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Abstract

We describe a project to capitalize on newly available levels of computational resources in order to understand human
cognition. We are building an integrated physical system including vision, sound input and output, and dextrous
manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system
will learn to "think" by building on its bodily experiences to accomplish progressively more abstract tasks. Past
experience suggests that in attempting to build such an integrated system we will have to fundamentally change the
way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of
intelligence. We expect to be able to better reconcile the theories that will be developed with current work in
neuroscience.
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I Project Overview

We are building an integrated physical humanoid
robot including active vision, sound input and
output, dextrous manipulation, and the beginnings of
language, all controlled by a continuously operating
large scale parallel MIMD computer. This project
capitalizes on newly available levels of
computational resources in order to meet two goals:
an engineering goal of building a prototype general
purpose flexible and dextrous autonomous robot and a
scientific goal of understanding human cognition.
While there have been previous attempts at building
kinematically humanoid robots, none have attempted
the embodied construction of an autonomous
intelligent robot; the requisite computational power
simply has not previously been available.

The robot is coupled into the physical world with
high bandwidth sensing and fast servocontrolled
actuators, allowing it to interact with the world on a
human time scale. A shared time scale opens up new
possibilities for how humans use robots as
assistants, and allows us to design the robot to learn
new behaviors under human feedback such as human
manual guidance and vocal approval. One of our
engineering goals is to determine the architectural
requirements sufficient for an enterprise of this type.
Based on our earlier work on mobile robots, our
expectation is that the constraints may be different
from those that are often assumed for large scale
parallel computers. If ratified, such a conclusion

could have important impacts on the design of future
sub-families of large machines.

Recent trends in artificial intelligence, cognitive
science, neuroscience, psychology, linguistics, and
sociology are converging on an anti-objectivist,
body-based approach to abstract cognition. Where
traditional approaches in these fields advocate an
objectively specifiable reality — brain-in-a-box,
independent of bodily constraints — these newer
approaches insist that intelligence cannot be separated
from the subjective experience of a body. The
humanoid robot provides the necessary substrate, for
a serious exploration of the subjectivist-body-based
-hypotheses.

There are numerous specific cognitive hypotheses
that could be implemented in one or more of the
humanoids that will be built during the project. For
example, we can vary the extent to which the robot is
programmed with an attentional preference for some
images or sounds, and the extent to which the robot
is programmed to learn to selectively attend to
environmental input as a by-product of goal
attainment (e.g., successful manipulation of objects)
or reward by humans. We can compare the behavioral
result of constructing a humanoid around different
hypotheses of cortical representation, such as
coincidence detection versus interpolating memory
versus sequence seeking in counter streams versus
time-locked multi-regional retroactivation. In the
later years of the project we can connect with theories



of consciousness by demonstrating that humanoids
designed to continuously act on immediate sensory
data (as suggested by Dennett's multiple drafts model)
show more human-like behavior than robots designed
to construct an elaborate world model.

The act of building and programming
behavior-based robots forces us to face not only
issues of interfaces between traditionally assumed
modularities, but even the idea of modularity itself.
By reaching across traditional boundaries and tying
together many sensing and acting modalities, we will
quickly illuminate shortcomings in the standard
models, shedding light on formerly unrealized
sociologically shared, but incorrect, assumptions.

2 Background: The Power of Enabling
Technology

An enabling technology — such as the brain that
we are building — has the ability to revolutionize
science. A recent example of the far-reaching effects
of such technological advances is the field of mobile
robotics. Just as the advent of cheap and accessible
mobile robotics dramatically altered our conceptions
of intelligence in the last decade, we believe that
current high performance computing technology
makes the present an opportune time for the
construction of a similarly significant integrated
intelligent system.

Over the last eight years there has been a renewed
interest in building experimental mobile robot
systems that operate in unadorned and unmodified
natural and unstructured environments. The enabling
technology for this was the single chip
micro-computer. This made it possible for relatively
small groups to build serviceable robots largely with
graduate student power, rather than the legion of
engineers that had characterized earlier efforts along
these lines in the late sixties. The accessibility of
this technology inspired academic researchers to take
seriously the idea of building systems that would
work in the real world.

The act of building and programming
behavior-based robots fundamentally changed our
understanding of what is difficult and what is easy.
The effects of this work on traditional artificial
intelligence can be seen in innumerable areas.
Planning research has undergone a major shift from
static planning to deal with “reactive planning.” The
emphasis in computer vision has moved from
recovery from single images or canned sequences of
images to active — or animate — vision, where the
observer is a participant in the world controlling the
imaging process in order to simplify the processing
requirements. Generally, the focus within AI has

shifted from centralized systems to distributed
systems. Further, the work on behavior-based mobile
robots has also had a substantial effect on many other
fields (e.g., on the design of planetary science
missions, on silicon micromachining, on artificial
life, and on cognitive science). There has also been
considerable interest from neuroscience circles, and
we are just now starting to see some bi-directional
feedback there.

The grand challenge that we wish to take up is to
make the quantum leap from experimenting with
mobile robot systems to an almost humanoid
integrated head system with saccading foveated
vision, facilities for sound processing and sound
production, and two compliant, dextrous
manipulators. The system will be immobile. The
enabling technology is massively parallel computing;
our brain has large numbers of processors dedicated to
particular sub-functions, and interconnected by a fixed
topology network.

3 Scientific Questions

Building an android, an autonomous robot with
humanoid form, has been a recurring theme in science
fiction from the inception of the genre with
Frankenstein, through the moral dilemmas infesting
positronic brains, the human but not really human
C3PO and the ever present desire for real humanness
as exemplified by Commander Data. Their bodies
have ranged from that of a recycled actual human
body through various degrees of mechanical
sophistication to ones that are indistinguishable (in
the stories) from real ones. And perhaps the most
human of all the imagined robots, HAL-9000, did not
even have a body.

While various engineering enterprises have modeled
their artifacts after humans to one degree or another
(e,g., WABOT-II at Waseda University and the space
station tele-robotic servicer of Martin-Marietta) no
one has seriously tried to couple human like
cognitive processes to these systems. There has been
an implicit, and sometimes explicit, assumption,
even from the days of Turing (see Turing (1970)i)
that the ultimate goal of artificial intelligence
research was to build an android. There have been
many studies relating brain models to computers
(Berkeley 1949), cybernetics (Ashby 1956), and
artificial intelligence (Arbib 1964), and along the way
there have always been semi-popular scientific books
discussing the possibilities of actually building real
‘live’ androids (Caudill (1992) is, perhaps the most
recent).

