
Elephants Don't Play Chess

Rodney A. Brooks
MIT Artificial Intelligence Laboratory, Cambridge, MA 02139, USA

Robotics and Autonomous Systems 6 (1990) 3-15

Keywords: Situated activity; Mobile robots; Planning; Subsumption architecture; Artificial Intelligence.

Rodney A. Brooks was born in Adelaide, Australia. He studied Mathematics at the Flinders University of South Australia and received a Ph.D.
from Stanford in Computer Science in 1981. Since then he has held research associate positions at Carnegie Mellon University and the
Massachusetts Institute of Technology and faculty positions at Stanford and M.I.T. He is currently an Associate Professor of Electrical
Engineering and Computer Science at M.I.T. and a member of the Artificial Intelligence Laboratory where he leads the mobile robot group.
He has authored two books, numerous scientific papers, and is the editor of the International Journal of Computer Vision.

There is an alternative route to Artificial Intelligence that diverges from the directions pursued under that banner for the last thirty some years.
The traditional approach has emphasized the abstract manipulation of symbols, whose grounding, in physical reality has . rarely been
achieved. We explore a research methodology which emphasizes ongoing physical interaction with the environment as the primary source of
constraint on the design of intelligent systems. We show how this methodology has recently had significant successes on a par with the most
successful classical efforts. We outline plausible future work along these lines which can lead to vastly more ambitious systems.

1. Introduction

Artificial Intelligence research has foundered in a
sea of incrementalism. No one is quite sure where to
go save improving on earlier demonstrations of
techniques in symbolic manipulation of ungrounded
representations. At the same time, small AI
companies are folding, and attendance is well down at
national and international Artificial Intelligence
conferences. While it is true that the use of AI is
prospering in many large companies, it is primarily
through the application. to novel domains of long
developed techniques that have become passé in the
research community

What has gone wrong? (And how is this book the
answer?!!)

In this paper we argue that the symbol system
hypothesis upon which classical AI is base is
fundamentally flawed, and as such imposes severe
limitations on the fitness of its progeny. Further, we
argue that the dogma of the symbol system
hypothesis implicitly includes a number of largely
unfounded great leaps of faith when called upon to
provide a plausible path to the digital equivalent of
human level intelligence. It is the chasms to be
crossed by these leaps which now impede classical AI
research.

But there is an alternative view, or dogma,
variously called nouvelle AI, fundamentalist AI, or in
a weaker form situated activity 1. It is based on the
physical grounding hypothesis. It provides a different
methodology for building intelligent systems than
that pursued for the last thirty years. The traditional
methodology bases its decomposition of intelligence
into functional information processing modules
whose combinations provide overall system behavior.
The new methodology bases its decomposition of
intelligence into individual behavior generating
modules, whose coexistence and co-operation let
more complex behaviors emerge.

In classical AI, none of the modules themselves
generate the behavior of the total system. Indeed it is
necessary to combine together many of the modules
to get any behavior at all from the system.
Improvement in the competence of the system
proceeds by improving the individual functional
modules. In nouvelle AI each module, itself generates
behavior, and improvement in the competence of the

                                                
1 Note that what is discussed in this paper is completely unrelated
to what is popularly known as Neural Networks. That given, there
are nevertheless a number of aspects of nouvelle AI approaches
which may be of interest to. people working in classical
neuroscience.



system proceeds by adding new modules to the
system.

Given that neither classical nor nouvelle AI seem
close to revealing the secrets of the holy grail of AI,
namely general purpose human level intelligence
equivalence, there are a number of critical
comparisons that can be made between the two
approaches.

• Is either approach epistemologically adequate? (And
adequate for what?)

• Are there clear paths for either approach in the
direction of vastly more intelligent systems?

• Are nouvellers romantically hoping for magic from
nothing while classicists are willing to tell their
systems almost anything and everything, in the hope
of teasing out the shallowest of inferences?

• Is the claim of emergent properties of nouvelle AI
systems any more outrageous than the use of
heuristics in classical AI?

In the following sections we address these issues.

2. The Symbol System Hypothesis

The symbol system hypothesis, [30], states that
intelligence operates on a system of symbols. The
implicit idea is that perception and motor interfaces
are sets of symbols on which the central intelligence
system operates. Thus, the central system, or
reasoning engine, operates in a domain independent
way on the symbols. Their meanings are unimportant
to the reasoner, but the coherence of the complete
process emerges when an observer of the system
knows the groundings of the symbols within his or
her own experience.

Somewhat more implicitly in the work that the
symbol system hypothesis has inspired, the symbols
represent entities in the world. They may be
individual objects, properties, concepts, desires,
emotions, nations, colors, libraries, or molecules,
but they are necessarily named entities. There are a
number of effects which result from this
commitment.

