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Abstract where the target-language parse tree is broken

This paper proposes a statistical, tree-to- down into a sequence of clauses, and each clause
tree model for producing translations. Two is then translated separately. A central concept we

main contributions are as follows: (1) introduce in the translation of clauses is that of an
the extraction of syntactic structures with ~ aligned extended projectiofAEP). AEPs are de-
alignment information from a parallel cor- rived from the concept of aaxtended projection

pus of translations, and (2) use of a dis- in lexicalized tree adjoining grammars (LTAG)

diction of these target-language syntactic ~ formation that is based on work in synchronous

structures — which we calbligned ex- LTAG (Shieber and Schabes, 1990). A key con-
tended projectionsor AEPs. An evalu- tribution of this paper is a method for learning
ation of the method on translation from to map German clauses to AEPs using a feature
German to English shows similar per- based model with a perceptron learning algorithm.

formance to the phrase-based model of We performed experiments on translation from
Koehn et al. (2003). German to English on the Europarl data set. Eval-
uation in terms of both BLEU scores and human

1 Introduction judgments shows that our system performs sim-
ilarly to the phrase-based model of Koehn et al.

[
Phrase-based approaches (Och and Ney, 200@003)
to statistical machine translation (SMT) have re- '

cently achieved impressive results, leading to sig1.1 A Sketch of the Approach

nificant improvements in accuracy over the Origi’This section provides an overview of the transla-

nal IBM models (Brown et al., 1993). HOWeVer, yqn hrocess. We will use the German sentenire

phrase-based models lack a direct representatiQissen dag das haupthemmnis der vorhersehbare
of syntactic information in the source or target 'an'widerstand der hersteller waas a running exam-

guages; this has prompted several researchers fo, o this example we take the desired transla-

consider various approaches that make use of syl to hewe know that the main obstacle has been

tactic information. the predictable resistance of manufacturers

This paper describes a framework fbee-to-  qyangjation of a German sentence proceeds in
tree based statistical translation. Our goal is oy, following four steps:

learn a model that maps parse trees in the source

language to parse trees in the target Ianguages.tep 1. The German sentence is parsed and then

The model is learned from a corpus of translatroken down into separate parse structures for a

tion pairs, where each sentence in the source gieduence of clauses. For example, the German ex-
target language has an associated parse tree. \RB'PI€ above is broken into a parse structure for
see two major benefits of tree-to-tree based trandh€ clausewir wissenfoliowed by a parse struc-
lation. First, it is possible to explicitly model the turé for the subordinate clausif . .war. Each

syntax of the target language, thereby improvingOf these clauses is then translated separately, using

grammaticality. Second, we can build a detailecSt€PS 2—3 below.

model of the correspondence between the sourcgtep 2: A structure that we will call amligned

and target parse trees, thereby attempting to corextended projectiofAEP) is predicted for each

struct translations that preserve the meaning oerman clause. To illustrate this step, consider

source language sentences. translation of the second German clause, which
Our translation framework involves a processhas the following parse structure:



s-oc kous-cp daR The main focus of this paper will be Step 2: the

np-siy] art das , prediction of AEPs from German clauses. AEPs
nn haupthemmnis . . . .
np-pdzjart der are detailed structural objects, and their relation-
adja vorhersehbare ship to the source-language clause can be quite
Eg_gédgrrtséae”rd complex. We use a discriminative feature-based
nn hersteller model, trained with the perceptron algorithm, to
vafin-hd war incrementally predict the AEP in a sequence of

Note that we use the symbdisand[2 to identify ~ Steps. At each step we define features that allow

the two modifiers (arguments or adjuncts) in thethe model to capture a wide variety of dependen-

C|ause’ in this case a Subject and an Object_ cies within the AEP itSG'f, or between the AEP and
A major part of the AEP is a parse-tree frag-the source-language clause.

ment, that is similar to a TAG elementary tree (see L
. ) y ( 1.2 Motivation for the Approach
also Figure 2):

Our approach to tree-to-tree translation is mo-
tivated by several observations. Breaking the

SBAR

nat /5\ source-language tree into clauses (Step 1) consid-
NP vp erably simplifies the difficult problem of defining
\,/\VP an alignment between source and target trees. Our
ms VWP impression is that high-quality translations can be
baen produced in a clause-by-clause fashtofihe use