This paper concerns a plan to build a series of
robots that are both humanoid in form, humanoid in



function, and to some extent humanoid in
computational organization. While one cannot deny
the romance of such an enterprise, we are realistic
enough to know that we can but scratch the surface of
just a few of the scientific and technological
problems involved in building the ultimate humanoid
given the time scale and scope of our project, and
given the current state of our knowledge.

The reason that we should try to do this at all is
that for the first time there is plausibly enough
computation available. High performance parallel
computation gives us a new tool that those before us
have not had available and that our contemporaries
have chosen not to use in such a grand attempt. Our
previous experience in attempting to emulate much
simpler organisms than humans suggests that in
attempting to build such systems we will have to
fundamentally change the way artificial intelligence,
cognitive science, psychology, and linguistics think
about the organization of intelligence. As a result,
some new theories will have to be developed. We
expect to be better able to reconcile the new theories
with current work in neuroscience. The primary
benefits from this work will be in the striving, rather
than in the constructed artifact.

3.1 Minds

The traditional approach taken in artificial
intelligence to building intelligent programs has
affectionately been dubbed ‘Good Old Fashioned AI’,
or GOFAI (Haugeland 1985). It is epitomized in the
modularity arguments of Fodor (1983) and in the
physical symbol system hypothesis of Newell &
Simon (1981). These approaches reduce Al to the
problem of constructing a brain-in-a-box symbolic
manipulator which would act intelligently if given
appropriate connection to a robot (or other
perceptuo-motor system). Still further modularization
leads to independent work on such tasks as natural
language processing, planning, learning, and
commonsense reasoning (e.g., Allen, Hendler & Tate
1990, Hobbs & Moore 1985 or Brachman &
Levesque 1985). We have argued (Brooks 1991a) that
much of GOFAI was shaped by the technological
resources available to its researchers. High
performance computing and communications gives us
a new opportunity to re-shape attempts at building
intelligent systems.

Many modern theories are at odds with GOFAI For
example, Minsky (1986) suggests that the mind is a
society of smaller agents competing and cooperating.
Kinsbourne (1988) and Dennett (1991) argue that
there is no place in the brain where consciousness
resides. Linguists and psycholinguists have argued
that the long-fashionable separation of language into

the separate components of grammar and semantics is
a fiction convenient for symbolic formulation but not
useful for advancing our understanding of the real
diversity of language phenomena (Langacker 1987,
Harris 1991). Brooks (1991a) proposes that
human-level intelligence can be built without a
single central representation of the world. Stein
(1994) argues that all of cognition can be seen as the
recapitulation — through imagination — of action in
the world.

Many other theories of mind (e.g., Searle 1992,
Edelman 1987, Edelman 1989, Edelman 1992) argue
against the traditional AI notion of categorical
representation, and instead for a more situated model
of computation. Unfortunately these and others are
flawed by fundamental misunderstandings about the
nature of computation and the uses of abstraction,
usually centered around formal models of Turing
machines and sometimes their interaction with
Gödel's theorem. Such arguments were long ago
successfully debunked (Arbib 1964), but continue to
resurfaceii.

At the other end of the spectrum is connectionism.
Computational scientists have worked with simple
abstractions of the brain for many years in two main
waves, one in the sixties (Rosenblatt 1962, Minsky
& Papert 1969) and a second in the eighties
(Rumelhart & McClelland 1986). Unfortunately,
most of this work is concerned with local aspects of
the problem, rather than giving insight into how a
complete system might be organizediii. There have
been recent attempts to bridge the gap in more
serious ways between computation and neuroscience
— in particular Churchland & Sejnowski (1992) —
but still the gap is too large to consider neural-based
approaches for a system of the scope we are
proposing. Dennett & Kinsbourne (1992) are
working to relate a neuroscientific theory of
consciousness, dominant focus (Kinsbourne 1988),
to a philosophical analysis of mind. A major intent
of our work is to extend that analysis to the point of
its being an implementable theory on our humanoids.

Recent work in neuropsychology has produced
surprising results. Lesion studies, e.g. those by
Damasio & Damasio (1989) and McCarthy &
Warrington (1990), indicate that the modularity of
storage and access in the human brain is dramatically
different from what our intuitions — as exemplified
by both cognitive science and GOFAI — tell us. For
instance it is clear that a picture of a dolphin provides
immediate access to a different set of representations
at a different level of generalization from those
prompted by the verbal stimulus, ‘dolphin’. In a
normal person these representations are cross-linked,
but in patients with certain lesions these cross-links



may be destroyed for particular classes of entities
(e.g., for animals, but not tools)iv. Likewise
Newcombe & Ratcliff (1989) demonstrate multiple
parallel channels of control dependent on the task,
rather than, say, a single centralized finger control
module for each finger. There is a grounding of motor
control in the different types of interactions the agent
has with the worldv. Nor is the control of attention
centralized, as illustrated by studies of unilateral
neglect (Kinsbourne 1987), but rather it is a matter of
competition between brain systems.

The argument is that the human brain stores things
not only by category but also by modality — the
‘representations’ are grounded in the sensory modality
used to learn the information. Kuipers & Byun
(1991), Mataric (1992b) and Stein (1994) implement
limited forms of this body-based representation in
mobile robots. Drescher (1991), too, uses
environmental interaction to construct representation.
Still, each of these projects was limited by the
relative poverty of the sensory suite. In this project,
we are using the neuropsychological evidence to build
a far more sophisticated instantiation of the body-
based theory of representation and to examine it
relative to traditional theories of modularity.

There is also evidence that what appear to be
reasonably well understood sensory channels within
the brain are much more complex than we currently
imagine. As one example, there is the effect known
as blindsight, where despite the lack of pieces or a
whole visual cortex, both humans and animals can
perceive, perhaps not consciously, certain things
within their visual field (Weiskrantz 1986, Braddick
et al. 1992). There has been some recent argument
that these phenomena may be produced by partially
intact visual cortex (Fendrich, Wessinger &
Gazzaniga 1992), but even that would still call into
question the arguments of Marr (1982) — long used
in computer vision — that the purpose of the vision
system is to reconstruct a 3-dimensional
representation of what is out in the world.

The notion that embodiment in the physical world
is important to creating human-like intelligence is
not at all new. Even the 1947 paper of Turing (1970)
is quite concerned about this point. Later, Simon
(1969) discusses a similar point using as a parable an
ant walking along the beach. He points out that the
complexity of the behavior of the ant is more a
reflection of the complexity of its environment than
its own internal complexity and speculates that the
same may be true of humans.

The idea that our very modularity and internal
organization depends on our ways of physically
interacting with the world is carried even further in a

series of philosophical arguments (Lakoff & Johnson
1980, Lakoff 1987, Johnson 1987). Their central
hypothesis is that all of our thought and language is
grounded in physical patterns generated in our sensory
and motor systems as we interact with the world. In
particular these physical bases of our reason and
intelligence can still be discerned in our language as
we ‘confront’ the fact that much of our language can
be ‘viewed’ as physical metaphors, ‘based’ on our
own bodily interactions with the world.