Recall first, however, that an intelligent system,
apart from those which are experiments in the
laboratory, will be embedded in the world in some
form or another.

2.1. The Interface Between Perception and Symbols

The central intelligence system deals in symbols. It
must be fed symbols by, the perception system.

But what is the correct symbolic description of
the world around the intelligence system? Surely that
description must be task dependent.

The default assumption has been that the
perception system delivers a description of the world
in terms of typed, named individuals and their
relationships. For instance in the classic monkeys
and bananas problem, the world, description is in
terms of boxes, bananas, and aboveness.

But for another task (e.g., deciding whether the
bananas are rotten) quite a different representation
might be important. Psychophysical evidence [32]
certainly points to perception being an active and task
dependent operation.

The effect of the symbol system hypothesis has
been to encourage vision researchers to quest after the
goal of a general purpose vision system which
delivers complete descriptions of the world in a
symbolic form (e.g. [5]). Only recently has there
been a movement towards active vision [4] which is
much more task dependent, or task driven [1].

2.2. Inadequacy of Simple Symbols

Symbol systems in their purest forms assume a
knowable objective truth. It is only with much
complexity that modal logics, or non-monotonic
logics, can be built which better enable a system to
have, beliefs gleaned from partial views of a chaotic
world.

As these enhancements are made, the realization
of computations based on these formal systems
becomes more and more biologically implausible.
But once the commitment to symbol systems has
been made it is imperative to push on through more
and more complex and cumbersome systems in
pursuit of objectivity.

This same pursuit leads to the well known frame
problem (e.g., [27]), where it is impossible to
assume anything that is not explicitly stated.
Technical deviations around this problem have been
suggested but they are by no means without their
own problems.

2.3. Symbol Systems Rely on Emergent Properties

In general the reasoning process becomes trivial in
an NP-complete space (e.g., There have been large
efforts to overcome these problems by choosing
simple arithmetically computed evaluation functions



or  polynomials to guide the search. Charmingly, it
has been hoped that intelligence will somehow
emerge from these  simple numeric computations
carried out in the sea of symbols. [28] was one of the
earliest examples of this hope, which later turned out
to be only partially correct (his learned polynomials
later turned out to be dominated by piece count), but
in fact almost all instances of search in classical AI
have relied on such judiciously chosen polynomials
to keep the search space manageable.

3. The Physical Grounding Hypothesis

Nouvelle AI is based on the physical grounding
hypothesis. This hypothesis states that to build a
system that is intelligent it is necessary to have its
representations grounded in the physical world. Our
experience with this approach is that once this
commitment is made, the need for traditional
symbolic representations soon fades entirely. The key
observation is that the world is its own best model. It
is always exactly up to date. It always contains every
detail there is to be known. The trick is to sense it
appropriately and often enough.

To build a system based on the physical grounding
hypothesis it is necessary to connect it to the world
via a set of sensors and actuators. Typed input and
output are no longer of interest. They are not
physically grounded.

Accepting the physical grounding hypothesis as a
basis for research entails building systems in a
bottom up manner. High level abstractions have to
be made concrete. The constructed system eventually
has to express all its goals and desires as physical
action, and must extract all its knowledge from
physical sensors. Thus the designer of the system is
forced to make everything explicit. Every short-cut
taken has a direct impact upon system competence, as
there is no slack in the input/output representations.
The forms of the low-level interfaces have
consequences which ripple through the entire system.

3.1. Evolution

We already have an existence proof of the
possibility of intelligent entities — human beings.
Additionally many animals are intelligent to some
degree. (This is a subject of intense debate, much of
which really centers around a definition of
intelligence.) They have evolved over the 4.6 billion
year history of the earth.

It is instructive to reflect on the way in which
earth-based biological evolution spent its time.
Single cell entities arose out of the primordial soup
roughly 3.5 billion years ago. A billion years passed

before photosynthetic plants appeared. After almost
another billion and a half years, around 550 million
years ago, the first fish and vertebrates arrived, and
then insects 450 million years ago. Then things
started moving fast. Reptiles arrived 370 million
years ago, followed by dinosaurs at 330 and
mammals at 250 million years ago. The first
primates appeared 120 million years ago and the
immediate predecessors to the great apes a mere 18
million years ago. Man arrived in roughly his present
form 2.5 million years ago. He invented agriculture a
mere 19000 years ago, writing less than 5000 years
ago and "expert" knowledge only over the last few
hundred years.

This suggests that problem solving behavior,
language, expert knowledge and application, and
reason, are all rather simple once the essence of being
and reacting are available. That essence is the ability
to move around in a dynamic environment, sensing
the surroundings to a degree sufficient to achieve the
necessary maintenance of life and reproduction. This
part of intelligence is where evolution has
concentrated its time—it is much harder. This is the
physically grounded part of animal systems.

