dependen-
cies by factoring the model into local and
global components, and incrementally con-
structing the model’s output. The results of
automatic evaluation and manual assessment
confirm the benefits of this design: our sys-
tem is consistently ranked higher than non-
hierarchical baselines.

1 Introduction

Current research in summarization focuses on pro-
cessing short articles, primarily in the news domain.
While in practice the existing summarization meth-
ods are not limited to this material, they are not
universal: texts in many domains and genres can-
not be summarized using these techniques. A par-
ticularly significant challenge is the summarization
of longer texts, such as books. The requirement
for high compression rates and the increased need
for the preservation of contextual dependencies be-
tween summary sentences places summarization of
such texts beyond the scope of current methods.

In this paper, we investigate the automatic gener-
ation of tables-of-contents, a type of indicative sum-

mary particularly suited for accessing information in
long texts. A typical table-of-contents lists topics
described in the source text and provides informa-
tion about their location in the text. The hierarchical
organization of information in the table further re-
fines information access by specifying the relations
between different topics and providing rich contex-
tual information during browsing. Commonly found
in books, tables-of-contents can also facilitate access
to other types of texts. For instance, this type of
summary could serve as an effective navigation tool
for understanding a long, unstructured transcript for
an academic lecture or a meeting.

Given a text, our goal is to generate a tree wherein
a node represents a segment of text and a title that
summarizes its content. This process involves two
tasks: the hierarchical segmentation of the text, and
the generation of informative titles for each segment.
The first task can be addressed by using the hier-
archical structure readily available in the text (e.g.,
chapters, sections and subsections) or by employ-
ing existing topic segmentation algorithms (Hearst,
1994). In this paper, we take the former approach.
As for the second task, a naive approach would be to
employ existing methods of title generation to each
segment, and combine the results into a tree struc-
ture.

However, the latter approach cannot guarantee
that the generated table-of-contents forms a coher-
ent representation of the entire text. Since titles of
different segments are generated in isolation, some
of the generated titles may be repetitive. Even non-
repetitive titles may not provide sufficient informa-
tion to discriminate between the content of one seg-

Scientific computing
Remarkable recursive algorithm for multiplying matrices

Divide and conquer algorithm design
Making a recursive algorithm

Solving systems of linear equations
Computing an LUP decomposition
Forward and back substitution

Symmetric positive definite matrices and least squares approximation

Figure 1: A fragment of a table-of-contents generated by our method.

ment and another. Therefore, it is essential to gen-
erate an entire table-of-contents tree in a concerted
fashion.

This paper presents a hierarchical discriminative
approach for table-of-contents generation. Figure 1
shows a fragment of a table-of-contents automat-
ically generated by this algorithm. Our method
has two important points of departure from exist-
ing techniques. First, we introduce a structured dis-
criminative model for table-of-contents generation
that accounts for a wide range of phrase-based and
collocational features. The flexibility of this model
results in improved summary quality. Second, our
model captures both global dependencies across dif-
ferent titles in the tree and local dependencies within
sections. We decompose the model into local and
global components that handle different classes of
dependencies. We further reduce the search space
through incremental construction of the model’s out-
put by considering only the promising parts of the
decision space.

We apply our method to process a 1,180 page al-
gorithms textbook. To assess the contribution of our
hierarchical model, we compare our method with
state-of-the-art methods that generate each segment
title independently.1 The results of automatic eval-
uation and manual assessment of title quality show
that the output of our system is consistently ranked
higher than that of non-hierarchical baselines.

2 Related Work

Although most current research in summarization
focuses on newspaper articles, a number of ap-
proaches have been developed for processing longer
texts. Most of these approaches are tailored to a par-

1The code and feature vector data for
our model and the baselines are available at
http://people.csail.mit.edu/branavan/code/toc.

ticular domain, such as medical literature or scien-
tific articles. By making strong assumptions about
the input structure and the desired format of the out-
put, these methods achieve a high compression rate
while preserving summary coherence. For instance,
Teufel and Moens (2002) summarize scientific arti-
cles by selecting rhetorical elements that are com-
monly present in scientific abstracts. Elhadad and
McKeown (2001) generate summaries of medical ar-
ticles by following a certain structural template in
content selection and realization.

Our work, however, is closer to domain-
independent methods for summarizing long texts.
Typically, these approaches employ topic segmen-
tation to identify a list of topics described in a
document, and then produce a summary for each
part (Boguraev and Neff, 2000; Angheluta et al.,
2002). In contrast to our method, these approaches
perform either sentence or phrase extraction, rather
than summary generation. Moreover, extraction for
each segment is performed in isolation, and global
constraints on the summary are not enforced.