We have been taking these notions seriously as we
build and program our humanoids, using physical
interactions as a basis for higher level cognitive-like
behaviors. We have already demonstrated a simple
version of these ideas using currently available
“insect-level”  robotics (Stein 1994).

3.2 Symbols and Mental Representation

The physical symbol system hypothesis construed
as appropriate manipulation of a physical symbol
system, maintains that any physical symbol system
can implement intelligent behavior. As a
consequence, it says that symbols provide a layer of
abstraction that hides the details of perceptual and
motor processes.

To understand the difficulties that the physical
symbol system hypothesis presents for our task, we
might examine another similar abstraction. It is
common to regard digital design as concerned solely
with binary digits — discrete ones and zeros. Indeed,
this digital abstraction allows the use of boolean
logic to synthesize the combinational circuits out of
which our computational elements are built. By
hiding the details of analog voltages that constitute
our systems, the digital abstraction facilitates
reasoning about and construction with these
elements. However, the fact that the digital
abstraction is useful for combinational synthesis does
not mean that it suffices for all purposes. Indeed, for
certain elements — such as a bipolar switch — i t
may be necessary to look beneath the digital
abstraction to understand the interactions of electrical
components — e.g., to debounce the switch. Further,
certain portions of the resulting system — such as
the debouncing circuitry — may never be
interpretable directly in terms of the digital
abstraction.

Approaches that rely on the physical symbol-
system hypothesis cannot constitute complete
explanations of intelligence, precisely because they
abstract away the details of symbols’
implementation. In order for a brain-in-a-box to
connect to a body, all symbols must be derivable
from sensory stimuli; but in addition, there are



portions of the system — such as the bouncy switch
— that cannot be seen from the symbolic side of the
abstraction. Thus, while symbolic approaches to
cognition may provide us with tremendous insight as
to how intelligence might work once we have
symbols, it can neither tell us how to construct those
symbols nor assist us in the identification and
manipulation of the non-symbolic portion of our
system.

At the opposite extreme are several nonsymbolic
approaches to cognition. From connectionism to
reactive systems to artificial life, these systems
operate on stimuli much closer to “real” sensory
input, often using difficult-to-comprehend processes
to compute appropriate actions based on these
stimuli. Because they are closer to actual sensation,
these approaches have had marked success in certain
areas (e.g., video-game playing (Agre & Chapman
1987); navigation (Pomerleau 1991); “insect”
intelligence (Connell 1990, Angle & Brooks 1990).
However, because they lack symbols or any
comparable abstraction, these systems are often
inscrutable. A corollary is the difficulty that
practitioners have had in transferring knowledge
gained in the construction of one system to the
design of the next. Because there is little explicit
structure, these systems generally defy description by
abstraction.

We believe that the most fruitful approach will be
one that builds on both of these traditions (e.g.,
Rosenschein & Kaelbling 1986, Kuipers & Byun
1991, Drescher 1991, Stein 1994, Yanco & Stein
1993). Just as the digital abstraction is useful for the
designer of combinational circuits, so the symbolic
abstraction will be invaluable for the designer of
cognitive components. However, combinational
circuits are built out of raw voltages, not out of ones
and zeros: the binary digits are in the mind of the
designer. Similarly, the symbolic abstraction is a
crucial tool in the analysis and synthesis of our
humanoids; but we do not necessarily expect these
symbols to appear explicitly in the humanoid’s head.

Thus, both of these pieces inform our approach to
representation. However, it is not at all clear that a
single “symbol” (in the conventional sense, e.g.,
‘dolphin’) will have a unitary representation (e.g., in
the human brain the image of a dolphin may be
stored separately from categorical knowledge about
dolphins as sea creatures). As a result, we need to
broaden the conventional definitions. We expect to
use lower level modules — derived, e.g., from more
‘reactive’  approaches — to come up with appropriate
responses to stimuli. From these, we identify
patterns of behavior that represent generalizations —

proto-symbols — and use these to establish
reasoning that appears to be more “symbolic”.

There is an argument that certain components of
stimulus-response systems are “symbolic.” For
example, if a particular neuron fires — or a particular
wire carries a positive voltage — whenever
something red is visible, that neuron — or wire —
may be said to “represent” the presence of something
red. While this argument may be perfectly reasonable
as an observer’s explanation of the system, it should
not be mistaken for an explanation of what the agent
in question believes. In particular, the positive
voltage on the wire does not represent the presence
of red to the agent; the positive voltage is the
presence of something red as far as the robot is
concerned.

The digital abstraction is not a statement about
how things are; it is merely a way of viewing them.
A combinational circuit may be analyzed in terms of
boolean logic, but it is voltages, not a collection of
ones and zeros. (Or, perhaps, it is electrons moving
in a particular way.) At best, the digital abstraction
tells us that the combinational circuit is amenable to
analysis in term of ones and zeros; but it does not
change the reality of what is there.

Similarly, the utility of the symbolic abstraction
in analyzing rational behavior does not indicate that
there are actually entities corresponding to symbols
in the brain. Rather, it indicates that the brain — or,
more, likely, portions of the brain (viz. the
debounced switch) — are amenable to analysis in
symbolic terms. It does not change the fact that
everything in the brain is (sub-symbolic) neural
activity; nor does the equation of brain function with
neural activity rule out the utility of a symbolic
explanation.

In building a humanoid, we begin at this sensory
level. All intelligence is grounded in computation on
sensory information or on information derived from
sensation. However, some of this computation
abstracts away from explicit sensation, generalizing,
e.g., over similar situations or sensory inputs.
Through sensation and action, the humanoid will
experience a conceptualization of space: “up,”
“down,” “near,” “far,” etc. We hypothesize that at this
point it will be useful for observers to describe the
behavior of the humanoid in symbolic terms. (“It put
the red blocks together.”) This is the first step in
representation.

The next step involves a jump from the view of
symbols as a convenient but post hoc explanation
(i.e., for an observer) to a view in which symbols,
somehow, appear to the agent to exist inside the



agent’s head. This second step is facilitated by
language, one of the tools that allows us to become
observers of ourselves. This is the trick of
consciousness: the idea that “we” exist, that one part
of us is observing another.

Although there is good evidence that consciousness
is anything but a simple phenomenon (i.e., that the
reality is far more complex than our post hoc
reconstruction of it) (Springer & Deutsch 1981), it
almost certainly does have some of the properties that
we attribute to it.

