
Grounding Linguistic Analysis

in Control Applications

by

Satchuthananthavale Rasiah Kuhan Branavan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 17, 2012

Certified by. .
Regina Barzilay

Associate Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor
Chair of the Committee on Graduate Students

2

Grounding Linguistic Analysis

in Control Applications

by

Satchuthananthavale Rasiah Kuhan Branavan

Submitted to the Department of Electrical Engineering and Computer Science
on February 17, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis addresses the problem of grounding linguistic analysis in control applica-
tions, such as automated maintenance of computers and game playing. We assume
access to natural language documents that describe the desired behavior of a con-
trol algorithm, either via explicit step-by-step instructions, via high-level strategy
advice, or by specifying the dynamics of the control domain. Our goal is to develop
techniques for automatically interpreting such documents, and leveraging the textual
information to effectively guide control actions.

We show that in this setting, langauge analysis can be learnt effectively via feed-
back signals inherent to the control application, obviating the need for manual anno-
tations. Moreover we demonstrate how information automatically acquired from text
can be used to improve the performance of the target control application.

We apply our ideas to three applications of increasing linguistic and control com-
plexity – interpreting step-by-step instructions into commands in a graphical user
interface; interpreting high-level strategic advice to play a complex strategy game;
and leveraging text descriptions of world dynamics to guide high-level planning. In
all cases, our methods produce text analyses that agree with human notions of cor-
rectness, while yielding significant improvements over strong text-unaware methods
in the target control application.

Thesis Supervisor: Regina Barzilay
Title: Associate Professor

3

4

Acknowledgments

This thesis is the culmination of an exciting six year adventure which started with

the insistent, but at the time unfounded, conviction that there must be a better way

for people to configure and control software systems using natural language, without

having to write messy code. Six intellectually invigorating years later, that dream, I

believe, is within grasp. For this I’m forever grateful to my advisor Regina Barzilay,

who had the vision to see the merits of an initially incoherent idea, and the perspi-

cacity to know when we were on the right research path – I could not have asked for

a better advisor.

I have been very fortunate in having had a fantastic thesis committee. The advice

and guidance of both Leslie Kaelbling and Dina Katabi had a direct impact on this

work from the very beginning, well before I asked them to be readers on my committee.

In fact, I have to thank Dina Katabi, Nate Kushman and Martin Rinard for insisting

that if we want to do automatic instruction interpretation, we must use Microsoft

Windows as the target environment – this insistence ended up setting the fundamental

direction for the methods developed here.

This thesis would not have been possible without the many wonderful people

I have had the good fortune of working with at MIT. This work is the direct re-

sult of collaborations with Harr Chen, Nate Kushman, Tao Lei, David Silver, Luke

Zettlemoyer, and my advisor Regina Barzilay. The conversations, ideas, feedback

and assistance from many others at MIT has also been invaluable – Yevgeni Berzak,

Mike Collins, Pawan Deshpande, Jacob Eisenstein, Tommi Jaakkola, Yoong Keok

Lee, Tahira Nasim, Christina Sauper and Benjamin Snyder. A special thanks to

Marcia Davidson for her help with all things administrative, and the impromptu

conversations about life outside research.

I’m indebted to Indra Dayawanse of the University of Moratuwa, Samanthie Gu-

nasekara, Ajit Samaranayake and Hemantha Jayawardana of Millennium IT, and

Saman Amarasinghe of MIT all of who, along with my family, were instrumental in

my decision to return to graduate school.

5

I dedicate this thesis to my wonderful family: My parents and sisters – who

have been my first and best mentors to science and its philosophy – Vimaladevi,

Satchuthananthavale, Vithiyani and Imasala; my brother-in-law, nephew and niece,

Kumaradevan, Kulaghan and Kauline; and my many uncles, aunts and cousins.

6

Bibliographic Note

Portions of this thesis are based on prior peer-reviews publications. The instruction

interpreting work of Chapter 2 was originally published in Branavan et al. [10] and

Branavan et al. [11]. The work on interpreting strategy guides from Chapter 3 was

first published in Branavan et al. [12] and Branavan et al. [13]. An expanded version

of this work is pending publication. Finally, a version of the method for learning

high-level planning from text (Chapter 4) is currently under peer-review.

The code and data for the methods presented in this thesis are available at

http://groups.csail.mit.edu/rbg/code/grounding language in control.

7

8

Contents

1 Introduction 19

1.1 Interpreting Imperative Instructions 24

1.2 Interpreting Strategy Descriptions . 26

1.3 Using Text to Guide High-level Planning 28

1.4 Contributions . 30

1.5 Outline . 31

2 Interpreting Instructions into Actions 33

2.1 Introduction . 33

2.2 Related Work . 39

2.2.1 Grounded Language Learning 39

2.2.2 Instruction Interpretation . 41

2.2.3 Reinforcement Learning . 42

2.3 Model . 44

2.3.1 Problem Formulation . 44

2.3.2 A Policy for Interpreting Low-level Instructions 47

2.3.3 Extending the Policy to High-level Instructions 49

2.3.4 Parameter Estimation via Reinforcement Learning 52

2.3.5 Reward Functions and ML Estimation 57

2.3.6 Alternative Modeling Options 58

9

2.4 Applying the Model . 60

2.4.1 Microsoft Windows Help Domain 60

2.4.2 Crossblock: A Puzzle Game Domain 64

2.5 Experimental Setup . 66

2.5.1 Datasets . 66

2.5.2 Reinforcement Learning Parameters 66

2.5.3 Experimental Framework . 67

2.5.4 Evaluation Metrics . 69

2.5.5 Baselines . 69

2.6 Results . 71

2.6.1 Interpretation Performance . 71

2.6.2 Accuracy of Linguistic Analysis 74

2.6.3 Impact of Environment Model Quality 76

2.7 Conclusion . 79

3 Interpreting Strategy Descriptions into Control Behaviour 81

3.1 Introduction . 81

3.2 Learning Game Play from Text . 85

3.3 Related Work . 87

3.3.1 Grounded Language Acquisition 87

3.3.2 Language Analysis and Games 90

3.3.3 Monte-Carlo Search for Game AI 91

3.4 Monte-Carlo Search . 93

3.4.1 Game Representation . 93

3.4.2 Monte-Carlo Framework for Computer Games 95

3.5 Adding Linguistic Knowledge to the Monte-Carlo Framework 99

3.5.1 Model Structure . 99

3.5.2 Parameter Estimation . 104

3.5.3 Alternative Modeling Options 105

3.6 Applying the Model . 107

10

3.6.1 Game States and Actions . 107

3.6.2 Utility Function . 109

3.6.3 Features . 109

3.7 Experimental Setup . 112

3.7.1 Datasets . 112

3.7.2 Experimental Framework . 112

3.7.3 Evaluation Metrics . 114

3.8 Results . 115

3.8.1 Game Performance . 115

3.8.2 Accuracy of Linguistic Analysis 122

3.9 Conclusions . 127

4 Learning High-Level Planning from Text 129

4.1 Introduction . 129

4.2 Related Work . 133

4.2.1 Extracting Event Semantics from Text 133

4.2.2 Learning Semantics via Language Grounding 133

4.2.3 Hierarchical Planning . 134

4.3 Problem Formulation . 135

4.4 Model . 137

4.4.1 Modeling Precondition Relations 137

4.4.2 Modeling Subgoal Sequences 138

4.4.3 Parameter Update . 139

4.4.4 Alternative Modeling Options 140

4.5 Applying the Model . 142

4.5.1 Defining the Domain . 142

4.5.2 Low-level Planner . 142

4.5.3 Features . 144

4.6 Experimental Setup . 145

4.6.1 Datasets . 145

11

4.6.2 Evaluation Metrics . 145

4.6.3 Baselines . 146

4.6.4 Experimental Details . 147

4.7 Results . 148

4.7.1 Relation Extraction . 148

4.7.2 Planning Performance . 148

4.7.3 Feature Analysis . 151

4.8 Conclusions . 152

5 Conclusions 153

5.1 Future Work . 154

A Instruction Interpretation 155

A.1 Derivations of Parameter Updates . 155

A.2 Features . 159

B Strategy Interpretation 161

B.1 Derivations of Parameter Updates . 161

B.2 Example of Sentence Relevance Predictions 165

B.3 Examples of Predicate Labeling Predictions 166

B.4 Examples of Learned Text to Game Attribute Mappings 167

B.5 Features . 168

C High-level Planning 173

C.1 Features . 173

12

List of Figures

1-1 An extract from a document describing the dynamics of a complex

strategy game. 20

1-2 An example interpretation of instructions from a Microsoft Windows

help document into GUI commands. 25

1-3 An excerpt from the user manual of the strategy game Civilization II,

and two game scenarios highlighting the challenges of interpreting such

text. 27

1-4 An excerpt from a help document for the virtual world of Minecraft

describing precondition relationships between objects 29

2-1 An example mapping of a document into a command sequence. . . . 35

2-2 An example of a sentence containing three low-level instructions being

mapped to a sequence of actions in Windows 2000. 45

2-3 Using information derived from future states to interpret the high-level

instruction “open control panel.” . 50

2-4 A Windows troubleshooting article describing how to configure the

“remote registry service” to start automatically. 61

2-5 An instance of the Crossblock puzzle showing its six step solution, and

the text of the corresponding tutorial. 64

2-6 Variations of “click internet options on the tools menu” present in the

Windows corpus. 67

13

2-7 The framework used in the Windows 2000 experiments. 68

2-8 Comparison of two training scenarios where training is done using a

subset of annotated documents, with and without environment reward

for the remaining unannotated documents. 73

2-9 The process of paraphrasing a high-level instruction into a sequence of

low-level instructions. 75

2-10 Examples of automatically generated paraphrases for high-level in-

structions. 75

2-11 An illustration of the differences between an environment model con-

structed with textual guidance, and one created via random exploration. 77

2-12 The performance of our method on high-level instructions when given

various environment models. 78

3-1 An excerpt from the user manual of the game Civilization II. 83

3-2 Markov Decision Process. 94

3-3 Overview of the Monte-Carlo Search algorithm. 95

3-4 The structure of our neural network model for strategy interpretation. 101

3-5 An example of text and game attributes, and the resulting candidate

action features. 103

3-6 A portion of the game map from one instance of a Civilization II game. 108

3-7 Example attributes of game state. 108

3-8 Some examples of the features used in our model. 110

3-9 A diagram of the experimental framework for playing Civilization II. 113

3-10 Observed game score as a function of Monte-Carlo roll-outs for our

text-aware full model, and the text-unaware latent-variable model. . . 118

3-11 The performance of our text-aware model as a function of the amount

of text available to it. 118

3-12 Win rate as a function of computation time per game step. 120

3-13 Examples of our method’s sentence relevance and predicate labeling

decisions. 121

14

3-14 Accuracy of our method’s sentence relevance predictions, averaged over

100 independent runs. 123

3-15 Difference between the norms of the text feature weights and game

feature weights of the output layer of the neural network. 123

3-16 Graph showing how the availability of textual information during the

initial steps of the game affects the performance of our full model. . . 124

3-17 Examples of word to game attribute associations that are learnt via

the feature weights of our model. 126

4-1 Text description of a precondition and effect, and the low-level actions

connecting the two. 130

4-2 A high-level plan that shows two subgoals in a precondition relation. 136

4-3 Examples of the precondition dependencies present in the Minecraft

domain. 143

4-4 The performance of our model and a supervised SVM baseline on the

precondition prediction task. 149

4-5 Some examples of the precondition relations predicted by our model

from text. 149

4-6 Percentage of problems solved by various models on Easy and Hard

problem sets. 150

4-7 The top five positive features on words and dependency types learnt

by our model (above) and by SVM (below) for precondition prediction. 151

15

16

List of Tables

2.1 Example features in the Windows domain. 62

2.2 Accuracy of the mapping produced by our model, its variants, and the

baseline. 72

2.3 The accuracy of our method’s language analysis on the test set with

different reward signals. 74

3.1 Win rate of our method and several baselines within the first 100 game

steps, while playing against the built-in game AI. 115

3.2 Win rate of our method and two text-unaware baselines against the

built-in AI. 116

3.3 Win rates of several ablated versions of our model, showing the contri-

bution of different aspects of textual information to game performance.

. 119

3.4 Predicate labeling accuracy of our method and a random baseline. . . 125

4.1 A comparison of complexity between Minecraft and other domains used

in the IPC-2011 sequential satisficing track. 143

4.2 Example text features for predicting precondition relations. 143

4.3 Examples in our seed grounding table. 146

4.4 Percentage of tasks solved successfully by our model and the baselines. 150

17

18

1
Introduction

Natural languages are the medium in which the majority of humanity’s collective

knowledge is recorded and communicated. If machines were able to automatically ac-

cess and leverage this information, they could effectively perform many tasks that are

currently considered to be computationally intractable, thus requiring human involve-

ment. For example, computers could maintain themselves by reading help documents

or solve hard planning tasks by acquiring relevant domain knowledge from text. To-

day, the only way to infuse such human knowledge into computational algorithms is

to have humans in the loop – i.e., to manually encode the knowledge into heuristics,

through annotations, or directly into the model structure itself. Our ultimate goal

is to automate this process, so that machines can access required knowledge directly

from text. One path to this goal is to perform a semantic interpretation of text by

grounding the textual information in the objects, actions and dynamics of the phys-

ical world. As a step towards this goal, this thesis looks at the connection between

control applications and the semantics of language.

From a linguistic viewpoint, the grounding of language in control applications

presents a very natural notion of language semantics. Today in the field of natural

language processing, a plethora of semantic annotation schemes are in use, most of

them based on linguistic notions of semantics [78, 43, 26, 80]. However, there is

no empirical evidence or consensus on which annotation scheme is good in terms of

real-world applicability. The connection between language and control applications,

however, provides a new perspective on language semantics. In this context, semantics

19

The natural resources available where a population settles affects its ability to produce food

and goods. Cities built on or near water sources can irrigate to increase their crop yields,

and cities near mineral resources can mine for raw materials. Build your city on plains

or grassland with a river running through it if possible.

Figure 1-1: An extract from a document describing the dynamics of a complex strat-

egy game. Words that denote objects or actions in the game are highlighted in bold.

serves as the bridge between text and the control application. This allows us to define

the representation of semantics with respect to the control application, and avoid

imposing subjective human notions of correctness.

In this dissertation, I explore two aspects of the connection between language

and control applications: first, how the semantic analysis of language can be driven

by control performance; and second, how information from text can be leveraged to

improve performance in complex control systems. These two aspects are in fact com-

plementary, and language analysis is central to them both. While addressing these

aspects jointly is particularly challenging, doing so enables a novel source of supervi-

sion for learning language analysis. Since we assume that text contains information

useful for the target control task, correctly interpreting the text must, by definition,

improve control performance. Thus, if the performance of the control application

itself can be measured, this measurement can serve as a feedback signal for learning

language analysis. This is the key idea behind this thesis – that by connecting the

semantic analysis of language to control applications, we can leverage the synergy be-

tween the two to simultaneously learn both language analysis and application control

with little or no prior knowledge.

As a motivating example for our language interpretation task, consider the text

shown in Figure 1-1. This is an extract from a user manual describing the dynamics of

a complex strategy game. This text is written to help human players learn the game,

and provides useful information about game dynamics – for example, that crop yield

can be increased by irrigating land. Given this text, we wish to identify the objects

and actions that are denoted by words in the text, such as “irrigate”, “city”, and

20

“water”. Furthermore, we also want to extract the relationships described in the text

– e.g., that water is a prerequisite for irrigation. This grounding of objects, actions

and relations can be acquired by an automated agent the hard way – i.e., by acting

in the world and observing how specific actions change the world state. In a complex

world having a large state space, this approach can be prohibitively expensive. The

ability to interpret the text in Figure 1-1, however, can allow the agent to directly

leverage the information from text, and significantly improve its ability to play the

game.

Inducing useful domain knowledge from text, however, poses several challenges

beyond the quintessential issues of linguistic variability and ambiguity:

• Situational Relevance The first challenge is to identify situationally relevant

text – i.e., textual information that is useful in the current state of the world.

This is crucial since text documents often include irrelevant background mate-

rial, and even text that contains useful information may be valid only in specific

scenarios. For example, a player trying to increase crop yield should ignore the

information about mining and minerals in Figure 1-1.

• Abstraction Level The second challenge is the level of abstraction at which

text refers to the world. At the lowest level of abstraction, words in the text will

describe directly observable attributes of the world – e.g., words such as “city”

and “irrigate” which denote an object and an action respectively. Often, the

text will also describe abstract attributes of the world – such as the relationship

between different objects. An example of this from Figure 1-1 is the description

of the precondition relationship between water and irrigation. Such abstract

groundings are particularly challenging to learn since the corresponding abstract

world attribute also needs to be learnt.

• Incomplete Textual Information The third challenge we need to address

arises from the essentially incomplete nature of textual information – i.e., text

will not necessarily provide all of the information required for effective con-

trol. For example, in Figure 1-1, the text recommends that cities be built on

21

grassland or plains, but does not describe the consequences of building a city

near the sea. Hence, an algorithm that aims to perform effective control has to

fuse information from both the text and the control application to address the

information deficiencies of text.

To address these challenges of grounding language in control, we leverage feedback

signals inherent to control applications as the supervision for learning. In particular,

we assume that we have access to a noisy, real-valued reward signal that correlates

with the quality of control actions. To learn effectively from such feedback in a princi-

pled fashion, we formulate our language grounding task as a Markov Decision Process

(MDP) in the Reinforcement Learning framework [68]. The goal in this framework

is to learn an optimal policy p(a | s) for selecting actions a, that when executed from

state s will maximize the expected future reward. Our novel formulation for text

interpretation defines MDP actions a in terms of both text analysis decisions and

control actions, while combining text and control information in the MDP state s.

This formulation enables language analysis to be learnt from control feedback, while

at the same time allowing control actions to be guided by textual information. Our

algorithms explicitly model abstraction, situational-relevance, and world dynamics to

enable effective analysis of complex language.

We develop these ideas in the context of three different control applications:

1. Interpreting Imperative Instructions The text provides step-by-step in-

structions specifying the sequence of commands that need to be executed in

the world. The entire text is assumed to be relevant to the task. Grounding

happens at the lowest level of abstraction – i.e., the text describes concrete ob-

jects and actions in the world. The challenge of this application arises from the

fact that the text instructions are the only definition of the target control task.

Hence, the control task cannot be completed without correctly interpreting the

text.

2. Interpreting Strategy Descriptions The text provides situation-specific ad-

vice and general background knowledge about the world. While this advice

22

describes specific actions, and the situations in which those actions are useful,

the interpretation algorithm needs to decide when to apply any particular action

in the world. Moreover, the text contains significant amounts of background in-

formation that is not relevant to action selection. As in the first case, grounding

is specified at the level of objects and actions. However, unlike in the first ap-

plication, here we assume we are given a non-linguistic definition of the control

task. The control task can hence be completed without interpreting the text.

However, due to the complexity of the task, the search space is exponentially

large, making domain knowledge extracted from language particularly crucial.

The challenge here is to identify and extract useful information from text, while

also allowing for effective control when such information is not available.

3. Using Text to Guide High-level Planning In contrast to both the above

applications, the text here specifies only the dynamics of the world in general,

and does not provide any advice about actions in the world. In particular,

the text provides information about prerequisite relationships between objects

in the world. Given this characteristic of the text, grounding is at the level of

abstract relationships between objects. As in the second application, the control

task here is defined independently of text, and all of the same challenges also

apply. The primary complexity of this application, however, lies in the difference

in abstraction level between the high-level relation descriptions in text, and the

concrete objects in the world.

I summarize these three control applications below, describing our approach to

effective language analysis in each case.

23

1.1 Interpreting Imperative Instructions

Our first application is to translate documents containing step-by-step instructions

into sequences of commands in a given world. In this scenario we assume that the

entire text of the document is useful for the application, and that grounding occurs at

the level of concrete objects and commands. An example of this application is shown

in Figure 1-2, where the text contains instructions for configuring a specific service in

the Microsoft Windows operating system, and we wish to execute the corresponding

commands in the actual OS. While this is the simplest of the three scenarios discussed

in this thesis, it is also the most unforgiving in terms of language analysis. The

commands to be executed in the OS are specified only via the instruction text, making

the control task impossible to complete without correctly interpreting the text.

The unforgiving nature of this task is also an opportunity for learning via trial and

error. Specifically, we formalize our task of mapping instructions into commands in

the reinforcement learning framework, where the goal is to learn an action-selection

policy. We define an action as the selection and translation of a word span from the

text into commands in the target environment, thus enabling our method to learn

text interpretation. As the reward signal for learning, we define an intuitive albeit

noisy feedback signal that measures the quality of the mapped command sequence.

This reward signal emulates the way in which a typical lay human would identify that

they had made a mistake while following an instruction document – i.e., by testing

whether the remaining instruction text matches any text labels in the environment.

This reinforcement learning approach to instruction interpretation allows us to by-

pass the traditional reliance on manual annotations, while achieving a interpretation

performance surprisingly equal to that of an equivalent supervised technique.

24

Set remote registry service to
start automatically

Individual Instructions: Control command sequence:

right-click "My Computer" on the desktop right-click [My Computer]

click the Manage menu option

expanding "Services and Applications"

Start the service

left-click [Manage]

double-click [Services]

double-click [Services and Applications]

double-click Remote Registry Service[]

left-click Startup type:[]

left-click Automatic[]

left-click [Start]

click Services

1

2

3

4

5

6

∘ Right click "My Computer" on the desktop, and click the Manage menu option.
1 2

∘ Click Services after expanding "Services and applications".
3 4

∘ Set the remote registry service to start automatically and then start the service.
5 6

Document with individual instructions highlighted:

Figure 1-2: An example interpretation of instructions from a Microsoft Windows help

document into GUI commands. The text specifies the sequence of commands that

need to be executed, and the GUI object for each command. Note that it is the

document itself that defines the task to be performed in the OS. Hence, the task

cannot be completed without correctly interpreting the text.

25

1.2 Interpreting Strategy Descriptions

Our second task is to interpret strategy documents that contain general advice on how

to behave effectively in the world. We aim to use the domain knowledge extracted

from text to control the actions of an agent in the given world. Unlike in the first

task, the documents we hope to interpret do not provide step-by-step instructions,

but rather contain information that is useful for a variety of scenarios that may be

encountered in the world. In addition, we assume that only a fraction of the document

contains useful information, and that the relevance of even this information depends

on the state of the world. As in the first task, grounding is at the level of objects and

actions.

Figure 1-3 shows an excerpt from a document with these characteristics – a user

guide for the strategy game Civilization II. This text describes game locations where

a particular game action can be effectively applied, but it leaves all other details

about that action unspecified. Any algorithm that aims to leverage such texts has

to therefore overcome two specific challenges: first, it needs to learn to identify the

portions of text that are relevant to the current world state; second the algorithm

needs to effectively fuse knowledge extracted from text with information from the

world to compensate for deficiencies in the text.

We address these challenges by explicitly modeling the relevance of textual infor-

mation, and by jointly modeling both linguistic and control decisions. We encode

this joint model in a multi-layer neural network that is learnt by interacting with

the world in the Monte-Carlo Search framework. The Linguistic decisions of text

relevance and grounding are modeled by the hidden layers of this network. We test

our method on the complex strategy game of Civilization II, using the game’s official

manual as the source of textual information. As shown by our results in Chapter 3,

our linguistically-informed method significantly outperforms a strong baseline that

does not have access to the text. Furthermore, while being learnt only from world-

feedback, the text analysis produced by our method conforms well with common

notions of linguistic correctness.

26

settler unit

plains
river

plains
river

city

Game state at time t Game state at time t+1

Game action: build city

Scenario 1: Building a city near a river

settler unit

seaplains

city

seaplains

Game state at time t Game state at time t+1

Game action: build city

Scenario 2: Building a city near the sea

The natural resources available where a population settles affects its ability to produce food and

goods. Cities built on or near water sources can irrigate to increase their crop yields, and cities

near mineral resources can mine for raw materials. Build your city on plains or grassland with a

river running through it if possible.

Excerpt from strategy document:

Figure 1-3: An excerpt from the user manual of the strategy game Civilization II,

and two game scenarios highlighting the challenges of interpreting such text. The

scenarios show the game action build city being executed by a settler in two different

game states. In the first scenario, the city is being built on a plain near a river as

advised by the final sentence of the text. If a game playing algorithm can identify this

sentence as relevant to the game state, and ignore the remaining text, it can leverage

the text information to play better. The second scenario, however, is not covered by

the manual – which does not provide any information about cities near the sea. Thus,

to be effective, an algorithm for leveraging text needs to also use information from

the world to compensate for gaps in the text.

27

1.3 Using Text to Guide High-level Planning

Our final task is to leverage textual information about the preconditions and effects

of actions in the world to perform effective high-level planning in a complex domain.

The unique challenge of this task is the mismatch in the level of abstraction between

information provided in the text, and the granularity of planning primitives in the

world. Consider for example, the text shown in Figure 1-4. This text describes

a precondition relation between two objects in a virtual world – i.e., that seeds are

required to grow wheat. The corresponding plan connecting these to objects, however,

is at a level of abstraction far lower than that of the text.

We address the challenge of the mismatch in abstraction granularity by learning a

model of the world that explicitly encodes the abstract concepts described in the text.

This allows us to model language grounding at the level of relations, in contrast to

prior work which focused on object-level grounding [52, 66, 79, 27, 50, 49, 10, 74]. We

implement our idea in a high-level planning algorithm that jointly learns to predict

precondition relations from text and to perform planning guided by those relations.

Our method uses a standard low-level planner to convert high-level plans to actions

in the world. The success or failure of the low-level planner is then used as the

supervision signal for our model.

We evaluate our algorithm in the complex virtual world of Minecraft, using a large

collection of user-generated on-line documents as our source of textual information.

While using planning feedback as its only source of supervision, our method is able to

predict preconditions from text as well as a supervised SVM baseline. Furthermore,

our algorithm is able to leverage this precondition information to significantly improve

planning performance over text-unaware algorithms.

28

Text:

Seeds planted in farmland will grow to

become wheat which can be harvested

pickup tool: shears

collect seeds from tallgrass using shears

pickup tool: hoe

plow land with hoe at (2,0) into farmland

plant seeds at coordinates (2,0)

fertilize seeds at (2,0) with bonemeal

wait for wheat to grow

pickup tool: shears

harvest wheat with shears at (2,0)

6

5

4

3

2

1

7

8

9

Precondition Relations extracted from text:

farmland wheat

seeds wheat

Plan corresponding to the task of "growing wheat"

Graphical representation of plan showing grounding states for precondition relations:

initial
state

wheat
(goal)

seeds

farmland

65

4

3
21

7

8

9

grown
wheat
crop

Figure 1-4: An excerpt from a help document for the virtual world of Minecraft de-

scribing precondition relationships between objects – i.e., that both seeds and farm-

land are required to grow wheat. Note the difference in abstraction level between these

precondition descriptions and an actual executable low-level plan to grow wheat. In

fact multiple low-level actions are necessary to connect the objects in the precondition

relationships. Language grounding in this scenario requires our method to also learn

the abstract relationships between world objects, thus providing a grounding point

for language.

29

1.4 Contributions

The primary contributions of this work are twofold:

• Learning language from control feedback We show that given interactive

access to a world, and text that provides useful information about that world, it

is possible to learn effective text analysis without any manually annotated data.