An alternative argument to the preceeding is that in
fact once evolution had symbols and representations
things started moving rather quickly. Thus symbols
are the key invention and AI workers can sidestep the
early morass and start working directly with symbols.
But I think this misses a critical point, as is shown
by the relatively weaker performance of symbol based
mobile robots as opposed to physically grounded
robots. Without a carefully built physical grounding
any symbolic representation will be mismatched to
its sensors and actuators. These groundings provide
the constraints on symbols necessary for them to be
truly useful.

[26] has argued rather eloquently that mobility,
acute vision and the ability to carry out survival
related tasks in a dynamic environment provide a
necessary basis for the development of true
intelligence.

3.2. The Subsumption Architecture

In order to explore the construction of physically
grounded systems we have developed a computational
architecture known as the subsumption architecture.
It enables us to tightly connect perception to action,
embedding robots concretely in the world.

A subsumption program is built on a
computational substrate that is organized into a series
of incremental layers, each, in the general case,
connecting perception to action. In our case the



substrate is, networks of finite state machines
augmented with timing elements.

The subsumption architecture was described
initially in [6] and later modified in [8] and [16]. The
subsumption compiler compiles augmented finite
state machine (AFSM) descriptions into a
special-purpose scheduler to simulate parallelism and
a set of finite state machine simulation routines. This
is a dynamically retargetable compiler that has
backends for a number of processors, including the
Motorola 68000, the Motorola 68HC11, and the
Hitachi 6301. The subsumption compiler takes a
source file as input and produces an assembly
language program as output.

The behavior language was inspired by [23] as a
way of grouping AFSMs into more manageable units
with the capability for whole units being selectively
activated or de-activated. In fact, AFSMs are not
specified directly, but rather as rule sets of real-time
rules which compile into AFSMs in a one-to-one
manner. The behavior compiler is
machine-independent and compiles into an
intermediate file of subsumption AFSM
specifications. The subsumption compiler can then
be used to compile to the various targets., We
sometimes call the behavior language the new
subsumption.

3.2.1. The Old Subsumption Language

Each augmented finite state machine (AFSM) has
a set of registers and a set of timers, or alarm clocks,
connected to a conventional finite state machine
which can control a combinational network fed by the
registers. Registers can be written by attaching input
wires to them, and sending messages from other
machines. The messages get written into the registers
by replacing any existing contents. The arrival of a
message, or the expiration of a timer, can trigger a
change of state in the interior finite state machine.
Finite state machine states can either wait on some
event, conditionally dispatch to one of two other
states based on some combinational predicate on the
registers, or compute a combinational function of the
registers directing the result either back to one of the
registers or to an output of the augmented finite state
machine. Some AFSMs connect directly to robot
hardware. Sensors deposit their values in certain
registers, and certain outputs direct commands to
actuators.

A series of layers of such machines can be
augmented by adding new machines and connecting
them into the existing network in a number of ways.
New inputs can be connected to existing registers,
which might previously have contained a constant.

New machines can inhibit existing outputs, or
suppress existing inputs, by being attached as
side-taps to existing wires. When a message arrives
on an inhibitory side-tap no messages can travel
along the existing wire for some short time period.
To maintain inhibition there must be a continuous
flow of messages along the new wire. (In previous
versions of the subsumption architecture [6] explicit,
long time periods had to be specified for inhibition or
suppression with single shot messages., Recent work
has suggested this better approach [16].) When a
message arrives on a suppressing side-tap, again no
messages are allowed to flow, from the original
source for some small time period, but now the
suppressing message is gated through and it
masquerades as having come from the original source.
A continuous supply of suppressing messages is
required to maintain control of a side-tapped wire.

Inhibition and suppression are the mechanisms by
which conflict resolution between actuator commands
from different layers is achieved. Notice that in this
definition of the subsumption architecture, AFSMs
cannot share any state, and in particular they each
completely encapsulate their own registers and alarm
clocks.

All clocks in a subsumption system have
approximately the same tick period (0.04 seconds in
most of our robots). However, neither the clocks nor
the messages are synchronous. The fastest possible
rate of sending messages along a wire is one per
clock tick. The time periods used for both inhibition
and suppression are two clock ticks. Thus, a
side-tapping wire with messages being sent at the
maximum rate can maintain control of its host wire.
We call this rate the characteristic frequency of the
particular subsumption implementation.

3.2.2. The New Subsumption Language

The behavior language groups multiple processes
(each of which usually turns out to be implemented
as a single AFSM) into behaviors. There can be
message passing, suppression, and inhibition
between processes within a behavior, and there can be
message passing, suppression and inhibition between
behaviors. Behaviors act as abstraction barriers; one
behavior cannot reach inside another.