With language, symbols become more than merely
a post hoc explanation by others of the workings of
our own brains; symbols become our own
explanation to ourselves. It is this ability to distance
ourselves from our own symbols that gives rise to
our illusions of consciousness (Bickhard 1991,
Bickard 1993). How can we produce these “symbolic”
associations? The same processes that produce
responses from sensory inputs can be stimulated
internally. For example, Kosslyn (1994) has
demonstrated that portions of the visual cortex are
implicated in visual imagery, suggesting precisely
this sort of self-stimulation. Stein (1994) takes a
similar approach to add cognitive capacity to a
behavior-based robot.

We can summarize our approach to representation
as follows: Stimulus-response systems abstract away
from particular inputs to treat large classes of inputs
similarly. This begins the “generalization” of
particular stimuli into complex reactions and the
external appearance of categorization, or
proto-symbols. Next, these abstractions begin to be
produced without resorting to actual sensory inputs.
Symbol-like behavior results, but without
instantiating symbols directly.

4 High Performance Computing

While traditional parallel processors are designed to
act like fast serial computers, we are addressing an
inherently parallel task. Indeed, while for most of
computer science the translation to parallel hardware
has imposed additional complexity (and, indeed, much
current research is devoted to minimizing the
overhead of this translation), we anticipate a
significant simplification of our task in virtue of the
parallel hardware available.

Much of the work on high performance
computation is benchmarked in terms of how it
speeds up numerical simulations of physical
phenomena (Cypher, Ho, Konstantinidou & Messina
1993). In these domains there is a well defined set of
computations that given a valid set of initial

conditions are guaranteed to be well behaved in some
sense, generating a sufficiently accurate simulation of
how events will unfold over time. Data is collected
along the way, and a final summary of how the
modeled system evolved over time is the result of the
computation. The model of a computation is very
much that of an algorithm that is given input data
and, after some suitable computation, outputs some
data. As a result, much of the research into high
performance parallel computers is concerned with
how to present a shared memory that can be accessed
quickly by all processors, leading to the need for local
caching schemes and high speed switching networks;
how to make sure that all such views of memory are
consistent, leading to the need for handling cache
coherence; and how to dynamically balance the load
on all processors, given the implicit understanding
that the goal of the whole job is to complete the
computation as quickly as possible.

In our “problem” the constraints are very different.
By the nature of the system we do not need to
migrate processes, do not need a shared memory, and
do not need to dynamically redirect messages. Simple
“hard wired” messages networks should suffice, with
memory only local to each processor. The goal is not
to “finish” a computation as quickly as possible but
instead to pass the data through a process in a
bounded amount of time so that the next data that the
world presents to the system can flow through
without getting blocked or lost. There is no end to a
computation or final result; all is continuously being
computed and recomputed, and actions in the world
are the “outputs” of the system. But the computation
is not simply linear in ordering. There must be many
pathways between sensors and actuators, some with
very different latencies, each one contributing to
some aspect of the resulting behavior of the system.

We need high performance and parallel computing
in order to guarantee the bounds on computation time
of any particular step in the processes. We will push
on the organization of computation to do useful tasks
directly in the real world, and will be pushing in a
direction which should lead to inherently
simplerto-construct massively parallel computers.
The applications of this sort of processing will be
wide ranging and indeed may well become pervasive
throughout our society.

Our problem is more one of maintenance of
activity rather than achievement of a single solution
to a problem.

Our humanoid robot is situated in a real world over
which it has very little control. There are people
present, moving about, changing the physical
environs of the humanoid, responding to actions of



the humanoid, and generating spontaneous behaviors
themselves. The task for the humanoid will be to
interact with these ultimately unpredictable agents in
a coherent way. It receives a continuous large and rich
stream of input data of which it must make sense,
relating it to past experiences and future possibilities
in the world. It is a participant in this world and must
act with appropriate speed and grace.

5 Hardware and Software Experimental
Platforms

We have extensive experience in building mobile
robots. The authors have been directly involved in the
design and construction of over 35 different designs
for mobile robots, and with multiple instances of
many of these types of robots — over 100 robots in
total.

In that previous work with mobile robots, we
started out thinking we would build one mobile robot
that would be a platform for research for a generation
of graduate students (Brooks 1986). That soon
changed as we realized three things: (1) trying to
design everything into one robot caused too many
compromises in our research goals as early
experiments soon pointed to multiple different
sensor/actuator suites which needed to be explored,
(2) graduate students working on somewhat separate
thesis projects needed their own robots if they were to
do extensive multi-hundred hours of operation
experiments, rather than simple validation
demonstrations in controlled environments as were
often conducted in many research projects (Brooks
1991b) and (3) by continually re-engineering our
designs we gradually built more robust robots with
longer mean times between catastrophic failuresvi.
Building many robots over a short period of time led
to rapid increases in performance over a diverse set of
robot morphologies (Yanco & Stein 1993, Torrance
1994, Brooks 1986, Connell 1987, Horswill &
Brooks 1988, Brooks 1989, Connell 1990, Angle &
Brooks 1990, Mataric 1992b, Mataric 1992a, Ferrell
1993, Horswill 1993; see Brooks 1990b for an
overview). At the same time, a common software
system (Brooks 1990a) was developed which ran on
many different processors, but provided a common
environment for programming all the diverse robots.
Brooks (1990b) gives a mid-course review of some of
those robots.

In this project too, we expect that there will be
great benefits from building the humanoid repeatedly
over the life of the project and from running the
software on multiple computer architectures, taking
advantage in both cases of technological
developments that will occur independently of this
project. At the same time we are following a learning

curve, increasing our engineering sophistication and
the inherent robustness of the systems we build.

5.1 Brains

Our goal is to take advantage of the new
availability of massively parallel computation in
dedicated machines. We need parallelism because of
the vast amounts of processing that must be done in
order to make sense of a continuous and rich stream
of perceptual data. We need parallelism to coordinate
the many actuation systems that need to work in
synchrony (e.g., the ocular system and the neck must
move in a coordinated fashion at time to maintain
image stability) and which need to be servoed at high
rates. We need parallelism in order to have a
continuously operating system that ran be upgraded
without having to recompile, reload, and restart all of
the software that runs the stable lower level aspects
of the humanoid. And finally we need parallelism for
the cognitive aspects of the system as we are
attempting to build a “brain” with more capability
than can fit on any existing single processor.

