Learning High Level Planning From Text

Nate Kushman

S.R.K. Branavan, Tao Lei, Regina Barzilay
Goal: Show that planning can be improved by utilizing precondition information in text

Precondition/Effects Relationships

Castles are built with magic bricks

Classical Planning:

\[
\text{have} \left[\text{magic bricks} \right] \rightarrow \text{have} \left[\text{castle} \right]
\]

NLP: Linguistic Relation

\[
\text{Castles are built with} \quad \text{magic bricks}
\]
A pickaxe, which is used to harvest stone, can be made from wood.

Preconditions

- Wood
- Pickaxe

Plan

- Move to location: <3,3>
- Harvest: wood
- Retrieve: harvested wood
- Setup crafting table
- Place on crafting table: wood
- Craft: pickaxe
- Retrieve: pickaxe
- Move to location: <1,2>
- Pickup tool: pickaxe
- Harvest: stone with: pickaxe
- Retrieve: stone

Challenge: Preconditions from text cannot map directly to planning action preconditions
Classical Planning’s Problem:
Exponential heuristic search

Traditional Solution:
Analyze domain to induce subgoals

Text:
A **pickaxe**, which is used to harvest **stone**, can be made from **wood**.

Precondition Relations:

- pickaxe \(\rightarrow\) stone
- wood \(\rightarrow\) pickaxe

Key Idea: Map text precondition information to subgoals
Key Departures

Utilize domain specific information in text to induce subgoals
Jonsson and Barto, 2005; Wolfe and Barto, 2005; Mehta et al., 2008; Barry et al., 2011

looked only at domain, did not utilize text

Learn from only environment feedback
Girju and Moldovan, 2002; Chang and Choi, 2006; Blanco et al., 2008; Beamer and Girju, 2009; Do et al., 2011; Kwiakowski, 2012

Learns from supervised data, does not utilize environment feedback

Utilize text providing abstract domain relationships (not goal specific)
Oates, 2001; Siskind, 2001; Yu and Ballard, 2004; Fleischman and Roy, 2005; Mooney, 2008; Branavan et al., 2009; Liang et al., 2009; Vogel and Jurafsky, 2010; Branavan et al., 2009; Branavan et al. 2010; Vogel and Jurafsky, 2010; Branavan et al., 2011

Focused on grounding words to objects, does not ground relations
Hybrid Model

- **Text**: Log-linear model → Precondition relations
- **Planning target goal**: Log-linear model → Sub-goal sequence
- **Learn model parameters from planning feedback**

- **Model precondition descriptions**: Log-linear model
- **Model object relations in world, and ground preconditions**: Log-linear model → Low-level planner → Plan
Modeling the World

- State is represented by a set of predicates

 \[
 \text{current_location}(1,2) = \text{TRUE} \quad \text{current_tool}(\text{pickaxe}) = \text{TRUE}
 \]

- Actions represented by preconditions and effects

 \[
 \text{Preconditions:} \quad \text{tree_at}(1,2) = \text{TRUE} \quad \text{current_location}(1,2) = \text{TRUE}
 \]

 \[
 \text{Effect:} \quad \text{tree_at}(1,2) \rightarrow \text{FALSE} \quad \text{have}(\text{wood}) \rightarrow \text{TRUE}
 \]

Goals and subgoals are represented as predicates
Cooked fish is obtained when raw fish is cooked in a furnace.

Goal Independent
Model Part 2: Predict Subgoal Sequence

Given Goal State

- Model as a Markov process
- Explicitly model preconditions observed via planner
Policy Functions

Model Part 1: Predict Precondition Relations from text

\[p(x_i \rightarrow x_j | \vec{w}_k, q_k; \theta_c) \propto e^{\theta_c \cdot \phi_c(x_i, x_j, \vec{w}_k, q_k)} \]

Prediction per pair: Manual groundings, \(x \)
Sentence, \(w \), dependency parse, \(q \)

Model Part 2: Predict Subgoal Sequence

\[p(x_t | x_{t-1}, s^g_0, s^g_f, C; \theta_x) \propto e^{\theta_x \cdot \phi_x(C, x_t, x_{t-1}, s^g_0, s^g_f)} \]

Markov Assumption
Relations from text, \(C \)
Relations between predicates, \(x \)
Learn Parameters Using Feedback from the Planner

Model Parameters θ

Model

Sub-goal sequence

Low-level planner

Parameter Updates

Planner succeeds or fails on each step

Reinforcement Learning Algorithm (Policy Gradient)
Parameter Updates: Relation Prediction

Separate update for each relation

Negative update for all unnecessary preconditions
Parameter Updates: Subgoal Sequence Prediction

Start → String → Fishing pole → Raw fish → Cooked fish

Start → Go to market → Buy fish → Raw fish

One update for the whole sequence
Updates

Model Part 1: Precondition Relation Prediction

\[\Delta \theta_c \leftarrow \alpha_c r \begin{bmatrix} \phi_c(\cdot) - \mathbb{E}[\phi_c(\cdot)] \end{bmatrix} \]

Success/failure of one subgoal pair

standard log-linear gradient

Model Part 2: Subgoal Sequence Prediction

\[\Delta \theta_x \leftarrow \alpha_x r \sum_{t} \begin{bmatrix} \phi_x(\cdot) - \mathbb{E}[\phi_x(\cdot)] \end{bmatrix} \]

Success or failure of entire sequence

Sum over all subgoal pairs
Experimental Domain

World:

Minecraft virtual world

Documents:

User authored wiki articles

Text Statistics:

-Sentences: 242
-Vocabulary: 979

Planning task Statistics:

-Tasks: 98
-Avg. plan length: 35
-Min. Branching Factor: 8

Pickaxes

Pickaxes are one of the most commonly used *tools* in the game, being required to mine all *ores* and many other types of blocks. Different qualities of pickaxe are required to successfully
Models compared

Unmodified Low-level Planner
 Fast-Forward – standard baseline in classical planning
 No induced subgoals

No Text
 Second half of model given no relations from text

All Text
 Generate all connections with grounded phrase in same sentence
 Second-half of model with this set of connections

Full Model
 As described so far

Manual Text Connections
 Manually annotate all connections implied by the text Use second half of model with the manual connections
Results

Low-level Planner: 40.80%

Full Model: 80.2%

% of tasks completed successfully
Results

Low-level Planner: 40.80%
No Text: 69.4%
Full Model: 80.2%

% of tasks completed successfully
Results

- **Low-level Planner**: 40.8%
- **No Text**: 69.4%
- **All Text**: 75.5%
- **Full Model**: 80.2%
- **Manual Text**: 84.5%

Very close to upper bound
Results: Tasks Longer Than 35 Actions

% of tasks completed successfully

- **Low-level Planner**: 14%
- **No Text**: 31%
- **All Text**: 48%
- **Full Model**: 59%
- **Manual Text**: 64%

Almost twice the performance of No Text
Results: Text Analysis

![Graph showing the comparison between Model F-score and SVM F-score across learning iterations. The F-score for the model increases rapidly and then plateaus around 0.65, while the SVM F-score remains constant at 0.7.](image-url)
Conclusion

- Our method can learn to ground textual descriptions of precondition relations

- Precondition relationship information can improve performance on complex planning tasks

Code and data available at:

http://groups.csail.mit.edu/rbg/code/planning/