Each process within a behavior is much like an
AFSM, and indeed our compiler for the behavior
language converts them to AFSMs. However, they
are generalized so that they can share registers. A new
structure, monostables, provides a slightly more
general timing mechanism than the original alarm
clocks. Monostables are retriggerable, and can be
shared between processes within a single behavior.



4. Some Physically Grounded Systems

In this section we briefly review some previous
successful robots built with the subsumption
architecture and highlight the ways in which they
have exploited or epitomize that architecture. The
family portrait of all the robots is shown in Fig. 1.
Most of the robots were programmed with the old
subsumption language. Toto and Seymour use the
new behavior language.

A key thing to note with these robots is the ways
in which seemingly goal-directed behavior emerges
from the interactions of simpler non goal-directed
behaviors.

Fig. 1. The MIT Mobile Robots include, in the back row, left to
right; Allen, Herbert, Seymour and Toto. In front row are Tito,
Genghis, Squirt (very small) Tom and Jerry, and Labnav.

4.1. Allen

Our first robot, Allen, had sonar range sensors and
odometry onboard and used an offboard lisp machine
to simulate the subsumption architecture. In [6] we
described three layers of control implemented in the
subsumption architecture.

The first layer let the robot avoid both static and
dynamic obstacles; Allen would happily sit in the
middle of a room until approached, then scurry away,
avoiding collisions as it went. The internal
representation used was that every sonar return
represented a repulsive force with an inverse square
decrease in strength as a function of distance. The
vector sum of the repulsive forces, suitably
thresholded, told the robot in which direction it
should move. An additional reflex halted the robot
whenever there was something right in front of the
robot and it was moving forward (rather than turning
in place).

The second layer made the robot randomly wander
about. Every 10 seconds or so, a desire to head in a
random direction would be generated. That desire was
coupled with the reflex to avoid obstacles by vector
addition. The summed vector suppressed the more
primitive obstacle avoidance vector, but the obstacle
avoidance behavior still operated, having been
subsumed by the new layer, in its account of the
lower level's repulsive force. Additionally, the halt
reflex of the lower level operated autonomously and
unchanged.

The third layer made the robot look (with its
sonars) for distant places and try to head towards
them. This layer monitored progress through
odometry, generating a desired heading which
suppressed the direction desired by the wander  layer.
The desired heading was then fed, into a vector
addition with the instinctive obstacle avoidance layer.
The physical robot did not therefore remain true to
the desires of the upper layer. The upper layer had to
watch what happened in the world, through odometry,
in order to understand what was really happening in
the lower control layers, and send down correction
signals.

In [9] we described an alternate set of layers for the
robot Allen.

4.2. Tom and Jerry

Tom and Jerry [14] were two identical robots built
to demonstrate just how little raw computation is
necessary to support the subsumption architecture. A
three layer subsumption program was implemented,
yet all data paths were just one bit wide and the
whole program fitted on a single 256 gate
programmable array logic chip. Physically Tom and
Jerry were toy cars with three one-bit infrared
proximity sensors mounted on the front and one at
the rear. The sensors were individually tuned to a
specific distance at which they would fire. The central
front sensor fired only on much closer objects than
the two side sensors, which pointed slightly outward.

The lowest layer of Tom and Jerry implemented
the standard pair of first level behaviors. These used a
vector sum of repulsive forces from obstacles to
perform an avoidance manuever or to trigger a halt
reflex to stop when something was too close ahead,
as detected, by the central front looking sensor. There
were extra complications with Tom and Jerry in that
we needed to use the subsumption architecture to
implement an active braking scheme because of the
high speed of the robots relative to their sensor
ranges. Tom and Jerry's second layers were much like
Allen's original second layer-an urge to wander about,
which was implemented by an attractive force which



got added to the repulsive forces from obstacles. The
third layer detected moving objects using the front
three sensors and created a following behavior. When
something was detected, the robot was attracted and
moved towards it. The lower level collide behavior
stopped the robot from actually hitting the target,
however. While the robot was chasing its target, the
wander behavior was suppressed.

Tom and Jerry demonstrated the notion of
independent behaviors combining without knowing
about each other (chasing obstacles but staying back
from them a little). Tom and Jerry also demonstrated
that the subsumption architecture could be compiled
(by hand) down to the gate level, and that it could be
run at clock speeds of only a few hundred Hertz.

4.3. Herbert

Herbert [12] was a much more ambitious robot. It
has a 24-processor distributed, loosely coupled,
onboard computer to run the subsumption
architecture. The processors were slow CMOS 8-bit
microprocessors (which ran on low electrical power;
an important consideration when carrying batteries),
which could communicate only by slow serial
interfaces (maximum 10 packets each, 24 bits wide
per second). Onboard Herbert, the interconnections
between AFSMs are physically embodied as actual
copper wires.