The performance of our methods rivals that of equivalent supervised techniques

on a variety text analysis tasks.

• Guiding control actions using textual information We demonstrate the

feasibility and effectiveness of automatically leveraging information from natural

language texts to guide complex control actions in the world. As shown by our

results, our approaches are able to significantly improve control performance

using textual information.

Starting with little or no prior knowledge about either language or the control ap-

plication, our methods are able to achieve both of the above results in a compelling

manner – learning language analysis, and effective control behaviour. Additionally,

the language grounding models described in this thesis are themselves important

contributions. In particular, we show how situationally-relevant text and abstract

relations from text can be modeled for effective grounding and control. These model-

ing techniques open the way for the automatic interpretation of text containing even

more complex linguistic phenomena.

30

1.5 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 discusses the interpretation of imperative, step-by-step instructions

for performing tasks in the world, and presents our approach for learning to

map such documents into actions.

• Chapter 3 describes our method for interpreting high-level strategy guides

which contain situationally-relevant advice.

• Chapter 4 presents our model for automatically extracting precondition rela-

tions from text, and inducing high-level plans based on the extracted informa-

tion.

• Chapter 5 concludes the thesis with a summary of the main points, and di-

rections for future work.

31

32

2
Interpreting Instructions into Actions

In this chapter, we consider the task of automatically interpreting natural language

instructions into executable commands. Using a reinforcement learning approach,

we show that this task can be learnt by executing the interpreted commands in

a target environment and observing the results. Our method, which requires no

manual supervision, performs as well as equivalent supervised approaches. We further

demonstrate that learning a model of the target environment allows us to handle high-

level instructions, which assume prior knowledge on the part of the reader, and omit

some of the details necessary for correct interpretation.

2.1 Introduction

The ability to automatically map natural language instructions into executable com-

mands would enable the automation of a wide variety of tasks that currently require

direct human involvement. Examples of such tasks include configuring and maintain-

ing software systems based on how-to guides, and controlling robots using instruction

manuals. This natural language interpretation task has been widely studied from the

early days of artificial intelligence [76, 24]. However, prior attempts have relied either

on human specified rules or on learning from manual annotations, restricting their

ability to scale. Our approach removes this limitation by learning instruction inter-

pretation without the need for annotated data. We rely on the observation that in

many applications, the validity of an instruction mapping can be verified by executing

33

the induced command sequence in the corresponding environment and observing the

resulting effects. Operating in a reinforcement learning framework, our method learns

by leveraging this feedback, and performs as well as manually supervised techniques.

For concreteness, consider the text from a Microsoft Windows troubleshooting

guide shown in Figure 2-1. This document describes how to configure the “remote

registry service” so that it starts automatically. Our goal is to map this text into the

corresponding sequence of eight GUI commands that correctly perform the configu-

ration task. Being written for a human audience, these kinds of documents generally

assume certain prior knowledge on the part of the reader. As such they often gloss over

low-level details, and succinctly describe multiple commands in a single instruction.

An example of such a high-level instruction can be seen in step five of Figure 2-1.

In this chapter, we assume that each document is composed of a sequence of

instructions, each of which can take one of two forms:

• Low-level instructions: these explicitly describe single commands. E.g., the

third instruction, “Click Services” in Figure 2-1. Note that low-level instruc-

tions fully specify the command to executed, along with the parameters of that

command. As such, the information available from text is sufficient to correctly

select and execute the environment command.

• High-level instructions: these describe a sequence of one or more environ-

ment commands, which are not explicitly described by the instruction. E.g.,

instruction five in Figure 2-1 – “Set the remote registry service to start au-

tomatically”. Note high-level instructions do not specify the details of every

command in the corresponding sequence. For this reason, the correct command

sequence cannot necessarily be induced based only on textual information. Ef-

fectively collecting and using information about world dynamics, in addition to

the text, thus becomes crucial when interpreting these instructions.

The process of interpreting text documents containing such instructions involves

several challenges:

34

Set remote registry service to
start automatically

Instructions: Candidate command sequence:

right-click "My Computer" on the desktop right-click [My Computer]

click the Manage menu option

expanding "Services and Applications"

Start the service

left-click [Manage]

double-click [Services]

double-click [Services and Applications]

double-click Remote Registry Service[]

left-click Startup type:[]

left-click Automatic[]

left-click [Start]

click Services

1

2

3

4

5

6

∘ Right click "My Computer" on the desktop, and click the Manage menu option.
1 2

∘ Click Services after expanding "Services and applications".
3 4

∘ Set the remote registry service to start automatically and then start the service.
5 6

Document segmented into instructions:

Figure 2-1: An example mapping of a document into a command sequence. Since

a single sentence can describe multiple instructions, the first step as shown on top,

is to segment the text into individual instructions. Each instruction then needs to

be translated into the corresponding GUI commands. An instruction that maps to a

single GUI command is termed a low-level instruction – e.g., instructions one through

four. High-level instructions are those that map to a sequence of commands – e.g.,

instruction five. Notice that the execution order of commands can be different from

the order of instructions in the text. Thus the mapping process also has to handle

command reordering when necessary.

35

• Segmentation As can be seen from the text in Figure 2-1, a single sentence

can describe multiple instructions. Thus, the first challenge is the linear seg-

mentation of each sentence into sets of word spans, with each span specifying

a single instruction. For example, the sentences in Figure 2-1 segment into two

instructions each. Note that we assume that the words used to describe two

different instructions will not be interleaved, and that a single instruction will

not span multiple sentences.

• Translation The second challenge is to translate each low-level instruction

into its corresponding GUI command, and each high-level instruction into the

command sequence it describes. Figure 2-1 shows this translation step for each

instruction.

• Reordering The order in which commands are described in the text may not

always match the order in which they need to be executed. In such cases,

the commands produced by the translation step need to be correctly reordered

based on information from the text and the state of the target environment. For

example, in Figure 2-1, the order of instructions three and four are switched

between the text and the correct execution sequence.

• World dynamics As mentioned before, in the case of high-level instructions,

the text does not fully specify every command in the corresponding sequence.

To correctly handle these instructions, an interpretation algorithm needs to

compensate for the information deficiency of text using knowledge about world

dynamics. The challenge here is to automatically and efficiently acquire useful

information about the world, and effectively incorporate this information in

the interpretation process. For example, in instruction five from Figure 2-1,

the algorithm needs to know that in the service management application of

Microsoft Windows, left clicking on the Startup type widget will allow it to

configure a service to start automatically.

Our aim is to address the above challenges and learn instruction interpretation

without relying on human annotations. To achieve this goal, we first need an alternate

36

source of effective supervision. Conveniently, in many applications, the validity of an

instruction mapping can be verified by executing the induced action sequence in the

corresponding environment and observing the resulting effects. For instance, in the

example from Figure 2-1, we can assess whether the goal described in the instructions

is achieved – i.e., whether the remote registry service starts automatically. The key

idea of our approach is to leverage such a validation process as the primary source of

supervision to guide language learning. This form of supervision allows us to learn

text interpretation in scenarios where standard supervised techniques are not easy

to apply – such as for example, when human annotations are either not available, or

difficult to create.

To address the challenges of learning instruction mapping from environment feed-

back, we formulate our task as a reinforcement learning (RL) problem. RL is a well

studied and principled framework for learning models via validation from an environ-

ment [68]. We formulate our text interpretation model as a log-linear policy in this

framework, encoding a variety of features from both the text and the environment.

During learning, our method repeatedly constructs action sequences for a given set of

documents, executes those actions, and observes the resulting environment feedback.

The reward computed from this feedback is then used to update model parameters.

In addition, our method also progressively builds a model of world dynamics based

on the environment observations, thus enabling the interpretation of high-level in-

structions.

We evaluate our methods in two separate scenarios – the first where each document

contains only low-level instructions, and the second where documents contain both

high-level and low-level instructions. As the primary test domain for both scenarios,

we use Windows troubleshooting guides from Microsoft’s help website,1 interpreting

the text into GUI commands. The key findings of our experiments are twofold. First,

our model trained using only simple reward signals is able to achieve surprisingly high

results. It interprets low-level instructions with an accuracy of 79%, a performance

1http://support.microsoft.com/

37

that is on par with that of an equivalent supervised algorithm. Second, learning

a model of the world allows our method to accurately interpret 62% of high-level

instructions, compared to just 2% for a baseline that does not utilize an environment

model.

The remainder of this chapter is structured as follows. We first describe prior

work on grounded language acquisition, instruction interpretation, and reinforcement

learning in Section 2.2. Section 2.3 details the formulation and structure of our model

for instruction interpretation, and describes how we estimate its parameters using

environment feedback. The following two sections, 2.4 and 2.5 discuss the application

of our method to our two test domains, including our evaluation methodology. We

present our experimental results in Section 2.6 before concluding in Section 2.7.

38

2.2 Related Work

In this section, we first discuss prior work in the areas of grounded language acquisition

and instruction interpretation. Thereafter we look at related work in the field of

reinforcement learning, focusing on its application to natural language processing in

general, and our task in particular.

2.2.1 Grounded Language Learning

Our work fits into a broad class of methods that aim to learn language from a situated

context [52, 3, 66, 54, 79, 17, 80, 43, 74, 71, 18]. These grounded language learning

approaches aim to leverage non-linguistic information from a situated context as their

primary source of supervision. While this non-linguistic signal may be noisy, it can

often provide sufficient supervision to reduce or even obviate the need for manual

annotations. Despite differences in the tasks to which they are applied, approaches

to language grounding can be analyzed in terms of several shared characteristics.

• Source of Supervision. Prior work in language grounding has primarily

operated on parallel corpora of text and grounding contexts. In the domains

to which these methods have been applied, the natural language text is tightly

and directly linked to the grounding context, allowing the methods to use the

parallelism in the data to learn language analysis. For example, both Roy and

Pentland [54] and Yu and Ballard [79] learn object names based on images paired

with corresponding language. An alternative line of work has leveraged parallel

data to ground language in a dynamic context, learning associations between

action sequences and their textual descriptions. In this setup, for example,

Fleischman and Roy [27] learn the grounding of text instructions to action

sequences based on pairs of individual instructions aligned to the corresponding

action sequence. Chen and Mooney [17], on the other hand, learn to ground

a sports commentary to game actions from parallel, but unaligned data. In a

similar vein, but operating in a real-world environment, Tellex et al. [71] learn

to map human instructions into a sequence of actions by a physical robot.

39

While our work also aims to ground language in the context of an environment,

in contrast to prior approaches, we do not assume access to any form of par-

allel data. Instead, our methods are allowed access to the target environment,

and need to proactively interact with it to collect their training data. In com-

plex domains, such as ours, the quality of information collected via interaction

is critically important to learning. We address this challenge in a principled

fashion by formulating our task in the reinforcement learning framework [68].

This approach of learning language analysis based on a feedback signal inherent

to a given task has since been applied to a variety of applications. For example,

interpreting navigation instructions [74], semantic parsing [19], and inducing

semantic knowledge about a domain based on text [32].

• Grounding Context. Another feature common to traditional methods of

grounding is the granularity of the non-linguistic structures to which the lan-

guage is grounded. Specifically, in most prior work, language has been grounded

to individual non-linguistic primitives – e.g., the visual representation of a single

object [54, 79], individual actions [17], or individual semantic frames extracted

from an observed action sequence [27]. In this setting, each instance of language

grounding is independent of all other groundings. Even in cases where the text is

grounded to a structured semantic representation such as first-order logic equa-

tions, the grounding decisions are not all sequentially interdependent [80, 43].

Furthermore, the non-linguistic context to which the text is grounded is con-

stant across all decisions.

In contrast, our task is to map a document containing instructions into a se-

quence of inter-dependent actions. While the text in our target domains can

be segmented into words describing single actions, the state of the target en-

vironment changes with each executed action. This means that the grounding

context for a given text segment is not known before all instructions that come

before it have been correctly interpreted and executed. For this reason, ground-

ing decisions within a document are dependent on each other, making our task

40

significantly more difficult. However, this dependency between decisions can

also be a particularly powerful source of supervision – i.e., since an incorrect

action could make it impossible to execute a future action, if we encounter text

that cannot be mapped to any actions, it may indicate that we mapped a previ-

ous instruction incorrectly. As described in Section 2.4, we leverage this insight

as our source of supervision.

2.2.2 Instruction Interpretation

The automatic interpretation of natural language instructions into actions in a world

has been studied from the early days of AI [76, 24, 46, 40, 71]. Initial attempts at

the task, such as Winograd’s seminal work [76], used rule-based techniques and were

limited to instructions dealing with a simple blocks world. More recent approaches

have attempted to apply machine learning techniques to handle more complex lan-

guage and target environments. For example, Lau et al. [40] use a multi-class classifier

trained on manually annotated data to translate instructions into user-interface ac-

tions on a web page. MacMahon et al. [46] use supervised learning techniques to

interpret route directions into navigation actions. More recently, Tellex et al. [71]

leverage unaligned parallel data to learn a mapping from textual instructions to the

actions of a physical robot. While such machine learning techniques are more robust

than rule-based methods, these approaches are limited in their scalability due to their

reliance on expensive human supervision in the form of rules or annotations.

In contrast to such prior work, our method learns directly from environment feed-

back as its only source of supervision. In fact, we show that in our domains, learning

from environment feedback can yield a performance on par with an equivalent method

trained on manual annotations. We compute this environment feedback signal via a

simple heuristic which looks at text overlap between the instruction text and text la-

bels in the target environment. The assumption that the instruction text corresponds

to the target environment is the only prior knowledge our algorithm has about either

the language or the environment. This allows our method to be applied to domains

where a reasonable environment feedback can be automatically computed. Further-

41

more, our algorithm can also efficiently leverage manual annotations when available,

effectively combining this supervision with the environment feedback.

2.2.3 Reinforcement Learning

Application to Natural Language Processing Reinforcement learning has pre-

viously been applied to the problem of dialogue management in natural language

processing [59, 55, 45, 65]. These systems manage conversations with a human user

in a step-by-step fashion, by selecting the computer’s next natural language utter-

ance. In this task, the reinforcement learning state space encodes information about

the goals of the user, and the utterances of both the user and the computer up to the

current time step. The RL action space is defined by a prespecified set of utterances

available to the computer. The task in dialogue management is to find a policy that

maps these RL states to actions and optimally achieves some predefined dialogue

goal. The corresponding learning problem is to find this optimal policy through a

trial-and-error process of repeated spoken interaction with the human user.

The application of reinforcement learning is different in several ways between

dialogue systems and our setup. In some respects, our task is more easily amenable

to reinforcement learning – for instance, we are not interacting with a human user, so

the cost of interaction is lower. However, the structure of the RL state space makes

our task fundamentally more challenging. While the state space can be designed to

be relatively small in the dialogue management task, our state space is determined by

the underlying environment and is typically very large. We address this complexity

by developing a policy gradient algorithm that learns efficiently while exploring a

small but relevant subset of the states.

Modeling the Target Environment Our work combines ideas of two tradition-

ally disparate approaches to reinforcement learning [68]. The first approach, model-

based reinforcement learning, constructs a model of the environment in which the

learner operates (e.g., modeling location, velocity, and acceleration in robot naviga-

tion). It then computes a policy directly from the rich information represented in

42

the induced environment model. In the NLP literature, this approach is commonly

used for dialog management [64, 42, 58]. Model-based learning is very effective when

the environment can be efficiently estimated, and represented in a compact fashion.

However, when this is not possible, due to difficulties in either estimation or represen-

tation, model-based methods perform poorly [9, 37]. Our instruction interpretation

task falls into this latter category,2 rendering standard model-based learning ineffec-

tive.

The second approach – i.e., model-free reinforcement learning methods such as

policy learning – aims to select the optimal action at every step, without explicitly

constructing a model of the environment. While policy learners can effectively operate

in complex environments, they are not designed to benefit from a learnt environment

model. We address this limitation by expanding a policy learning algorithm to take

advantage of a partial environment model estimated during learning. Our approach

of conditioning the policy function on future reachable states is similar in concept to

the use of post-decision state information in the approximate dynamic programming

framework [53]. This ability to explicitly condition action selection on the future con-

sequences of actions allows our method to effectively interpret high-level instructions,

while also improving performance on low-level instructions.

2For example, in the Windows GUI domain, clicking on the File menu will result in a different

submenu depending on the application. Thus it is very difficult to predict the effects of a previously

unseen GUI command.

43

2.3 Model

In this section, we first formally define our task in terms of the Markov Decision

Process framework, and show how language analysis and environment command se-

lection can be modeled jointly in this framework. Thereafter, we describe a model for

interpreting low-level instructions, and detail its extension to high-level instructions.

2.3.1 Problem Formulation

The input to our mapping task is a document d composed of sentences (u1, . . . , u`),

where each ui is a sequence of words. Our goal is to map d to a sequence of com-

mands ~c = (c0, . . . , cn−1), which can be executed in a given target environment. We

assume interactive access to this environment – i.e., that an algorithm can observe

the environment’s current state E , and execute commands on it. We also assume

knowledge of the environment’s primitive commands, and the ability to identify the

objects available for interaction given a state observation.

The correct interpretation of an instruction into a command can depend on the

state E of the target environment in addition to the instruction text. Therefore, we

represent the mapping task as a Markov Decision Process 3 (MDP) – a mathemati-

cal framework for sequential decision making under uncertainty [68]. Intuitively, we

model the instruction mapping process as shown in Figure 2-2. At each step, condi-

tioned on the text and the environment state, we first select the words which describe

the next command to be executed, translate the selected words into the corresponding

command, and execute the command in the environment.

Markov Decision Process for Instruction Interpretation Formally we define

our MDP as the 4-tuple 〈S,A, T,R〉 where:

3In general, the MDP assumption of full state observability may not hold for all tasks in domains

such as a graphical user interface – for example tasks which change internal system states. Such tasks

are better modeled as Partially Observable Markov Decision Processes (POMDP). In this work, we

limit our attention to tasks which fit into the MDP formulation, leaving POMDP formulations of

instruction interpretation for future work.

44

click Run, and press OK after typing secpol.msc in the open box. u:

a: c: left-click R: []Run...

ℰ:

Start

Shut Down...

Run...

Help

Search

R: []open "secpol.msc"c: type-into

click Run, and press OK after typing secpol.msc in the open box.

Run...left-click

u:

a:

ℰ:

Start

Run

Type the name of a program, and
Windows will open it for you.

Ok Cancel Browse

Open:

click Run, and press OK after typing secpol.msc in the open box. u:

[]OKc: left-click R:Run...left-click open "secpol.msc"type-intoa:

ℰ:

Start

Run

Type the name of a program, and
Windows will open it for you.

Ok Cancel Browse

Open: secpol.msc

: Environment state : Words mapped to action

: Action

: Sequence of actions : Words mapped to previous actions

: Command: Document

: Command parameters: Sentence

1

2

3

secpol.msc

Figure 2-2: An example of a sentence containing three low-level instructions being

mapped to a sequence of actions in Windows 2000. For each step, the figure shows

the words selected by the action, along with the corresponding system command and

its parameters. The words of Wc are highlighted by green rectangles with an arrow

pointing to the corresponding command, and the words of W are highlighted in grey.

45

• State space, S, is the set of all possible states. Each state s ∈ S represents

the information used to select the next environment command ci. As such, this

mapping state s needs to encompass both the instruction text as well as the

state of the target environment. We therefore define s as the tuple (E , d, j,W),

where E refers to the current environment state; j is the index of the sentence

currently being interpreted in document d; and W is the set of words which

have already been mapped. W allows us to keep track of the interpretation

process, and stops the same words from being mapped to multiple commands.

The mapping state s is observed before each command selection step.

• Action space, A, is the set of all possible actions. A mapping action a is the

tuple (Wc, c, R), where Wc are the words describing the next command to exe-

cute, c is the corresponding environment command, and R are its parameters.

Elements of R refer to objects present in environment state E , and also possibly

words in document d. For example, in the second step of Figure 2-2, R refers

to a GUI textbox named “open”, as well as the text “secpol.msc” which needs

to be typed into the textbox. To account for words that do not describe any

commands, c can also take the special value null.

• Transition distribution, T (s′ | s, a) encodes the way the mapping state s =

(E , d, j,W) changes to a new state s′ in response to action a = (Wc, c, R). We

define this distribution as follows: W is updated with a’s selected words Wc; j

is incremented if all words of the sentence have been mapped; and E changes

according to the environment’s transition distribution p(E ′|E , c, R). This tran-

sition distribution is not known a priori, but can be observed by interacting

with the environment. As we will see in Section 2.3.4, our approach avoids

having to directly estimate this distribution. For the applications we consider

in this work, environment state transitions, and consequently mapping state

transitions, are deterministic.

• Reward function, R(h) ∈ R, defines the feedback or reward received after

completing the interpretation of a document d. Here, h = (s0, a0, . . . , sn−1, an−1, sn)

46

is a history of states and actions visited during the mapping process.4 The value

of the reward correlates with the goodness of the mapping, with higher rewards

indicating better mappings. This reward function will serve as the supervision

signal from which we learn instruction mapping. Section 2.4 describes how ef-

fective reward functions can be computed for our test domains using simple

heuristics. We will also demonstrate how manually annotated action sequences

can be incorporated into the reward.

Under the MDP representation of instruction interpretation, the goal is to estimate

the parameters θ of an action selection distribution or policy p(a | s; θ). Here s is the

current mapping state of the MDP, a is the mapping action to be taken under s,

and policy p(a | s; θ) encodes the probability that executing a under s will lead to the

correct interpretation of the given document.

2.3.2 A Policy for Interpreting Low-level Instructions

Our definition above of the state and action spaces of the MDP results in a policy

structure designed to address the three challenges of instruction interpretation – seg-

mentation, translation and reordering. In particular, given the definitions of state

s = (E , d, j,W) and action a = (Wc, c, R), we have:

p(a | s; θ) = p(Wc, c, R | E , d, j,W ; θ)

= p(Wc | E , d, j,W ; θ) p(c, R | Wc, E ; θ). (2.1)

Here we assume that given the words Wc, the command c and parameters R are con-

ditionally independent of the document text – i.e., document d and sentence j. The

first component of this policy selects the segment of words Wc to be mapped in the

4In most reinforcement learning problems, the reward function is defined over state-action pairs,

as r(s, a) — in this case, r(h) =
∑

t r(st, at), and our formulation becomes a standard finite-horizon

Markov Decision Process. Policy gradient approaches allow us to learn using the more general case

of history-based reward.

47

current interpretation step. This segment can be selected from any part of the current

sentence j, implicitly allowing segmentation and reordering. Selection of Wc is condi-

tioned on the text, the words that have already been mapped, and on the state of the

environment, making it sensitive to both the text and environment context. The sec-

ond component in Equation 2.1 performs the translation step of instruction mapping

– i.e., by selecting an environment command c and the corresponding parameters R

given words Wc and the environment state E .

We represent the policy p(a | s; θ) in a log-linear fashion [23, 39], giving us the

flexibility to leverage a diverse range of features to model action selection. Under this

representation, the policy distribution is defined by:

p(a | s; θ) =
eθ·

~φ(s,a)∑
a′

eθ·
~φ(s,a′)

, (2.2)

where ~φ(s, a) ∈ Rn is an n-dimensional feature function. Given parameters θ, and a

mapping state s = (E , d, j,W), this policy distribution can be computed by enumer-

ating out the space of possible actions a = (Wc, c, R) under s. This action space is

defined by the Cartesian product of all subspans Wc of unused words in the current

sentence (i.e., subspans of the jth sentence of d not in W), and the possible commands

c and parameters R in environment state E .5 The details of how this action and state

space are defined for specific instruction interpretation tasks are given in Section 2.4.

Given the parameters of the policy, we can map a document into a command

sequence by repeatedly choosing an action a given the current mapping state s, and

applying that action to advance to a new state s′ (See Figure 2-2). This processes

is continued until we reach a state from which no further mappings are possible. As

described in Section 2.4, such dead-end states can be easily, albeit approximately,

identified in our target domains. During testing, actions are selected according to

the mode of the policy distribution. However, as described in the following section,

5For parameters that refer to words, the space of possible values is defined by the unused words

in the current sentence.

48

during learning a certain amount of randomness is introduced into the action selection

process to encourage exploration of previously untried actions.

2.3.3 Extending the Policy to High-level Instructions

The main challenge in processing high-level instructions is that in contrast to their

low-level counterparts, they correspond to sequences of one or more commands. A

simple way to enable this one-to-many mapping is to allow commands that do not

consume words (i.e., |Wc| = 0). The sequence of commands can then be constructed

incrementally using the policy described in the previous section (Section 2.3.2). How-

ever, this change significantly complicates the interpretation problem — we need to

be able to predict commands that are not directly described by any words, and al-

lowing such action sequences significantly increases the space of possibilities for each

instruction. Since we cannot enumerate all possible sequences at decision time, we

limit the space of possibilities by learning which sequences are likely to be relevant

for the current instruction.

To motivate the approach, consider the decision problem in Figure 2-3, where

we need to find a command sequence for the high-level instruction “open control

panel.” Our algorithm narrows down the search space by focusing on sequences that

lead to environment states where the control panel icon was previously observed.

Information about such states is acquired during learning in the form of a partial

environment model q(E ′ | E , c).

Our goal is to map high-level instructions to command sequences by leveraging

knowledge about the long-term effects of commands. We do this by integrating the

partial environment model into the policy function. Specifically, we modify the log-

linear policy from Equation 2.1 to p(a | s; q, θ) by adding look-ahead features φ(s, a, q)

which complement the local features used in the previous model. These look-ahead

features incorporate various measurements that characterize the potential of future

states reachable via the selected action. Although primarily designed to analyze high-

level instructions, this approach is also useful for mapping low-level instructions.

Below, we first describe how we estimate the partial environment transition model

49

starting
environment
state

parts of the environment
state space reachable
after commands and .

state where a
control panel icon was
observed during previous
exploration steps.

Figure 2-3: Using information derived from future states to interpret the high-level

instruction “open control panel.” Ed is the starting state, and c1 through c4 are

candidate commands. Environment states are shown as circles, with previously visited

environment states colored green. Dotted arrows show known state transitions. All

else being equal, the information that the control panel icon was observed in state E5
during previous exploration steps can help to correctly select command c3.

and how this model is used to compute the look-ahead features. This is followed by

the details of parameter estimation for our algorithm.

Partial Environment Transition Model

To compute the look-ahead features, we first need to collect statistics about the

environment transition function p(E ′ | E , c). An example of an environment transition

is the change caused by clicking on the “start” button. We collect this information

through observation, and build a partial environment transition model q(E ′ | E , c).

One possible strategy for constructing q is to observe the effects of executing ran-

dom commands in the environment. In a complex environment, however, such a strat-

egy is unlikely to produce state samples relevant to our text analysis task. Instead,

we use the training documents to guide the sampling process. During training, we

execute the command sequences predicted by the policy function in the environment,

caching the resulting state transitions. Initially, these commands may have little

connection to the actual instructions. As learning progresses and the quality of the

interpretation improves, more promising parts of the environment will be observed.

50

This process yields samples that are biased toward the content of the documents.

Look-Ahead Features

We wish to select actions that allow for the best follow-up actions, thereby finding

the analysis with the highest total reward for a given document. In practice, however,

we do not have information about the effects of all possible future actions. Instead,

we capitalize on the state transitions observed during the sampling process described

above, allowing us to incrementally build an environment model of actions and their

effects.

