Reinforcement Learning for Mapping Instructions to Actions

S.R.K. Branavan

Joint work with: Harr Chen, Luke Zettlemoyer, Regina Barzilay

MIT

Mapping Instructions to Actions

Instructions:

step-by-step descriptions of actions

- 1. Click **Start**, point to **Search**, and then click **For Files or Folders.**
- 2. In the **Search for** box, type "msdownld.tmp"
- 3. In the **Look in** list, click **My Computer**, and then click **Search Now**.

4. ...

Target environment:

where actions need to be executed

Mapping Instructions to Actions

Instructions:

step-by-step descriptions of actions

- 1. Click **Start**, point to **Search**, and then click **For Files or Folders.**
- 2. In the **Search for** box, type "msdownld.tmp"
- 3. In the **Look in** list, click **My Computer**, and then click **Search Now**.

4. ...

Target environment:

where actions need to be executed

Action sequence executable in the environment

LEFT_CLICK(Start) LEFT_CLICK(Search) ... TYPE_INTO(Search for:, "msdownld.tmp") ...

The Conventional Approach: Supervised Learning

1. Annotate training documents.

2. Use CRF to learning the mapping.

Our Approach

Learn through trial and error

- 1. Map instructions to candidate actions
- 2. Execute candidate actions in the environment
- 3. Check how well we do (reward signal)
- 4. Update model parameters based on reward

Key hypothesis: Reward signal is sufficient supervision

Example Application 1: An Online Puzzle

Target environment online flash puzzle

Instructions puzzle solution Clear the left six from the bottom row, the bottom six from the far-right column, the right six from the top row, the top six from the left column, the second row, the second-to-bottom row, the second from the left column and the second from the right column, the top six from columns three and four, the top two rows of six, the two columns of six, then the two rows.

Check if we won the puzzle !

Example Application 2: Windows Help Instructions

Target environment Windows 2000 graphical user interface

Instructions Microsoft help document

- 1. Click Start, point to Search, and then click For Files or Folders.
- 2. In the Search Results dialog box, on the Tools menu, click Folder Options.
- 3. In the Folder Options dialog box, on the View tab, under Advanced Settings, click Show hidden files and folders, and then click to clear the Hide file extensions for known file types check box. Click Apply, and then click OK.
- 4. In the Search for files or folders named box, type Msdownld.tmp.
- 5. In the Look in list, click My Computer, and then click Search Now.
- 6. In the **Search Results** pane, right-click **Msdownld.tmp** and then click **Delete** on the shortcut menu.
 - A "Confirm Folder Delete" message appears.
- 7. Click Yes.

Reward signal

Check if we hit a dead-end (check for overlap between

sentence words & GUI labels)

Learning Using Reward Signal: Challenges

1. Reward can be delayed

 \Rightarrow How can reward be propagated to individual actions

2. Number of candidate action sequences is very large

 \Rightarrow How can this space be effectively searched?

Use Reinforcement Learning

Reinforcement Learning: A Sketch

- Repeat:
 - Observe current state of text + environment
 - Select action based on a probabilistic model
 - Execute action
- Receive reward and update parameters

Reinforcement Learning: Representation

State s = Observed Text + Observed Environment
Action a = Word Selection + Environment Command

Mapping process allows us to:

- Segment text to chunks that describe individual commands
- Learn translation of words to environment commands
- Reorder environment commands

Select run after clicking start, then in the open box, type "dcomcnfg".

Mapping process allows us to:

- Segment text to chunks that describe individual commands
- Learn translation of words to environment commands
- Reorder environment commands

"select run" <hr/> <hr/

Mapping process allows us to:

- Segment text to chunks that describe individual commands
- Learn translation of words to environment commands
- Reorder environment commands

Generating Possible Actions

State *s* = Observed Text + Observed Environment

Action a = Word Selection + Environment Command

State

Possible actions

Model Parameterization

Represent each action with a feature vector:

 $\phi(s,a) \in \mathbb{R}^n$ - real valued feature function on state s and action a

Define policy function as a log-linear distribution:

$$p(a \mid s; \theta) = \frac{e^{\theta \cdot \phi(s,a)}}{\sum_{a'} e^{\theta \cdot \phi(s,a')}}$$

heta - parameters of model

Example Features

Features on words and environment command

Edit distance between word and object label Binary feature on each (*word*, *command*) pair Binary feature on each (*word*, *object type*) pair

Features on environment objects

Object is visible Object is in foreground Object was previously interacted with Object became visible after last action

Features on words

Word type Distance from last used word

Total number of features: 4438

Learning Algorithm

Goal: Find θ that maximizes the expected reward

Method: Policy gradient algorithm (stochastic gradient ascent on θ)

Learning Algorithm

Parameter update:

$$\theta \leftarrow \theta + r \sum_{t} \left[\phi(s_t, a_t) - \sum_{a} \phi(s_t, a) p(a \mid s_t; \theta) \right]$$

Gradient of log-linear model

- r reward
- s_t state at time t
- a_t action taken at time t

Incorporating Annotation in Reinforcement Learning

Reward can be based on annotations if available

Reinforcement learning allows a mix of annotation and environment based reward signals

Incorporating Annotation in Reinforcement Learning

Reward can be based on annotations if available

Reward
$$r(h) = \begin{cases} +1 & \text{if actions match annotations} \\ 0 & \text{if actions don't match annotations} \end{cases}$$

If all documents are annotated: Equivalent to stochastic gradient ascent with a maximum-likelihood objective

Windows Configuration Application

Windows 2000 help documen from support.microsoft.com	Windows	
Total # of documents	128	
Train/development/test	70 / 18 / 40	
Total # of words	5562	
Vocabulary size	610	
Avg. words per sentence	9.93	
Avg. sentences per document	4.38	
Avg. actions per document	10.37	

Complex environment: 13088 observed states

Results: Baselines

Results: Supervised

Results

Trade off between Environment Reward and Manual Annotations

Trade off between Environment Reward and Manual Annotations

Puzzle Application

Walk-through documents from the Crossblock flash puzzle

Results: Puzzle Game Application

Results: Puzzle Game Application

Our method can leverage knowledge encoded in natural language

Related Work

Reinforcement Learning for Dialogue Management:

Scheffler and Young (2002), Roy et al. (2000), Litman et al. (2000), Singh et al. (1999)

Fundamentally different problems

Grounded Language Acquisition:

Chen and Mooney (2008), Roy and Pentland (2002), Siskind (2001), Barnard and Forsyth (2001), Oates (2001)

Assume parallel corpus of text and semantic representations (e.g. database entries)

Conclusions

- Environment feedback is an effective source of supervision
 - Reduces need for manual annotations
- Our method can leverage knowledge encoded in natural language

Code and data available at:

groups.csail.mit.edu/rgb/code/rl

Results

	Windows			Puzzle			
	Action	Sent.	Doc.	Word	Action	Doc.	Word
Random baseline	0.128	0.101	0.000		0.081	0.111	
Majority baseline	0.287	0.197	0.100				
Environment reward	* 0.647	* 0.590	* 0.375	0.819	* 0.428	* 0.453	0.686
Partial supervision	♦ 0.723	* 0.702	0.475	0.989	0.575	* 0.523	0.850
Full supervision	◊ 0.756	0.714	0.525	0.991	0.632	0.630	0.869