But in real-time embedded systems there is yet
another necessary reason for parallelism. It is the fact
that there are many things to be attended to,
happening in the world continuously, independent of
the agent. From this comes the notion of an agent
being situated in the world. Not only must the agent
devote attention to perhaps hundreds of different
sensors many times per second, but it must also
devote attention “down stream” in the processing
chain in many different places at many times per
second as the processed sensor data flows through the
system. The actual amounts of computation needed to
be done by each of these individual processes is in
fact quite small, so small that originally we
formalized them as augmented finite state machines
(Brooks 1986), although more recently we have
thought of them as real-time rules (Brooks 1990a).
They are too small to have a complete processor
devoted to them in any machine beyond a CM-2, and
even there the processors would be mostly idle. A
better approach is to simulate parallelism in a single
conventional processor with its own local memory.

For instance, Ferrell (1993) built a software system
to control a 19 actuator six legged robot using about
60 of its sensors. She implemented it as more than
1500 parallel processes running on a single Phillips
68070. (It communicated with 7 peripheral processors
which handled sensor  data collection and 100 Hz
motor servoing.) Most of these parallel processes ran
at rates varying between 10 and 25 Hertz. Each time
each process ran, it took at most a few dozen
instructions before blocking, waiting either for the
passage of time or for some other process to send it a



message. Clearly, low cost context switching was
important.

The underlying computational model used on that
robot — and with many tens of other autonomous
mobile robots we have builtconsisted of networks of
message-passing augmented finite state machines.
Each of these AFSMs was a separate process. The
messages were sent over predefined ‘wires’ from a
specific transmitting to a specific receiving AFSM.
The messages were simple numbers (typically 8 bits)
whose meaning depended on the designs of both the
transmitter and the receiver. An AFSM had additional
registers which held the most recent incoming
message on any particular wire. This gives a very
simple model of parallelism, even simpler than that
of CSP Hoare (1985). The registers could have their
values fed into a local combinatorial circuit to
produce new values for registers or to provide an
output message. The network of AFSMs was totally
asynchronous, but individual AFSMs could have
fixed duration monostables which provided for dealing
with the flow of time in the outside world. The
behavioral competence of the system was improved
by adding more behavior-specific network to the
existing network. This process was called layering.
This was a simplistic and crude analogy to
evolutionary development. As with evolution, at
every stage of the development, the systems were
tested. Each of the layers was a behavior producing
piece of network in its own right, although it might
implicitly rely on the presence of earlier pieces of
network. For instance, an explore layer did not need
to explicitly avoid obstacles, as the designer knew
that a previous avoid layer would take care of it. A
fixed priority arbitration scheme was used to handle
conflicts.

On top of the AFSM substrate we used another
abstraction known as the Behavior Language, or BL
(Brooks 1990a), which was much easier for the user
to program with. The output of the BL compiler was
a standard set of augmented finite state machines; by
maintaining this compatibility all existing software
could be retained. When programming in BL the user
has complete access to full Common Lisp as a
metalanguage by way of a macro mechanism. Thus
the user could easily develop abstractions on top of
BL, while still writing programs which compiled
down to networks of AFSMs. In a sense, AFSMs
played the role of assembly language in normal high
level computer languages. But the structure of the
AFSM networks enforced a programming style which
naturally compiled into very efficient small
processes. The structure of the Behavior Language
enforced a modularity where data sharing was
restricted to smallish sets of AFSMs, and whose only

interfaces were essentially asynchronous 1-deep
buffers.

In the humanoid project much of the computation,
especially for the lower levels of the system, will
naturally be of a similar nature. We expect to perform
different experiments where in some cases the higher
level computations are of the same nature and in
other cases the higher levels will be much more
symbolic in nature, although the symbolic bindings
will be restricted to within individual processors. We
need to use software and hardware environments
which give support to these requirements without
sacrificing the high levels of performance of which
we wish to make use.

5.1.1 Software. For the software environment we
have a number of requirements:

• There should be a good software development
environment.

• The system should be completely portable over
many hardware environments, so that we can upgrade
to new parallel machines over the lifetime of this
project.

• The system should provide efficient code for
perceptual processing such as vision.

• The system should let us write high level symbolic
programs when desired.

• The system language should be a standardized
language that is widely known and understood.

In summary, our software environment should let
us gain easy access to high performance parallel
computation.

We have chosen to use Common Lisp (Steele Jr.
1990) as the substrate for all software development.
This gives us good programming environments
including type checked debugging, rapid prototyping,
symbolic computation, easy ways of writing
embedded language abstractions, and automatic
storage management. We believe that Common Lisp
is superior to C (the other major contender) in all of
these aspects.

The problem then is how to use Lisp in a
massively parallel machine where each node may not
have the vast amounts of memory that we have
become accustomed to feeding Common Lisp
implementations on standard Unix boxes.

We have a long history of building high
performance Lisp compilers (Brooks, Gabriel &



Steele Jr. 1982), including one of the two most
common commercial Lisp compilers on the market-,
Lucid Lisp (Brooks et al. 1986).

Recently we have developed L (Brooks 1993, a
retargetable small efficient Lisp which is a
downwardly compatible subset of Common Lisp.
When compiled for a 680W based machine the load
image (without the compiler) is only 140 Kbytes,
but includes multiple values, strings, characters,
arrays, a simplified but compatible package system,
all the “ordinary” aspects of format, backquote and
comma, setf etc. full Common Lisp lambda lists
including optionals and keyword arguments, macros,
an inspector, a debugger, defstruct  (integrated with
the inspector), block, catch, and throw, etc., full
dynamic closures, a full lexical interpreter, floating
point, fast garbage collection, and so on. The
compiler runs in time linear in the size of an input
expression, except in the presence of lexical closures.
It nevertheless produces highly optimized code in
most cases. L is missing flet and labels, generic
arithmetic, bignums, rationals, complex numbers,
the library of sequence functions (which can, be
written within L) and esoteric parts of format and
packages.

The L system is an intellectual descendent of the
dynamically retargetable Lucid Lisp compiler (Brooks
et al. 1986) and the dynamically retargetable Behavior
Language compiler (Brooks 1990a). The system is
totally written in L with machine dependent backends
for retargetting. The first backend is for the Motorola
68020 (and upwards) family, but it is easily retargeted
to new architectures. The process consists of writing
a simple machine description, providing code
templates for about 100 primitive procedures (e.g.,
fixed precision integer +, *, =, etc., string indexing
CHAR and other accessors, CAR, CDR, etc.), code
macro expansion for about 20 pseudo instructions
(e.g, procedure call, procedure exit, checking correct
number of arguments, linking CATCH frames, etc.)
and two corresponding sets of assembler routines
which are too big to be expanded as code templates
every time, but are so critical in speed that they need
to be written in machine language, without the
overhead of a procedure call, rather than in Lisp (e.g.,
CONS, spreading of multiple values on the stack,
etc.). There is a version of the 1/0 system which
operates by calling C routines (e.g., fgetchar, etc.;
this is how the Macintosh version of L runs) so it is
rather simple to port the system to any hardware
platform we might choose to use in the future.