Based on this transition information, we can estimate the usefulness of actions

by considering the properties of states they can reach. For instance, some states

might have very low immediate reward, indicating that they are unlikely to be part

of the best analysis for the document. While the usefulness of most states is hard to

determine, it correlates with various properties of the state. We encode the following

properties as look-ahead features in our policy:

• The highest reward achievable by an action sequence passing through this state.

This property is computed using the learnt environment model, and is therefore

an approximation.

• The length of the above action sequence.

• The average reward received at the environment state while interpreting any

document. This property introduces a bias towards commonly visited states

that frequently recur throughout multiple documents’ correct interpretations.

Because we can never encounter all states and all actions, our environment model

is always incomplete and these properties can only be computed based on partial

information. Moreover, the predictive strength of the properties is not known in

advance. Therefore we incorporate them as separate features in the model, and allow

the learning process to estimate their weights. In particular, we select actions a based

51

on the current state s and the partial environment model q, resulting in the following

policy definition:

p(a | s; q, θ) =
eθ·φ(s,a,q)∑

a′

eθ·φ(s,a
′,q)
,

where the feature representation φ(s, a, q) has been extended to be a function of q.

We factor this policy function into a product of experts [35] as follows:

p(a | s, q; θ) = p(a | s; θ) pl(a | s, q; θ). (2.3)

Here, the first term models action selection when the environment command is directly

specified by the text. This term is identical to our policy for mapping low-level

instructions from Equation 2.1. The second term, pl(a | s, q; θ), allows the algorithm

to select actions based on the partial environment model q when textual information

is insufficient.

2.3.4 Parameter Estimation via Reinforcement Learning

During training the algorithm is provided with a set of documents d ∈ D, an en-

vironment in which to execute command sequences ~c, and a reward function r(h).

Our goal is to estimate two sets of parameters: 1) the optimal parameters θ∗ of the

policy function, and 2) the partial environment transition model q(E ′ | E , c). Since the

latter is defined as the observed portion of the true deterministic model p(E ′ | E , c),

estimating it is straightforward – we can simply memorize all environment transitions

observed during our interactions with the world.

To estimate θ∗, we observe that these are defined as the parameters of the policy

most likely to interpret a given document correctly. Since the reward r(h) observed

after mapping a document correlates with the correctness of the mapping, a natural

objective during learning is to maximize the expected future reward or Value function.

Formally, we define the Value function Vθ(s0) as the reward we expect to receive while

52

acting according to a given policy starting from state s0:

Vθ(s0) = Ep(h|θ) [r(h)] . (2.4)

Here history h = {s0, a0, s1, a1, . . . , an−1, sn} is the sequence of states and actions

encountered while interpreting a single document, starting from s0. The distribution

p(h | θ) is the probability of seeing history h when starting from state s0 and acting

according to a policy with parameters θ. This distribution can be decomposed into a

product over time steps:

p(h | θ) =
n−1∏
t=0

p(at | st; θ) p(st+1 | st, at), (2.5)

=
n−1∏
t=0

p(at | st; θ) T (st+1 | st, at), (2.6)

where the first term is the policy, and the second term is in fact the transition distri-

bution T (s′ | s, a) of the MDP.

Given the above definition of the value function, our learning objective is to max-

imize the total expected future reward over all documents – i.e., the optimal policy

parameters are given by

θ∗ = arg max
θ

∑
d∈D

Vθ(sd), (2.7)

where sd = (Ed, d, 0, ∅) is the special starting state of the MDP for document d, and

Ed is the corresponding starting state of the target environment. This objective is

dependent on the transition function T (st+1 | st, at) of the MDP. Since T (st+1 | st, at)

is not known a priori, the objective function cannot be computed in closed form.

However, the optimal parameters, θ∗, can be estimated approximately via several

well studied reinforcement learning techniques. Policy gradient algorithms constitute

one class of such techniques.

53

A Policy Gradient Algorithm for Instruction Interpretation

Policy gradient algorithms are a class of efficient reinforcement learning methods for

approximately estimating the optimal policy parameters θ. These algorithms esti-

mate θ by performing stochastic gradient ascent on the value function Vθ. They

approximate the gradient of Vθ by interacting with the target environment and ob-

serving the resulting reward signal. Policy gradient algorithms optimize a non-convex

objective and are only guaranteed to find a local optimum. However, they scale to

large state spaces and as we will see, in practice, they perform well in the instruction

interpretation task.

To find the parameters θ that maximize the objective, we first compute the deriva-

tive of Vθ (see Appendix A.1 for details). Expanding according to the product rule,

we have:

∂

∂θ
Vθ(s) = Ep(h|θ)

[
r(h)

∑
t

∂

∂θ
log p(at | st; θ)

]
, (2.8)

where the inner sum is over all time steps t in the current history h. Expanding the

inner partial derivative we observe that:

∂

∂θ
log p(a | s; θ) = ~φ(s, a)−

∑
a′

~φ(s, a′)p(a′ | s; θ), (2.9)

which is the derivative of a log-linear distribution.

Equation 2.9 is easy to compute directly. However, the complete derivative of Vθ

in Equation 2.8 is intractable, because computing the expectation would require sum-

ming over all possible histories. Instead, policy gradient algorithms employ stochastic

gradient ascent by computing a noisy estimate of the expectation using just a subset

of the histories. Specifically, we draw samples from p(h|θ) by acting in the target

environment, and use these samples to approximate the expectation in equation 2.8.

In practice, it is often sufficient to sample a single history h for this approximation.

Under this approximation, using a learning rate of α, the parameter update equation

54

becomes

∆θ = α r(h)
n−1∑
t=0

(
φk(at, st)−

∑
a∈A

φk(a, st) p(a | st, θ)

)
. (2.10)

Algorithm 1 shows the procedure for joint learning of these parameters. As in

standard policy gradient learning [69], the algorithm iterates over all documents d ∈ D

(steps 1, 2), selecting and executing actions in the environment (steps 3 to 6). The

resulting reward is used to compute the empirical gradient and update the parameters

θ (steps 8, 9). The environment interactions also yields samples of state transitions

which are used to estimate the partial environment model q(E ′ | E , c) (step 7). This

updated q is then used to compute the feature functions φ(s, a, q) during the next

iteration of learning (step 4). This process is repeated until the total reward on the

training documents converges. This algorithm capitalizes on the synergy between θ

and q. As learning proceeds, the method discovers a more complete state transition

function q, which improves the accuracy of the look-ahead features, and ultimately,

the quality of the resulting policy. An improved policy function in turn produces

state samples that are more relevant to the document interpretation task.

Efficient use of Environment Feedback

Each of the history samples used for the parameter updates requires our algorithm to

actually interact with the target environment. In many domains, including the ones

we test on, this interaction can be expensive. We therefore employ two techniques

to take maximum advantage of each interaction. First, a history h = (s0, a0, . . . , sn)

contains subsequences (si, ai, . . . , sn) for i = 1 to n − 1, each with its own reward

value given by the environment as a side effect of executing h. We apply the update

from equation 2.9 for each such subsequence. Second, under our model, a single

environment command sequence can be produced via different word mappings Wc

of a given text. Thus, for a sampled history h, we can propose alternative histories

h′ that result in the same commands c and parameters R with different word spans

Wc. These alternative histories will have a probability of occurrence p(h′ | θ) that is

55

Input: A document set D,

Feature function ~φ,

Reward function r(h),

Number of iterations N

Learning rate α

Initialization: Set θ to small random values.

Set q to the empty set.

for i = 1 · · ·N do1

foreach d ∈ D do2

Sample history h ∼ p(h|θ) where

h = (s0, a0, · · · , an−1, sn) as follows:

Initialize environment to document specific starting state Ed

for t = 0 · · ·n− 1 do3

Compute φ(a, st, q) based on latest q4

Sample action at ∼ p(a|st; q, θ)5

Execute at on state st: st+1 ∼ p(s|st, at)6

Set q = q ∪ {(E ′, E , c)} where E ′, E , c are the environment7

states and commands from st+1, st, and at

end

∆θ ← α r(h)
∑
t

[
~φ(st, at, q)−

∑
a′

~φ(st, a
′, q) p(a′|st; q, θ)

]
8

θ ← θ + ∆θ9

end

end

Output: Estimate of parameters θ

Algorithm 1: A policy gradient algorithm for estimating the parameters of our

model.

56

different from the original sampled history h. As we will see in the following section,

parameter updates to our model depend on histories h being sampled according to

their probability under the current policy. Therefore, we apply equation 2.9 to each

h′, weighted by its probability under the current policy, p(h′|θ)
p(h|θ) .

2.3.5 Reward Functions and ML Estimation

A particular advantage of our algorithm is its ability to effectively learn from a mix

of both environment reward and manual annotations. At one extreme, our model

is able to learn solely based on environment reward, which is our primary focus in

this work. At the other extreme, when all documents are fully annotated, learning

in our model is equivalent to stochastic gradient ascent with a maximum likelihood

objective. As shown by our results (see Figure 2-8), this ability to learn from mixed

supervision allows our method to surpass the performance of an equivalent algorithm

that learns only from manual annotations. We describe below the connection between

ML estimation and our method when learning from annotated data.

Our model is able to learn from a range of reward functions, depending on the

availability of annotated data and environment feedback. Consider the case when

every training document d ∈ D is annotated with its correct sequence of actions, and

state transitions are deterministic. Given such annotations, it is straightforward to

construct a reward function that connects policy gradient to maximum likelihood.

Specifically, define a reward function r(h) that returns one when h matches the an-

notation for the document being analyzed, and zero otherwise:

r(h) =

 1 if h = hd

0 otherwise
.

where hd is the history corresponding to the annotated action sequence. Policy gradi-

ent performs stochastic gradient ascent on the objective from equation 2.4, performing

57

one update per document. For document d, this objective becomes:

Ep(h | θ)[r(h)] =
∑
h

r(h) p(h | θ),

= p(hd | θ),

Thus, with this reward, policy gradient is equivalent to stochastic gradient ascent

with a maximum likelihood objective.

2.3.6 Alternative Modeling Options

There are several alternative approaches to modeling the task of instruction interpre-

tation. Here we discuss two such methods which we considered, but did not employ

due to the characteristics of the task as mentioned below.

Global Inference Over Text Our models described in Sections 2.3.2 and 2.3.3,

while leveraging global information from text via features, make greedy local interpre-

tation decisions. Since such local decisions need not always be optimal, an obvious

alternative is to perform global inference over the interpretation decisions. This,

however, is complicated by the fact that the text interpretation decisions need to be

conditioned on the current environment state, which changes with the execution of

each interpreted command. Thus a model of the target environment is required for

global inference over text. While this environment model need not be complete, it has

to contain all the information relevant to the documents being interpreted. Automat-

ically acquiring such an environment model is particularly difficult due to the large

state space, and because we do not know the required portions of the environment

prior to interpreting the documents.

Action-Value Function Approximation An alternative to our policy gradient

approach to instruction interpretation is to learn an approximate action-value func-

tion – i.e., learning a approximation Q′(s, a) of the action-value function Qπ(s, a).

Since the domain of Q′(s, a) is the combination of the state and action spaces, the

58

approximation has to have sufficient capacity to represent the characteristics of the

entire environment dynamics. In a complex environment such as the Windows oper-

ating system, the functionality of different parts of the system are by nature distinct.

Thus constructing an approximation Q′(s, a), that is compact and generalizes well

across states is inherently difficult. In contrast, the domain of the corresponding pol-

icy function π(a, s) = p(a | s) is only the action space. This makes a policy function

approximation, as used by our methods, significantly easier to learn.

59

2.4 Applying the Model

We study two applications of our model – following instructions to perform software

tasks, and solving a puzzle game using tutorial guides.

2.4.1 Microsoft Windows Help Domain

On its Help and Support website,6 Microsoft publishes a number of articles describing

how to perform tasks and troubleshoot problems in the Windows operating systems.

Examples of such tasks include installing patches and changing security settings.

Figure 2-4 shows one such article. Our goal is to automatically execute support

articles for the Windows 2000 operating system on a machine running that OS.

Environment States and Commands We define the environment state E as the

set of objects visible in the graphical user interface (GUI), along with the objects’

properties such as label, location, and parent window. This information can be re-

trieved programmatically via standard OS APIs. The set of possible commands in

this domain are left-click, right-click, double-click, and type-into, all of which take a

GUI object as a parameter, while type-into additionally requires a parameter for the

input text.

Policy Given the above environment state and action spaces, we can rewrite the

MDP action definition as follows:

a = (Wc, c, R)

= ({wc, wo, wp}, c, {o, wp}),

with Wc = {wc, wo, wp},

and R = {o, wp}.

6support.microsoft.com

60

∘ Right click "My Computer" on the desktop, and click the Manage menu option.

∘ Click Services after expanding "Services and Applications".

∘ Set the remote registry service to start automatically and then start the service.

Figure 2-4: A Windows troubleshooting article describing how to configure the “re-

mote registry service” to start automatically.

Here o is the GUI object to which command c should be applied; wc and wo are the

words that describe c and o respectively; and wp is the parameter text if c = type-into

and wp = null otherwise. We assume that command c and object o are conditionally

independent of each other given the words that describe them, i.e., wc and wo. We

also assume that the parameter text wp is conditionally independent of object o given

the object word wo. These assumptions allow us to factor our policy function from

Equation 2.3,

p(a | s, q; θ) = p(a | s; θ) pl(a | s, q; θ),

in the following fashion:

p(a | s; θ) = p(wo, wc | s; θ) ×

p(o | wo, s; θ) p(c | o, wc, s; θ) ×

p(wp | c, wo, wc, s; θ),

pl(a | s, q; θ) = p(c, o, wp | wc, wo,W ′, q; θ).

We use the above factorization to efficiently compute the full policy, from which

actions are subsequently selected.

Features In addition to the look-ahead features described in Section 2.3.3, we use

several local features that capture various aspects of the action under consideration,

the current Windows GUI state, and the input instructions. Table 2.1 shows some

examples of these local features. For example, one lexical feature measures the sim-

61

Notation

o Parameter referring to an environment object

L Set of object class names (e.g. “button”)

V Vocabulary

W Unmapped words in current sentence

Features on words W , and object o

Test if o is visible in s

Test if o has input focus

Test if o is in the foreground

Test if o was previously interacted with

Test if o came into existence since last action

Min. edit distance between w ∈W and object labels in s

Features on given word w, command c, and object o

∀c′ ∈ C, w′ ∈ V : test if c′ = c and w′ = w

∀c′ ∈ C, l ∈ L: test if c′ = c and l is the class of o

Table 2.1: Example features in the Windows domain. All features are binary, except

for the normalized edit distance which is real-valued.

ilarity of a word in the sentence to the GUI labels of objects in the environment.

Environment-specific features, such as whether an object is currently in focus, are

useful when selecting the object to manipulate. In total, there are 4,438 features.

Reward Function Environment feedback can be used as a reward function in this

domain. An obvious reward would be task completion (e.g., whether the stated com-

puter problem was fixed). Unfortunately, verifying task completion is a challenging

systems issue in its own right.

Instead, we rely on a noisy method of checking whether execution can proceed

from one sentence to the next: at least one word in each sentence has to correspond

to an object in the environment.7 For instance, in the sentence from Figure 2-2 the

7We assume that a word maps to an environment object if the edit distance between the word

and the object’s name is below a threshold value.

62

word “Run” matches the Run... menu item. If no words in a sentence match a cur-

rent environment object, then one of the previous sentences is assumed to have been

analyzed incorrectly. In this case, we assign the history a reward of -1.8 When at

least one word-match exists, we give the history a positive reward value. This value

linearly increases with the percentage of words assigned to non-null commands, and

linearly decreases with the number of output actions. This reward signal encodes

the intuitions that most words in an instruction text will describe relevant environ-

ment commands, and that unnecessary commands will not be specified in the text.

Although noisy, this reward signal is a powerful source of supervision for instruction

mapping.

Formally we define the reward function as,

r(h) =
`−1∑
i=1

rd(ui, ui+1),

where rd(ui, ui+1) =

|W |
|ui|

(
1− nc

|ui|

)
if ui+1 has word matches,

−1 otherwise.

(2.11)

Here the document d being interpreted is composed of sentences (u1, . . . , u`); h is

a candidate history; nc is the number of commands executed in the environment

for sentence ui; and W is the set of words in the current history corresponding to

those commands. Note that |W ||ui| in Equation 2.11 increases with the number of words

mapped, encouraging our algorithm to find parameters that map as many words as

possible into commands. Similarly, 1− nc

|ui| increases as fewer commands are executed

per sentence, biasing our method away from executing unnecessary commands.

8This reward is not guaranteed to penalize all incorrect histories, because there may be false

positive matches between the sentence and the environment.

63

Clear the bottom four from the second column from the left, the row of four, the second column
from the right, the row of four, then the two columns.

1 2 3 4 5 6

Figure 2-5: An instance of the Crossblock puzzle showing its six step solution, and

the text of the corresponding tutorial. For this level, four blocks in a row or column

must be removed at once, and the goal is to remove all blocks. The red line shows

the blocks to be removed at each step, and removed blocks are shown dotted.

2.4.2 Crossblock: A Puzzle Game Domain

Our second application is a puzzle game called Crossblock, available online as a Flash

game.9 Each of 50 puzzles is played on a grid, where some grid positions are filled with

blocks. The object of the game is to clear the grid by drawing vertical or horizontal

line segments that remove groups of blocks. Each segment must exactly cross a

prespecified number of blocks, ranging from two to seven depending on the puzzle.

Human players have found this game challenging and engaging enough to warrant

posting textual tutorials.10 An example of such a tutorial and its corresponding

puzzle are shown in Figure 2-5. These tutorials, however, are composed entirely of

low-level instructions. This domain is therefore used only to evaluate the performance

of the algorithms on low-level instructions.

Environment States and Commands The environment is defined by the state

of the game grid. The only command c is clear, which takes a parameter o specifying

the grid location and orientation (row or column) of the line segment to be removed.

9http://hexaditidom.deviantart.com/art/Crossblock-108669149
10http://www.jayisgames.com/archives/2009/01/crossblock.php

64

The challenge in this domain is to segment the text into the phrases describing each

action, and then correctly identify the line segments from references such as “the

bottom four from the second column from the left.”

Policy Given the structure of the environment states and commands described

above, we rewrite the MDP action and policy as follows:

a = (Wc, c, R)

= (Wc, o),

and p(a | s; θ) = p(Wc | s; θ) p(o | Wc, s; θ).

For this domain, we use two sets of binary features on state-action pairs (s, a).

First, for each vocabulary word w, we define a feature that is one if w is the last word

of a’s consumed words Wc. These features help identify the proper text segmentation

points between actions. Second, we introduce features for pairs of vocabulary word w

and attributes of command parameter o, e.g., the line orientation and grid locations

of the blocks that o would remove. This set of features enables us to match words

(e.g., “row”) with objects in the environment (e.g., a move that removes a horizontal

series of blocks). In total, there are 8,094 features.

Reward Function For Crossblock it is easy to directly verify task completion,

which we use as the basis of our reward function. The reward r(h) is -1 if h ends in

a state where the puzzle cannot be completed. For solved puzzles, the reward is a

positive value proportional to the percentage of words assigned to non-null commands.

65

2.5 Experimental Setup

2.5.1 Datasets

For the Windows domain, our dataset consists of 188 documents, divided into 70

for training, 18 for development, and 100 for test. Of these test documents, 40 are

composed solely of low-level instructions, while the remaining 60 contain at least one

high-level instruction. In the puzzle game domain, we use 50 tutorials, divided into

40 for training and 10 for test.11 Statistics for the datasets are shown below.

Windows Puzzle

Total # of documents 188 50

Total # of words 7448 994

Vocabulary size 739 46

Avg. words per sentence 9.93 19.88

Avg. sentences per document 4.38 1.00

Avg. actions per document 10.00 5.86

The data exhibits certain qualities that make for a challenging learning problem.

For instance, a surprising variety of linguistic constructs are used to describe instruc-

tions in the text — as shown in Figure 2-6, even a simple command in the Windows

domain is expressed in at least six different ways. Note that in the Crossblock domain,

the entire sequence of instructions for each puzzle is written in a single sentence (see

Figure 2-5 for an example), resulting in the sentences-per-document statistic of 1.00

shown above.

2.5.2 Reinforcement Learning Parameters

Following common practice, we encourage exploration during learning with an ε-

greedy strategy [68], with ε set to 0.1. We also identify dead-end states, i.e. states

11For Crossblock, because the number of puzzles is limited, we did not hold out a separate devel-

opment set, and report averaged results over five training/test splits.

66

On the tools menu, click internet options

Click tools, and then click internet options

Click tools, and then choose internet options

Click internet options on the tools menu

In internet explorer, click internet options on the tools menu

On the tools menu in internet explorer, click internet options

Figure 2-6: Variations of “click internet options on the tools menu” present in the

Windows corpus.

with the lowest possible immediate reward, and use the induced environment model

to encourage additional exploration by lowering the likelihood of actions that lead to

such dead-end states.

During the early stages of learning, experience gathered in the environment model

is extremely sparse, causing the look-ahead features to provide poor estimates. To

speed convergence, we ignore these estimates by disabling the look-ahead features for

a fixed number of initial training iterations.

Finally, to guarantee convergence, stochastic gradient ascent algorithms require

a learning rate schedule. Thus we pick the learning rate using a modified search-

then-converge algorithm [21], where we tie the learning rate to the ratio of training

documents that received a positive reward in the current iteration.

2.5.3 Experimental Framework

To apply our algorithm to the Windows domain, we use the Win32 application pro-

gramming interface to instrument the Windows 2000 user interface. This allows our

learner to programmatically gather information about the environment state, and

to execute mouse and keyboard commands. The operating system environment is

hosted within a virtual machine,12 allowing us to rapidly save and reset system state

snapshots. Figure 2-7 shows the experimental framework for this domain. For the

puzzle game domain, we replicated the game with an implementation that facilitates

12VMware Workstation, available at http://www.vmware.com

67

Cache

tcp packet relay

Target operating system (Windows 2000)

Virtualization software (VMware)

Target Environment 1

operating system
instrumentation agent

Reinforcement
Learner 2

Reinforcement
Learner 1

Target Environment 2

VM snapshot
reset process

Figure 2-7: The framework used in the Windows 2000 experiments. The target en-

vironment, Windows 2000, is run within a virtual machine to allow the environment

to be easily reset to its initial state. The operating system instrumentation agent

allows the learner to observe the GUI state, and execute GUI commands. All infor-

mation transfer between the different components of the framework are via TCP/IP.

The reinforcement learner interacts with Windows 2000 via a Cache, speeds up the

learning process by removing the need to interact with Windows 2000 for previously

observed states and commands. The Cache also allows multiple learners to interact

with multiple target environments in parallel, further reducing experiment run-times.

The tcp packet relay is a simple message relay used to isolate the learner and cache

from the effects of the virtual machine being repeatedly reset.

68

automatic play.

As is commonly done in reinforcement learning, we use a softmax temperature

parameter to smooth the policy distribution [68], set to 0.1 in our experiments. For

Windows, the development set is used to select the best parameters. For Crossblock,

we choose the parameters that produce the highest reward during training. During

evaluation, we use these parameters to predict mappings for the test documents.

2.5.4 Evaluation Metrics

For evaluation, we compare the results to manually constructed sequences of actions.

We measure the number of correct actions, sentences, and documents. An action

is correct if it matches the annotations in terms of commands and parameters. A

sentence is correct if all of its actions are correctly identified, and analogously for

documents.13 In our instruction interpretation task, this evaluation is particularly

onerous – each action depends on the correctness of all previous actions, so a sin-

gle error can render the remainder of a document’s mapping incorrect. Statistical

significance is measured with the sign test.

Additionally, we compute a word alignment score to investigate the extent to

which the input text is analyzed correctly. This score measures the percentage of

words that are aligned to the corresponding annotated actions in correctly analyzed

documents.

2.5.5 Baselines

We consider the following baselines to characterize the performance of our approach.

• Full Supervision Sequence prediction problems like ours are typically ad-

dressed using supervised techniques. We measure how a standard supervised

approach would perform on this task by using a reward signal based on manual

13 Due to variability in document lengths, overall action accuracy is not guaranteed to be higher

than document accuracy. I.e., many short documents can be interpreted correctly by getting a few

actions correct.

69

annotations of output action sequences, as defined in Section 2.3.5. As shown

there, policy gradient with this reward is equivalent to stochastic gradient ascent

with a maximum likelihood objective.

• Partial Supervision We consider the case when only a subset of the training

documents is annotated, and the environment reward is used for the remainder.

Our method seamlessly combines these two kinds of rewards.

• Random and Majority (Windows) We consider two näıve baselines. Both

scan through each sentence from left to right. A command c is executed on

the object whose name is encountered first in the sentence. If multiple objects

match, one is selected at random. The command c to be executed is either

selected randomly, or set to the majority command, which in the Windows

2000 domain is left-click. This procedure is repeated until no more words match

environment objects.

• Random (Puzzle) We consider a baseline that randomly selects among the

actions that are valid in the current game state. Since action selection is among

objects, there is no natural majority baseline for the puzzle.

70

2.6 Results

To fully characterize our method, we evaluate several different aspects of its perfor-

mance. We first analyze the accuracy with which our model interprets both high-level

and low-level instructions. Given the importance of the environment model for in-

terpreting high-level instructions, we then evaluate the impact of environment model

quality on interpretation accuracy. Finally we investigate the underlying linguistic

analysis performed by our method by evaluating the accuracy with which it selects

the word spans of the commands.

2.6.1 Interpretation Performance

Table 2.2 presents evaluation results on the test sets, and for the sake of clarity, shows

performance on low-level instructions and high-level instructions separately. There

are several indicators of the difficulty of this task. The random and majority baselines’

poor performance in both domains indicates that näıve approaches are inadequate

for these tasks. The performance of the fully supervised approach provides further

evidence that the task is challenging. This difficulty can be attributed in part to the

large branching factor of possible actions at each step — on average, there are 27.14

choices per action in the Windows domain, and 9.78 in the Crossblock domain.

In both domains, the learners relying only on environment reward perform well – in

the case of our full model, even rivaling the performance of the supervised equivalent.

Particularly surprising is the comparison between environment-reward and manual

supervision in the case of high-level instructions. As we will see from Section 2.6.3,

the better performance of the environment-supervised method is due to the quality

of the resulting partial environment model.

To characterize the environment reward signal in terms of the tradeoff between

annotation effort and system performance, we perform an evaluation where only a por-

tion of the documents are annotated. To avoid any confounding factors, we perform

this experiment on the low-level instruction documents with the partial environment

model switched off. Figure 2-8 shows the resulting tradeoff curve.

71

Low-level instruction dataset

Windows Puzzle

Action Document Action Document

Random baseline 0.128 0.000 0.081 0.111

Majority baseline 0.287 0.100 —– —–

No-env ∗ 0.647 ∗ 0.375 ∗ 0.428 ∗ 0.453

No-env + annotation � 0.756 0.525 0.632 0.630

Our model 0.793 0.517 —– —–

Our model + annotation 0.793 0.650 —– —–

High-level instruction dataset

action high-level action document

Random baseline 0.000 0.000 0.000

Majority baseline 0.000 0.000 0.000

No-env 0.021 0.022 0.000

No-env + annotation 0.035 0.022 0.000

Our model ∗ 0.419 ∗ 0.615 ∗ 0.283

Our model + annotation ∗ 0.357 0.492 0.333

Table 2.2: Accuracy of the mapping produced by our model, its variants, and the

baseline. Values marked with ∗ are statistically significant at p < 0.01 compared to

the value immediately above it, while � indicates p < 0.05.