Following the work of Frank (2002), we will refer Of a feature-based model for AEP prediction (Step
to a structure like this as aextended projection 2) allows us to capture complex syntactic corre-
(EP). The EP encapsulates the core syntactic struéPondences between English and German, as well
ture in the English clause. It contains the main@s grammaticality constraints on the English side.
verbbeen as well as the function wordsat and In this paper, we implement the translation of
has It also contains a parse tree “spine” which hagnodifiers (Step 3) with the phrase-based system
the main vertbeenas one of its leaves, and has theof Koehn et al. (2003). The modifiers in our data
clause labeSBARas its root. In addition, it spec- Setare generally small chunks of text such as NPs,
ifies positions for arguments in the clause—in thisPPs, and ADJPs, which by definition do not in-
case NPs corresponding to the subject and objecglude clauses or verbs. In our approach, we use
An AEP contains an EP, as well atignment the phrase-based system to genenabest lists of
information about where the German modifiers candidate translations and then rerank the trans-
should be placed in the extended projection. Folations based on grammaticality, i.e., using crite-
example, the AEP in this case would contain theia that judge how well they fit the position in the
tree fragment shown above, together with an alignAEP. In future work, we might use finite state ma-
ment specifying that the modifief8 and(2] from  chines in place of a reranking approach, or recur-
the German parse will appear in the EP as subje&Vely apply the AEP approach to the modifiers.
and object, respectively. Stitching translated clauses back together (Step

Step 3: The German modifiers are translated4) _is a relatively simple task: in a substantial ma-

and placed in the appropriate positions within thelorlty of cgses, the Germar_w clauses are not embed-
AEP. For example, the modifiedsas haupthemm- ded, but instead form a linear sequence that ac-
nis and der vorhe,rsehbare widerstand der her- €ounts for the entire sentence. In these cases we
steller would be translated ahie main obstacle can simply concatenate the English clause trans-

andthe predictable resistance of manufacturersla‘tlons to form the full translation. Embedded

respectively, and then placed into the subject anélatu.f.es n t(?jgfrfrnalr: ? r? shghtlybmg(rje gortnplltcated,
object positions in the AEP. ut it is not difficult to form embedded structures

o _ in the English translations.
Step 4: The individual clause translations are  gection 5.2 of this paper describes the features
combined to give a final translation. For example
the translationsve knowandthat the main obsta- !Note that we do not assume that all of the translations

le has b Id b t ted 1o i in the training data have been produced in a clause-by-clause
cle has been. . wou € concatenated 10 gV aqhion, Rather, we assume that good translations for test

know that the main obstacle has been examples can be produced in this way.




we use for AEP prediction in translation from o~

German to English. Many of the features of the ~Fa vp IN 5

AEP prediction model are specifically tuned to the v Sara that NP_A/\VP
choice of German and English as the source and know

target languages. However, it should be easy to wr Y /VP\

develop new feature sets to deal with other lan- 5~ % weoo
guages or treebanking styles. We see this as on@le  obstacte e
of the strengths of the feature-based approach. Figure 1: Extended projections for the verowandbeen

In the work presented in this paper, we focus onamd for the noumbstacle The EPs were t_aken from the parse

_ . .tree for the sentend&fe know that the main obstacle has been

the prediction of clausal AEPs, i.e., AEPs assoCige predictable resistance of manufacturers
ated with main verbs. One reason for this is that
clause structures are particularly rich and comtic information through reranking approaches ap-
plex from a syntactic perspective. This means thaplied to n-best output from phrase-based systems
there should be considerable potential in improv{Och et al., 2004). Another class of approaches
ing translation quality if we can accurately predicthas shown improvements in translation through re-
these structures. It also means that clause-levékrdering, where source language strings are parsed
AEPs are a good test-bed for the discriminativeand then reordered, in an attempt to recover a word
approach to AEP prediction; future work may con-order that is closer to the target language (Collins
sider applying these methods to other structurest al., 2005; Xia and McCord, 2004).
such as NPs, PPs, ADJPs, and so on. Our approach is closely related to previous
2 Related Work work on synchronous tree adjoining grammars

. . (Shieber and Schabes, 1990; Shieber, 2004), and
There has been a substantial amount of previo

K hes that mak f svntactic | e work on TAG approaches to syntax described
work on approaches that make use of syntactic InE)y Frank (2002). A major departure from previous
formation in statistical machine translation. Wu

) _ work on synchronous TAGs is in our use of a dis-
(1997) and Alshawi (1996) describe early work ONcriminative model that incrementally predicts the

formalisms that make use of transductive gram'information in the AEP. Note also that our model

mdar?; Gra_e_hl and ngh; (2004),\2e|scr|b§ r;géz ay include features that take into account any
ods for training tree transducers. Melamed ( art of the German clause.