Herbert had 30 infrared proximity sensors for local
obstacle avoidance, an onboard manipulator with a
number of simple sensors attached to the hand, and a
laser light striping system to collect three
dimensional depth data in a 60 degree wide swath in
front of the robot with a range of about 12 feet. A
256 pixel-wide by 32 pixel-high depth image was
collected every second. Through a special purpose
distributed serpentine memory, four of the onboard
8-bit processors were each able to expend about 30
instructions on each data pixel. By linking the
processors in a chain we were able to implement
quite high performance vision algorithms.

[16] programmed Herbert to wander around office
areas, go into people's offices and steal empty soda
cans from their desks. He demonstrated obstacle
avoidance and wall following, real-time recognition
of soda-can-like objects, and a set of 15 behaviors
[15] which drove the arm to physically search for a
soda can in front of the robot, locate it, and pick it
up.

Herbert showed many instances of using the world
as its own best model and as a communication
medium. The remarkable thing about Herbert is that
there was absolutely no internal communication

between any of its behavior generating modules. Each
one was connected to sensors on the input side, and
an arbitration network on the output side. The
arbitration network drove the actuators.

The laser-based soda-can object finder drove the
robot so that its arm was lined up in front of the soda
can. But it did not tell the arm controller that there
was now a soda can ready to be picked up. Rather, the
arm behaviors monitored the shaft encoders on the
wheels, and when they noticed that there was no body
motion, initiated motions of the arm, which in turn
triggered other behaviors, so that eventually the robot
would pick up the soda can.

The advantage of this approach is that there is no
need to set up internal expectations for what is going
to happen next; this means that the control system
can both (1) be naturally opportunistic if fortuitous
circumstances present themselves, and (2) it can
easily respond to changed circumstances, such as
some other object approaching it on a collision
course.

As one example of how the arm behaviors
cascaded upon one another, consider actually grasping
a soda can. The hand had a grasp reflex that operated
whenever something broke an infrared beam between
the fingers. When the arm located a soda can with its
local sensors, it simply drove the hand so that the
two fingers lined up on either side of the can. The
hand then independently grasped the can. Given this
arrangement, it was possible for a human to hand a
soda can to the robot. As soon as it was grasped, the
arm retracted — it did not matter whether it was a
soda can that was intentionally grasped, or one that
magically appeared. The same opportunism among
behaviors let the arm adapt automatically to a wide
variety of cluttered desktops, and still successfully
find the soda can.

4.4. Genghis

Genghis [81 is a 1Kg six legged robot which
walks under subsumption control and has an
extremely distributed control system. The robot
successfully walks over rough terrain using 12
motors, 12 force sensors, 6 pyroelectric sensors, one
inclinometer and 2 whiskers. It also follows
cooperative humans using its pyroelectric sensors.

The subsumption layers successively enable the
robot to stand up, walk without any sensing, use
force measurements to comply with rough terrain,
use force measurements to lift its legs over obstacles,
use inclinometer measurements to selectively inhibit
rough terrain compliance when appropriate, use
whiskers to lift feet over obstacles, use passive



infrared sensors to detect people and to walk only
when they are present, and to use the directionality of
infrared radiation to modulate the backswing of
particular leg sets so, that the robot follows a
moving source of radiation.

In contrast, one could imagine a control system
which had a central repository which modeled the
robot's configuration in translation and orientation
space. One could further imagine high level
commands (for instance from a path planner)
generating updates for the robot's coordinates. These
high level commands would then be hierarchically
resolved into instructions for individual legs.

The control system on Genghis has no such
repository. Indeed there is not even a central
repository for each leg—separate motors on the legs
are controlled quite separately in different parts of the
network. While there is a some semblance of a
central control system for each individual motor,
these controllers receive messages from diverse parts
of the network and simply pass them on to the
motors, without any attempt at integration.

Our control system was also very easy to build. It
was built incrementally, with each new capability
being a simple addition (no deletion, no change to
previous network) of new network structure. The
debugged existing network structure was never
altered.

The resulting control system is elegant in its
simplicity. It does not deal with coordinate
transforms or kinematic models. It is not at all
hierarchical. It directly implements walking through
many very tight couplings of sensors to actuators. It
is very distributed in its nature, and we believe its
robustness in handling rough terrain comes from this
distributed form of control.

We are currently building a new version of
Genghis [3] which will be a much stronger climber
and able to scramble at around three kilometers per
hour. Each leg has three degrees of freedom and three
force sensors mounted on load bearing beams. A
single-chip microprocessor with onboard RAM and
EEPROM is easily able to force servo the complete
leg. The total mass of the final robot will be 1.6 Kg.
Attila will have batteries which will power it for
about 30 minutes while actively walking. Following
that, it will have to recharge from solar cells for
about 4.5 hours in Earth sunlight.