72

Figure 2-8: Comparison of two training scenarios where training is done using a subset

of annotated documents, with and without environment reward for the remaining

unannotated documents.

73

Windows Puzzle

Environment reward 0.819 0.686

Partial supervision 0.989 0.850

Full supervision 0.991 0.869

Table 2.3: The accuracy of our method’s language analysis on the test set with

different reward signals. While learning from manual annotations performs best, these

results show the feasibility of learning language analysis based on noisy environment

reward.

To further assess the contribution of the instruction text, we train a variant of our

model without access to text features. This is possible in the game domain, where

all of the puzzles share a single goal state that is independent of the instructions.

This variant solves 34% of the puzzles, suggesting that access to the instructions

significantly improves performance.

2.6.2 Accuracy of Linguistic Analysis

The word alignment results from Table 2.3 indicate that the learners are mapping

the correct words to actions for documents that are successfully completed. For

example, the models that perform best in the Windows domain achieve nearly perfect

word alignment scores. While the variant of our method that learns from manual

supervision performs best in this evaluation, the performance of the fully environment-

supervised methods shows the feasibility of learning linguistic analysis based on such

noisy supervision signals.

Finally, to demonstrate the quality of the learnt word–command alignments, we

evaluate our method’s ability to paraphrase from high-level instructions to low-level

instructions. Here, the goal is to take each high-level instruction and construct a

text description of the steps required to achieve it. We did this by finding high-level

instructions where each of the commands they are associated with is also described

by a low-level instruction in some other document. For example, if the text “open

74

"in control panel"

left-click Control Panel[]

left-click Settings[]

left-click Start[]

High-level instruction Action Sequence Low-level instruction

"click start"

"left click settings"

"select control panel"

Figure 2-9: The process of paraphrasing a high-level instruction into a sequence of

low-level instructions. After the high-level instruction has been mapped to executable

commands, low-level descriptions of those commands from other documents are used

to create the paraphrases.

High-level instruction
∘ open device manager

Extracted low-level instruction paraphrase
∘ double click my computer
∘ double click control panel
∘ double click administrative tools
∘ double click computer management
∘ double click device manager

High-level instruction
∘ open the network tool in control panel

Extracted low-level instruction paraphrase
∘ click start
∘ point to settings
∘ click control panel
∘ double click network and dial-up connections

Figure 2-10: Examples of automatically generated paraphrases for high-level instruc-

tions. The model maps the high-level instruction into a sequence of commands, and

then translates them into the corresponding low-level instructions.

75

control panel” was mapped to the three commands in Figure 2-9, and each of those

commands was described by a low-level instruction elsewhere, this procedure would

create a paraphrase such as “click start, left click setting, and select control panel.” Of

the 60 high-level instructions tagged in the test set, this approach found paraphrases

for 33 of them. 29 of these paraphrases were correct, in the sense that they describe

all the necessary commands. Figure 2-10 shows some examples of the automatically

extracted paraphrases.

2.6.3 Impact of Environment Model Quality

To validate the intuition that the partial environment model must contain informa-

tion relevant for the language interpretation task, we replaced the learnt environment

model with one of the same size gathered by executing random commands. The model

with randomly sampled environment transitions performs poorly: it can process only

4.6% of the documents and 15.0% of the actions on the dataset with high-level in-

structions, compared to 28.3% and 41.9% respectively for our algorithm. This result

also explains why training with full supervision hurts performance on high-level in-

structions (see Table 2.2). Learning directly from annotated command sequences

results in a low-quality environment model due to the relative lack of exploration,

hurting the model’s ability to leverage the look-ahead features.

76

Randomly sampled
environment model

Environment model created
with textual guidance

Goal states
Start state

Figure 2-11: An illustration of the differences between an environment model con-

structed with textual guidance (shown in green), and one created via random explo-

ration (shown in red). The nodes and edges of the graph symbolize the states and

actions of the environment. Random exploration tends to construct a model of states

evenly distributed around the starting state, which is denoted here by a star. In

contrast, the model created with text guidance contains the neighborhood of states

and actions described in the text. Since the textual instructions cover useful tasks,

this neighborhood has a higher likelihood of being relevant to new unseen tasks.

77

0%

10%

20%

30%

40%

50%

60%

70%

No environment model

Randomly sampled
environment model

Environment model
defined by annotated
traces

Our approach

C
o
m

m
a
n
d
 a

cc
u
ra

cy
 o

n
 h

ig
h
-l

e
v
e
l
in

st
ru

ct
io

n
s

61.5%

49.2%

28.0%

2.0%

Figure 2-12: The performance of our method on high-level instructions when given

various environment models.

78

2.7 Conclusion

In this chapter, we presented two reinforcement learning approaches for inducing a

mapping between instructions and actions. Our methods are able to use environment-

based rewards, such as task completion, to effectively learn text analysis. Our results

show that having access to a suitable reward function can significantly reduce or even

obviate the need for manual annotations. Furthermore, our results demonstrate the

importance of modeling the grounding context (i.e., the target environment) when in-

terpreting language that abstracts over low-level details. In addition to being effective

at instruction interpretation, our method is also broadly applicable to domains where

the correctness of the language grounding can be automatically evaluated based on

environment feedback.

While our method is able to effectively learn only from environment feedback, the

type of language it can handle is limited by two strong assumptions. First, we have

assumed that the text contains imperative language, and explicitly describes a se-

quence of commands. Second we assume that all essential language grounding occurs

at the object and command level – i.e., we aim to identify and map the descriptions

of objects and commands from the text. These assumptions exclude a large fraction

of text containing useful information about tasks in the world. For example, docu-

ments can contain non-imperative language, describing actions or behaviours that are

generally useful in the world irrespective of any particular task. Moreover, the unit

of grounding can be at the level of relationships between objects or actions. In the

following two chapters of this thesis, we explore algorithms that can effectively learn

language grounding in these more complex scenarios.

79

80

3
Interpreting Strategy Descriptions

into Control Behaviour

In this chapter, we consider the task of automatically interpreting a strategy guide

containing high-level situationally-relevant advice, and using this information to play

a complex strategy game. Our Monte-Carlo Search method for textually-guided game

play significantly outperforms strong text-unaware alternatives. We also show that

while learning only from game feedback, our method is able to produce text analyses

that conform to human notions of correctness.

3.1 Introduction

In this chapter, we study the task of grounding high-level situationally-relevant tex-

tual information in control applications such as computer games. In these applica-

tions, an agent attempts to optimize a utility function (e.g., game score) by learning to

select situation-appropriate actions. In complex domains, finding a winning strategy

is challenging even for humans. Therefore, human players typically rely on manu-

als and guides that describe promising tactics and provide general advice about the

underlying task. Surprisingly, such textual information has never been utilized in

control algorithms despite its potential to greatly improve performance. Our goal,

therefore, is to develop methods that can achieve this in an automatic fashion. We

explore this question in the context of strategy games, a challenging class of large

81

scale adversarial planning problems.

Consider for instance the text shown in Figure 3-1. This is an excerpt from

the user manual of the game Civilization II.1 This text describes game locations

where the action build-city can be effectively applied. A stochastic player that does

not have access to this text would have to gain this knowledge the hard way: it

would repeatedly attempt this action in a myriad of states, thereby learning the

characterization of promising state-action pairs based on observed game outcomes.

In games with large state spaces, long planning horizons, and high-branching factors,

this approach can be prohibitively slow and ineffective. An algorithm with access

to the text, however, could learn correlations between words in the text and game

attributes – e.g., the word “river” and places with rivers in the game – thus leveraging

strategies described in text to select better actions.

To improve the performance of control applications using domain knowledge au-

tomatically extracted from text, we need to address the following challenges:

• Grounding Text in the State-Action Space of a Control Application

Text guides provide a wealth of information about effective control strategies,

including situation-specific advice as well as general background knowledge. To

benefit from this information, an algorithm has to learn the mapping between

the text of the guide, and the states and actions of the control application. This

mapping allows the algorithm to find state-specific advice by matching state

attributes to their verbal descriptions. Furthermore, once a relevant sentence

is found, the mapping biases the algorithm to select the action proposed in the

guide document. While this mapping can be modeled at the word-level, ideally

we would also use information encoded in the structure of the sentence – such

as the predicate argument structure. For instance, the algorithm can explicitly

identify predicates and state attribute descriptions, and map them directly to

structures inherent in the control application.

• Annotation-free Parameter Estimation While the above text analysis tasks

1http://en.wikipedia.org/wiki/Civilization II

82

The natural resources available where a population settles affects its ability to produce food
and goods. Cities built on or near water sources can irrigate to increase their crop yields, and
cities near mineral resources can mine for raw materials. Build your city on a plains or grassland
square with a river running through it if possible.

Figure 3-1: An excerpt from the user manual of the game Civilization II.

relate to well-known methods in information extraction, prior work has pri-

marily focused on supervised methods. In our setup, text analysis is state

dependent, therefore annotations need to be representative of the entire state

space. Given an enormous state space that continually changes as the game

progresses, collecting such annotations is impractical. Instead, we propose to

learn text analysis based on a feedback signal inherent to the control applica-

tion, e.g., the game score. This feedback is computed automatically at each

step of the game, thereby allowing the algorithm to continuously adapt to the

local, observed game context.

• Effective Integration of Extracted Text Information into the Control

Application Most text guides do not provide complete, step-by-step advice for

all situations that a player may encounter. Even when such advice is available,

the learnt mapping may be noisy, resulting in suboptimal choices. Therefore,

we need to design a method which can achieve effective control in the absence of

textual advice, while robustly integrating automatically extracted information

when available. We address this challenge by incorporating language analy-

sis into Monte-Carlo Search, a state-of-the-art framework for playing complex

games. Traditionally this framework operates only over state and action fea-

tures. By extending Monte-Carlo search to include textual features, we integrate

these two sources of information in a principled fashion.

Summary of Approach We address the above challenges in a unified framework

based on Markov Decision Processes (MDP), a formulation commonly used for game

playing algorithms. This setup consists of a game in a stochastic environment, where

the goal of the player is to maximize a given utility function R(s) at state s. The

83

player’s behaviour is determined by an action-value function Q(s, a) that assesses the

goodness of action a at state s based on the attributes of s and a.

To incorporate linguistic information into the MDP formulation, we expand the

action value function to include linguistic features. While state and action features

are known at each point of computation, relevant words and their semantic roles are

not observed. Therefore, we model text relevance as a hidden variable. Similarly, we

use hidden variables to discriminate the words that describe actions and those that

describe state attributes from the rest of the sentence. To incorporate these hidden

variables in our action-value function, we model Q(s, a) as a non-linear function

approximation using a multi-layer neural network.

Despite the added complexity, all the parameters of our non-linear model can be

effectively learnt in the Monte-Carlo Search framework. In Monte-Carlo Search, the

action-value function is estimated by playing multiple simulated games starting at the

current game state. We use the observed reward from these simulations to update the

parameters of our neural network via backpropagation. This focuses learning on the

current game state, allowing our method to learn language analysis and game-play

appropriate to the observed game context.

Evaluation We test our method on the strategy game Civilization II, a notoriously

challenging game with an immense action space.2 As a source of knowledge for guiding

our model, we use the official game manual. As a baseline, we employ a similar

Monte-Carlo search based player which does not have access to textual information.

We demonstrate that the linguistically-informed player significantly outperforms the

baseline in terms of the number of games won. Moreover, we show that modeling the

deeper linguistic structure of sentences further improves performance. In full-length

games, our algorithm yields a 34% improvement over a language unaware baseline

and wins over 65% of games against the built-in, hand-crafted AI of Civilization II.

2Civilization II was #3 in IGN’s 2007 list of top video games of all time.

(http://top100.ign.com/2007/ign top game 3.html)

84

Roadmap In Section 3.2, we provide intuition about the benefits of integrating

textual information into learning algorithms for control. Section 3.3 describes prior

work on language grounding, emphasizing the unique challenges and opportunities

of our setup. This section also positions our work in a large body of research on

Monte-Carlo based players. Section 3.4 presents background on Monte-Carlo Search

as applied to game playing. In Section 3.5 we present a multi-layer neural network

formulation for the action-value function that combines information from the text and

the control application. Next, we present a Monte-Carlo method for estimating the

parameters of this non-linear function. Sections 3.6 and 3.7 focus on the application

of our algorithm to the game Civilization II. In Section 3.8 we compare our method

against a range of competitive game-playing baselines, and empirically analyse the

properties of the algorithm. Finally, in Section 3.9 we discuss the implications of this

research, and conclude.

3.2 Learning Game Play from Text

In this section, we provide an intuitive explanation of how textual information can

help improve action selection in a complex game. For clarity, we first discuss the ben-

efits of textual information in the supervised scenario, thereby decoupling questions

concerning modeling and representation from those related to parameter estimation.

Assume that every state s is represented by a set of n features [s1, s2, . . . , sn]. Given

a state s, our goal is to select the best possible action aj from a fixed set A. We can

model this task as multiclass classification, where each choice aj is represented by a

feature vector [(s1, aj), (s2, aj), . . . , (sn, aj)]. Here, (si, aj), i ∈ [1, n] represents a fea-

ture created by taking the Cartesian product between [s1, s2, . . . , sn] and aj. To learn

this classifier effectively, we need a training set that sufficiently covers the possible

combinations of state features and actions. However, in domains with complex state

spaces and a large number of possible actions, many instances of state-action feature

values will be unobserved in training.

Now we show how the generalization power of the classifier can be improved using

85

textual information. Assume that each training example, in addition to a state-action

pair, contains a sentence that may describe the action to be taken given the state

attributes. Intuitively, we want to enrich our basic classifier with features that capture

the correspondence between states and actions, and words that describe them. Given

a sentence w composed of word types w1, w2, . . . , wm, these features can be of the form

(si, wk) and (aj, wk) for every i ∈ [1, n], k ∈ [1,m] and aj ∈ A. Assuming that an

action is described using similar words throughout the guide, we expect that a text-

enriched classifier would be able to learn this correspondence via the features (aj, wk).

A similar intuition holds for learning the correspondence between state-attributes

and their descriptions represented by features (si, wk). Through these features, the

classifier can connect state s and action aj based on the evidence provided in the

guiding sentence and their occurrences in other contexts throughout the training

data. A text-free classifier may not support such an association if the action does not

appear in a similar state context in a training set.

The benefits of textual information extend to models that are trained using control

feedback rather than supervised data. In this training scenario, the algorithm assesses

the goodness of a given state-action combination by simulating a limited number of

game turns after the action is taken and observing the control feedback provided by

the underlying application. The algorithm has a built-in mechanism (see Section 3.4)

that employs the observed feedback to learn feature weights, and intelligently samples

the space in search for promising state-action pairs. When the algorithm has access

to a collection of sentences, a similar feedback-based mechanism can be used to find

sentences that match a given state-action pair (Section 3.5.1). Through the state-

and action-description features (si, wk) and (aj, wk), the algorithm jointly learns to

identify relevant sentences and to map actions and states to their descriptions. Note

that while we have used classification as the basis of discussion in this section, in

reality our methods will learn a regression function.

86

3.3 Related Work

In this section, we first discuss prior work in the field of grounded language acquisition.

Subsequently we look are two areas specific to our application domain – i.e., natural

language analysis in the context of games, and Monte-Carlo Search applied to game

playing.

3.3.1 Grounded Language Acquisition

Our work fits into the broad area of research on grounded language acquisition where

the goal is to learn linguistic analysis from a non-linguistic situated context [52, 3,

66, 54, 79, 17, 80, 43, 10, 11, 74, 20, 71, 18, 44, 33]. The appeal of this formulation

lies in reducing the need for manual annotations, as the non-linguistic signals can

provide a powerful, albeit noisy, source of supervision for learning. In a traditional

grounding setup it is assumed that the non-linguistic signals are parallel in content

to the input text, motivating a machine translation view of the grounding task. An

alternative approach models grounding in the control framework where the learner

actively acquires feedback from the non-linguistic environment and uses it to drive

language interpretation. Below we summarize both approaches, emphasizing the

similarity and differences with our work.

Learning Grounding from Parallel Data In many applications, linguistic con-

tent is tightly linked to perceptual observations, providing a rich source of information

for learning language grounding. Examples of such parallel data include images with

captions [3], Robocup game events paired with a text commentary [17], and sequences

of robot motor actions described in natural language [71]. The large diversity in the

properties of such parallel data has resulted in the development of algorithms tai-

lored for specific grounding contexts, instead of an application-independent ground-

ing approach. Nevertheless, existing grounding approaches can be characterized along

several dimensions that illuminate the connection between these algorithms:

• Representation of Non-Linguistic Input The first step in grounding words

87

in perceptual data is to discretize the non-linguistic signal (e.g., an image) into

a representation that facilitates alignment. For instance, Barnard and Forsyth

[3] segment images into regions that are subsequently mapped to words. Other

approaches intertwine alignment and segmentation into a single step [54], as

the two tasks are clearly interrelated. In our application, segmentation is not

required as the state-action representation is by nature discrete.

Many approaches move beyond discretization, aiming to induce rich hierarchical

structures over the non-linguistic input [27, 17, 18]. For instance, Fleischman

and Roy [27] parse action sequences using a context-free grammar which is

subsequently mapped into semantic frames. Chen and Mooney [17] represent

action sequences using first order logic. In contrast, our algorithm capitalizes

on the structure readily available in our data – state-action transitions. While

inducing a richer structure on the state-action space may benefit mapping, it is

a difficult problem in its own right from the field of hierarchical planning [5].

• Representation of Linguistic Input Early grounding approaches used the

bag-of-words approach to represent input documents [79, 3, 27]. More recent

methods have relied on a richer representation of linguistic data, such as syntac-

tic trees [17] and semantic templates [71]. Our method incorporates linguistic

information at multiple levels, using a feature-based representation that en-

codes both words as well as syntactic information extracted from dependency

trees. As shown by our results, richer linguistic representations can significantly

improve model performance.

• Alignment Another common feature of existing grounding models is that the

training procedure crucially depends on how well words are aligned to non-

linguistic structures. For this reason, some models assume that alignment is

provided as part of the training data [27, 71]. In other grounding algorithms,

the alignment is induced as part of the training procedure. Examples of such

approaches are the methods of Barnard and Forsyth [3], and Liang et al. [43].

Both of these models jointly generate the text and attributes of the grounding

88

context, treating alignment as an unobserved variable.

In contrast, we do not explicitly model alignment in our model due to the lack

of parallel data. Instead, we aim to extract relevant information from text and

infuse it into a control application.

Learning Grounding from Control Feedback More recent work has moved

away from the reliance on parallel corpora, using control feedback as the primary

source of supervision. The assumption behind this setup is that when textual in-

formation is used to drive a control application, the application’s performance will

correlate with the quality of language analysis. It is also assumed that the per-

formance measurement can be obtained automatically. This setup is conducive to

reinforcement learning approaches which can estimate model parameters from the

feedback signal, even it is noisy and delayed.

One line of prior work has focused on the task of mapping textual instructions into

a policy for the control application, assuming that text fully specifies all the actions

to be executed in the environment. For example, in our previous work [10, 11], this

approach was applied to the task of translating instructions from a computer manual

to executable GUI actions. Vogel and Jurafsky [74] demonstrate that this grounding

framework can effectively map navigational directions to the corresponding path in a

map. A second line of prior work has focused on full semantic parsing – converting a

given text into a formal meaning representation such as first order logic [20]. These

methods have been applied to domains where the correctness of the output can be

accurately evaluated based on control feedback – for example, where the output is

a database query which when executed provides a clean, oracle feedback signal for

learning. This line of work also assumes that the text fully specifies the required

output.

While our method is also driven by control feedback, our language interpreta-

tion task itself is fundamentally different. We assume that the given text document

provides high-level advice without directly describing the correct actions for every

potential game state. Furthermore, the textual advice does not necessarily translate

89

to a single strategy – in fact, the text may describe several strategies, each contin-

gent on specific game states. For this reason, the strategy text cannot simply be

interpreted directly into a policy. Therefore, our goal is to bias a learnt policy using

information extracted from text. To this end, we do not aim to achieve a complete

semantic interpretation, but rather use a partial text analysis to compute features

relevant for the control application.

3.3.2 Language Analysis and Games

Even though games can provide a rich domain for situated text analysis, there have

only been a few prior attempts at leveraging this opportunity [34, 26].

Eisenstein et al. [26] aim to automatically extract information from a collection

of documents to help identify the rules of a game. This information, represented

as predicate logic formulae, is estimated in an unsupervised fashion via a generative

model. The extracted formulae, along with observed traces of game play are subse-

quently fed to an Inductive Logic Program, which attempts to reconstruct the rules

of the game. While at the high-level, our goal is similar, i.e., to extract information

from text useful for an external task, there are several key differences. Firstly, while

Eisenstein et al. [26] analyze the text and the game as two disjoint steps, we model

both tasks in an integrated fashion. This allows our model to learn a text analysis

pertinent to game play, while at the same time using text to guide game play. Sec-

ondly, our method learns both text analysis and game play from a feedback signal

inherent to the game, avoiding the need for pre-compiled game traces. This enables

our method to operate effectively in complex games where collecting a sufficiently

representative set of game traces can be impractical.

Gorniak and Roy [34] develop a machine controlled game character which responds

to spoken natural language commands. Given traces of game actions manually anno-

tated with transcribed speech, their method learns a structured representation of the

text and aligned action sequences. This learnt model is then used to interpret spoken

instructions by grounding them in the actions of a human player and the current game

state. While the method itself does not learn to play the game, it enables human

90

control of an additional game character via speech. In contrast to Gorniak and Roy

[34], we aim to develop algorithms to fully and autonomously control all actions of

one player in the game. Furthermore, our method operates on the game’s user manual

rather than on human provided, contextually relevant instructions. This requires our

model to identify if the text contains information useful in the current game state, in

addition to mapping the text to productive actions. Finally, our method learns from

game feedback collected via active interaction without relying on manual annotations.

This allows us to effectively operate on complex games where collecting traditional

labeled traces would be prohibitively expensive.

3.3.3 Monte-Carlo Search for Game AI

Monte-Carlo Search (MCS) is a state-of-the-art framework that has been very success-

fully applied, in prior work, to playing complex games such as Go, Poker, Scrabble,

and real-time strategy games [29, 72, 7, 60, 57, 67, 2]. This framework operates

by playing simulated games to estimate the goodness or value of different candidate

actions. When the game’s state and action spaces are complex, the number of simu-

lations needed for effective play become prohibitively large. Previous application of

MCS have addressed this issue using two orthogonal techniques: (1) they leverage

domain knowledge to either guide or prune action selection, (2) they estimate the

value of untried actions based on the observed outcomes of simulated games. This

estimate is then used to bias action selection. Our MCS based algorithm for games

relies on both of the above techniques. Below we describe the differences between our

application of these techniques and prior work.

Leveraging Domain Knowledge Domain knowledge has been shown to be criti-

cally important to achieving good performance from MCS in complex games. In prior

work this has been achieved by manually encoding relevant domain knowledge into

the game playing algorithm – for example, via manually specified heuristics for ac-

tion selection [7, 29], hand crafted features [72], and value functions encoding expert

knowledge [67]. In contrast to such approaches, our goal is to automatically extract

91

and use domain knowledge from relevant natural language documents, thus bypassing

the need for manual specification. Our method learns both text interpretation and

game action selection based on the outcomes of simulated games in MCS. This allows

it to identify and leverage textual domain knowledge relevant to the observed game

context.

Estimating the Value of Untried Actions Previous approaches to estimating

the value of untried actions have relied on two techniques. The first, Upper Confidence

bounds for Tree (UCT) is a heuristic used in concert with the Monte-Carlo Tree

Search variant of MCS. It augments an action’s value with an exploration bonus for

rarely visited state-action pairs, resulting in better action selection and better overall

game performance [29, 67, 2]. The second technique is to learn a linear function

approximation of action values for the current state s, based on game feedback [72, 63].

Even though our method follows the latter approach, we model action-value Q(s, a)

via a non-linear function approximation. Given the complexity of our application

domain, this non-linear approximation generalizes better than a linear one, and as

shown by our results significantly improves performance. More importantly, the non-

linear model enables our method to represent text analysis as latent variables, allowing

it to use textual information to estimate the value of untried actions.

92

3.4 Monte-Carlo Search

Our task is to leverage textual information to help us win a turn-based strategy

game against a given opponent. In this section, we first describe the Monte-Carlo

Search framework within which our method operates. The details of our linguistically

informed Monte-Carlo Search algorithm are given in Section 3.5.

3.4.1 Game Representation

Formally, we represent the given turn-based stochastic game as a Markov Decision

Process (MDP). This MDP is defined by the 4-tuple 〈S,A, T,R〉, where

• State space, S, is the set of all possible states. Each state s ∈ S represents a

complete configuration of the game in-between player turns.

• Action space, A, is the set of all possible actions. In a turn-based strategy

game, a player controls multiple game units at each turn. Thus, each action

a ∈ A represents the joint assignment of all unit actions executed by the current

player during the turn.

• Transition distribution, T (s′ | s, a), is the probability that executing action

a in state s will result in state s′ at the next game turn. This distribution

encodes the way the game state changes due to both the game rules, and the

opposing player’s actions. For this reason, T (s′ | s, a) is stochastic – as shown in

Figure 3-2, executing the same action a at a given state s can result in different

outcomes s′.

• Reward function, R(s) ∈ R, is the immediate reward received when tran-

sitioning to state s. The value of the reward correlates with the goodness of

actions executed up to now, with higher reward indicating better actions.

All the above aspects of the MDP representation of the game – i.e., S, A, T () and

R() – are defined implicitly by the game rules. At each step of the game, the game-

playing agent can observe the current game state s, and has to select the best possible

93

Action selection
according to
policy function

Stochastic state
transition according
to distribution

Figure 3-2: Markov Decision Process. Actions are selected according to policy func-

tion π(s, a) given the current state s. The execution of the selected action ai (e.g.,

a1), causes the MDP to transition to a new state s′ according to the stochastic state

transition distribution T (s′ | s, a).

action a. When the agent executes action a, the game state changes according to the

state transition distribution. While T (s′ | s, a) is not known a priori, state transitions

can be sampled from this distribution by invoking the game code as a black-box

simulator – i.e., by playing the game. After each action, the agent receives a reward

according to the reward function R(s). In a game playing setup, the value of this

reward is an indication of the chances of winning the game from state s. Crucially,

the reward signal may be delayed – i.e., R(s) may have a non-zero value only for

game ending states such as a win, a loss, or a tie.

The game playing agent selects actions according to a stochastic policy π(s, a),

which specifies the probability of selecting action a in state s. The expected total

reward after executing action a in state s, and then following policy π is termed the

action-value function Qπ(s, a). Our goal is to find the optimal policy π∗(s, a) which

maximizes the expected total reward – i.e., maximizes the chances of winning the

game. If the optimal action-value function Qπ∗(s, a) is known, the optimal game-

playing behaviour would be to select the action a with the highest Qπ∗(s, a). While

it may be computationally hard to find an optimal policy π∗(s, a) or Qπ∗(s, a), many

well studied algorithms are available for estimating an effective approximation [68].