Note carefully the intention here: L is to be the
delivery vehicle running on the brain hardware of the
humanoid, potentially on hundreds or thousands of
small processors. Since it is fully downward

compatible with Common Lisp however, we can
carry out code development and debugging on standard
work stations with full programming environments
(e.g., in Macintosh Common Lisp, or Lucid
Common Lisp with Emacs 19 on a Unix box, or in
the Harlequin programming environment on a Unix
box). We can then dynamically link code into the
running system on our parallel processors.

There are two remaining problems: (1) how to
maintain super critical real-time performance when
using a Lisp system without hard ephemeral garbage
collection, and (2) how to get the level of
within-processor parallelism described earlier.

The structure of L’s implementation is such that
multiple independent heaps can be maintained within
a single address space, sharing all the code and data
segments of the Lisp proper. In this way
super-critical portions of a system can be placed in a
heap where no consing is occurring, and hence there
is no possibility that they will be blocked by garbage
collection.

The Behavior Language (Brooks 1990a) is an
example of a compiler which builds special purpose
static schedulers for low overhead parallelism. Each
process ran until blocked and the syntax of the
language forced there to always be a blocking
condition, so there was no need for pre-emptive
scheduling. Additionally the syntax and semantics of
the language guaranteed that there would be zero stack
context needed to be saved when a blocking condition
was reached. We have built a new scheduling system
with L to address similar issues in this project. To fit
in with the philosophy of the rest of the system it
has a dynamic scheduler so that new processes can be
added and deleted as a user types to the Lisp listener
of a particular processor. Reasonably straightforward
data structures keep these costs to manageable levels.
It was rather straightforward to build a phase into the
L compiler which recognizes the situations described
above. Thus it was straightforward to implement a
set of macros which provides a language abstraction
on top of Lisp which provides all the functionality of
the Behavior Language and which additionally lets us
have dynamic scheduling. A pre-emptive scheduler is
used in addition, as it would be difficult to enforce a
computation time limit syntactically when Common
Lisp is essentially available to the programmer — at
the very least the case of the pre-emptive scheduler
having to strike down a process is useful as a safety
device, and acts as a debugging tool for the user to
identify time critical computations which are
stressing the bounded computation style of writing.
In other cases static analysis is able to determine
maximum stack requirements for a particular process,
and so heap allocated stacks are usable.



The software system so far described is being used
to implement crude forms of ‘brain models’, where
computations will be organized in ways inspired by
the sorts of anatomical divisions we see occurring in
animal brains. Note that we are not building a model
of a particular brain, but rather using a modularity
inspired by such components as visual cortex,
auditory cortex, etc., with further modulartiy within
and across these components, e.g., a particular
subsystem to implement the vestibulo-ocular
response (VOR).

Thus besides on-processor parallelism we need to
provide a modularity tool that packages processes
into groups and limits data sharing, between them.
Each package resides on a single processor, but often
processors host many such packages. A package that
communicates with another package should be
insulated at the syntax level from knowing whether
the other package is on the same or a different
processor. The communication medium between such
packages will again be 1-deep buffers without
queuing or receipt acknowledgment- any such
acknowledgment will need to be implemented as a
backward channel, much as we see throughout the
cortex (Churchland & Sejnowski 1992). This
packaging system can be implemented in Common
Lisp as a macro package.

5.1.2 Computational Hardware. The computational
model presented in the previous section is somewhat
different from that usually assumed in high
performance parallel computer applications. Typically
(Cypher et al. 1993) there is a strong bias on system
requirements from the sort of benchmarks that arc
used to evaluate performance. The standard
benchmarks for modern high performance
computation seem to be Fortran code for
hydrodynamics, molecular simulations, or graphics
rendering. We are proposing a very different
application with very different requirements; in
particular we require real-time response to a wide
variety of external and internal events, we require
good symbolic computation performance, we require
only integer rather than high performance floating
point operationsvii, we require delivery of messages
only to specific sites determined at program design
time, rather than at run-time, and we require the
ability to do very fast context switches because of the
large number of parallel processes that we intend to
run on each individual processor.

The fact that we do not need to support pointer
references across the computational substrate means
that we can rely on much simpler, and therefore
higher performance, parallel computers than many
other researchers — we do not have to worry about a

consistent global memory, cache coherence, or
arbitrary message routing. Since these are different
requirements than those that are normally considered,
we have to make some measurements with actual
programs before we can make an intelligent off the
shelf choice of computer hardware.

In order to answer some of these questions we have
built a zero-th generation parallel computer. It is
being built on a very low budget with off the shelf
components wherever possible (a few fairly simple
printed circuit boards need to be fabricated). The
processors are 16 Mhz Motorola 68332s on a standard
board built by Vesta Technology. These plug 16 to a
backplane. The backplane provides each processor
with six communications ports (using the integrated
timing processor unit to generate the required signals
along with special chip select and standard address and
data lines) and a peripheral processor port. The
communications ports are hand-wired with patch
cables, building a fixed topology network. (The
cables incorporate a single dual ported RAM (8 K by
16 bits) that itself includes hardware semaphores
writable and readable by the two processors being
connected.)

Background processes running on the 68332
operating system provide sustained rate transfers of
60 Hz packets of 4 Kbytes on each port, with higher
peak rates if desired. These sustained rates do
consume processing cycles from the 68332. On
non-vision processors we expect much lower rates
will be needed, and even on vision processors we can
probably reduce the packet frequency to around 15 Hz.
Each processor has an operating system, L, and the
dynamic scheduler residing in 1M of EPROM. There
is 1M of RAM for program, stack and heap space.
Up to 256 processors can be connected together.

Up to 16 backplanes can be connected to a single
front end processor (FEP) via a shared 500 K baud
serial line to a SCSI emulator. A large network of
68332s can span many FEN if we choose to extend
the construction of this zero-th prototype. Initially
we use a Macintosh as a FEP Software written in
Macintosh Common Lisp on the FEP provides disk
1/0 services to the 68332's, monitor status and health
packets from them, and provides the user with a Lisp
listener to any processor they might choose.

The zero-th version uses the standard Motorola SPI
(serial peripheral interface) to communicate with up
to 16 Motorola 6811 processors per 68332. These are
a single chip processor with onboard EEPROM (2 K
bytes) and RAM (256 bytes), including a timer
system, an SPI interface, and 8 channels of analog to
digital conversion. We are building a small custom
board for this processor that includes opto-isolated



motor drivers and some standard analog support for
sensors.