4.5. Squirt

Squirt is the smallest robot we  have built [21]. It
weighs about 50 grams and is about 5/4 cubic inches
in volume.

Squirt incorporates an 8-bit computer, an onboard
power supply, three sensors and a propulsion system.
Its normal mode of operation is to act as a "bug",
biding in dark corners and venturing out in the
direction of noises, only after the noises are long
gone, looking for a new place to hide near where the
previous set of noises came from.

The most interesting thing about Squirt is the way
in which this high level behavior emerges from a set
of simple interactions with the world.

Squirt's lowest level of behavior monitors a light
sensor and causes it to move in a spiral pattern
searching for darkness. The spiral trajectories are
created by a coupling of a forward motion along with
a back-and-turn motion, implemented through the use
of only one motor and made possible by a
unidirectional clutch on the rear axle. Once Squirt
finds a dark spot, it stops.

Squirt's second level of behavior is triggered once
a dark hiding place has been established. This
behavior monitors two microphones and measures the
time of arrival of sound at each microphone. By
noting the difference, it can localize the direction
from which the sound came. Squirt then waits for a
pattern of a sharp noise followed by a few minutes of
silence. If this pattern is recognized, Squirt ventures
out in the direction of the last heard noise,
suppressing the desire to stay in the dark. After this
ballistic straight-line motion times out, the lower
level is no longer suppressed and the light sensor is
again recognized. If it is light, the spiraling pattern
kicks back in. The end effect is that Squirt gravitates
towards the center of action. The entire compiled
control system for Squirt fits in 1300 bytes of code
on an onboard microprocessor.

4. 6 Toto

Toto [24] is our first robot fully programmed with
the new behavior language. Toto has 12 radially
arranged sonars and a flux-gate compass as its
sensors.

At first appearance it may seem that the
subsumption architecture does not allow for such
conventional items as maps. There are no data
structures within the subsumption architecture, and
no easy way of having a central repository for more
than simple numeric quantities. Our work with Toto
demonstrates that these are not critical limitations
with regard to map building and use.



Toto has a low level reactive system to keep basic
functions running robustly. Its lower level behaviors
enable it to wander around avoiding collisions, and
successfully follow walls and corridors as if it were
explicitly exploring the world. An intermediate level
set of behaviors tries to recognize particular types of
landmark such as walls, corridors and clutter. Another
network is made up of mutually identical behaviors
with each layer waiting for new landmarks to be
recognized. Each time this happens a behavior
allocates itself to be the 'place' of that particular
landmark. The behaviors which correspond to
physically adjacent landmarks have neighbor
relationship links activated between them. A graph
structure is thus formed, although the nodes are active
computational elements rather than static data
structures. (In fact, each node is really a whole
collection of computational elements in the form of
augmented finite state machines.)

As the robot moves around the environment, the
nodes try to keep track of where it is. Nodes become
more active if they believe that they correspond to the
place at which the robot is currently located. Thus the
robot has both a map, and a sense of where it is on
the map, but a totally distributed computational
model.

When a behavior (such as "go to some place") is
activated (via a small panel of push buttons on the
robot) a spreading of activation mechanism is used,
which spreads from the goal via the neighbor links.
This process is continuous and keeps the robot
informed as it reaches each place expected from the
map.

Mataric's experimental results [25] show how the
robot's performance can be incrementally improved
by adding new pieces of network. Map building and
path planning were initially demonstrated with fewer
types of behaviors than finally implemented. Then an
idea of expectation, based on temporally generated
context was added. This allowed the robot to handle
getting lost and to relocate itself in the map later.
Then a coarse position estimation scheme was added,
based on integrating the compass heading over time.
This significantly lowered the level of ambiguity in
both map building and map use in more complex
environments, and thus increased the robot's overall
competence. In all cases we simply added new
behaviors to the network to improve the map
building and using performance.

The work has also shown that globally consistent
maps can be built and emerge in a totally distributed
manner. In our experiments they were built by a
collection of asynchronous independent agents,

without the ability to use arbitrary pointers, or other
such traditional data structure techniques. In path
planning there is no notion of a global path under
this scheme; local pieces of information combine to
direct the robot through its dynamics of interaction
with the world, to get to the desired place. Overall,
these aspects demonstrate that the techniques should
scale well.

It has been easy to integrate the maps with the
dynamics of navigation, obstacle avoidance and path
planning. The representations have a natural ability
to integrate temporal aspects of the dynamics since
they can use time as its own representation!

The notion of place maps developed for Toto bears
striking similarities to what has been observed in the
hippocampus of the rat [17].

4.7. Seymour

Seymour is a new robot we are building with all
onboard processing to support vision processing of 9
low resolution cameras at approximately 10 frames
per second [10]. The cameras feed into different
subsumption layers which act upon those aspects of
the world they perceive. Seymour is also programmed
in the new behavior language.