establishes a theoretical framework for general-
ized synchronous parsing and translation. Eisne8 A Translation Architecture Based on
(2003) discusses methods for learning synchro-  Aligned Extended Projections
nized elementary tree pairs from a parallel corpus L
of parsed sentences. Chiang (2005) has recentfyl Background: Extended Projections (EPs)
shown significant improvements in translation acExtended projections (EPs) play a crucial role in
curacy, using synchronous grammars. Riezler anthe lexicalized tree adjoining grammar (LTAG)
Maxwell (2006) describe a method for learning (Joshi, 1985) approach to syntax described by
a probabilistic model that maps LFG parse strucFrank (2002). In this paper we focus almost ex-
tures in German into LFG parse structures in Enclusively on extended projections associated with
glish. main verbs; note, however, that EPs are typically
Yamada and Knight (2001) and Galley et al.associated with all content words (nouns, adjec-
(2004) describe methods that make use of syrtives, etc.). As an example, a parse tree for the
tactic information in the target language alone;sentenceve know that the main obstacle has been
Quirk et al. (2005) describe similar methods thatthe predictable resistance of manufacturessuld
make use of dependency representations. Syntagiake use of EPs for the worde, know, main, ob-
tic parsers in the target language have been useadacle, been, predictable, resistanaeadmanufac-
as language models in translation, giving somdurers Function words (in this sentendeat, the,
improvement in accuracy (Charniak et al., 2001)has andof) do not have EPs; instead, as we de-
The work of Gildea (2003) involves methods thatscribe shortly, each function word is incorporated
make use of syntactic information in both thein an EP of some content word.
source and target languages. Figure 1 has examples of EPs. Each one is
Other work has attempted to incorporate syntacan LTAG elementary tree which contains a sin-



gle content word as one of its leaves. SubstitutiotBUBJECT: This variable can be one of three
nodes (such allP-A or SBAR-A) in the elemen- types. If there is no subject position in tBRINE
tary trees specify the positions of arguments of thevariable, then the value fdBUBJECTis NULL
content words. Each EP may contain one or mor®therwise,SUBJECTcan either be a string, for
function words that are associated with the conexamplethere® or an index of one of the modi-
tent word. For verbs, these function words includefiers in the German clause.

items such as modal verbs a_nd auxiliaries (e'g'OBJECT: This variable is similar tSUBJECT
should and has; complementlzers (e.g.that), and can also take three typeSIULL, a specific
and wh-words (e.g.whlch). For nouns,.f.unctmn string, or an index of one of the German modi-
wortljs include determiners ano(ljpreposmor;s. hfiers. It is alwaydNULL if there is no object posi-
Elementary trees corresponding to EPs form t %ion in theSPINE; it can never be a modifier index

basic units in the LTAG approach described bythat has already been assigneGtdBIECT
Frank (2002). They are combined to form a full

parse tree for a sentence using the TAG operationd/H:  This variable is alwayBIULL if there is no

of substitution and adjunction. For example, thewh-phrase position within th8PINE; it is always

EP forbeenin Figure 1 can be substituted into the & hon-empty string (such aghich orin which) if

SBAR-A position in the EP foknow the EP for @ Wh-phrase position does exist.

obstaclecan be substituted into the subject posi-\JODALS: Thisis a string of verbs that consti-

tion of the EP fobeen tute the modals that appear within the clause. We

3.2 Aligned Extended Projections (AEPS) useNULL to signify that there are no modals.

We now build on the idea of extended projectionﬁNFL:

to give a detailed description of AEPs. Figure 2

shows examples of German clauses paired with thlOD(i):  There are n modifier variables

AEPs found in training datd.The German clause MOD(1), MOD(2), ..., MOD(n) that spec-

is assumed to have(wheren > 0) modifiers. For ify the positions for German arguments that have

example, the first German parse in Figure 2 hagot already been assigned to tB&BJECT or

two arguments, indexed dsand2. Each of these OBJECT positions in the spine. Each variable

modifiers must either have a translation in the corMOD(i) can take one of five possible values:

responding English clause, or must be deleted.
An AEP consists of the following parts:

The inflected form of the verb.

e null : This value is chosen if and only if

_ o the modifier has already been assigned to the
STEM: A string specifying the stemmed form subject or object position.

of the main verb in the clause.
e deleted : This means that a translation of

thes'th German modifier is not present in the
English clause.

SPINE: A syntactic structure associated with
the main verb. The structure has the symkol
as one of its leaf nodes; this is the position of
the main verb. It includes higher projections of e pre-sub : The modifier appears after any
the verb such as VPs, Ss, and SBARs. It also in-  complementizers or wh-phrases, but before
cludes leaf nodeBIP-A in positions correspond- the subject of the English clause.

ing to noun-phrase arguments (e.g., the subject
or object) of the main verb. In addition, it may
contain leaf nodes labeled with categories such
asWHNRr WHADVRvhere a wh-phrase may be
placed. It may include leaf nodes corresponding e in-modals : The modifier appears after the
to one or more complementizers (common exam-  first modal in the sequence of modals, but be-

e post-sub : The modifier appears after the
subject of the English clause, but before the
modals.

ples beinghat, if, so that and so on). fore the second modal or the main verb.
VOICE: One of two alternativesactive  or e post-verb : The modifier appears some-
passive |, specifying the voice of the main verb. where after the main verb.