Finally, our work is also related to research on ti-
tle generation (Banko et al., 2000; Jin and Haupt-
mann, 2001; Dorr et al., 2003). Since work in this
area focuses on generating titles for one article at a
time (e.g., newspaper reports), the issue of hierarchi-
cal generation, which is unique to our task, does not
arise. However, this is not the only novel aspect of
the proposed approach. Our model learns title gener-
ation in a fully discriminative framework, in contrast
to the commonly used noisy-channel model. Thus,
instead of independently modeling the selection and
grammaticality constraints, we learn both types of
features in a single framework. This joint training
regime supports greater flexibility in modeling fea-
ture interaction.

3 Problem Formulation

We formalize the problem of table-of-contents gen-
eration as a supervised learning task where the goal
is to map a tree of text segments S to a tree of titles
T . A segment may correspond to a chapter, section
or subsection.

Since the focus of our work is on the generation
aspect of table-of-contents construction, we assume
that the hierarchical segmentation of a text is pro-
vided in the input. This division can either be au-
tomatically computed using one of the many avail-
able text segmentation algorithms (Hearst, 1994), or
it can be based on demarcations already present in
the input (e.g., paragraph markers).

During training, the algorithm is provided with a
set of pairs (Si, T i) for i = 1, . . . , p, where Si is
the ith tree of text segments, and T i is the table-of-
contents for that tree. During testing, the algorithm
generates tables-of-contents for unseen trees of text
segments.

We also assume that during testing the desired
title length is provided as a parameter to the algo-
rithm.

4 Algorithm

To generate a coherent table-of-contents, we need
to take into account multiple constraints: the titles
should be grammatical, they should adequately rep-
resent the content of their segments, and the table-
of-contents as a whole should clearly convey the re-
lations between the segments. Taking a discrimina-
tive approach for modeling this task would allow us
to achieve this goal: we can easily integrate a range
of constraints in a flexible manner. Since the num-
ber of possible labels (i.e., tables-of-contents) is pro-
hibitively large and the labels themselves exhibit a
rich internal structure, we employ a structured dis-
criminative model that can easily handle complex
dependencies. Our solution relies on two orthogo-
nal strategies to balance the tractability and the rich-
ness of the model. First, we factor the model into
local and global components. Second, we incremen-
tally construct the output of each component using
a search-based discriminative algorithm. Both of
these strategies have the effect of intelligently prun-
ing the decision space.

Our model factorization is driven by the different

types of dependencies which are captured by the two
components. The first model is local: for each seg-
ment, it generates a list of candidate titles ranked by
their individual likelihoods. This model focuses on
grammaticality and word selection constraints, but it
does not consider relations among different titles in
the table-of-contents. These latter dependencies are
captured in the global model that constructs a table-
of-contents by selecting titles for each segment from
the available candidates. Even after this factoriza-
tion, the decision space for each model is large: for
the local model, it is exponential in the length of the
segment title, and for the global model it is exponen-
tial in the size of the tree.

Therefore, we construct the output for each of
these models incrementally using beam search. The
algorithm maintains the most promising partial out-
put structures, which are extended at every itera-
tion. The model incorporates this decoding pro-
cedure into the training process, thereby learning
model parameters best suited for the specific decod-
ing algorithm. Similar models have been success-
fully applied in the past to other tasks including pars-
ing (Collins and Roark, 2004), chunking (Daumé
and Marcu, 2005), and machine translation (Cowan
et al., 2006).

4.1 Model Structure
The model takes as input a tree of text segments S.
Each segment s ∈ S and its title z are represented
as a local feature vector Φloc(s, z). Each compo-
nent of this vector stores a numerical value. This
feature vector can track any feature of the segment s
together with its title z. For instance, the ith compo-
nent of this vector may indicate whether the bigram
(z[j]z[j +1]) occurs in s, where z[j] is the jth word
in z:

(Φloc(s, z))i =
{

1 if (z[j]z[j + 1]) ∈ s
0 otherwise

In addition, our model captures dependencies
among multiple titles that appear in the same table-
of-contents. We represent a tree of segments S
paired with titles T with the global feature vector
Φglob(S, T). The components here are also numer-
ical features. For example, the ith component of the
vector may indicate whether a title is repeated in the
table-of-contents T :