94

Game

Copy game
state to
simulator

Update rollout
policy from
game feedback
after each rollout

Apply action with
best simulation
outcome to game

Single
simulation
rollout

Simulation forSimulation for

Figure 3-3: Overview of the Monte-Carlo Search algorithm. For each game state st,

an independent set of simulated games or roll-outs are done to find the best possible

game action at. Each roll-out starts at state st, with actions selected according to a

simulation policy π(s, a). This policy is learnt from the roll-outs themselves – with

the roll-outs improving the policy, which in turn improves roll-out action selection.

The process is repeated for every actual game state, with the simulation policy being

relearnt from scratch each time.

3.4.2 Monte-Carlo Framework for Computer Games

The Monte-Carlo Search algorithm, shown in Figure 3-3, is a simulation-based search

paradigm for dynamically estimating the action-valuesQπ(s, a) for a given state st (see

Algorithm 1 for pseudo code). This estimate is based on the rewards observed during

multiple roll-outs, each of which is a simulated game starting from state st.
3 Specif-

ically, in each roll-out, the algorithm starts at state st, and repeatedly selects and

3Monte-Carlo Search assumes that it is possible to play simulated games. These simulations may

be played against a heuristic AI player. In our experiments, the built-in AI of the game is used as

the opponent.

95

executes actions according to a simulation policy π(s, a), sampling state transitions

from T (s′ | s, a). On game completion at time τ , the final reward R(sτ) is measured,

and the action-value function is updated accordingly.4 As in Monte-Carlo control [68],

the updated action-value function Qπ(s, a) is used to define an improved simulation

policy, thereby directing subsequent roll-outs towards higher scoring regions of the

game state space. After a fixed number of roll-outs have been performed, the action

with the highest average final reward in the simulations is selected and played in the

actual game state st. This process is repeated for each state encountered during the

actual game, with the action-value function being relearnt from scratch for each new

game state.5 The simulation policy usually selects actions to maximize the action-

value function. However, sometimes other valid actions are also randomly explored

in case they are more valuable than predicted by the current estimate of Qπ(s, a). As

the accuracy of Qπ(s, a) improves, the quality of action selection improves and vice

versa, in a cycle of continual improvement [68].

The success of Monte-Carlo Search depends on its ability to make a fast, local esti-

mate of the action-value function from roll-outs collected via simulated play. However

in games with large branching factors, it may not be feasible to collect sufficient roll-

outs, especially when game simulation is computationally expensive. Thus it is crucial

4In general, roll-outs are run until game completion. If simulations are expensive, as is the case

in our domain, roll-outs can be truncated after a fixed number of steps. This however depends on

the availability of an approximate reward signal at the truncation point. In our experiments, we use

the built-in score of the game as the reward. This reward is noisy, but available at every stage of

the game.
5While it is conceivable that sharing the action-value function across the roll-outs of different

game states would be beneficial, this was empirically not the case in our experiments. One possible

reason is that in our domain, the game dynamics change radically at many points during the game

– e.g., when a new technology becomes available. When such a change occurs, it may actually

be detrimental to play according to the action-value function from the previous game step. Note

however, that the action-value function is indeed shared across the roll-outs for a single game state

st, with parameters updated by successive roll-outs. This is how the learnt model helps improve

roll-out action selection, and thereby improves game play. The setup of relearning from scratch for

each game state has been shown to be beneficial even in stationary environments [70].

96

that the learnt action-value function generalizes well from a small number of roll-outs

– i.e., observed states, actions and rewards. One way to achieve this is to model the

action-value function as a linear combination of state and action attributes:

Qπ(s, a) = ~w · ~f(s, a).

Here ~f(s, a) ∈ Rn is a real-valued feature function, and ~w is a weight vector. Prior

work has shown such linear value function approximations to be effective in the Monte-

Carlo Search framework [63].

Note that learning the action-value function Q(s, a) in Monte-Carlo Search is re-

lated to Reinforcement Learning (RL) [68]. In fact, in our approach, we use standard

gradient descent updates from RL to estimate the parameters of Q(s, a). There is,

however, one crucial difference between these two techniques: In general, the goal in

RL is to find a Q(s, a) applicable to any state the agent may observe during its exis-

tence. In the Monte-Carlo Search framework, the aim is to learn a Q(s, a) specialized

to the current state s. In essence, Q(s, a) is relearnt for every observed state in the

actual game, using the states, actions and feedback from simulations. While such

relearning may seem suboptimal, it has two distinct advantages: first, since Q(s, a)

only needs to model the current state, it can be representationally much simpler than

a global action-value function. Second, due to this simpler representation, it can be

learnt from fewer observations than a global action-value function [70]. Both of these

properties are important when the state space is extremely large, as is the case in our

domain.

97

procedure PlayGame ()

Initialize game state to fixed starting state
s1 ← s0

for t = 1 . . . T do

Run N simulated games

for i = 1 . . . N do

(ai, ri) ← SimulateGame (st)

end

Compute average observed utility for each action

at ← arg max
a

1

Na

∑
i:ai=a

ri

Execute selected action in game

st+1 ← T (s′ | st, at)
end

procedure SimulateGame (st)

for u = t . . . τ do

Compute Q function approximation

Qπ(su, a) = ~w · ~f(su, a)

Sample action from action-value function in ε-greedy fashion:

au ∼ π(su, a) =

{
uniform (a ∈ A) with probability ε

arg max
a

Qπ(su, a) otherwise

Execute selected action in game:

su+1 ← T (s′ | su, au)

if game is won or lost
break

end

Update parameters ~w of Qπ(st, a)

Return action and observed utility:

return at, R(sτ)

Algorithm 1: The general Monte-Carlo algorithm.

98

3.5 Adding Linguistic Knowledge to the Monte-

Carlo Framework

The goal of our work is to improve the performance of the Monte-Carlo Search frame-

work described above, using information automatically extracted from text. In this

section, we describe how we achieve this in terms of model structure and parameter

estimation.

3.5.1 Model Structure

To achieve our aim of leveraging textual information to improve game-play, our

method needs to perform three tasks: (1) identify sentences relevant to the current

game state, (2) label sentences with a predicate structure, and (3) predict good game

actions by combining game features with text features extracted via the language

analysis steps. We first describe how each of these tasks can be modeled separately

before showing how we integrate them into a single coherent model.

Modeling Sentence Relevance As discussed in Section 3.1, only a small fraction

of a strategy document is likely to provide guidance relevant to the current game

context. Therefore, to effectively use information from a given document d, we first

need to identify the sentence yi that is most relevant to the current game state s and

action a.6 We model this decision as a log-linear distribution, defining the probability

of yi being the relevant sentence as:

p(y = yi|s, a, d) ∝ e~u·
~φ(yi,s,a,d). (3.1)

Here ~φ(yi, s, a, d) ∈ Rn is a feature function, and ~u are the parameters we need to

estimate. The function ~φ(·) encodes features that combine the attributes of sentence

6We use the approximation of selecting the single most relevant sentence as an alternative to

combining the features of all sentences in the text, weighted by their relevance probability p(y =

yi|s, a, d). This setup is computationally more expensive than the one used here.

99

yi with the attributes of the game state and action. These features allow the model to

learn correlations between game attributes and the attributes of relevant sentences.

Modeling Predicate Structure When using text to guide action selection, in ad-

dition to using word-level correspondences, we would also like to leverage information

encoded in the structure of the sentence. For example, verbs in a sentence might be

more likely to describe suggested game actions. We aim to access this information

by inducing a task-centric predicate structure on the sentences. That is, we label

the words of a sentence as either action-description, state-description or background.

Given sentence y and its precomputed dependency parse q, we model the word-by-

word labeling decision in a log-linear fashion – i.e., the distribution over the predicate

labeling z of sentence y is given by:

p(z |y, q) = p(~e |y, q)

=
∏
j

p(ej|j, y, q), (3.2)

p(ej|j, y, q) ∝ e~v·
~ψ(ej ,j,y,q),

where ej is the predicate label of the jth word. The feature function ~ψ(ej, j, y, q) ∈ Rn,

in addition to encoding word type and part-of-speech tag, also includes dependency

parse information for each word. These features allow the predicate labeling decision

to condition on the syntactic structure of the sentence.

Modeling the Action-Value Function Once the relevant sentence has been iden-

tified and labeled with a predicate structure, our algorithm needs to use this informa-

tion along with the attributes of the current game state s to select the best possible

game action a. To this end, we redefine the action-value function Q(s, a) as a weighted

linear combination of features of the game and the text information:

Q(s′, a′) = ~w · ~f(s, a, yi, zi). (3.3)

100

Hidden layer encoding
sentence relevance

Output layer

Input layer: Deterministic feature

layer:

Hidden layer encoding
predicate labeling

Figure 3-4: The structure of our neural network model. Each rectangle represents a

collection of units in a layer, and the shaded trapezoids show the connections between

layers. A fixed, real-valued feature function ~x(s, a, d) transforms the game state s,

action a, and strategy document d into the input vector ~x. The second layer contains

two disjoint sets of hidden units ~y and ~z, where ~y encodes the sentence relevance

decisions, and ~z the predicate labeling. These are softmax layers, where only one

unit is active at any time. The units of the third layer ~f(s, a, yi, zi) are a set of fixed

real valued feature functions on s, a, d and the active units yi and zi of ~y and ~z

respectively.

Here s′ = 〈s, d〉, a′ = 〈a, yi, zi〉, ~w is the weight vector, and ~f(s, a, yi, zi) ∈ Rn is

a feature function over the state s, action a, relevant sentence yi, and its predicate

labeling zi. This structure of the action-value function allows it to explicitly learn the

correlations between textual information, and game states and actions. The action

a∗ that maximizes Q(s, a) is then selected as the best action for state s: 7

a∗ = arg max
a

Q(s, a).

7Note that we select action a∗ based on Q(s, a), which depends on the relevant sentence yi. This

sentence itself is selected conditioned on action a. This may look like a cyclic dependency between

actions and sentence relevance. However, that is not the case since Q(s, a), and therefore sentence

relevance p(y|s, a, d), is computed for every candidate action a ∈ A. The actual game action a∗ is

then selected from this estimate of Q(s, a).

101

Complete Joint Model The two text analysis models, and the action-value func-

tion described above form the three primary components of our text-aware game

playing algorithm. We construct a single principled model from these components by

representing each of them via different layers of the multi-layer neural network shown

in Figure 3-4. Essentially, the text analysis decisions are modeled as latent variables

by the second, hidden layer of the network, while the final output layer models the

action-value function.

The input layer ~x of our neural network encodes the inputs to the model – i.e.,

the current state s, candidate action a, and document d. The second layer consists

of two disjoint sets of hidden units ~y and ~z, where each set operates as a stochastic

1-of-n softmax selection layer [14]. The activation function for units in this layer is

the standard softmax function:

p(yi = 1|~x) = e~ui·~x
/ ∑

k

e~uk·~x,

where yi is the ith hidden unit of ~y, ~ui is the weight vector corresponding to yi,

and k is the number of units in the layer. Given that this activation function is

mathematically equivalent to a log-linear distribution, the layers ~y and ~z operate

like log-linear models. Node activation in such a softmax layer simulates sampling

from the log-linear distribution. We use layer ~y to replicate the log-linear model

for sentence relevance from Equation (3.1), with each node yi representing a single

sentence. Similarly, each unit zi in layer ~z represents a complete predicate labeling of

a sentence, as in Equation (3.2).8

The third feature layer ~f of the neural network is deterministically computed

given the active units yi and zi of the softmax layers, and the values of the input

layer. Each unit in this layer corresponds to a fixed feature function fk(s, a, yi, zi) ∈ R.

Finally the output layer encodes the action-value function Q(s, a) as a weighted linear

8Our intention is to incorporate, into action-value function, information from only the most

relevant sentence. Therefore, in practice, we only perform a predicate labeling of the sentence

selected by the relevance component of the model.

102

plains city

settler unit

"Use settlers to irrigate land near your city"Relevant text:

"irrigate", "settler"Predicted action words:

"land", "near", "city"Predicted state words:

irrigateSettlers unit, candidate action 1:

build-city

Features:

action = irrigate and action-word = "irrigate"
action = irrigate and state-word = "land"
action = irrigate and terrain = plains
action = irrigate and unit-type = settler
state-word = "city" and near-city = true

Features:

action = build-city and action-word = "irrigate"
action = build-city and state-word = "land"
action = build-city and terrain = plains
action = build-city and unit-type = settler
state-word = "city" and near-city = true

Settlers unit, candidate action 2:

Figure 3-5: An example of text and game attributes, and the resulting candidate

action features. On the left is a portion of a game state with arrows indicating game

attributes. Also on the left is a sentence relevant to the game state along with action

and state words identified by predicate labeling. On the right are two candidate

actions for the settler unit along with the corresponding features. As mentioned in

the relevant sentence, irrigate is the better of the two actions – executing it will lead

to future higher game scores. This feedback and the features shown above allow our

model to learn effective mappings – such as between the action-word “irrigate” and

the action irrigate, and between state-word “city” and game attribute near-city.

combination of the units of the feature layer, thereby replicating Equation (3.3) and

completing the joint model.

As an example of the kind of correlations learnt by our model, consider Figure 3-5.

Here, a relevant sentence has already been selected for the given game state. The

predicate labeling of this sentence has identified the words “irrigate” and “settler”

as describing the action to take. When game roll-outs return higher rewards for the

irrigate action of the settler unit, our model can learn an association between this

action and the words that describe it. Similarly, it can learn the association between

state description words and the feature values of the current game state – e.g., the

word “city” and the binary feature near-city. This allows our method to leverage the

automatically extracted textual information to improve game play.

103

3.5.2 Parameter Estimation

Learning in our method is performed in an online fashion: at each game state st, the

algorithm performs a simulated game roll-out, observes the outcome of the simula-

tion, and updates the parameters ~u, ~v and ~w of the action-value function Q(st, at).

As shown in Figure 3-3, these three steps are repeated a fixed number of times at

each actual game state. The information from these roll-outs is then used to select

the actual game action. The algorithm relearns all the parameters of the action-value

function for every new game state st. This specializes the action-value function to the

subgame starting from st. Learning a specialized Q(st, at) for each game state is com-

mon and useful in games with complex state spaces and dynamics, where learning a

single global function approximation can be particularly difficult [70]. A consequence

of this function specialization is the need for online learning – since we cannot predict

which games states will be seen during testing, function specialization for those states

cannot be done a priori, ruling out the traditional training/test separation.

Since our model is a non-linear approximation of the underlying action-value func-

tion of the game, we learn model parameters by applying non-linear regression to the

observed final utilities from the simulated roll-outs. Specifically, we adjust the pa-

rameters by stochastic gradient descent, to minimize the mean-squared error between

the action-value Q(s, a) and the final utility R(sτ) for each observed game state s and

action a. The resulting update to model parameters θ is of the form:

∆θ = −α
2
∇θ [R(sτ)−Q(s, a)]2

= α [R(sτ)−Q(s, a)]∇θQ(s, a; θ),

where α is a learning rate parameter. This minimization is performed via standard

104

error backpropagation [15, 56], resulting in the following online parameter updates:

~w ← ~w + αw [Q−R(sτ)] ~f(s, a, yi, zj),

~ui ← ~ui + αu [Q−R(sτ)] Q̂ ~x [1− p(yi|·)],

~vi ← ~vi + αv [Q−R(sτ)] Q̂ ~x [1− p(zi|·)].

Here αw is the learning rate, Q = Q(s, a), and ~w, ~ui and ~vi are the parameters of the

final layer, the sentence relevance layer and the predicate labeling layer respectively.

The derivations of these update equations are given in Appendix B.1

3.5.3 Alternative Modeling Options

Reinforcement Learning One alternative to our Monte-Carlo algorithm is to

learn the same model in a purely reinforcement learning framework. In this setup,

the model parameters would be learnt by playing several independent training games,

and once training is complete, the model would be applied to play test games. This

approach requires that the learnt action-value function Q(s, a) generalizes well across

all the different states observed during a typical game. Given the diversity of game

scenarios observed in Civilization II, the capacity of the model needs to be very high.

In contrast, since Monte-Carlo search relearns model parameters for each game state,

the model need only represent the current game state – thus significantly reducing

the required model capacity. Essentially, Monte-Carlo search, as employed in our

method, trades off higher simulation time for lower required model capacity.

Modeling Unit Coordination One of the weaknesses of our model is the explicit

assumption that the actions of game units are independent of each other. While

the simulations roll-outs implicitly model the interdependence of unit actions, the

lack of explicit unit coordination significantly hampers our algorithm. However, fully

modeling unit coordination is computationally intractable due to the branching factor

of 1020.

One potential solution is to leverage the inherently hierarchical relationships be-

105

tween units in Civilization II to model only the most useful aspects of coordination.

For example, each player in Civilization II controls a single nation, which contains

multiple cities. Each city is home to multiple units such as workers and cavalry.

Thus we can condition action selection for cities on the action of the nation. Simi-

larly, a worker’s action selection could condition on the home city’s actions. Such a

hierarchical factorization of unit dependencies could allow the model to learn useful

unit coordination while remaining computationally tractable. We leave such selective

modeling of coordination as an avenue for future work.

106

3.6 Applying the Model

The game we test our model on, Civilization II, is a multi-player strategy game

set either on Earth or on a randomly generated world. Each player acts as the

ruler of one civilization, and starts with a few game units – i.e., two Settlers, two

Workers and one Explorer. The goal is to expand your civilization by developing new

technologies, building cities and new units, and to win the game by either controlling

the entire world, or successfully sending a spaceship to another world. The map of the

game world is divided into a grid of typically 4000 squares, where each grid location

represents a tile of either land or sea. Figure 3-6 shows a portion of this world map

from a particular instance of the game, along with the game units of one player. In

our experiments, we consider a two-player game of Civilization II on a map of 1000

squares – the smallest map allowed on Freeciv. This map size is used by both novice

human players looking for an easier game, as well as advanced players wanting a

game of shorter duration. We test our algorithms against the built-in AI player of

the game, with the difficulty level at the default Normal setting.9

3.6.1 Game States and Actions

We define the game state for Monte-Carlo search, to be the map of the game world,

along with the attributes of each map tile, and the location and attributes of each

player’s cities and units. Some examples of these attributes are shown in Figure 3-7.

The space of possible actions for each city and unit is defined by the game rules given

the current game state. For example, cities can construct buildings such as harbors

and banks, or create new units of various types; while individual units can move

around on the grid, and perform unit specific actions such as irrigation for Settlers,

and military defense for Archers. Since a player controls multiple cities and units,

9Freeciv has five difficulty settings: Novice, Easy, Normal, Hard and

Cheating. As evidenced by discussions on the game’s online forum

(http://freeciv.wikia.com/index.php?title=Forum:Playing Freeciv), some human players new

to the game find even the Novice setting too hard.

107

Figure 3-6: A portion of the game map from one instance of a Civilization II game.

Three cities, and several units of a single player are visible on the map. Also visible

are the different terrain attributes of map tiles, such as grassland, hills, mountains

and deserts.

Nation attributes:

- Amount of gold in treasury
- % of world controlled
- Number of cities
- Population
- Known technologies

City attributes:

Unit attributes:

- City population
- Surrounding terrain and resources
- Amount of food & resources produced
- Number of units supported by city
- Number & type of units present

- Unit type (e.g., worker, explorer, archer, etc)
- Unit health & hit points
- Unit experience
- Is unit in a city?
- Is unit fortified?

Map tile attributes:

- Terrain type (e.g. grassland, mountain, etc)
- Tile resources (e.g. wheat, coal, wildlife, etc)
- Tile has river
- Construction on tile (city, road, rail, etc)
- Types of units (own or enemy) present

Figure 3-7: Example attributes of game state.

108

the player’s action space at each turn is defined by the combination of all possible

actions for those cities and units. In our experiments, on average, a player controls

approximately 18 units with each unit having 15 possible actions. The resulting action

space for a player is very large – i.e., 1021. To effectively deal with this large action

space, we assume that given the state, the actions of each individual city and unit are

independent of the actions of all other cities and units of the same player.10 At the

same time, we maximize parameter sharing by using a single action-value function

for all the cities and units of the player.

3.6.2 Utility Function

Critically important to the Monte-Carlo search algorithm, is the availability of a

utility function that can evaluate the outcomes of simulated game roll-outs. In the

typical application of the algorithm, the final game outcome in terms of victory or

loss is used as the utility function [72]. Unfortunately, the complexity of Civilization

II, and the length of a typical game, precludes the possibility of running simulation

roll-outs until game completion. The game, however, provides each player with a

real valued game score, which is a noisy indicator of the strength of their civilization.

Since we are playing a two-player game, our player’s score relative to the opponent’s

can be used as the utility function. Specifically, we use the ratio of the game score of

the two players.11

3.6.3 Features

All the components of our method operate on features computed over a basic set of

text and game attributes. The text attributes include the words of each sentence along

with their parts-of-speech and dependency parse information such as dependency

types and parent words. The basic game attributes encode game information available

10Since each player executes game actions in turn, i.e. opposing units are fixed during an individual

player’s turn, the opponent’s moves do not enlarge the player’s action space.
11The difference between players’ scores can also be used as the utility function. However, in

practice the score ratio produced better empirical performance across all algorithms and baselines.

109

1 if action = build-city
 & tile-has-river = true
 & word = "build"

0 otherwise

1 if action = irrigate
 & tile-is-next-to-city = true
 & word = "irrigate"

0 otherwise

1 if label = action
 & word = "city"
 & parent-word = "build"

0 otherwise

1 if label = state
 & word = "city"
 & parent-label = "near"

0 otherwise

1 if action = build-city
 & tile-has-river = true
 & action-word = "build"
 & state-word = "river"

0 otherwise

1 if action = irrigate
 & tile-terrain = plains
 & action-word = "irrigate"
 & state-word = "city"

0 otherwise

Sentence relevance features:

Predicate labeling features:

Action-value features:

Figure 3-8: Some examples of the features used in our model. In each feature, condi-

tions that test game attributes are highlighted in blue, and those that test words in

the game manual are highlighted in red.

to human players via the game’s graphical user interface. Some examples of these

attributes are shown in Figure 3-7.

To identify the sentence most relevant to the current game state and candidate

action, the sentence relevance component computes features over the combined basic

attributes of the game and of each sentence from the text. These features ~φ, are

of two types – the first computes the Cartesian product between the attributes of

the game and the attributes of the candidate sentence. The second type consists of

binary features that test for overlap between words from the candidate sentence, and

the text labels of the current game state and candidate action. Given that only 3.2%

of word tokens from the manual overlap with labels from the game, these similarity

features are highly sparse. However, they serve as signposts to guide the learner – as

shown by our results, our method is able to operate effectively even in the absence of

these features, but performs better when they are present.

Predicate labeling, unlike sentence relevance, is purely a language task and as

such operates only over the basic text attributes. The features for this component,

110

~ψ, compute the Cartesian product of the candidate predicate label with the word’s

type, part-of-speech tag, and dependency parse information. The final component

of our model, the action-value approximation, operates over the attributes of the

game state, the candidate action, the sentence selected as relevant, and the predicate

labeling of that sentence. The features of this layer, ~f , compute a three way Cartesian

product between the attributes of the candidate action, the attributes of the game

state, and the predicate labeled words of the relevant sentence. Overall, ~φ, ~ψ and ~f

compute approximately 158,500, 7,900, and 306,800 features respectively – resulting

in a total of 473,200 features for our full model. Figure 3-8 shows some examples of

these features.

111

3.7 Experimental Setup

3.7.1 Datasets

We use the official game manual of Civilization II as our strategy guide document.12

The text of this manual uses a vocabulary of 3638 word types, and is composed of

2083 sentences, each on average 16.9 words long. This manual contains information

about the rules of the game, about the game user interface, and basic strategy advice

about different aspects of the game. We use the Stanford parser [22], under default

settings, to generate the dependency parse information for sentences in the game

manual.

3.7.2 Experimental Framework

To apply our method to the Civilization II game, we use the game’s open source

reimplementation Freeciv.13 We instrumented FreeCiv to allow our method to pro-

grammatically control the game – i.e., to measure the current game state, to execute

game actions, to save/load the current game state, and to start and end games.14

Across all experiments, we start the game at the same initial state and run it

for 100 steps. At each step, we perform 500 Monte-Carlo roll-outs. Each roll-out

is run for 20 simulated game steps before halting the simulation and evaluating the

outcome. Note that at each simulated game step, our algorithm needs to select an

action for each game unit. Given an average number of units per player of 18, this

results in 180,000 decisions during the 500 roll-outs. The pairing of each of these

decisions with the corresponding roll-out outcome is used as a datapoint to update

model parameters. We use a fixed learning rate of 0.0001 for all experiments. For our

12www.civfanatics.com/content/civ2/reference/Civ2manual.zip
13http://freeciv.wikia.com. Game version 2.2
14In addition to instrumentation, the code of FreeCiv (both the server and client) was changed

to increase simulation speed by several orders of magnitude, and to remove bugs which caused the

game to crash. To the best of our knowledge, the game rules and functionality are identical to the

unmodified Freeciv version 2.2

112

Monte-Carlo
Player

Primary Game

Modified Game
GUI Client

Game
Server

Modified Game
GUI Client

Game
Server

Game Simulation 1

Modified Game
GUI Client

Game
Server

Game Simulation 2

Modified Game
GUI Client

Game
Server

Game Simulation 8

Game
Strategy Guide

Game State

In-memory
File System

Figure 3-9: A diagram of the experimental framework, showing the Monte-Carlo

player, the server for the primary game which the playing aims to win, and multiple

game servers for simulated play. Communications between the multiple processes

comprising the framework is via UNIX sockets and an in-memory file system.

method, and for each of the baselines, we run 200 independent games in the above

manner, with evaluations averaged across the 200 runs. We use the same experimental

settings across all methods, and all model parameters are initialized to zero.

Our experimental setup consists of our Monte-Carlo player, a primary game which

we aim to play and win, and a set of simulation games. Both the primary game and

the simulations are simply separate instances of the Freeciv game. Each instance of

the Freeciv game is made up of one server process, which runs the actual game, and

one client process, which is controlled by the Monte-Carlo player. At the start of each

roll-out, the simulations are initialized with the current state of the primary game

via the game save/reload functionality of Freeciv. Figure 3-9 shows a diagram of this

experimental framework.

The experiments were run on typical desktop PCs with single Intel Core i7 CPUs

(4 hyper-threaded cores per CPU). The algorithms were implemented to execute 8

113

simulation roll-outs in parallel by connecting to 8 independent simulation games.

In this computational setup, approximately 5 simulation roll-outs are executed per

second for our full model, and a single game of 100 steps runs in 3 hours. Since

we treat the Freeciv game code as a black box, special care was taken to ensure

consistency across experiments: all code was compiled on one specific machine, under

a single fixed build environment (gcc 4.3.2); and all experiments were run under

identical settings on a fixed set of machines running a fixed OS configuration (Linux

kernel 2.6.35-25, libc 2.12.1).

3.7.3 Evaluation Metrics

We wish to evaluate two aspects of our method: how well it improves game play by

leveraging textual information, and how accurately it analyzes text by learning from

game feedback. We evaluate the first aspect by comparing our method against various

baselines in terms of the percentage of games won against the built-in AI of Freeciv.