2Note that in this paper we consider translation fromGer-—___
man to English; in the remainder of the paper we takglish 3This happens in the case where there exists a subject in
to be synonymous with the target language in translation anthe English clause but not in the German clause. See, for
Germanto be synonymous with the source language. instance, the second example in Figure 2.



4 Extracting AEPs from a Corpus

[ German Clause | English AEP | A crucial step in our approach is the extraction
STEM: be of training examples from a translation corpus.
SPINE: Each training example consists of a German clause
S'Ocr'f;_‘ggr‘f%gs SBAR-A ISNl\tlrlla,tA paired with an English AEP (see Figure 2).
nn haupthemmnis VPV In our experiments, we used the Europarl cor-
”p'p@g&g%rhersehbam NP-A pus (Koehn, 2005). For each sentence pair from
nn widerstand | _ this data, we used a version of the German parser
np-ag arthdert | \S/S'BCJEE'CT: Ct"’e described by Dubey (2005) to parse the German
vafin-hd war nn hersteller) SBIJECT: component, and a version of the English parser
WH: NULL described by Collins (1999) to parse the English
Paraphrase:that [np-sb the | MODALS: has
main obstacle] [np-pd the | INFL:  been component. To extract AEPs, we perform the fol-
predictable resistance of man-| mMoD1: null lowing steps:
ufacturers] was MOD2: null

NP and PP Alignment To align NPs and PPs,
first all German and English nouns, personal

S pp-mdat] appr zwischen

: : STEM: be and possessive pronouns, numbers, and adjectives
piat beiden SPINE- | = i ) X
_ nn gesetzen o NP-A are identified in each sentence and aligned using
wvfin-hd bestehen VPV GIZA++ (Och and Ney, 2003). Next, each NP in
adv-mdz] also . . . .
np-st] adja erhebliche NP-A an English tree is aligned to an NP or PP in the
gdja rechtliche corresponding German tree in a way thatasisis-

- VOICE: active ; _ali ; ; ;
adja praktische SUBJECT: “there” tentwith the Wo.rd alignment |nformat|on. Thatis,
kon und _ OBJECT: the words dominated by the English node must be
adja wirtschaftliche | WH: NULL aligned only to words dominated by the German
nn unterschiede MODALS: NULL

node, and vice versa. Note that if there is more

. INFL: are . .
Paraphrasejpp-mo between | 5. oo e than one German node that is consistent, then the
the two pieces of legislation] : o .
exist so [np-sb significant | MOD2: pre-sub one rooted at the minimal subtree is selected.

[np ghimeam | opz: il
legal, practical and economic :
differences] Clause alignment, and AEP Extraction The

next step in the training process is to identify

STEM: release German/English clause pairs which are transla-

s-rc prels-sb die SPINE:

VD pp-mat appr an SBAR WHNP tions of each other. Wg first break each English
pdat jenem SG-AVPV or German parse tree into a set of clauses; see
nntag Appendix A for a description of how we iden-
pp-mazjapprin VOICE: passive i i i _
ne tschemnoby! | SUBJECT: NULL tify clauses. We retain only those training ex
vvpp-hd geiindet OBJECT: NULL amples where the English and German sentences
vafin-hd wurde WH: which have the same number of clauses. For these re-
Paraphrasewhich [pp-mo on | MODALS: was tained examples, define the English sentence to
that day] [pp-mo in cher- | INFL: released tain the cl d
nobyl] released were MOD1:  post-verb contain the clause sequengs, €2, en), an
MOD2:  post-verb|  the German sentence to contain the clause se-
quence(gi, g2, ..,9n). The clauses are ordered

Figure 2: Three examples of German parse trees, togeth@ccording to the position of their main verbs in
with their aligned extended projections (AEPS) in the train-the original sentence. We createandidate pairs

ing data. Note that in the second example the correspondenc .

between the German clause and its English translation is not\€1; 91); (€2,92),- .., (en, gn)) (i.€., force a one-
entirely direct. The subject in the English is the expletiveto-one correspondence between the two clause se-

there the subject in the German clause becomes the obje i ;
in English. This is a typical pattern for the German verb%uences)' We then discard any clause peirg)

bestehen The German PRwischen ...appears at the start Which are inconsistent with the NP/PP alignments
of the clause in German, but is post-verbal in the Englishfor that sentencé.
The modifieralso—whose English translation &—is in an

intermediate position in the German clause, but appears in the “A clause pair is inconsistent with the NP/PP alignments
pre-subject position in the English clause.

if it contains an NP/PP on either the German or English side
which is aligned to another NP/PP which is not within the
clause pair.