(Φglob(S, T))i =
{

1 repeated title
0 otherwise

Our model constructs a table-of-contents in two
basic steps:

Step One The goal of this step is to generate a
list of k candidate titles for each segment s ∈ S.
To do so, for each possible title z, the model maps
the feature vector Φloc(s, z) to a real number. This
mapping can take the form of a linear model,

Φloc(s, z) · αloc

where αloc is the local parameter vector.
Since the number of possible titles is exponen-

tial, we cannot consider all of them. Instead, we
prune the decision space by incrementally construct-
ing promising titles. At each iteration j, the algo-
rithm maintains a beam Q of the top k partially gen-
erated titles of length j. During iteration j + 1, a
new set of candidates is grown by appending a word
from s to the right of each member of the beam Q.
We then sort the entries in Q: z1, z2, . . . such that
Φloc(s, zi) ·αloc ≥ Φloc(s, zi+1) ·αloc,∀i. Only the
top k candidates are retained, forming the beam for
the next iteration. This process continues until a title
of the desired length is generated. Finally, the list of
k candidates is returned.

Step Two Given a set of candidate titles
z1, z2, . . . , zk for each segment s ∈ S, our goal is
to construct a table-of-contents T by selecting the
most appropriate title from each segment’s candi-
date list. To do so, our model computes a score for
the pair (S, T) based on the global feature vector
Φglob(S, T):

Φglob(S, T) · αglob

where αglob is the global parameter vector.
As with the local model (step one), the num-

ber of possible tables-of-contents is too large to be
considered exhaustively. Therefore, we incremen-
tally construct a table-of-contents by traversing the
tree of segments in a pre-order walk (i.e., the or-
der in which segments appear in the text). In this
case, the beam contains partially generated tables-
of-contents, which are expanded by one segment ti-
tle at a time. To further reduce the search space,
during decoding only the top five candidate titles for
a segment are given to the global model.

4.2 Training the Model

Training for Step One We now describe how the
local parameter vector αloc is estimated from train-
ing data. We are given a set of training examples
(si, yi) for i = 1, . . . , l, where si is the ith text seg-
ment, and yi is the title of this segment.

This linear model is learned using a variant of
the incremental perceptron algorithm (Collins and
Roark, 2004; Daumé and Marcu, 2005). This on-
line algorithm traverses the training set multiple
times, updating the parameter vector αloc after each
training example in case of mis-predictions. The al-
gorithm encourages a setting of the parameter vector
αloc that assigns the highest score to the feature vec-
tor associated with the correct title.

The pseudo-code of the algorithm is shown in Fig-
ure 2. Given a text segment s and the corresponding
title y, the training algorithm maintains a beam Q
containing the top k partial titles of length j. The
beam is updated on each iteration using the func-
tions GROW and PRUNE. For every word in seg-
ment s and for every partial title in Q, GROW cre-
ates a new title by appending this word to the title.
PRUNE retains only the top ranked candidates based
on the scoring function Φloc(s, z) ·αloc. If y[1 . . . j]
(i.e., the prefix of y of length j) is not in the modi-
fied beam Q, then αloc is updated2 as shown in line
4 of the pseudo-code in Figure 2. In addition, Q is
replaced with a beam containing only y[1 . . . j] (line
5). This process is performed |y| times. We repeat
this process for all training examples over 50 train-
ing iterations. 3

Training for Step Two To train the global param-
eter vector αglob, we are given training examples
(Si, T i) for i = 1, . . . , p, where Si is the ith tree of
text segments, and T i is the table-of-contents for that
tree. However, we cannot directly use these tables-
of-contents for training our global model: since this
model selects one of the candidate titles zi

1, . . . , z
i
k

returned by the local model, the true title of the seg-
ment may not be among these candidates. There-
fore, to determine a new target title for the segment,
we need to identify the title in the set of candidates

2If the word in the jth position of y does not occur in s, then
the parameter update is not performed.

3For decoding, αloc is averaged over the training iterations
as in Collins and Roark (2004).

s – segment text.
y – segment title.
y[1 . . . j] – prefix of y of length j.
Q – beam containing partial titles.