This AI is a fixed heuristic algorithm designed using extensive knowledge of the game,

with the intention of challenging human players.15 As such, it provides a good open-

reference baseline. We evaluate our method by measuring the percentage of games

won, averaged over 100 independent runs. However, full games can sometimes last for

multiple days, making it difficult to do an extensive analysis of model performance and

contributing factors. For this reason, our primary evaluation measures the percentage

of games won within the first 100 game steps, averaged over 200 independent runs.

This evaluation is an underestimate of model performance – any game where the

player has not won by gaining control of the entire game map within 100 steps is

considered a loss. Since games can remain tied after 100 steps, two equally matched

average players, playing against each other, will most likely have a win rate close to

zero under this evaluation.

15While this AI is constrained to follow the rules of the game, it has access to information typically

not available to human players, such as information about the technology, cities and units of it’s

opponents. Our methods on the other hand are restricted to the actions and information available

to human players.

114

Method % Win % Loss Std. Err.

Random 0 100 —

Built-in AI 0 0 —

Game only 17.3 5.3 ± 2.7

Latent variable 26.1 3.7 ± 3.1

Full model 53.7 5.9 ± 3.5

Randomized text 40.3 4.3 ± 3.4

Table 3.1: Win rate of our method and several baselines within the first 100 game

steps, while playing against the built-in game AI. Games that are neither won nor

lost are still ongoing. Our model’s win rate is statistically significant against all

baselines. All results are averaged across 200 independent game runs. The standard

errors shown are for percentage wins.

3.8 Results

To adequately characterize the performance of our method, we evaluate it with re-

spect to several different aspects. In this section, we first describe its game playing

performance and analyze the impact of textual information. Then, we investigate the

quality of the text analysis produced by our model in terms of both sentence relevance

and predicate labeling.

3.8.1 Game Performance

Table 3.1 shows the performance of our method and several baselines on the primary

100-step evaluation. In this scenario, our language-aware Monte-Carlo algorithm wins

on average 53.7% of games, substantially outperforming all baselines, while the best

non-language-aware method has a win rate of only 26.1%. The dismal performance

of the Random baseline and the game’s own Built-in AI, playing against itself, are

indications of the difficulty of winning games within the first 100 steps. As shown in

Table 3.2, when evaluated on full length games, our method has a win rate of 65.4%

115

Method % Wins Standard Error

Game only 24.8 ± 4.3

Latent variable 31.5 ± 4.6

Full model 65.4 ± 4.8

Table 3.2: Win rate of our method and two text-unaware baselines against the built-in

AI. All results are averaged across 100 independent game runs.

compared to 31.5% for the best text-unaware baseline.16

Textual Advice and Game Performance To verify and characterize the impact

of textual advice on our model’s performance, we compare it against several baselines

that do not have access to textual information. The simplest of these methods, Game

only, models the action-value function Q(s, a) as a linear approximation of the game’s

state and action attributes. This non-text-aware method wins only 17.3% of games

(see Table 3.1). To confirm that our method’s improved performance is not simply

due to its inherently richer non-linear approximation, we also evaluate two ablative

non-linear baselines. The first of these, Latent variable extends the linear action-

value function of Game only with a set of latent variables. It is in essence a four layer

neural network, similar to our full model, where the second layer’s units are activated

only based on game information. This baseline wins 26.1% of games (Table 3.1),

significantly improving over the linear Game only baseline, but still trailing our text-

aware method by more than 27%. The second ablative baseline, Randomized text,

is identical to our model, except that it is given a randomly generated document as

input. We generate this document by randomly permuting the locations of words

16Note that the performance of all methods on the full games is different from those published in

Branavan et al. [12] and Branavan et al. [13]. These previously published numbers were biased by a

code flaw in FreeCiv which caused the game to sporadically crash in the middle game play. While

we originally believed the crash to be random, it was subsequently discovered to happen more often

in losing games, and thereby biasing the win rates of all methods upwards. The numbers presented

here are with this game bug fixed, with no crashes observed in any of the experiments.

116

in the game manual, thereby maintaining the document’s statistical properties in

terms of type frequencies. This ensures that the number of latent variables in this

baseline is equal to that of our full model. Thus, this baseline has a model capacity

equal to our text-aware method while not having access to any textual information.

The performance of this baseline, which wins only 40.3% of games, confirms that

information extracted from text is indeed instrumental to the performance of our

method.

Figure 3-10 provides insight into how textual information helps improve game

performance – it shows the observed game score during the Monte-Carlo roll-outs

for our full model and the latent-variable baseline. As can be seen from this figure,

the textual information guides our model to a high-score region of the search space

far quicker than the non-text aware method, thus resulting in better overall perfor-

mance. To evaluate how the performance of our method varies with the amount of

available textual-information, we conduct an experiment where only random portions

of the text are given to the algorithm. As shown in Figure 3-11, our method’s perfor-

mance varies linearly as a function of the amount of text, with the Randomized text

experiment corresponding to the point where no information is available from text.

Impact of Seed Vocabulary on Performance The sentence relevance compo-

nent of our model uses features that compute the similarity between words in a sen-

tence, and the text labels of the game state and action. This assumes the availability

of a seed vocabulary that names game attributes. In our domain, of the 256 unique

text labels present in the game, 135 occur in the vocabulary of the game manual. This

results in a sparse seed vocabulary of 135 words, covering only 3.7% of word types

and 3.2% of word tokens in the manual. Despite this sparsity, the seed vocabulary

can have a potentially large impact on model performance since it provides an initial

set of word groundings. To evaluate the importance of this initial grounding, we test

our method with an empty seed vocabulary. In this setup, our full model wins 49.0%

of games, showing that while the seed words are important, our method can also

operate effectively in their absence.

117

Figure 3-10: Observed game score as a function of Monte-Carlo roll-outs for our text-

aware full model, and the text-unaware latent-variable model. Model parameters are

updated after on each roll-out, and thus performance improves with roll-outs. As can

be seen, our full model’s performance improves dramatically over a small number of

roll-outs, demonstrating the benefit it derives from textual information.

Random
text

Figure 3-11: The performance of our text-aware model as a function of the amount

of text available to it. We construct partial documents by randomly sub-sampling

sentences from the full game manual. The x-axis shows the amount of sentences given

to the method as a ratio of the full text. At the leftmost extreme is the performance

of the Randomized Text baseline, showing how it fits into the performance trend at

the point of having no useful textual information.

118

Method % Win % Loss Std. Err.

Full model 53.7 5.9 ± 3.5

Sentence relevance 46.7 2.8 ± 3.5

No dependency information 39.6 3.0 ± 3.4

No dependency label 50.1 3.0 ± 3.5

No depend. parent POS tag 42.6 4.0 ± 3.5

No depend. parent word 33.0 4.0 ± 3.3

Table 3.3: Win rates of several ablated versions of our model, showing the contribution

of different aspects of textual information to game performance. Sentence relevance

is identical to the Full model, except that it lacks the predicate labeling component.

The four methods at the bottom of the table ablate specific dependency features (as

indicated by the method’s name) from the predicate labeling component of the full

model.

Linguistic Representation and Game Performance To characterize the con-

tribution of language to game performance, we conduct a series of evaluations which

vary the type and complexity of the linguistic analysis performed by our method.

The results of this evaluation are shown in Table 3.3. The first of these, Sentence

relevance, highlights the contributions of the two language components of our model.

This algorithm, which is identical to our full model but lacks the predicate labeling

component, wins 46.7% of games, showing that while it is essential to identify the

textual advice relevant to the current game state, a deeper syntactic analysis of the

extracted text substantially improves performance.

To evaluate the importance of dependency parse information in our language anal-

ysis, we vary the type of features available to the predicate labeling component of our

model. The first of these ablative experiments, No dependency information, removes

all dependency features – leaving predicate labeling to operate only on word type fea-

tures. The performance of this baseline, a win rate of 39.6%, clearly shows that the

dependency features are crucial for model performance. The remaining three meth-

119

Full model

Latent variable

Game only

500 ro
ll-

ou
ts

20
0

ro
ll-

ou
ts

10
0

ro
ll-

ou
ts

Computation time per game step (seconds)

W
in

 r
a
te

60%

50%

40%

30%

20%

10%

0%
200 40 60 80 100 120 140

Figure 3-12: Win rate as a function of computation time per game step. For each

Monte-Carlo search method, win rate and computation time were measured for 100,

200 and 500 roll-outs per game step, respectively.

ods – No dependency label, No dependency parent POS tag and No dependency parent

word – each drop the dependency feature they are named after. The contribution of

these features to model performance can be seen in Table 3.3.

Model Complexity vs Computation Time Trade-off One inherent disadvan-

tage of non-linear models, when compared to simpler linear models, is the increase

in computation time required for parameter estimation. In our Monte-Carlo Search

setup, model parameters are re-estimated after each simulated roll-out. Therefore,

given a fixed amount of time, more roll-outs can be done for a simpler and faster

model. By its very nature, the performance of Monte-Carlo Search improves with the

number of roll-outs. This trade-off between model complexity and roll-outs is impor-

tant since a simpler model could compensate by using more roll-outs, and thereby

outperform more complex ones. This scenario is particularly relevant in games where

players have a limited amount of time for each turn.

To explore this trade-off, we vary the number of simulation roll-outs allowed for

120

Phalanxes are twice as effective at defending cities as warriors.

Build the city on plains or grassland with a river running through it.

You can rename the city if you like, but we'll refer to it as washington.✘
There are many different strategies dictating the order in which
advances are researched

✘

A A AA

Use settlers or engineers to improve a terrain square within the city radius

✘✘

When the settlers becomes active, chose build road.
A AA

After the road is built, use the settlers to start improving the terrain.
AA AA A

SSSSSS

S SS

S SS

Figure 3-13: Examples of our method’s sentence relevance and predicate labeling

decisions. The box above shows two sentences (identified by green check marks)

which were predicted as relevant, and two which were not. The box below shows the

predicted predicate structure of three sentences, with “S” indicating state descrip-

tion,“A” action description and background words unmarked. Mistakes are identified

with crosses.

each method at each game step, recording the win-rate and the average computation

time per game. Figure 3-12 shows the results of this evaluation for 100, 200 and

500 roll-outs. While the more complex methods have higher computational demands,

these results clearly show that even when given a fixed amount of computation time

per game step, our text-aware model still produces the best performance by a wide

margin.

Learned Game Strategy Qualitatively, all of the methods described here learn a

basic rush strategy. Essentially, they attempt to develop basic technologies, build an

army, and take over opposing cities as quickly as possible. The performance difference

between the different models is essentially due to how well they learn this strategy.

There are two basic reasons why our algorithms learn the rush strategy. First,

since we are attempting to maximize game score, the methods are implicitly biased

121

towards finding the fastest way to win – which happens to be the rush strategy when

playing against the built-in AI of Civilization 2. Second, more complex strategies

typically require the coordination of multiple game units. Since our models assume

game units to be independent, they cannot explicitly learn such coordination – putting

many complex strategies beyond the capabilities of our algorithms.

3.8.2 Accuracy of Linguistic Analysis

As described in Section 3.5, text analysis in our method is tightly coupled with game

playing – both in terms of modeling, and in terms of learning from game feedback.

We have seen from the results thus far, that this text analysis does indeed help game

play. In this section we focus on the game-driven text analysis itself, and investigate

how well it conforms to more common notions of linguistic correctness. We do this

by comparing model predictions of sentence relevance and predicate labeling against

manual annotations.

Sentence Relevance Figure 3-13 shows examples of the sentence relevance deci-

sions produced by our method. To evaluate the accuracy of these decisions, we would

ideally like to use a ground-truth relevance annotation of the game’s user manual.

This however, is impractical since the relevance decision is dependent on the game

context, and is hence specific to each time step of each game instance. Therefore,

we evaluate sentence relevance accuracy using a synthetic document. We create this

document by combining the original game manual with an equal number of sentences

which are known to be irrelevant to the game. These sentences are collected by ran-

domly sampling from the Wall Street Journal corpus [47].17 We evaluate sentence

relevance on this synthetic document by measuring the accuracy with which game

manual sentences are picked as relevant.

In this evaluation, our method achieves an average accuracy of 71.8%. Given that

our model only has to differentiate between the game manual text and the Wall Street

17Note that sentences from the WSJ corpus contain words such as city which can potentially

confuse our algorithm, causing it to select such sentences are relevant to game play.

122

Sentence relevance
Moving average

S
e
n

te
n

ce
 r

e
le

v
a
n

ce
 a

cc
u

ra
cy

Game step

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1.0

Figure 3-14: Accuracy of our method’s sentence relevance predictions, averaged over

100 independent runs.

Game step

20 40 60 80 100

Te
x
t

fe
a
tu

re
 i
m

p
o
rt

a
n

ce

0

1.5

1.0

0.5

Te
x
t

fe
a
tu

re
s

d
o
m

in
a
te

G
a
m

e
 f

e
a
tu

re
s

d
o
m

in
a
te

Figure 3-15: Difference between the norms of the text feature weights and game

feature weights of the output layer of the neural network. Beyond the initial 25 steps

of the game, our method relies increasingly on game features.

123

of initial game steps where text information is used

W
in

 r
a
te

60%

40%

20%

0%
20 40 60 80 100

Figure 3-16: Graph showing how the availability of textual information during the

initial steps of the game affects the performance of our full model. Textual information

is given to the model for the first n steps (the x axis), beyond which point the

algorithm has no access to text, and becomes equivalent to the Latent Variable model

– i.e., the best non-text model.

Journal, this number may seem disappointing. Furthermore, as can be seen from

Figure 3-14, the sentence relevance accuracy varies widely as the game progresses,

with a high average of 94.2% during the initial 25 game steps. In reality, this pattern

of high initial accuracy followed by a lower average is not entirely surprising: the

official game manual for Civilization II is written for first time players. As such, it

focuses on the initial portion of the game, providing little strategy advice relevant

to subsequent game play.18 If this is the reason for the observed sentence relevance

trend, we would also expect the final layer of the neural network to emphasize game

features over text features after the first 25 steps of the game. This is indeed the

case, as can be seen in Figure 3-15.

To further test this hypothesis, we perform an experiment where the first n steps

of the game are played using our full model, and the subsequent 100 − n steps are

18This is reminiscent of opening books for games like Chess or Go, which aim to guide the player

to a playable middle game, without providing much information about subsequent game play.

124

Method S/A/B S/A

Random labeling 33.3% 50.0%

Model, first 100 steps 45.1% 78.9%

Model, first 25 steps 48.0% 92.7%

Table 3.4: Predicate labeling accuracy of our method and a random baseline. Column

“S/A/B” shows performance on the three-way labeling of words as state, action or

background, while column “S/A” shows accuracy on the task of differentiating between

state and action words.

played without using any textual information. The results of this evaluation for

several values of n are given in Figure 3-16, showing that the initial phase of the

game is indeed where information from the game manual is most useful. In fact, this

hybrid method performs just as well as our full model when n = 50, achieving a 53.3%

win rate. This shows that our method is able to accurately identify relevant sentences

when the information they contain is most pertinent to game play, and most likely

to produce better game performance.

Predicate Labeling Figure 3-13 shows examples of the predicate structure output

of our model. We evaluate the accuracy of this labeling by comparing it against a

gold-standard annotation of the game manual.19 Table 3.4 shows the performance of

our method in terms of how accurately it labels words as state, action or background,

and also how accurately it differentiates between state and action words. In addition

to showing a performance improvement over the random baseline, these results display

a clear trend: under both evaluations, labeling accuracy is higher during the initial

stages of the game. This is to be expected since the model relies heavily on textual

features during the beginning of the game (see Figure 3-15).

To verify the usefulness of our method’s predicate labeling, we perform a final set

19Note that a ground truth labeling of words as either action-description, state-description, or

background is based purely on the semantics of the sentence, and is independent of game state. For

this reason, manual annotation is feasible, unlike in the case of sentence relevance.

125

state: grassland "city"

state: grassland "build"

action: settlers_build_city "city"

action: set_research "discovery"

game attribute word

action: settlers_build_city "settler"

action: settlers_goto_location "build"

action: city_build_barracks "construct"

action: research_alphabet "develop"

action: set_research "discovery"

state: hills "build"

Figure 3-17: Examples of word to game attribute associations that are learnt via the

feature weights of our model.

of experiments where predicate labels are selected uniformly at random within our

full model. This random labeling results in a win rate of 44% – a performance similar

to the sentence relevance model which uses no predicate information. This confirms

that our method is able to identify a predicate structure which, while noisy, provides

information relevant to game play. Figure 3-17 shows examples of how this textual

information is grounded in the game, by way of the associations learnt between words

and game attributes in the final layer of the full model. For example, our model

learns a strong association between the game-state attribute grassland and the words

“city” and “build”, indicating that textual information about building cities maybe

very useful when a player’s unit is near grassland.

126

3.9 Conclusions

In this section we presented a novel approach for improving the performance of control

applications by leveraging information automatically extracted from text documents,

while at the same time learning language analysis based on control feedback. The

model biases the learnt strategy by enriching the policy function with text features,

thereby modeling the mapping between words in a manual and state-specific action

selection. To effectively learn this grounding, the model identifies text relevant to the

current game state, and induces a predicate structure on that text. These linguistic

decisions are modeled jointly using a non-linear policy function trained in the Monte-

Carlo Search framework.

Empirical results show that our model is able to significantly improve game win

rate by leveraging textual information when compared to strong language-agnostic

baselines. We also demonstrate that despite the increased complexity of our model,

the knowledge it acquires enables it to sustain good performance even when the

number of simulations is reduced. Moreover, deeper linguistic analysis, in the form of

a predicate labeling of text, further improves game play. We show that information

about the syntactic structure of text is crucial for such an analysis, and ignoring

this information has a large impact on model performance. Finally, our experiments

demonstrate that by tightly coupling control and linguistic features, the model is

able to deliver robust performance in the presence of the noise inherent in automatic

language analysis.

127

128

4
Learning High-Level Planning from

Text

In this chapter, we consider the task of inducing high-level plans for completing given

goals by leveraging textual information about the world. Our method learns to inter-

pret textual descriptions of precondition relationship between objects in the world.

Given a planning goal, the extracted textual information is then used to predict a

sequence of waypoints for achieving the goal. Despite the mismatch between the ab-

stractions of human language and the granularity of planning primitives, our method

is able to effectively extract the precondition relations from text. While learning

based on planning feedback, the relation extraction performance of our method ri-

vals a manually supervised alternative. Our planning algorithm is able to leverage

the extracted relation information to induce effective high-level plans, outperforming

strong baselines that do not have access to the text.

4.1 Introduction

Understanding action preconditions and effects is a basic step in modeling the dy-

namics of the world. For example, having seeds is a precondition for growing wheat.

Not surprisingly, preconditions have been extensively explored in various sub-fields

of AI. However, existing work on action models has largely focused on tasks and

techniques specific to individual sub-fields with little or no interconnection between

129

Seeds planted in farmland will grow to become

wheat which can be harvested.

(a)

Low Level Actions for: seeds → wheat

step 1: move from (0,0) to (1,0)

step 2: move from (1,0) to (2,0)

step 3: pickup tool: hoe

step 4: plow land with hoe at: (2,0)

step 5: plant seeds at: (2,0)

· · ·

step N-1: pickup tool: shears

step N: harvest wheat with shears at: (2,0)

(b)

Figure 4-1: Text description of a precondition and effect (a), and the low-level actions

connecting the two (b).

them. In NLP, precondition relations have been studied in terms of the linguistic

mechanisms that realize them, while in classical planning, these relations are viewed

as representations of world dynamics. In this chapter, we bring these two parallel

views together, grounding the linguistic realization of these relations in the semantics

of planning operations.

The challenge and opportunity of this fusion comes from the mismatch between

the abstractions of human language and the granularity of planning primitives. Con-

sider, for example, text describing a virtual world such as Minecraft1 and a formal

description of that world using planning primitives. Due to the mismatch in gran-

ularity, even the simple relation between seeds and wheat described in the sentence

in Figure 4-1a results in dozens of low-level planning actions in the world, as can be

seen in Figure 4-1b. While text provides a high-level description of world dynamics,

it does not provide sufficient details for successful plan execution. On the other hand,

1http://www.minecraft.net/

130

planning with low-level actions does not suffer from this limitation, but is computa-

tionally intractable for even moderately complex tasks. As a consequence, in many

practical domains, planners rely on manually-crafted high-level abstractions to make

search tractable [30, 41].

The central idea of our work is to express the semantics of precondition relations

extracted from text in terms of planning operations. For instance the precondition

relation between seeds and wheat described in the sentence in Figure 4-1a indicates

that plans which involve obtaining wheat will likely need to first obtain seeds. The

novel challenge of this view is to model grounding at the level of relations, in contrast

to prior work which focused on object-level grounding. We build on the intuition

that the validity of precondition relations extracted from text can be informed by the

execution of a low-level planner.2 This feedback can enable us to learn these relations

without annotations. Moreover, we can use the learnt relations to a guide a high level

planner and ultimately improve planning performance.

We implement these ideas in the reinforcement learning framework wherein our

model jointly learns to predict precondition relations from text and to perform high-

level planning guided by those relations. For a given planning task and a set of

candidate relations, our model repeatedly predicts a sequence of subgoals where each

subgoal specifies an attribute of the world that must be made true. It then asks

the low-level planner to find a plan between each consecutive pair of subgoals in the

sequence. The observed feedback — whether the low-level planner succeeded or failed

at each step — is utilized to update the policy for both text analysis and high-level

planning.

We evaluate our algorithm in the Minecraft virtual world, using a large collection

of user-generated on-line documents. Our results demonstrate the strength of our

relation extraction technique. While using planning feedback as its only source of

supervision, it achieves a performance on par with that of a supervised SVM base-

2If a planner can find a plan to successfully obtain wheat after obtaining seeds then seeds is likely

a precondition for wheat. Conversely if a planner obtains wheat without first obtaining seeds then

it is likely not a precondition.

131

line. Specifically, it yields an F-score of 66% compared to the 65% of the baseline.

In addition we show that these extracted relations can be used to improve the per-

formance of a high-level planner. As baselines for this evaluation, we employ the

Metric-FF planner [36],3 as well as a text-unaware variant of our model. Our results

show that our text-driven high-level planner significantly outperforms all baselines in

terms of completed planning tasks – it successfully solves 80% as compared to 41%

for the Metric-FF planner and 69% for the text unaware variant of our model. In

fact, the performance of our method approaches that of an oracle planner which uses

manually-annotated preconditions.

3the state-of-art baseline used in the 2008 International Planning Competition.

http://ipc.informatik.uni-freiburg.de/

132

4.2 Related Work

4.2.1 Extracting Event Semantics from Text

The task of extracting preconditions and effects has previously been addressed in the

context of lexical semantics [62, 61]. These approaches combine large-scale distribu-

tional techniques with supervised learning to identify desired semantic relations in

text. Such combined approaches have also been shown to be effective for identifying

other relationships between events, such as causality [31, 8, 6, 16, 25].

Similar to these methods, our algorithm capitalizes on surface linguistic cues to

learn preconditions from text. However, our only source of supervision is the feedback

provided by the planning task which utilizes the predictions. Additionally, we not

only identify these relations in text, but also show they are valuable in performing an

external task.

4.2.2 Learning Semantics via Language Grounding

Our work fits into the broad area of grounded language acquisition, where the goal is

to learn linguistic analysis from a situated context [52, 66, 79, 27, 50, 49, 10, 74, 43].

Within this line of work, we are most closely related to the reinforcement learning

approaches that learn language by interacting with an external environment [10, 11,

74, 12].

The key distinction of our work is the use of grounding to learn abstract prag-

matic relations, i.e. to learn linguistic patterns that describe relationships between

objects in the world. This supplements previous work which grounds words to ob-

jects in the world [74, 12]. Another important difference of our setup is the way the

textual information is utilized in the situated context. Instead of getting step-by-

step instructions from the text, our model uses text that describes general knowledge

about the domain structure. From this text it extracts relations between objects in

the world which hold independent of any given task. Task-specific solutions are then

constructed by a planner that relies on these relations to perform effective high-level

133

planning.

4.2.3 Hierarchical Planning

It is widely accepted that high-level plans that factorize a planning problem can

greatly reduce the corresponding search space [51, 1]. Previous work in planning

has studied the theoretical properties of valid abstractions and proposed a number

of techniques for generating them [77, 38, 48, 4]. In general, these techniques use

static analysis of the low-level domain to induce effective high-level abstractions. In

contrast, our focus is on learning the abstraction from natural language. Thus our

technique is complementary to past work, and can benefit from human knowledge

about the domain structure.

134

4.3 Problem Formulation

Our task is two-fold. Given a text document which describes an environment, we

wish to extract a set of precondition/effect relations implied by the text. We wish

to then use these induced relations to determine an action sequence for completing a

given task in this environment.

We formalize our task as illustrated in Figure 4-2. As input, we are given a world

defined by the tuple 〈S,A, T 〉, where S is the set of possible world states, A is the set

of possible actions and T is the state transition function. Executing action a in state

s causes a transition to a new state s′ according to T (s′ | s, a). States are represented

using first-order logic predicates xi ∈ X, where each state is simply a set of such

predicates, i.e. s ⊂ X.

The objective of the text analysis part of our task is to automatically extract a

set of valid precondition/effect relationships from a given document d. Given our

definition of the world state, preconditions and effects are merely single term predi-

cates, xi, in this world state. We assume that we are given a seed mapping between

a predicate xi, and the word types in the document that reference it (see Table 4.3

for examples). Thus, for each predicate pair 〈xk, xl〉, we want to utilize the text to

predict whether xk is a precondition for xl; i.e., xk → xl. For example, from the

sentence in Figure 4-1, we want to predict that possessing seeds is a precondition for

possessing wheat. Note that this relation is symmetric, and xl can be interpreted as

the effect of some sequence of actions performed on state xk.

Each planning goal g ∈ G is defined by a starting state sg0, and a final goal state

sgf . This goal state is represented by a set of predicates which need to be made

true. In the planning part of our task our objective is to find a sequence of actions

~a that connect sg0 to sgf . Note that we assume that d does not contain step-by-step

instructions for any individual task, but instead describes general facts about the

given world that are useful for a wide variety of tasks.

135

Text (input):

Seeds planted in farmland will grow to become
wheat which can be harvested

Precondition Relations:

farmland wheatseeds wheat

Plan Subgoal Sequence:

initial
state

wheat
(goal)

seeds
(subgoal 1)

farmland
(subgoal 2)

Figure 4-2: A high-level plan that shows two subgoals in a precondition relation. The

corresponding sentence is shown above.

136

4.4 Model

The key idea behind our model is to leverage textual descriptions of preconditions and

effects to guide the construction of high level plans. We define a high-level plan as a

sequence of subgoals, where each subgoal is represented by a single-term predicate, xi,

that needs to be set in the corresponding world state – e.g. have(wheat)=true. Thus

the set of possible subgoals is defined by the set of all possible single-term predicates

in the domain. In contrast to low-level plans, the transition between these subgoals

can involve multiple low-level actions. Our algorithm for textually informed high-level

planning operates in four steps:

1. Use text to predict the preconditions of each subgoal. These predictions are for

the entire domain and are not goal specific.

2. Given a planning goal and the induced preconditions, predict a subgoal sequence

that achieves the given goal.