A number of vision based behaviors developed for
Seymour have been prototyped on earlier robots.

[22] describe a subsumption program that controls
two simple and unreliable visual processing routines
to produce a reliable behavior which follows moving
objects using vision. One vision process tracks a
single moving blob. It gets bootstrapped by another
process which overlays the blob image with an
indication of where motion is seen. The robot then
tries to servo a selected blob to stay in a fixed
location in image coordinates. The blob tracker often
loses the blob it is tracking. The motion finder
produces a lot of noise especially when the robot is
moving, but between the two of them they let the
robot reliably follow a moving object (any moving
object; we have seen the robot chase a black trash can
dragged by a string, a radio controlled blue toy car on
a blue floor, a pink plastic flamingo, a grey notebook
on a grey carpeted floor, and a drinking mug moved
around by hand), by switching back, and forth
between the visual routines as either one fails.
Nowhere internally does the subsumption program
have the notion of an identifiable object, yet to an
outside observer it certainly appears to follow a
moving object very well.

Using the robot Tito, [29] demonstrated two
visually guided behaviors which will be used in



support of Seymour. Each behavior used a stereo pair
of linear cameras. A vertically mounted pair made use
of rotational motions of the base to produce images
from which the dimensions of the room could be
extracted even though the camera system was
uncalibrated. Then employing earlier results from
[11], the robot used forward motion to calibrate a
horizontally mounted pair of cameras, which were
used to find doorways through which the robot drove.

[31] has demonstrated an autonomous eyeball
capable of maintaining a steady gaze despite motion
of its platform. It recapitulates the primate
vestibular-occular system by using vision as a slow
calibration system for a gyroscope controlled
movable platform which holds the camera.

4.8. Gnat Robots

In all our use and development of the subsumption
architecture we have been careful to maintain its
simplicity so that programs written in it could be
easily and mechanically compiled into silicon. For
example, with Toto the map networks were arranged
so that the total wire length for connecting the
underlying finite state machines need be no more than
linear in the number of finite state machines. In
general the area of silicon needed for the robots we
have built would be quite small. There is a reason for
maintaining this restriction.

[18,19] introduced the idea of building complete
small robots out of silicon on a VLSI fabrication
line. [7] demonstrated how to use the subsumption
architecture to control such robots. There is great
potential for using such robots in ways previously
not considered at all cost effective for robotic
applications. Imagine, for instance having a colony
of tiny robots living on your TV screen, absorbing
energy from the electron beam, whose only purpose
in existence is to keep the screen clean. There is
potential for a revolution in micro-mechanical
systems of the same order and impact as the quiet
revolutions brought about in daily life by the advent
of the micro-processor.

[20] outlines a series of technological steps
necessary to build such robots, including materials, a
new type of micro motor based on thin film
piezo-electric material, a 3-D fabrication process, and
some new types of integrated sensors. Critical to this
enterprise is an easy way of controlling the robots,
giving them intelligent behavior in unstructured and
uncertain environments.

5. Measures of Success

When I give talks about the techniques we have
used to build intelligent control systems for our
robots, the most common questions I am asked, or
assertions I am told, are:

• “If I make such-and-such a change to your robot's
environment, I bet it would do the wrong thing.”

• “Aren't these systems almost impossible to debug?”

• “Surely this can't be scaled up to do X,” for some
value of X which has not been part of the talk.

In the next three subsections I argue that these
questions are either easy to answer or, in a deep
sense, improper to ask.

5. 1. Puzzlitis

Since traditional Artificial Intelligence research has
concentrated on isolated modules of intelligence that
almost never get grounded in the world, it has been
important to develop some criteria for successful
research. One of the most popular ideas is generality.
This quickly leads to a disease I call puzzlitis. The
way to show generality is to pick the most obscure
case within the domain and demonstrate that your
system can handle or solve it.

But in physically grounded systems I believe this
approach is counterproductive. The puzzles posed are
often very unlikely in practice, but to solve them
makes the systems much more complex. This reduces
the overall robustness of the system! We should be
driven by puzzles which can naturally arise in a
physically grounded context—this is what gives
strength to our physically grounded systems.

One additional argument on this topic is that for
most AI programs the creator gets to tell the program
the facts in some sort of representation language. It is
assumed that the vision guys in the white hats down
the corridor will one day deliver world models using
these same representations. Many of the puzzlitis
failures of physically grounded systems stem from a
failure in perception as the stakes have been raised.
Standard AI programs have not been forced to face
these issues.

5.2. Debugging

In our experience debugging the subsumption
programs used to control our physically grounded
systems has not been a great source of frustration or
difficulty. This is not due to any particularly helpful
debugging tools or any natural superiority of the
subsumption architecture.