There are certain developments on the horizon
within the MIT Artificial Intelligence Lab which we
expect to capitalize upon in order to dramatically
upgrade our computational systems for early vision,
and hence the resolution at which we can afford to
process images in real time. The first of these, will
be a somewhat similar distributed processing system
based on the much higher performance Texas
Instrument C40, which comes with built in support
for fixed topology message passing. In late ‘95 we
expect to be able to make use of the Abacus system,
a bit level reconfigurable vision front-end processor
being built under ARPA sponsorship which promises
Tera-op performance on 16 bit fixed precision
operands. Both these systems will be simply
integrable with our zero-th order parallel processor via
the standard dual-ported RAM protocol that we are
using.

5.2 Bodies

As with the computational hardware, we are also
currently engaged in building a zero-th generation
body for early experimentation and design refinement
towards more serious constructions within the scope
of this project. We are presently limited by budgetary
constraints to building an immobile, armless, deaf,
torso with only black and white vision.

In the following subsections we outline the
constraints and requirements on a full scale humanoid
body and also include where relevant details of our
zero-th level prototype.

5.2.1 Eyes. There has been quite a lot of recent work
on animate vision using saccading stereo cameras,
most notably at Rochester (Ballard 1989, Coombs
1992), but also more recently. at many other
institutions, such as Oxford University.

The humanoid needs a head with high mechanical
performance eyeballs and foveated vision if it is to be
able to participate in the world with people in a
natural way. Even our earliest heads will include two
eyes, with foveated vision, able to pan and tilt as a
unit, and with independent saccading ability (three
saccades per second) and vergence control of the eyes.
Fundamental vision based behaviors will include a
visually calibrated vestibular-ocular reflex, smooth
pursuit, visually calibrated saccades, and object
centered foveal relative depth stereo. Independent
visual systems will provide peripheral and foveal
motion cues, color discrimination, human face
pop-outs, and eventually face recognition. Over the
course of the project, object recognition based on

“representations” from body schemas and
manipulation interactions will be developed. This is
completely different from any conventional object
recognition schemes, and can not be attempted
without an integrated vision and manipulation
environment as we propose.

The eyeballs need to be able to saccade up to about
three times per second, stabilizing for 250 ms at each
stop. Additionally the yaw axes should be
controllable for vergence to a common point and
drivable in a manner appropriate for smooth pursuit
and for image stabilization as part of a
vestibulo-ocular response (VOR) to head movement.
The eyeballs do not need to be force or torque
controlled but they do need good fast position and
velocity control. We have previously built, a single
eyeball, A-eye, on which we implemented a model of
VOR, ocular-kinetic response (OKR) and saccades, all
of which used dynamic visually based calibration
(Viola 1990).

Other active vision systems have had both eyeballs
mounted on a single tilt axis. We will begin
experiments with separate tilt axes but if we find that
relative tilt motion is not very useful we will back
off from this requirement in later versions of the
head.

The cameras need to cover a wide field of view,
preferably close to 180 degrees, while also giving a
foveated central region. Ideally the images should be
RGB (rather than the very poor color signal of
standard NTSC). A resolution of 512 by 512 at both
the coarse and fine scale is desirable.

Our zero-th version of the cameras are black and
white only. Each eyeball consists of two small
lightweight cameras mounted with parallel axes. One
gives a 115 degree field of view and the other gives a
20 degree foveated region. In order to handle the
images in real time in our zero-th parallel processor
we subsample the images to be 128 by 128 which is
much smaller than the ideal.

Later versions of the head will have full RGB color
cameras, wider angles for the peripheral vision, much
finer grain sampling of the images, and perhaps a
colinear optics set up using optical fiber cables and
beam splitters. With more sophisticated high speed
processing available we will also be able to do
experiments with log-polar image representations.

5.2.2 Ears, Voice. Almost no work has been done on
sound understanding, as distinct from speech
understanding. This project will start on sound
understanding to provide a much more solid
processing base for later work on speech input. Early



behavior layers will spatially correlate noises with
visual events, and spatial registration will be
continuously self calibrating. Efforts will concentrate
on using this physical cross-correlation as a basis for
reliably pulling out interesting events from
background noise, and mimicking the cocktail party
effect of being able to focus attention on particular
sound sources. Visual correlation with face pop-outs,
etc., will then be used to be able to extract human
sound streams. Work will proceed on using these
sounds streams to mimic infant's abilities to ignore
language dependent irrelevances. By the time we get
to elementary speech we will therefore have a system
able to work in noisy environments and accustomed
to multiple speakers with varying accents.

Sound perception will consist of four high quality
microphones. (Although the human head uses only
two auditory inputs, it relies heavily on the shape of
the external ear in determining, the vertical
component of directional sound source.) Sound
generation will be accomplished using a single
speaker.

Sound is critical for several aspects of the robot's
activity. First, sound provides immediate feedback for
motor manipulation and positioning. Babies learn to
find and use their hands by batting at and
manipulating toys that jingle and rattle. Adults use
such cues as contact noises — the sound of an object
hitting the table — to provide feedback to motor
systems. Second, sound aids in socialization even
before the emergence of language. Patterns such as
turn-taking and mimicry are critical parts of children's
development, and adults use guttural gestures to
express attitudes and other conversational cues.
Certain signal tones indicate encouragement or
disapproval to all ages and stages of development.
Finally, even preverbal children use sound effectively
to convey intent; until our robots develop true
language, other sounds will necessarily be a major
source of communication.

5.23 Torsos. In order for the humanoid to be able to
participate in the same sorts of body metaphors as are
used by humans, it needs to have a symmetric
human-like torso. It needs to be able to experience
imbalance, feel symmetry, learn to coordinate head
and body motion for stable vision, and be able to
experience relief when it relaxes its body.
Additionally the torso must be able to support the
head, the arms, and any objects they grasp.

The torsos we build will initially have a three
degree of freedom hip, with the axes passing through,
a common point, capable of leaning and twisting to
any position in about three seconds — somewhat
slower than a human. The neck will also have three

degrees of freedom, with the axes passing through a
common point which will also lie along the spinal
axis of the body. The head will be capable of yawing
at 90 degrees per second — less than peak human
speed, but well within the range of natural human
motions. As we build later versions we expect to
increase these performance figures to more closely
match the abilities of a human.

Apart from the normal sorts of kinematic sensors,
the torso needs a number of additional sensors
specifically aimed at providing input fodder for the
development of bodily metaphors. In particular, strain
gauges on the spine can give the system a feel for its
posture and the symmetry of a particular
configuration, plus a little information about any
additional load the torso might bear when an arm
picks up something heavy. Heat sensors on the
motors and the motor drivers will give feedback as to
how much work has been done by the body recently,
and current sensors on the motors will give an
indication of how hard the system is Working
instantaneously.

