Learning High Level Planning From Text

Nate Kushman

S.R.K. Branavan, Tao Lei, Regina Barzilay

Precondition/Effects Relationships

Castles are built with magic bricks

Goal: Show that planning can be improved by utilizing precondition information in text

How Text Can Help Planning

Minecraft : Virtual world allowing tool creation and complex construction.

Text

A **pickaxe**, which is used to harvest **stone**, can be made from **wood**.

Preconditions

Challenge: Preconditions from text cannot map directly to planning action preconditions

Opportunity

Classical Planning's Problem:

Exponential heuristic search

Traditional Solution:

Analyze domain to induce subgoals

Text:

A **pickaxe**, which is used to harvest **stone**, can be made from **wood**.

Precondition Relations:

Key Idea: Map text precondition information to subgoals

Key Departures

Utilize domain specific information in text to induce subgoals

Jonsson and Barto, 2005; Wolfe and Barto, 2005; Mehta et al.,2008; Barry et al., 2011

looked only at domain, did not utilize text

Learn from only environment feedback

Girju and Moldovan, 2002; Chang and Choi, 2006; Blanco et al., 2008; Beamer and Girju, 2009; Do et al., 2011; Kwiakowski, 2012

Learns from supervised data, does not utilized environment feedback

Utilize text providing abstract domain relationships (not goal specific) Oates, 2001; Siskind, 2001; Yu and Ballard, 2004; Fleischman and Roy, 2005; Mooney, 2008; Branavan et al., 2009; Liang et al., 2009; Vogel and Jurafsky, 2010; Branavan et al., 2009; Branavan et al. 2010; Vogel and Jurafsky, 2010; Branavan et al., 2011

Focused on grounding words to objects, does not ground relations

Hybrid Model

Learn model parameters from planning feedback

Modeling the World

• State is represented by a set of predicates

current_location(1,2) = TRUE

current_tool(pickaxe) = TRUE

Actions represented by preconditions and effects

Action:	<pre>chop_tree(1,2)</pre>	
Preconditions:	<pre>tree_at(1,2) = TRUE</pre>	<pre>current_location(1,2) = TRUE</pre>
Effect:	$tree_at(1,2) \rightarrow FALSE$	$have(wood) \rightarrow TRUE$

Goals and subgoals are represented as predicates

Model Part 1: Predict Precondition Relations

Goal Independent

Model Part 2: Predict Subgoal Sequence

Given Goal State

- Model as a Markov process
- Explicitly model preconditions observed via planner

Policy Functions

Model Part 1: Predict Precondition Relations from text

$$p(x_i \to x_j \mid \vec{w}_k, q_k; \theta_c) \propto e^{\theta_c \cdot \phi_c(x_i, x_j, \vec{w}_k, q_k)}$$
Prediction per pair Manual groundings, x Sentence, w, dependency parse, q

Model Part 2: Predict Subgoal Sequence

$$p(x_t \mid x_{t-1}, s_0^g, s_f^g, C; \theta_x) \propto e^{\theta_x \cdot \phi_x (C, x_t, x_{t-1}, s_0^g, s_f^g)}$$
Markov Assumption
Relations from text, C
Relations between predicates, x

Learn Parameters Using Feedback from the Planner

Parameter Updates: Relation Prediction

Parameter Updates: Subgoal Sequence Prediction

One update for the whole sequence

Updates

Model Part 1: Precondition Relation Prediction

$$\Delta \theta_{c} \leftarrow \alpha_{c} r \left[\phi_{c}(\cdot) - \mathbb{E}[\phi_{c}(\cdot)] \right]$$
Success/failure of one subgoal pair standard log-linear gradient

Model Part 2: Subgoal Sequence Prediction

$$\Delta \theta_x \leftarrow \alpha_x r \sum_{t} \left[\phi_x(\cdot) - \mathbb{E}[\phi_x(\cdot)] \right]$$

$$standard \ log-linear \ gradient$$
Success or failure of entire sequence Sum over all subgoal pairs

Experimental Domain

Main page Community portal Projects Wiki Rules Recent changes Random page Admin noticeboard Directors page Help **Pickaxes**

Pickaxes are one of the most commonly used <u>tools</u> in the game, being required to mine all <u>ores</u> and many other types of blocks. Different qualities of pickaxe are required to successfully World:

Minecraft virtual world

Documents:

User authored wiki articles

Text Statistics:

Sentences:	242
Vocabulary:	979

Planning task Statistics:

Tasks:	
Avg. plan length:	
Min Branchina Factor	8

Models compared

Unmodified Low-level Planner

Fast-Forward – standard baseline in classical planning No induced subgoals

No Text

Second half of model given no relations from text

All Text

Generate all connections with grounded phrase in same sentence Second-half of model with this set of connections

Full Model

As described so far

Manual Text Connections

Manually annotate all connections implied by the text Use second half of model with the manual connections

Very close to upper bound

Results: Tasks Longer Than 35 Actions

Almost twice the performance of No Text

Results: Text Analysis

Conclusion

- Our method can learn to ground textual descriptions of precondition relations
- Precondition relationship information can improve performance on complex planning tasks

Code and data available at:

http://groups.csail.mit.edu/rbg/code/planning/