3. Execute the predicted sequence by giving each pair of consecutive subgoals to a

low-level planner. This planner, treated as a black-box, computes the low-level

plan actions necessary to transition from one subgoal to the next.

4. Update the model parameters, using the low-level planner’s success or failure

as the source of supervision.

We formally define these steps below.

4.4.1 Modeling Precondition Relations

Given a document d, and a set of subgoal pairs 〈xi, xj〉, we want to predict whether

subgoal xi is a precondition for xj. We assume that precondition relations are gener-

ally described within single sentences. We first use our seed grounding in a prepro-

cessing step where we extract all predicate pairs where both predicates are mentioned

in the same sentence. We call this set the Candidate Relations. Note that this set

137

will contain many invalid relations since co-occurrence in a sentence does not im-

ply a precondition relation — e.g. in Figure 4-2, seeds and farmland do not have a

precondition relation despite co-occurring in the same sentence.4 Thus for each sen-

tence, ~wk, associated with a given Candidate Relation, xi → xj, our task is to predict

whether the sentence indicates the relation. We model this decision via a log linear

distribution as follows:

p(xi → xj | ~wk, qk; θc) ∝ eθc·φc(xi,xj , ~wk,qk), (4.1)

where θc is the vector of model parameters. We compute the feature function φc

using our seed grounding, the sentence ~wk, and a given dependency parse qk of the

sentence. Given these per-sentence decisions, we predict the set of all valid precondi-

tion relations, C, in a deterministic fashion. We do this by considering a precondition

xi → xj as valid if it is predicted to be valid by at least one sentence.

4.4.2 Modeling Subgoal Sequences

Given a planning goal g, defined by initial and goal states sg0 and sgf , our task is

to predict a sequence of subgoals ~x which will achieve the goal. We condition this

decision on our predicted set of valid preconditions C, by modeling the distribution

over sequences ~x as:

p(~x | sg0, s
g
f , C; θx) =

n∏
t=1

p(xt | xt−1, sg0, s
g
f , C; θx)

p(xt | xt−1, sg0, s
g
f , C; θx) ∝ eθx·φx(xt,xt−1,s

g
0,s

g
f ,C).

Here we assume that subgoal sequences are Markovian in nature and model individual

subgoal predictions using a log-linear model.5 Note that this model implicitly learns

4In our dataset only 11% of Candidate Relations are valid.
5Note that these assumptions hold when the precondition relations among the subgoals form a

linear chain. As discussed in Section 4.7, these strong assumptions are a reason why our model

138

precondition relations between subgoals x even in the absence of information from

the text predictions C. This allows our method to effectively predict high-level plans

even when the required precondition information is not available from text.

In contrast to Equation 4.1 where the predictions are goal-agnostic, the subgoal

sequence predictions are goal-specific. As before, θx is the vector of model parameters,

and φx is the feature function. Additionally, we assume a special stop symbol, x∅,

which indicates the end of the subgoal sequence.

4.4.3 Parameter Update

Parameter updates in our model are done via reinforcement learning. Specifically,

once the model has predicted a subgoal sequence for a given goal, the sequence is given

to the low-level planner for execution. The success or failure of this execution is used

to compute the reward signal r for parameter estimation. This predict-execute-update

cycle is repeated until convergence. We assume that our reward signal r strongly

correlates with the correctness of model predictions. Therefore, during learning, we

need to find the model parameters that maximize expected future reward [68]. We

perform this maximization via stochastic gradient ascent, using the standard policy

gradient algorithm [69, 75].

We perform two separate policy gradient updates, one for each of the model com-

ponents. The objective of the text component of our model is purely to predict

the validity of preconditions. Therefore, subgoal pairs 〈xk, xl〉 where xl is reachable

from xk, are given positive reward. The corresponding parameter update takes the

following form:

∆θc ← αc r

[
φc(xi, xj, ~wk, qk) − Ep(xi→xj |·)

[
φc(xi, xj, ~wk, qk)

]]
, (4.2)

where αc is the learning rate.

does not solve all the tasks in our experiments. These assumptions can potentially be removed by

treating this portion of our task as a planning problem, instead of viewing it as a sequence prediction

problem. We leave this as an avenue for future work.

139

The objective of the planning component of our model is to predict subgoal se-

quences that successfully achieve the given planning goals. Thus we directly use

plan-success as a binary reward signal, which is applied to each subgoal decision in a

sequence. This results in the following update:

∆θx ← αx r
∑
t

[
φx(xt, xt−1, s

g
0, s

g
f , C) − Ep(x′i|·)

[
φx(x

′
i, xt−1, s

g
0, s

g
f , C)

]]
, (4.3)

where, t indexes into the subgoal sequence and αx is the learning rate.

4.4.4 Alternative Modeling Options

Inducing High-level Actions Our method, described in the section above, views

a high-level plan as a sequence of subgoals. An alternative approach to planning in

complex domains is to induce high-level actions, and then plan using these actions.

One way to construct such high-level actions is to identify repeating sequences of

steps in observed low-level plans – since useful high-level actions are likely to occur

often in actual plans. In this perspective, text that describes high-level tasks in

terms of step-by-step instructions can be leveraged to connect the high-level action

to it’s low-level steps. A significant disadvantage of this approach, however, is that

unlike our method it requires observations of useful low-level plans – since random

exploration is highly unlikely to result in low-level action sequences that correspond

to real high-level actions.

Planning Over Predicted Pairwise Relations One of the weaknesses of our

method is the assumption that preconditions are Markovian, and that precondition

relations among the subgoals for a given task form a linear chain. As discussed

in Section 4.7, this limits the performance of our model. One way to overcome this

deficiency is to apply traditional planning algorithms at the level of subgoals, using the

precondition relations predicted by our model to define the state transition function.

We leave this as an avenue for future work.

140

Input: A document d,

Set of planning tasks G,

Set of candidate precondition relations Call,

Reward function r(),

Number of iterations T

Initialization:Model parameters θx = 0 and θc = 0.

for i = 1 · · ·T do

Sample valid preconditions:

C ← ∅

foreach 〈xi, xj〉 ∈ Call do

foreach Sentence ~wk containing xi and xj do

v ∼ p(xi → xj | ~wk, qk; θc)

if v = 1 then C = C ∪ 〈xi, xj〉
end

end

Predict subgoal sequences for each task g.

foreach g ∈ G do

Sample subgoal sequence ~x as follows:

for t = 1 · · ·n do

Sample next subgoal:

xt ∼ p(x | xt−1, sg0, s
g
f , C; θx)

Construct low-level subtask from xt−1 to xt

Execute low-level planner on subtask

end

Update subgoal prediction model using Eqn. 4.2

end

Update text precondition model using Eqn. 4.3

end

Algorithm 2: A policy gradient algorithm for parameter estimation in our model.

141

4.5 Applying the Model

We apply our method to Minecraft, a grid-based virtual world. Each grid location

represents a tile of either land or water and may also contain resources. Users can

freely move around the world, harvest resources and craft various tools and objects

from these resources. The dynamics of the world require certain resources or tools as

prerequisites for performing a given action, as can be seen in Figure 4-3. For example,

a user must first craft a bucket before they can collect milk.

4.5.1 Defining the Domain

In order to execute a traditional planner on the Minecraft domain, we defined the do-

main using the Planning Domain Definition Language [28]. This is the standard task

definition language used in the international planning competitions (IPC).6 We define

as predicates all aspects of the game state – for example, the location of resources

in the world, the resources and objects possessed by the player, and the player’s

location. Our subgoals xi and our task goals sgf map directly to these predicates.

This results in a domain with significantly greater complexity than those solvable by

traditional low-level planners. Table 4.1 compares the complexity of our domain with

the planning domains used in the IPC.

4.5.2 Low-level Planner

As our low-level planner we employ the Metric-FF planner [36], the state-of-art base-

line used in the 2008 International Planning Competition. Metric-FF is a forward-

chaining heuristic state space planner. It’s main heuristic is to simplify the task by

ignoring operator delete lists. The number of actions in the solution for this simplified

task is then used as the goal distance estimate for various search strategies.

6http://ipc.icaps-conference.org/

142

Domain #Objects #Pred Types #Actions

Parking 49 5 4

Floortile 61 10 7

Barman 40 15 12

Minecraft 108 16 68

Table 4.1: A comparison of complexity between Minecraft and other domains used

in the IPC-2011 sequential satisficing track. In Minecraft domain, the number of

different objects, predicate types and actions is significantly larger.

fish

iron

shears bucket

milkstringseeds wool

iron doorbone meal

fishing rod

wood

plank

stick

fence

Figure 4-3: Examples of the precondition dependencies present in the Minecraft do-

main.

Words

Dependency Types

Dependency Type × Direction

Word × Dependency Type

Word × Dependency Type × Direction

Table 4.2: Example text features. A subgoal pair 〈xi, xj〉 is first mapped to word

tokens using a small grounding table. Words and dependencies are extracted along

paths between mapped target words. These are combined with path directions to

generate the text features.

143

4.5.3 Features

The two components of our model leverage different types of information, and as a

result, they each use a distinct set of features. The text component features φc are

computed over sentences and their dependency parses. The Stanford parser [22] was

used to generate the dependency parse information for each sentence. Examples of

these features appear in Table 4.2. The sequence prediction component conditions

on both the preconditions induced by the text component as well as the planning

state and the previous subgoal. Thus φx contains features which check whether two

subgoals are connected via an induced precondition relation, in addition to features

which are simply the Cartesian product of domain predicates.

144

4.6 Experimental Setup

4.6.1 Datasets

As the text description of our virtual world, we use the Minecraft Wiki,7 the most pop-

ular information source about the game. Our seed grounding of predicates contains

74 entries, examples of which can be seen in Table 4.3. We use this seed grounding

to identify a set of 242 sentences that reference predicates in the Minecraft domain.

This results in a set of 694 Candidate Relations. We also manually annotated the

relations expressed in the text, identifying 94 of the Candidate Relations as valid.

Additionally note that an average sentence in our corpus contains 20 words, and the

whole corpus contains 979 unique word types.

We test our system on a set of 98 problems that involve collecting resources and

constructing objects in the Minecraft domain – for example, fishing, cooking and

making furniture. To assess the complexity of these tasks, we manually constructed

high-level plans for these goals and solved them using the Metric-FF planner. On

average, the execution of the sequence of low-level plans takes 35 actions, with 3

actions for the shortest plan and 123 actions for the longest. The average branching

factor is 9.7, leading to an average search space of more than 1034 possible action

sequences. For evaluation purposes we manually identify a set of Gold Relations

consisting of all precondition relations that are valid in this domain, including those

not discussed in the text.

4.6.2 Evaluation Metrics

We use our manual annotations to evaluate the accuracy of relation extraction. To

evaluate our high-level planner, we use the standard measure adopted by the planning

competitions. This evaluation measure simply assesses whether the planner completes

a task in a predefined time.

7http://www.minecraftwiki.net/wiki/Minecraft Wiki/

145

Domain Predicate Noun Phrases

have(plank)
wooden plank

wood plank

have(stone)
stone

cobblestone

have(iron) iron ingot

Table 4.3: Examples in our seed grounding table. Each predicate is mapped to one

or more noun phrases that describe it in the text.

4.6.3 Baselines

To evaluate the performance of our relation extraction, we compare against an SVM

classifier trained on gold standard precondition relations. We test the SVM baseline

in a leave-one-out fashion.

To evaluate the performance of our text-aware high-level planner, we compare

against five baselines. The first two baselines – FF and No Text – do not use any

textual information. The FF baseline directly runs the Metric-FF planner on the

given task, while the No Text baseline is a variant of our model that learns to plan

in the reinforcement learning framework. It uses the same state-level features as our

model, but does not have access to text.

The All Text baseline has access to the full set of 694 Candidate Relations. During

learning, our full model refines this set of relations, while in contrast the All Text

baseline always uses the full set.

The two remaining baselines constitute the upper bound on the performance of

our model. The first, Manual Text, is a variant of our model which directly uses the

links derived from manual annotations of preconditions in text. The second, Gold,

has access to the Gold Relations. Note that the connections available to Manual Text

are a subset of the Gold links, because the text does not specify all relations.

146

4.6.4 Experimental Details

All experimental results are averaged over 200 independent runs for both our model

as well as the baselines. Each of these trials is run for 200 iterations with a maximum

subgoal sequence length of 10. To find a low-level plan between each consecutive

pair of subgoals, our high-level planner internally uses Metric-FF. We give Metric-FF

a one-minute timeout to find such a low-level plan. To ensure that the comparison

between the high-level planners and the FF baseline is fair, the FF baseline is allowed

a runtime of 2,000 minutes. This is an upper bound on the time that our high-level

planner can take over the 200 learning iterations, with subgoal sequences of length at

most 10 and a one minute timeout. Lastly, during learning, we use a fixed learning

rate of 0.0001 and we encourage our model to explore the state space by using the

standard ε-greedy exploration strategy [68].

147

4.7 Results

4.7.1 Relation Extraction

Figure 4-4 shows the performance of our method on identifying preconditions in text.

We also show the performance of the supervised SVM baseline. As can be seen,

after 200 learning iterations, our model achieves an F-Measure of 66%, equal to the

supervised baseline. These results support our hypothesis that planning feedback is

a powerful source of information for text analysis. Figure 4-5 shows some examples

of the sentences and the corresponding extracted relations.

4.7.2 Planning Performance

As shown in Table 4.4 our text-enriched planning model outperforms the text-free

baselines by more than 10%. Moreover, the performance improvement of our model

over the All Text baseline demonstrates that the accuracy of the extracted text rela-

tions does indeed impact planning performance. A similar conclusion can be reached

by comparing the performance of our model and the Manual Text baseline.

The performance of the low-level planner, FF, indicates the fundamental difficulty

of the planning tasks used in our experiments. Note that all the planning tasks are

solvable – indeed, given manually specified high-level plans, FF is able to compute

the low-level plans for all tasks. The reason for FF’s poor performance is due to the

large search space of the Minecraft domain. In the tasks that it is unable to solve,

FF runs out of either memory or the pre-specified time limit.

The difference in performance of 2.35% between Manual Text and Gold shows the

importance of the precondition information that is missing from the text. Note that

Gold itself does not complete all tasks – this is largely because the Markov assumption

made by our model does not hold for all tasks.8

8When a given task has two non-trivial preconditions, our model will choose to satisfy one of the

two first, and the Markov assumption blinds it to the remaining precondition, preventing it from

determining that it must still satisfy the other.

148

200100 15050

Figure 4-4: The performance of our model and a supervised SVM baseline on the

precondition prediction task. Also shown is the F-Score of the full set of candidate

relations which is used unmodified by All Text, and given as input to our model.

The F-score of our model, averaged over 200 trials, is shown with respect to learning

iterations.

Sticks are the only building material required to craft a fence or ladder.

Raw fish is a food item that can be obtained by fishing with a fishing rod in any body of water.

Bowls are containers made from wooden planks whose only use, currently, is to hold mushroom stew.

✘✘

Figure 4-5: Some examples of the precondition relations predicted by our model from

text. Check marks (3) indicate correct predictions, while a cross (8) marks the

incorrect one. Note that each pair of highlighted noun phrases in a sentence is a

candidate relation, and pairs that are not connected by an arrow were predicted to

be invalid by our model.

149

Method %Plans

FF 40.8

No text 69.4

All text 75.5

Full model 80.2

Manual text 84.7

Gold connection 87.1

Table 4.4: Percentage of tasks solved successfully by our model and the baselines. All

performance differences between methods are statistically significant at p ≤ .01.

0% 20% 40% 60% 80% 100%

No text

All text

Full model

Manual text

Gold

Easy

Hard

71%

64%

59%

48%

31%
88%

89%

91%

94%

95%

Figure 4-6: Percentage of problems solved by various models on Easy and Hard

problem sets.

150

path has word "craft"

path has dependency type "partmod"

path has word "equals"

path has word "use"

path has dependency type "xsubj"

path has word "use"

path has word "fill"

path has dependency type "dobj"

path has dependency type "xsubj"

path has word "craft"

Figure 4-7: The top five positive features on words and dependency types learnt by

our model (above) and by SVM (below) for precondition prediction.

Figure 4-6 breaks down the results based on the difficulty of the corresponding

planning task. We measure problem complexity in terms of low-level steps needed

to implement a manually constructed high-level plan. Based on this measure, we

divide the problems into two sets. As can be seen, all of the high-level planners solve

almost all of the easy problems. However, the performance varies greatly on the more

challenging tasks, directly correlating with planner sophistication. On these tasks our

model outperforms the No Text baseline by 28% and the All Text baseline by 11%.

4.7.3 Feature Analysis

Figure 4-7 shows the top ten positive features for our model and the SVM baseline.

Both models picked up on the words that indicate precondition relations in this do-

main. For instance, the word use often occurs in sentences that describe the resources

required to make an object, such as “bricks are items used to craft brick blocks”. In

addition to lexical features, dependency information is also given high weight by both

learners. An example of this is a feature that checks for the direct object dependency

type. This analysis is consistent with prior work on event semantics which shows

lexico-syntactic features are effective cues for learning text relations [8, 6, 25].

151

4.8 Conclusions

In this chapter, we presented a novel technique for inducing precondition relations

from text by grounding them in the semantics of planning operations. While using

planning feedback as it’s only source of supervision, our method for relation extraction

achieves a performance on par with that of a supervised baseline. Furthermore,

relation grounding provides a new view on classical planning problems which enables

us to create high-level plans based on language abstractions. We show that building

high-level plans in this manner significantly outperforms traditional techniques in

terms of task completion.

152

5
Conclusions

In this thesis, we have shown how the connection between the semantics of language

and the dynamics of the world can be leveraged to learn grounded language analysis.

In particular, connecting language to control applications enables a powerful new

source of supervision for language analysis. As our results across multiple tasks

have shown, feedback signals inherent to the control application can be used to learn

effective language analysis. Notably, the performance of our methods, which learn

only from control feedback, rival that of equivalent manually supervised methods.

Our approach of learning language from such feedback is a radical departure from

prior work, which have primarily relied on learning in either a manually supervised

or an unsupervised setting.

Another equally important advantage of grounding language in control applica-

tions is the ability to guide control actions using information from text. As shown

by our results, automatically extracted textual information can significantly improve

control performance. Remarkably, our methods are able to achieve effective language

analysis, and improve control performance while starting with little or no prior knowl-

edge about either language or the control application.

Across all three tasks discussed in this thesis, the appropriate modeling of linguis-

tic phenomena present in the text has been crucial to good performance. Specifically,

we have shown the importance of modeling the situational relevance of text, the ab-

stract relations expressed in text, and the dynamics of the world corresponding to

the text descriptions.

153

5.1 Future Work

Several avenues of investigation arise from the work described in this thesis, some of

which we discuss below.

• Mixed-mode Language The models we have described in this thesis operate

effectively over text containing different kinds of information – i.e., imperative

step-by-step instructions, high-level strategy descriptions and general informa-

tion about domain dynamics. Text documents, however, often contain a com-

bination of such phenomena. Thus, methods that are able to simultaneously

handle such variety will be essential for leveraging written human knowledge in

real-world control applications.

• Document Level Grounding A particular limitation of our methods is the

assumption that any information we wish to extract from text is expressed

in a single sentence. This is clearly not always the case, and removing this

assumption would expand our ability to extract useful information from text.

This is particularly important in the case of documents containing complex

information about the control application – information that practically cannot

be expressed in single self-contained sentences.

• Abstraction Hierarchies In this thesis, we have shown the importance of

modeling abstract relations expressed in text. However, our algorithm is lim-

ited to a single level of abstraction. An intriguing line of future work is to learn

a hierarchy of such abstractions. In relation to the high-level planning method

described in Chapter 4, learning an abstraction hierarchy can enable the in-

duction of planning hierarchies from text. Moreover, such hierarchies are also

important in light of text describing complex domains, where multiple levels of

abstraction are essential for compactly describing the domain.

154

Appendix A

Instruction Interpretation

A.1 Derivations of Parameter Updates

This section details the derivation of parameter updates for our model for instruction

interpretation (see Section 2.3). Our objective during learning is to find the policy

parameters that maximize the expected future reward (i.e., value function Vθ) over

all training documents. In this setting, the gradient ascent parameter updates for a

log-linear policy function can be derived in a straightforward fashion [73].

We begin by computing the derivative of the total value function (i.e., total ex-

pected future reward) w.r.t θ,

Vθ(s) = Ep(h|θ) [r(h)]

=
∑
h∈H

r(h)p(h | θ).

Here the summation is over the histories H observed while interpreting the training

documents D, and p(h | θ) is the probability of observing history h under policy

parameters θ. In particular,

p(h | θ) =
n−1∏
t=0

p(st+1 | st, at) p(at | st, θ)

155

=

[
n−1∏
t=0

p(st+1 | st, at)

][
n−1∏
t=0

p(at | st, θ)

]

= F (h) G(h, θ).

Differentiating Vθ with respect to θ,

∂

∂θk
Vθ =

∑
h∈H

r(h) F (h)
∂

∂θk
G(h, θ),

Where

∂

∂θk
G(h, θ) =

∂

∂θk

[
n−1∏
t=0

p(at | st, θ)

]

=
n−1∑
t=0

[
∂

∂θk
p(at | st, θ)

∏
t′ 6=t

p(at′ | st′ , θ)

]

=
n−1∑
t=0

[
∂
∂θk
p(at | st, θ)

p(at | st, θ)

n−1∏
t′=0

p(at′ | st′ , θ)

]

=
n−1∏
t′=0

p(at′ | st′ , θ)
n−1∑
t=0

∂

∂θk
log p(at | st, θ)

= G(h, θ)
n−1∑
t=0

∂

∂θk
log p(at | st, θ).

Which gives us Equation 2.8:

∂

∂θk
Vθ =

∑
h∈H

r(h) F (h) G(h, θ)
n−1∑
t=0

∂

∂θk
log p(at | st, θ)

=
∑
h∈H

r(h) p(h | θ)
n−1∑
t=0

∂

∂θk
log p(at | st, θ)

156

= Ep(h|θ)

[
r(h)

n−1∑
t=0

∂

∂θ
log p(at | st; θ)

]
.

To expand the partial derivative in the inner sum, we note that we have defined the

policy as a log-linear distribution. I.e.,

p(at | st; θ) =
eθ·

~φ(at,st)∑
a

eθ·
~φ(a,st)

,

log p(at | st; θ) = θ · ~φ(at, st)− log
∑
a∈A

eθ·
~φ(a,st).

Therefore,

∂

∂θk
log p(at | st, θ) =

∂

∂θk

[
θ · ~φ(at, st)− log

∑
a∈A

eθ·
~φ(a,st)

]

= φk(at, st)−

∂

∂θk

∑
a∈A

eθ·
~φ(a,st)

∑
a′∈A

eθ·
~φ(a′,st)

= φk(at, st)−

∑
a∈A

∂

∂θk
eθ·

~φ(a,st)

∑
a′∈A

eθ·
~φ(a′,st)

= φk(at, st)−

∑
a∈A

φk(a, st) e
θ·~φ(a,st)

∑
a′∈A

eθ·
~φ(a′,st)

= φk(at, st)−
∑
a∈A

φk(a, st)

 eθ·
~φ(a,st)∑

a′∈A

eθ·
~φ(a′,st)

157

= φk(at, st)−
∑
a∈A

φk(a, st) p(a | st, θ)

= φk(at, st)− Ep(a|st,θ) [φk(a, st)]

Expanding Equation 2.8, this gives us

∂

∂θk
Vθ =

∑
h∈H

r(h) p(h | θ)
n−1∑
t=0

∂

∂θk
log p(at | st, θ)

=
∑
h∈H

r(h) p(h | θ)
n−1∑
t=0

(
φk(at, st)−

∑
a∈A

φk(a, st) p(a | st, θ)

)
.

During training, we select actions a by sampling from the policy p(a | s, θ). The

resulting observed histories h are therefore samples from p(h | θ). Under this action

selection scheme, using a learning rate of α, we get the following stochastic gradient

ascent parameter updates:

∆θ =
∑
h∈H

α r(h)
n−1∑
t=0

(
φk(at, st)−

∑
a∈A

φk(a, st) p(a | st, θ)

)
.

When single history samples h are used to approximate the gradient, the parameter

updates simplify to

∆θ = α r(h)
n−1∑
t=0

(
φk(at, st)−

∑
a∈A

φk(a, st) p(a | st, θ)

)
.

158

A.2 Features

Basic features

The following templates are used to compute basic features that are used by the model

for interpreting low-level instructions as well as the model for interpreting high-level

instructions:

• Word Wc describes next environment command.

• Binned closest linear distance from word Wc to the words of the previous com-

mand.

• Word Wo describes GUI widget of next command.

• Word Wo describes GUI widget of next command, and W matches the label of

some widget in the environment.

• Lowest edit distance of Wo to widget labels in the environment.

• Linear distance between candidate command word Wc and candidate GUI widget

word Wo.

• Word Wp is the text parameter of candidate command.

• The word immediately before Wp is W .

• The word immediately after Wp is W .

• Linear distance between candidate parameter word Wp and candidate command

word Wc.

• Linear distance between candidate parameter word Wp and candidate GUI widget

word Wo.

• Word W is present in the shortest word span containing Wc, Wo and Wp.

• Number of sentences between words describing next command, and the words

selected for the previous command.

• Edit distance of candidate GUI widget’s label to Wo.

159

• Candidate GUI widget, O, is visible.

• Candidate GUI widget, O, has input focus.

• Candidate GUI widget, O, is in the foreground.

• Candidate GUI widget, O, has input enabled.

• Candidate GUI widget, O, is selected.

• Candidate GUI widget, O, is a child of another GUI widget.

• Candidate GUI widget, O, appeared on screen after previous environment com-

mand was executed.

• Candidate GUI widget, O, changed it’s name after previous environment com-

mand was executed.

• Class name of candidate GUI widget is present in sentence immediately before

or after Wo.

• Candidate command word is Wc and candidate command is C.

• Candidate command is C and candidate GUI widget’s class is T .

Look-ahead features

The following templates are used to compute the look-ahead features used by the

model for interpreting high-level instructions. These features look at how the remain-

ing text of the sentence can potentially be interpreted within the partial environment

model, after the current candidate command is executed.

• Ratio of unused words in sentence that can potentially be interpreted.

• Number of low-level environment commands involved in potential interpretation.

• Average reward received in potential interpretation.

160

Appendix B

Strategy Interpretation

B.1 Derivations of Parameter Updates

The parameter of our model are estimated via standard error backpropagation [15,

56]. To derive the parameter updates, consider the slightly simplified neural network

shown below. This network is identical to our model, but for the sake of clarity, it

has only a single second layer ~y instead of the two parallel second layers ~y and ~z. The

parameter updates for these parallel layers ~y and ~z are similar, therefore we will show

the derivation only for ~y in addition to the updates for the final layer.

As in our model, the nodes yi in the network above are activated via a softmax

function; the third layer, ~f , is computed deterministically from the active nodes of

the second layer via the function ~g(yi, ~x); and the output Q is a linear combination

161

of ~f weighted by ~w:

p(yi = 1 | ~x; ~ui) =
e~ui·~x∑
k

e~uk·~x
,

~f =
∑
i

~g(~x, yi) p(yi | ~x; ~ui),

Q = ~w · ~f.