1. for j = 1 . . . |y|
2. Q = PRUNE(GROW(s,Q))
3. if y[1 . . . j] /∈ Q
4. αloc = αloc + Φloc(s, y[1 . . . j])

−
∑

z∈Q
Φloc(s,z)

|Q|
5. Q = {y[1 . . . j]}

Figure 2: The training algorithm for the local model.

that is closest to the true title.
We employ the L1 distance measure to compare

the content word overlap between two titles.4 For
each input (S, T), and each segment s ∈ S, we iden-
tify the segment title closest in the L1 measure to the
true title y5:

z∗ = arg min
i

L1(zi, y)

Once all the training targets in the corpus have
been identified through this procedure, the global
linear model Φglob(S, T) ·αglob is learned using the
same perceptron algorithm as in step one. Rather
than maintaining the beam of partially generated ti-
tles, the beam Q holds partially generated tables-of-
contents. Also, the loop in line 1 of Figure 2 iterates
over segment titles rather than words. The global
model is trained over 200 iterations.

5 Features

Local Features Our local model aims to generate
titles which adequately represent the meaning of the
segment and are grammatical. Selection and contex-
tual preferences are encoded in the local features.
The features that capture selection constraints are
specified at the word level, and contextual features
are expressed at the word sequence level.

The selection features capture the position of the
word, its TF*IDF, and part-of-speech information.
In addition, they also record whether the word oc-
curs in the body of neighboring segments. We also

4This measure is close to ROUGE-1 which in addition con-
siders the overlap in auxiliary words.

5In the case of ties, one of the titles is picked arbitrarily.

Segment has the same title as its sibling
Segment has the same title as its parent
Two adjacent sibling titles have the same head
Two adjacent sibling titles start with the same word
Rank given to the title by the local model

Table 1: Examples of global features.

generate conjunctive features by combining features
of different types.

The contextual features record the bigram and tri-
gram language model scores, both for words and for
part-of-speech tags. The trigram scores are aver-
aged over the title. The language models are trained
using the SRILM toolkit. Another type of contex-
tual feature models the collocational properties of
noun phrases in the title. This feature aims to elim-
inate generic phrases, such as “the following sec-
tion” from the generated titles.6 To achieve this ef-
fect, for each noun phrase in the title, we measure
the ratio of their frequency in the segment to their
frequency in the corpus.

Global Features Our global model describes the
interaction between different titles in the tree (See
Table 1). These interactions are encoded in three
types of global features. The first type of global
feature indicates whether titles in the tree are re-
dundant at various levels of the tree structure. The
second type of feature encourages parallel construc-
tions within the same tree. For instance, titles of ad-
joining segments may be verbalized as noun phrases
with the same head (e.g., “Bubble sort algorithm”,
“Merge sort algorithm”). We capture this property
by comparing words that appear in certain positions
in adjacent sibling titles. Finally, our global model
also uses the rank of the title provided by the local
model. This feature enables the global model to ac-
count for the preferences of the local model in the
title selection process.

6 Evaluation Set-Up

Data We apply our method to an undergraduate al-
gorithms textbook. For detailed statistics on the data
see Table 2. We split its table-of-contents into a set

6Unfortunately, we could not use more sophisticated syntac-
tic features due to the low accuracy of statistical parsers on our
corpus.

Number of Titles 540
Number of Trees 39
Tree Depth 4
Number of Words 269,650
Avg. Title Length 3.64
Avg. Branching 3.29
Avg. Title Duplicates 21

Table 2: Statistics on the corpus used in the experi-
ments.

of independent subtrees. Given a table-of-contents
of depth n with a root branching factor of r, we gen-
erate r subtrees, with a depth of at most n − 1. We
randomly select 80% of these trees for training, and
the rest are used for testing. In our experiments, we
use ten different randomizations to compensate for
the small number of available trees.

Admittedly, this method of generating training
and testing data omits some dependencies at the
level of the table-of-contents as a whole. However,
the subtrees used in our experiments still exhibit
a sufficiently deep hierarchical structure, rich with
contextual dependencies.

Baselines As an alternative to our hierarchical dis-
criminative method, we consider three baselines that
build a table-of-contents by generating a title for
each segment individually, without taking into ac-
count the tree structure, and one hierarchical gener-
ative baseline. The first method generates a title for a
segment by selecting the noun phrase from that seg-
ment with the highest TF*IDF. This simple method
is commonly used to generate keywords for brows-
ing applications in information retrieval, and has
been shown to be effective for summarizing techni-
cal content (Wacholder et al., 2001).

The second baseline is based on the noisy-channel
generative (flat generative, FG) model proposed by
Banko et al., (2000). Similar to our local model,
this method captures both selection and grammati-
cal constraints. However, these constraints are mod-
eled separately, and then combined in a generative
framework.