Our zero-th level torso is roughly 18 inches from
the base of the spine to the base of the neck. This
corresponds to a smallish adult. It uses DC motors
with built in gearboxes. The main concern we have is
how quiet it will be, as we do not want the sound
perception system to be overwhelmed by body noise.

Later versions of the torsos will have touch sensors
integrated around the body, will have more compliant
motion, will be quieter, and will need to provide
better cabling ducts so that the cables can all feed out
through a lower body outlet.

5.24 Arms. The eventual manipulator system will be
a compliant multi-degree of freedom arm with a rather
simple hand. (A better hand would be nice, but hand
research is not yet at a point where we can get an
interesting, easy-to use, off-the-shelf hand.) The arm
will be safe enough that humans can interact with it,
handing it things and taking things from it. The arm
will be compliant enough that the system will be
able to explore its own body — for instance, by
touching its head system — so that it will be able to
develop its own body metaphors.

We want the arms to be very compliant yet still
able to lift weights of a few pounds so that they can
interact with human artifacts in interesting ways.
Additionally we want the arms to have redundant
degrees of freedom (rather than the six seen in a
standard commercial robot arm), so that in many
circumstances we can ‘burn’ some of those degrees of
freedom in order to align a single joint so that the
joint coordinates and task coordinates very nearly



match. This will greatly simplify control of
manipulation. It is the sort of thing people do all the
time: for example, when bracing an elbow or the base
of the palm (or even their middle and last two fingers)
on a table to stabilize the hand during some delicate
(or not so delicate) manipulation. Our zeroth version
arms have six degrees of freedom and a novel
spring-based transmission system to introduce
passive compliance at every joint.

The hands in the first instances will be quite
simple; devices that can grasp from above relying
heavily on mechanical compliance — they may have
as few as one degree of control freedom.

More sophisticated, however, will be the sensing
on the arms and hands. We will use forms of
conductive rubber to get a sense of touch over the
surface of the arm, so that it can detect (compliant)
collisions it might participate in. As with the torso
there will be liberal use of strain gauges, heat sensors
and current sensors so that the system can have a
‘feel’ for how its arms are being used and how they
are performing.

We also expect to move towards a more
sophisticated type of hand in later years of this
project. Initially, unfortunately, we will be forced to

use motions of the upper joints of the arm for  fine
manipulation tasks. More sophisticated hands will
allow us to use finger motions, with much lower
inertias, to carry out these tasks.

6 Development Plan

We plan on modeling the brain at a level above the
neural level, but below what would normally be
thought of as the cognitive level.

We understand abstraction well enough to know
how to engineer a system that has similar properties
and connections to the human brain without having
to model its detailed local wiring. At the same time it
is clear from the literature that there is no agreement
on how things are really organized computationally at
higher or modular levels, or indeed whether it even
makes sense to talk about modules of the brain (e.g.,
short term memory, and long term memory) as
generative structures.

Nevertheless, we expect to be guided, or one might
say inspired, by what is known about the high level
connectivity within the human brain (although
admittedly much of our knowledge actually comes
from macaques and other primates and is only
extrapolated to be true of humans, a problem of

Fig. 1. Development plan.



concern to some brain scientists (Crick & Jones
1993)). Thus for instance we expect to have
identifiable clusters of processors which we will be
able to point to and say they are performing a role
similar to that of the cerebellum (e.g., refining gross
motor commands into coordinated smooth motions),
or the cortex (e.g., some aspects of searching
generalization/specialization hierarchies in object
recognition (Ullman 1991)).

At another level we will directly model human
systems where they are known in some detail. For
instance there is quite a lot known about the control
of eye movements in humans (again mostly
extrapolated from work with monkeys) and we will
build in a vestibulo-ocular response (VOR), OKR,
smooth pursuit, and saccades using the best evidence
available on how this is organized in humans
(Lisberger 1988).

A third level of modeling or inspiration that we
will use is at the developmental level. For instance
once we have some sound understanding developed,
we will use models of what happens in child
language development to explore ways of connecting
physical actions in the world to a ground of language
and the development of symbols (Bates 1979, Bates,
Bretherton & Synder 1988), including indexical
(Lempert & Kinsbourne 1985) and turn-taking
behavior, interpretation of tone and facial expressions
and the early use of memorized phrases.

Since we will have a number of faculty, and
graduate students working on concurrent research
projects, and since we will have a number of
concurrently active humanoid robots, not all pieces
that are developed will be intended to fit together
exactly. Some will be incompatible experiments in
alternate ways of building subsystems, or putting
them together. Some will be pushing on particular
issues in language, say, that may not be very related
to some particular other issues, e.g., saccades. Also,
quite clearly, at this stage we can not have a
development plan fully worked out for the lifetime of
the project, as many of the early results will change
the way we think about the problems and what
should be the next steps.

In figure 1, we summarize our current plans for
developing software systems on board our series of
humanoids. In many cases there will be earlier work
off-board the robots, but to keep clutter down in the
diagram we have omitted that work here.
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Notes

i Different sources cite 1947 and 1948 as the time of writing, but
it was not, published until long after his death.

ii A more egregious version of this is (Penrose 1989) who not
only makes the same Turing-Gödel error, but then in a
desperate attempt to find the essence of mind and applying the
standard methodology of physics, namely to find a simplifying
underlying principle, resorts to an almost mystical reliance on
quantum mechanics.

iii There are exceptions to this: for instance, the work of Beer
(1990); but that is restricted to insect level cognition.

iv One particular patient (McCarthy & Warrington 1988) when
shown a picture of a dolphin, was able to form sentences using
the word ‘dolphin’ and talk about its habitat, its ability to be
trained, and its role in the US military. When verbally asked
what a dolphin was, however, he thought it was ‘either a fish
or a bird.’ He had no such discrepancies in knowledge when
the subject was, for example, a wheelbarrow.

v For instance, some patients can not exercise conscious control
over their fingers for simple tasks, yet seem unimpaired in
threading a needle, or playing the Piano. Furthermore in some
cases selective drug induced suppression shows ways in which
many simple reflexes combine to give the appearance of a
centralized will producing globally coherent behavior
(Teitelbaum, Pellis & Pellis 1990).

vi This observation parallels the developments in digital
computers, where mean time between failures in the 1950's
was in the 20 minute range, extending to periods of a week in
the 1970's, and now typically we are not surprised when our
workstations run for months without needing to be rebooted —
this increase in robustness was bought with many hundreds of
iterations of the engineering cycle.

vii Consider the dynamic range possible in single signal channels
in the human brain and it soon becomes apparent that all that we
wish to do is     
     certainly achievable with neither span of 600 orders of
magnitude, or 47 significant binary digits.