Rather, we believe it is true because the world is
its own best model (as usual). When running a
physically grounded system in the real world, one can
see at a glance how it is interacting. It is right before
your eyes. There are no layers of abstraction to
obfuscate the dynamics of the interactions between
the system and the world. This is an elegant aspect of
physically grounded systems.

5.3. But It Can't Do X

Along with the statement "But it can't do X" there
is an implication, sometimes vocalized, and
sometimes not, that therefore there are lots of things
that this approach is not good for, and so we should
resort to the symbol system hypothesis.

But this is a fallacious argument, even if only
implicit. We do not usually complain that a medical
expert system, or an analogy program cannot climb
real mountains. It is clear that their domain of
expertise is somewhat more limited, and that their
designers were careful to pick a well circumscribed
domain in which to work. Likewise it is unfair to
claim that an elephant has no intelligence worth
studying just because it does not play chess.

People working on physically grounded systems
do, however, seem to be claiming to eventually solve
the whole problem. E.g., papers such as this one,
argue that this is an interesting approach to pursue
for precisely that reason. How can we have it both
ways?

Like the advocates of the symbol system
hypothesis, we believe that in principle we have
uncovered the fundamental foundation of intelligence.
But just as the symbol system people are allowed to
work incrementally in their goals, so should the
physical grounding people be allowed. Solutions to
all problems are not obvious now. We must spend
time, analyzing the needs of certain domains from the
perspective of the physical grounding hypothesis to
discern what new structures and abstractions must be
built in order to make forward progress.

6. Future Limits

As [30] points out, concerning his symbol system
hypothesis: The hypothesis is clearly an empirical
one, to be judged true or false on the basis of
evidence.  The same can, of course, be said for the
physical grounding hypothesis.

Our current strategy is to test the limitations of the
physical grounding hypothesis by building robots
which are more independent and can do more in the
world. We are tackling aspects of human competence

in a different order than that chosen by people
working under the symbol system hypothesis, so
sometimes it is hard to make comparisons between
the relative successes. A further part of our strategy
then, is to build systems that can be deployed in the
real world. At least if our strategy does not convince
the arm chair philosophers, our engineering approach
will have radically changed the world we live in.

6.1. Contrasts In Hope

Adherents of both approaches to intelligence are
relying on some degree of hope that their approach
will eventually succeed. They have both demonstrated
certain classes of success, but both can resort only to
vague hopes when it comes to generalizability. It
turns out that the demonstrations and generalization
issues fall along different dimensions for the two
approaches.

•  Traditional AI has tried to demonstrate sophisticated
reasoning in rather impoverished domains. The
hope is that the ideas used will generalize to robust
behavior in more complex domains.

•  Nouvelle AI tries to demonstrate less sophisticated
tasks operating robustly in noisy complex
domains. The hope is that the ideas used will
generalize to more sophisticated tasks.

Thus the two approaches appear somewhat
complementary. It is worth addressing the question of
whether more power may be gotten by combining the
two approaches. However, we will not pursue that
question further here.

Both approaches rely on some unanalyzed aspects
to gain their successes.

Traditional AI relies on the use of heuristics to
control search. While much mathematical analysis
has been carried out on this topic, the user of a
heuristic still relies on an expected distribution of
cases within the search tree to get a "reasonable"
amount of pruning in order to make the problem
manageable.

Nouvelle AI relies on the emergence of more
global behavior from the interaction of smaller
behavioral units. As with heuristics there is no a
priori guarantee that this will always work..
However, careful design of the simple behaviors and
their interactions can often produce systems with
useful and interesting emergent properties. The user
again is relying on expectations without hard proofs.

Can there be a theoretical analysis to decide whether
one organization for intelligence is better than



another? Perhaps, but I think we are so far away from
understanding the correct way of formalizing the
dynamics of interaction with the environment that no
such theoretical results will be forthcoming in the
near term.

6.2. Specific Problems

Some of the specific problems which must be
tackled soon, and solved, by approaches to AI based
on the physical grounding hypothesis include

• how to combine many (e.g. more than a dozen)
behavior generating modules in a way which lets
them be productive and cooperative

• how to handle multiple sources of perceptual
information when there really does seem to be a need
for fusion

• how to automate the building of interaction
interfaces between behavior generating modules, so
that larger (and hence more competent) systems can
be built

• how to automate the construction of individual
behavior generating modules, or even to automate
their modification

The first two items have specific impact on
whether the approach can scale in principle to larger
and more complex tasks. The last two are concerned
with the issue of how to build such larger systems
even if they are in principle possible.

There is room for plenty of experimentation, and
eventually, when we are mature enough, there is also
room for much theoretical development of the
approaches to Artificial Intelligence based on the
physical grounding hypothesis.
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