Note that this method is deliberately conservaput z, a well-formeddecision sequence faris a
tive (i.e., high precision, but lower recall), in that it sequenced, . ..,dy) such that fori = 1...n,
discards sentence pairs where the English/Germafy € ADVANCE(z, (di,...,d;—1)). We define
sentences have different numbers of clauses. IGEN(x) to be the set of all decision sequences (or
practice, we have found that the method yields &AEPs) which are well-formed fat.
large number of training examples, and that these The model that we will use is a
training examples are of relatively high quality. discriminatively-trained, feature-based model. A
Future work may consider improved methods forsignificant advantage to feature-based mod-
identifying clause pairs, for example methods thaels is their flexibility: it is very easy to
make use of labeled training examples. sensitize the model to dependencies in the

Once we have clause pairs, an AEP can beata by encoding new features. To define a
extracted. The EP for the clause is first ex-feature-based model, we assume a function
tracted, giving values for all variables except foro(z, (di, . ..,d;_1),d;) € R? which maps a deci-
SUBJECTOBJECT andMOD(1), ...,MOD(n).  siond; in context(x, (d,...,d;—1)) to afeature
The values for theSUBJECT OBJECT and vector We also assume a vectorce R? of param-
MOD(i) variables are derived from the align- eter values. We define tlseorefor any partial or
ments between NPs/PPs, and an alignment afomplete decision sequenge= (di,ds,...,dn,)
other clauses (ADVPs, ADJPs, etc.) derived frompaired withx as:

GlZA++ alignments. If the English clause has a
subject or object which is not aligned to a German SCORKEz,y) = ®(z,y) - & 1)
modifier, then the value f@UBJECTor OBJECT

is taken to be the full English string. where &(z,y) = 32, @@, (da, ..., diz1), di).

In particular, given the definitions above, the out-
5 The Model put structureF () for an inputz is the highest—
5.1 Beam search and the perceptron scoring well-formed structure far.

In this section we describe linear history-based
models with beam search, and the perceptron al-

gorithm for learning in these models. These meth- _
ods will form the basis for our model that maps T0 decode with the model we use a beam-search

German Clauses to AEPS methOd. The methOd incrementa”y bUIldS an AEP

We have a training set of examples (z;, y;) in the decision ordewl;,ds,...,dy. At each
fori = 1...n, where eachr; is a German parse Point, a beam contains the tdg highest-scoring
tree, and eacly; is an AEP. We follow previous Partial paths for the first decisions, where\/
work on history-based models, by representinds taken to be a fixed number. The score for any
eachy; as a series aV decisions(ds, ds, . .. dy). ~ Partial path is defined in Eq. 1. The ADVANCE
In our approachlN will be a fixed number for any function is used to specify the set of possible deci-
inputz: we take thelV decisions to correspond to Sions that can extend any given path in the beam.
the sequence of variabl&TEM, SPINE, ..., To train the model, we use the averaged per-
MOD(1), MOD(2), ..., MOD(n) described Ceptron algorithm described by Collins (2002).
in section 3. Eachl; is a member of a sep; 1his combination of the perceptron algorithm with
which specifies the set of allowable decisions aP@am-search is similar to that described by Collins
the i'th point (for example,D, would be the set and Roark (2004).The perceptron algorithm is a
of all possible values foBPINE). We assume a convenient choice because it converges quickly —
function ADVANCE(z, (d1, da, . . ., d;_1)) which usually taking only a few iterations over the train-
maps an input: together with a prefix of decisions ing set (Collins, 2002; Collins and Roark, 2004).
di ...d;—i toasubsetdD;. ADVANCE isafunc- 5.2 The Features of the Model
tion that specifies which decisions are allowableThe model’s features allow it to capture depen-
for a past history(ds, . .., d;_;) and an input. In dencies between the AEP and the German clause,
our case the ADVANCE function implements hardas well as dependencies between different parts
constraints on AEPs (for example, the constrain®f the AEP itself. The features included in
that theSUBJECTvariable must beNULL if no ~ SFuture work may consider alternative algorithms, such
subject position exists in tBPINE). For any in-  as those described by Daérand Marcu (2005).