We use our local model (Flat Discriminative
model, FD) as the third baseline. Like the second
baseline, this model omits global dependencies, and
only focuses on features that capture relations within
individual segments.

In the hierarchical generative (HG) baseline we
run our global model on the ranked list of titles pro-
duced for each section by the noisy-channel genera-
tive model.

The last three baselines and our algorithm are pro-
vided with the title length as a parameter. In our
experiments, the algorithms use the reference title
length.

Experimental Design: Comparison with refer-
ence tables-of-contents Reference based evalu-
ation is commonly used to assess the quality of
machine-generated headlines (Wang et al., 2005).
We compare our system’s output with the table-of-
contents from the textbook using ROUGE metrics.
We employ a publicly available software package,7

with all the parameters set to default values.

Experimental Design: Human assessment The
judges were each given 30 segments randomly se-
lected from a set of 359 test segments. For each test
segment, the judges were presented with its text, and
3 alternative titles consisting of the reference and
the titles produced by the hierarchical discriminative
model, and the best performing baseline. In addi-
tion, the judges had access to all of the segments in
the book. A total of 498 titles for 166 unique seg-
ments were ranked. The system identities were hid-
den from the judges, and the titles were presented in
random order. The judges ranked the titles based on
how well they represent the content of the segment.
Titles were ranked equal if they were judged to be
equally representative of the segment.

Six people participated in this experiment. All the
participants were graduate students in computer sci-
ence who had taken the algorithms class in the past
and were reasonably familiar with the material.

7 Results

Figure 3 shows fragments of the tables-of-contents
generated by our method and the four baselines
along with the reference counterpart. These extracts
illustrate three general phenomena that we observed
in the test corpus. First, the titles produced by key-
word extraction exhibit a high degree of redundancy.
In fact, 40% of the titles produced by this method are
repeated more than once in the table-of-contents. In

7http://www.isi.edu/licensed-sw/see/rouge/

Reference:
hash tables

direct address tables
hash tables

collision resolution by chaining
analysis of hashing with chaining

open addressing
linear probing
quadratic probing
double hashing

Flat Generative:
linked list

worst case time
wasted space

worst case running time
to show that there are

dynamic set
occupied slot
quadratic function
double hashing

Flat Discriminative:
dictionary operations

universe of keys
computer memory

element in the list
hash table with load factor

hash table
hash function
hash function
double hashing

Keyword Extraction:
hash table

dynamic set
hash function

worst case
expected number

hash table
hash function
hash table
double hashing

Hierarchical Generative:
dictionary operations

worst case time
wasted space

worst case running time
to show that there are

collision resolution
linear time
quadratic function
double hashing

Hierarchical Discriminative:
dictionary operations

direct address table
computer memory

worst case running time
hash table with load factor

address table
hash function
quadratic probing
double hashing

Figure 3: Fragments of tables-of-contents generated by our method and the four baselines along with the
corresponding reference.

Rouge-1 Rouge-L Rouge-W Full Match

HD 0.256 0.249 0.216 13.5
FD 0.241 0.234 0.203 13.1
HG 0.139 0.133 0.117 5.8
FG 0.094 0.090 0.079 4.1
Keyword 0.168 0.168 0.157 6.3

Table 3: Title quality as compared to the reference
for the hierarchical discriminative (HD), flat dis-
criminative (FD), hierarchical generative (HG), flat
generative (FG) and Keyword models. The improve-
ment given by HD over FD in all three Rouge mea-
sures is significant at p ≤ 0.03 based on the Sign
test.

better worse equal
HD vs. FD 68 32 49
Reference vs. HD 115 13 22
Reference vs. FD 123 7 20

Table 4: Overall pairwise comparisons of the rank-
ings given by the judges. The improvement in ti-
tle quality given by HD over FD is significant at
p ≤ 0.0002 based on the Sign test.

contrast, our method yields 5.5% of the titles as du-
plicates, as compared to 9% in the reference table-
of-contents.8

Second, the fragments show that the two discrim-
inative models — Flat and Hierarchical — have a
number of common titles. However, adding global
dependencies to rerank titles generated by the local
model changes 30% of the titles in the test set.

Comparison with reference tables-of-contents
Table 3 shows the average ROUGE scores over
the ten randomizations for the five automatic meth-
ods. The hierarchical discriminative method consis-
tently outperforms the four baselines according to
all ROUGE metrics.