Our goal is to minimize the mean-squared error e by gradient descent. We achieve this

by updating model parameters along the gradient of e with respect to each parameter.

Using θi as a general term to indicate our model’s parameters, this update takes the

form:

e =
1

2
(Q−R)2,

∆θi =
∂e

∂θi

= (Q−R)
∂Q

∂θi
. (B.1)

From Equation (B.1), the updates for final layer parameters are given by:

∆wi = (Q−R)
∂Q

∂wi

= (Q−R)
∂

∂wi
~w · ~f

= (Q−R) fi.

Since our model samples the one most relevant sentence yi, and the best predicate

labeling zi, the resulting online updates for the output layer parameters ~w are:

~w ← ~w + αw [Q−R(sτ)] ~f(s, a, yi, zj),

162

where αw is the learning rate, and Q = Q(s, a). The updates for the second layer’s

parameters are similar, but somewhat more involved. Again, from Equation (B.1),

∆ui,j = (Q−R)
∂Q

∂ui,j

= (Q−R)
∂

∂ui,j
~w · ~f

= (Q−R)
∂

∂ui,j
~w ·
∑
k

~g(~x, yk) p(yi | ~x; ~uk)

= (Q−R) ~w · ~g(~x, yi)
∂

∂ui,j
p(yi | ~x; ~ui). (B.2)

Considering the final term in the above equation separately,

∂

∂ui,j
p(yi | ~x; ~ui) =

∂

∂ui,j

e~ui·~x

Z
, where Z =

∑
k

e~uk·~x

=

(
e~ui·~x

Z

) ∂
∂ui,j

e~ui·~x

Z(
e~ui·~x

Z

)
=

(
e~ui·~x

Z

)
∂

∂ui,j
log

[
e~ui·~x

Z

]
=

(
e~ui·~x

Z

)[
xj −

∂

∂ui,j
logZ

]
=

(
e~ui·~x

Z

)[
xj −

1

Z

∂Z

∂ui,j

]
=

(
e~ui·~x

Z

)[
xj −

1

Z

∂

∂ui,j

∑
k

e~uk·~x

]

=

(
e~ui·~x

Z

)[
xj −

1

Z
xje

~uk·~x
]

=

(
e~ui·~x

Z

)
xj

[
1− e~ui·~x

Z

]
.

163

Therefore, from Equation (B.2),

∆ui,j = (Q−R) ~w · ~g(~x, yi)
∂

∂ui,j
p(yi | ~x; ~ui)

= (Q−R) ~w · ~g(~x, yi)

(
e~ui·~x

Z

)
xj

[
1− e~ui·~x

Z

]
= (Q−R) xj ~w · ~g(~x, yi) p(yi | ~x; ~ui) [1− p(yi | ~x; ~ui)]

= (Q−R) xj Q̂ [1− p(yi | ~x; ~ui)] ,

where Q̂ = ~w · ~g(~x, yi) p(yi | ~x; ~ui).

The resulting online updates for the sentence relevance and predicate labeling param-

eters ~u and ~v are:

~ui ← ~ui + αu [Q−R(sτ)] Q̂ ~x [1− p(yi|·)],

~vi ← ~vi + αv [Q−R(sτ)] Q̂ ~x [1− p(zi|·)].

164

B.2 Example of Sentence Relevance Predictions

Shown below is a portion of the strategy guide for Civilization II. Sentences that were

identified as relevant by our text-aware model are highlighted in green.

Choosing your location.

When building a new city, carefully plan where you place it. Citizens can

work the terrain surrounding the city square in an x-shaped pattern (see

city radius for a diagram showing the exact dimensions). This area is called

the city radius (the terrain square on which the settlers were standing

becomes the city square). The natural resources available where a

population settles affect its ability to produce food and goods. Cities built on

or near water sources can irrigate to increase their crop yields, and cities

near mineral outcroppings can mine for raw materials. On the other hand,

cities surrounded by desert are always handicapped by the aridness of their

terrain, and cities encircled by mountains find arable cropland at a

premium. In addition to the economic potential within the city's radius, you

need to consider the proximity of other cities and the strategic value of a

location. Ideally, you want to locate cities in areas that offer a combination

of benefits : food for population growth, raw materials for production, and

river or coastal areas for trade. Where possible, take advantage of the

presence of special resources on terrain squares (see terrain & movement

for details on their benefits).

Strategic value.

The strategic value of a city site is a final consideration. A city square's

underlying terrain can increase any defender's strength when that city

comes under attack. In some circumstances, the defensive value of a

particular city's terrain might be more important than the economic value;

consider the case where a continent narrows to a bottleneck and a rival

holds the other side. Good defensive terrain (hills, mountains, and jungle) is

generally poor for food production and inhibits the early growth of a city. If

you need to compromise between growth and defense, build the city on a

plains or grassland square with a river running through it if possible. This

yields decent trade production and gains a 50 percent defense bonus.

Regardless of where a city is built, the city square is easier to defend than

the same unimproved terrain. In a city you can build the city walls

improvement, which triples the defense factors of military units stationed

there. Also, units defending a city square are destroyed one at a time if they

lose. Outside of cities, all units stacked together are destroyed when any

military unit in the stack is defeated (units in fortresses are the only

exception; see fortresses). Placing some cities on the seacoast gives you

access to the ocean. You can launch ship units to explore the world and to

transport your units overseas. With few coastal cities, your sea power is

inhibited.

165

B.3 Examples of Predicate Labeling Predictions

Listed below are the predicate labelings computed by our text-aware method on

example sentences from the game manual. The predicted labels are indicated below

the words with the letters A, S, and B for action-description, state-description and

background respectively. Incorrect labels are indicated by a red check mark, along

with the correct label in brackets.

When the settlers becomes active, chose build road.
A AAS SS

After the road is built, use the settlers to start improving the terrain.
AA AA AS SS

A A AA

Use settlers or engineers to improve a terrain square within the city radius

✘✘ SSSSSS (A) (S)

AB

Bronze working allows you to build phalanx units

✘S AAS (S)

In order to expand your civilization , you need to build other cities

✘AS AS B B(A)✘ (S)

In order to protect the city , the phalanx must remain inside

✘✘✘✘B(S) B(S)S S(A) AA B(A)

In a city you can build the city walls improvement
A✘ (S) ✘B(A) A A A

Once the city is undefended , you can move a friendly army into the city and capture it
A A A A✘B (S)S S

You can build a city on any terrain square except for ocean.
A S✘ (A) ✘B (S) S SA✘ (S)

You can launch ship units to explore the world and to transport your units overseas
A A S✘ (A) S ✘B (S) ✘B (S) BS

You can build a wonder only if you have discovered the advance that makes it possible
A S✘ (A) S S S S

When a city is in disorder, disband distant military units, return them to their home cities,

or change their home cities

S✘ (A) S✘ (A)A AAA

A A A

A✘ (S) S

As soon as you've found a decent site , you want your settlers to build a

permanent settlement - a city

✘

✘

✘B(S) ✘B(S)S S A ✘B A

S A(A)

(B) (A)

166

B.4 Examples of Learned Text to Game Attribute

Mappings

Shown below are examples of some of the word to game-attribute associations learnt

by our model. The top ten game attributes with the strongest association by feature

weight are listed for three of the example words – “attack”, “build” and “grassland”.

For the fourth word, “settler”, only seven attributes had non-zero weights in experi-

ments used to collect these statistics.

phalanx (unit)

warriors (unit)

colossus (wonder)

city walls (city improvement)

archers (unit)

catapult (unit)

palace (city improvement)

coinage (city production)

city_build_warriors (action)

city_build_phalanx (action)

worker_goto (action)

settler_autosettle (action)

worker_autosettle (action)

pheasant (terrain attribute)

settler_irrigate (action)

worker_mine (action)

build_city_walls (action)

build_catapult (action)

swamp (terrain attribute)

grassland (terrain attribute)

settler_build_city (action)

worker_continue_action (action)

pheasant (terrain attribute)

city_build_improvement (action)

city_max_production (action)

settlers (state attribute)

city_max_food (action)

settler_goto (action)

worker_build_road (action)

pyramids (city attribute)

attack build

grassland

settlers (state attribute)

settler_build_city (action)

city (state_attribute)

grassland (terrain_attribute)

plains (terrain_attribute)

road (terrain_attribute)

workers (state attribute)

settler

167

B.5 Features

Features used predict sentence relevance

The following templates are used to compute the features for sentence relevance:

• Word W is present in sentence.

• Number of words that match the text label of the current unit, an attribute in

the immediate neighbourhood of the unit, or the action under consideration.

• The unit’s type is U, (e.g., worker) and word W is present in sentence.

• The action type is A, (e.g., irrigate) and word W is present in sentence.

Features used predict predicate structure

The following templates are used to compute the features for the predicate labeling of

words. The label being considered for the word (i.e., action, state or background)

is denoted by L.

• Label is L and the word type is W.

• Label is L and the part-of-speech tag of the word is T.

• Label is L and the parent word in the dependency tree is W.

• Label is L and the dependency type to the dependency parent word is D.

• Label is L and the part-of-speech of the dependency parent word is T.

• Label is L and the word is a leaf node in the dependency tree.

• Label is L and the word is not a leaf node in the dependency tree.

• Label is L and the word matches a state attribute name.

• Label is L and the word matches a unit type name.

• Label is L and the word matches a action name.

168

Features used to model action-value function

The following templates are used to compute the features of the action-value approx-

imation. Unless otherwise mentioned, the features look at the attributes of the player

controlled by our model.

• Percentage of world controlled.

• Percentage of world explored.

• Player’s game score.

• Opponent’s game score.

• Number of cities.

• Average size of cities.

• Total size of cities.

• Number of units.

• Number of veteran units.

• Wealth in gold.

• Excess food produced.

• Excess shield produced.

• Excess trade produced.

• Excess science produced.

• Excess gold produced.

• Excess luxury produced.

• Name of technology currently being researched.

• Percentage completion of current research.

• Percentage remaining of current research.

• Number of game turns before current research is completed.

169

The following feature templates are applied to each city controlled by the player:

• Current size of city.

• Number of turns before city grows in size.

• Amount of food stored in city.

• Amount of shield stored in city (“shields” are used to construct new buildings

and units in the city).

• Turns remaining before current construction is completed.

• Surplus food production in city.

• Surplus shield production in city.

• Surplus trade production in city.

• Surplus science production in city.

• Surplus gold production in city.

• Surplus luxury production in city.

• Distance to closest friendly city.

• Average distance to friendly cities.

• City governance type.

• Type of building or unit currently under construction.

• Types of buildings already constructed in city.

• Type of terrain surrounding the city.

• Type of resources available in the city’s neighbourhood.

• Is there another city in the neighbourhood.

• Is there an enemy unit in the neighbourhood.

• Is there an enemy city in the neighbourhood.

The following feature templates are applied to each unit controlled by the player:

170

• Type of unit.

• Moves left for unit in current game turn.

• Current health of unit.

• Hit-points of unit.

• Is unit a veteran.

• Distance to closest friendly city.

• Average distance to friendly cities.

• Type of terrain surrounding the unit.

• Type of resources available in the unit’s neighbourhood.

• Is there an enemy unit in the neighbourhood.

• Is there an enemy city in the neighbourhood.

The following feature templates are applied to each predicate-labeled word in the

sentence selected as relevant, combined with the current state and action attributes:

• Word W is present in sentence, and the action being considered is A.

• Word W with predicate label P is present in sentence, and the action being

considered is A.

• Word W is present in sentence, the current unit’s type is U, and the action

being considered is A.

• Word W with predicate label P is present in sentence, the current unit’s type is

U, and the action being considered is A.

• Word W is present in sentence, and the current unit’s type is U.

• Word W with predicate label P is present in sentence, and the current unit’s

type is U.

• Word W is present in sentence, and an attribute with text label A is present in

the current unit’s neighbourhood.

171

• Word W with predicate label P is present in sentence, and an attribute with text

label A is present in the current unit’s neighbourhood.

172

Appendix C

High-level Planning

C.1 Features

Features used to predict preconditions from text

Given a sentence containing two words A and B that each describe a subgoal, the

following templates are used to compute features on the dependency path between A

and B. Two different features are computed depending on whether A occurs before

B in the sentence, or vice versa. To aid generalization, words A and B themselves

replaced with the token “OBJ WORD”.

• Word W is present in A-B path.

• Dependency type D is present in A-B path.

• Word W is present in A-B path, and has dependency of type D to some other

word.

Features used to predict subgoal sequence

The following templates were used to compute the features used for subgoal sequence

prediction:

• Subgoal is reachable (subgoal was reached by some previous plan).

• Subgoal is predicted precondition for next subgoal

173

• Subgoal is predicted precondition for next subgoal, and is reachable

• Subgoal is not a predicted precondition for next subgoal

• Every pair of subgoal predicates. E.g., (> (have wood) 0) :: (> (have stone) 0)

• Every pair of subgoal predicate parameter values. E.g., wood :: stone

174

Bibliography

[1] Fahiem Bacchus and Qiang Yang. Downward refinement and the efficiency of

hierarchical problem solving. Artificial Intell., 71(1):43–100, 1994.

[2] R. Balla and A. Fern. UCT for tactical assault planning in real-time strategy

games. In 21st International Joint Conference on Artificial Intelligence, 2009.

[3] Kobus Barnard and David A. Forsyth. Learning the semantics of words and

pictures. In Proceedings of ICCV, 2001.

[4] Jennifer L. Barry, Leslie Pack Kaelbling, and Toms Lozano-Prez. DetH*: Ap-

proximate hierarchical solution of large markov decision processes. In IJCAI’11,

pages 1928–1935, 2011.

[5] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical re-

inforcement learning. Discrete Event Dynamic Systems, 13:341–379, October

2003.

[6] Brandon Beamer and Roxana Girju. Using a bigram event model to predict

causal potential. In Proceedings of CICLing, pages 430–441, 2009.

[7] Darse Billings, Lourdes Peña Castillo, Jonathan Schaeffer, and Duane Szafron.

Using probabilistic knowledge and simulation to play poker. In 16th National

Conference on Artificial Intelligence, pages 697–703, 1999.

175

[8] Eduardo Blanco, Nuria Castell, and Dan Moldovan. Causal relation extraction.

In Proceedings of the LREC’08, 2008.

[9] J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely

approximating the value function. In Advances in NIPS, pages 369–376, 1995.

[10] S.R.K Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforce-

ment learning for mapping instructions to actions. In Proceedings of ACL, pages

82–90, 2009.

[11] S.R.K Branavan, Luke Zettlemoyer, and Regina Barzilay. Reading between the

lines: Learning to map high-level instructions to commands. In Proceedings of

ACL, pages 1268–1277, 2010.

[12] S.R.K. Branavan, David Silver, and Regina Barzilay. Learning to win by reading

manuals in a monte-carlo framework. In Proceedings of ACL, pages 268–277,

2011.

[13] S.R.K. Branavan, David Silver, and Regina Barzilay. Non-linear monte-carlo

search in civilization ii. In Proceedings of IJCAI, 2011.

[14] John S. Bridle. Training stochastic model recognition algorithms as networks can

lead to maximum mutual information estimation of parameters. In Advances in

NIPS, pages 211–217, 1990.

[15] Arthur E. Bryson and Yu-Chi Ho. Applied optimal control: optimization, esti-

mation, and control. Blaisdell Publishing Company, 1969.

[16] Du-Seong Chang and Key-Sun Choi. Incremental cue phrase learning and boot-

strapping method for causality extraction using cue phrase and word pair prob-

abilities. Inf. Process. Manage., 42(3):662–678, 2006.

[17] David L. Chen and Raymond J. Mooney. Learning to sportscast: a test of

grounded language acquisition. In Proceedings of ICML, 2008.

176

[18] David L. Chen and Raymond J. Mooney. Learning to interpret natural language

navigation instructions from observations. In Proceedings of AAAI, pages 859–

865, 2011.

[19] James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving se-

mantic parsing from the world’s response. In Proceedings of CoNNL, pages 18–27,

2010.

[20] James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving se-

mantic parsing from the world’s response. In Proceedings of CoNNL, pages 18–27,

2010.

[21] Christian Darken and John Moody. Note on learning rate schedules for stochastic

optimization. In Advances in NIPS, pages 832–838, 1990.

[22] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.

Generating typed dependency parses from phrase structure parses. In LREC

2006, 2006.

[23] Stephen Della Pietra, Vincent J. Della Pietra, and John D. Lafferty. Inducing

features of random fields. IEEE Trans. Pattern Anal. Mach. Intell., 19(4):380–

393, 1997.

[24] Barbara Di Eugenio. Understanding natural language instructions: the case of

purpose clauses. In Proceedings of ACL, pages 120–127, 1992.

[25] Q. Do, Y. Chan, and D. Roth. Minimally supervised event causality identifica-

tion. In EMNLP, 7 2011.

[26] Jacob Eisenstein, James Clarke, Dan Goldwasser, and Dan Roth. Reading to

learn: Constructing features from semantic abstracts. In Proceedings of EMNLP,

pages 958–967, 2009.

[27] Michael Fleischman and Deb Roy. Intentional context in situated natural lan-

guage learning. In Proceedings of CoNLL, pages 104–111, 2005.

177

[28] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing tempo-

ral planning domains. Journal of Artificial Intelligence Research, 20:2003, 2003.

[29] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with

patterns in Monte-Carlo Go. Technical Report 6062, INRIA, 2006.

[30] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: theory

and practice. Morgan Kaufmann, 2004.

[31] Roxana Girju and Dan I. Moldovan. Text mining for causal relations. In Pro-

ceedigns of FLAIRS, pages 360–364, 2002.

[32] Dan Goldwasser and Dan Roth. Learning from natural instructions. In Proceed-

ings of IJCAI, pages 1794–1800, 2011.

[33] Dan Goldwasser, Roi Reichart, James Clarke, and Dan Roth. Confidence driven

unsupervised semantic parsing. In Proceedings of ACL, pages 1486–1495, 2011.

[34] Peter Gorniak and Deb Roy. Speaking with your sidekick: Understanding situ-

ated speech in computer role playing games. In Proceedings of AAAI, 2005.

[35] Geoffrey Hinton. Training products of experts by minimizing contrastive diver-

gence. Neural Computation, 14:1771–1800, 2000.

[36] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan gener-

ation through heuristic search. JAIR, 14:253–302, 2001.

[37] Nicholas K. Jong and Peter Stone. Model-based function approximation in rein-

forcement learning. In Proceedings of AAMAS, pages 670–677, 2007.

[38] Anders Jonsson and Andrew Barto. A causal approach to hierarchical decompo-

sition of factored mdps. In Advances in Neural Information Processing Systems,

13:10541060, page 22. Press, 2005.

[39] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In Pro-

ceedings of ICML, 2001.

178

[40] Tessa Lau, Clemens Drews, and Jeffrey Nichols. Interpreting written how-to

instructions. In Proceedings of IJCAI, pages 1433–1438, 2009.

[41] Marián Lekavý and Pavol Návrat. Expressivity of strips-like and htn-like plan-

ning. Lecture Notes in Artificial Intelligence, 4496:121–130, 2007.

[42] Oliver Lemon and Ioannis Konstas. User simulations for context-sensitive speech

recognition in spoken dialogue systems. In Proceedings of EACL, pages 505–513,

2009.

[43] Percy Liang, Michael I. Jordan, and Dan Klein. Learning semantic correspon-

dences with less supervision. In Proceedings of ACL, pages 91–99, 2009.

[44] Percy Liang, Michael I. Jordan, and Dan Klein. Learning dependency-based

compositional semantics. In Proceedings of ACL, pages 590–599, 2011.

[45] Diane J. Litman, Michael S. Kearns, Satinder Singh, and Marilyn A. Walker.

Automatic optimization of dialogue management. In Proceedings of COLING,

2000.

[46] Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk:

connecting language, knowledge, and action in route instructions. In Proceedings

of AAAI, pages 1475–1482, 2006.

[47] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-

ing a large annotated corpus of english: The penn treebank. Computational

Linguistics, 19(2):313–330, 1993.

[48] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. Auto-

matic discovery and transfer of maxq hierarchies. In Proceedings of the 25th

international conference on Machine learning, ICML ’08, pages 648–655, 2008.

[49] Raymond J. Mooney. Learning to connect language and perception. In Proceed-

ings of AAAI, pages 1598–1601, 2008.

179

[50] Raymond J. Mooney. Learning language from its perceptual context. In Pro-

ceedings of ECML/PKDD, 2008.

[51] A. Newell, J.C. Shaw, and H.A. Simon. The processes of creative thinking. Paper

P-1320. Rand Corporation, 1959.

[52] James Timothy Oates. Grounding knowledge in sensors: Unsupervised learning

for language and planning. PhD thesis, University of Massachusetts Amherst,

2001.

[53] Warren B Powell. Approximate Dynamic Programming. Wiley-Interscience, 2007.

[54] Deb K. Roy and Alex P. Pentland. Learning words from sights and sounds: a

computational model. Cognitive Science 26, pages 113–146, 2002.

[55] Nicholas Roy, Joelle Pineau, and Sebastian Thrun. Spoken dialogue management

using probabilistic reasoning. In Proceedings of ACL, 2000.

[56] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323:533–536, 1986.

[57] J. Schäfer. The UCT algorithm applied to games with imperfect information.

Diploma Thesis. Otto-von-Guericke-Universität Magdeburg, 2008.

[58] Jost Schatzmann and Steve Young. The hidden agenda user simulation model.

IEEE Trans. Audio, Speech and Language Processing, 17(4):733–747, 2009.

[59] Konrad Scheffler and Steve Young. Automatic learning of dialogue strategy using

dialogue simulation and reinforcement learning. In Proceedings of HLT, 2002.

[60] B. Sheppard. World-championship-caliber Scrabble. Artificial Intelligence, 134

(1-2):241–275, 2002.

[61] Avirup Sil and Alexander Yates. Extracting STRIPS representations of actions

and events. In Recent Advances in Natural Language Learning (RANLP), 2011.

180

[62] Avirup Sil, Fei Huang, and Alexander Yates. Extracting action and event seman-

tics from web text. In AAAI 2010 Fall Symposium on Commonsense Knowledge

(CSK), 2010.

[63] D. Silver, R. Sutton, and M. Müller. Sample-based learning and search with

permanent and transient memories. In 25th International Conference on Machine

Learning, pages 968–975, 2008.

[64] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker. Optimizing

dialogue management with reinforcement learning: Experiments with the njfun

system. Journal of Artificial Intelligence Research, 16:105–133, 2002.

[65] Satinder P. Singh, Michael J. Kearns, Diane J. Litman, and Marilyn A. Walker.

Reinforcement learning for spoken dialogue systems. In Advances in NIPS, 1999.

[66] Jeffrey Mark Siskind. Grounding the lexical semantics of verbs in visual per-

ception using force dynamics and event logic. Journal of Artificial Intelligence

Research, 15:31–90, 2001.

[67] N. Sturtevant. An analysis of UCT in multi-player games. In 6th International

Conference on Computers and Games, pages 37–49, 2008.

[68] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. The MIT Press, 1998.

[69] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-

icy gradient methods for reinforcement learning with function approximation. In

Advances in NIPS, pages 1057–1063, 2000.

[70] Richard S. Sutton, Anna Koop, and David Silver. On the role of tracking in

stationary environments. In Proceedings of ICML, pages 871–878, 2007.

[71] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R. Walter,

Ashis Gopal Banerjee, Seth Teller, and Nicholas Roy. Understaning natural lan-

guage commands for robotic navigation and mobile manipulation. In Proceedings

of AAAI, 2011.

181

[72] G. Tesauro and G. Galperin. On-line policy improvement using Monte-Carlo

search. In Advances in Neural Information Processing 9, pages 1068–1074, 1996.

[73] Paulina Varshavskaya, Leslie Pack Kaelbling, and Daniela Rus. Automated de-

sign of adaptive controllers for modular robots using reinforcement learning. The

International Journal of Robotics Research, 27:505–526, 2008.

[74] Adam Vogel and Daniel Jurafsky. Learning to follow navigational directions. In

Proceedings of the ACL, pages 806–814, 2010.

[75] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8, 1992.

[76] Terry Winograd. Understanding Natural Language. Academic Press, 1972.

[77] Alicia P. Wolfe and Andrew G. Barto. Identifying useful subgoals in reinforce-

ment learning by local graph partitioning. In In Proceedings of the Twenty-Second

International Conference on Machine Learning, pages 816–823, 2005.

[78] Yuk Wah Wong and Raymond J. Mooney. Learning synchronous grammars for

semantic parsing with lambda calculus. In ACL, 2007.

[79] Chen Yu and Dana H. Ballard. On the integration of grounding language and

learning objects. In Proceedings of AAAI, pages 488–493, 2004.

[80] Luke Zettlemoyer and Michael Collins. Learning context-dependent mappings

from sentences to logical form. In Proceedings of ACL, pages 976–984, 2009.

182

	Introduction
	Interpreting Imperative Instructions
	Interpreting Strategy Descriptions
	Using Text to Guide High-level Planning
	Contributions
	Outline
	Interpreting Instructions into Actions
	Introduction
	Related Work
	Grounded Language Learning
	Instruction Interpretation
	Reinforcement Learning

	Model
	Problem Formulation
	A Policy for Interpreting Low-level Instructions
	Extending the Policy to High-level Instructions
	Parameter Estimation via Reinforcement Learning
	Reward Functions and ML Estimation
	Alternative Modeling Options

	Applying the Model
	Microsoft Windows Help Domain
	Crossblock: A Puzzle Game Domain

	Experimental Setup
	Datasets
	Reinforcement Learning Parameters
	Experimental Framework
	Evaluation Metrics
	Baselines

	Results
	Interpretation Performance
	Accuracy of Linguistic Analysis
	Impact of Environment Model Quality

	Conclusion
	Interpreting Strategy Descriptions into Control Behaviour
	Introduction
	Learning Game Play from Text
	Related Work
	Grounded Language Acquisition
	Language Analysis and Games
	Monte-Carlo Search for Game AI

	Monte-Carlo Search
	Game Representation
	Monte-Carlo Framework for Computer Games

	Adding Linguistic Knowledge to the Monte-Carlo Framework
	Model Structure
	Parameter Estimation
	Alternative Modeling Options

	Applying the Model
	Game States and Actions
	Utility Function
	Features

	Experimental Setup
	Datasets
	Experimental Framework
	Evaluation Metrics

	Results
	Game Performance
	Accuracy of Linguistic Analysis

	Conclusions
	Learning High-Level Planning from Text
	Introduction
	Related Work
	Extracting Event Semantics from Text
	Learning Semantics via Language Grounding
	Hierarchical Planning

	Problem Formulation
	Model
	Modeling Precondition Relations
	Modeling Subgoal Sequences
	Parameter Update
	Alternative Modeling Options

	Applying the Model
	Defining the Domain
	Low-level Planner
	Features

	Experimental Setup
	Datasets
	Evaluation Metrics
	Baselines
	Experimental Details

	Results
	Relation Extraction
	Planning Performance
	Feature Analysis

	Conclusions

	Conclusions
	Future Work

	Instruction Interpretation
	Derivations of Parameter Updates
	Features
	Strategy Interpretation
	Derivations of Parameter Updates
	Example of Sentence Relevance Predictions
	Examples of Predicate Labeling Predictions
	Examples of Learned Text to Game Attribute Mappings
	Features
	High-level Planning
	Features