F(x) =arg max SCOREz, 2
(z) B B Bz,y) (2



1 | mainverb 1 | does theSPINE have a subject?
2 | any verb in the clause 2 | does theSPINE have an object?
3 | allverbs, in sequence 3 | does theSPINE have any wh-words?
4 | spine 4 | the labels of any complementizer nonterminals
5 | tree in the SPINE
6 | preterminal label of left-most child of subject 5 | the labels of any wh-nonterminals in t8&€INE
7 | terminal label of left-most child of subject 6 | the nonterminal labelSQor SBARQn the SPINE
8 | suffix of terminal label of right-most child of subjedt | 7 | the nonterminal label of the root of tI&PINE
9 | preterminal label of left-most child of object 8 | the grammatical category of the finite verbal form
10 | terminal label of left-most child of object INFL (i.e., infinitive, 1st-, 2nd-, or 3rd-person pres,
11 | suffix of terminal label of right-most child of object pres participle, sing past, plur past, past participle)
12 | preterminal label of the negation wontcht (no Table 2: Functions of the English AEP used for making fea-
13 | is either of the stringss gibt(there is/arg tures in the AEP prediction model.
or es gab(there was/werepresent?
14 | complementizers and wh-words
15 | Tabels of all wh-nonterminals at substructure in the spine. For instance, one of
16 | terminal labels of all wh-words the features foBPINE is the labelSBARQor SQ

17 | preterminal label of a verb in first position o . . . . . .
18 | terminal fabel of a verb in first position if it exists in the candidate spine, conjoined with

19 | terminal labels of all words in any relative pronoun @ verbal preterminal label if there is a verb in the
under a PP first position of the German clause. This feature

20 | are all of the verbs at the end? .
5T T nonterminal label of the oot of e free captures the fact that German yes/no questions be-

22 | terminal labels of all words constituting the subjegt  9in with a verb in the first position.
23 | terminal labels of all words constituting the object
24 | the leaves dominated by each node in the tree VOICE: \oice features in general combine val-

25 | each node in the context of a CFG rule ues ofVOICE, SPINE, andSTEM with the func-

26 | each node in the context of the RHS of a CFG rule¢ . .
27 | each node with its left and right sibling tions in lines 1-5, 22, and 23 of Table 1.

28 | the number of leaves dominated by each node

in the tree SUBJECT: Features used for subject prediction
Table 1: Functions of the German clause used for makingNake use of the AEP variabl®OICE andSTEM
features in the AEP prediction model. In addition, if the value oSUBJECTis an index

i (see section 3), them looks at the nontermi-
nal label of the German node indexeddgs well

as the surrounding context in the German clausal
lree. Otherwisep looks at the value dBUBJECT

can consist of any function of the decision history
(d1,...,d;—1), the current decisiod;, or the Ger-
man clause. In defining features over AEP/claus _ _ :

pairs, we make use of some basic functions whic _hesg b_aS|c features are combined with the func-
look at the German clause and the AEP (see TAONS In lines 1, 3, and 24-27 of Table 1.

bles 1 and 2). We use various combinations 0pgjeCT:  We make similar features to those for
these basic functions in the prediction of each deg,o prediction ofSUBJECT In addition, ¢ can

cisiond,, as described below. look at the value predicted f@UBJECT
STEM: Features for the prediction dBTEM
conjoin the value of this variable with each of the
functions in lines 1-13 of Table 1. For example,
one feature is the value @TEMconjoined with

tp_e main verb of the Ger_man clause. In additionMODALS: For the prediction 0ofMODALS ¢
qb. includes fgatures sensitive to th_e rank _of a caNpyoks atMODALSSPINE, andSTEM conjoined
didate stem in an externally-compiled lexichn. itk the functions in lines 2—5 and 12 of Table 1.

PINE: i iction feat k f
S Spine prediction features make use o INFL: The features folNFL include the values

the values of the variabl&&PINE andSTEMrom ¢ INEL . MODAL 4SUBJEG 4VOICE
the AEP, as well as functions of the spine in Iines0 ’ San Tan '

1-7 of Table 2, conjoined in various ways with and the function in line 8 of Table 2.
the functions in lines 4, 12, and 14-21 of Table 1MoD():  For the MOD(j) variables, é looks

Note that the functions in Table 2 allow us to 100K 4t the value oMODALSSPINE and the current
6The lexicon is derived from GIZA++ and provides, fora MOD(i) , as well as the nonterminal label of the

large number of German main verbs, a ranked list of possiblgoot node of the German modifier being placed,

English translations. and the functions in lines 24 and 28 of Table 1.

WH: Features foWWHlook at the values ofWH
andSPINE, conjoined with the functions in lines
1, 15, and 19 of Table 1.