At the same time, these results also show that only
a small ratio of the automatically generated titles
are identical to the reference ones. In some cases,
the machine-generated titles are very close in mean-
ing to the reference, but are verbalized differently.
Examples include pairs such as (“Minimum Span-
ning Trees”, “Spanning Tree Problem”) and (“Wal-
lace Tree”, “Multiplication Circuit”).9 While mea-
sures like ROUGE can capture the similarity in the
first pair, they cannot identify semantic proximity

8Titles such as “Analysis” and “Chapter Outline” are re-
peated multiple times in the text.

9A Wallace Tree is a circuit that multiplies two integers.

between the titles in the second pair. Therefore,
we supplement the results of this experiment with
a manual assessment of title quality as described be-
low.

Human assessment We analyze the human rat-
ings by considering pairwise comparisons between
the models. Given two models, A and B, three out-
comes are possible: A is better than B, B is bet-
ter than A, or they are of equal quality. The re-
sults of the comparison are summarized in Table 4.
These results indicate that using hierarchical infor-
mation yields statistically significant improvement
(at p ≤ 0.0002 based on the Sign test) over a flat
counterpart.

8 Conclusion and Future Work

This paper presents a method for the automatic gen-
eration of a table-of-contents. The key strength of
our method lies in its ability to track dependencies
between generation decisions across different levels
of the tree structure. The results of automatic evalu-
ation and manual assessment confirm the benefits of
joint tree learning: our system is consistently ranked
higher than non-hierarchical baselines.

We also plan to expand our method for the task
of slide generation. Like tables-of-contents, slide
bullets are organized in a hierarchical fashion and
are written in relatively short phrases. From the
language viewpoint, however, slides exhibit more
variability and complexity than a typical table-of-
contents. To address this challenge, we will explore
more powerful generation methods that take into ac-
count syntactic information.

9 Acknowledgments

The authors acknowledge the support of the Na-
tional Science Foundation (CAREER grant IIS-
0448168 and grant IIS-0415865). We would also
like to acknowledge the many people who took part
in human evaluations. Thanks to Michael Collins,
Benjamin Snyder, Igor Malioutov, Jacob Eisenstein,
Luke Zettlemoyer, Terry Koo, Erdong Chen, Zo-
ran Dzunic and the anonymous reviewers for helpful
comments and suggestions. Any opinions, findings,
conclusions or recommendations expressed above
are those of the authors and do not necessarily re-
flect the views of the NSF.

References
Roxana Angheluta, Rik De Busser, and Marie-Francine

Moens. 2002. The use of topic segmentation for auto-
matic summarization. In Proceedings of the ACL-2002
Workshop on Automatic Summarization.

Michele Banko, Vibhu O. Mittal, and Michael J. Wit-
brock. 2000. Headline generation based on statistical
translation. In Proceedings of the ACL, pages 318–
325.

Branimir Boguraev and Mary S. Neff. 2000. Discourse
segmentation in aid of document summarization. In
Proceedings of the 33rd Hawaii International Confer-
ence on System Sciences, pages 3004–3014.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceedings
of the ACL, pages 111–118.

Brooke Cowan, Ivona Kucerova, and Michael Collins.
2006. A discriminative model for tree-to-tree trans-
lation. In Proceedings of the EMNLP, pages 232–241.

Hal Daumé and Daniel Marcu. 2005. Learning as search
optimization: Approximate large margin methods for
structured prediction. In Proceedings of the ICML,
pages 169–176.

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.
Hedge trimmer: a parse-and-trim approach to headline
generation. In Proceedings of the HLT-NAACL 03 on
Text summarization workshop, pages 1–8.

Noemie Elhadad and Kathleen R. McKeown. 2001. To-
wards generating patient specific summaries of med-
ical articles. In Proceedings of NAACL Workshop on
Automatic Summarization, pages 31–39.

Marti Hearst. 1994. Multi-paragraph segmentation of
expository text. In Proceedings of the ACL, pages 9–
16.

Rong Jin and Alexander G. Hauptmann. 2001. Auto-
matic title generation for spoken broadcast news. In
Proceedings of the HLT, pages 1–3.

Simone Teufel and Marc Moens. 2002. Summariz-
ing scientific articles: Experiments with relevance
and rhetorical status. Computational Linguistics,
28(4):409–445.

Nina Wacholder, David K. Evans, and Judith Klavans.
2001. Automatic identification and organization of in-
dex terms for interactive browsing. In JCDL, pages
126–134.

R. Wang, J. Dunnion, and J. Carthy. 2005. Machine
learning approach to augmenting news headline gen-
eration. In Proceedings of the IJCNLP.