6 Deriving Full Translations SUBJECT has been OBJECT> The AEP

As we described in section 1.1, the translation of a{"nd _mod|f|er t_ranslatlon_s wou_ld be combined
Q give the final English string. In gen-

full German sentence proceeds in a series of stepg. . )

a German parse tree is broken into a sequence g{al, any mgdlflers assigned to tmee-sub ,
clauses; each clause is individuallytranslated;anBOSt'Sub . In-modals or post-'\{erb | are
finally, the clause-level translations are combinecPIé_Iced in the corresponding position W|th|n the
to form the translation for a full sentence. The first>P' "¢ For example’ f[he seco_nd AEP In Fig-
and last steps are relatively straightforward. welré 2 has a spine ,W'th orderingSUBJECT
now show how the second step is achieved—i.e2'® OBJECT>; modifiers 1 and 2 would be

how AEPs can be used to derive English claus@!a_ced n posmonq_are-sub andpost-verb
translations from German clauses. giving the ordering <MOD2 SUBJECT are

. . . . BJECT MOD1>N h ifi i
We will again use the following translation OBJEC OD1>Note that modifiers assigned

. . post-verb  are placed after the object. If mul-
pair as an exampledal das haupthemmnis der tiple modifiers appear in the same position (e
vorhersehbare widerstand der hersteller viduat P PP P g

. . . post-verb ), then they are placed in the order
the main obstacle has been the predictable resis: . ) .- y P
seen in the original German clause.
tance of manufacturers.

First, an AEP like the one at the top of Fig- 7 EXxperiments
ure 2 is predicted. Then, for each German modye applied the approach to translation from Ger-
ifier which does not have the valadeleted , an  man to English, using the Europarl corpus (Koehn,
English translation is predicted. In the example2005) for our training data. This corpus contains
the modifierslas haupthemmnandder vorherse-  over 750,000 training sentences; we extracted over
hbare widerstand der herstellevould be trans- 441,000 training examples for the AEP model
lated tothe main obstacleandthe predictable re-  from this corpus, using the method described in
sistance of manufacturersespectively. section 4. We reserved 35,000 of these training

A number of methods could be used for trans-examples as development data for the model. We
lation of the modifiers. In this paper, we use theused a set of features derived from the those de-
phrase-based system of Koehn et al. (2003) tacribed in section 5.2. This set was optimized us-
generaten-best translations for each of the mod-ing the development data through experimentation
ifiers, and we then use a discriminative rerankwith several different feature subsets.
ing algorithm (Bartlett et al., 2004) to choose be- Modifiers within German clauses were trans-
tween these modifiers. The features in the rerankated using the phrase-based model of Koehn et
ing model can be sensitive to various properties ohl. (2003). We first generatedbest lists for each
the candidate English translation, for example thenodifier. We then built a reranking model—see
words, the part-of-speech sequence or the parssction 6—to choose between the elements in the
tree for the string. The reranker can also take inta:-best lists. The reranker was trained using around
account the original German string. Finally, the800 labeled examples from a development set.
features can be sensitive to properties of the AEP, The test data for the experiments consisted of
such as the main verb or the position in which the2, 000 sentences, and was the same test set as that
modifier appears (e.g., subject, objgme-sub , used by Collins et al. (2005). We use the model
post-verb , etc.) in the English clause. See of Koehn et al. (2003) as a baseline for our ex-
Appendix B for a full description of the features periments. The AEP-driven model was used to
used in the modifier translation model. Note thatranslate all test set sentences where all clauses
the reranking stage allows us to filter translationwithin the German parse tree contained at least
candidates which do not fit syntactically with the one verb and there was no embedding of clauses—
position in the English tree. For example, we carthere were 1,335 sentences which met these crite-
parse the members of thebest list, and then learn ria. The remaining 665 sentences were translated
a feature which strongly disprefers prepositionakyith the baseline system. This set of 2,000 trans-
phrases if the modifier appears in subject positioniations had a BLEU score of 23.96. The baseline

Finally, the full string is predicted. In our system alone achieved a BLEU score of 25.26 on
example, the AEP variableSPINE, MODALS the same set of 2,000 test sentences. We also ob-
and INFL in Figure 2 give the orderingthat tained judgments from two human annotators on



100 randomly-drawn sentences on which the baséAppendix A: Identification of Clauses

line and AEP-based outputs differed. For each ex-

ample the annotator viewed the reference translan the English parse trees, we identify clauses as
tion, together with the two systems’ translationsfollows. Any non-terminal labeled by the parser
presented in a random order. Annotator 1 judgeaf (Collins, 1999) asSBARor SBAR-As labeled

62 translations to be equal in quality, 16 transla-as a clause root. Any node labeled by the parser
tions to be better under the AEP system, and 23sS or S-A is also labeled as the root of a clause,
to be better for the baseline system. Annotator Zinless it is directly dominated by a non-terminal
judged 37 translations to be equal in quality, 32 tdabeledSBARor SBAR-A. Any node labeleG

be better under the baseline, and 31 to be betteyr SG-A by the parser is labeled as a clause root,
under the AEP-based system. unless (1) the node is directly dominated®BAR

or SBAR-A; or (2) the node is directly dominated
y a VP, and the node is not directly preceded

b
We have presented an approach to tree-tok-)y a verb (POS tag beginning wit) or modal

tree based translation which models a neV‘fPOS tag beginning witth). Any node labeled
representation—aligned extended projections—vp is marked as a clause root if (1) the node is
within a discriminative, feature-based 1‘ramework.not directly dominated by &P, S, S-A, SBAR
Our model makes use of an explicit representatioRsg \p A" SG or SG-A: or ) the node is directly

OI synttaxlntthhettle_\rgetlantgubag?[e,togetherwr[h Zotn' receded by a coordinating conjunction (i.e., a
straints on the alignments between source and tajs~ g tag labeled &80,

get parse trees. _ _
. In German parse trees, we identify any nodes
The current system presents many opportuni: "
: . labeled asS or CS as clause roots. In addition,
ties for future work. For example, improvement

. s . . we mark any node labeled & as a clause root,
in accuracy may come from a tighter integration rovided that (1) it is preceded by a coordinatin
of modifier translation into the overall translation P P y 9

process. The current method—using a#best conjunction, i.e., a POS tag labeledkdN or (2)

reranking model to select the best candidate—1' 'as one of the functional tagsio, -re or-sb .

chooses each modifier independently and then

places it into the translation. We intend to ex-Appendix B: Reranking Modifier

plore an alternative method that combines finite-Translations

state machines representing thest output from

the phrase-based system with finite-state machineghe n-best reranking model for the translation of
representing the conjunctions and other substringsodifiers considers a list of candidate translations.
of the translation derived from the AEP. Selectingwe hand-labeled 800 examples, marking the ele-
modifiers using this representation would corre-ment in each list that would lead to the best trans-
spond to searching the finite-state network for theation. The features of the-best reranking algo-
most likely path. A finite-state representation hagithm are combinations of the basic features in Ta-
many advantages, including the ability to easily in-bles 3 and 4.

corporate am-gram language model. Each list contained the-best translations pro-
Future work may also consider expanded defiguced by the phrase-based system of Koehn et al.
nitions of AEPs. For example, we might consider(2003). The lists also contained a supplementary
AEPs that include larger chunks of phrase strucgandidate “DELETED”, signifying that the mod-
ture, or we might consider AEPs that contain morefier should be deleted from the English transla-
detailed information about the relative ordering oftjon. In addition, each candidate derived from the
modifiers. There is certainly room for improve- phrase-based system contributed one new candi-
ment in the accuracy with which AEPs are pre-gates to the list signifying that the first word of
dicted in our data; the feature-driven approach althe candidate should be deleted. These additional
lows a wide range of features to be tested. For excandidates were motivated by our observation that
ample, it would be relatively easy to incorporate ate optimal candidate in the-best list produced
syntactic language model (i.e., a prior distributionpy the phrase-based system often included an un-

over AEP structures) induced from a large amoun{yanted preposition at the beginning of the string.
of English monolingual data.

8 Conclusions and Future Work



candidate string

should the first word of the candidate be deleted
POS tag of first word of candidate

POS tag of last word of candidate

top nonterminal of parse of candidate

modifier deleted from English translation?

first candidate om-best list

first word of candidate

last word of candidate

rank of candidate im-best list

is there punctuation at the beginning, middle,

or end of the string?

if the first word of the candidate should be deleted,
what is the string that is deleted?
if the first word of the candidate should be deleted,
what is the POS tag of the word that is deleted?

-~
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Table 3: Functions of the candidate modifier translations use%

for making features in the-best reranking model.

the position of the modifier (0—4) in AEP
main verb

voice

subject prediction
German input string

g B WN| -

M.

H.

A.

Collins, P. Koehn, and I. KEerova. 2005. Clause restruc-
turing for statistical machine translatioACL 05

Daune Il and D. Marcu. 2005. Learning as search op-
timization: approximate large margin methods for struc-
tured prediction/CML 05.

Dubey. 2005. What to do when lexicalization fails: pars-
ing German with suffix analysis and smoothifgCL 05

J. Eisner. 2003. Learning non-isomorphic tree mappings for

R.

M.

A.

Table 4: Functions of the German input string and predicted

AEP output used for making features in théest reranking
model.
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